1
|
Castel-Branco MM, Lavrador M, Cabral AC, Pinheiro A, Fernandes J, Figueiredo IV, Fernandez-Llimos F. Discrepancies among equations to estimate the glomerular filtration rate for drug dosing decision making in aged patients: a cross sectional study. Int J Clin Pharm 2024; 46:411-420. [PMID: 38151688 PMCID: PMC10960755 DOI: 10.1007/s11096-023-01677-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/20/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Patients often require adjustments to drug doses due to impaired renal function. Glomerular filtration rate (GFR) estimation using various equations can result in discrepancies, potentially leading to different dose adjustment recommendations. AIM To determine the clinical significance of discrepancies observed between different equations used to estimate GFR for drug dose adjustments in a real-world group of patients over 65 years in primary care. METHOD The Cockcroft-Gault (CG), Modification of Diet in Renal Disease (MDRD), Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI), and Berlin Initiative Study 1 equations were applied to estimate GFR in a group of patients over 65 years old attending a primary care center. Results were compared using Bland-Altman plots, and limits of agreement (LoA) and overall bias were calculated. Regression analyses were conducted to identify the null difference GFR and the slope of differences for each pairwise comparison. RESULTS A total of 1886 patients were analyzed. Differences between patient-adjusted and body surface area (BSA)-normalized versions of the equations were not clinically relevant for dose adjustments, with LoAs below 20 mL/min. However, discrepancies among the original versions of several equations presented LoAs over 30 mL/min. Greater differences were found between CG and MDRD or CKD-EPI equations. CONCLUSION Clinically relevant differences in GFR estimation were observed among different equations, potentially impacting drug dose adjustments. However, discrepancies were not considered significant when comparing patient-adjusted and BSA-normalized versions of the equations, particularly for patients with BSA close to the average.
Collapse
Affiliation(s)
- M Margarida Castel-Branco
- Pharmacology and Pharmaceutical Care Laboratory, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Marta Lavrador
- Pharmacology and Pharmaceutical Care Laboratory, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana C Cabral
- Pharmacology and Pharmaceutical Care Laboratory, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | | | | | - Isabel Vitória Figueiredo
- Pharmacology and Pharmaceutical Care Laboratory, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Fernando Fernandez-Llimos
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
- Applied Molecular Biosciences (UCIBIO), University of Porto, Porto, Portugal.
| |
Collapse
|
2
|
Oost LJ, Slieker RC, Blom MT, 't Hart LM, Hoenderop JGJ, Beulens JWJ, de Baaij JHF. Genome-wide association study of serum magnesium in type 2 diabetes. GENES & NUTRITION 2024; 19:2. [PMID: 38279093 PMCID: PMC10811844 DOI: 10.1186/s12263-024-00738-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
People with type 2 diabetes have a tenfold higher prevalence of hypomagnesemia, which is suggested to be caused by low dietary magnesium intake, medication use, and genetics. This study aims to identify the genetic loci that influence serum magnesium concentration in 3466 people with type 2 diabetes. The GWAS models were adjusted for age, sex, eGFR, and HbA1c. Associated traits were identified using publicly available data from GTEx consortium, a human kidney eQTL atlas, and the Open GWAS database. The GWAS identified a genome-wide significant locus in TAF3 (p = 2.9 × 10-9) in people with type 2 diabetes. In skeletal muscle, loci located in TAF3 demonstrate an eQTL link to ATP5F1C, a gene that is involved in the formation of Mg2+-ATP. Serum Mg2+ levels were associated with MUC1/TRIM46 (p = 2.9 × 10-7), SHROOM3 (p = 4.0 × 10-7), and SLC22A7 (p = 1.0 × 10-6) at nominal significance, which is in combination with the eQTL data suggesting that they are possible candidates for renal failure. Several genetic loci were in agreement with previous genomic studies which identified MUC1/TRIM46 (Pmeta = 6.9 × 10-29, PQ = 0.81) and SHROOM3 (Pmeta = 2.9 × 10-27, PQ = 0.04) to be associated with serum Mg2+ in the general population. In conclusion, serum magnesium concentrations are associated with genetic variability around the regions of TAF3, MUC1/TRIM46, SHROOM3, and SLC22A7 in type 2 diabetes.
Collapse
Affiliation(s)
- Lynette J Oost
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Roderick C Slieker
- Department of Epidemiology and Data Science, Amsterdam UMC, Vrije Universiteit, Amsterdam, Amsterdam, the Netherlands
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
- Amsterdam Public Health, Health Behaviors and Chronic Diseases, Amsterdam, the Netherlands
| | - Marieke T Blom
- Amsterdam Public Health, Health Behaviors and Chronic Diseases, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, the Netherlands
- Department of General Practice, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Leen M 't Hart
- Department of Epidemiology and Data Science, Amsterdam UMC, Vrije Universiteit, Amsterdam, Amsterdam, the Netherlands
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
- Amsterdam Public Health, Health Behaviors and Chronic Diseases, Amsterdam, the Netherlands
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Joost G J Hoenderop
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Joline W J Beulens
- Department of Epidemiology and Data Science, Amsterdam UMC, Vrije Universiteit, Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health, Health Behaviors and Chronic Diseases, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, the Netherlands
| | - Jeroen H F de Baaij
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
3
|
Mathialagan S, Chung G, Pye K, Rodrigues AD, Varma MVS, Brown C. Significance of Organic Anion Transporter 2 and Organic Cation Transporter 2 in Creatinine Clearance: Mechanistic Evaluation Using Freshly Prepared Human Primary Renal Proximal Tubule Cells. J Pharmacol Exp Ther 2024; 388:201-208. [PMID: 37977812 DOI: 10.1124/jpet.123.001890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023] Open
Abstract
Creatinine, a clinical marker for kidney function, is predominantly cleared by glomerular filtration, with active tubular secretion contributing to about 30% of its renal clearance. Recent studies suggested the potential involvement of organic anion transporter (OAT)2, in addition to the previously known organic cation transporter (OCT)2-mediated basolateral uptake, in creatinine active secretion. Here we characterized the transport mechanisms of creatinine using transfected human embryonic kidney (HEK)293 cells and freshly prepared human primary renal proximal tubule epithelial cells (hPTCs). Creatinine showed transport by OAT2 in transfected HEK293 cells. In addition, both creatinine and metformin showed transport by OCT2 and multidrug and toxin extrusion pump (MATE)1 and MATE2K, while penciclovir was selective for OAT2. Time-dependent cell accumulation was observed for creatinine and metformin in hPTCs. Their accumulation was increased by pyrimethamine but inhibited by decynium-22, likely due to differential inhibition of OCT2 versus MATEs. Additionally, indomethacin (an OAT2 inhibitor) reduced penciclovir uptake (∼75%) in hPTCs illustrating functional OAT2 activity. However, no modulation of creatinine and metformin cell accumulation was apparent with indomethacin. Creatinine transport characteristics in the presence of inhibitors approached those of metformin, an OCT2/MATE substrate, but were distinct from those of penciclovir, an OAT2-selective substrate. Moreover, indomethacin showed no significant effect on the basolateral-to-apical transport and net secretion of creatinine across hPTC monolayers. Collectively, the functional studies suggest OCT2 as the primary basolateral uptake mechanism and that OAT2 has a minimal role, in creatinine renal secretion. Our results highlight the utility of hPTCs to enable the functional assessment of renal transport mechanisms. SIGNIFICANCE STATEMENT: Our results obtained with primary hPTCs indicate that OCT2/MATE (vs. OAT2) play a major role in the active renal secretion of creatinine. Quantitative pharmacokinetic models should therefore focus on OCT2/MATE when describing serum creatinine and creatinine clearance modulation by inhibitor drugs and genotype- or disease-related activity changes. The present study highlights the utility of freshly isolated hPTCs to support solute carrier phenotyping to enable the functional assessment of renal transport mechanisms.
Collapse
Affiliation(s)
- Sumathy Mathialagan
- Medicine Design, Pfizer Research and Development, Pfizer Inc., Groton, Connecticut (S.M., A.D.R., M.V.S.V.); and Newcells Biotech Limited, The Biosphere, Newcastle Upton Tyne, United Kingdom (G.C., K.P., C.B.)
| | - Git Chung
- Medicine Design, Pfizer Research and Development, Pfizer Inc., Groton, Connecticut (S.M., A.D.R., M.V.S.V.); and Newcells Biotech Limited, The Biosphere, Newcastle Upton Tyne, United Kingdom (G.C., K.P., C.B.)
| | - Keith Pye
- Medicine Design, Pfizer Research and Development, Pfizer Inc., Groton, Connecticut (S.M., A.D.R., M.V.S.V.); and Newcells Biotech Limited, The Biosphere, Newcastle Upton Tyne, United Kingdom (G.C., K.P., C.B.)
| | - A David Rodrigues
- Medicine Design, Pfizer Research and Development, Pfizer Inc., Groton, Connecticut (S.M., A.D.R., M.V.S.V.); and Newcells Biotech Limited, The Biosphere, Newcastle Upton Tyne, United Kingdom (G.C., K.P., C.B.)
| | - Manthena V S Varma
- Medicine Design, Pfizer Research and Development, Pfizer Inc., Groton, Connecticut (S.M., A.D.R., M.V.S.V.); and Newcells Biotech Limited, The Biosphere, Newcastle Upton Tyne, United Kingdom (G.C., K.P., C.B.)
| | - Colin Brown
- Medicine Design, Pfizer Research and Development, Pfizer Inc., Groton, Connecticut (S.M., A.D.R., M.V.S.V.); and Newcells Biotech Limited, The Biosphere, Newcastle Upton Tyne, United Kingdom (G.C., K.P., C.B.)
| |
Collapse
|
4
|
Tan Y, Yao B, Kang Y, Shi S, Shi Z, Su J. Emerging role of the crosstalk between gut microbiota and liver metabolome of subterranean herbivores in response to toxic plants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115902. [PMID: 38171231 DOI: 10.1016/j.ecoenv.2023.115902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
Plant secondary metabolites (PSMs) are a defense mechanism against herbivores, which in turn use detoxification metabolism to process ingested and absorbed PSMs. The feeding environment can cause changes in liver metabolism patterns and the gut microbiota. Here, we compared gut microbiota and liver metabolome to investigate the response mechanism of plateau zokors (Eospalax baileyi) to toxic plant Stellera chamaejasme (SC) in non-SC and SC grassland (-SCG and +SCG). Our results indicated that exposure to SC in the -SCG population increased liver inflammatory markers including prostaglandin (PG) in the Arachidonic acid pathway, while exposure to SC in the +SCG population exhibited a significant downregulation of PGs. Secondary bile acids were significantly downregulated in +SCG plateau zokors after SC treatment. Of note, the microbial taxa Veillonella in the -SCG group was significantly correlated with liver inflammation markers, while Clostridium innocum in the +SCG group had a significant positive correlation with secondary bile acids. The increase in bile acids and PGs can lead to liver inflammatory reactions, suggesting that +SCG plateau zokors may mitigate the toxicity of SC plants by reducing liver inflammatory markers including PGs and secondary bile acids, thereby avoiding liver damage. This provides new insight into mechanisms of toxicity by PSMs and counter-mechanisms for toxin tolerance by herbivores.
Collapse
Affiliation(s)
- Yuchen Tan
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Baohui Yao
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Yukun Kang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Shangli Shi
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Zunji Shi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Junhu Su
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
5
|
Nakada T, Kudo T, Ito K. Quantitative Consideration of Clinical Increases in Serum Creatinine Caused by Renal Transporter Inhibition. Drug Metab Dispos 2023; 51:1114-1126. [PMID: 36859345 DOI: 10.1124/dmd.122.000969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 02/09/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Creatinine is a common biomarker of renal function and is secreted in the renal tubular cells via drug transporters, such as organic cation transporter 2 and multidrug and toxin extrusion (MATE) 1/2-K. To differentiate between drug-induced acute kidney injury (AKI) and drug interactions through the renal transporter, it has been examined whether these transporter inhibitions quantitatively explained increases in serum creatinine (SCr) at their clinically relevant concentrations using drugs without any changes in renal function. For such renal transporter inhibitors and recently approved tyrosine kinase inhibitors (TKIs), this mini-review describes clinical increases in SCr and inhibitory potentials against the renal transporters. Most cases of SCr elevations can be explained by considering the renal transporter inhibitions based on unbound maximum plasma concentrations, except for drugs associated with obvious changes in renal function. SCr increases for cobicistat, dolutegravir, and dronedarone, and some TKIs were significantly underestimated, and these underestimations were suggested to be associated with low plasma unbound fractions. Sensitivity analysis of SCr elevations regarding inhibitory potentials of MATE1/2-K demonstrated that typical inhibitors such as cimetidine, DX-619, pyrimethamine, and trimethoprim could give false interpretations of AKI according to the criteria based on relative or absolute levels of SCr elevations. Recent progress and current challenges of physiologically-based pharmacokinetics modeling for creatinine disposition were also summarized. Although it should be noted for the potential impact of in vitro assay designs on clinical translatability of transporter inhibitions data, mechanistic approaches could support decision-making in clinical development to differentiate between AKI and creatinine-drug interactions. SIGNIFICANCE STATEMENT: Serum creatinine (SCr) is widely used as an indicator of kidney function, but it increases due to inhibitions of renal transporters, such as multidrug and toxin extrusion protein 1/2-K despite no functional changes in the kidney. Such SCr elevations were quantitatively explained by renal transporter inhibitions except for some drugs with high protein binding. The present analysis demonstrated that clinically relevant inhibitors of the renal transporters could cause SCr elevations above levels corresponding to acute kidney injury criteria.
