1
|
Das J, Kundu S, Kumar A, Tripathi V. Field tuning Kitaev systems for spin fractionalization and topological order. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:443001. [PMID: 39059430 DOI: 10.1088/1361-648x/ad6827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/26/2024] [Indexed: 07/28/2024]
Abstract
The honeycomb Kitaev model describes aZ2spin liquid with topological order and fractionalized excitations consisting of gappedπ-fluxes and free Majorana fermions. Competing interactions, even when not very strong, are known to destabilize the Kitaev spin liquid. Magnetic fields are a convenient parameter for tuning between different phases of the Kitaev systems, and have even been investigated for potentially counteracting the effects of other destabilizing interactions leading to a revival of the topological phase. Here we review the progress in understanding the effects of magnetic fields on some of the perturbed Kitaev systems, particularly on fractionalization and topological order.
Collapse
Affiliation(s)
- J Das
- Department of Theoretical Physics, Tata Institute of Fundamental Research, Mumbai, India
| | - S Kundu
- Department of Physics, University of Florida, Gainesville, FL 32611, United States of America
| | - A Kumar
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, United States of America
| | - V Tripathi
- Department of Theoretical Physics, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
2
|
Zhang S, Yang X, Wooten BL, Bag R, Yadav L, Moore CE, Parida S, Trivedi N, Lu Y, Heremans JP, Haravifard S, Wu Y. Two-Dimensional Cobalt(II) Benzoquinone Frameworks for Putative Kitaev Quantum Spin Liquid Candidates. J Am Chem Soc 2024; 146:15061-15069. [PMID: 38787332 DOI: 10.1021/jacs.3c14537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The realization and discovery of quantum spin liquid (QSL) candidate materials are crucial for exploring exotic quantum phenomena and applications associated with QSLs. Most existing metal-organic two-dimensional (2D) quantum spin liquid candidates have structures with spins arranged on the triangular or kagome lattices, whereas honeycomb-structured metal-organic compounds with QSL characteristics are rare. Here, we report the use of 2,5-dihydroxy-1,4-benzoquinone (X2dhbq, X = Cl, Br, H) as the linkers to construct cobalt(II) honeycomb lattices (NEt4)2[Co2(X2dhbq)3] as promising Kitaev-type QSL candidate materials. The high-spin d7 Co2+ has pseudospin-1/2 ground-state doublets, and benzoquinone-based linkers not only provide two separate superexchange pathways that create bond-dependent frustrated interactions but also allow for chemical tunability to mediate magnetic coupling. Our magnetization data show antiferromagnetic interactions between neighboring metal centers with Weiss constants from -5.1 to -8.5 K depending on the X functional group in X2dhbq linkers (X = Cl, Br, H). No magnetic transition or spin freezing could be observed down to 2 K. Low-temperature susceptibility (down to 0.3 K) and specific heat (down to 0.055 K) of (NEt4)2[Co2(H2dhbq)3] were further analyzed. Heat capacity measurements confirmed no long-range order down to 0.055 K, evidenced by the broad peak instead of the λ-like anomaly. Our results indicate that these 2D cobalt benzoquinone frameworks are promising Kitaev QSL candidates with chemical tunability through ligands that can vary the magnetic coupling and frustration.
Collapse
Affiliation(s)
- Songwei Zhang
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xu Yang
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, United States
| | - Brandi L Wooten
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Rabindranath Bag
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Lalit Yadav
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Curtis E Moore
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Smrutimedha Parida
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nandini Trivedi
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yuanming Lu
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, United States
| | - Joseph P Heremans
- Department of Mechanical & Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sara Haravifard
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Yiying Wu
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
3
|
Zhang Q, He WY, Zhang Y, Chen Y, Jia L, Hou Y, Ji H, Yang H, Zhang T, Liu L, Gao HJ, Jung TA, Wang Y. Quantum spin liquid signatures in monolayer 1T-NbSe 2. Nat Commun 2024; 15:2336. [PMID: 38485980 PMCID: PMC10940636 DOI: 10.1038/s41467-024-46612-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/01/2024] [Indexed: 03/18/2024] Open
Abstract
Quantum spin liquids (QSLs) are in a quantum disordered state that is highly entangled and has fractional excitations. As a highly sought-after state of matter, QSLs were predicted to host spinon excitations and to arise in frustrated spin systems with large quantum fluctuations. Here we report on the experimental observation and theoretical modeling of QSL signatures in monolayer 1T-NbSe2, which is a newly emerging two-dimensional material that exhibits both charge-density-wave (CDW) and correlated insulating behaviors. By using scanning tunneling microscopy and spectroscopy (STM/STS), we confirm the presence of spin fluctuations in monolayer 1T-NbSe2 by observing the Kondo resonance as monolayer 1T-NbSe2 interacts with metallic monolayer 1H-NbSe2. Subsequent STM/STS imaging of monolayer 1T-NbSe2 at the Hubbard band energy further reveals a long-wavelength charge modulation, in agreement with the spinon modulation expected for QSLs. By depositing manganese-phthalocyanine (MnPc) molecules with spin S = 3/2 onto monolayer 1T-NbSe2, new STS resonance peaks emerge at the Hubbard band edges of monolayer 1T-NbSe2. This observation is consistent with the spinon Kondo effect induced by a S = 3/2 magnetic impurity embedded in a QSL. Taken together, these experimental observations indicate that monolayer 1T-NbSe2 is a new promising QSL material.
Collapse
Affiliation(s)
- Quanzhen Zhang
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing, 100081, China
| | - Wen-Yu He
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yu Zhang
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing, 100081, China.
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, 100081, China.
| | - Yaoyao Chen
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing, 100081, China
| | - Liangguang Jia
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing, 100081, China
| | - Yanhui Hou
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing, 100081, China
| | - Hongyan Ji
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing, 100081, China
| | - Huixia Yang
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing, 100081, China
| | - Teng Zhang
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing, 100081, China
| | - Liwei Liu
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing, 100081, China
| | - Hong-Jun Gao
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Thomas A Jung
- Laboratory for X-ray Nanoscience and Technologies, Paul Scherrer Institut (PSI), 5232, Villigen, Switzerland
| | - Yeliang Wang
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing, 100081, China.
- Yangtze Delta Region Academy, Beijing Institute of Technology, Jiaxing, Zhejiang, 314000, China.
| |
Collapse
|
4
|
Tang S, Wang X. Spin Frustration in Organic Radicals. Angew Chem Int Ed Engl 2024; 63:e202310147. [PMID: 37767854 DOI: 10.1002/anie.202310147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 09/29/2023]
Abstract
Spin frustration, which results from geometric frustration and a systematical inability to satisfy all antiferromagnetic (AF) interactions between unpaired spins simultaneously, is under the spotlight for its importance in physics and materials science. Spin frustration is treated as the structural basis of quantum spin liquids (QSLs). Featuring flexible chemical structures, organic radical species exhibit great potential in building spin-frustrated molecules and lattices. So far, the reported examples of spin-frustrated organic radical compounds include triradicals, tetrathiafulvalene (TTF) radicals and derivatives, [Pd(dmit)2 ] compounds (dmit=1,3-dithiol-2-thione-4,5-dithiolate), nitronyl nitroxides, fullerenes, polycyclic aromatic hydrocarbons (PAHs), and other heterocyclic compounds where the spin frustration is generated intra- or intermolecularly. In this Minireview, we provide a brief summary of the reported radical compounds that possess spin frustration. The related data, including magnetic exchange coupling parameters, spin models, frustration parameters, and crystal lattices, are summarized and discussed.
