1
|
Chetty IJ, Cai B, Chuong MD, Dawes SL, Hall WA, Helms AR, Kirby S, Laugeman E, Mierzwa M, Pursley J, Ray X, Subashi E, Henke LE. Quality and Safety Considerations for Adaptive Radiation Therapy: An ASTRO White Paper: ASTRO ART Safety White Paper. Int J Radiat Oncol Biol Phys 2024:S0360-3016(24)03474-6. [PMID: 39424080 DOI: 10.1016/j.ijrobp.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/06/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
PURPOSE Adaptive radiation therapy (ART) is the latest topic in a series of white papers published by the American Society for Radiation Oncology addressing quality processes and patient safety. ART widens the therapeutic index by improving precision of radiation dose to targets, allowing for dose escalation and/or minimization of dose to normal tissue. ART is performed via offline or online methods; offline ART is the process of replanning a patient's treatment plan between fractions, whereas online ART involves plan adjustment with the patient on the treatment table. This is achieved with in-room imaging capable of assessing anatomical changes and the ability to reoptimize the treatment plan rapidly during the treatment session. Although ART has occurred in its simplest forms in clinical practice for decades, recent technological developments have enabled more clinical applications of ART. With increased clinical prevalence, compressed timelines and associated complexity of ART, quality and safety considerations are an important focus area. METHODS ASTRO convened an interdisciplinary task force to provide expert consensus on key workflows and processes for ART. Recommendations were created using a consensus-building methodology and task force members indicated their level of agreement based on a 5-point Likert scale, from "strongly agree" to "strongly disagree." A prespecified threshold of ≥75% of raters selecting "strongly agree" or "agree" indicated consensus. Content not meeting this threshold was removed or revised. SUMMARY Establishing and maintaining an adaptive program requires a team-based approach, appropriately trained and credentialed specialists as well as significant resources, specialized technology, and implementation time. A comprehensive quality assurance program must be developed, using established guidance, to make sure all forms of ART are performed in a safe and effective manner. Patient safety when delivering ART is everyone's responsibility and professional organizations, regulators, vendors, and end-users must demonstrate a clear commitment to working together to deliver the highest levels of quality and safety.
Collapse
Affiliation(s)
- Indrin J Chetty
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Bin Cai
- Department of Radiation Oncology, University of Texas Southwestern, Dallas, Texas
| | - Michael D Chuong
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
| | | | - William A Hall
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Amanda R Helms
- American Society for Radiation Oncology, Arlington, Virginia
| | - Suzanne Kirby
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia
| | - Eric Laugeman
- Department of Radiation Oncology, Washington University in St Louis, St Louis, Missouri
| | - Michelle Mierzwa
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Jennifer Pursley
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Xenia Ray
- Department of Radiation Medicine & Applied Sciences, University of California, San Diego, California
| | - Ergys Subashi
- Department of Radiation Physics, University of Texas - MD Anderson Cancer Center, Houston, Texas
| | - Lauren E Henke
- Department of Radiation Oncology, Case Western University Hospitals, Cleveland, Ohio
| |
Collapse
|
2
|
Wessels C, Strzelecki A, Plamondon M, Lehmann M, Peterlik I, Paysan P, Nagy B, Heinz A, Seghers D, Thompson S, Scheib SG. Technical note: Phantom-based evaluation of CBCT dose calculation accuracy for use in adaptive radiotherapy. Med Phys 2024; 51:7492-7499. [PMID: 39101716 DOI: 10.1002/mp.17325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND High-quality 3D-anatomy of the day is needed for treatment plan adaptation in radiotherapy. For online x-ray-based CBCT workflows, one approach is to create a synthetic CT or to utilize a fan-beam CT with corresponding registrations. The former potentially introduces uncertainties in the dose calculation if deformable image registration is used. The latter can introduce burden and complexity to the process, the facility, and the patient. PURPOSE Using the CBCT of the day, acquired on the treatment device, for direct dose calculation and plan adaptation can overcome these limitations. This study aims to assess the accuracy of the calculated dose on the CBCT scans acquired on a Halcyon linear accelerator equipped with HyperSight. METHODS HyperSight's new CBCT reconstruction algorithm includes improvements in scatter correction, HU calibration of the imager, and beam shape adaptation. Furthermore, HyperSight introduced a new x-ray detector. To show the effect of the implemented improvements, gamma comparisons of 2%/2 mm, 2%/1 mm, and 1%/1 mm were made between the dose distribution in phantoms calculated on the CBCT reconstructions and the simulation CT scans, considering this the standard of care. The resulting gamma passing rates were compared to those obtained with the Halcyon 3.0 reconstruction and hardware without HyperSight's technologies. Various anatomical phantoms for dosimetric evaluations on brain, head and neck, lung, breast, and prostate cases have been used in this study. RESULTS The overall results demonstrated that HyperSight outperformed the Halcyon 3.0 version. Based on the gamma analysis, the calculated dose using HyperSight was closer to the CT scan-based doses than the calculated dose using iCBCT Halcyon 3.0 for most cases. Over all plans and gamma criteria, Halcyon 3.0 achieved an average passing rate of 92.9%, whereas HyperSight achieved 98.1%. CONCLUSION Using HyperSight CBCT images for direct dose calculation, for example, in (online) plan adaptation, seems feasible for the investigated cases.
Collapse
Affiliation(s)
- Claas Wessels
- Varian Medical Systems Imaging Laboratory, Daettwil, Switzerland
| | - Adam Strzelecki
- Varian Medical Systems Imaging Laboratory, Daettwil, Switzerland
| | | | - Mathias Lehmann
- Varian Medical Systems Imaging Laboratory, Daettwil, Switzerland
| | - Igor Peterlik
- Varian Medical Systems Imaging Laboratory, Daettwil, Switzerland
| | - Pascal Paysan
- Varian Medical Systems Imaging Laboratory, Daettwil, Switzerland
| | - Balazs Nagy
- Varian Medical Systems Imaging Laboratory, Daettwil, Switzerland
| | - Alexander Heinz
- Varian Medical Systems Imaging Laboratory, Daettwil, Switzerland
| | - Dieter Seghers
- Varian Medical Systems Imaging Laboratory, Daettwil, Switzerland
| | | | - Stefan G Scheib
- Varian Medical Systems Imaging Laboratory, Daettwil, Switzerland
| |
Collapse
|
3
|
Xia ZY, Zhang SH, Sun JX, Wang SG, Xia QD. Trends in focal therapy for localized prostate cancer: a bibliometric analysis from 2014 to 2023. Discov Oncol 2024; 15:472. [PMID: 39331332 PMCID: PMC11436610 DOI: 10.1007/s12672-024-01387-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024] Open
Abstract
Focal therapy, a minimally invasive strategy for localized prostate cancer, has been widely employed in the targeted treatment of localized prostate cancer in recent years. We analyzed 1312 relevant papers from the last decade using Web of Science Core Collection data. Our analysis covered countries, institutions, journals, authors, keywords, and references to offer a multifaceted perspective on the development of this field. The U.S. led in publications, contributing over half of the top 10 institutions. Emberton, M from University College London was the most published and cited author. "EUROPEAN UROLOGY" was the top journal by impact factor in 2022. Analysis of references and keywords suggests the prevalence of brachytherapy-related research, while high-intensity focused ultrasound (HIFU), cryotherapy, and irreversible electroporation (IRE) are emerging as new research focuses. Consequently, more high-quality evidence is necessary to evaluate the long-term effectiveness and safety of these novel therapeutic methods.
Collapse
Affiliation(s)
- Zhi-Yu Xia
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Si-Han Zhang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jian-Xuan Sun
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Shao-Gang Wang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| | - Qi-Dong Xia
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
4
|
Zhu H, Dong T, Pang T, Guan Q, Yang J, Zhao F, Yang B, Qiu J. Characterization of kilovoltage x-ray image guidance system with a novel post-processing algorithm on a new slip ring-mounted radiotherapy system. J Appl Clin Med Phys 2024:e14524. [PMID: 39259864 DOI: 10.1002/acm2.14524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/15/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024] Open
Abstract
PURPOSE This study evaluates the performance of a kilovoltage x-ray image-guidance system equipped with a novel post-processing optimization algorithm on the newly introduced TAICHI linear accelerator (Linac). METHODS A comparative study involving image quality tests and radiation dose measurements was conducted across six scanning protocols of the kV-cone beam computed tomography (CBCT) system on the TAICHI Linac. The performance assessment utilized the conventional Feldkamp-Davis-Kress (FDK) algorithm and a novel Non-Local Means denoising and adaptive scattering correction (NLM-ASC) algorithm. Image quality metrics, including spatial resolution, contrast-to-noise ratio (CNR), and signal-to-noise ratio (SNR), were evaluated using a Catphan 604 phantom. Radiation doses for low-dose and standard protocols were measured using a computed tomography dose index (CTDI) phantom, with comparative measurements from the Halcyon Linac's iterative CBCT (iCBCT). RESULTS The NLM-ASC algorithm significantly improved image quality, achieving a 300%-1000% increase in CNR and SNR over the FDK-only images and it also showed a 100%-200% improvement over the iCBCT images from Halcyon's head protocol. The optimized low-dose protocols yielded higher image quality than the standard FDK protocols, indicating potential for reduced radiation exposure. Clinical implementation confirmed the TAICHI system's utility for precise and adaptive radiotherapy. CONCLUSION The kV-IGRT system on the TAICHI Linac, with its novel post-processing algorithm, demonstrated superior image quality suitable for routine clinical use, effectively reducing image noise without compromising other quality metrics.
Collapse
Affiliation(s)
- Heling Zhu
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tingting Dong
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tingtian Pang
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiu Guan
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingru Yang
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Feini Zhao
- Our United Corporation, Xi'an, Shanxi Province, China
| | - Bo Yang
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Qiu
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Tegtmeier RC, Kutyreff CJ, Smetanick JL, Hobbis D, Laughlin BS, Toesca DAS, Clouser EL, Rong Y. Custom-Trained Deep Learning-Based Auto-Segmentation for Male Pelvic Iterative CBCT on C-Arm Linear Accelerators. Pract Radiat Oncol 2024; 14:e383-e394. [PMID: 38325548 DOI: 10.1016/j.prro.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/21/2023] [Accepted: 01/11/2024] [Indexed: 02/09/2024]
Abstract
PURPOSE The purpose of this investigation was to evaluate the clinical applicability of a commercial artificial intelligence-driven deep learning auto-segmentation (DLAS) tool on enhanced iterative cone beam computed tomography (iCBCT) acquisitions for intact prostate and prostate bed treatments. METHODS AND MATERIALS DLAS models were trained using 116 iCBCT data sets with manually delineated organs at risk (bladder, femoral heads, and rectum) and target volumes (intact prostate and prostate bed) adhering to institution-specific contouring guidelines. An additional 25 intact prostate and prostate bed iCBCT data sets were used for model testing. Segmentation accuracy relative to a reference structure set was quantified using various geometric comparison metrics and qualitatively evaluated by trained physicists and physicians. These results were compared with those obtained for an additional DLAS-based model trained on planning computed tomography (pCT) data sets and for a deformable image registration (DIR)-based automatic contour propagation method. RESULTS In most instances, statistically significant differences in the Dice similarity coefficient (DSC), 95% directed Hausdorff distance, and mean surface distance metrics were observed between the models, as the iCBCT-trained DLAS model outperformed the pCT-trained DLAS model and DIR-based method for all organs at risk and the intact prostate target volume. Mean DSC values for the proposed method were ≥0.90 for these volumes of interest. The iCBCT-trained DLAS model demonstrated a relatively suboptimal performance for the prostate bed segmentation, as the mean DSC value was <0.75 for this target contour. Overall, 90% of bladder, 93% of femoral head, 67% of rectum, and 92% of intact prostate contours generated by the proposed method were deemed clinically acceptable based on qualitative scoring, and approximately 63% of prostate bed contours required moderate or major manual editing to adhere to institutional contouring guidelines. CONCLUSIONS The proposed method presents the potential for improved segmentation accuracy and efficiency compared with the DIR-based automatic contour propagation method as commonly applied in CBCT-based dose evaluation and calculation studies.
Collapse
Affiliation(s)
- Riley C Tegtmeier
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | | | | | - Dean Hobbis
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona; Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Brady S Laughlin
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | | | - Edward L Clouser
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Yi Rong
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona.
| |
Collapse
|
6
|
Haertter A, Salerno M, Koger B, Kennedy C, Alonso‐Basanta M, Dong L, Teo B, Li T. ACR benchmark testing of a novel high-speed ring-gantry linac kV-CBCT system. J Appl Clin Med Phys 2024; 25:e14299. [PMID: 38520072 PMCID: PMC11087172 DOI: 10.1002/acm2.14299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/21/2023] [Accepted: 01/16/2024] [Indexed: 03/25/2024] Open
Abstract
A new generation cone-beam computed tomography (CBCT) system with new hardware design and advanced image reconstruction algorithms is available for radiation treatment simulation or adaptive radiotherapy (HyperSight CBCT imaging solution, Varian Medical Systems-a Siemens Healthineers company). This study assesses the CBCT image quality metrics using the criteria routinely used for diagnostic CT scanner accreditation as a first step towards the future use of HyperSight CBCT images for treatment planning and target/organ delineations. Image performance was evaluated using American College of Radiology (ACR) Program accreditation phantom tests for diagnostic computed tomography systems (CTs) and compared HyperSight images with a standard treatment planning diagnostic CT scanner (Siemens SOMATOM Edge) and with existing CBCT systems (Varian TrueBeam version 2.7 and Varian Halcyon version 2.0). Image quality performance for all Varian HyperSight CBCT vendor-provided imaging protocols were assessed using ACR head and body ring CT phantoms, then compared to existing imaging modalities. Image quality analysis metrics included contrast-to-noise (CNR), spatial resolution, Hounsfield number (HU) accuracy, image scaling, and uniformity. All image quality assessments were made following the recommendations and passing criteria provided by the ACR. The Varian HyperSight CBCT imaging system demonstrated excellent image quality, with the majority of vendor-provided imaging protocols capable of passing all ACR CT accreditation standards. Nearly all (8/11) vendor-provided protocols passed ACR criteria using the ACR head phantom, with the Abdomen Large, Pelvis Large, and H&N vendor-provided protocols produced HU uniformity values slightly exceeding passing criteria but remained within the allowable minor deviation levels (5-7 HU maximum differences). Compared to other existing CT and CBCT imaging modalities, both HyperSight Head and Pelvis imaging protocols matched the performance of the SOMATOM CT scanner, and both the HyperSight and SOMATOM CT substantially surpassed the performance of the Halcyon 2.0 and TrueBeam version 2.7 systems. Varian HyperSight CBCT imaging system could pass almost all tests for all vendor-provided protocols using ACR accreditation criteria, with image quality similar to those produced by diagnostic CT scanners and significantly better than existing linac-based CBCT imaging systems.
Collapse
Affiliation(s)
- Allison Haertter
- Department of Radiation OncologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Michael Salerno
- Department of Radiation OncologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Brandon Koger
- Department of Radiation OncologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Christopher Kennedy
- Department of Radiation OncologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Lei Dong
- Department of Radiation OncologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Boon‐Keng Teo
- Department of Radiation OncologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Taoran Li
- Department of Radiation OncologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
7
|
Cicchetti A, Mangili P, Fodor A, Gabellini MGU, Chiara A, Deantoni C, Mori M, Pasetti M, Palazzo G, Rancati T, Del Vecchio A, Gisella Di Muzio N, Fiorino C. Skin dose-volume predictors of moderate-severe late side effects after whole breast radiotherapy. Radiother Oncol 2024; 194:110183. [PMID: 38423138 DOI: 10.1016/j.radonc.2024.110183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Toxicity after whole breast Radiotherapy is a relevant issue, impacting the quality-of-life of a not negligible number of patients. We aimed to develop a Normal Tissue Complication Probability (NTCP) model predicting late toxicities by combining dosimetric parameters of the breast dermis and clinical factors. METHODS The skin structure was defined as the outer CT body contour's 5 mm inner isotropic expansion. It was retrospectively segmented on a large mono-institutional cohort of early-stage breast cancer patients enrolled between 2009 and 2017 (n = 1066). Patients were treated with tangential-field RT, delivering 40 Gy in 15 fractions to the whole breast. Toxicity was reported during Follow-Up (FU) using SOMA/LENT scoring. The study endpoint was moderate-severe late side effects consisting of Fibrosis-Atrophy-Telangiectasia-Pain (FATP G ≥ 2) developed within 42 months after RT completion. A machine learning pipeline was designed with a logistic model combining clinical factors and absolute skin DVH (cc) parameters as output. RESULTS The FATP G2 + rate was 3.8 %, with 40/1066 patients experiencing side effects. After the preprocessing of variables, a cross-validation was applied to define the best-performing model. We selected a 4-variable model with Post-Surgery Cosmetic alterations (Odds Ratio, OR = 7.3), Aromatase Inhibitors (as a protective factor with OR = 0.45), V20 Gy (50 % of the prescribed dose, OR = 1.02), and V42 Gy (105 %, OR = 1.09). Factors were also converted into an adjusted V20Gy. CONCLUSIONS The association between late reactions and skin DVH when delivering 40 Gy/15 fr was quantified, suggesting an independent role of V20 and V42. Few clinical factors heavily modulate the risk.