Collapse
Affiliation(s)
- Tomohisa Nakada
- Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan (T.N.) and Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, Japan (T.K., K.I.)
| | - Toshiyuki Kudo
- Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan (T.N.) and Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, Japan (T.K., K.I.)
| | - Kiyomi Ito
- Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan (T.N.) and Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, Japan (T.K., K.I.)
| |
Collapse
|
6
|
Sato K, Mizutani A, Muranaka Y, Yao J, Kobayashi M, Yamazaki K, Nishii R, Nishi K, Nakanishi T, Tamai I, Kawai K. Biological Distribution after Oral Administration of Radioiodine-Labeled Acetaminophen to Estimate Gastrointestinal Absorption Function via OATPs, OATs, and/or MRPs. Pharmaceutics 2023; 15:pharmaceutics15020497. [PMID: 36839818 PMCID: PMC9964641 DOI: 10.3390/pharmaceutics15020497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
We evaluated the whole-body distribution of orally-administered radioiodine-125 labeled acetaminophen (125I-AP) to estimate gastrointestinal absorption of anionic drugs. 125I-AP was added to human embryonic kidney (HEK)293 and Flp293 cells expressing human organic anion transporting polypeptide (OATP)1B1/3, OATP2B1, organic anion transporter (OAT)1/2/3, or carnitine/organic cation transporter (OCTN)2, with and without bromosulfalein (OATP and multidrug resistance-associated protein (MRP) inhibitor) and probenecid (OAT and MRP inhibitor). The biological distribution in mice was determined by oral administration of 125I-AP with and without bromosulfalein and by intravenous administration of 125I-AP. The uptake of 125I-AP was significantly higher in HEK293/OATP1B1, OATP1B3, OATP2B1, OAT1, and OAT2 cells than that in mock cells. Bromosulfalein and probenecid inhibited OATP- and OAT-mediated uptake, respectively. Moreover, 125I-AP was easily excreted in the urine when administered intravenously. The accumulation of 125I-AP was significantly lower in the blood and urinary bladder of mice receiving oral administration of both 125I-AP and bromosulfalein than those receiving only 125I-AP, but significantly higher in the small intestine due to inhibition of OATPs and/or MRPs. This study indicates that whole-body distribution after oral 125I-AP administration can be used to estimate gastrointestinal absorption in the small intestine via OATPs, OATs, and/or MRPs by measuring radioactivity in the urinary bladder.
Collapse
Affiliation(s)
- Kakeru Sato
- Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan
| | - Asuka Mizutani
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan
| | - Yuka Muranaka
- Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan
| | - Jianwei Yao
- Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan
| | - Masato Kobayashi
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan
- Correspondence: ; Tel.: +81-76-265-2500
| | - Kana Yamazaki
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage 263-8555, Japan
| | - Ryuichi Nishii
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage 263-8555, Japan
| | - Kodai Nishi
- Department of Radioisotope Medicine, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Takeo Nakanishi
- Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki 370-0033, Japan
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Keiichi Kawai
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan
- Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji 910-1193, Japan
| |
Collapse
|
7
|
Puris E, Fricker G, Gynther M. The Role of Solute Carrier Transporters in Efficient Anticancer Drug Delivery and Therapy. Pharmaceutics 2023; 15:pharmaceutics15020364. [PMID: 36839686 PMCID: PMC9966068 DOI: 10.3390/pharmaceutics15020364] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Transporter-mediated drug resistance is a major obstacle in anticancer drug delivery and a key reason for cancer drug therapy failure. Membrane solute carrier (SLC) transporters play a crucial role in the cellular uptake of drugs. The expression and function of the SLC transporters can be down-regulated in cancer cells, which limits the uptake of drugs into the tumor cells, resulting in the inefficiency of the drug therapy. In this review, we summarize the current understanding of low-SLC-transporter-expression-mediated drug resistance in different types of cancers. Recent advances in SLC-transporter-targeting strategies include the development of transporter-utilizing prodrugs and nanocarriers and the modulation of SLC transporter expression in cancer cells. These strategies will play an important role in the future development of anticancer drug therapies by enabling the efficient delivery of drugs into cancer cells.
Collapse
|
8
|
Ma Y, Zhang M, Yang J, Zhu L, Dai J, Wu X. Characterization of the renal tubular transport of creatinine by activity-based protein profiling and transport kinetics. Eur J Pharm Sci 2023; 180:106342. [PMID: 36435354 DOI: 10.1016/j.ejps.2022.106342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/14/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022]
Abstract
Serum creatinine is widely used to adjust the dosing of drugs eliminated by the kidney in patients with renal dysfunction, as it is a readily accessible indicator of kidney function. However, there are many limitations for drug dosage adjustment based on serum creatinine levels, one of which is the limited understanding of creatinine's tubular transport. Thus, we aimed to complement and advance the renal tubular transport of creatinine by activity-based protein profiling (ABPP) and transporter-overexpression technology. Renal tubular transporters were not identified via ABPP due to the low-affinity interaction between transporters and creatinine. The uptake of isotopically labeled d3-creatinine was significantly increased in OCT2-overexpressing cell lines (p<0.01), and the Km and Vmax of d3-creatinine uptake mediated by OCT2 was 3.1 mM and 408 pmol/mg protein/min, respectively. In the OCT2-overexpressing cell lines, the IC50 of creatinine for d3-creatinine uptake was 10.3 mM, and that of the OCT2 inhibitor cimetidine for d3-creatinine uptake was 99.04 μM. Different dosages of creatinine did not affect the renal excretion of d3-creatinine in mice (p>0.05), while cimetidine significantly reduced the renal excretion of d3-creatinine (p<0.01) without affecting the glomerular filtration rate. Molecular docking in silico showed that the OCT2 amino acid GLN242 could form a hydrogen bond of 2.5 Å with creatinine, and there may be a π-π interaction between TYR362 and creatinine. A site mutation experiment demonstrated that TYR362 and GLN242 were important sites for the OCT2-creatinine interaction. These results demonstrate that OCT2 mediates the renal tubular secretion of creatinine with low affinity and is a minor contributor to creatinine secretion.
Collapse
Affiliation(s)
- Yanrong Ma
- Department of Pharmacy, the First Hospital of Lanzhou University, Lanzhou 730000 China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Mingkang Zhang
- Department of Pharmacy, the First Hospital of Lanzhou University, Lanzhou 730000 China
| | - Jinru Yang
- Department of Pharmacy, the First Hospital of Lanzhou University, Lanzhou 730000 China
| | - Lin Zhu
- Department of Pharmacy, the First Hospital of Lanzhou University, Lanzhou 730000 China
| | - Jianye Dai
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| | - Xinan Wu
- Department of Pharmacy, the First Hospital of Lanzhou University, Lanzhou 730000 China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
9
|
Yamamoto Y, Ura K, Matsukawa T, Saita T, Shin M. Immunohistochemical Localization of Alogliptin, a DPP-4 Inhibitor, in Tissues of Normal and Type 2 Diabetes Model Rat. Acta Histochem Cytochem 2022; 55:185-192. [PMID: 36688140 PMCID: PMC9840470 DOI: 10.1267/ahc.22-00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 10/23/2022] [Indexed: 12/15/2022] Open
Abstract
We investigated the pharmacokinetics of alogliptin (AG) at the cell and tissue level in healthy Wistar rats and a type 2 diabetic Goto-Kakizaki (GK) rat model. Immunohistochemistry of the renal tissue in these rats, post 1 hr of AG administration, showed that the signal was observed in the glomeruli, proximal tubule S3 segments, distal tubules, collecting ducts, and only in the brush border of the epithelial cells of the proximal tubule S1, S2 segments. After 6 hr of AG administration, the staining intensity of the regions other than the S3 segments was considerably reduced in Wistar rats, with no change observed in GK rats. At 24 hr, the staining intensity was considerably reduced, even in GK rats; however, the staining of the S3 segment remained unaltered in both. Hepatocytes in zone III of the hepatic lobule were more intensely stained than those in zone I in Wistar rats at 1 hr. However, almost no staining was observed in the hepatocytes of GK rats at 1 hr. Complete loss of signal was observed in the hepatocytes of the Wistar rats after 6 hr. This study revealed that the pharmacokinetics of AG in GK rats are different from those in Wistar rats.
Collapse
Affiliation(s)
- Yutaro Yamamoto
- Department of Applied Life Science, Faculty of Biotechnology and Life Science, Sojo University, 4–22–1 Ikeda, Nishi-ku, Kumamoto 860–0082, Japan
| | - Kanae Ura
- Department of Applied Life Science, Faculty of Biotechnology and Life Science, Sojo University, 4–22–1 Ikeda, Nishi-ku, Kumamoto 860–0082, Japan
| | - Takuma Matsukawa
- Department of Applied Life Science, Faculty of Biotechnology and Life Science, Sojo University, 4–22–1 Ikeda, Nishi-ku, Kumamoto 860–0082, Japan
| | - Tetsuya Saita
- Department of Applied Life Science, Faculty of Biotechnology and Life Science, Sojo University, 4–22–1 Ikeda, Nishi-ku, Kumamoto 860–0082, Japan
| | - Masashi Shin
- Department of Applied Life Science, Faculty of Biotechnology and Life Science, Sojo University, 4–22–1 Ikeda, Nishi-ku, Kumamoto 860–0082, Japan
| |
Collapse
|
10
|
Sharma A, Sahasrabudhe V, Musib L, Zhang S, Younis I, Kanodia J. Time to Rethink the Current Paradigm for Assessing Kidney Function in Drug Development and Beyond. Clin Pharmacol Ther 2022; 112:946-958. [PMID: 34800044 PMCID: PMC9786617 DOI: 10.1002/cpt.2489] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/11/2021] [Indexed: 12/30/2022]
Abstract
Chronic kidney disease (CKD) is an important health issue that affects ~ 9.1% of the world adult population. Serum creatinine is the most commonly used biomarker for assessing kidney function and is utilized in different equations for estimating creatinine clearance or glomerular filtration rate (GFR). The Cockcroft-Gault formula for adults and "original" Schwartz formula for children have been the most commonly used equations for estimating kidney function during the last 3-4 decades. Introduction of standardized serum creatinine bioanalytical methodology has reduced interlaboratory variability but is not intended to be used with Cockcroft-Gault or original Schwartz equations. More accurate equations (for instance, Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) for adults and bedside Schwartz or Chronic Kidney Disease in Children Schwartz equation for children) based on standardized serum creatinine values (and another biomarker-cystatin C) have been introduced and validated in recent years. Recently, the CKD-EPI equation refitted without a race variable was introduced. Clinical practice guidance in nephrology advocates a shift to these equations for managing health care of patients with CKD. The guidance also recommends use of albuminuria in addition to GFR for CKD diagnosis and management. Significant research with large data sets would be necessary to evaluate whether this paradigm would also be valuable in drug dose adjustments. This article attempts to highlight some important advancements in the field from a clinical pharmacology perspective and is a call to action to industry, regulators, and academia to rethink the current paradigm for assessing kidney function to enable dose recommendation in patients with CKD.