Collapse
Affiliation(s)
- Shuxuan Tang
- Sinopec (Beijing) Research Institute of Chemical Industry Co., Ltd., Sinopec Beijing Research Institute of Chemical Industry, Beijing, 100013, P. R. China
| | - Xinping Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai, 200032, P. R. China
| |
Collapse
|
5
|
Hong X, Gillig M, Hanna ARN, Chillal S, Islam ATMN, Lake B, Büchner B, Hess C. Spinon Heat Transport in the Three-Dimensional Quantum Magnet PbCuTe_{2}O_{6}. PHYSICAL REVIEW LETTERS 2023; 131:256701. [PMID: 38181358 DOI: 10.1103/physrevlett.131.256701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/15/2023] [Indexed: 01/07/2024]
Abstract
Quantum spin liquids (QSLs) are novel phases of matter which remain quantum disordered even at the lowest temperature. They are characterized by emergent gauge fields and fractionalized quasiparticles. Here we show that the sub-kelvin thermal transport of the three-dimensional S=1/2 hyperhyperkagome quantum magnet PbCuTe_{2}O_{6} is governed by a sizeable charge-neutral fermionic contribution which is compatible with the itinerant fractionalized excitations of a spinon Fermi surface. We demonstrate that this hallmark feature of the QSL state is remarkably robust against sample crystallinity, large magnetic field, and field-induced magnetic order, ruling out the imitation of QSL features by extrinsic effects. Our findings thus reveal the characteristic low-energy features of PbCuTe_{2}O_{6} which qualify this compound as a true QSL material.
Collapse
Affiliation(s)
- Xiaochen Hong
- Fakultät für Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany
- Leibniz-Institute for Solid State and Materials Research (IFW-Dresden), Helmholtzstraße 20, 01069 Dresden, Germany
| | - Matthias Gillig
- Leibniz-Institute for Solid State and Materials Research (IFW-Dresden), Helmholtzstraße 20, 01069 Dresden, Germany
| | - Abanoub R N Hanna
- Institut für Festkörperforschung, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1, 14109 Berlin, Germany
| | - Shravani Chillal
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1, 14109 Berlin, Germany
| | - A T M Nazmul Islam
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1, 14109 Berlin, Germany
| | - Bella Lake
- Institut für Festkörperforschung, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1, 14109 Berlin, Germany
| | - Bernd Büchner
- Leibniz-Institute for Solid State and Materials Research (IFW-Dresden), Helmholtzstraße 20, 01069 Dresden, Germany
- Institute of Solid State and Materials Physics and Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062 Dresden, Germany
| | - Christian Hess
- Fakultät für Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany
- Leibniz-Institute for Solid State and Materials Research (IFW-Dresden), Helmholtzstraße 20, 01069 Dresden, Germany
| |
Collapse
|
6
|
Zhu Z, Pan B, Nie L, Ni J, Yang Y, Chen C, Jiang C, Huang Y, Cheng E, Yu Y, Miao J, Hillier AD, Chen X, Wu T, Zhou Y, Li S, Shu L. Fluctuating magnetic droplets immersed in a sea of quantum spin liquid. Innovation (N Y) 2023; 4:100459. [PMID: 37560333 PMCID: PMC10407545 DOI: 10.1016/j.xinn.2023.100459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/08/2023] [Indexed: 08/11/2023] Open
Abstract
The search of quantum spin liquid (QSL), an exotic magnetic state with strongly fluctuating and highly entangled spins down to zero temperature, is a main theme in current condensed matter physics. However, there is no smoking gun evidence for deconfined spinons in any QSL candidate so far. The disorders and competing exchange interactions may prevent the formation of an ideal QSL state on frustrated spin lattices. Here we report comprehensive and systematic measurements of the magnetic susceptibility, ultralow-temperature specific heat, muon spin relaxation (μSR), nuclear magnetic resonance (NMR), and thermal conductivity for NaYbSe2 single crystals, in which Yb3+ ions with effective spin-1/2 form a perfect triangular lattice. All these complementary techniques find no evidence of long-range magnetic order down to their respective base temperatures. Instead, specific heat, μSR, and NMR measurements suggest the coexistence of quasi-static and dynamic spins in NaYbSe2. The scattering from these quasi-static spins may cause the absence of magnetic thermal conductivity. Thus, we propose a scenario of fluctuating ferrimagnetic droplets immersed in a sea of QSL. This may be quite common on the way pursuing an ideal QSL, and provides a brand new platform to study how a QSL state survives impurities and coexists with other magnetically ordered states.
Collapse
Affiliation(s)
- Zihao Zhu
- State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
| | - Binglin Pan
- State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
| | - Linpeng Nie
- CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jiamin Ni
- State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
| | - Yanxing Yang
- State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
| | - Changsheng Chen
- State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
| | - Chengyu Jiang
- State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
| | - Yeyu Huang
- State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
| | - Erjian Cheng
- State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
| | - Yunjie Yu
- State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
| | - Jianjian Miao
- Department of Physics, the University of Hong Kong, Hong Kong, China
| | - Adrian D. Hillier
- ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0QX, UK
| | - Xianhui Chen
- CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
- CAS Center for Excellence in Superconducting Electronics (CENSE), Shanghai 200050, China
| | - Tao Wu
- CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
- CAS Center for Excellence in Superconducting Electronics (CENSE), Shanghai 200050, China
| | - Yi Zhou
- Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- Kavli Institute for Theoretical Sciences and CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Shiyan Li
- State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Lei Shu
- State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| |
Collapse
|
7
|
Fabrizio M. Spin-Liquid Insulators Can Be Landau's Fermi Liquids. PHYSICAL REVIEW LETTERS 2023; 130:156702. [PMID: 37115899 DOI: 10.1103/physrevlett.130.156702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
The long search for insulating materials that possess low-energy quasiparticles carrying electron's quantum numbers except charge-inspired by the neutral spin-1/2 excitations, the so-called spinons, exhibited by Anderson's resonating-valence-bond state-seems to have reached a turning point after the discovery of several Mott insulators displaying the same thermal and magnetic properties as metals, including quantum oscillations in a magnetic field. Here, we show that such anomalous behavior is not inconsistent with Landau's Fermi liquid theory of quasiparticles at a Luttinger surface. That is the manifold of zeros within the Brillouin zone of the single-particle Green's function at zero frequency, and which thus defines the spinon Fermi surface conjectured by Anderson.
Collapse
Affiliation(s)
- Michele Fabrizio
- International School for Advanced Studies (SISSA), Via Bonomea 265, I-34136 Trieste, Italy
| |
Collapse
|
8
|
Hachem H, Cui H, Kato R, Alemany P, Canadell E, Jeannin O, Fourmigué M, Lorcy D. Mixed-Valence Conductors from Ni Bis(diselenolene) Complexes with a Thiazoline Backbone. Inorg Chem 2023; 62:4197-4209. [PMID: 36827469 DOI: 10.1021/acs.inorgchem.2c04300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Highly conducting, mixed-valence, multi-component nickel bis(diselenolene) salts were obtained by electrocrystallization of the monoanionic species [Ni(Me-thiazds)2]-1 (Me-thiazds: N-methyl-1,3-thiazoline-2-thione-4,5-diselenolate), with 1:2 and 1:3 stoichiometries depending of the counter ion used (Et4N+ and nBu4N+ vs Ph4P+, respectively). This behavior strongly differs from that of the corresponding monoanionic dithiolene complexes whose oxidation afforded the single component neutral species. This provides additional rare examples of mixed-valence conducting salts of nickel diselenolene complexes, only known in two examples with the dsit (1,3-dithiole-2-thione-4,5-diselenolate) and dsise (1,3-dithiole-2-selone-4,5-diselenolate) ligands. The mixed-valence salts form highly dimerized or trimerized bi- and trimetallic units, rarely seen with such nickel complexes. Transport measurements under a high pressure (up to 10 GPa) and band structure calculations confirm the semiconducting character of [Ph4P][Ni(Me-thiazds)2]3 and the quasi metallic character of [Et4N][Ni(Me-thiazds)2]2 and [NBu4]x[Ni(Me-thiazds)2]2 salts (0 < x < 1).