Collapse
Affiliation(s)
- Alessandro Cicchetti
- Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Data Science Unit, Milan, Italy.
| | - Paola Mangili
- IRCCS San Raffaele Scientific Institute, Medical Physics Milan, Italy
| | - Andrei Fodor
- IRCCS San Raffaele Scientific Institute, Radiotherapy, Milan, Italy
| | | | - Anna Chiara
- IRCCS San Raffaele Scientific Institute, Radiotherapy, Milan, Italy
| | - Chiara Deantoni
- IRCCS San Raffaele Scientific Institute, Radiotherapy, Milan, Italy
| | - Martina Mori
- IRCCS San Raffaele Scientific Institute, Medical Physics Milan, Italy
| | - Marcella Pasetti
- IRCCS San Raffaele Scientific Institute, Radiotherapy, Milan, Italy
| | - Gabriele Palazzo
- IRCCS San Raffaele Scientific Institute, Medical Physics Milan, Italy
| | - Tiziana Rancati
- Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Data Science Unit, Milan, Italy
| | | | | | - Claudio Fiorino
- IRCCS San Raffaele Scientific Institute, Medical Physics Milan, Italy
| |
Collapse
|
8
|
Kim E, Park YK, Zhao T, Laugeman E, Zhao XN, Hao Y, Chung Y, Lee H. Image quality characterization of an ultra-high-speed kilovoltage cone-beam computed tomography imaging system on an O-ring linear accelerator. J Appl Clin Med Phys 2024; 25:e14337. [PMID: 38576183 PMCID: PMC11087174 DOI: 10.1002/acm2.14337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/23/2024] [Accepted: 03/06/2024] [Indexed: 04/06/2024] Open
Abstract
PURPOSE The quality of on-board imaging systems, including cone-beam computed tomography (CBCT), plays a vital role in image-guided radiation therapy (IGRT) and adaptive radiotherapy. Recently, there has been an upgrade of the CBCT systems fused in the O-ring linear accelerators called HyperSight, featuring a high imaging performance. As the characterization of a new imaging system is essential, we evaluated the image quality of the HyperSight system by comparing it with Halcyon 3.0 CBCT and providing benchmark data for routine imaging quality assurance. METHODS The HyperSight features ultra-fast scan time, a larger kilovoltage (kV) detector, a more substantial kV tube, and an advanced reconstruction algorithm. Imaging protocols in the two modes of operation, treatment mode with IGRT and the CBCT for planning (CBCTp) mode were evaluated and compared with Halcyon 3.0 CBCT. Image quality metrics, including spatial resolution, contrast resolution, uniformity, noise, computed tomography (CT) number linearity, and calibration error, were assessed using a Catphan and an electron density phantom and analyzed with TotalQA software. RESULTS HyperSight demonstrated substantial improvements in contrast-to-noise ratio and noise in both IGRT and CBCTp modes compared to Halcyon 3.0 CBCT. CT number calibration error of HyperSight CBCTp mode (1.06%) closely matches that of a full CT scanner (0.72%), making it suitable for adaptive planning. In addition, the advanced hardware of HyperSight, such as ultra-fast scan time (5.9 s) or 2.5 times larger heat unit capacity, enhanced the clinical efficiency in our experience. CONCLUSIONS HyperSight represented a significant advancement in CBCT imaging. With its image quality, CT number accuracy, and ultra-fast scans, HyperSight has a potential to transform patient care and treatment outcomes. The enhanced scan speed and image quality of HyperSight are expected to significantly improve the quality and efficiency of treatment, particularly benefiting patients.
Collapse
Affiliation(s)
- Euidam Kim
- Department of Radiation OncologyWashington University in St Louis School of MedicineSt LouisMissouriUSA
- Department of Nuclear EngineeringHanyang University College of EngineeringSeoulSouth Korea
| | - Yang Kyun Park
- Department of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Tianyu Zhao
- Department of Radiation OncologyWashington University in St Louis School of MedicineSt LouisMissouriUSA
| | - Eric Laugeman
- Department of Radiation OncologyWashington University in St Louis School of MedicineSt LouisMissouriUSA
| | - Xiaodong Neo Zhao
- Department of Radiation OncologyWashington University in St Louis School of MedicineSt LouisMissouriUSA
| | - Yao Hao
- Department of Radiation OncologyWashington University in St Louis School of MedicineSt LouisMissouriUSA
| | - Yoonsun Chung
- Department of Nuclear EngineeringHanyang University College of EngineeringSeoulSouth Korea
| | - Hugh Lee
- Department of Radiation OncologyWashington University in St Louis School of MedicineSt LouisMissouriUSA
| |
Collapse
|
9
|
Johnston A, Mahesh M, Uneri A, Rypinski TA, Boone JM, Siewerdsen JH. Objective image quality assurance in cone-beam CT: Test methods, analysis, and workflow in longitudinal studies. Med Phys 2024; 51:2424-2443. [PMID: 38354310 DOI: 10.1002/mp.16983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/20/2023] [Accepted: 01/28/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Standards for image quality evaluation in multi-detector CT (MDCT) and cone-beam CT (CBCT) are evolving to keep pace with technological advances. A clear need is emerging for methods that facilitate rigorous quality assurance (QA) with up-to-date metrology and streamlined workflow suitable to a range of MDCT and CBCT systems. PURPOSE To evaluate the feasibility and workflow associated with image quality (IQ) assessment in longitudinal studies for MDCT and CBCT with a single test phantom and semiautomated analysis of objective, quantitative IQ metrology. METHODS A test phantom (CorgiTM Phantom, The Phantom Lab, Greenwich, New York, USA) was used in monthly IQ testing over the course of 1 year for three MDCT scanners (one of which presented helical and volumetric scan modes) and four CBCT scanners. Semiautomated software analyzed image uniformity, linearity, contrast, noise, contrast-to-noise ratio (CNR), 3D noise-power spectrum (NPS), modulation transfer function (MTF) in axial and oblique directions, and cone-beam artifact magnitude. The workflow was evaluated using methods adapted from systems/industrial engineering, including value stream process modeling (VSPM), standard work layout (SWL), and standard work control charts (SWCT) to quantify and optimize test methodology in routine practice. The completeness and consistency of DICOM data from each system was also evaluated. RESULTS Quantitative IQ metrology provided valuable insight in longitudinal quality assurance (QA), with metrics such as NPS and MTF providing insight on root cause for various forms of system failure-for example, detector calibration and geometric calibration. Monthly constancy testing showed variations in IQ test metrics owing to system performance as well as phantom setup and provided initial estimates of upper and lower control limits appropriate to QA action levels. Rigorous evaluation of QA workflow identified methods to reduce total cycle time to ∼10 min for each system-viz., use of a single phantom configuration appropriate to all scanners and Head or Body scan protocols. Numerous gaps in the completeness and consistency of DICOM data were observed for CBCT systems. CONCLUSION An IQ phantom and test methodology was found to be suitable to QA of MDCT and CBCT systems with streamlined workflow appropriate to busy clinical settings.
Collapse
Affiliation(s)
- Ashley Johnston
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Mahadevappa Mahesh
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ali Uneri
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Tatiana A Rypinski
- Department of Imaging Physics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - John M Boone
- Department of Radiology, University of California - Davis, Davis, California, USA
| | - Jeffrey H Siewerdsen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Imaging Physics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
10
|
Arjomandy B, Bejarano Buele AI, Clinthorne N, Vujasevic M, Athar B, Deemer J, Alkhatib A, Hussain A. The implementation of an image-guided system at a proton therapy center facility. J Appl Clin Med Phys 2024; 25:e14181. [PMID: 38470861 PMCID: PMC10930001 DOI: 10.1002/acm2.14181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 03/14/2024] Open
Abstract
PURPOSE Pencil Beam Scanning (PBS) proton therapy has similar requirements on patient alignment to within 1 mm and 1-degree accuracy as photon radiosurgery. This study describes general workflow, acceptance, and commissioning test procedures and their respective results for an independent robotic arm used for Image Guided Radiotherapy (IGRT) for a Proton Therapy System. METHODS The system is equipped with kV-imaging techniques capable of orthogonal and Cone-Beam Computed Tomography (CBCT) imaging modalities mounted on an independent robotic arm gantry attached to the ceiling. The imaging system is capable of 360-degree rotation around patients to produce CBCT and kilovoltage orthogonal images. The imaging hardware is controlled by Ehmet Health XIS software, and MIM Software handles the image fusion and registration to an acceptable accuracy of ≤1-mm shifts for patients' alignment. The system was tested according to the requirements outlined in the American Association of Physicists in Medicine (AAPM) Task Group (TG) 142 and TG 179. The system tests included (1) safety, functionality, and connectivity, (2) mechanical testing, (3) image quality, (4) image registration, and (5) imaging dose. Additional tests included imaging gantry isocentricity with a laser tracker and collision-avoiding system checks. RESULTS The orthogonal and volumetric imaging are comparable in quality to other commercially available On-Board Imagers (OBI) systems. The resulting spatial resolution values were 1.8-, 0.8-, and 0.5-Line Pairs per Millimeter (lp/mm) for orthogonal, full-fan CBCT, and half-fan CBCT, respectively. The image registration is accurate to within 1 mm and 1 degree. The data shows consistent imaging-guided system performance with standard deviations in x, y, and z of 0.7, 0.8, and 0.7 mm, respectively. CONCLUSIONS The system provides excellent image quality and performance, which can be used for IGRT. The proven accuracy of the x-ray imaging and positioning system at McLaren Proton Therapy Center (MPTC) is 1 mm, making it suitable for proton therapy.
Collapse
Affiliation(s)
- Bijan Arjomandy
- Karmanos Cancer Institute at McLaren‐FlintMcLaren Proton Therapy CenterFlintMichiganUSA
| | | | | | | | - Basit Athar
- Karmanos Cancer Institute at McLaren‐FlintMcLaren Proton Therapy CenterFlintMichiganUSA
| | - James Deemer
- Karmanos Cancer Institute at McLaren‐FlintMcLaren Proton Therapy CenterFlintMichiganUSA
| | - Ahmad Alkhatib
- Karmanos Cancer Institute at McLaren‐FlintMcLaren Proton Therapy CenterFlintMichiganUSA
| | - Abrar Hussain
- Karmanos Cancer Institute at McLaren‐FlintMcLaren Proton Therapy CenterFlintMichiganUSA
| |
Collapse
|
11
|
Kim EK, Kim SY, Park JW, Park J, Yea JW, Jo YY, Oh SA. Evaluating the Efficacy of Machine Performance Checks as an Alternative to Winston-Lutz Quality Assurance Testing in the TrueBeam Linear Accelerator with HyperArc. Diagnostics (Basel) 2024; 14:410. [PMID: 38396449 PMCID: PMC10887750 DOI: 10.3390/diagnostics14040410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
HyperArc is a preferred technique for treating brain metastases, employing a single isocenter for multiple lesions. Geometrical isocentricity in the TrueBeam linear accelerator with HyperArc is crucial. We evaluated machine performance checks (MPCs) as an alternative to the Winston-Lutz (WL) test to verify the treatment isocenter. Between January and July 2023, we assessed 53 data points using MPC and Winston-Lutz tests. The isocenter size obtained from the MPC and its sum, including the rotation-induced couch shift, were compared with the maximum total delta value from the Winston-Lutz test. The maximum total delta was 0.68 ± 0.10 mm, while the isocenter size was 0.28 ± 0.02 mm. The sum of the isocenter size and rotation-induced couch shift measured by MPC was 0.61 ± 0.03 mm. During the Winston-Lutz test (without couch rotation), the maximum total delta value was 0.56 ± 0.13 mm. A t-test analysis revealed a significant difference in the isocenter size averages between the Winston-Lutz and MPC outcomes, whereas the Pearson's correlation coefficient yielded no correlation. Our study highlights the necessity for separate MPC and Winston-Lutz tests for isocenter verification. Therefore, the Winston-Lutz test should precede stereotactic radiosurgery for isocenter verification.
Collapse
Affiliation(s)
- Eun Kyu Kim
- Department of Physics, Yeungnam University, Gyeongsan 38541, Republic of Korea; (E.K.K.); (S.Y.K.)
- Department of Radiation Oncology, Yeungnam University Medical Center, Daegu 42415, Republic of Korea; (J.W.P.); (J.P.); (J.W.Y.); (Y.Y.J.)
| | - Sung Yeop Kim
- Department of Physics, Yeungnam University, Gyeongsan 38541, Republic of Korea; (E.K.K.); (S.Y.K.)
- Department of Radiation Oncology, Yeungnam University Medical Center, Daegu 42415, Republic of Korea; (J.W.P.); (J.P.); (J.W.Y.); (Y.Y.J.)
| | - Jae Won Park
- Department of Radiation Oncology, Yeungnam University Medical Center, Daegu 42415, Republic of Korea; (J.W.P.); (J.P.); (J.W.Y.); (Y.Y.J.)
- Department of Radiation Oncology, Yeungnam University College of Medicine, Daegu 42415, Republic of Korea
| | - Jaehyeon Park
- Department of Radiation Oncology, Yeungnam University Medical Center, Daegu 42415, Republic of Korea; (J.W.P.); (J.P.); (J.W.Y.); (Y.Y.J.)
- Department of Radiation Oncology, Yeungnam University College of Medicine, Daegu 42415, Republic of Korea
| | - Ji Woon Yea
- Department of Radiation Oncology, Yeungnam University Medical Center, Daegu 42415, Republic of Korea; (J.W.P.); (J.P.); (J.W.Y.); (Y.Y.J.)
- Department of Radiation Oncology, Yeungnam University College of Medicine, Daegu 42415, Republic of Korea
| | - Yoon Young Jo
- Department of Radiation Oncology, Yeungnam University Medical Center, Daegu 42415, Republic of Korea; (J.W.P.); (J.P.); (J.W.Y.); (Y.Y.J.)
- Department of Radiation Oncology, Yeungnam University College of Medicine, Daegu 42415, Republic of Korea
| | - Se An Oh
- Department of Radiation Oncology, Yeungnam University Medical Center, Daegu 42415, Republic of Korea; (J.W.P.); (J.P.); (J.W.Y.); (Y.Y.J.)
- Department of Radiation Oncology, Yeungnam University College of Medicine, Daegu 42415, Republic of Korea
| |
Collapse
|
12
|
Becerra‐Espinosa N, Claps L, Alaei P. Comparison of visual and semi-automated kilovoltage cone beam CT image QA analysis. J Appl Clin Med Phys 2024; 25:e14190. [PMID: 37937765 PMCID: PMC10860539 DOI: 10.1002/acm2.14190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 11/09/2023] Open
Abstract
Established kilovoltage cone-beam computed tomography (kV-CBCT) image quality assurance (QA) guidelines often rely on recommendations provided by the American Association of Physicists in Medicine (AAPM) task group (TG) reports with metrics that use visual analysis. This can result in measurement variations by different users, especially in visually subjective analyzes such as low contrast resolution. Consequently, there is a growing interest in more automated means of image QA analysis that can offer increased consistency, accuracy, and convenience. This work compares visual QA to semi-automated software QA analysis to establish the performance and viability of a semi-automated method. In this study, a commercial product (RIT Radia. Radiological Imaging Technology, Colorado Springs, CO) was used to evaluate 68 months of kV-CBCT images of a Catphan® 504 phantom obtained from a Varian TrueBeam® linear accelerator. Six key metrics were examined: high contrast resolution, low contrast resolution, Hounsfield unit constancy, uniformity and noise, and spatial linearity. The results of this method were then compared to those recorded visually using Bland-Altman, and/or paired sample t-test. Comparison of all modules showed a non-random, statistically significant difference between visual and semi-automated methods except for LDPE and Teflon in the Hounsfield unit constancy analysis, which falls outside the paired sample t-test's 5% significance level. A small high contrast resolution bias indicates the two analysis methods are largely equivalent, while a large low contrast resolution bias indicates greater semi-automated target detection. Wide limits of agreement in the uniformity module suggests variability due to multiple visual observers. Spatial linearity results measured differences of less than 0.17%. Semi-automated QA analysis offered greater stability over visual analysis. Additionally, semi-automated QA results satisfied or exceeded visual QA passing criteria and allowed for fast and consistent image quality analysis.