Collapse
Affiliation(s)
- Ashish Sharma
- Boehringer Ingelheim PharmaceuticalsRidgefieldConnecticutUSA
| | | | - Luna Musib
- Gilead Sciences IncFoster CityCaliforniaUSA
| | | | | | | |
Collapse
|
11
|
Ryu S, Woody N, Chang G, Mathialagan S, Varma MVS. Identification of Organic Anion Transporter 2 Inhibitors: Screening, Structure-Based Analysis, and Clinical Drug Interaction Risk Assessment. J Med Chem 2022; 65:14578-14588. [PMID: 36270005 DOI: 10.1021/acs.jmedchem.2c01079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Organic anion transporter 2 (OAT2 or SLC22A7) plays an important role in the hepatic uptake and renal secretion of several endogenous compounds and drugs. The goal of this work is to understand the structure activity of OAT2 inhibition and assess clinical drug interaction risk. A single-point inhibition assay using OAT2-transfected HEK293 cells was employed to screen about 150 compounds; and concentration-dependent inhibition potency (IC50) was measured for the identified "inhibitors". Acids represented about 65% of all inhibitors, and the frequency of bases-plus-zwitterions approximately doubled for "non-inhibitors". Interestingly, 9 of 10 most potent inhibitors (low IC50) are acids (pKa ∼ 3-5). Additionally, inhibitors are significantly larger and lipophilic than non-inhibitors. In silico (binary) models were developed to identify inhibitors and non-inhibitors. Finally, in vivo risk assessed via static drug-drug interaction models identified several inhibitors with potential for renal and hepatic OAT2 inhibition at clinical doses. This is the first study assessing the global pattern of OAT2-ligand interactions.
Collapse
Affiliation(s)
- Sangwoo Ryu
- Medicine Design, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Nathaniel Woody
- Medicine Design, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - George Chang
- Medicine Design, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Sumathy Mathialagan
- Medicine Design, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Manthena V S Varma
- Medicine Design, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
12
|
Nies AT, Schaeffeler E, Schwab M. Hepatic solute carrier transporters and drug therapy: Regulation of expression and impact of genetic variation. Pharmacol Ther 2022; 238:108268. [DOI: 10.1016/j.pharmthera.2022.108268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/25/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022]
|
13
|
Lu JL, Zeng XS, Zhou X, Yang JL, Ren LL, Long XY, Wang FQ, Olaleye OE, Tian NN, Zhu YX, Dong JJ, Jia WW, Li C. Molecular Basis Underlying Hepatobiliary and Renal Excretion of Phenolic Acids of Salvia miltiorrhiza Roots (Danshen). Front Pharmacol 2022; 13:911982. [PMID: 35620286 PMCID: PMC9127186 DOI: 10.3389/fphar.2022.911982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Phenolic acids are cardiovascular constituents (originating from the Chinese medicinal herb Salvia miltiorrhiza root/Danshen) of DanHong and many other Danshen-containing injections. Our earlier pharmacokinetic investigation of DanHong suggested that hepatic and/or renal uptake of the Danshen compounds was the crucial steps in their systemic elimination. This investigation was designed to survey the molecular basis underlying hepatobiliary and renal excretion of the Danshen compounds, i.e., protocatechuic acid, tanshinol, rosmarinic acid, salvianolic acid D, salvianolic acid A, lithospermic acid, and salvianolic acid B. A large battery of human hepatic and renal transporters were screened for transporting the Danshen compounds and then characterized for the uptake kinetics and also compared with associated rat transporters. The samples were analyzed by liquid chromatography/mass spectrometry. Because the Danshen phenolic acids are of poor or fairly good membrane permeability, their elimination via the liver or kidneys necessitates transporter-mediated hepatic or renal uptake from blood. Several human transporters were found to mediate hepatic and/or renal uptake of the Danshen compounds in a compound-molecular-mass-related manner. Lithospermic acid and salvianolic acid B (both >500 Da) underwent systemic elimination, initiated by organic anion-transporting polypeptide (OATP)1B1/OATP1B3-mediated hepatic uptake. Rosmarinic acid and salvianolic acids D (350–450 Da) underwent systemic elimination, initiated by OATP1B1/OATP1B3/organic anion transporter (OAT)2-mediated hepatic uptake and by OAT1/OAT2-mediated renal uptake. Protocatechuic acid and tanshinol (both <200 Da) underwent systemic elimination, initiated by OAT1/OAT2-mediated renal uptake and OAT2-mediated hepatic uptake. A similar scenario was observed with the rat orthologs. The investigation findings advance our understanding of the disposition of the Danshen phenolic acids and could facilitate pharmacokinetic research on other Danshen-containing injections.
Collapse
Affiliation(s)
- Jun-Lan Lu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xue-Shan Zeng
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xin Zhou
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jun-Ling Yang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Ling-Ling Ren
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Xin-Yu Long
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Feng-Qing Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Olajide E Olaleye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Nan-Nan Tian
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ya-Xuan Zhu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jia-Jia Dong
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei-Wei Jia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Chuan Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Zamek-Gliszczynski MJ, Sangha V, Shen H, Feng B, Wittwer MB, Varma MVS, Liang X, Sugiyama Y, Zhang L, Bendayan R. Transporters in drug development: International transporter consortium update on emerging transporters of clinical importance. Clin Pharmacol Ther 2022; 112:485-500. [PMID: 35561119 DOI: 10.1002/cpt.2644] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/08/2022] [Indexed: 11/07/2022]
Abstract
During its 4th transporter workshop in 2021, the International Transporter Consortium (ITC) provided updates on emerging clinically relevant transporters for drug development. Previously highlighted and new transporters were considered based on up-to-date clinical evidence of their importance in drug-drug interactions and potential for altered drug efficacy and safety, including drug-nutrient interactions leading to nutrient deficiencies. For the first time, folate transport pathways (PCFT, RFC, and FRα) were examined in-depth as a potential mechanism of drug-induced folate deficiency and related toxicities (e.g., neural tube defects, megaloblastic anemia). However, routine toxicology studies conducted in support of drug development appear sufficient to flag such folate deficiency toxicities, while prospective prediction from in vitro folate metabolism and transport inhibition is not well enough established to inform drug development. Previous suggestion of retrospective study of intestinal OATP2B1 inhibition to explain unexpected decreases in drug exposure were updated. Furthermore, when the absorption of a new molecular entity is more rapid and extensive than can be explained by passive permeability, evaluation of OATP2B1 transport may be considered. Emerging research on hepatic and renal OAT2 is summarized, but current understanding of the importance of OAT2 was deemed insufficient to justify specific consideration for drug development. Hepatic, renal, and intestinal MRPs (MRP2, MRP3, MRP4) were revisited. MRPs may be considered when they are suspected to be the major determinant of drug disposition (e.g., direct glucuronide conjugates); MRP2 inhibition as a mechanistic explanation for drug-induced hyperbilirubinemia remains justified. There were no major changes in recommendations from previous ITC whitepapers.
Collapse
Affiliation(s)
| | - Vishal Sangha
- Department of Pharmaceutical Sciences, University of Toronto, Leslie Dan Faculty of Pharmacy, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - Hong Shen
- Drug Metabolism and PK, Bristol Myers Squibb Company, Route 206 & Province Line Road, Princeton, NJ, 08543, USA
| | - Bo Feng
- Drug Metabolism and PK, Vertex Pharmaceuticals, Inc, 50 Northern Avenue, Boston, MA, 02210, USA
| | - Matthias B Wittwer
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, CH-4070, Basel, Switzerland
| | - Manthena V S Varma
- PK, Dynamics and Metabolism, Medicine Design, Pfizer Inc, Worldwide R&D, Groton, CT, 06340, USA
| | - Xiaomin Liang
- Drug Metabolism, Gilead Sciences, Inc, 333 Lakeside Drive, Foster City, CA, 94404, USA
| | - Yuichi Sugiyama
- Laboratory of Quantitative System PK/Pharmacodynamics, School of Pharmacy, Josai International University, Kioicho Campus, Tokyo, 102-0093, Japan
| | - Lei Zhang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, University of Toronto, Leslie Dan Faculty of Pharmacy, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | | |
Collapse
|
15
|
The Interplay between Uremic Toxins and Albumin, Membrane Transporters and Drug Interaction. Toxins (Basel) 2022; 14:toxins14030177. [PMID: 35324674 PMCID: PMC8949274 DOI: 10.3390/toxins14030177] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 01/10/2023] Open
Abstract
Uremic toxins are a heterogeneous group of molecules that accumulate in the body due to the progression of chronic kidney disease (CKD). These toxins are associated with kidney dysfunction and the development of comorbidities in patients with CKD, being only partially eliminated by dialysis therapies. Importantly, drugs used in clinical treatments may affect the levels of uremic toxins, their tissue disposition, and even their elimination through the interaction of both with proteins such as albumin and cell membrane transporters. In this context, protein-bound uremic toxins (PBUTs) are highlighted for their high affinity for albumin, the most abundant serum protein with multiple binding sites and an ability to interact with drugs. Membrane transporters mediate the cellular influx and efflux of various uremic toxins, which may also compete with drugs as substrates, and both may alter transporter activity or expression. Therefore, this review explores the interaction mechanisms between uremic toxins and albumin, as well as membrane transporters, considering their potential relationship with drugs used in clinical practice.
Collapse
|
16
|
Järvinen E, Deng F, Kiander W, Sinokki A, Kidron H, Sjöstedt N. The Role of Uptake and Efflux Transporters in the Disposition of Glucuronide and Sulfate Conjugates. Front Pharmacol 2022; 12:802539. [PMID: 35095509 PMCID: PMC8793843 DOI: 10.3389/fphar.2021.802539] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Glucuronidation and sulfation are the most typical phase II metabolic reactions of drugs. The resulting glucuronide and sulfate conjugates are generally considered inactive and safe. They may, however, be the most prominent drug-related material in the circulation and excreta of humans. The glucuronide and sulfate metabolites of drugs typically have limited cell membrane permeability and subsequently, their distribution and excretion from the human body requires transport proteins. Uptake transporters, such as organic anion transporters (OATs and OATPs), mediate the uptake of conjugates into the liver and kidney, while efflux transporters, such as multidrug resistance proteins (MRPs) and breast cancer resistance protein (BCRP), mediate expulsion of conjugates into bile, urine and the intestinal lumen. Understanding the active transport of conjugated drug metabolites is important for predicting the fate of a drug in the body and its safety and efficacy. The aim of this review is to compile the understanding of transporter-mediated disposition of phase II conjugates. We review the literature on hepatic, intestinal and renal uptake transporters participating in the transport of glucuronide and sulfate metabolites of drugs, other xenobiotics and endobiotics. In addition, we provide an update on the involvement of efflux transporters in the disposition of glucuronide and sulfate metabolites. Finally, we discuss the interplay between uptake and efflux transport in the intestine, liver and kidneys as well as the role of transporters in glucuronide and sulfate conjugate toxicity, drug interactions, pharmacogenetics and species differences.
Collapse
Affiliation(s)
- Erkka Järvinen
- Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Feng Deng
- Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Wilma Kiander
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Alli Sinokki
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Heidi Kidron
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Noora Sjöstedt
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
17
|
Yee SW, Giacomini KM. Emerging Roles of the Human Solute Carrier 22 Family. Drug Metab Dispos 2021; 50:DMD-MR-2021-000702. [PMID: 34921098 PMCID: PMC9488978 DOI: 10.1124/dmd.121.000702] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/22/2021] [Accepted: 12/08/2021] [Indexed: 11/22/2022] Open
Abstract
The human Solute Carrier 22 family (SLC22), also termed the organic ion transporter family, consists of 28 distinct multi-membrane spanning proteins, which phylogenetically cluster together according to their charge specificity for organic cations (OCTs), organic anions (OATs) and organic zwitterion/cations (OCTNs). Some SLC22 family members are well characterized in terms of their substrates, transport mechanisms and expression patterns, as well as their roles in human physiology and pharmacology, whereas others remain orphans with no known ligands. Pharmacologically, SLC22 family members play major roles as determinants of the absorption and disposition of many prescription drugs, and several including the renal transporters, OCT2, OAT1 and OAT3 are targets for many clinically important drug-drug interactions. In addition, mutations in some of these transporters (SLC22A5 (OCTN2) and SLC22A12 (URAT1) lead to rare monogenic disorders. Genetic polymorphisms in SLC22 transporters have been associated with common human disease, drug response and various phenotypic traits. Three members in this family were deorphaned in very recently: SLC22A14, SLC22A15 and SLC22A24, and found to transport specific compounds such as riboflavin (SLC22A14), anti-oxidant zwitterions (SLC22A15) and steroid conjugates (SLC22A24). Their physiologic and pharmacological roles need further investigation. This review aims to summarize the substrates, expression patterns and transporter mechanisms of individual SLC22 family members and their roles in human disease and drug disposition and response. Gaps in our understanding of SLC22 family members are described. Significance Statement In recent years, three members of the SLC22 family of transporters have been deorphaned and found to play important roles in the transport of diverse solutes. New research has furthered our understanding of the mechanisms, pharmacological roles, and clinical impact of SLC22 transporters. This minireview provides overview of SLC22 family members of their physiologic and pharmacologic roles, the impact of genetic variants in the SLC22 family on disease and drug response, and summary of recent studies deorphaning SLC22 family members.