Collapse
Affiliation(s)
- Hadi Hachem
- Institut des Sciences Chimiques de Rennes, Université de Rennes, CNRS, UMR 6226, F-35000 Rennes, France
| | - HengBo Cui
- Condensed Molecular Materials Laboratory, RIKEN, Wako-shi, Saitama 351-0198, Japan
| | - Reizo Kato
- Condensed Molecular Materials Laboratory, RIKEN, Wako-shi, Saitama 351-0198, Japan
| | - Pere Alemany
- Departament de Ciència de Materials i Quimica Fisica and Institut de Quimica Teorica i Computacional (IQTCUB), Universitat de Barcelona, Marti i Franquès 1, E-08028 Barcelona, Spain
| | - Enric Canadell
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra, Spain
| | - Olivier Jeannin
- Institut des Sciences Chimiques de Rennes, Université de Rennes, CNRS, UMR 6226, F-35000 Rennes, France
| | - Marc Fourmigué
- Institut des Sciences Chimiques de Rennes, Université de Rennes, CNRS, UMR 6226, F-35000 Rennes, France
| | - Dominique Lorcy
- Institut des Sciences Chimiques de Rennes, Université de Rennes, CNRS, UMR 6226, F-35000 Rennes, France
| |
Collapse
|
9
|
Pan BY, Xu Y, Ni JM, Zhou SY, Hong XC, Qiu X, Li SY. Unambiguous Experimental Verification of Linear-in-Temperature Spinon Thermal Conductivity in an Antiferromagnetic Heisenberg Chain. PHYSICAL REVIEW LETTERS 2022; 129:167201. [PMID: 36306770 DOI: 10.1103/physrevlett.129.167201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/07/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The everlasting interest in spin chains is mostly rooted in the fact that they generally allow for comparisons between theory and experiment with remarkable accuracy, especially for exactly solvable models. A notable example is the spin-1/2 antiferromagnetic Heisenberg chain (AFHC), which can be well described by the Tomonaga-Luttinger liquid theory and exhibits fractionalized spinon excitations with distinct thermodynamic and spectroscopic experimental signatures consistent with theoretical predictions. A missing piece, however, is the lack of a comprehensive understanding of the spinon heat transport in AFHC systems, due to difficulties in its experimental evaluation against the backdrop of other heat carriers and complex scattering processes. Here we address this situation by performing ultralow-temperature thermal conductivity measurements on a nearly ideal spin-1/2 AFHC system copper benzoate Cu(C_{6}H_{5}COO)_{2}·3H_{2}O, whose field-dependent spin excitation gap enables a reliable extraction of the spinon thermal conductivity κ_{s} at zero field. κ_{s} was found to exhibit a linear temperature dependence κ_{s}∼T at low temperatures, with κ_{s}/T as large as 1.70 mW cm^{-1} K^{-2}, followed by a precipitate decline below ∼0.3 K. The observed κ_{s}∼T clarifies the discrepancies between various spin chain systems and serves as a benchmark for one-dimensional spinon heat transport in the low-temperature limit. The abrupt loss of κ_{s} with no corresponding anomaly in the specific heat is discussed in the context of many-body localization.
Collapse
Affiliation(s)
- B Y Pan
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200438, China
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai, Shandong 264025, China
| | - Y Xu
- Key Laboratory of Polar Materials and Devices (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - J M Ni
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200438, China
| | - S Y Zhou
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200438, China
| | - X C Hong
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200438, China
| | - X Qiu
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200438, China
| | - S Y Li
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200438, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
- Shanghai Research Center for Quantum Sciences, Shanghai, 201315, China
| |
Collapse
|
10
|
Ranaut D, Shastri SS, Pandey SK, Mukherjee K. Possible realization of three-dimensional quantum spin liquid behavior in HoVO 4. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:485803. [PMID: 36195080 DOI: 10.1088/1361-648x/ac9771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The study of geometrically frustrated magnetic systems with unusual crystal field ground states offers a possibility of realizing the new aspects of physics of disordered systems. In this study, we report our results of structural, magnetic susceptibility, heat capacity measurements, along with density functional theory (DFT) calculations on HoVO4; a compound in which the presence of a distorted kind of HoO8polyhedral leads to multiple magnetic interaction paths. The observed broad maximum below 10 K in the temperature response of DC susceptibility curves implies the presence of short-range correlations. AC susceptibility rules out the possibility of any kind of spin freezing. Temperature dependent heat capacity measurement at zero field indicate towards the absence of long-range ordering, along with the presence of a broad maximum centered around 14 K. The residual heat capacity exhibits a characteristic power-law (Tα) behavior with the exponentαnearly equal to 2, which is analogous to that observed for other three-dimensional (3D) quantum spin liquid (QSL) systems. The DFT calculations signify the presence of dominant second and third nearest neighbor interactions, which in turn lead to magnetic frustration in our system. Our investigations suggest that HoVO4can be a candidate for realizing a 3D QSL state.
Collapse
Affiliation(s)
- Dheeraj Ranaut
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India
| | - Shivprasad S Shastri
- School of Engineering, Indian Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India
| | - Sudhir K Pandey
- School of Engineering, Indian Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India
| | - K Mukherjee
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India
| |
Collapse
|
11
|
Resistivity and thermal conductivity of an organic insulator β'-EtMe 3Sb[Pd(dmit) 2] 2. Sci Rep 2022; 12:9187. [PMID: 35654914 PMCID: PMC9163187 DOI: 10.1038/s41598-022-13155-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/17/2022] [Indexed: 11/27/2022] Open
Abstract
A finite residual linear term in the thermal conductivity at zero temperature in insulating magnets indicates the presence of gapless excitations of itinerant quasiparticles, which has been observed in some candidate materials of quantum spin liquids (QSLs). In the organic triangular insulator β′–EtMe3Sb[Pd(dmit)2]2, a QSL candidate material, the low-temperature thermal conductivity depends on the cooling process and the finite residual term is observed only in samples with large thermal conductivity. Moreover, the cooling rate dependence is largely sample dependent. Here we find that, while the low-temperature thermal conductivity significantly depends on the cooling rate, the high-temperature resistivity is almost perfectly independent of the cooling rate. These results indicate that in the samples with the finite residual term, the mean free path of the quasiparticles that carry the heat at low temperatures is governed by disorders, whose characteristic length scale of the distribution is much longer than the electron mean free path that determines the high-temperature resistivity. This explains why recent X-ray diffraction and nuclear magnetic resonance measurements show no cooling rate dependence. Naturally, these measurements are unsuitable for detecting disorders of the length scale relevant for the thermal conductivity, just as they cannot determine the residual resistivity of metals. Present results indicate that very careful experiments are needed when discussing itinerant spin excitations in β′–EtMe3Sb[Pd(dmit)2]2.
Collapse
|
12
|
Mori H, Yokomori S, Dekura S, Ueda A. Proton-electron-coupled functionalities of conductivity, magnetism, and optical properties in molecular crystals. Chem Commun (Camb) 2022; 58:5668-5682. [PMID: 35420071 DOI: 10.1039/d1cc06826a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Proton-electron-coupled reactions, specifically proton-coupled electron transfer (PCET), in biological and chemical processes have been extensively investigated for use in a wide variety of applications, including energy conversion and storage. However, the exploration of the functionalities of the conductivity, magnetism, and dielectrics by proton-electron coupling in molecular materials is challenging. Dynamic and static proton-electron-coupled functionalities are to be expected. This feature article highlights the recent progress in the development of functionalities of dynamic proton-electron coupling in molecular materials. Herein, single-unit conductivity by self-doping, quantum spin liquid state coupled with quantum fluctuation of protons, switching of conductivity and magnetism triggered by the disorder-order transition of deuterons, and their external responses under pressure and in the presence of an electric field are introduced. In addition, as for the functionalities of proton-d/π-electron coupling in metal dithiolene complexes, magnetic switching with multiple PCET and vapochromism induced by electron transfer through hydrogen-bond (H-bond) formation is introduced experimentally and theoretically. We also outlined the basic and applied issues and potential challenges for development of proton-electron-coupled molecular materials, functionalities, and devices.