Collapse
Affiliation(s)
- Nicholas Becerra‐Espinosa
- Department of Radiation OncologyUniversity of MinnesotaMinneapolisMinnesotaUSA
- Present address:
Northwestern Medicine Proton Center, 4455 Weaver PkwyWarrenville, IL 60555USA
| | - Lindsey Claps
- Department of Radiation OncologyUniversity of MinnesotaMinneapolisMinnesotaUSA
- Present address:
Department of Medical PhysicsMemorial Sloan Kettering Cancer Center, 1275 York AvenueNew York, NY 10065USA
| | - Parham Alaei
- Department of Radiation OncologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
13
|
Luo W, Xiu Z, Wang X, McGarry R, Allen J. A Novel Method for Evaluating Early Tumor Response Based on Daily CBCT Images for Lung SBRT. Cancers (Basel) 2023; 16:20. [PMID: 38201447 PMCID: PMC10778260 DOI: 10.3390/cancers16010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND We aimed to develop a new tumor response assessment method for lung SBRT. METHODS In total, 132 lung cancer patients with 134 tumors who received SBRT treatment with daily CBCT were included in this study. The information about tumor size (area), contrast (contrast-to-noise ratio (CNR)), and density/attenuation (μ) was derived from the CBCT images for the first and the last fractions. The ratios of tumor area, CNR, and μ (RA, RCNR, Rμ) between the last and first fractions were calculated for comparison. The product of the three rations was defined as a new parameter (R) for assessment. Tumor response was independently assessed by a radiologist based on a comprehensive analysis of the CBCT images. RESULTS R ranged from 0.27 to 1.67 with a mean value of 0.95. Based on the radiologic assessment results, a receiver operation characteristic (ROC) curve with the area under the curve (AUC) of 95% was obtained and the optimal cutoff value (RC) was determined as 1.1. The results based on RC achieved a 94% accuracy, 94% specificity, and 90% sensitivity. CONCLUSION The results show that R was correlated with early tumor response to lung SBRT and that using R for evaluating tumor response to SBRT would be viable and efficient.
Collapse
Affiliation(s)
- Wei Luo
- Department of Radiation Medicine, University of Kentucky, 800 Rose Street, Lexington, KY 40536, USA; (Z.X.); (R.M.)
| | - Zijian Xiu
- Department of Radiation Medicine, University of Kentucky, 800 Rose Street, Lexington, KY 40536, USA; (Z.X.); (R.M.)
| | - Xiaoqin Wang
- Department of Radiology, University of Kentucky, 800 Rose Street, Lexington, KY 40536, USA;
| | - Ronald McGarry
- Department of Radiation Medicine, University of Kentucky, 800 Rose Street, Lexington, KY 40536, USA; (Z.X.); (R.M.)
| | - Joshua Allen
- AdventHealth, 2501 N Orange Ave, Orlando, FL 32804, USA;
| |
Collapse
|
14
|
Puvanasunthararajah S, Camps SM, Wille ML, Fontanarosa D. Deep learning-based ultrasound transducer induced CT metal artifact reduction using generative adversarial networks for ultrasound-guided cardiac radioablation. Phys Eng Sci Med 2023; 46:1399-1410. [PMID: 37548887 DOI: 10.1007/s13246-023-01307-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/20/2023] [Indexed: 08/08/2023]
Abstract
In US-guided cardiac radioablation, a possible workflow includes simultaneous US and planning CT acquisitions, which can result in US transducer-induced metal artifacts on the planning CT scans. To reduce the impact of these artifacts, a metal artifact reduction (MAR) algorithm has been developed based on a deep learning Generative Adversarial Network called Cycle-MAR, and compared with iMAR (Siemens), O-MAR (Philips) and MDT (ReVision Radiology), and CCS-MAR (Combined Clustered Scan-based MAR). Cycle-MAR was trained with a supervised learning scheme using sets of paired clinical CT scans with and without simulated artifacts. It was then evaluated on CT scans with real artifacts of an anthropomorphic phantom, and on sets of clinical CT scans with simulated artifacts which were not used for Cycle-MAR training. Image quality metrics and HU value-based analysis were used to evaluate the performance of Cycle-MAR compared to the other algorithms. The proposed Cycle-MAR network effectively reduces the negative impact of the metal artifacts. For example, the calculated HU value improvement percentage for the cardiac structures in the clinical CT scans was 59.58%, 62.22%, and 72.84% after MDT, CCS-MAR, and Cycle-MAR application, respectively. The application of MAR algorithms reduces the impact of US transducer-induced metal artifacts on CT scans. In comparison to iMAR, O-MAR, MDT, and CCS-MAR, the application of developed Cycle-MAR network on CT scans performs better in reducing these metal artifacts.
Collapse
Affiliation(s)
- Sathyathas Puvanasunthararajah
- School of Clinical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia.
| | | | - Marie-Luise Wille
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia
- School of Mechanical, Medical & Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- ARC ITTC for Multiscale 3D Imaging, Modelling, and Manufacturing, Queensland University of Technology, Brisbane, QLD, Australia
| | - Davide Fontanarosa
- School of Clinical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
15
|
Krauss RF, Balik S, Cirino ET, Hadley A, Hariharan N, Holmes SM, Kielar K, Lavvafi H, McCullough K, Palefsky S, Sawyer JP, Smith K, Tracy J, Winter JD, Wingreen NE. AAPM Medical Physics Practice Guideline 8.b: Linear accelerator performance tests. J Appl Clin Med Phys 2023; 24:e14160. [PMID: 37793084 PMCID: PMC10647991 DOI: 10.1002/acm2.14160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/23/2023] [Accepted: 08/24/2023] [Indexed: 10/06/2023] Open
Abstract
The purpose of this guideline is to provide a list of critical performance tests to assist the Qualified Medical Physicist (QMP) in establishing and maintaining a safe and effective quality assurance (QA) program. The performance tests on a linear accelerator (linac) should be selected to fit the clinical patterns of use of the accelerator and care should be given to perform tests which are relevant to detecting errors related to the specific use of the accelerator. Current recommendations for linac QA were reviewed to determine any changes required to those tests highlighted by the original report as well as considering new components of the treatment process that have become common since its publication. Recommendations are made on the acquisition of reference data, routine establishment of machine isocenter, basing performance tests on clinical use of the linac, working with vendors to establish QA tests and performing tests after maintenance and upgrades. The recommended tests proposed in this guideline were chosen based on consensus of the guideline's committee after assessing necessary changes from the previous report. The tests are grouped together by class of test (e.g., dosimetry, mechanical, etc.) and clinical parameter tested. Implementation notes are included for each test so that the QMP can understand the overall goal of each test. This guideline will assist the QMP in developing a comprehensive QA program for linacs in the external beam radiation therapy setting. The committee sought to prioritize tests by their implication on quality and patient safety. The QMP is ultimately responsible for implementing appropriate tests. In the spirit of the report from American Association of Physicists in Medicine Task Group 100, individual institutions are encouraged to analyze the risks involved in their own clinical practice and determine which performance tests are relevant in their own radiotherapy clinics.
Collapse
Affiliation(s)
| | - Salim Balik
- University of Southern CaliforniaLos AngelesCaliforniaUSA
| | | | - Austin Hadley
- Anchorage Radiation Oncology CenterAnchorageAlaskaUSA
| | | | | | | | | | | | | | | | - Koren Smith
- UMass Chan Medical School/IROC Rhode Island QA CenterLincolnRhode IslandUSA
| | | | - Jeff D. Winter
- Department of Medical PhysicsPrincess Margaret Cancer CentreTorontoOntarioCanada
| | | |
Collapse
|
16
|
Wan L, Jiang Y, Zhu X, Wu H, Zhao W. Quantitative assessment of adaptive radiotherapy for prostate cancer using deep learning: Bladder dose as a decision criterion. Med Phys 2023; 50:6479-6489. [PMID: 37696263 DOI: 10.1002/mp.16710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/02/2023] [Accepted: 08/19/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Adaptive radiotherapy (ART) can incorporate anatomical variations in a reoptimized treatment plan for fractionated radiotherapy. An automatic solution to objectively determine whether ART should be performed immediately after the daily image acquisition is highly desirable. PURPOSE We investigate a quantitative criterion for whether ART should be performed in prostate cancer radiotherapy by synthesizing pseudo-CT (sCT) images and evaluating dosimetric impact on treatment planning using deep learning approaches. METHOD AND MATERIALS Planning CT (pCT) and daily cone-beam CT (CBCT) data sets of 74 patients are used to train (60 patients) and evaluate (14 patients) a cycle adversarial generative network (CycleGAN) that performs the task of synthesizing high-quality sCT from daily CBCT. Automatic delineation (AD) of the bladder is performed on the sCT using the U-net. The combination of sCT and AD allows us to perform dose calculations based on the up-to-date bladder anatomy to determine whether the original treatment plan (ori-plan) is still applicable. For positive cases that the patients' anatomical changes and the associated dose calculations warrant re-planning, we made rapid plan revisions (re-plan) based on the ori-plan. RESULTS The mean absolute error within the region-of-interests (i.e., body, bladder, fat, muscle) between the sCT and pCT are 41.2, 25.1, 26.5, and 29.0HU, respectively. Taking the calculated results of pCT doses as the standard, for PTV, the gamma passing rates of sCT doses at 1 mm/1%, 2 mm/2% are 87.92%, 98.78%, respectively. The Dice coefficients of the AD-contours are 0.93 on pCT and 0.91 on sCT. According to the result of dose calculation, we found when the bladder volume underwent a substantial change (79.7%), the bladder dose is still within the safe limit, suggesting it is insufficient to solely use the bladder volume change as a criterion to determine whether adaptive treatment needs to be done. After AD-contours of the bladder using sCT, there are two cases whose bladder doseD mean > 4000 cGy ${{\mathrm{D}}}_{{\mathrm{mean}}} > 4000{\mathrm{\ cGy}}$ . For the two cases, we perform re-planning to reduce the bladder dose toD mean = 3841 cGy ${{\mathrm{D}}}_{{\mathrm{mean}}} = 3841{\mathrm{\ cGy}}$ ,D mean = 3580 cGy ${{\mathrm{D}}}_{{\mathrm{mean}}} = 3580{\mathrm{\ cGy\ }}$ under the condition that the PTV meets the prescribed dose. CONCLUSION We provide a dose accurate adaptive workflow for prostate cancer patients by using deep learning approaches, and implement ART that adapts to bladder dose. Of note, the specific replanning criterion for whether ART needs to be performed can adapt to different centers' choices based on their experience and daily observations.
Collapse
Affiliation(s)
- Luping Wan
- School of Physics, Beihang University, Beijing, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, China
- Zhongfa Aviation Institute, Beihang University, Hangzhou, China
| | - Yin Jiang
- School of Physics, Beihang University, Beijing, China
- Zhongfa Aviation Institute, Beihang University, Hangzhou, China
| | - Xianggao Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Hao Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Wei Zhao
- School of Physics, Beihang University, Beijing, China
- Zhongfa Aviation Institute, Beihang University, Hangzhou, China
| |
Collapse
|
17
|
Brennsæter JA, Dahle TJ, Moi JN, Svanberg IF, Haaland GS, Pilskog S. Reduction of PTV margins for elective pelvic lymph nodes in online adaptive radiotherapy of prostate cancer patients. Acta Oncol 2023; 62:1208-1214. [PMID: 37682727 DOI: 10.1080/0284186x.2023.2252584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND Cone beam CT (CBCT) based online adaptive radiotherapy (oART) is a new development in radiotherapy. With oART, the requirements for planning target volume (PTV) margins differ from standard therapy because motion occurs during a session. In this study, we aim to evaluate a margin reduction for locally advanced prostate patients treated with oART. MATERIAL AND METHODS Intrafraction motion of the elective pelvic lymph nodes was evaluated by two radiation therapists (RTTs) for 150 fractions from 10 prostate patients treated with oART. PTV margins of 3, 4 and 5 mm where added to these lymph nodes for all patients. The seven first patients were treated with 5 mm PTV margin, while the last three patients were treated with 4 mm margin. After treatment, the RTTs reviewed the verification CBCTs and evaluated whether the various PTV margins would have covered the adapted clinical target volume, scoring each fraction as approved, inconclusive or rejected. Couch shifts corresponding to the rigid prostate match between the CBCTs were analyzed with respect to the RTT evaluation. RESULTS The RTTs approved a 4 mm margin in 95% of the fractions, while 2% of the fractions were rejected. For a 3 mm margin, 57% of the fractions were approved, while 5% were rejected. The scoring from the two RTTs was consistent; e.g., for 3 mm, one RTT approved 58% of the fractions, while the other approved 55%. If the couch was moved less than 2 mm in any direction, 70% of the fractions were approved for a 3 mm margin, compared to 32% for shifts greater than 2 mm. CONCLUSION It is safe to reduce the PTV margin from 5 to 4 mm for the elective pelvic lymph nodes for prostate patients treated with oART. Further margin reductions can be motivated for patients presenting little intrafraction motion.
Collapse
Affiliation(s)
- John Alfred Brennsæter
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Tordis Johnsen Dahle
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Jannicke Nøkling Moi
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | | | - Gry Sandvik Haaland
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Sara Pilskog
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| |
Collapse
|
18
|
Wang Z, Sun X, Wang W, Zhang T, Chen L, Duan J, Feng S, Chen Y, Wei Z, Zang J, Xiao F, Zhao L. Characterization and commissioning of a new collaborative multi-modality radiotherapy platform. Phys Eng Sci Med 2023; 46:981-994. [PMID: 37378823 PMCID: PMC10480288 DOI: 10.1007/s13246-023-01255-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/31/2023] [Indexed: 06/29/2023]
Abstract
TaiChi, a new multi-modality radiotherapy platform that integrates a linear accelerator, a focusing gamma system, and a kV imaging system within an enclosed O-ring gantry, was introduced into clinical application. This work aims to assess the technological characteristics and commissioning results of the TaiChi platform. The acceptance testing and commissioning were performed following the manufacturer's customer acceptance tests (CAT) and several AAPM Task Group (TG) reports/guidelines. Regarding the linear accelerator (linac), all applicable validation measurements recommended by the MPPG 5.a (basic photon beam model validation, intensity-modulated radiotherapy (IMRT)/volumetric-modulated arc therapy (VMAT) validation, end-to-end(E2E) tests, and patient-specific quality assurance (QA)) were performed. For the focusing gamma system, the absorbed doses were measured using a PTW31014 ion chamber (IC) and PTW60016 diode detector. EBT3 films and a PTW60016 diode detector were employed to measure the relative output factors (ROFs). The E2E tests were performed using PTW31014 IC and EBT3 films. The coincidences between the imaging isocenter and the linac/gamma mechanical isocenter were investigated using EBT3 films. The image quality was evaluated regarding the contrast-to-noise ratio (CNR), spatial resolution, and uniformity. All tests included in the CAT met the manufacturer's specifications. All MPPG 5.a measurements complied with the tolerances. The confidence limits for IMRT/VMAT point dose and dose distribution measurements were achieved according to TG-119. The point dose differences were below 1.68% and gamma passing rates (3%/2 mm) were above 95.1% for the linac E2E tests. All plans of patient-specific QA had point dose differences below 1.79% and gamma passing rates above 96.1% using the 3%/2 mm criterion suggested by TG-218. For the focusing gamma system, the differences between the calculated and measured absorbed doses were below 1.86%. The ROFs calculated by the TPS were independently confirmed within 2% using EBT3 films and a PTW60016 detector. The point dose differences were below 2.57% and gamma passing rates were above 95.3% using the 2%/1 mm criterion for the E2E tests. The coincidences between the imaging isocenter and the linac/gamma mechanical isocenter were within 0.5 mm. The image quality parameters fully complied with the manufacturer's specifications regarding the CNR, spatial resolution, and uniformity. The multi-modality radiotherapy platform complies with the CAT and AAPM commissioning criteria. The commissioning results demonstrate that this platform performs well in mechanical and dosimetry accuracy.
Collapse
Affiliation(s)
- Zhongfei Wang
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, P.R. China
| | - Xiaohuan Sun
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, P.R. China
| | - Wei Wang
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, P.R. China
| | - Te Zhang
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, P.R. China
| | - Liting Chen
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, P.R. China
| | - Jie Duan
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, P.R. China
| | - Siqi Feng
- Our United Corporation, 710018, Xi'an, Shaanxi Province, P.R. China
| | - Yinzhu Chen
- Our United Corporation, 710018, Xi'an, Shaanxi Province, P.R. China
| | - Zhiwei Wei
- Our United Corporation, 710018, Xi'an, Shaanxi Province, P.R. China
| | - Jian Zang
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, P.R. China
| | - Feng Xiao
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, P.R. China.
| | - Lina Zhao
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, P.R. China.
| |
Collapse
|
19
|
Zou W, Zhang R, Schüler E, Taylor PA, Mascia AE, Diffenderfer ES, Zhao T, Ayan AS, Sharma M, Yu SJ, Lu W, Bosch WR, Tsien C, Surucu M, Pollard-Larkin JM, Schuemann J, Moros EG, Bazalova-Carter M, Gladstone DJ, Li H, Simone CB, Petersson K, Kry SF, Maity A, Loo BW, Dong L, Maxim PG, Xiao Y, Buchsbaum JC. Framework for Quality Assurance of Ultrahigh Dose Rate Clinical Trials Investigating FLASH Effects and Current Technology Gaps. Int J Radiat Oncol Biol Phys 2023; 116:1202-1217. [PMID: 37121362 PMCID: PMC10526970 DOI: 10.1016/j.ijrobp.2023.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/28/2023] [Accepted: 04/17/2023] [Indexed: 05/02/2023]
Abstract
FLASH radiation therapy (FLASH-RT), delivered with ultrahigh dose rate (UHDR), may allow patients to be treated with less normal tissue toxicity for a given tumor dose compared with currently used conventional dose rate. Clinical trials are being carried out and are needed to test whether this improved therapeutic ratio can be achieved clinically. During the clinical trials, quality assurance and credentialing of equipment and participating sites, particularly pertaining to UHDR-specific aspects, will be crucial for the validity of the outcomes of such trials. This report represents an initial framework proposed by the NRG Oncology Center for Innovation in Radiation Oncology FLASH working group on quality assurance of potential UHDR clinical trials and reviews current technology gaps to overcome. An important but separate consideration is the appropriate design of trials to most effectively answer clinical and scientific questions about FLASH. This paper begins with an overview of UHDR RT delivery methods. UHDR beam delivery parameters are then covered, with a focus on electron and proton modalities. The definition and control of safe UHDR beam delivery and current and needed dosimetry technologies are reviewed and discussed. System and site credentialing for large, multi-institution trials are reviewed. Quality assurance is then discussed, and new requirements are presented for treatment system standard analysis, patient positioning, and treatment planning. The tables and figures in this paper are meant to serve as reference points as we move toward FLASH-RT clinical trial performance. Some major questions regarding FLASH-RT are discussed, and next steps in this field are proposed. FLASH-RT has potential but is associated with significant risks and complexities. We need to redefine optimization to focus not only on the dose but also on the dose rate in a manner that is robust and understandable and that can be prescribed, validated, and confirmed in real time. Robust patient safety systems and access to treatment data will be critical as FLASH-RT moves into the clinical trials.