Collapse
Affiliation(s)
- Sook Wah Yee
- Bioengineering and Therapeutic Sciences, Univerity of California, San Francisco, United States
| | - Kathleen M Giacomini
- Bioengineering and Therapeutic Sciences, Univerity of California, San Francisco, United States
| |
Collapse
|
18
|
Systematic identification and characterization of cynomolgus macaque solute carrier transporters. Drug Metab Pharmacokinet 2021; 43:100437. [DOI: 10.1016/j.dmpk.2021.100437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 11/21/2022]
|
19
|
Ichimura Y, Kudoh N, Murabe T, Akao T, Watanuki S, Suzuki T, Saito T, Oda M, Saitoh H. Inhibitory effects of indoxyl sulfate and creatinine on the renal transport of meropenem and biapenem in rats. Drug Metab Pharmacokinet 2021; 40:100406. [PMID: 34352708 DOI: 10.1016/j.dmpk.2021.100406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/07/2021] [Accepted: 05/15/2021] [Indexed: 10/21/2022]
Abstract
Carbapenem antibiotics are excreted preferentially in the urine after intravenous administration, with organic anion transporters (OATs) known to be involved in the renal tubular secretion of carbapenem antibiotics. Various uremic toxins (UTs) accumulate in the blood of patients with end-stage renal failure, and some UTs such as indoxyl sulfate (IS) and creatinine (Cr) are excreted in the urine via OATs. However, information about the possible interactions between these UTs and carbapenems in the renal secretion remains limited. In this study, we investigated the effects of IS and Cr on the renal transport of anionic meropenem and zwitterionic biapenem by using rat renal cortical slices. The uptake of meropenem and biapenem in the renal cortical slices was significantly decreased in the presence of 0.1 mM IS or 1 mM Cr. When biapenem and Cr were co-administered to rats intravenously, biapenem clearance from the plasma was clearly retarded, reflecting the current in vitro results. However, IS and Cr exerted no inhibitory effect on the uptake of metformin, a substrate of renal organic cation transporter (OCT) 2, in the renal cortical slices. Thus, our findings indicate that IS and Cr interfere with the renal secretion of carbapenem antibiotics by preferentially inhibiting OATs.
Collapse
Affiliation(s)
- Yuichi Ichimura
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Natsumi Kudoh
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Takashi Murabe
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Takumi Akao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Sho Watanuki
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Takanao Suzuki
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Toshihide Saito
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Masako Oda
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Hiroshi Saitoh
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan.
| |
Collapse
|
20
|
Miyake T, Kimoto E, Luo L, Mathialagan S, Horlbogen LM, Ramanathan R, Wood LS, Johnson JG, Le VH, Vourvahis M, Rodrigues AD, Muto C, Furihata K, Sugiyama Y, Kusuhara H. Identification of Appropriate Endogenous Biomarker for Risk Assessment of Multidrug and Toxin Extrusion Protein-Mediated Drug-Drug Interactions in Healthy Volunteers. Clin Pharmacol Ther 2020; 109:507-516. [PMID: 32866300 PMCID: PMC7891601 DOI: 10.1002/cpt.2022] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/26/2020] [Indexed: 12/27/2022]
Abstract
Endogenous biomarkers are emerging to advance clinical drug‐drug interaction (DDI) risk assessment in drug development. Twelve healthy subjects received a multidrug and toxin exclusion protein (MATE) inhibitor (pyrimethamine, 10, 25, and 75 mg) in a crossover fashion to identify an appropriate endogenous biomarker to assess MATE1/2‐K‐mediated DDI in the kidneys. Metformin (500 mg) was also given as reference probe drug for MATE1/2‐K. In addition to the previously reported endogenous biomarker candidates (creatinine and N1‐methylnicotinamide (1‐NMN)), N1‐methyladenosine (m1A) was included as novel biomarkers. 1‐NMN and m1A presented as superior MATE1/2‐K biomarkers since changes in their renal clearance (CLr) along with pyrimethamine dose were well‐correlated with metformin CLr changes. The CLr of creatinine was reduced by pyrimethamine, however, its changes poorly correlated with metformin CLr changes. Nonlinear regression analysis (CLr vs. mean total concentration of pyrimethamine in plasma) yielded an estimate of the inhibition constant (Ki) of pyrimethamine and the fraction of the clearance pathway sensitive to pyrimethamine. The in vivoKi value thus obtained was further converted to unbound Ki using plasma unbound fraction of pyrimethamine, which was comparable to the in vitroKi for MATE1 (1‐NMN) and MATE2‐K (1‐NMN and m1A). It is concluded that 1‐NMN and m1A CLr can be leveraged as quantitative MATE1/2‐K biomarkers for DDI risk assessment in healthy volunteers.
Collapse
Affiliation(s)
- Takeshi Miyake
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Emi Kimoto
- ADME Sciences, Medicine Design, Pfizer Inc., Groton, Connecticut, USA
| | - Lina Luo
- ADME Sciences, Medicine Design, Pfizer Inc., Groton, Connecticut, USA
| | | | | | - Ragu Ramanathan
- ADME Sciences, Medicine Design, Pfizer Inc., Groton, Connecticut, USA
| | - Linda S Wood
- Clinical Pharmacogenomics Laboratory, Early Clinical Development, Pfizer Inc, Groton, Connecticut, USA
| | - Jillian G Johnson
- Clinical Pharmacogenomics Laboratory, Early Clinical Development, Pfizer Inc, Groton, Connecticut, USA
| | - Vu H Le
- Biostatics, Pfizer Inc., Collegeville, Pennsylvania, USA
| | | | - A David Rodrigues
- ADME Sciences, Medicine Design, Pfizer Inc., Groton, Connecticut, USA
| | - Chieko Muto
- Clinical Pharmacology, Pfizer R&D Japan, Tokyo, Japan
| | | | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, RIKEN, Yokohama, Kanagawa, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
21
|
Mochizuki T, Mizuno T, Maeda K, Kusuhara H. Current progress in identifying endogenous biomarker candidates for drug transporter phenotyping and their potential application to drug development. Drug Metab Pharmacokinet 2020; 37:100358. [PMID: 33461054 DOI: 10.1016/j.dmpk.2020.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/09/2020] [Accepted: 09/17/2020] [Indexed: 01/23/2023]
Abstract
Drug transporters play important roles in the elimination of various compounds from the blood. Genetic variation and drug-drug interactions underlie the pharmacokinetic differences for the substrates of drug transporters. Some endogenous substrates of drug transporters have emerged as biomarkers to assess differences in drug transporter activity-not only in animals, but also in humans. Metabolomic analysis is a promising approach for identifying such endogenous substrates through their metabolites. The appropriateness of metabolites is supported by studies in vitro and in vivo, both in animals and through pharmacogenomic or drug-drug interaction studies in humans. This review summarizes current progress in identifying such endogenous biomarkers and applying them to drug transporter phenotyping.
Collapse
Affiliation(s)
- Tatsuki Mochizuki
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Japan
| | - Tadahaya Mizuno
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Japan.
| | - Kazuya Maeda
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Japan.
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Japan.
| |
Collapse
|
22
|
Lack of Drug-Drug Interaction Between Cimetidine, a Renal Transporter Inhibitor, and Imeglimin, a Novel Oral Antidiabetic Drug, in Healthy Volunteers. Eur J Drug Metab Pharmacokinet 2020; 45:725-733. [PMID: 32860624 DOI: 10.1007/s13318-020-00642-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND AND OBJECTIVE: Imeglimin is a novel oral antidiabetic drug to treat type 2 diabetes, targeting the mitochondrial bioenergetics. In vitro, imeglimin was shown to be a substrate of human multidrug and toxic extrusion transporters MATE1 and MATE2-K and organic cation transporters OCT1 and OCT2. The objective of the study was to assess the potential drug-drug interaction between imeglimin and cimetidine, a reference inhibitor of these transporters. METHODS A phase 1 study was carried out in 16 subjects who received a single dose of 1500 mg imeglimin alone on day 1 followed by a 6-day treatment (day 5 to day 10) with cimetidine 400 mg twice daily. On day 8, a single dose of imeglimin was co-administered with cimetidine. Blood and urine samples were collected up to 72 h after each imeglimin administration. Pharmacokinetic parameters were determined using non-compartmental methods. RESULTS Imeglimin maximum plasma concentration (Cmax) and area under the plasma concentration-time curve (AUC) were 1.3-fold [90% CI (1.12-1.62) and (1.10-1.46) for Cmax and AUC0-last, respectively] higher when imeglimin was co-administered with cimetidine but this increase was not considered clinically relevant. This increase could be mainly explained by a reduction in renal elimination, mediated through the cimetidine inhibition of renal MATE1 transporter. Imeglimin taken alone or with cimetidine was safe and well tolerated in all subjects. CONCLUSIONS No clinically significant drug-drug interaction exists between imeglimin and cimetidine, a reference inhibitor of MATE1, MATE2-K, OCT1 and OCT2 transporters. CLINICAL TRIAL REGISTRATION EudraCT 2018-001103-36.
Collapse
|
23
|
Wu Y, Chen W, Zhang Y, Liu A, Yang C, Wang H, Zhu T, Fan Y, Yang B. Potent Therapy and Transcriptional Profile of Combined Erythropoietin-Derived Peptide Cyclic Helix B Surface Peptide and Caspase-3 siRNA against Kidney Ischemia/Reperfusion Injury in Mice. J Pharmacol Exp Ther 2020; 375:92-103. [PMID: 32759272 DOI: 10.1124/jpet.120.000092] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022] Open
Abstract
Cause-specific treatment and timely diagnosis are still not available for acute kidney injury (AKI) apart from supportive therapy and serum creatinine measurement. A novel erythropoietin-derived cyclic helix B surface peptide (CHBP) protects kidneys against AKI with different causes, but the underlying mechanism is not fully defined. Herein, we investigated the transcriptional profile of renoprotection induced by CHBP and its potential synergistic effects with siRNA targeting caspase-3, an executing enzyme of apoptosis and inflammation (CASP3siRNA), on ischemia/reperfusion (IR)-induced AKI. Utilizing a mouse model with 30-minute renal bilateral ischemia and 48-hour reperfusion, the renoprotection of CHBP or CASP3siRNA was demonstrated in renal function and structure, active caspase-3 and HMGB1 expression. Combined treatment of CHBP and CASP3siRNA further preserved kidney structure and reduced active caspase-3 and HMGB1. Furthermore, differentially expressed genes (DEGs) were identified with fold change >1.414 and P < 0.05. In IR kidneys, 281 DEGs induced by CHBP were mainly involved in promoting cell division and improving cellular function and metabolism (upregulated signal transducer and activator of transcription 5B and solute carrier family 22 member 7). The additional administration of CASP3siRNA caused 504 and 418 DEGs in IR + CHBP kidneys with or without negative control small-interfering RNA, with 37 genes in common. These DEGs were associated with modulated apoptosis and inflammation (upregulated BCL6, SLPI, and SERPINA3M) as well as immunity, injury, and microvascular homeostasis (upregulated complement factor H and GREM1 and downregulated ANGPTL2). This proof-of-effect study indicated the potent renoprotection of CASP3siRNA upon CHBP at the early stage of IR-induced AKI. Underlying genes, BCL6, SLPI, SERPINA3M, GREM1, and ANGPTL2, might be potential new biomarkers for clinical applications. SIGNIFICANCE STATEMENT: It is imperative to explore new strategies of cause-specific treatment and timely diagnosis for acute kidney injury (AKI). CHBP and CASP3siRNA synergistically protected kidney structure after 48-hour ischemia/reperfusion-induced AKI with reduced injury mediators CASP3 and high mobility group box 1. CHBP upregulated cell division-, function-, and metabolism-related genes, whereas CASP3siRNA further regulated immune response- and tissue homeostasis-associated genes. Combined CHBP and CASP3siRNA might be a potent and specific treatment for AKI, and certain dysregulated genes secretory leukocyte peptidase inhibitor and SERPINA3M could facilitate timely diagnosis.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Renal Group, Basic Medical Research Centre, Nantong University, Nantong, China (Y.W., Y.Z., A.L.); Leicester-Nantong Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China (W.C., H.W., Y.F., B.Y.); Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China (C.Y., T.Z.); Shanghai Key Laboratory of Organ Transplantation, Shanghai, China (C.Y., T.Z.); and Renal Group, Department of Cardiovascular Sciences, University of Leicester, University Hospitals of Leicester, Leicester, United Kingdom (Y.W., B.Y.)