Collapse
Affiliation(s)
- Hatsumi Mori
- The Institute for Solid State Physics, the University of Tokyo, 5-1-5 Kashiwabiha, Kashiwa 277-8581, Japan
| | - So Yokomori
- The Institute for Solid State Physics, the University of Tokyo, 5-1-5 Kashiwabiha, Kashiwa 277-8581, Japan
| | - Shun Dekura
- The Institute for Solid State Physics, the University of Tokyo, 5-1-5 Kashiwabiha, Kashiwa 277-8581, Japan
| | - Akira Ueda
- Department of Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| |
Collapse
|
13
|
Fabrizio M. Emergent quasiparticles at Luttinger surfaces. Nat Commun 2022; 13:1561. [PMID: 35322010 PMCID: PMC8943186 DOI: 10.1038/s41467-022-29190-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 02/11/2022] [Indexed: 12/01/2022] Open
Abstract
In periodic systems of interacting electrons, Fermi and Luttinger surfaces refer to the locations within the Brillouin zone of poles and zeros, respectively, of the single-particle Green’s function at zero energy and temperature. Such difference in analytic properties underlies the emergence of well-defined quasiparticles close to a Fermi surface, in contrast to their supposed non-existence close to a Luttinger surface, where the single-particle density-of-states vanishes at zero energy. We here show that, contrary to such common belief, dispersive ‘quasiparticles’ with infinite lifetime do exist also close to a pseudo-gapped Luttinger surface. Thermodynamic and dynamic properties of such ‘quasiparticles’ are just those of conventional ones. For instance, they yield well-defined quantum oscillations in Luttinger surface and linear-in-temperature specific heat, which is striking given the vanishing density of states of physical electrons, but actually not uncommon in strongly correlated materials. The analytic properties of Fermi surfaces give rise to quasiparticles. Now, it is shown that similarly, quasiparticles can be associated with Luttinger surfaces - the locations in the Brillouin zone of zeros of the single-particle Green’s function at zero energy and temperature.
Collapse
Affiliation(s)
- Michele Fabrizio
- International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy.
| |
Collapse
|
14
|
Kusamoto T, Ohde C, Sugiura S, Yamashita S, Matsuoka R, Terashima T, Nakazawa Y, Nishihara H, Uji S. An Organic Quantum Spin Liquid with Triangular Lattice: Spinon Fermi Surface and Scaling Behavior. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20210411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tetsuro Kusamoto
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa 240-0193, Japan
| | - Chie Ohde
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shiori Sugiura
- National Institute for Materials Science, Tsukuba, Ibaraki 305-0003, Japan
| | - Satoshi Yamashita
- Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Ryota Matsuoka
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa 240-0193, Japan
| | - Taichi Terashima
- National Institute for Materials Science, Tsukuba, Ibaraki 305-0003, Japan
| | - Yasuhiro Nakazawa
- Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Hiroshi Nishihara
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Research Center for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Shinya Uji
- National Institute for Materials Science, Tsukuba, Ibaraki 305-0003, Japan
| |
Collapse
|
15
|
Charge-neutral fermions and magnetic field-driven instability in insulating YbIr 3Si 7. Nat Commun 2022; 13:394. [PMID: 35046390 PMCID: PMC8770758 DOI: 10.1038/s41467-021-27541-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 11/24/2021] [Indexed: 11/08/2022] Open
Abstract
Kondo lattice materials, where localized magnetic moments couple to itinerant electrons, provide a very rich backdrop for strong electron correlations. They are known to realize many exotic phenomena, with a dramatic example being recent observations of quantum oscillations and metallic thermal conduction in insulators, implying the emergence of enigmatic charge-neutral fermions. Here, we show that thermal conductivity and specific heat measurements in insulating YbIr3Si7 reveal emergent neutral excitations, whose properties are sensitively changed by a field-driven transition between two antiferromagnetic phases. In the low-field phase, a significant violation of the Wiedemann-Franz law demonstrates that YbIr3Si7 is a charge insulator but a thermal metal. In the high-field phase, thermal conductivity exhibits a sharp drop below 300 mK, indicating a transition from a thermal metal into an insulator/semimetal driven by the magnetic transition. These results suggest that spin degrees of freedom directly couple to the neutral fermions, whose emergent Fermi surface undergoes a field-driven instability at low temperatures.
Collapse
|
16
|
A Discrepancy in Thermal Conductivity Measurement Data of Quantum Spin Liquid β′-EtMe3Sb[Pd(dmit)2]2 (dmit = 1,3-Dithiol-2-thione-4,5-dithiolate). CRYSTALS 2022. [DOI: 10.3390/cryst12010102] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A molecular Mott insulator β′-EtMe3Sb[Pd(dmit)2]2 is a quantum spin liquid candidate. In 2010, it was reported that thermal conductivity of β′-EtMe3Sb[Pd(dmit)2]2 is characterized by its large value and gapless behavior (a finite temperature-linear term). In 2019, however, two other research groups reported opposite data (much smaller value and a vanishingly small temperature-linear term) and the discrepancy in the thermal conductivity measurement data emerges as a serious problem concerning the ground state of the quantum spin liquid. Recently, the cooling rate was proposed to be an origin of the discrepancy. We examined effects of the cooling rate on electrical resistivity, low-temperature crystal structure, and 13C-NMR measurements and could not find any significant cooling rate dependence.
Collapse
|
17
|
Huang YY, Xu Y, Wang L, Zhao CC, Tu CP, Ni JM, Wang LS, Pan BL, Fu Y, Hao Z, Liu C, Mei JW, Li SY. Heat Transport in Herbertsmithite: Can a Quantum Spin Liquid Survive Disorder? PHYSICAL REVIEW LETTERS 2021; 127:267202. [PMID: 35029499 DOI: 10.1103/physrevlett.127.267202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
One favorable situation for spins to enter the long-sought quantum spin liquid (QSL) state is when they sit on a kagome lattice. No consensus has been reached in theory regarding the true ground state of this promising platform. The experimental efforts, relying mostly on one archetypal material ZnCu_{3}(OH)_{6}Cl_{2}, have also led to diverse possibilities. Apart from subtle interactions in the Hamiltonian, there is the additional degree of complexity associated with disorder in the real material ZnCu_{3}(OH)_{6}Cl_{2} that haunts most experimental probes. Here we resort to heat transport measurement, a cleaner probe in which instead of contributing directly, the disorder only impacts the signal from the kagome spins. For ZnCu_{3}(OH)_{6}Cl_{2}, we observed no contribution by any spin excitation nor obvious field-induced change to the thermal conductivity. These results impose strong constraints on various scenarios about the ground state of this kagome compound: while certain quantum paramagnetic states other than a QSL may serve as natural candidates, a QSL state, gapless or gapped, must be dramatically modified by the disorder so that the kagome spin excitations are localized.
Collapse
Affiliation(s)
- Y Y Huang
- State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200438, China
| | - Y Xu
- Key Laboratory of Polar Materials and Devices (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Le Wang
- Shenzhen Institute for Quantum Science and Engineering, and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - C C Zhao
- State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200438, China
| | - C P Tu
- State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200438, China
| | - J M Ni
- State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200438, China
| | - L S Wang
- State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200438, China
| | - B L Pan
- State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200438, China
| | - Ying Fu
- Shenzhen Institute for Quantum Science and Engineering, and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhanyang Hao
- Shenzhen Institute for Quantum Science and Engineering, and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Cai Liu
- Shenzhen Institute for Quantum Science and Engineering, and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jia-Wei Mei
- Shenzhen Institute for Quantum Science and Engineering, and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China
| | - S Y Li
- State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200438, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| |
Collapse
|
18
|
Turkiewicz A, Tomlinson W, Gonzalez MI, Hooper JP, Long JR. Templated Growth of a Spin-Frustrated Cluster Fragment of MnBr 2 in a Metal-Organic Framework. Inorg Chem 2021; 60:16103-16110. [PMID: 34632759 DOI: 10.1021/acs.inorgchem.1c01345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The metal-organic framework Zr6O4(OH)4(bpydc)6 (bpydc2- = 2,2'-bipyridine-5,5'-dicarboxylate) is used to template the growth of a cluster fragment of the two-dimensional solid MnBr2, which was predicted to exhibit spin frustration. Single-crystal and powder X-ray diffraction analyses reveal a cluster with 19 metal ions arranged in a triangular lattice motif. Static magnetic susceptibility measurements indicate antiferromagnetic coupling between the high-spin (S = 5/2) MnII centers, and dynamic magnetic susceptibility data suggest population of low-lying excited states, consistent with magnetic frustration. Density functional theory calculations are used to determine the energies for a subset of thousands of magnetic configurations available to the cluster. The Yamaguchi generalized spin-projection method is then employed to construct a model for magnetic coupling interactions within the cluster, enabling facile determination of the energy for all possible magnetic configurations. The confined cluster is predicted to possess a doubly degenerate, highly geometrically frustrated ground state with a total spin of STotal = 5/2.