Collapse
Affiliation(s)
- Wei Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Rongxiao Zhang
- Department of Radiation Oncology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Emil Schüler
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paige A Taylor
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Eric S Diffenderfer
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Tianyu Zhao
- Department of Radiation Oncology, Washington University, St. Louis, MO, USA
| | - Ahmet S Ayan
- Department of Radiation Oncology, Ohio State University, Columbus, OH, USA
| | - Manju Sharma
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Shu-Jung Yu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Weiguo Lu
- Department of Radiation Oncology, University of Texas Southwestern, Dallas, TX, USA
| | - Walter R Bosch
- Department of Radiation Oncology, Washington University, St. Louis, MO, USA
| | - Christina Tsien
- Department of Radiation Oncology, McGill University Health Center, Montreal, QC, Canada
| | - Murat Surucu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Julianne M Pollard-Larkin
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Eduardo G Moros
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | | | - David J Gladstone
- Department of Radiation Oncology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Heng Li
- Department of Radiation Oncology, Johns Hopkins University, Baltimore, MD, USA
| | - Charles B Simone
- Department of Radiation Oncology, New York Proton Center, New York, NY, USA
| | - Kristoffer Petersson
- Department of Radiation Oncology, MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Stephen F Kry
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amit Maity
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lei Dong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter G Maxim
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, USA
| | - Ying Xiao
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey C Buchsbaum
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| |
Collapse
|
20
|
Sakaamini A, Van Slyke A, Partouche J, Wu T, Wiersma RD. An AI-based universal phantom analysis method based on XML-SVG wireframes with novel functional object identifiers. Phys Med Biol 2023; 68:10.1088/1361-6560/acdb44. [PMID: 37267994 PMCID: PMC10405228 DOI: 10.1088/1361-6560/acdb44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/01/2023] [Indexed: 06/04/2023]
Abstract
Objective.Quality assurance (QA) testing must be performed at regular intervals to ensure that medical devices are operating within designed specifications. Numerous QA phantoms and software packages have been developed to facilitate measurements of machine performance. However, due to the hard-coded nature of geometric phantom definition in analysis software, users are typically limited to the use of a small subset of compatible QA phantoms. In this work, we present a novel AI-based universal Phantom (UniPhan) algorithm that is not phantom specific and can be easily adapted to any pre-existing image-based QA phantom.Approach.Extensible Markup Language Scalable Vector Graphics (XML-SVG) was modified to include several new tags describing the function of embedded phantom objects for use in QA analysis. Functional tags include contrast and density plugs, spatial linearity markers, resolution bars and edges, uniformity regions, and light-radiation field coincidence areas. Machine learning was used to develop an image classification model for automatic phantom type detection. After AI phantom identification, UniPhan imported the corresponding XML-SVG wireframe, registered it to the image taken during the QA process, performed analysis on the functional tags, and exported results for comparison to expected device specifications. Analysis results were compared to those generated by manual image analysis.Main results.XML-SVG wireframes were generated for several commercial phantoms including ones specific to CT, CBCT, kV planar imaging, and MV imaging. Several functional objects were developed and assigned to the graphical elements of the phantoms. The AI classification model was tested for training and validation accuracy and loss, along with phantom type prediction accuracy and speed. The results reported training and validation accuracies of 99%, phantom type prediction confidence scores of around 100%, and prediction speeds of around 0.1 s. Compared to manual image analysis, Uniphan results were consistent across all metrics including contrast-to-noise ratio, modulation-transfer function, HU accuracy, and uniformity.Significance.The UniPhan method can identify phantom type and use its corresponding wireframe to perform QA analysis. As these wireframes can be generated in a variety of ways this represents an accessible automated method of analyzing image-based QA phantoms that is flexible in scope and implementation.
Collapse
Affiliation(s)
- Ahmad Sakaamini
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Alexander Van Slyke
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Julien Partouche
- Department of Radiation and Cellular Oncology, University of Chicago, IL, United States of America
| | - Tianming Wu
- Department of Radiation and Cellular Oncology, University of Chicago, IL, United States of America
| | - Rodney D Wiersma
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
21
|
Lavrova E, Garrett MD, Wang YF, Chin C, Elliston C, Savacool M, Price M, Kachnic LA, Horowitz DP. Adaptive Radiation Therapy: A Review of CT-based Techniques. Radiol Imaging Cancer 2023; 5:e230011. [PMID: 37449917 PMCID: PMC10413297 DOI: 10.1148/rycan.230011] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/18/2023] [Accepted: 05/10/2023] [Indexed: 07/18/2023]
Abstract
Adaptive radiation therapy is a feedback process by which imaging information acquired over the course of treatment, such as changes in patient anatomy, can be used to reoptimize the treatment plan, with the end goal of improving target coverage and reducing treatment toxicity. This review describes different types of adaptive radiation therapy and their clinical implementation with a focus on CT-guided online adaptive radiation therapy. Depending on local anatomic changes and clinical context, different anatomic sites and/or disease stages and presentations benefit from different adaptation strategies. Online adaptive radiation therapy, where images acquired in-room before each fraction are used to adjust the treatment plan while the patient remains on the treatment table, has emerged to address unpredictable anatomic changes between treatment fractions. Online treatment adaptation places unique pressures on the radiation therapy workflow, requiring high-quality daily imaging and rapid recontouring, replanning, plan review, and quality assurance. Generating a new plan with every fraction is resource intensive and time sensitive, emphasizing the need for workflow efficiency and clinical resource allocation. Cone-beam CT is widely used for image-guided radiation therapy, so implementing cone-beam CT-guided online adaptive radiation therapy can be easily integrated into the radiation therapy workflow and potentially allow for rapid imaging and replanning. The major challenge of this approach is the reduced image quality due to poor resolution, scatter, and artifacts. Keywords: Adaptive Radiation Therapy, Cone-Beam CT, Organs at Risk, Oncology © RSNA, 2023.
Collapse
Affiliation(s)
- Elizaveta Lavrova
- From the Department of Radiation Oncology, Columbia University Irving
Medical Center, 622 W 168th St, New York, NY 10032 (E.L., M.D.G., Y.F.W., C.C.,
C.E., M.S., M.P., L.A.K., D.P.H.); and Herbert Irving Comprehensive Cancer
Center, New York, NY (C.C., L.A.K., D.P.H.)
| | - Matthew D. Garrett
- From the Department of Radiation Oncology, Columbia University Irving
Medical Center, 622 W 168th St, New York, NY 10032 (E.L., M.D.G., Y.F.W., C.C.,
C.E., M.S., M.P., L.A.K., D.P.H.); and Herbert Irving Comprehensive Cancer
Center, New York, NY (C.C., L.A.K., D.P.H.)
| | - Yi-Fang Wang
- From the Department of Radiation Oncology, Columbia University Irving
Medical Center, 622 W 168th St, New York, NY 10032 (E.L., M.D.G., Y.F.W., C.C.,
C.E., M.S., M.P., L.A.K., D.P.H.); and Herbert Irving Comprehensive Cancer
Center, New York, NY (C.C., L.A.K., D.P.H.)
| | - Christine Chin
- From the Department of Radiation Oncology, Columbia University Irving
Medical Center, 622 W 168th St, New York, NY 10032 (E.L., M.D.G., Y.F.W., C.C.,
C.E., M.S., M.P., L.A.K., D.P.H.); and Herbert Irving Comprehensive Cancer
Center, New York, NY (C.C., L.A.K., D.P.H.)
| | - Carl Elliston
- From the Department of Radiation Oncology, Columbia University Irving
Medical Center, 622 W 168th St, New York, NY 10032 (E.L., M.D.G., Y.F.W., C.C.,
C.E., M.S., M.P., L.A.K., D.P.H.); and Herbert Irving Comprehensive Cancer
Center, New York, NY (C.C., L.A.K., D.P.H.)
| | - Michelle Savacool
- From the Department of Radiation Oncology, Columbia University Irving
Medical Center, 622 W 168th St, New York, NY 10032 (E.L., M.D.G., Y.F.W., C.C.,
C.E., M.S., M.P., L.A.K., D.P.H.); and Herbert Irving Comprehensive Cancer
Center, New York, NY (C.C., L.A.K., D.P.H.)
| | - Michael Price
- From the Department of Radiation Oncology, Columbia University Irving
Medical Center, 622 W 168th St, New York, NY 10032 (E.L., M.D.G., Y.F.W., C.C.,
C.E., M.S., M.P., L.A.K., D.P.H.); and Herbert Irving Comprehensive Cancer
Center, New York, NY (C.C., L.A.K., D.P.H.)
| | - Lisa A. Kachnic
- From the Department of Radiation Oncology, Columbia University Irving
Medical Center, 622 W 168th St, New York, NY 10032 (E.L., M.D.G., Y.F.W., C.C.,
C.E., M.S., M.P., L.A.K., D.P.H.); and Herbert Irving Comprehensive Cancer
Center, New York, NY (C.C., L.A.K., D.P.H.)
| | - David P. Horowitz
- From the Department of Radiation Oncology, Columbia University Irving
Medical Center, 622 W 168th St, New York, NY 10032 (E.L., M.D.G., Y.F.W., C.C.,
C.E., M.S., M.P., L.A.K., D.P.H.); and Herbert Irving Comprehensive Cancer
Center, New York, NY (C.C., L.A.K., D.P.H.)
| |
Collapse
|
22
|
Malkov VN, Winter JD, Mateescu D, Létourneau D. MR-linac daily semi-automated end-to-end quality control verification. J Appl Clin Med Phys 2023; 24:e13916. [PMID: 36763085 PMCID: PMC10161066 DOI: 10.1002/acm2.13916] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/24/2022] [Accepted: 12/29/2022] [Indexed: 02/11/2023] Open
Abstract
PURPOSE Adaptive radiation therapy (ART) on the integrated Elekta Unity magnetic resonance (MR)-linac requires routine quality assurance to verify delivery accuracy and system data transfer. In this work, our objective was to develop and validate a novel automated end-to-end test suite that verifies data transfer between multiple software platforms and quantifies the performance of multiple machine subcomponents critical to the ART process. METHODS We designed and implemented a software tool to quantify the MR and megavoltage (MV) isocenter coincidence, treatment couch positioning consistency, isocenter shift accuracy for the adapted plan as well as the MLC and jaw position accuracy following the beam aperture adaptation. Our tool employs a reference treatment plan with a simulated isocenter shift generated on an MR image of a readily available phantom with MR and MV visible fiducials. Execution of the test occurs within the standard adapt-to-position (ATP) clinical workflow with MV images collected of the delivered treatment fields. Using descriptive statistics, we quantified uncertainty in couch positioning, isocentre shift as well as the jaw and MLC positions of the adapted fields. We also executed sensitivity measurements to evaluate the detection algorithm's performance. RESULTS We report the results of 301 daily testing instances. We demonstrated consistent tracking of the MR-to-MV alignment with respect to the established value and to detect small changes on the order of 0.2 mm following machine service events. We found couch position consistency relative to the test baseline value was within 95% CI [-0.31, 0.26 mm]. For phantom shifts that form the basis for the plan adaptation, we found agreement between MV-image-detected phantom shift and online image registration, within ± 1.5 mm in all directions with a 95% CI difference of [-1.29, 0.79 mm]. For beam aperture adaptation accuracy, we found differences between the planned and detected jaw positions had a mean value of 0.27 mm and 95% CI of [-0.29, 0.82 mm] and -0.17 mm and 95% CI of [-0.37, 0.05 mm] for the MLC positions. Automated fiducial detected accuracy was within 0.08 ± 0.20 mm of manual localization. Introduced jaw and MLC position errors (1-10 mm) were detected within 0.55 mm (within 1 mm for 15/256 instances for the jaws). Phantom shifts (1.3 or 5 mm in each cardinal direction) from a reference position were detected within 0.26 mm. CONCLUSIONS We have demonstrated the accuracy and sensitivity of a daily end-to-end test suite capable of detecting errors in multiple machine subcomponents including system data transfer. Our test suite evaluates the entire treatment workflow and has captured system communication issues prior to patient treatment. With automated processing and the use of a standard vendor-provided phantom, it is possible to expand to other Unity sites.
Collapse
Affiliation(s)
- Victor N. Malkov
- Radiation Medicine ProgramPrincess Margaret Cancer CenterTorontoOntarioCanada
| | - Jeff D. Winter
- Radiation Medicine ProgramPrincess Margaret Cancer CenterTorontoOntarioCanada
- Department of Radiation OncologyUniversity of TorontoTorontoOntarioCanada
| | - Dan Mateescu
- Radiation Medicine ProgramPrincess Margaret Cancer CenterTorontoOntarioCanada
| | - Daniel Létourneau
- Radiation Medicine ProgramPrincess Margaret Cancer CenterTorontoOntarioCanada
- Department of Radiation OncologyUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
23
|
Craig T, Xiao Y, McNulty S, Dawson LA. Insights From Image Guided Radiation Therapy Credentialing for the NRG Oncology RTOG 1112 Liver Stereotactic Body Radiation Therapy Trial. Pract Radiat Oncol 2023; 13:239-245. [PMID: 36581199 PMCID: PMC10121829 DOI: 10.1016/j.prro.2022.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/07/2022] [Accepted: 11/24/2022] [Indexed: 12/27/2022]
Abstract
PURPOSE NRG Oncology trial RTOG 1112 is a randomized phase 3 study of sorafenib with or without stereotactic body radiation therapy for locally advanced hepatocellular carcinoma. Image guided radiation therapy (IGRT) credentialing is essential for this study because of the high doses, respiratory motion, and variety of delivery technologies. This analysis presents the IGRT credentialing experience. METHODS AND MATERIALS Credentialing of volumetric IGRT requires submission of planning and localization images, planning structures, and resulting IGRT shifts for a patient treated according to the study requirements. A study reviewer uses these data to repeat the registrations and compare to the actual clinical registrations. Agreement within 5 mm was considered acceptable for credentialing. RESULTS Volumetric images of 130 fractions from 42 institutions between June 2013 and January 2018 were reviewed. The median agreement between clinical registrations and study reviewer was 3 mm, with 95% of all fractions within 5 mm. A subanalysis identified a statistically significant difference between the use of low-contrast soft tissue and high-contrast surrogates (eg, implanted fiducial markers, surgical clips, metallic stents) for registration. Soft tissue and high-contrast surrogate registrations both agreed within 3 mm in 50% of fractions. However, soft tissue registrations exceeded 10 mm in 3% of fractions, while no high-contrast surrogate registrations exceeded 5 mm. CONCLUSIONS The RTOG 1112 credentialing experience suggests that most institutions perform liver IGRT with sufficient accuracy to deliver stereotactic body radiation therapy safely, as assessed by expert reviewers. Both soft tissue and high-contrast surrogates appear adequate for consistent registration in most instances; however, some disagreements were observed when using soft-tissue registration targets. The use of high-contrast surrogates appears to reduce the small risk of substantial geographic miss owing to mis-registration in liver IGRT.