| | - Weiwei Chen
- Renal Group, Basic Medical Research Centre, Nantong University, Nantong, China (Y.W., Y.Z., A.L.); Leicester-Nantong Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China (W.C., H.W., Y.F., B.Y.); Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China (C.Y., T.Z.); Shanghai Key Laboratory of Organ Transplantation, Shanghai, China (C.Y., T.Z.); and Renal Group, Department of Cardiovascular Sciences, University of Leicester, University Hospitals of Leicester, Leicester, United Kingdom (Y.W., B.Y.)
| | - Yufang Zhang
- Renal Group, Basic Medical Research Centre, Nantong University, Nantong, China (Y.W., Y.Z., A.L.); Leicester-Nantong Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China (W.C., H.W., Y.F., B.Y.); Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China (C.Y., T.Z.); Shanghai Key Laboratory of Organ Transplantation, Shanghai, China (C.Y., T.Z.); and Renal Group, Department of Cardiovascular Sciences, University of Leicester, University Hospitals of Leicester, Leicester, United Kingdom (Y.W., B.Y.)
| | - Aifen Liu
- Renal Group, Basic Medical Research Centre, Nantong University, Nantong, China (Y.W., Y.Z., A.L.); Leicester-Nantong Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China (W.C., H.W., Y.F., B.Y.); Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China (C.Y., T.Z.); Shanghai Key Laboratory of Organ Transplantation, Shanghai, China (C.Y., T.Z.); and Renal Group, Department of Cardiovascular Sciences, University of Leicester, University Hospitals of Leicester, Leicester, United Kingdom (Y.W., B.Y.)
| | - Cheng Yang
- Renal Group, Basic Medical Research Centre, Nantong University, Nantong, China (Y.W., Y.Z., A.L.); Leicester-Nantong Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China (W.C., H.W., Y.F., B.Y.); Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China (C.Y., T.Z.); Shanghai Key Laboratory of Organ Transplantation, Shanghai, China (C.Y., T.Z.); and Renal Group, Department of Cardiovascular Sciences, University of Leicester, University Hospitals of Leicester, Leicester, United Kingdom (Y.W., B.Y.)
| | - Hui Wang
- Renal Group, Basic Medical Research Centre, Nantong University, Nantong, China (Y.W., Y.Z., A.L.); Leicester-Nantong Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China (W.C., H.W., Y.F., B.Y.); Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China (C.Y., T.Z.); Shanghai Key Laboratory of Organ Transplantation, Shanghai, China (C.Y., T.Z.); and Renal Group, Department of Cardiovascular Sciences, University of Leicester, University Hospitals of Leicester, Leicester, United Kingdom (Y.W., B.Y.)
| | - Tongyu Zhu
- Renal Group, Basic Medical Research Centre, Nantong University, Nantong, China (Y.W., Y.Z., A.L.); Leicester-Nantong Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China (W.C., H.W., Y.F., B.Y.); Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China (C.Y., T.Z.); Shanghai Key Laboratory of Organ Transplantation, Shanghai, China (C.Y., T.Z.); and Renal Group, Department of Cardiovascular Sciences, University of Leicester, University Hospitals of Leicester, Leicester, United Kingdom (Y.W., B.Y.)
| | - Yaping Fan
- Renal Group, Basic Medical Research Centre, Nantong University, Nantong, China (Y.W., Y.Z., A.L.); Leicester-Nantong Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China (W.C., H.W., Y.F., B.Y.); Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China (C.Y., T.Z.); Shanghai Key Laboratory of Organ Transplantation, Shanghai, China (C.Y., T.Z.); and Renal Group, Department of Cardiovascular Sciences, University of Leicester, University Hospitals of Leicester, Leicester, United Kingdom (Y.W., B.Y.)
| | - Bin Yang
- Renal Group, Basic Medical Research Centre, Nantong University, Nantong, China (Y.W., Y.Z., A.L.); Leicester-Nantong Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China (W.C., H.W., Y.F., B.Y.); Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China (C.Y., T.Z.); Shanghai Key Laboratory of Organ Transplantation, Shanghai, China (C.Y., T.Z.); and Renal Group, Department of Cardiovascular Sciences, University of Leicester, University Hospitals of Leicester, Leicester, United Kingdom (Y.W., B.Y.)
| |
Collapse
|
24
|
Abstract
Influx and efflux kidney tubular transporters are major determinants of the disposition of xenobiotics, including pharmaceutical drugs. On the basolateral membrane of proximal tubular cells, there are influx transporters, such as organic cation transporters. On the apical membrane of proximal tubular cells, there are efflux transporters, such as multidrug and toxin extrusion proteins. The secretion process across the apical membrane into the lumen occurs via efflux transporters which plays an important role in serum creatinine (sCr) elimination in urine. The interference of a pharmaceutical drug with transporters can lead to changes in sCr with no alterations in biomarkers or light microscopic evidence indicative of renal injury. Identification of transporters that influence drug disposition, toxicity, and overall nonclinical safety assessment is important in drug discovery and development programs. This mini review describes some key aspects of kidney tubular transporters and drug-induced renal toxicities in safety risk assessment and drug development.
Collapse
Affiliation(s)
- Zaher A Radi
- Pfizer Worldwide Research, Development and Medical, Drug Safety R&D, Cambridge, MA, USA
| |
Collapse
|
25
|
Beaudoin JJ, Brouwer KLR, Malinen MM. Novel insights into the organic solute transporter alpha/beta, OSTα/β: From the bench to the bedside. Pharmacol Ther 2020; 211:107542. [PMID: 32247663 PMCID: PMC7480074 DOI: 10.1016/j.pharmthera.2020.107542] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/25/2020] [Indexed: 12/14/2022]
Abstract
Organic solute transporter alpha/beta (OSTα/β) is a heteromeric solute carrier protein that transports bile acids, steroid metabolites and drugs into and out of cells. OSTα/β protein is expressed in various tissues, but its expression is highest in the gastrointestinal tract where it facilitates the recirculation of bile acids from the gut to the liver. Previous studies established that OSTα/β is upregulated in liver tissue of patients with extrahepatic cholestasis, obstructive cholestasis, and primary biliary cholangitis (PBC), conditions that are characterized by elevated bile acid concentrations in the liver and/or systemic circulation. The discovery that OSTα/β is highly upregulated in the liver of patients with nonalcoholic steatohepatitis (NASH) further highlights the clinical relevance of this transporter because the incidence of NASH is increasing at an alarming rate with the obesity epidemic. Since OSTα/β is closely linked to the homeostasis of bile acids, and tightly regulated by the nuclear receptor farnesoid X receptor, OSTα/β is a potential drug target for treatment of cholestatic liver disease, and other bile acid-related metabolic disorders such as obesity and diabetes. Obeticholic acid, a semi-synthetic bile acid used to treat PBC, under review for the treatment of NASH, and in development for the treatment of other metabolic disorders, induces OSTα/β. Some drugs associated with hepatotoxicity inhibit OSTα/β, suggesting a possible role for OSTα/β in drug-induced liver injury (DILI). Furthermore, clinical cases of homozygous genetic defects in both OSTα/β subunits resulting in diarrhea and features of cholestasis have been reported. This review article has been compiled to comprehensively summarize the recent data emerging on OSTα/β, recapitulating the available literature on the structure-function and expression-function relationships of OSTα/β, the regulation of this important transporter, the interaction of drugs and other compounds with OSTα/β, and the comparison of OSTα/β with other solute carrier transporters as well as adenosine triphosphate-binding cassette transporters. Findings from basic to more clinically focused research efforts are described and discussed.
Collapse
Affiliation(s)
- James J Beaudoin
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Melina M Malinen
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
26
|
Scotcher D, Arya V, Yang X, Zhao P, Zhang L, Huang S, Rostami‐Hodjegan A, Galetin A. A Novel Physiologically Based Model of Creatinine Renal Disposition to Integrate Current Knowledge of Systems Parameters and Clinical Observations. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2020; 9:310-321. [PMID: 32441889 PMCID: PMC7306622 DOI: 10.1002/psp4.12509] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/16/2020] [Indexed: 01/11/2023]
Abstract
Creatinine is the most common clinical biomarker of renal function. As a substrate for renal transporters, its secretion is susceptible to inhibition by drugs, resulting in transient increase in serum creatinine and false impression of damage to kidney. Novel physiologically based models for creatinine were developed here and (dis)qualified in a stepwise manner until consistency with clinical data. Data from a matrix of studies were integrated, including systems data (common to all models), proteomics-informed in vitro-in vivo extrapolation of all relevant transporter clearances, exogenous administration of creatinine (to estimate endogenous synthesis rate), and inhibition of different renal transporters (11 perpetrator drugs considered for qualification during creatinine model development and verification on independent data sets). The proteomics-informed bottom-up approach resulted in the underprediction of creatinine renal secretion. Subsequently, creatinine-trimethoprim clinical data were used to inform key model parameters in a reverse translation manner, highlighting best practices and challenges for middle-out optimization of mechanistic models.
Collapse
Affiliation(s)
- Daniel Scotcher
- Centre for Applied Pharmacokinetic ResearchUniversity of ManchesterManchesterUK
| | - Vikram Arya
- Office of Clinical PharmacologyOffice of Translational SciencesCentre for Drug Evaluation and ResearchUS Food and Drug AdministrationSilver SpringMarylandUSA
| | - Xinning Yang
- Office of Clinical PharmacologyOffice of Translational SciencesCentre for Drug Evaluation and ResearchUS Food and Drug AdministrationSilver SpringMarylandUSA
| | - Ping Zhao
- Office of Clinical PharmacologyOffice of Translational SciencesCentre for Drug Evaluation and ResearchUS Food and Drug AdministrationSilver SpringMarylandUSA
- Present address:
Bill & Melinda Gates FoundationSeattleWashingtonUSA
| | - Lei Zhang
- Office of Research and StandardsOffice of Generic DrugsCentre for Drug Evaluation and ResearchUS Food and Drug AdministrationSilver SpringMarylandUSA
| | - Shiew‐Mei Huang
- Office of Clinical PharmacologyOffice of Translational SciencesCentre for Drug Evaluation and ResearchUS Food and Drug AdministrationSilver SpringMarylandUSA
| | - Amin Rostami‐Hodjegan
- Centre for Applied Pharmacokinetic ResearchUniversity of ManchesterManchesterUK
- CertaraSheffieldUK
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic ResearchUniversity of ManchesterManchesterUK
| |
Collapse
|
27
|
Systems Biology Analysis Reveals Eight SLC22 Transporter Subgroups, Including OATs, OCTs, and OCTNs. Int J Mol Sci 2020; 21:ijms21051791. [PMID: 32150922 PMCID: PMC7084758 DOI: 10.3390/ijms21051791] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023] Open
Abstract
The SLC22 family of OATs, OCTs, and OCTNs is emerging as a central hub of endogenous physiology. Despite often being referred to as “drug” transporters, they facilitate the movement of metabolites and key signaling molecules. An in-depth reanalysis supports a reassignment of these proteins into eight functional subgroups, with four new subgroups arising from the previously defined OAT subclade: OATS1 (SLC22A6, SLC22A8, and SLC22A20), OATS2 (SLC22A7), OATS3 (SLC22A11, SLC22A12, and Slc22a22), and OATS4 (SLC22A9, SLC22A10, SLC22A24, and SLC22A25). We propose merging the OCTN (SLC22A4, SLC22A5, and Slc22a21) and OCT-related (SLC22A15 and SLC22A16) subclades into the OCTN/OCTN-related subgroup. Using data from GWAS, in vivo models, and in vitro assays, we developed an SLC22 transporter-metabolite network and similar subgroup networks, which suggest how multiple SLC22 transporters with mono-, oligo-, and multi-specific substrate specificity interact to regulate metabolites. Subgroup associations include: OATS1 with signaling molecules, uremic toxins, and odorants, OATS2 with cyclic nucleotides, OATS3 with uric acid, OATS4 with conjugated sex hormones, particularly etiocholanolone glucuronide, OCT with neurotransmitters, and OCTN/OCTN-related with ergothioneine and carnitine derivatives. Our data suggest that the SLC22 family can work among itself, as well as with other ADME genes, to optimize levels of numerous metabolites and signaling molecules, involved in organ crosstalk and inter-organismal communication, as proposed by the remote sensing and signaling theory.