Collapse
Affiliation(s)
| | - Warren Tomlinson
- Department of Physics, Naval Postgraduate School, Monterey, California 93943, United States
| | | | - Joseph P Hooper
- Department of Physics, Naval Postgraduate School, Monterey, California 93943, United States
| | - Jeffrey R Long
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
19
|
Yu S, Gao Y, Chen BB, Li W. Learning the Effective Spin Hamiltonian of a Quantum Magnet. CHINESE PHYSICS LETTERS 2021; 38:097502. [DOI: 10.1088/0256-307x/38/9/097502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
To understand the intriguing many-body states and effects in the correlated quantum materials, inference of the microscopic effective Hamiltonian from experiments constitutes an important yet very challenging inverse problem. Here we propose an unbiased and efficient approach learning the effective Hamiltonian through the many-body analysis of the measured thermal data. Our approach combines the strategies including the automatic gradient and Bayesian optimization with the thermodynamics many-body solvers including the exact diagonalization and the tensor renormalization group methods. We showcase the accuracy and powerfulness of the Hamiltonian learning by applying it firstly to the thermal data generated from a given spin model, and then to realistic experimental data measured in the spin-chain compound copper nitrate and triangular-lattice magnet TmMgGaO4. The present automatic approach constitutes a unified framework of many-body thermal data analysis in the studies of quantum magnets and strongly correlated materials in general.
Collapse
|
20
|
Zhao QR, Liu ZX. Thermal Properties and Instability of a U(1) Spin Liquid on the Triangular Lattice. PHYSICAL REVIEW LETTERS 2021; 127:127205. [PMID: 34597084 DOI: 10.1103/physrevlett.127.127205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
We study the effect of Dzyaloshinskii-Moriya (DM) interaction on the triangular lattice U(1) quantum spin liquid (QSL) which is stabilized by ring-exchange interactions. A weak DM interaction introduces a staggered flux to the U(1) QSL state and changes the density of states at the spinon Fermi surface. If the DM vector contains in-plane components, then the spinons gain nonzero Berry phase. The resultant thermal conductances κ_{xx} and κ_{xy} qualitatively agree with the experimental results on the material EtMe_{3}Sb[Pd(dmit)_{2}]_{2}. Furthermore, owing to perfect nesting of the Fermi surface, a spin density wave state is triggered by larger DM interactions. On the other hand, when the ring-exchange interaction decreases, another antiferromagnetic (AFM) phase with 120° order shows up which is proximate to a U(1) Dirac QSL. We discuss the difference of the two AFM phases from their static structure factors and excitation spectra.
Collapse
Affiliation(s)
- Qi-Rong Zhao
- Department of Physics, Renmin University of China, Beijing 100872, China
| | - Zheng-Xin Liu
- Department of Physics, Renmin University of China, Beijing 100872, China
- Tsung-Dao Lee Institute & School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
21
|
Rao X, Hussain G, Huang Q, Chu WJ, Li N, Zhao X, Dun Z, Choi ES, Asaba T, Chen L, Li L, Yue XY, Wang NN, Cheng JG, Gao YH, Shen Y, Zhao J, Chen G, Zhou HD, Sun XF. Survival of itinerant excitations and quantum spin state transitions in YbMgGaO 4 with chemical disorder. Nat Commun 2021; 12:4949. [PMID: 34400621 PMCID: PMC8367942 DOI: 10.1038/s41467-021-25247-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
A recent focus of quantum spin liquid (QSL) studies is how disorder/randomness in a QSL candidate affects its true magnetic ground state. The ultimate question is whether the QSL survives disorder or the disorder leads to a “spin-liquid-like” state, such as the proposed random-singlet (RS) state. Since disorder is a standard feature of most QSL candidates, this question represents a major challenge for QSL candidates. YbMgGaO4, a triangular lattice antiferromagnet with effective spin-1/2 Yb3+ions, is an ideal system to address this question, since it shows no long-range magnetic ordering with Mg/Ga site disorder. Despite the intensive study, it remains unresolved as to whether YbMgGaO4 is a QSL or in the RS state. Here, through ultralow-temperature thermal conductivity and magnetic torque measurements, plus specific heat and DC magnetization data, we observed a residual κ0/T term and series of quantum spin state transitions in the zero temperature limit for YbMgGaO4. These observations strongly suggest that a QSL state with itinerant excitations and quantum spin fluctuations survives disorder in YbMgGaO4. It remains an open question as to whether the quantum spin liquid state survives material disorder, or is replaced by some spin-liquid like state. Here, Rao et al succeed in resolving a resolving a κ0/T residual in the thermal conductivity of YbMgGaO4 strongly suggesting the survival of the quantum spin liquid state.
Collapse
Affiliation(s)
- X Rao
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, and Key Laboratory of Strongly-Coupled Quantum Matter Physics (CAS), University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - G Hussain
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, and Key Laboratory of Strongly-Coupled Quantum Matter Physics (CAS), University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Q Huang
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, USA
| | - W J Chu
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, and Key Laboratory of Strongly-Coupled Quantum Matter Physics (CAS), University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - N Li
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, and Key Laboratory of Strongly-Coupled Quantum Matter Physics (CAS), University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - X Zhao
- School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Z Dun
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, USA
| | - E S Choi
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | - T Asaba
- Department of Physics, University of Michigan, Ann Arbor, MI, USA
| | - L Chen
- Department of Physics, University of Michigan, Ann Arbor, MI, USA
| | - L Li
- Department of Physics, University of Michigan, Ann Arbor, MI, USA
| | - X Y Yue
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, People's Republic of China
| | - N N Wang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - J-G Cheng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Y H Gao
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, People's Republic of China
| | - Y Shen
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, People's Republic of China
| | - J Zhao
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, People's Republic of China
| | - G Chen
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, People's Republic of China. .,Department of Physics and HKU-UCAS Joint Institute for Theoretical and Computational Physics at Hong Kong, The University of Hong Kong, Hong Kong, China.
| | - H D Zhou
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, USA.
| | - X F Sun
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, and Key Laboratory of Strongly-Coupled Quantum Matter Physics (CAS), University of Science and Technology of China, Hefei, Anhui, People's Republic of China. .,Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, People's Republic of China.
| |
Collapse
|
22
|
Abstract
Quantum spin liquids are an exciting playground for exotic physical phenomena and emergent many-body quantum states. The realization and discovery of quantum spin liquid candidate materials and associated phenomena lie at the intersection of solid-state chemistry, condensed matter physics, and materials science and engineering. In this review, we provide the current status of the crystal chemistry, synthetic techniques, physical properties, and research methods in the field of quantum spin liquids. We highlight a number of specific quantum spin liquid candidate materials and their structure-property relationships, elucidating their fascinating behavior and connecting it to the intricacies of their structures. Furthermore, we share our thoughts on defects and their inevitable presence in materials, of which quantum spin liquids are no exception, which can complicate the interpretation of characterization of these materials, and urge the community to extend their attention to materials preparation and data analysis, cognizant of the impact of defects. This review was written with the intention of providing guidance on improving the materials design and growth of quantum spin liquids, and to paint a picture of the beauty of the underlying chemistry of this exciting class of materials.