Collapse
Affiliation(s)
- Tim Craig
- University Health Network-Princess Margaret Hospital, University of Toronto, Toronto, Ontario, Canada.
| | - Ying Xiao
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Susan McNulty
- IROC Philadelphia, NRG Oncology, Philadelphia, Pennsylvania
| | - Laura A Dawson
- University Health Network-Princess Margaret Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Saito M, Sano N, Suzuki H, Komiyama T, Marino K, Ueda K, Nemoto H, Onishi H. Long-term experience in quality assurance of on-rail computed tomography systems for image-guided radiotherapy using in-house multifunctional phantoms. Radiol Phys Technol 2023; 16:292-298. [PMID: 37079253 DOI: 10.1007/s12194-023-00718-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 04/21/2023]
Abstract
To report the long-term quality assurance (QA) experience of an on-rail computed tomography (CT) system for image-guided radiotherapy using an in-house phantom. An on-rail CT system combining the Elekta Synergy and Canon Aquilion LB was used. The treatment couch was shared by the linear accelerators and CT, and the couch was rotated by 180° when using the on-rail-CT system to ensure that the CT direction was toward the head. All QA analyses were performed by radiation technologists on CBCT or on-rail CT images of the in-house phantom. The CBCT center accuracy from the linac laser, couch rotational accuracy (CBCT center vs. on-rail CT center), horizontal accuracy by CT gantry shift, and remote couch shift accuracy were evaluated. This study reported the QA status of the system during the period 2014-2021. The absolute mean accuracy of couch rotation was 0.4 ± 0.28 mm, 0.44 ± 0.36 mm, and 0.37 ± 0.27 mm in the SI, RL, and AP directions, respectively. Horizontal and remote movement accuracies of the treatment couch were also within 0.5 mm of the absolute mean value. A decrease in the accuracy of couch rotation was also observed due to aging deterioration of related parts caused by the frequent use of couch rotation. The three-dimensional accuracy of on-rail CT systems derived mainly from treatment couches can be maintained within 0.5 mm with appropriate accuracy assurance for at least > 8 years.
Collapse
Affiliation(s)
- Masahide Saito
- Department of Radiology, University of Yamanashi, 1110 Shimokato, Chuo-City, Yamanashi, 409-3898, Japan.
| | - Naoki Sano
- Department of Radiology, University of Yamanashi, 1110 Shimokato, Chuo-City, Yamanashi, 409-3898, Japan
| | - Hidekazu Suzuki
- Department of Radiology, University of Yamanashi, 1110 Shimokato, Chuo-City, Yamanashi, 409-3898, Japan
| | - Takafumi Komiyama
- Department of Radiology, University of Yamanashi, 1110 Shimokato, Chuo-City, Yamanashi, 409-3898, Japan
| | - Kan Marino
- Department of Radiology, University of Yamanashi, 1110 Shimokato, Chuo-City, Yamanashi, 409-3898, Japan
| | - Koji Ueda
- Department of Radiology, University of Yamanashi, 1110 Shimokato, Chuo-City, Yamanashi, 409-3898, Japan
| | - Hikaru Nemoto
- Department of Radiology, University of Yamanashi, 1110 Shimokato, Chuo-City, Yamanashi, 409-3898, Japan
| | - Hiroshi Onishi
- Department of Radiology, University of Yamanashi, 1110 Shimokato, Chuo-City, Yamanashi, 409-3898, Japan
| |
Collapse
|
25
|
Sakamoto M, Sasaki K, Tsuno H. [Study of Phantom Length Correction for kV-Cone Beam CT Dose Evaluation Method Using Farmer-type Ionization Chamber and Cylindrical Phantom]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2023. [PMID: 37062712 DOI: 10.6009/jjrt.2023-1349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
In this study, we investigated the necessary phantom length for dose evaluation of kV-CBCT mounted on the linear accelerator using a Farmer-type ionization chamber and cylindrical PMMA phantom, which many radiotherapy facilities own. Furthermore, a phantom length correction factor was proposed to compensate for the lack of scattered radiation contributed from the craniocaudal direction due to the inadequate phantom length. The air-absorbed dose at the center of a cylindrical PMMA phantom measured by a Farmer-type ionization chamber indicated that the contribution of scattered radiation saturates when the phantom length is 300 mm or longer. The phantom length correction factor was calculated from an approximate curve showing the relationship of the charge ratio measured using phantoms of 300 mm and 150 mm in length to the X-ray beam width. The air-absorbed dose measured with the 150-mm length phantom, corrected by the phantom length correction factor, showed a 1.61% dose difference from the air-absorbed dose measured with the 300-mm length phantom. In this study, the air-absorbed dose at the center of the phantom could be estimated over a wide X-ray beam width only using a 150-mm length cylindrical PMMA phantom. The method proposed in this study could be used in any radiation therapy facility.
Collapse
Affiliation(s)
| | - Koji Sasaki
- Graduate School of Radiological Technology, Gunma Prefectural College of Health Sciences
| | - Hayato Tsuno
- Graduate School of Radiological Technology, Gunma Prefectural College of Health Sciences
| |
Collapse
|
26
|
Xie K, Gao L, Xi Q, Zhang H, Zhang S, Zhang F, Sun J, Lin T, Sui J, Ni X. New technique and application of truncated CBCT processing in adaptive radiotherapy for breast cancer. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 231:107393. [PMID: 36739623 DOI: 10.1016/j.cmpb.2023.107393] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVE A generative adversarial network (TCBCTNet) was proposed to generate synthetic computed tomography (sCT) from truncated low-dose cone-beam computed tomography (CBCT) and planning CT (pCT). The sCT was applied to the dose calculation of radiotherapy for patients with breast cancer. METHODS The low-dose CBCT and pCT images of 80 female thoracic patients were used for training. The CBCT, pCT, and replanning CT (rCT) images of 20 thoracic patients and 20 patients with breast cancer were used for testing. All patients were fixed in the same posture with a vacuum pad. The CBCT images were scanned under the Fast Chest M20 protocol with a 50% reduction in projection frames compared with the standard Chest M20 protocol. Rigid registration was performed between pCT and CBCT, and deformation registration was performed between rCT and CBCT. In the training stage of the TCBCTNet, truncated CBCT images obtained from complete CBCT images by simulation were used. The input of the CBCT→CT generator was truncated CBCT and pCT, and TCBCTNet was applied to patients with breast cancer after training. The accuracy of the sCT was evaluated by anatomy and dosimetry and compared with the generative adversarial network with UNet and ResNet as the generators (named as UnetGAN, ResGAN). RESULTS The three models could improve the image quality of CBCT and reduce the scattering artifacts while preserving the anatomical geometry of CBCT. For the chest test set, TCBCTNet achieved the best mean absolute error (MAE, 21.18±3.76 HU), better than 23.06±3.90 HU in UnetGAN and 22.47±3.57 HU in ResGAN. When applied to patients with breast cancer, TCBCTNet performance decreased, and MAE was 25.34±6.09 HU. Compared with rCT, sCT by TCBCTNet showed consistent dose distribution and subtle absolute dose differences between the target and the organ at risk. The 3D gamma pass rates were 98.98%±0.64% and 99.69%±0.22% at 2 mm/2% and 3 mm/3%, respectively. Ablation experiments confirmed that pCT and content loss played important roles in TCBCTNet. CONCLUSIONS High-quality sCT images could be synthesized from truncated low-dose CBCT and pCT by using the proposed TCBCTNet model. In addition, sCT could be used to accurately calculate the dose distribution for patients with breast cancer.
Collapse
Affiliation(s)
- Kai Xie
- Radiotherapy Department, Second People's Hospital of Changzhou, Nanjing Medical University, Changzhou 213000, China; Jiangsu Province Engineering Research Center of Medical Physics, Changzhou 213000, China
| | - Liugang Gao
- Radiotherapy Department, Second People's Hospital of Changzhou, Nanjing Medical University, Changzhou 213000, China; Jiangsu Province Engineering Research Center of Medical Physics, Changzhou 213000, China
| | - Qianyi Xi
- Center for Medical Physics, Nanjing Medical University, Changzhou 213003, China; Changzhou Key Laboratory of Medical Physics, Changzhou 213000, China
| | - Heng Zhang
- Center for Medical Physics, Nanjing Medical University, Changzhou 213003, China; Changzhou Key Laboratory of Medical Physics, Changzhou 213000, China
| | - Sai Zhang
- Center for Medical Physics, Nanjing Medical University, Changzhou 213003, China; Changzhou Key Laboratory of Medical Physics, Changzhou 213000, China
| | - Fan Zhang
- Center for Medical Physics, Nanjing Medical University, Changzhou 213003, China; Changzhou Key Laboratory of Medical Physics, Changzhou 213000, China
| | - Jiawei Sun
- Radiotherapy Department, Second People's Hospital of Changzhou, Nanjing Medical University, Changzhou 213000, China; Jiangsu Province Engineering Research Center of Medical Physics, Changzhou 213000, China
| | - Tao Lin
- Radiotherapy Department, Second People's Hospital of Changzhou, Nanjing Medical University, Changzhou 213000, China; Jiangsu Province Engineering Research Center of Medical Physics, Changzhou 213000, China
| | - Jianfeng Sui
- Radiotherapy Department, Second People's Hospital of Changzhou, Nanjing Medical University, Changzhou 213000, China; Jiangsu Province Engineering Research Center of Medical Physics, Changzhou 213000, China
| | - Xinye Ni
- Radiotherapy Department, Second People's Hospital of Changzhou, Nanjing Medical University, Changzhou 213000, China; Jiangsu Province Engineering Research Center of Medical Physics, Changzhou 213000, China; Center for Medical Physics, Nanjing Medical University, Changzhou 213003, China; Changzhou Key Laboratory of Medical Physics, Changzhou 213000, China.
| |
Collapse
|
27
|
Zhuang T, Gibbard G, Duan X, Tan J, Park Y, Lin MH, Sun Z, Oderinde OM, Lu W, Reynolds R, Godley A, Pompos A, Dan T, Garant A, Iyengar P, Timmerman R, Jiang S, Cai B. Evaluation of fan-beam kilovoltage computed tomography image quality on a novel biological-guided radiotherapy platform. Phys Imaging Radiat Oncol 2023; 26:100438. [PMID: 37342208 PMCID: PMC10277913 DOI: 10.1016/j.phro.2023.100438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 06/22/2023] Open
Abstract
Background and Purpose A recently developed biology-guided radiotherapy platform, equipped with positron emission tomography (PET) and computed tomography (CT), provides both anatomical and functional image guidance for radiotherapy. This study aimed to characterize performance of the kilovoltage CT (kVCT) system on this platform using standard quality metrics measured on phantom and patient images, using CT simulator images as reference. Materials and Methods Image quality metrics, including spatial resolution/modular transfer function (MTF), slice sensitivity profile (SSP), noise performance and image uniformity, contrast-noise ratio (CNR) and low-contrast resolution, geometric accuracy, and CT number (HU) accuracy, were evaluated on phantom images. Patient images were evaluated mainly qualitatively. Results On phantom images the MTF10% is about 0.68 lp/mm for kVCT in PET/CT Linac. The SSP agreed with nominal slice thickness within 0.7 mm. The diameter of the smallest visible target (1% contrast) is about 5 mm using medium dose mode. The image uniformity is within 2.0 HU. The geometric accuracy tests passed within 0.5 mm. Relative to CT simulator images, the noise is generally higher and the CNR is lower in PET/CT Linac kVCT images. The CT number accuracy is comparable between the two systems with maximum deviation from the phantom manufacturer range within 25 HU. On patient images, higher spatial resolution and image noise are observed on PET/CT Linac kVCT images. Conclusions Major image quality metrics of the PET/CT Linac kVCT were within vendor-recommended tolerances. Better spatial resolution but higher noise and better/comparable low contrast visibility were observed as compared to a CT simulator when images were acquired with clinical protocols.
Collapse
Affiliation(s)
- Tingliang Zhuang
- Department of Radiation Oncology, University of Texas- Southwestern Medical Center, Dallas, USA
| | - Grant Gibbard
- Department of Radiation Oncology, University of Texas- Southwestern Medical Center, Dallas, USA
| | - Xinhui Duan
- Department of Radiology, University of Texas- Southwestern Medical Center, Dallas, USA
| | - Jun Tan
- Department of Radiation Oncology, University of Texas- Southwestern Medical Center, Dallas, USA
| | - Yang Park
- Department of Radiation Oncology, University of Texas- Southwestern Medical Center, Dallas, USA
| | - Mu-Han Lin
- Department of Radiation Oncology, University of Texas- Southwestern Medical Center, Dallas, USA
| | - Zhihui Sun
- RefleXion Medical, Inc, Hayward, CA, USA
| | | | - Weiguo Lu
- Department of Radiation Oncology, University of Texas- Southwestern Medical Center, Dallas, USA
| | - Robert Reynolds
- Department of Radiation Oncology, University of Texas- Southwestern Medical Center, Dallas, USA
| | - Andrew Godley
- Department of Radiation Oncology, University of Texas- Southwestern Medical Center, Dallas, USA
| | - Arnold Pompos
- Department of Radiation Oncology, University of Texas- Southwestern Medical Center, Dallas, USA
| | - Tu Dan
- Department of Radiation Oncology, University of Texas- Southwestern Medical Center, Dallas, USA
| | - Aurelie Garant
- Department of Radiation Oncology, University of Texas- Southwestern Medical Center, Dallas, USA
| | - Puneeth Iyengar
- Department of Radiation Oncology, University of Texas- Southwestern Medical Center, Dallas, USA
| | - Robert Timmerman
- Department of Radiation Oncology, University of Texas- Southwestern Medical Center, Dallas, USA
| | - Steve Jiang
- Department of Radiation Oncology, University of Texas- Southwestern Medical Center, Dallas, USA
| | - Bin Cai
- Department of Radiation Oncology, University of Texas- Southwestern Medical Center, Dallas, USA
| |
Collapse
|
28
|
Chen Q, Rong Y, Burmeister JW, Chao EH, Corradini NA, Followill DS, Li XA, Liu A, Qi XS, Shi H, Smilowitz JB. AAPM Task Group Report 306: Quality control and assurance for tomotherapy: An update to Task Group Report 148. Med Phys 2023; 50:e25-e52. [PMID: 36512742 DOI: 10.1002/mp.16150] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/22/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Since the publication of AAPM Task Group (TG) 148 on quality assurance (QA) for helical tomotherapy, there have been many new developments on the tomotherapy platform involving treatment delivery, on-board imaging options, motion management, and treatment planning systems (TPSs). In response to a need for guidance on quality control (QC) and QA for these technologies, the AAPM Therapy Physics Committee commissioned TG 306 to review these changes and make recommendations related to these technology updates. The specific objectives of this TG were (1) to update, as needed, recommendations on tolerance limits, frequencies and QC/QA testing methodology in TG 148, (2) address the commissioning and necessary QA checks, as a supplement to Medical Physics Practice Guidelines (MPPG) with respect to tomotherapy TPS and (3) to provide risk-based recommendations on the new technology implemented clinically and treatment delivery workflow. Detailed recommendations on QA tests and their tolerance levels are provided for dynamic jaws, binary multileaf collimators, and Synchrony motion management. A subset of TPS commissioning and QA checks in MPPG 5.a. applicable to tomotherapy are recommended. In addition, failure mode and effects analysis has been conducted among TG members to obtain multi-institutional analysis on tomotherapy-related failure modes and their effect ranking.
Collapse
Affiliation(s)
- Quan Chen
- Radiation Oncology, City of Hope Medical Center, Duarte, California, USA
| | - Yi Rong
- Department of Radiation Oncology, Mayo Clinic Hospitals, Phoenix, Arizona, USA
| | - Jay W Burmeister
- Karmanos Cancer Center, Gershenson R.O.C., Detroit, Michigan, USA
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | | | - David S Followill
- Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - X Allen Li
- Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - An Liu
- Radiation Oncology, City of Hope Medical Center, Duarte, California, USA
| | - X Sharon Qi
- Radiation Oncology, UCLA School of Medicine, Los Angeles, California, USA
| | - Hairong Shi
- Radiation Oncology, Oklahoma Cancer Specialists and Research Institute, Tulsa, Oklahoma, USA
| | - Jennifer B Smilowitz
- Human Oncology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
29
|
Quality and Safety Considerations in Image Guided Radiation Therapy: An ASTRO Safety White Paper Update. Pract Radiat Oncol 2023; 13:97-111. [PMID: 36585312 DOI: 10.1016/j.prro.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE This updated report on image guided radiation therapy (IGRT) is part of a series of consensus-based white papers previously published by the American Society for Radiation Oncology addressing patient safety. Since the first white papers were published, IGRT technology and procedures have progressed significantly such that these procedures are now more commonly used. The use of IGRT has now extended beyond high-precision treatments, such as stereotactic radiosurgery and stereotactic body radiation therapy, and into routine clinical practice for many treatment techniques and anatomic sites. Therefore, quality and patient safety considerations for these techniques remain an important area of focus. METHODS AND MATERIALS The American Society for Radiation Oncology convened an interdisciplinary task force to assess the original IGRT white paper and update content where appropriate. Recommendations were created using a consensus-building methodology, and task force members indicated their level of agreement based on a 5-point Likert scale from "strongly agree" to "strongly disagree." A prespecified threshold of ≥75% of raters who selected "strongly agree" or "agree" indicated consensus. SUMMARY This IGRT white paper builds on the previous version and uses other guidance documents to primarily focus on processes related to quality and safety. IGRT requires an interdisciplinary team-based approach, staffed by appropriately trained specialists, as well as significant personnel resources, specialized technology, and implementation time. A thorough feasibility analysis of resources is required to achieve the clinical and technical goals and should be discussed with all personnel before undertaking new imaging techniques. A comprehensive quality-assurance program must be developed, using established guidance, to ensure IGRT is performed in a safe and effective manner. As IGRT technologies continue to improve or emerge, existing practice guidelines should be reviewed or updated regularly according to the latest American Association of Physicists in Medicine Task Group reports or guidelines. Patient safety in the application of IGRT is everyone's responsibility, and professional organizations, regulators, vendors, and end-users must demonstrate a clear commitment to working together to ensure the highest levels of safety.