Collapse
|
28
|
Phillips JA, Grandhi TSP, Davis M, Gautier JC, Hariparsad N, Keller D, Sura R, Van Vleet TR. A pharmaceutical industry perspective on microphysiological kidney systems for evaluation of safety for new therapies. LAB ON A CHIP 2020; 20:468-476. [PMID: 31989145 DOI: 10.1039/c9lc00925f] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The human kidney contains approximately one million nephrons. As the functional unit of the kidney, the nephron affords an opportunity to approximate the kidney at a microphysiological scale. Recent emergence of physiologically accurate human tissue models has radically advanced the possibilities of mimicking organ biology and multi-organ combinations in vitro. Anatomically, the nephron is one of the most complex, sequentially integrated microfluidic units in the body making the miniaturized microfluidic systems excellent candidates for capturing the kidney biology in vitro. While these models are promising, there are a number of considerations for practical implementation into a drug development paradigm. Opportunities for pharmaceutical industry applications of new MPS models often start with drug safety testing. As such, the intent of this article is to focus on safety and ADME applications. This article reviews biological functions of the kidney and options for characterizing known roles in nephrotoxicity. The concept of "context-of-use" is introduced as a framework for describing and verifying the specific features of an MPS platform for use in drug development. Overall, we present a perspective on key attributes of microphysiological kidney models, which the pharmaceutical industry could leverage to improve confident safety and ADME evaluations of experimental therapies.
Collapse
Affiliation(s)
| | - Taraka Sai Pavan Grandhi
- The Genomics Institute of the Novartis Research Foundation, 10675 John J Hopkins Drive, San Diego, CA 92121, USA
| | - Myrtle Davis
- Bristol-Myers Squibb Company, Province Line Road, Princeton, New Jersey 08648, USA
| | | | | | - Douglas Keller
- Sanofi US, 55 Corporate Drive, Bridgewater, NJ 08807, USA
| | - Radhakrishna Sura
- Preclinical Safety, AbbVie, 1 Waukegan Rd, N Chicago, IL 60064, USA.
| | - Terry R Van Vleet
- Preclinical Safety, AbbVie, 1 Waukegan Rd, N Chicago, IL 60064, USA.
| |
Collapse
|
29
|
Risso MA, Sallustio S, Sueiro V, Bertoni V, Gonzalez-Torres H, Musso CG. The Importance of Tubular Function in Chronic Kidney Disease. Int J Nephrol Renovasc Dis 2019; 12:257-262. [PMID: 31849512 PMCID: PMC6913318 DOI: 10.2147/ijnrd.s216673] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/02/2019] [Indexed: 12/19/2022] Open
Abstract
Glomerular filtration rate (GFR) and proteinuria-albuminuria are the renal functional parameters currently used to evaluate chronic kidney disease (CKD) severity. However, tubular secretion is another important renal functional parameter to be taken into account since proximal tubule (PT) secretion, in particular, is a crucial renal mechanism for endogenous organic cations, anions and drug elimination. The residual diuresis is a relevant survival predictor in patients on dialysis, since their urine is produced by the glomerular and tubular functions. It has been hypothesized that drugs which up-regulate some renal tubular transporters could contribute to uremic toxin excretion, and nephroprevention. However, if tubular transporters' down-regulation observed in CKD patients and experimental models is a PT adaptation to avoid intracellular accumulation and damage from uremic toxins, consequently the increase of toxin removal by inducing tubular transporters' up-regulation could be deleterious to the kidney. Therefore, a deeper understanding of this phenomenon is currently needed. In conclusion, tubular function has an important role for endogenous organic cations, anions and drug excretion in CKD patients, and a deeper understanding of its multiple mechanisms could provide new therapeutic alternatives in this population.
Collapse
Affiliation(s)
- Maria A Risso
- Human Physiology Department, Instituto Universitario del Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Sofía Sallustio
- Human Physiology Department, Instituto Universitario del Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Valentin Sueiro
- Human Physiology Department, Instituto Universitario del Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Victoria Bertoni
- Human Physiology Department, Instituto Universitario del Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Henry Gonzalez-Torres
- Facultad de Ciencias de la Salud, Universidad Simon Bolivar, Barranquilla, Colombia.,Ciencias Biomédicas, Universidad del Valle, Cali, Colombia
| | - Carlos G Musso
- Human Physiology Department, Instituto Universitario del Hospital Italiano de Buenos Aires, Buenos Aires, Argentina.,Facultad de Ciencias de la Salud, Universidad Simon Bolivar, Barranquilla, Colombia
| |
Collapse
|
30
|
Chang-Panesso M, Kadyrov FF, Lalli M, Wu H, Ikeda S, Kefaloyianni E, Abdelmageed MM, Herrlich A, Kobayashi A, Humphreys BD. FOXM1 drives proximal tubule proliferation during repair from acute ischemic kidney injury. J Clin Invest 2019; 129:5501-5517. [PMID: 31710314 PMCID: PMC6877314 DOI: 10.1172/jci125519] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 09/10/2019] [Indexed: 12/11/2022] Open
Abstract
The proximal tubule has a remarkable capacity for repair after acute injury, but the cellular lineage and molecular mechanisms underlying this repair response are incompletely understood. Here, we developed a Kim1-GFPCreERt2 knockin mouse line (Kim1-GCE) in order to perform genetic lineage tracing of dedifferentiated cells while measuring the cellular transcriptome of proximal tubule during repair. Acutely injured genetically labeled clones coexpressed KIM1, VIMENTIN, SOX9, and KI67, indicating a dedifferentiated and proliferative state. Clonal analysis revealed clonal expansion of Kim1+ cells, indicating that acutely injured, dedifferentiated proximal tubule cells, rather than fixed tubular progenitor cells, account for repair. Translational profiling during injury and repair revealed signatures of both successful and unsuccessful maladaptive repair. The transcription factor Foxm1 was induced early in injury, was required for epithelial proliferation in vitro, and was dependent on epidermal growth factor receptor (EGFR) stimulation. In conclusion, dedifferentiated proximal tubule cells effect proximal tubule repair, and we reveal an EGFR/FOXM1-dependent signaling pathway that drives proliferative repair after injury.
Collapse
Affiliation(s)
| | | | - Matthew Lalli
- Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Haojia Wu
- Division of Nephrology, Department of Medicine, and
| | - Shiyo Ikeda
- Division of Nephrology, Department of Medicine, and
| | | | - Mai M. Abdelmageed
- Division of Nephrology, Department of Medicine, and
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, British University in Egypt, Cairo, Egypt
| | | | - Akio Kobayashi
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Benjamin D. Humphreys
- Division of Nephrology, Department of Medicine, and
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
31
|
|
32
|
Kikuchi R, Chiou WJ, Kasai MA, de Morais SM, Bow DA. No Inhibition of MATE1/2K-Mediated Renal Creatinine Secretion Predicted With Ritonavir or Cobicistat. J Pharm Sci 2019; 108:3118-3123. [DOI: 10.1016/j.xphs.2019.04.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/08/2019] [Accepted: 04/23/2019] [Indexed: 12/19/2022]
|
33
|
Shen H, Yao M, Sinz M, Marathe P, Rodrigues AD, Zhu M. Renal Excretion of Dabigatran: The Potential Role of Multidrug and Toxin Extrusion (MATE) Proteins. Mol Pharm 2019; 16:4065-4076. [PMID: 31335150 DOI: 10.1021/acs.molpharmaceut.9b00472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Following oral administration, dabigatran etexilate (DABE) is rapidly hydrolyzed to its active form, dabigatran. DABE, but not dabigatran, presents as a P-glycoprotein (P-gp) substrate and has increasingly been used as a probe drug. Therefore, although dosed as DABE, a P-gp drug-drug interaction (DDI) is reported as a dabigatran plasma concentration ratio (perpetrator versus placebo). Because the majority of a DABE dose (80 to 85%) is recovered in urine as unchanged dabigatran (renal active secretion is ∼25% of total clearance), dabigatran was evaluated in vitro as a substrate of various human renal transporters. Active (pyrimethamine-sensitive) dabigatran uptake was observed with human embryonic kidney (HEK) 293 cells expressing multidrug and toxin extrusion protein 1 (MATE1) and 2K (MATE2K), with Michaelis-Menten constant (Km) values of 4.0 and 8.0 μM, respectively. By comparison, no uptake of 2 μM dabigatran (versus mock-transfected HEK293 cells) was evident with HEK293 cells transfected with organic cation transporters (OCT1 and OCT2) and organic anion transporters (OAT1, 2, 3, and 4). The efflux ratios of dabigatran across P-gp- and BCRP (breast cancer resistance protein)-MDCK (Madin-Darby canine kidney) cell monolayers were 1.5 and 2.0 (versus mock-MDCK cell monolayers), suggesting dabigatran is a relatively poor P-gp and BCRP substrate. Three of five drugs (verapamil, ketoconazole, and quinidine) known to interact clinically with dabigatran, as P-gp inhibitors, presented as MATE inhibitors in vitro (IC50 = 1.0 to 25.2 μM). Taken together, although no basolateral transporter was identified for dabigatran, the results suggest that apical MATE1 and MATE2K could play an important role in its renal clearance. MATE-mediated renal secretion of dabigatran needs to be considered when interpreting the results of P-gp DDI studies following DABE administration.
Collapse
Affiliation(s)
- Hong Shen
- Department of Metabolism and Pharmacokinetics , Bristol-Myers Squibb Research and Development , Princeton , New Jersey 08543 , United States
| | - Ming Yao
- Department of Metabolism and Pharmacokinetics , Bristol-Myers Squibb Research and Development , Princeton , New Jersey 08543 , United States
| | - Michael Sinz
- Department of Metabolism and Pharmacokinetics , Bristol-Myers Squibb Research and Development , Princeton , New Jersey 08543 , United States
| | - Punit Marathe
- Department of Metabolism and Pharmacokinetics , Bristol-Myers Squibb Research and Development , Princeton , New Jersey 08543 , United States
| | - A David Rodrigues
- Department of Metabolism and Pharmacokinetics , Bristol-Myers Squibb Research and Development , Princeton , New Jersey 08543 , United States
| | - Mingshe Zhu
- Department of Metabolism and Pharmacokinetics , Bristol-Myers Squibb Research and Development , Princeton , New Jersey 08543 , United States
| |
Collapse
|
34
|
Bilancio G, Cavallo P, Lombardi C, Guarino E, Cozza V, Giordano F, Palladino G, Cirillo M. Saliva for assessing creatinine, uric acid, and potassium in nephropathic patients. BMC Nephrol 2019; 20:242. [PMID: 31272423 PMCID: PMC6609386 DOI: 10.1186/s12882-019-1437-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 06/24/2019] [Indexed: 12/20/2022] Open
Abstract
Background Lab tests on saliva could be useful because of low invasivity. Previous reports indicated that creatinine, uric acid, and potassium are measurable in saliva. For these analytes the study investigated methodology of saliva tests and correlations between plasma and saliva levels. Methods The study enrolled 15 healthy volunteers for methodological analyses and 42 nephropathic patients for plasma-saliva correlations (35 non-dialysis and 7 dialysis). Saliva was collected by synthetic swap right after venipuncture for blood withdrawal. Blood and saliva, unless otherwise indicated, were collected early in the morning after overnight fast and lab tests were performed in fresh samples by automated biochemistry (standard). Methodological analyses included blind duplicates, different collection mouth sites, day-to-day variability, different collection times, and freezing-thawing effects. Analyses on plasma-saliva correlations included post-dialysis changes. Results For saliva lab tests of all analytes, blind duplicates, samples from different mouth sites or of different days were not significantly different but were significantly correlated (differences ≤14.4%; R ≥ 0.620, P ≤ 0.01). For all analytes, mid-morning saliva had lower levels than but correlated with standard saliva (differences ≥15.8%; R ≥ 0.728, P ≤ 0.01). Frozen-thawed saliva had lower levels than fresh saliva for uric acid only (− 17.2%, P < 0.001). Frozen-thawed saliva correlated with fresh saliva for all analytes (R ≥ 0.818, P ≤ 0.001). Saliva and plasma levels differed but correlated with plasma for creatinine (R = 0.874, P < 0.001), uric acid (R = 0.821, P < 0.001) and potassium (R = 0.767, P < 0.001). Post-dialysis changes in saliva paralleled post-dialysis changes in plasma. Conclusion Saliva levels of creatinine, uric acid, and potassium are measurable and correlated with their plasma levels. Early morning fasting fresh saliva samples are advisable because later collection times or freezing lower the saliva levels of these analytes.