Collapse
Affiliation(s)
- Juan R Chamorro
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute for Quantum Matter, Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Tyrel M McQueen
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute for Quantum Matter, Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218, United States.,Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Thao T Tran
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
23
|
Ni JM, Huang YY, Cheng EJ, Yu YJ, Pan BL, Li Q, Xu LM, Tian ZM, Li SY. Giant isotropic magneto-thermal conductivity of metallic spin liquid candidate Pr 2Ir 2O 7 with quantum criticality. Nat Commun 2021; 12:307. [PMID: 33436565 PMCID: PMC7804409 DOI: 10.1038/s41467-020-20562-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 12/09/2020] [Indexed: 12/05/2022] Open
Abstract
Spin liquids are exotic states with no spontaneous symmetry breaking down to zero-temperature because of the highly entangled and fluctuating spins in frustrated systems. Exotic excitations like magnetic monopoles, visons, and photons may emerge from quantum spin ice states, a special kind of spin liquids in pyrochlore lattices. These materials usually are insulators, with an exception of the pyrochlore iridate Pr2Ir2O7, which was proposed as a metallic spin liquid located at a zero-field quantum critical point. Here we report the ultralow-temperature thermal conductivity measurements on Pr2Ir2O7. The Wiedemann-Franz law is verified at high fields and inferred at zero field, suggesting no breakdown of Landau quasiparticles at the quantum critical point, and the absence of mobile fermionic excitations. This result puts strong constraints on the description of the quantum criticality in Pr2Ir2O7. Unexpectedly, although the specific heats are anisotropic with respect to magnetic field directions, the thermal conductivities display the giant but isotropic response. This indicates that quadrupolar interactions and quantum fluctuations are important, which will help determine the true ground state of this material.
Collapse
Affiliation(s)
- J M Ni
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Y Y Huang
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - E J Cheng
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Y J Yu
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - B L Pan
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Q Li
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - L M Xu
- School of Physics, and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Z M Tian
- School of Physics, and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - S Y Li
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China.
- Collaborative Innovation Center of Advanced Microstructures, Nanjing, 210093, China.
- Shanghai Research Center for Quantum Sciences, Shanghai, 201315, China.
| |
Collapse
|
24
|
Li N, Huang Q, Yue XY, Chu WJ, Chen Q, Choi ES, Zhao X, Zhou HD, Sun XF. Possible itinerant excitations and quantum spin state transitions in the effective spin-1/2 triangular-lattice antiferromagnet Na 2BaCo(PO 4) 2. Nat Commun 2020; 11:4216. [PMID: 32839456 PMCID: PMC7445251 DOI: 10.1038/s41467-020-18041-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 08/03/2020] [Indexed: 11/09/2022] Open
Abstract
The most fascinating feature of certain two-dimensional (2D) gapless quantum spin liquid (QSL) is that their spinon excitations behave like the fermionic carriers of a paramagnetic metal. The spinon Fermi surface is then expected to produce a linear increase of the thermal conductivity with temperature that should manifest via a residual value (κ0/T) in the zero-temperature limit. However, this linear in T behavior has been reported for very few QSL candidates. Here, we studied the ultralow-temperature thermal conductivity of an effective spin-1/2 triangular QSL candidate Na2BaCo(PO4)2, which has an antiferromagnetic order at very low temperature (TN ~ 148 mK), and observed a finite κ0/T extrapolated from the data above TN. Moreover, while approaching zero temperature, it exhibits series of quantum spin state transitions with applied field along the c axis. These observations indicate that Na2BaCo(PO4)2 possibly behaves as a gapless QSL with itinerant spin excitations above TN and its strong quantum spin fluctuations persist below TN.
Collapse
Affiliation(s)
- N Li
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, and Key Laboratory of Strongly-Coupled Quantum Matter Physics (CAS), University of Science and Technology of China, 230026, Hefei, Anhui, People's Republic of China
| | - Q Huang
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996-1200, USA
| | - X Y Yue
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, Anhui, People's Republic of China
| | - W J Chu
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, and Key Laboratory of Strongly-Coupled Quantum Matter Physics (CAS), University of Science and Technology of China, 230026, Hefei, Anhui, People's Republic of China
| | - Q Chen
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996-1200, USA
| | - E S Choi
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32310-3706, USA
| | - X Zhao
- School of Physical Sciences, University of Science and Technology of China, 230026, Hefei, Anhui, People's Republic of China
| | - H D Zhou
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996-1200, USA.
| | - X F Sun
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, and Key Laboratory of Strongly-Coupled Quantum Matter Physics (CAS), University of Science and Technology of China, 230026, Hefei, Anhui, People's Republic of China. .,Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, Anhui, People's Republic of China.
| |
Collapse
|
25
|
Collins KA, Saballos RJ, Fataftah MS, Puggioni D, Rondinelli JM, Freedman DE. Synthetic investigation of competing magnetic interactions in 2D metal-chloranilate radical frameworks. Chem Sci 2020; 11:5922-5928. [PMID: 34094085 PMCID: PMC8159288 DOI: 10.1039/d0sc01994a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The discovery of emergent materials lies at the intersection of chemistry and condensed matter physics. Synthetic chemistry offers a pathway to create materials with the desired physical and electronic structures that support fundamentally new properties. Metal–organic frameworks are a promising platform for bottom-up chemical design of new materials, owing to their inherent chemical predictability and tunability relative to traditional solid-state materials. Herein, we describe the synthesis and magnetic characterization of a new 2,5-dihydroxy-1,4-benzoquinone based material, (NMe2H2)3.5Ga2(C6O4Cl2)3 (1), which features radical-based electronic spins on the sites of a kagomé lattice, a geometric lattice known to engender exotic electronic properties. Vibrational and electronic spectroscopies, in combination with magnetic susceptibility measurements, revealed 1 exhibits mixed valency between the radical-bearing trianionic and diamagnetic tetraanionic oxidation states of the ligand. This unpaired electron density on the ligand forms a partially occupied kagomé lattice where approximately 85% of the lattice sites are occupied with an S = ½ spin. We found that gallium mediates ferromagnetic coupling between ligand spins, creating a ferromagnetic kagomé lattice. By modulation of the interlayer spacing via post-synthetic cation metathesis of 1 to (NMe4)3.5Ga2(C6O4Cl2)3 (2) and (NEt4)2(NMe4)1.5Ga2(C6O4Cl2)3 (3), we determined the nature of the magnetic coupling between neighboring planes is antiferromagnetic. Additionally, we determined the role of the metal in mediating this magnetic coupling by comparison of 2 with the In3+ analogue, (NMe4)3.5In2(C6O4Cl2)3 (4), and we found that Ga3+ supports stronger superexchange coupling between ligand-based spins than In3+. The combination of intraplanar ferromagnetic coupling and interplanar antiferromagnetic coupling exchange interactions suggests these are promising materials to host topological phenomena. 2D metal–organic frameworks provide insight into kagomé spin physics.![]()
Collapse
Affiliation(s)
- Kelsey A Collins
- Department of Chemistry, Northwestern University Evanston Illinois 60208 USA
| | - Richard J Saballos
- Department of Materials Science and Engineering, Northwestern University Evanston Illinois 60208 USA
| | - Majed S Fataftah
- Department of Chemistry, Northwestern University Evanston Illinois 60208 USA
| | - Danilo Puggioni
- Department of Materials Science and Engineering, Northwestern University Evanston Illinois 60208 USA
| | - James M Rondinelli
- Department of Materials Science and Engineering, Northwestern University Evanston Illinois 60208 USA
| | - Danna E Freedman
- Department of Chemistry, Northwestern University Evanston Illinois 60208 USA
| |
Collapse
|
26
|
Urai M, Miyagawa K, Sasaki T, Taniguchi H, Kanoda K. Quantum Disordering of an Antiferromagnetic Order by Quenched Randomness in an Organic Mott Insulator. PHYSICAL REVIEW LETTERS 2020; 124:117204. [PMID: 32242676 DOI: 10.1103/physrevlett.124.117204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 02/18/2020] [Indexed: 06/11/2023]
Abstract
The behavior of interacting spins subject to randomness is a longstanding issue and the emergence of exotic quantum states is among intriguing theoretical predictions. We show how a quantum-disordered phase emerges from a classical antiferromagnet by controlled randomness. ^{1}H NMR of a successively x-ray-irradiated organic Mott insulator finds that the magnetic order collapses into a spin-glass-like state, immediately after a slight amount of disorder centers are created, and evolves to a gapless quantum-disordered state without spin freezing, spin gap, or critical slowing down, as reported by T. Furukawa et al. [Phys. Rev. Lett. 115, 077001 (2015)]PRLTAO0031-900710.1103/PhysRevLett.115.077001 through sequential reductions in the spin freezing temperature and moment.