Collapse
|
30
|
Koole M, Armstrong I, Krizsan AK, Stromvall A, Visvikis D, Sattler B, Nekolla SG, Dickson J. EANM guidelines for PET-CT and PET-MR routine quality control. Z Med Phys 2023; 33:103-113. [PMID: 36167600 PMCID: PMC10068535 DOI: 10.1016/j.zemedi.2022.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/25/2022] [Indexed: 01/29/2023]
Abstract
We present guidelines by the European Association of Nuclear Medicine (EANM) for routine quality control (QC) of PET-CT and PET-MR systems. These guidelines are partially based on the current EANM guidelines for routine quality control of Nuclear Medicine instrumentation but focus more on the inherent multimodal aspect of the current, state-of-the-art PET-CT and PET-MR scanners. We briefly discuss the regulatory context put forward by the International Electrotechnical Commission (IEC) and European Commission (EC) and consider relevant guidelines and recommendations by other societies and professional organizations. As such, a comprehensive overview of recommended quality control procedures is provided to ensure the optimal operational status of a PET system, integrated with either a CT or MR system. In doing so, we also discuss the rationale of the different tests, advice on the frequency of each test and present the relevant MR and CT tests for an integrated system. In addition, we recommend a scheme of preventive actions to avoid QC tests from drifting out of the predefined range of acceptable performance values such that an optimal performance of the PET system is maintained for routine clinical use.
Collapse
Affiliation(s)
- Michel Koole
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Belgium.
| | - Ian Armstrong
- Nuclear Medicine, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | | | - Anne Stromvall
- Radiation Physics, Department of Radiation Sciences, Umeå universitet, Umeå, Sweden
| | | | - Bernhard Sattler
- Department of Nuclear Medicine, University Medical Centre Leipzig, Leipzig, Germany
| | - Stephan G Nekolla
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - John Dickson
- Institute of Nuclear Medicine, University College London Hospital, London, United Kingdom
| | | |
Collapse
|
31
|
McDonald BA, Zachiu C, Christodouleas J, Naser MA, Ruschin M, Sonke JJ, Thorwarth D, Létourneau D, Tyagi N, Tadic T, Yang J, Li XA, Bernchou U, Hyer DE, Snyder JE, Bubula-Rehm E, Fuller CD, Brock KK. Dose accumulation for MR-guided adaptive radiotherapy: From practical considerations to state-of-the-art clinical implementation. Front Oncol 2023; 12:1086258. [PMID: 36776378 PMCID: PMC9909539 DOI: 10.3389/fonc.2022.1086258] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/21/2022] [Indexed: 01/27/2023] Open
Abstract
MRI-linear accelerator (MR-linac) devices have been introduced into clinical practice in recent years and have enabled MR-guided adaptive radiation therapy (MRgART). However, by accounting for anatomical changes throughout radiation therapy (RT) and delivering different treatment plans at each fraction, adaptive radiation therapy (ART) highlights several challenges in terms of calculating the total delivered dose. Dose accumulation strategies-which typically involve deformable image registration between planning images, deformable dose mapping, and voxel-wise dose summation-can be employed for ART to estimate the delivered dose. In MRgART, plan adaptation on MRI instead of CT necessitates additional considerations in the dose accumulation process because MRI pixel values do not contain the quantitative information used for dose calculation. In this review, we discuss considerations for dose accumulation specific to MRgART and in relation to current MR-linac clinical workflows. We present a general dose accumulation framework for MRgART and discuss relevant quality assurance criteria. Finally, we highlight the clinical importance of dose accumulation in the ART era as well as the possible ways in which dose accumulation can transform clinical practice and improve our ability to deliver personalized RT.
Collapse
Affiliation(s)
- Brigid A. McDonald
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Cornel Zachiu
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Mohamed A. Naser
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mark Ruschin
- Department of Radiation Oncology, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Jan-Jakob Sonke
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Daniela Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Daniel Létourneau
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Neelam Tyagi
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, United States
| | - Tony Tadic
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Jinzhong Yang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - X. Allen Li
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Uffe Bernchou
- Laboratory of Radiation Physics, Department of Oncology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Daniel E. Hyer
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Jeffrey E. Snyder
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | | | - Clifton D. Fuller
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kristy K. Brock
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
32
|
Lei Y, Fu Y, Tian Z, Wang T, Dai X, Roper J, Yu DS, McDonald M, Bradley JD, Liu T, Zhou J, Yang X. Deformable CT image registration via a dual feasible neural network. Med Phys 2022; 49:7545-7554. [PMID: 35869866 PMCID: PMC9792435 DOI: 10.1002/mp.15875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/23/2022] [Accepted: 07/15/2022] [Indexed: 12/30/2022] Open
Abstract
PURPOSE A quality assurance (QA) CT scans are usually acquired during cancer radiotherapy to assess for any anatomical changes, which may cause an unacceptable dose deviation and therefore warrant a replan. Accurate and rapid deformable image registration (DIR) is needed to support contour propagation from the planning CT (pCT) to the QA CT to facilitate dose volume histogram (DVH) review. Further, the generated deformation maps are used to track the anatomical variations throughout the treatment course and calculate the corresponding accumulated dose from one or more treatment plans. METHODS In this study, we aim to develop a deep learning (DL)-based method for automatic deformable registration to align the pCT and the QA CT. Our proposed method, named dual-feasible framework, was implemented by a mutual network that functions as both a forward module and a backward module. The mutual network was trained to predict two deformation vector fields (DVFs) simultaneously, which were then used to register the pCT and QA CT in both directions. A novel dual feasible loss was proposed to train the mutual network. The dual-feasible framework was able to provide additional DVF regularization during network training, which preserves the topology and reduces folding problems. We conducted experiments on 65 head-and-neck cancer patients (228 CTs in total), each with 1 pCT and 2-6 QA CTs. For evaluations, we calculated the mean absolute error (MAE), peak-signal-to-noise ratio (PSNR), structural similarity index (SSIM), target registration error (TRE) between the deformed and target images and the Jacobian determinant of the predicted DVFs. RESULTS Within the body contour, the mean MAE, PSNR, SSIM, and TRE are 122.7 HU, 21.8 dB, 0.62 and 4.1 mm before registration and are 40.6 HU, 30.8 dB, 0.94, and 2.0 mm after registration using the proposed method. These results demonstrate the feasibility and efficacy of our proposed method for pCT and QA CT DIR. CONCLUSION In summary, we proposed a DL-based method for automatic DIR to match the pCT to the QA CT. Such DIR method would not only benefit current workflow of evaluating DVHs on QA CTs but may also facilitate studies of treatment response assessment and radiomics that depend heavily on the accurate localization of tissues across longitudinal images.
Collapse
Affiliation(s)
- Yang Lei
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Yabo Fu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Zhen Tian
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Tonghe Wang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Xianjin Dai
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Justin Roper
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - David S Yu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Mark McDonald
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Jeffrey D Bradley
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Tian Liu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Jun Zhou
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
33
|
Zhang Y, Zhou H, Chu K, Wu C, Ge Y, Shan G, Zhou J, Cai J, Jin J, Sun W, Chen Y, Huang X. Setup error assessment based on “Sphere-Mask” Optical Positioning System: Results from a multicenter study. Front Oncol 2022; 12:918296. [PMID: 36267985 PMCID: PMC9577199 DOI: 10.3389/fonc.2022.918296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/15/2022] [Indexed: 11/15/2022] Open
Abstract
Background The setup accuracy plays an extremely important role in the local control of tumors. The purpose of this study is to verify the feasibility of "Sphere-Mask" Optical Positioning System (S-M_OPS) for fast and accurate setup. Methods From 2016 to 2021, we used S-M_OPS to supervise 15441 fractions in 1981patients (with the cancer in intracalvarium, nasopharynx, esophagus, lung, liver, abdomen or cervix) undergoing intensity-modulated radiation therapy (IMRT), and recorded the data such as registration time and mask deformation. Then, we used S-M_OPS, laser line and cone beam computed tomography (CBCT) for co-setup in 277 fractions, and recorded laser line-guided setup errors and S-M_OPS-guided setup errors with CBCT-guided setup result as the standard. Results S-M_OPS supervision results: The average time for laser line-guided setup was 31.75s. 12.8% of the reference points had an average deviation of more than 2 mm and 5.2% of the reference points had an average deviation of more than 3 mm. Co-setup results: The average time for S-M_OPS-guided setup was 7.47s, and average time for CBCT-guided setup was 228.84s (including time for CBCT scan and manual verification). In the LAT (left/right), VRT (superior/inferior) and LNG (anterior/posterior) directions, laser line-guided setup errors (mean±SD) were -0.21±3.13mm, 1.02±2.76mm and 2.22±4.26mm respectively; the 95% confidence intervals (95% CIs) of laser line-guided setup errors were -6.35 to 5.93mm, -4.39 to 6.43mm and -6.14 to 10.58mm respectively; S-M_OPS-guided setup errors were 0.12±1.91mm, 1.02±1.81mm and -0.10±2.25mm respectively; the 95% CIs of S-M_OPS-guided setup errors were -3.86 to 3.62mm, -2.53 to 4.57mm and -4.51 to 4.31mm respectively. Conclusion S-M_OPS can greatly improve setup accuracy and stability compared with laser line-guided setup. Furthermore, S-M_OPS can provide comparable setup accuracy to CBCT in less setup time.
Collapse
Affiliation(s)
- Yan Zhang
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Han Zhou
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Kaiyue Chu
- Department of Radiotherapy, Nantong Tumor Hospital, Nantong, China
| | - Chuanfeng Wu
- Department of Radiotherapy, Suzhou Municipal Hospital, Suzhou, China
| | - Yun Ge
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
- *Correspondence: Yun Ge, ; Guoping Shan,
| | - Guoping Shan
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
- Department of Radiation Physics, Zhejiang Cancer Hospital, Hangzhou, China
- *Correspondence: Yun Ge, ; Guoping Shan,
| | - Jundong Zhou
- Department of Radiotherapy, Suzhou Municipal Hospital, Suzhou, China
| | - Jing Cai
- Department of Radiotherapy, Nantong Tumor Hospital, Nantong, China
| | - Jianhua Jin
- Department of Radiotherapy, Nantong Tumor Hospital, Nantong, China
| | - Weiyu Sun
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Ying Chen
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Xiaolin Huang
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| |
Collapse
|
34
|
Perrett B, Ukath J, Horgan E, Noble C, Ramachandran P. A Framework for ExacTrac Dynamic Commissioning for Stereotactic Radiosurgery and Stereotactic Ablative Radiotherapy. J Med Phys 2022; 47:398-408. [PMID: 36908493 PMCID: PMC9997535 DOI: 10.4103/jmp.jmp_67_22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 01/11/2023] Open
Abstract
This paper aims to provide guidance and a framework for commissioning tests and tolerances for the ExacTrac Dynamic image-guided and surface-guided radiotherapy (SGRT) system. ExacTrac Dynamic includes a stereoscopic X-ray system, a structured light projector, stereoscopic cameras, thermal camera for SGRT, and has the capability to track breath holds and internal markers. The system provides fast and accurate image guidance and intrafraction guidance for stereotactic radiosurgery and stereotactic ablative radiotherapy. ExacTrac Dynamic was commissioned on a recently installed Elekta Versa HD. Commissioning tests are described including safety, isocenter calibration, dosimetry, image quality, data transfer, SGRT stability, SGRT localization, gating, fusion, implanted markers, breath hold, and end-to-end testing. Custom phantom designs have been implemented for assessment of the deep inspiration breath-hold workflow, the implanted markers workflow, and for gating tests where remote-controlled movement of a phantom is required. Commissioning tests were all found to be in tolerance, with maximum translational and rotational deviations in SGRT of 0.3 mm and 0.4°, respectively, and X-ray image fusion reproducibility standard deviation of 0.08 mm. Tolerances were based on published documents and upon the performance characteristics of the system as specified by the vendor. The unique configuration of ExacTrac Dynamic requires the end user to design commissioning tests that validate the system for use in the clinical implementation adopted in the department. As there are multiple customizable workflows available, tests should be designed around these workflows, and can be ongoing as workflows are progressively introduced into departmental procedures.
Collapse
Affiliation(s)
- Ben Perrett
- Department of Radiation Oncology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Jaysree Ukath
- Department of Radiation Oncology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Emma Horgan
- Department of Radiation Oncology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Chris Noble
- Department of Radiation Oncology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Prabhakar Ramachandran
- Department of Radiation Oncology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| |
Collapse
|
35
|
Shinde P, Jadhav A, Gupta KK, Dhoble S. QUANTIFICATION OF 6D INTER-FRACTION TUMOUR LOCALISATION ERRORS IN TONGUE AND PROSTATE CANCER USING DAILY KV-CBCT FOR 1000 IMRT AND VMAT TREATMENT FRACTIONS. RADIATION PROTECTION DOSIMETRY 2022; 198:1265-1281. [PMID: 35870445 DOI: 10.1093/rpd/ncac145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/08/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to evaluate the 6D inter-fraction tumour localisation errors in 20 tongue and 20 prostate cancer patients treated with intensity-modulated radiation therapy and volumetric-modulated arc therapy. The patient tumour localisation errors in lateral, longitudinal and vertical translation axes and pitch, roll and yaw rotational axes were analysed by automatic image registration of daily pretreatment kilovoltage cone-beam computed tomography (kV-CBCT) with planning CT in 1000 fractions. The overall mean error (M), systematic error (Σ), random error (σ) and planning target volume (PTV) margins were evaluated. The frequency distributions of setup errors were normally distributed about the mean except for pitch in the tongue and prostate. The overall 3D vector length ≥ 5 mm was 14.2 and 49.8% in the ca-tongue and ca-prostate, respectively. The frequency of rotational errors ≥1 degree was a maximum of 37 and 59.5%, respectively, in ca-tongue and ca-prostate. The M, Σ and σ for all translational and rotational axes decreased with increasing frequency of verification correction in ca-tongue and ca-prostate patients. Similarly, the PTV margin was reduced with no correction to alternate day correction from a maximum of 4.7 to 2.5 mm in ca-tongue and from a maximum of 8.6 to 4.7 mm in ca-prostate. The results emphasised the vital role of the higher frequency of kV-CBCT based setup correction in reducing M, Σ, σ and PTV margins in ca-tongue and ca-prostate patients.
Collapse
Affiliation(s)
- Prashantkumar Shinde
- Department of Physics, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - Anand Jadhav
- Department of Radiation Oncology, Sir H N Reliance Foundation Hospital & Research Centre, Mumbai 400004, India
| | - Karan Kumar Gupta
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan 10617, ROC
| | - Sanjay Dhoble
- Department of Physics, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| |
Collapse
|
36
|
Tegtmeier RC, Ferris WS, Bayouth JE, Culberson WS. The Impact of Parameter Selection and Setup Conditions on Image Quality of an On-Board Helical Kilovoltage Computed Tomography System. Cureus 2022; 14:e29244. [PMID: 36277579 PMCID: PMC9578666 DOI: 10.7759/cureus.29244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2022] [Indexed: 11/09/2022] Open
Abstract
Purpose To evaluate the imaging performance of an on-board helical kilovoltage computed tomography (kVCT) system mounted on a helical tomotherapy unit for various imaging parameters and setup conditions. Methods Images of a commonly used computed tomography (CT) image quality phantom were acquired while varying the selection of available parameters (anatomy, mode, body size) as well as phantom positioning and size. Image quality metrics (IQM) including noise, uniformity, contrast, CT number constancy, and spatial resolution were compared for parameter and setup variations. Results The use of fine mode improved noise and contrast metrics by 20-30% compared to normal mode and by nearly a factor of two compared to the coarse mode for otherwise identical protocols. Uniformity, CT number constancy, and spatial resolution were also improved for fine mode. Thorax and pelvis anatomy protocols improved noise, uniformity, and contrast metrics by 10-20% compared to images acquired with head protocols. No significant differences in CT number constancy or spatial resolution were observed regardless of anatomy choice. Increasing body size (milliampere second (mAs)/rotation) improved each image quality metric. Vertical and lateral phantom shifts of up to ±6 cm degraded noise and contrast metrics by up to 30% relative to the isocenter while also worsening uniformity and CT number constancy. IQM were also degraded substantially with the use of annuli to increase the phantom diameter (32 cm vs. 20 cm). Despite variations in image characteristics among the investigated changes, most metrics were within manufacturer specifications when applicable. Conclusion This work demonstrates the dependence of image quality on parameter selection and setup conditions for a helical kVCT system utilized in image-guided and adaptive helical tomotherapy treatments. While the overall image quality is robust to variations in imaging parameters, care should be taken when selecting parameters as patient size increases or positioning moves from the isocenter to ensure adequate image quality is still achieved.