Collapse
Affiliation(s)
- Giancarlo Bilancio
- Department "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy.,Nephrology Clinic, University Hospital, Salerno, SA, Italy
| | | | | | - Ermanno Guarino
- Department "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Vincenzo Cozza
- Department "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Francesco Giordano
- Department "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | | | - Massimo Cirillo
- Department Public Health, University of Naples "Federico II", Via Sergio Pansini, 5, 80131, Naples, Italy.
| |
Collapse
|
35
|
Nigam SK. The SLC22 Transporter Family: A Paradigm for the Impact of Drug Transporters on Metabolic Pathways, Signaling, and Disease. Annu Rev Pharmacol Toxicol 2019; 58:663-687. [PMID: 29309257 DOI: 10.1146/annurev-pharmtox-010617-052713] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The SLC22 transporter family consists of more than two dozen members, which are expressed in the kidney, the liver, and other tissues. Evolutionary analysis indicates that SLC22 transporters fall into at least six subfamilies: OAT (organic anion transporter), OAT-like, OAT-related, OCT (organic cation transporter), OCTN (organic cation/carnitine transporter), and OCT/OCTN-related. Some-including OAT1 [SLC22A6 or NKT (novel kidney transporter)] and OAT3 (SLC22A8), as well as OCT1 (SLC22A1) and OCT2 (SLC22A2)-are widely studied drug transporters. Nevertheless, analyses of knockout mice and other data indicate that SLC22 transporters regulate key metabolic pathways and levels of signaling molecules (e.g., gut microbiome products, bile acids, tricarboxylic acid cycle intermediates, dietary flavonoids and other nutrients, prostaglandins, vitamins, short-chain fatty acids, urate, and ergothioneine), as well as uremic toxins associated with chronic kidney disease. Certain SLC22 transporters-such as URAT1 (SLC22A12) and OCTN2 (SLC22A5)-are mutated in inherited metabolic diseases. A new systems biology view of transporters is emerging. As proposed in the remote sensing and signaling hypothesis, SLC22 transporters, together with other SLC and ABC transporters, have key roles in interorgan and interorganism small-molecule communication and, together with the neuroendocrine, growth factor-cytokine, and other homeostatic systems, regulate local and whole-body homeostasis.
Collapse
Affiliation(s)
- Sanjay K Nigam
- Departments of Pediatrics and Medicine, University of California, San Diego, La Jolla, California 92093, USA;
| |
Collapse
|
36
|
Zhang Y, Panfen E, Fancher M, Sinz M, Marathe P, Shen H. Dissecting the Contribution of OATP1B1 to Hepatic Uptake of Statins Using the OATP1B1 Selective Inhibitor Estropipate. Mol Pharm 2019; 16:2342-2353. [DOI: 10.1021/acs.molpharmaceut.8b01226] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yueping Zhang
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Company, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Erika Panfen
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Company, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Marcus Fancher
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Company, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Michael Sinz
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Company, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Punit Marathe
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Company, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Hong Shen
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Company, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| |
Collapse
|
37
|
Nishiyama K, Toshimoto K, Lee W, Ishiguro N, Bister B, Sugiyama Y. Physiologically-Based Pharmacokinetic Modeling Analysis for Quantitative Prediction of Renal Transporter-Mediated Interactions Between Metformin and Cimetidine. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2019; 8:396-406. [PMID: 30821133 PMCID: PMC6617824 DOI: 10.1002/psp4.12398] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/06/2019] [Indexed: 12/24/2022]
Abstract
Metformin is an important antidiabetic drug and often used as a probe for drug–drug interactions (DDIs) mediated by renal transporters. Despite evidence supporting the inhibition of multidrug and toxin extrusion proteins as the likely DDI mechanism, the previously reported physiologically‐based pharmacokinetic (PBPK) model required the substantial lowering of the inhibition constant values of cimetidine for multidrug and toxin extrusion proteins from those obtained in vitro to capture the clinical DDI data between metformin and cimetidine.1 We constructed new PBPK models in which the transporter‐mediated uptake of metformin is driven by a constant membrane potential. Our models successfully captured the clinical DDI data using in vitro inhibition constant values and supported the inhibition of multidrug and toxin extrusion proteins by cimetidine as the DDI mechanism upon sensitivity analysis and data fitting. Our refined PBPK models may facilitate prediction approaches for DDI involving metformin using in vitro inhibition constant values.
Collapse
Affiliation(s)
- Kotaro Nishiyama
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co., Ltd., Kobe, Hyogo, Japan
| | - Kota Toshimoto
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama, Kanagawa, Japan
| | - Wooin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Naoki Ishiguro
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co., Ltd., Kobe, Hyogo, Japan
| | - Bojan Bister
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co., Ltd., Kobe, Hyogo, Japan
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama, Kanagawa, Japan
| |
Collapse
|
38
|
Shen H, Scialis RJ, Lehman-McKeeman L. Xenobiotic Transporters in the Kidney: Function and Role in Toxicity. Semin Nephrol 2019; 39:159-175. [DOI: 10.1016/j.semnephrol.2018.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
39
|
Lawrence ML, Elhendawi M, Davies JA. Investigating Aspects of Renal Physiology and Pharmacology in Organ and Organoid Culture. Methods Mol Biol 2019; 1926:127-142. [PMID: 30742268 DOI: 10.1007/978-1-4939-9021-4_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Some aspects of renal physiology, in particular transport across tubular epithelia, are highly relevant to pharmacokinetics and to drug toxicity. The use of animals to model human renal physiology is limited, but human-derived renal organoids offer an alternative, relevant system in culture. Here, we explain how the activity of specific transport systems can be assessed in renal organoid and organ culture, using a system illustrated mainly for mouse but that can be extended to human organoids.
Collapse
Affiliation(s)
| | - Mona Elhendawi
- Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Faculty of Medicine, Clinical Pathology Department, Mansoura University, El-Mansoura, Egypt
| | - Jamie A Davies
- Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
40
|
Müller F, Sharma A, König J, Fromm MF. Biomarkers for In Vivo Assessment of Transporter Function. Pharmacol Rev 2018; 70:246-277. [PMID: 29487084 DOI: 10.1124/pr.116.013326] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Drug-drug interactions are a major concern not only during clinical practice, but also in drug development. Due to limitations of in vitro-in vivo predictions of transporter-mediated drug-drug interactions, multiple clinical Phase I drug-drug interaction studies may become necessary for a new molecular entity to assess potential drug interaction liabilities. This is a resource-intensive process and exposes study participants, who frequently are healthy volunteers without benefit from study treatment, to the potential risks of a new drug in development. Therefore, there is currently a major interest in new approaches for better prediction of transporter-mediated drug-drug interactions. In particular, researchers in the field attempt to identify endogenous compounds as biomarkers for transporter function, such as hexadecanedioate, tetradecanedioate, coproporphyrins I and III, or glycochenodeoxycholate sulfate for hepatic uptake via organic anion transporting polypeptide 1B or N1-methylnicotinamide for multidrug and toxin extrusion protein-mediated renal secretion. We summarize in this review the currently proposed biomarkers and potential limitations of the substances identified to date. Moreover, we suggest criteria based on current experiences, which may be used to assess the suitability of a biomarker for transporter function. Finally, further alternatives and supplemental approaches to classic drug-drug interaction studies are discussed.
Collapse
Affiliation(s)
- Fabian Müller
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (F.M., J.K., M.F.F.); and Department of Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riß, Germany (F.M., A.S.)
| | - Ashish Sharma
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (F.M., J.K., M.F.F.); and Department of Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riß, Germany (F.M., A.S.)
| | - Jörg König
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (F.M., J.K., M.F.F.); and Department of Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riß, Germany (F.M., A.S.)
| | - Martin F Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (F.M., J.K., M.F.F.); and Department of Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riß, Germany (F.M., A.S.)
| |
Collapse
|
41
|
Sawant-Basak A, Obach RS. Emerging Models of Drug Metabolism, Transporters, and Toxicity. Drug Metab Dispos 2018; 46:1556-1561. [PMID: 30333205 DOI: 10.1124/dmd.118.084293] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 09/14/2018] [Indexed: 12/13/2022] Open
Abstract
This commentary summarizes expert mini-reviews and original research articles that have been assembled in a special issue on novel models of drug metabolism and disposition. The special issue consists of research articles or reviews on novel static or micro-flow based models of the intestine, liver, eye, and kidney. This issue reviews static intestinal systems like mucosal scrapings and cryopreserved intestinal enterocytes, as well as novel bioengineered or chemically engineered intestinal models derived from primary human tissue, iPSCs, enteroids, and crypts. Experts have reviewed hepatic systems like cryopermeabilized Metmax hepatocytes and longer term, hepatocyte coculture system from HµREL, yielding in vivo-like primary and secondary drug metabolite profiles. Additional liver models, including micropattern hepatocyte coculture, 3D liver spheroids, and microflow systems, applicable to the study of drug disposition and toxicology have also been reviewed. In this commentary, we have outlined expert opinions and current efforts on hepatic- and nephrotoxicity models. Ocular disposition models including corneal permeability models have been included within this special issue. This commentary provides a summary of in vivo mini-reviews of the issue, which have discussed the applications and drawbacks of pig and humanized mice models of P450, UGT, and rat organic anionic transporting polypeptide 1a4. While not extensively reviewed, novel positron emissions tomography imaging-based approaches to study the distribution of xenobiotics have been highlighted. This commentary also outlines in vitro and in vivo models of drug metabolism derived from breakthrough genetic, chromosomal, and tissue engineering techniques. The commentary concludes by providing a futuristic view of the novel models discussed in this issue.
Collapse
Affiliation(s)
- Aarti Sawant-Basak
- Pfizer Worldwide Research & Development, Clinical Pharmacology, Cambridge, Massachusetts (A.S.-B.) and Pfizer Worldwide Research & Development, Pharmacokinetics, Dynamics, and Metabolism, Groton, Connecticut (R.S.O.)
| | - R Scott Obach
- Pfizer Worldwide Research & Development, Clinical Pharmacology, Cambridge, Massachusetts (A.S.-B.) and Pfizer Worldwide Research & Development, Pharmacokinetics, Dynamics, and Metabolism, Groton, Connecticut (R.S.O.)
| |
Collapse
|
42
|
Nakamura Y, Nakanishi T, Tamai I. Membrane Transporters Contributing to PGE 2 Distribution in Central Nervous System. Biol Pharm Bull 2018; 41:1337-1347. [DOI: 10.1248/bpb.b18-00169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yoshinobu Nakamura
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Takeo Nakanishi
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| |
Collapse
|
43
|
Yu F, Zhang T, Guo L, Wu B. Liver Receptor Homolog-1 Regulates Organic Anion Transporter 2 and Docetaxel Pharmacokinetics. Drug Metab Dispos 2018; 46:980-988. [PMID: 29669824 DOI: 10.1124/dmd.118.080895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/09/2018] [Indexed: 01/15/2023] Open
Abstract
Organic anion transporter 2 (OAT2/SLC22A7) is an uptake transporter that plays an important role in drug disposition. Here, we investigate a potential role of liver receptor homolog-1 (Lrh-1) in regulation of Oat2 and docetaxel pharmacokinetics. Hepatoma cells (Hepa1-6 and HepG2 cells) were transfected with Lrh-1/LRH-1 expression vector or siRNA. The relative mRNA and protein levels of Oat2/OAT2 in the cells or livers of Lrh-1hep-/- mice were determined by qPCR and Western blotting, respectively. Transcriptional regulation of Oat2/OAT2 by Lrh-1/LRH-1 was investigated using luciferase reporter, mobility shift, and chromatin immunoprecipitation (ChIP) assays. Pharmacokinetic studies were performed with wild-type (Lrh-1fl/fl) and Lrh-1hep-/- mice after intraperitoneal injection of docetaxel. Overexpression of Lrh-1 in Hepa1-6 cells led to significant increases in Oat2 mRNA and protein. Consistently, Lrh-1 knockdown caused decreases in Oat2 mRNA and protein, as well as reduced cellular uptake of PGE2, a prototypical substrate of Oat2. Similarly, an activation effect of LRH-1 on OAT2 expression was observed in HepG2 cells. In addition, the levels of Oat2 mRNA and protein were markedly reduced in Lrh-1hep-/- mice. Lrh-1/LRH-1 induced the transcription of Oat2/OAT2 in luciferase reporter assays. Truncation analysis revealed a potential Lrh-1 response element (-716- to -702-bp) in Oat2 promoter. Direct binding of Lrh-1 to this response element was confirmed by mobility shift and ChIP assays. Furthermore, systemic exposure of docetaxel was upregulated in Lrh-1hep-/- mice due to reduced hepatic uptake. In conclusion, Lrh-1 transcriptionally regulates Oat2, thereby impacting tissue uptake and pharmacokinetics of Oat2 substrates.