Collapse
Affiliation(s)
- Mizuki Urai
- Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan
| | - Kazuya Miyagawa
- Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan
| | - Takahiko Sasaki
- Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Hiromi Taniguchi
- Department of Physics, Saitama University, Saitama 338-8570, Japan
| | - Kazushi Kanoda
- Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
27
|
Ferreira T, Xing J, Sanjeewa LD, Sefat AS. Frustrated Magnetism in Triangular Lattice TlYbS 2 Crystals Grown via Molten Flux. Front Chem 2020; 8:127. [PMID: 32175311 PMCID: PMC7054481 DOI: 10.3389/fchem.2020.00127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/12/2020] [Indexed: 11/23/2022] Open
Abstract
The triangular lattice compound TlYbS2 was prepared as large single crystals via a molten flux growth technique using sodium chloride. Anisotropic magnetic susceptibility measurements down to 0.4 K indicate a complete absence of long-range magnetic order. Despite this lack of long-range order, short-range antiferromagnetic interactions are evidenced through broad transitions, suggesting frustrated behavior. Variable magnetic field measurements reveal metamagnetic behavior at temperatures ≤2 K. Complex low temperature field-tunable magnetic behavior, in addition to no observable long-range order down to 0.4 K, suggest that TlYbS2 is a frustrated magnet and a possible quantum spin liquid candidate.
Collapse
Affiliation(s)
- Timothy Ferreira
- Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN, United States
| | - Jie Xing
- Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN, United States
| | - Liurukara D Sanjeewa
- Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN, United States
| | - Athena S Sefat
- Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN, United States
| |
Collapse
|
28
|
Yamashita M, Akazawa M, Shimozawa M, Shibauchi T, Matsuda Y, Ishikawa H, Yajima T, Hiroi Z, Oda M, Yoshida H, Lee HY, Han JH, Kawashima N. Thermal-transport studies of kagomé antiferromagnets. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:074001. [PMID: 31648207 DOI: 10.1088/1361-648x/ab50e9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Searching for the ground state of a kagomé Heisenberg antiferromagnet (KHA) has been one of the central issues of condensed-matter physics, because the KHA is expected to host spin-liquid phases with exotic elementary excitations. Here, we show our longitudinal ([Formula: see text]) and transverse ([Formula: see text]) thermal conductivities measurements of the two kagomé materials, volborthite and Ca kapellasite. Although magnetic orders appear at temperatures much lower than the antiferromagnetic energy scale in both materials, the nature of spin liquids can be captured above the transition temperatures. The temperature and field dependence of [Formula: see text] is analyzed by spin and phonon contributions, and large sample variations of the spin contribution are found in volborthite. Clear changes in [Formula: see text] are observed at the multiple magnetic transitions in volborthite, showing different magnetic thermal conduction in different magnetic structures. These magnetic contributions are not clearly observed in low-[Formula: see text] crystals of volborthite, and are almost absent in Ca kapellasite, showing the high sensitivity of the magnetic excitation in [Formula: see text] to the defects in crystals. On the other hand, a clear thermal Hall signal has been observed in the lowest-[Formula: see text] crystal of volborthite and in Ca kapellasite. Remarkably, both the temperature dependence and the magnitude of [Formula: see text] of volborthite are found to be very similar to those of Ca kapellasite, despite of about an order of magnitude difference in [Formula: see text] We find that [Formula: see text] of both compounds is well reproduced, both qualitatively and quantitatively, by spin excitations described by the Schwinger-boson mean-field theory applied to KHA with the Dzyaloshinskii-Moriya interaction. This excellent agreement demonstrates not only that the thermal Hall effect in these kagomé antiferromagnets is caused by spins in the spin liquid phase, but also that the elementary excitations of this spin liquid phase are well described by the bosonic spin excitations.
Collapse
Affiliation(s)
- Minoru Yamashita
- The Institute for Solid State Physics, University of Tokyo, Kashiwa, 277-8581, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Han W, Maekawa S, Xie XC. Spin current as a probe of quantum materials. NATURE MATERIALS 2020; 19:139-152. [PMID: 31451780 DOI: 10.1038/s41563-019-0456-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Spin current historically referred to the flow of electrons carrying spin information, in particular since the discovery of giant magnetoresistance in the 1980s. Recently, it has been found that spin current can also be mediated by spin-triplet supercurrent, superconducting quasiparticles, spinons, magnons, spin superfluidity and so on. Here, we review key progress concerning the developing research direction utilizing spin current as a probe of quantum materials. We focus on spin-triplet superconductivity and spin dynamics in the ferromagnet/superconductor heterostructures, quantum spin liquids, magnetic phase transitions, magnon-polarons, magnon-polaritons, magnon Bose-Einstein condensates and spin superfluidity. The unique characteristics of spin current as a probe will be fruitful for future investigation of spin-dependent properties and the identification of new quantum materials.
Collapse
Affiliation(s)
- Wei Han
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, China.
- Collaborative Innovation Center of Quantum Matter, Beijing, China.
| | - Sadamichi Maekawa
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan
- Kavli Institute for Theoretical Sciences (KITS), University of Chinese Academy of Sciences, Beijing, China
| | - Xin-Cheng Xie
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, China
- Collaborative Innovation Center of Quantum Matter, Beijing, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing, China
- Beijing Academy of Quantum Information Sciences, Beijing, China
| |
Collapse
|
30
|
Broholm C, Cava RJ, Kivelson SA, Nocera DG, Norman MR, Senthil T. Quantum spin liquids. Science 2020; 367:367/6475/eaay0668. [DOI: 10.1126/science.aay0668] [Citation(s) in RCA: 271] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- C. Broholm
- Institute for Quantum Matter and Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - R. J. Cava
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - S. A. Kivelson
- Department of Physics, Stanford University, Stanford, CA 94305, USA
| | - D. G. Nocera
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - M. R. Norman
- Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - T. Senthil
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
31
|
Lima MP. Spatial anisotropy of the quantum spin liquid system YbMgGaO 4 revealed by ab initio calculations. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:025505. [PMID: 31581147 DOI: 10.1088/1361-648x/ab4ab6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
YbMgGaO4 was recently proposed as a promising quantum-spin-liquid candidate material. However, some details of its structure, such as those related to a spatial anisotropy, were not completely understood. In this work, we perform ab initio calculations based on density-functional-theory to investigate the structural, the electronic and the magnetic properties of YbMgGaO4. The geometrical model was constructed to take into account disorder effects produced by the random distribution of Ga and Mg along the lattice. We found a substantial spatial anisotropy revealed by variations up to 8% in the Mg-O and Ga-O bond lengths, which results in variations up to 3% in the Yb-Yb distances along its triangular lattice. Thus, the Yb lattice was not perfectly triangular. Furthermore, we demonstrate an out-of-plane magnetization at the Yb atoms with magnetic anisotropy energy of [Formula: see text] eV/Yb and a small interlayer exchange of [Formula: see text] eV/Yb, demonstrating that the system is only approximately two-dimensional. The presented results provide insights for an atomic-scale understanding of YbMgGaO4 with density-functional-theory calculations.
Collapse
Affiliation(s)
- Matheus P Lima
- Department of Physics, Federal University of São Carlos, CEP 13565-905, São Carlos, SP, Brazil
| |
Collapse
|
32
|
Kawamura H, Uematsu K. Nature of the randomness-induced quantum spin liquids in two dimensions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:504003. [PMID: 31470422 DOI: 10.1088/1361-648x/ab400c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The nature of the randomness-induced quantum spin liquid state, the random-singlet state, is investigated in two dimensions (2D) by means of the exact-diagonalization and the Hams-de Raedt methods for several frustrated lattices, e.g. the triangular, the kagome and the J 1-J 2 square lattices. Properties of the ground state, the low-energy excitations and the finite-temperature thermodynamic quantities are investigated. The ground state and the low-lying excited states consist of nearly isolated singlet-dimers, clusters of resonating singlet-dimers, and orphan spins. Low-energy excitations are either singlet-to-triplet excitations, diffusion of orphan spins accompanied by the recombination of nearby singlet-dimers, creation or destruction of resonating singlet-dimers clusters. The latter two excitations give enhanced dynamical 'liquid-like' features to the 2D random-singlet state. Comparison is made with the random-singlet state in a 1D chain without frustration, the similarity and the difference between in 1D and in 2D being highlighted. Frustration in a wide sense, not only the geometrical one but also including the one arising from the competition between distinct types of interactions, play an essential role in stabilizing this frustrated random singlet state. Recent experimental situations on both organic and inorganic materials are reviewed and discussed.