Collapse
|
37
|
Dosimetric effects of oral contrast in the planning of conventional radiotherapy and IMRT, for rectal cancer treatment. JOURNAL OF RADIOTHERAPY IN PRACTICE 2022. [DOI: 10.1017/s1460396922000243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Abstract
Introduction:
Contrast media are frequently used during radiation therapy simulation. However, there are concerns about dosimetric variations when dose calculation is done on contrast-enhanced computed tomography (CT). This study evaluates the dosimetric effect of oral contrast during three-dimensional conformal radiotherapy (3D-CRT) and volumetric modulated arc radiotherapy (VMAT) planning.
Methods:
Rectal cancer patients were consecutively enrolled. For each patient, one unenhanced CT and one contrast-enhanced CT were taken using oral and intravenous contrast. Then, a 3D-CRT plan and an Intensity-modulated radiation therapy (IMRT)/VMAT plan were generated in the enhanced CT, and the dose distribution was recalculated in the respective unenhanced CT. The beam intensities were kept the same as for the enhanced CT plans. Finally, the unenhanced and enhanced plans were compared by calculating the gamma index.
Results:
For 3D-CRT plans, there were statistically significant differences in second phase planning target volume (PTV) D2% (Mean difference (MD) between unenhanced and enhanced CT 0·01 Gy, 95% CI [0·003 to 0·02 Gy]) and in maximum doses to the bladder (MD 0·26 Gy, 95% CI [0·05 to 0·47 Gy]). For IMRT/VMAT plans, there were statistically significant differences in small intestine V45 Gy (MD 3·1 cc, 95% CI [0·81 to 5·4 cc]), bladder V45 Gy (MD 2·9%, 95% CI [1·4 to 4·3%]) and maximum dose to the bladder (MD 0·65 Gy, 95% CI [0·46 Gy to 0·85 Gy]). In addition, for PTV D98% the MD between unenhanced and enhanced CT was 0·22 Gy 95% CI [0·05 to 0·39].
Conclusions:
For most of the dose metrics, the differences were not clinically meaningful. The greatest differences were found in VMAT plans, especially in V45 Gy of the small intestine. This difference could lead to an underestimation of dose–volume metrics when the plan is based on an enhanced CT. The use of small bowel oral contrast does not significantly influence dose calculations and may not affect the acceptability of plans when adhering to constraints.
Collapse
|
38
|
Kita N, Shibamoto Y, Takemoto S, Manabe Y, Yanagi T, Sugie C, Tomita N, Iwata H, Murai T, Hashimoto S, Ishikura S. Comparison of intensity-modulated radiotherapy with the 5-field technique, helical tomotherapy and volumetric modulated arc therapy for localized prostate cancer. JOURNAL OF RADIATION RESEARCH 2022; 63:666-674. [PMID: 35726342 PMCID: PMC9303627 DOI: 10.1093/jrr/rrac027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 04/04/2022] [Indexed: 06/15/2023]
Abstract
The outcomes of three methods of intensity-modulated radiation therapy (IMRT) for localized prostate cancer were evaluated. Between 2010 and 2018, 308 D'Amico intermediate- or high-risk patients were treated with 2.2 Gy daily fractions to a total dose of 74.8 Gy in combination with hormonal therapy. Overall, 165 patients were treated with 5-field IMRT using a sliding window technique, 66 were then treated with helical tomotherapy and 77 were treated with volumetric modulated arc therapy (VMAT). The median age of patients was 71 years. The median follow-up period was 75 months. Five-year overall survival (OS) and biochemical or clinical failure-free survival (FFS) rates were 95.5 and 91.6% in the 5-field IMRT group, 95.1 and 90.3% in the tomotherapy group and 93.0 and 88.6% in the VMAT group, respectively, with no significant differences among the three groups. The 5-year cumulative incidence of late grade ≥2 genitourinary and gastrointestinal toxicities were 7.3 and 6.2%, respectively, for all patients. Late grade ≥2 gastrointestinal toxicities were less frequent in patients undergoing VMAT (0%) than in patients undergoing 5-field IMRT (7.3%) and those undergoing tomotherapy (11%) (P = 0.025), and this finding appeared to be correlated with the better rectal DVH parameters in patients undergoing VMAT. Other toxicities did not differ significantly among the three groups, although bladder dose-volume parameters were slightly worse in the tomotherapy group than in the other groups. Despite differences in the IMRT delivery methods, X-ray energies and daily registration methods, all modalities may be used as IMRT for localized prostate cancer.
Collapse
Affiliation(s)
- Nozomi Kita
- Corresponding author. Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuhocho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan. Tel.: +81-52-853-8276; Fax: +81-52-852-5244; E-mail:
| | - Yuta Shibamoto
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan
- Department of Proton Therapy, Narita Memorial Proton Center, 78 Shirakawa-cho, Toyohashi, Aichi, 441-8021, Japan
| | - Shinya Takemoto
- Department of Radiology, Fujieda Heisei Memorial Hospital, 123-1 Mizukami, Fujieda, Shizuoka, 426-8662, Japan
| | - Yoshihiko Manabe
- Department of Radiation Oncology, Nanbu Tokushukai Hospital, 171-1 Hokama, Yaese-cho, Shimajiri-gun, Okinawa, 901-0493, Japan
| | - Takeshi Yanagi
- Department of Proton Therapy, Narita Memorial Proton Center, 78 Shirakawa-cho, Toyohashi, Aichi, 441-8021, Japan
| | - Chikao Sugie
- Department of Radiology, Japanese Red Cross Aichi Medical Center Nagoya Daini Hospital, 2-9 Myoken-cho, Showa-ku, Nagoya, Aichi, 466-8650, Japan
| | - Natsuo Tomita
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan
| | - Hiromitsu Iwata
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City University West Medical Center, 1-1-1 Hirate-cho, Kita-ku, Nagoya, Aichi, 462-8508, Japan
| | - Taro Murai
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan
| | - Shingo Hashimoto
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan
| | - Satoshi Ishikura
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan
| |
Collapse
|
39
|
Barnes MJ, Paino J, Day LR, Butler D, Häusermann D, Pelliccia D, Crosbie JC. SyncMRT: a solution to image-guided synchrotron radiotherapy for quality assurance and pre-clinical trials. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:1074-1084. [PMID: 35787575 PMCID: PMC9255576 DOI: 10.1107/s1600577522004829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
In this work, a new image guidance system and protocols for delivering image-guided radiotherapy (IGRT) on the Imaging and Medical Beamline (IMBL) at the ANSTO Australian Synchrotron are introduced. The image guidance methods used and the resulting accuracy of tumour alignment in in vivo experiments are often under-reported. Image guidance tasks are often complex, time-consuming and prone to errors. If unchecked, they may result in potential mis-treatments. We introduce SyncMRT, a software package that provides a simple, image guidance tool-kit for aligning samples to the synchrotron beam. We have demonstrated sub-millimetre alignment using SyncMRT and the small-animal irradiation platform (the DynamicMRT system) on the IMBL. SyncMRT has become the standard for carrying out IGRT treatments on the IMBL and has been used in all pre-clinical radiotherapy experiments since 2017. Further, we introduce two quality assurance (QA) protocols to synchrotron radiotherapy on the IMBL: the Winston-Lutz test and hidden target test. It is shown that the presented QA tests are appropriate for picking up geometrical setup errors and assessing the end-to-end accuracy of the image guidance process. Together, these tools make image guidance easier and provide a mechanism for reporting the geometric accuracy of synchrotron-based IGRT treatments. Importantly, this work is scalable to other delivery systems, and is in continual development to support the upcoming veterinary radiotherapy trials on the IMBL.
Collapse
Affiliation(s)
- M. J. Barnes
- ANSTO Australian Synchrotron, Kulin Nation, Clayton, Victoria, Australia
- Peter MacCallum Cancer Centre, Kulin Nation, Melbourne, Victoria, Australia
- School of Science, RMIT Univeristy, Kulin Nation, Melbourne, Victoria, Australia
- Illawarra Health and Medical Research Institute, Dharawal Nation, Wollongong, New South Wales, Australia
| | - J. Paino
- Illawarra Health and Medical Research Institute, Dharawal Nation, Wollongong, New South Wales, Australia
- Centre for Medical Radiation Physics, University of Wollongong, Dharawal Nation, Wollongong, New South Wales, Australia
| | - L. R. Day
- School of Science, RMIT Univeristy, Kulin Nation, Melbourne, Victoria, Australia
| | - D. Butler
- Australian Radiation Protection and Nuclear Safety Agency (ARPANSA), Kulin Nation, Yallambie, Victoria, Australia
| | - D. Häusermann
- ANSTO Australian Synchrotron, Kulin Nation, Clayton, Victoria, Australia
| | - D. Pelliccia
- Instruments and Data Tools, Kulin Nation, Melbourne, Victoria, Australia
| | - J. C. Crosbie
- School of Science, RMIT Univeristy, Kulin Nation, Melbourne, Victoria, Australia
| |
Collapse
|
40
|
Tegtmeier RC, Ferris WS, Bayouth JE, Culberson WS. Performance evaluation of image reconstruction algorithms for a megavoltage computed tomography system on a helical tomotherapy unit. Biomed Phys Eng Express 2022; 8. [PMID: 35654009 DOI: 10.1088/2057-1976/ac7584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/01/2022] [Indexed: 11/12/2022]
Abstract
Objective. To evaluate the impact of image reconstruction algorithm selection, as well as imaging mode and the reconstruction interval, on image quality metrics for megavoltage computed tomography (MVCT) image acquisition for use in image-guided (IGRT) and adaptive radiotherapy (ART) on a next-generation helical tomotherapy system.Approach. A CT image quality phantom was scanned across all available acquisition modes for filtered back projection (FBP) and both iterative reconstruction (IR) algorithms available on the system. Image quality metrics including noise, uniformity, contrast, spatial resolution, and mean CT number were compared. Analysis of DICOM data was performed using ImageJ software and Python code. ANOVA single factor and Tukey's honestly significant difference post-hoc tests were utilized for statistical analysis.Main Results. Application of both IR algorithms noticeably improved noise and image contrast when compared to the FBP algorithm available on all previous-generation helical tomotherapy systems. Use of the FBP algorithm improved image uniformity and spatial resolution in the axial plane, though values for the IR algorithms were well within tolerances recommended for IGRT and/or MVCT-based ART implementation by the American Association of Physicists in Medicine (AAPM). Additionally, longitudinal resolution showed little dependence on the reconstruction algorithm, while a negligible variation in mean CT number was observed regardless of the reconstruction algorithm or acquisition parameters. Statistical analysis confirmed the significance of these results.Significance. An overall improvement in image quality for metrics most important to IGRT and ART-mainly image noise and contrast-was evident in the application of IR when compared to FBP. Furthermore, since other imaging parameters remain identical regardless of the reconstruction algorithm, this improved image quality does not come at the expense of additional patient dose or an increased scan acquisition time for otherwise identical parameters. These improvements are expected to enhance fidelity in IGRT and ART implementation.
Collapse
Affiliation(s)
- Riley C Tegtmeier
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States of America
| | - William S Ferris
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States of America
| | - John E Bayouth
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, United States of America
| | - Wesley S Culberson
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States of America
| |
Collapse
|
41
|
van der Heyden B, Heymans SV, Carlier B, Collado-Lara G, Sterpin E, D’hooge J. Deep learning for dose assessment in radiotherapy by the super-localization of vaporized nanodroplets in high frame rate ultrasound imaging. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac6cc3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/04/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. External beam radiotherapy is aimed to precisely deliver a high radiation dose to malignancies, while optimally sparing surrounding healthy tissues. With the advent of increasingly complex treatment plans, the delivery should preferably be verified by quality assurance methods. Recently, online ultrasound imaging of vaporized radiosensitive nanodroplets was proposed as a promising tool for in vivo dosimetry in radiotherapy. Previously, the detection of sparse vaporization events was achieved by applying differential ultrasound (US) imaging followed by intensity thresholding using subjective parameter tuning, which is sensitive to image artifacts. Approach. A generalized deep learning solution (i.e. BubbleNet) is proposed to localize vaporized nanodroplets on differential US frames, while overcoming the aforementioned limitation. A 5-fold cross-validation was performed on a diversely composed 5747-frame training/validation dataset by manual segmentation. BubbleNet was then applied on a test dataset of 1536 differential US frames to evaluate dosimetric features. The intra-observer variability was determined by scoring the Dice similarity coefficient (DSC) on 150 frames segmented twice. Additionally, the BubbleNet generalization capability was tested on an external test dataset of 432 frames acquired by a phased array transducer at a much lower ultrasound frequency and reconstructed with unconventional pixel dimensions with respect to the training dataset. Main results. The median DSC in the 5-fold cross validation was equal to ∼0.88, which was in line with the intra-observer variability (=0.86). Next, BubbleNet was employed to detect vaporizations in differential US frames obtained during the irradiation of phantoms with a 154 MeV proton beam or a 6 MV photon beam. BubbleNet improved the bubble-count statistics by ∼30% compared to the earlier established intensity-weighted thresholding. The proton range was verified with a −0.8 mm accuracy. Significance. BubbleNet is a flexible tool to localize individual vaporized nanodroplets on experimentally acquired US images, which improves the sensitivity compared to former thresholding-weighted methods.
Collapse
|
42
|
Prisciandaro J, Zoberi JE, Cohen G, Kim Y, Johnson P, Paulson E, Song W, Hwang KP, Erickson B, Beriwal S, Kirisits C, Mourtada F. AAPM Task Group Report 303 endorsed by the ABS: MRI Implementation in HDR Brachytherapy-Considerations from Simulation to Treatment. Med Phys 2022; 49:e983-e1023. [PMID: 35662032 DOI: 10.1002/mp.15713] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 04/11/2022] [Accepted: 05/05/2022] [Indexed: 11/05/2022] Open
Abstract
The Task Group (TG) on Magnetic Resonance Imaging (MRI) Implementation in High Dose Rate (HDR) Brachytherapy - Considerations from Simulation to Treatment, TG 303, was constituted by the American Association of Physicists in Medicine's (AAPM's) Science Council under the direction of the Therapy Physics Committee, the Brachytherapy Subcommittee, and the Working Group on Brachytherapy Clinical Applications. The TG was charged with developing recommendations for commissioning, clinical implementation, and on-going quality assurance (QA). Additionally, the TG was charged with describing HDR brachytherapy (BT) workflows and evaluating practical consideration that arise when implementing MR imaging. For brevity, the report is focused on the treatment of gynecologic and prostate cancer. The TG report provides an introduction and rationale for MRI implementation in BT, a review of previous publications on topics including available applicators, clinical trials, previously published BT related TG reports, and new image guided recommendations beyond CT based practices. The report describes MRI protocols and methodologies, including recommendations for the clinical implementation and logical considerations for MR imaging for HDR BT. Given the evolution from prescriptive to risk-based QA,1 an example of a risk-based analysis using MRI-based, prostate HDR BT is presented. In summary, the TG report is intended to provide clear and comprehensive guidelines and recommendations for commissioning, clinical implementation, and QA for MRI-based HDR BT that may be utilized by the medical physics community to streamline this process. This report is endorsed by the American Brachytherapy Society (ABS). This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | | | - Gil'ad Cohen
- Memorial Sloan-Kettering Cancer Center, New York, NY
| | | | - Perry Johnson
- University of Florida Health Proton Therapy Institute, Jacksonville, FL
| | | | | | - Ken-Pin Hwang
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Sushil Beriwal
- Allegheny Health Network Cancer Institute, Pittsburgh, PA
| | | | - Firas Mourtada
- Sidney Kimmel Cancer Center at Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| |
Collapse
|
43
|
Ma C, Tian Z, Wang R, Feng Z, Jiang F, Hu Q, Yang F, Shi A, Wu H. A prediction model for dosimetric-based lung adaptive radiotherapy. Med Phys 2022; 49:6319-6333. [PMID: 35649103 DOI: 10.1002/mp.15714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/22/2022] [Accepted: 05/01/2022] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Anatomical changes occurred during the treatment course of radiation therapy for lung cancer patients may introduce clinically unacceptable dosimetric deviations from the planned dose. Adaptive radiotherapy (ART) can compensate these dosimetric deviations in subsequent treatments via plan adaption. Determining whether and when to trigger plan adaption during the treatment course is essential to the effectiveness and efficiency of ART. In this study, we aimed to develop a prediction model as an auxiliary decision-making tool for lung ART to identify the patients with intrathoracic anatomical changes that would potentially benefit from the plan adaptions during the treatment course. METHODS Seventy-one pairs of weekly cone-beam computer tomography (CBCT) and planning CT (pCT) from 17 advanced non-small cell lung cancer patients were enrolled in this study. To assess the dosimetric impacts brought by anatomical changes observed on each CBCT, dose distribution of the original treatment plan on the CBCT anatomy was calculated on a virtual CT generated by deforming the corresponding pCT to the CBCT, and compared to that of the original plan. A replan was deemed needed for the CBCT anatomy once the recalculated dose distribution violated our dosimetric-based trigger criteria. A three-dimensional region of significant anatomical changes (region of interest, ROI) between each CBCT and the corresponding pCT was identified and 16 morphological features of the ROI were extracted. Additionally, eight features from the overlapped volume histograms (OVHs) of patient anatomy were extracted for each patient to characterize the patient specific anatomy. Based on the 24 extracted features and the evaluated replanning needs of the pCT-CBCT pairs, a nonlinear supporting vector machine was used to build a prediction model to identify the anatomical changes on CBCTs that would trigger plan adaptions. The most relevant features were selected using the sequential backward selection (SBS) algorithm and a shuffling-and-splitting validation scheme was used for model evaluation. RESULTS Fifty-Five CBCT-pCT pairs were identified of having a ROI, among which 21 CBCT anatomies required plan adaptions. For these 21 positive cases, statistically significant improvements in the sparing of lung, esophagus and spinal cord were achieved by plan adaptions. A high model performance of 0.929 AUC and 0.851 accuracy was achieved with six selected features including five ROI shape features and one OVH feature. Without involving the OVH features in the feature selection process, the mean AUC and accuracy of the model significantly decreased to 0.826 and 0.779, respectively. Further investigation showed that poor prediction performance with AUC of 0.76 was achieved by the univariate model in solving this binary classification task. CONCLUSION We built a prediction model based on the features of patient anatomy and the anatomical changes captured by on-treatment CBCT imaging to trigger plan adaption for lung cancer patients. This model effectively associated the anatomical changes with the dosimetric impacts for lung ART. This model can be a promising tool to assist the clinicians in making decisions for plan adaptions during the treatment courses. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chaoqiong Ma
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.,Department of Radiation Oncology, Emory University, Atlanta, GA, 30322, USA
| | - Zhen Tian
- Department of Radiation Oncology, Emory University, Atlanta, GA, 30322, USA.,Department of Radiation & Cellular Oncology, University of Chicago, Chicago, IL, 60637, USA
| | - Ruoxi Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Zhongsu Feng
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Fan Jiang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Qiaoqiao Hu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Fang Yang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.,Department of Oncology, Daqing Oilfield General Hospital, Daqing, 163001, China
| | - Anhui Shi
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Hao Wu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.,Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| |
Collapse
|
44
|
Tegtmeier RC, Ferris WS, Bayouth JE, Miller JR, Culberson WS. Characterization of imaging performance of a novel helical kVCT for use in image‐guided and adaptive radiotherapy. J Appl Clin Med Phys 2022; 23:e13648. [PMID: 35570390 PMCID: PMC9194993 DOI: 10.1002/acm2.13648] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/30/2022] [Accepted: 04/26/2022] [Indexed: 11/27/2022] Open
Abstract
ClearRT helical kVCT imaging for the Radixact helical tomotherapy system recently received FDA approval and is available for clinical use. The system is intended to enhance image fidelity in radiation therapy treatment planning and delivery compared to the prior MV‐based onboard imaging approach. The purpose of this work was to characterize the imaging performance of this system and compare this performance with that of clinical systems used in image‐guided and/or adaptive radiotherapy (ART) or computed tomography (CT) simulation, including Radixact MVCT, TomoTherapy MVCT, Varian TrueBeam kV OBI CBCT, and the Siemens SOMATOM Definition Edge kVCT. A CT image quality phantom was scanned across clinically relevant acquisition modes for each system to evaluate image quality metrics, including noise, uniformity, contrast, spatial resolution, and CT number linearity. Similar noise levels were observed for ClearRT and Siemens Edge, whereas noise for the other systems was ∼1.5–5 times higher. Uniformity was best for Siemens Edge, whereas most scans for ClearRT exhibited a slight “cupping” or “capping” artifact. The ClearRT and Siemens Edge performed best for contrast metrics, which included low‐contrast visibility and contrast‐to‐noise ratio evaluations. Spatial resolution was best for TrueBeam and Siemens Edge, whereas the three kVCT systems exhibited similar CT number linearity. Overall, these results provide an initial indication that ClearRT image quality is adequate for image guidance in radiotherapy and sufficient for delineating anatomic structures, thus enabling its use for ART. ClearRT also showed significant improvement over MVCT, which was previously the only onboard imaging modality available on Radixact. Although the acquisition of these scans does come at the cost of additional patient dose, reported CTDI values indicate a similar or generally reduced machine output for ClearRT compared to the other systems while maintaining comparable or improved image quality overall.