Collapse
MESH Headings
- Animals
- Cell Line
- Cell Line, Tumor
- Dinoprostone/genetics
- Dinoprostone/metabolism
- Docetaxel
- Gene Expression Regulation/genetics
- HEK293 Cells
- Hep G2 Cells
- Humans
- Liver/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Organic Anion Transporters, Sodium-Independent/genetics
- Organic Anion Transporters, Sodium-Independent/metabolism
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Response Elements/genetics
- Taxoids/pharmacokinetics
- Transcription, Genetic/genetics
- Transcriptional Activation/genetics
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Fangjun Yu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy (F.Y., T.Z., L.G., B.W.) and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research (F.Y., B.W.), Jinan University, Guangzhou, China
| | - Tianpeng Zhang
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy (F.Y., T.Z., L.G., B.W.) and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research (F.Y., B.W.), Jinan University, Guangzhou, China
| | - Lianxia Guo
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy (F.Y., T.Z., L.G., B.W.) and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research (F.Y., B.W.), Jinan University, Guangzhou, China
| | - Baojian Wu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy (F.Y., T.Z., L.G., B.W.) and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research (F.Y., B.W.), Jinan University, Guangzhou, China
| |
Collapse
|
44
|
Sager G, Smaglyukova N, Fuskevaag OM. The role of OAT2 (SLC22A7) in the cyclic nucleotide biokinetics of human erythrocytes. J Cell Physiol 2018; 233:5972-5980. [PMID: 29244191 PMCID: PMC5947735 DOI: 10.1002/jcp.26409] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 12/07/2017] [Indexed: 01/25/2023]
Abstract
The present study was conducted to characterise the transporter(s) responsible for the uptake of cyclic nucleotides to human erythrocytes. Western blotting showed that hRBC expressed OAT2 (SLC22A7), but detection of OAT1 (SLC22A6), or OAT3 (SLC22A8) was not possible. Intact hRBC were employed to clarify the simultaneous cyclic nucleotide egression and uptake. Both these opposing processes were studied. The Km‐values for high affinity efflux was 3.5 ± 0.1 and 39.4 ± 5.7 μM for cGMP and cAMP, respectively. The respective values for low affinity efflux were 212 ± 11 and 339 ± 42 μM. The uptake was characterised with apparently low affinity and similar Km‐values for cGMP (2.2 mM) and cAMP (0.89 mM). Using an iterative approach in order to balance uptake with efflux, the predicted real Km‐values for uptake were 100–200 μM for cGMP and 50–150 μM for cAMP. The established OAT2‐substrate indomethacin showed a competitive interaction with cyclic nucleotide uptake. Creatinine, also an OAT2 substrate, showed saturable uptake with a Km of 854 ± 98 μM. Unexpectedly, co‐incubation with cyclic nucleotides showed an uncompetitive inhibition. The observed Km‐values were 399 ± 44 and 259 ± 30 μM for creatinine, in the presence of cGMP and cAMP, respectively. Finally, the OAT1‐substrate para‐aminohippurate (PAH) showed some uptake (Km‐value of 2.0 ± 0.4 mM) but did not interact with cyclic nucleotide or indomethacin transport.
Collapse
Affiliation(s)
- Georg Sager
- Faculty of Health Science, Department of Medical Biology, Research Group of Experimental and Clinical Pharmacology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway.,Laboratory Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Natalia Smaglyukova
- Faculty of Health Science, Department of Medical Biology, Research Group of Experimental and Clinical Pharmacology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Ole-Martin Fuskevaag
- Faculty of Health Science, Department of Medical Biology, Research Group of Experimental and Clinical Pharmacology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway.,Laboratory Medicine, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
45
|
Ma YR, Zhou Y, Huang J, Qin HY, Wang P, Wu XA. The urinary excretion of metformin, ceftizoxime and ofloxacin in high serum creatinine rats: Can creatinine predict renal tubular elimination? Life Sci 2018; 196:110-117. [PMID: 29355545 DOI: 10.1016/j.lfs.2018.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/27/2017] [Accepted: 01/17/2018] [Indexed: 02/03/2023]
Abstract
The renal excretion of creatinine and most drugs are the net result of glomerular filtration and tubular secretion, and their tubular secretions are mediated by individual transporters. Thus, we hypothesized that the increase of serum creatinine (SCr) levels attributing to inhibiting tubular transporters but not glomerular filtration rate (GFR) could be used to evaluate the tubular excretion of drugs mediated by identical or partial overlap transporter with creatinine. In this work, we firstly developed the creatinine excretion inhibition model with normal GFR by competitively inhibiting tubular transporters, and investigated the renal excretion of metformin, ceftizoxime and ofloxacin in vivo and in vitro. The results showed that the 24-hour urinary excretion of metformin and ceftizoxime in model rats were decreased by 25% and 17% compared to that in control rats, respectively. The uptake amount and urinary excretion of metformin and ceftizoxime could be inhibited by creatinine in renal cortical slices and isolated kidney perfusion. However, the urinary excretion of ofloxacin was not affected by high SCr. These results showed that the inhibition of tubular creatinine transporters by high SCr resulted to the decrease of urinary excretion of metformin and ceftizoxime, but not ofloxacin, which implied that the increase of SCr could also be used to evaluate the tubular excretion of drugs mediated by identical or partial overlap transporter with creatinine in normal GFR rats.
Collapse
Affiliation(s)
- Yan-Rong Ma
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yan Zhou
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Jing Huang
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China; Department of Pharmacy, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Hong-Yan Qin
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Pei Wang
- College of Basic Medicine, Lanzhou University, Lanzhou 730000, China
| | - Xin-An Wu
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
46
|
Bi YA, Mathialagan S, Tylaska L, Fu M, Keefer J, Vildhede A, Costales C, Rodrigues AD, Varma MVS. Organic Anion Transporter 2 Mediates Hepatic Uptake of Tolbutamide, a CYP2C9 Probe Drug. J Pharmacol Exp Ther 2018; 364:390-398. [DOI: 10.1124/jpet.117.245951] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/02/2018] [Indexed: 12/14/2022] Open
|
47
|
Nakada T, Kudo T, Kume T, Kusuhara H, Ito K. Quantitative analysis of elevation of serum creatinine via renal transporter inhibition by trimethoprim in healthy subjects using physiologically-based pharmacokinetic model. Drug Metab Pharmacokinet 2017; 33:103-110. [PMID: 29361388 DOI: 10.1016/j.dmpk.2017.11.314] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 10/20/2017] [Accepted: 11/28/2017] [Indexed: 12/17/2022]
Abstract
Serum creatinine (SCr) levels rise during trimethoprim therapy for infectious diseases. This study aimed to investigate whether the elevation of SCr can be quantitatively explained using a physiologically-based pharmacokinetic (PBPK) model incorporating inhibition by trimethoprim on tubular secretion of creatinine via renal transporters such as organic cation transporter 2 (OCT2), OCT3, multidrug and toxin extrusion protein 1 (MATE1), and MATE2-K. Firstly, pharmacokinetic parameters in the PBPK model of trimethoprim were determined to reproduce the blood concentration profile after a single intravenous and oral administration of trimethoprim in healthy subjects. The model was verified with datasets of both cumulative urinary excretions after a single administration and the blood concentration profile after repeated oral administration. The pharmacokinetic model of creatinine consisted of the creatinine synthesis rate, distribution volume, and creatinine clearance (CLcre), including tubular secretion via each transporter. When combining the models for trimethoprim and creatinine, the predicted increments in SCr from baseline were 29.0%, 39.5%, and 25.8% at trimethoprim dosages of 5 mg/kg (b.i.d.), 5 mg/kg (q.i.d.), and 200 mg (b.i.d.), respectively, which were comparable with the observed values. The present model analysis enabled us to quantitatively explain increments in SCr during trimethoprim treatment by its inhibition of renal transporters.
Collapse
Affiliation(s)
- Tomohisa Nakada
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan; Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-2-50 Kawagishi, Toda-shi, Saitama 335-8505, Japan
| | - Toshiyuki Kudo
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan
| | - Toshiyuki Kume
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-2-50 Kawagishi, Toda-shi, Saitama 335-8505, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kiyomi Ito
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| |
Collapse
|
48
|
Mathialagan S, Costales C, Tylaska L, Kimoto E, Vildhede A, Johnson J, Johnson N, Sarashina T, Hashizume K, Isringhausen CD, Vermeer LMM, Wolff AR, Rodrigues AD. In vitro studies with two human organic anion transporters: OAT2 and OAT7. Xenobiotica 2017; 48:1037-1049. [DOI: 10.1080/00498254.2017.1384595] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sumathy Mathialagan
- Pharmacokinetics, Dynamics, & Metabolism, Medicine Design, Pfizer Inc, Groton, CT, USA,
| | - Chester Costales
- Pharmacokinetics, Dynamics, & Metabolism, Medicine Design, Pfizer Inc, Groton, CT, USA,
| | - Laurie Tylaska
- Pharmacokinetics, Dynamics, & Metabolism, Medicine Design, Pfizer Inc, Groton, CT, USA,
| | - Emi Kimoto
- Pharmacokinetics, Dynamics, & Metabolism, Medicine Design, Pfizer Inc, Groton, CT, USA,
| | - Anna Vildhede
- Pharmacokinetics, Dynamics, & Metabolism, Medicine Design, Pfizer Inc, Groton, CT, USA,
| | - Jillian Johnson
- Pharmacokinetics, Dynamics, & Metabolism, Medicine Design, Pfizer Inc, Groton, CT, USA,
| | - Nathaniel Johnson
- Pharmacokinetics, Dynamics, & Metabolism, Medicine Design, Pfizer Inc, Groton, CT, USA,
| | | | | | | | | | | | - A. David Rodrigues
- Pharmacokinetics, Dynamics, & Metabolism, Medicine Design, Pfizer Inc, Groton, CT, USA,
| |
Collapse
|
49
|
Dragojević J, Mihaljević I, Popović M, Zaja R, Smital T. In vitro characterization of zebrafish (Danio rerio) organic anion transporters Oat2a-e. Toxicol In Vitro 2017; 46:246-256. [PMID: 29030288 DOI: 10.1016/j.tiv.2017.09.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/16/2017] [Accepted: 09/25/2017] [Indexed: 10/18/2022]
Abstract
OATS/Oats are transmembrane proteins that transport a variety of drugs, environmental toxins and endogenous metabolites into the cell. Zebrafish (Danio rerio) has seven OAT orthologs: Oat1, Oat2a-e and Oat3. In this study we specifically address Oat2 (Slc22a7) family. Conserved synteny analysis showed localization of zebrafish oat2 genes on two chromosomes, 11 and 17. All five zebrafish Oats were localized by live cell imaging in membranes of transiently transfected HEK293-T cells, and Oat2a, b, d, and e were confirmed using western blot analysis. Functional studies using the HEK293T cells overexpressing zebrafish Oats revealed two model fluorescent substrates of three Oats: Lucifer yellow for Oat2a and Oat2d (Km 122, and 49.7μM), and 6-carboxyfluorescein for Oat2b and Oat2d (Km 199.7, and 266.9μM). The initial screening of a series of diverse endo- and xenobiotics showed interaction with a number of compounds, including cGMP and diclofenac (IC50 27.74, and 19.14μM) with Oat2a; estrone-3-sulfate and diclofenac (IC50 30.96, and 12.6μM) with Oat2b; and fumarate and indomethacin (IC50 68.24, and 20.41μM) with Oat2d. This study provides the first comprehensive data set on Oat2 in zebrafish and offers an important basis for more detailed molecular and (eco)toxicological characterizations of these transporters.
Collapse
Affiliation(s)
- Jelena Dragojević
- Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Ivan Mihaljević
- Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Marta Popović
- Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Roko Zaja
- Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Tvrtko Smital
- Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
50
|
Lepist EI, Ray AS. Beyond drug-drug interactions: effects of transporter inhibition on endobiotics, nutrients and toxins. Expert Opin Drug Metab Toxicol 2017; 13:1075-1087. [PMID: 28847160 DOI: 10.1080/17425255.2017.1372425] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Membrane transport proteins play a central role in regulating the disposition of endobiotics, dietary nutrients and environmental toxins. The inhibition of transporters by drugs has potential physiologic consequences. The full extent of the effect of drugs on the function of transporters is poorly understood because only a small subset of the hundreds of transporters expressed in humans - primarily those mediating the rate-determining step in the elimination of specific drugs - are assessed during clinical development. Areas covered: We provide a comprehensive overview of literature reports implicating the inhibition of transporters as the mechanism for off-target effects of drugs. Expert opinion: Transporter inhibition, the mechanism of action of many marketed drugs, appears to play an underappreciated role in a number of side effects including vitamin deficiency, edema, dyslipidemia, cholestasis and gout. Cell systems more broadly expressing transporter networks and methods like unbiased metabolomics should be incorporated into the screening paradigm to expand our understanding of the impact of drugs on the physiologic function of transporters and to allow for these effects to be taken into account in drug discovery and clinical practice.
Collapse
Affiliation(s)
- Eve-Irene Lepist
- a Departments of Drug Metabolism , Gilead Sciences, Inc ., Foster City , CA , USA
| | - Adrian S Ray
- b Clinical Research , Gilead Sciences, Inc ., Foster City , CA , USA
| |
Collapse
|