Collapse
Affiliation(s)
- Riley C. Tegtmeier
- Department of Medical Physics School of Medicine and Public Health University of Wisconsin‐Madison Madison Wisconsin USA
| | - William S. Ferris
- Department of Medical Physics School of Medicine and Public Health University of Wisconsin‐Madison Madison Wisconsin USA
| | - John E. Bayouth
- Department of Human Oncology School of Medicine and Public Health University of Wisconsin‐Madison Madison Wisconsin USA
| | - Jessica R. Miller
- Department of Human Oncology School of Medicine and Public Health University of Wisconsin‐Madison Madison Wisconsin USA
| | - Wesley S. Culberson
- Department of Medical Physics School of Medicine and Public Health University of Wisconsin‐Madison Madison Wisconsin USA
| |
Collapse
|
45
|
Wu JK, Yu MC, Chen SH, Liao SH, Wang YJ. Low cost multifunctional 3D printed image quality and dose verification phantom for an image-guided radiotherapy system. PLoS One 2022; 17:e0266604. [PMID: 35385553 PMCID: PMC8986000 DOI: 10.1371/journal.pone.0266604] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 03/23/2022] [Indexed: 11/18/2022] Open
Abstract
Purpose Image-guided radiation therapy (IGRT) is used to precisely deliver radiation to a tumour to reduce the possible damage to the surrounding normal tissues. Clinics use various quality assurance (QA) equipment to ensure that the performance of the IGRT system meets the international standards set for the system. The objective of this study was to develop a low-cost and multipurpose module for evaluating image quality and dose. Methods A multipurpose phantom was designed to meet the clinical requirements of high accuracy, easy setup, and calibration. The outer shell of the phantom was fabricated using acrylic. Three dimensional (3D) printing technology was used to fabricate inner slabs with the characteristics of high spatial resolution, low-contrast detectability, a 3D grid, and liquid-filled uniformity. All materials were compatible with magnetic resonance (MR). Computed tomography (CT) simulator and linear accelerator (LINAC) modules were developed and validated. Results The uniformity slab filled with water is ideal for the assessment of Hounsfield units, whereas that filled with wax is suitable for consistency checks. The high-spatial-resolution slab enables measurements with a resolution up to 5 lp/cm. The low-contrast detectability slab contains rods of 5 different sizes that can be clearly visualised. These components meet the American College of Radiology (ACR) standards for QA of CT simulators and LINACs. Conclusions The multifunctional phantom module meets the ACR recommended QA guidelines and is suitable for both LINACs and CT-sim. Further measurements in an MR simulator and an MR linear accelerator (MR-LINAC) will be arranged in the future.
Collapse
Affiliation(s)
- Jian-Kuen Wu
- Division of Radiation Oncology, Departments of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Min-Chin Yu
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Shih-Han Chen
- Department of Medical Imaging, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Shu-Hsien Liao
- Institute of Electro-Optical Science and Technology, National Taiwan Normal University, Taipei, Taiwan
| | - Yu-Jen Wang
- Department of Radiation Oncology, Fu Jen Catholic University Hospital, New Taipei City, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- * E-mail:
| |
Collapse
|
46
|
Zhang X, Wang X, Li X, Zhou L, Nie S, Li C, Wang X, Dai G, Deng Z, Zhong R. Evaluating the impact of possible interobserver variability in CBCT-based soft-tissue matching using TCP/NTCP models for prostate cancer radiotherapy. Radiat Oncol 2022; 17:62. [PMID: 35365155 PMCID: PMC8973574 DOI: 10.1186/s13014-022-02034-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 03/15/2022] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
Prostate alignment is subject to interobserver variability in cone-beam CT (CBCT)-based soft-tissue matching. This study aims to analyze the impact of possible interobserver variability in CBCT-based soft-tissue matching for prostate cancer radiotherapy.
Methods
Retrospective data, consisting of 156 CBCT images from twelve prostate cancer patients with elective nodal irradiation were analyzed in this study. To simulate possible interobserver variability, couch shifts of 2 mm relative to the resulting patient position of prostate alignment were assumed as potential patient positions (27 possibilities). For each CBCT, the doses of the potential patient positions were re-calculated using deformable image registration-based synthetic CT. The impact of the simulated interobserver variability was evaluated using tumor control probabilities (TCPs) and normal tissue complication probabilities (NTCPs).
Results
No significant differences in TCPs were found between prostate alignment and potential patient positions (0.944 ± 0.003 vs 0.945 ± 0.003, P = 0.117). The average NTCPs of the rectum ranged from 5.16 to 7.29 (%) among the potential patient positions and were highly influenced by the couch shift in the anterior–posterior direction. In contrast, the average NTCPs of the bladder ranged from 0.75 to 1.12 (%) among the potential patient positions and were relatively negligible.
Conclusions
The NTCPs of the rectum, rather than the TCPs of the target, were highly influenced by the interobserver variability in CBCT-based soft-tissue matching. This study provides a theoretical explanation for daily CBCT-based image guidance and the prostate-rectum interface matching procedure.
Trial registration: Not applicable.
Collapse
|
47
|
A novel end-to-end test for combined dosimetric and geometric treatment verification using a 3D-printed phantom. Med Dosim 2022; 47:177-183. [DOI: 10.1016/j.meddos.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/20/2021] [Accepted: 02/04/2022] [Indexed: 11/22/2022]
|
48
|
Hu Y, Arnesen M, Aland T. Characterization of an advanced cone beam CT (CBCT) reconstruction algorithm used for dose calculation on Varian Halcyon linear accelerators. Biomed Phys Eng Express 2022; 8. [PMID: 35139503 DOI: 10.1088/2057-1976/ac536b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/09/2022] [Indexed: 11/12/2022]
Abstract
In this study, the performance of a new iterative reconstruction algorithm, the pre-clinical AcurosXB iCBCT algorithm, has been characterized on Varian Halcyon linear accelerators with respect to the potential of radiotherapy dose calculations on CBCT images. The study utilized various phantom setups to verify the accuracy of the pre-clinical algorithm under different scatter conditions and compared dose calculations performed on CBCT images reconstructed with the pre-clinical algorithm to those performed on typical planning CT images. The results indicated that despite showing improvements compared to the existing iCBCT protocol, certain restrictions should be introduced when the pre-clinical AcurosXB iCBCT algorithm was used for dose calculations. Changes in the scatter condition exhibited a larger effect on CBCTs than on planning CTs. Therefore, users should be careful in offsetting the patient and positioning the patient's arms if the resultant images will be used for dose calculations. In addition, protocols with different kV settings should be approached with caution, where 100 kV protocols should only be used to scan the head and neck area, while the rest of the body should be scanned with the 125 kV and 140 kV protocols. When the patient is set up properly and the appropriate energy is selected for the anatomical area, the uncertainty of using the novel AcurosXB iCBCT algorithm for treatment planning dose calculation is within ± 2.0%.
Collapse
Affiliation(s)
- Yunfei Hu
- Gosford, Icon Cancer Care South Brisbane, 41 William St, Gosford, New South Wales, 2077, AUSTRALIA
| | - Marius Arnesen
- Toowoomba, Icon Cancer Care South Brisbane, St Andrew's Cancer Care Centre, 280 North St, Rockville, Queensland, 4350, AUSTRALIA
| | - Trent Aland
- National Head Office, Icon Cancer Care South Brisbane, Level 1/22 Cordelia St, South Brisbane, Queensland, 4101, AUSTRALIA
| |
Collapse
|
49
|
Dose assessment for daily cone-beam CT in lung radiotherapy patients and its combination with treatment planning. Phys Eng Sci Med 2022; 45:231-237. [PMID: 35076869 DOI: 10.1007/s13246-022-01105-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/19/2022] [Indexed: 10/19/2022]
Abstract
With the increased use of X-ray imaging for patient alignment in external beam radiation therapy, particularly with cone-beam computed tomography (CBCT), the additional dose received by patients has become of greater consideration. In this study, we analysed the radiation dose from CBCT for clinical lung radiotherapy and assessed its relative contribution when combined with radiation treatment planning for a variety of lung radiotherapy techniques. The Monte Carlo simulation program ImpactMC was used to calculate the 3D dose delivered by a Varian TrueBeam linear accelerator to patients undergoing thorax CBCT imaging. The concomitant dose was calculated by simulating the daily CBCT irradiation of ten lung cancer patients. Each case was planned with a total dose of 50-60 Gy to the target lesion in 25-30 fractions using the 3DCRT or IMRT plan and retrospectively planned using VMAT. For each clinical case, the calculated CBCT dose was summed with the planned dose, and the dose to lungs, heart, and spinal cord were analysed according to conventional dose conformity metrics. Our results indicate greater variations in dose to the heart, lungs, and spinal cord based on planning technique, (3DCRT, IMRT, VMAT) than from the inclusion of daily cone-beam imaging doses over 25-30 fractions. The average doses from CBCT imaging per fraction to the lungs, heart and spinal cord were 0.52 ± 0.10, 0.49 ± 0.15 and 0.39 ± 0.08 cGy, respectively. Lung dose variations were related to the patient's size and body composition. Over a treatment course, this may result in an additional mean absorbed dose of 0.15-0.2 Gy. For lung V5, the imaging dose resulted in an average increase of ~ 0.6% of the total volume receiving 5 Gy. The increase in V20 was more dependent on the planning technique, with 3DCRT increasing by 0.11 ± 0.09% with imaging and IMRT and VMAT increasing by 0.17 ± 0.05% and 0.2 ± 0.06%, respectively. In this study, we assessed the concomitant dose for daily CBCT lung cancer patients undergoing radiotherapy. The additional radiation dose to the normal lungs from daily CBCT was found to range from 0.15 to 0.2 Gy when the patient was treated with 25-30 fractions. Consideration of potential variation in relative biological effectiveness between kilovoltage imaging and megavoltage treatment dose was outside the scope of this study. Regardless of this, our results show that the assessment of imaging dose can be incorporated into the treatment planning process and the relative effect on overall dose distribution was small compared to the difference among planning techniques.
Collapse
|
50
|
Velten C, Goddard L, Jeong K, Garg MK, Tomé WA. Clinical Assessment of a Novel Ring Gantry Linear Accelerator-Mounted Helical Fan-Beam kVCT System. Adv Radiat Oncol 2022; 7:100862. [PMID: 35036634 PMCID: PMC8749200 DOI: 10.1016/j.adro.2021.100862] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/23/2021] [Indexed: 12/22/2022] Open
Abstract
Purpose To assess clinically relevant image quality metrics (IQMs) of helical fan beam kilovoltage (kV) fan beam computed tomography (CT). Methods and Materials kVCT IQMs were evaluated on an Accuray Radixact unit equipped with helical fan beam kVCT to assess the capabilities of this newly available modality. kVCT IQMs were evaluated and compared to a kVCT simulator and linear accelerator-based cone beam CTs (CBCT) using a commercial CBCT image quality phantom. kVCTs were acquired on the Accuray Radixact for all combinations of kVp and mAs in fine mode using a 440-mm field of view (FOV). Evaluated IQMs were spatial resolution, overall uniformity, subject contrast, contrast-to-noise ratio (CNR), and effective slice thickness. Imaging dose was assessed for planar kV imaging. Results On this kVCT system spatial resolution and contrast were consistent across all settings with 0.28 ± 0.03 lp/mm and 9.8% ± 0.7% (both 95% confidence interval). CNR strongly depended on selected mode (views per rotation) and body size (mA per view) and ranged between 7.9 and 34.9. Overall uniformity was greater than 97% for all settings. Large FOV was not found to substantially affect the IQMs whereas small FOV affected IQMs due to its effect on pitch. Technique-matched CT simulator scans were comparable for uniformity and contrast, while spatial resolution was higher (0.43 ± 0.06 lp/mm), and CNR was between 4% (140 kVp) and 51% (100 kVp) lower. For kV-CBCT, spatial resolutions ranging from 0.37 to 0.44 lp/mm were achieved with comparable contrast, CNR, and uniformity to kVCT. All kVCT scans exhibit imaging artifacts due to helical acquisition. Clinical acquisitions of megavoltage (MV) CT, kV-CBCT, and kVCT on the same patient showed improved and comparable image quality of kVCT compared to MVCT and kV-CBCT, respectively. Conclusions Helical fan beam kVCT allows for daily image guidance for localization and setup verification with comparable performance to existing kV-CBCT systems. Scan parameters must be selected carefully to maximize image quality for the desired tasks. Due to the large effective slice thicknesses for all parameter combinations, kVCT scans should not be used for simulation or planning of stereotactic procedures. Finally, improved image quality over MVCT has the potential to greatly improve manual and automated adaptive monitoring and planning.
Collapse
Affiliation(s)
- Christian Velten
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, New York.,Institute for Onco-Physics, Albert Einstein College of Medicine, Bronx, New York
| | - Lee Goddard
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, New York.,Institute for Onco-Physics, Albert Einstein College of Medicine, Bronx, New York
| | - Kyoungkeun Jeong
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, New York.,Institute for Onco-Physics, Albert Einstein College of Medicine, Bronx, New York
| | - Madhur K Garg
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, New York.,Institute for Onco-Physics, Albert Einstein College of Medicine, Bronx, New York
| | - Wolfgang A Tomé
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, New York.,Institute for Onco-Physics, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|