Collapse
Affiliation(s)
- Hikaru Kawamura
- Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | |
Collapse
|
33
|
Ni JM, Pan BL, Song BQ, Huang YY, Zeng JY, Yu YJ, Cheng EJ, Wang LS, Dai DZ, Kato R, Li SY. Absence of Magnetic Thermal Conductivity in the Quantum Spin Liquid Candidate EtMe_{3}Sb[Pd(dmit)_{2}]_{2}. PHYSICAL REVIEW LETTERS 2019; 123:247204. [PMID: 31922852 DOI: 10.1103/physrevlett.123.247204] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/07/2019] [Indexed: 06/10/2023]
Abstract
We present the ultralow-temperature specific heat and thermal conductivity measurements on single crystals of triangular-lattice compound EtMe_{3}Sb[Pd(dmit)_{2}]_{2}, which has long been considered as a gapless quantum spin liquid candidate. In specific heat measurements, a finite linear term is observed, consistent with the previous work [S. Yamashita et al., Nat. Commun. 2, 275 (2011)NCAOBW2041-172310.1038/ncomms1274]. However, we do not observe a finite residual linear term in the thermal conductivity measurements, and the thermal conductivity does not change in a magnetic field of 6 T. These results are in sharp contrast to previous thermal conductivity measurements on EtMe_{3}Sb[Pd(dmit)_{2}]_{2} [M. Yamashita et al., Science 328, 1246 (2010)SCIEAS0036-807510.1126/science.1188200], in which a huge residual linear term was observed and attributed to highly mobile gapless excitations, likely the spinons of a quantum spin liquid. In this context, the true ground state of EtMe_{3}Sb[Pd(dmit)_{2}]_{2} has to be reconsidered.
Collapse
Affiliation(s)
- J M Ni
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - B L Pan
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - B Q Song
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Y Y Huang
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - J Y Zeng
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Y J Yu
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - E J Cheng
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - L S Wang
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - D Z Dai
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - R Kato
- RIKEN, Condensed Molecular Materials Laboratory, Wako 351-0198, Japan
| | - S Y Li
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| |
Collapse
|
34
|
Uematsu K, Kawamura H. Randomness-Induced Quantum Spin Liquid Behavior in the s=1/2 Random-Bond Heisenberg Antiferromagnet on the Pyrochlore Lattice. PHYSICAL REVIEW LETTERS 2019; 123:087201. [PMID: 31491226 DOI: 10.1103/physrevlett.123.087201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/15/2019] [Indexed: 06/10/2023]
Abstract
We investigate the zero- and finite-temperature properties of the random-bond s=1/2 Heisenberg antiferromagnet on the pyrochlore lattice by the exact diagonalization and the Hams-de Raedt methods. We find that the randomness induces the gapless quantum spin liquid (QSL) state, the random-singlet state. Implications to recent experiments on the mixed-anion pyrochlore-lattice antiferromagnet Lu_{2}Mo_{2}O_{5}N_{2} exhibiting gapless QSL behaviors are discussed.
Collapse
Affiliation(s)
- Kazuki Uematsu
- Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Hikaru Kawamura
- Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
35
|
Thermodynamic, Dynamic, and Transport Properties of Quantum Spin Liquid in Herbertsmithite from an Experimental and Theoretical Point of View. CONDENSED MATTER 2019. [DOI: 10.3390/condmat4030075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In our review, we focus on the quantum spin liquid (QSL), defining the thermodynamic, transport, and relaxation properties of geometrically frustrated magnet (insulators) represented by herbertsmithite ZnCu 3 ( OH ) 6 Cl 2 . The review mostly deals with an historical perspective of our theoretical contributions on this subject, based on the theory of fermion condensation closely related to the emergence (due to geometrical frustration) of dispersionless parts in the fermionic quasiparticle spectrum, so-called flat bands. QSL is a quantum state of matter having neither magnetic order nor gapped excitations even at zero temperature. QSL along with heavy fermion metals can form a new state of matter induced by the topological fermion condensation quantum phase transition. The observation of QSL in actual materials such as herbertsmithite is of fundamental significance both theoretically and technologically, as it could open a path to the creation of topologically protected states for quantum information processing and quantum computation. It is therefore of great importance to establish the presence of a gapless QSL state in one of the most prospective materials, herbertsmithite. In this respect, the interpretation of current theoretical and experimental studies of herbertsmithite are controversial in their implications. Based on published experimental data augmented by our theoretical analysis, we present evidence for the the existence of a QSL in the geometrically frustrated insulator herbertsmithite ZnCu 3 ( OH ) 6 Cl 2 , providing a strategy for unambiguous identification of such a state in other materials. To clarify the nature of QSL in herbertsmithite, we recommend measurements of heat transport, low-energy inelastic neutron scattering, and optical conductivity σ ¯ in ZnCu 3 ( OH ) 6 Cl 2 crystals subject to an external magnetic field at low temperatures. Our analysis of the behavior of σ ¯ in herbertsmithite justifies this set of measurements, which can provide a conclusive experimental demonstration of the nature of its spinon-composed quantum spin liquid. Theoretical study of the optical conductivity of herbertsmithite allows us to expose the physical mechanisms responsible for its temperature and magnetic field dependence. We also suggest that artificially or spontaneously introducing inhomogeneity at nanoscale into ZnCu 3 ( OH ) 6 Cl 2 can both stabilize its QSL and simplify its chemical preparation, and can provide for tests that elucidate the role of impurities. We make predictions of the results of specified measurements related to the dynamical, thermodynamic, and transport properties in the case of a gapless QSL.
Collapse
|
36
|
Strong quantum fluctuations in a quantum spin liquid candidate with a Co-based triangular lattice. Proc Natl Acad Sci U S A 2019; 116:14505-14510. [PMID: 31266895 DOI: 10.1073/pnas.1906483116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Currently under active study in condensed matter physics, both theoretically and experimentally, are quantum spin liquid (QSL) states, in which no long-range magnetic ordering appears at low temperatures due to strong quantum fluctuations of the magnetic moments. The existing QSL candidates all have their intrinsic disadvantages, however, and solid evidence for quantum fluctuations is scarce. Here, we report a previously unreported compound, [Formula: see text], a geometrically frustrated system with effective spin-1/2 local moments for Co2+ ions on an isotropic 2-dimensional (2D) triangular lattice. Magnetic susceptibility and neutron scattering experiments show no magnetic ordering down to 0.05 K. Thermodynamic measurements show that there is a tremendous amount of magnetic entropy present below 1 K in 0-applied magnetic field. The presence of localized low-energy spin fluctuations is revealed by inelastic neutron measurements. At low applied fields, these spin excitations are confined to low energy and contribute to the anomalously large specific heat. In larger applied fields, the system reverts to normal behavior as evident by both neutron and thermodynamic results. Our experimental characterization thus reveals that this material is an excellent candidate for the experimental realization of a QSL state.
Collapse
|
37
|
Sichelschmidt J, Schlender P, Schmidt B, Baenitz M, Doert T. Electron spin resonance on the spin-1/2 triangular magnet NaYbS 2. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:205601. [PMID: 30763924 DOI: 10.1088/1361-648x/ab071d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The delafossite structure of NaYbS2 contains a planar spin-1/2 triangular lattice of Yb3+ ions and features a possible realisation of a quantum spin-liquid state. We investigated the Yb3+ spin dynamics by electron spin resonance (ESR) in single-crystalline samples of NaYbS2. Very clear spectra with a well-resolved and large anisotropy could be observed down to the lowest accessible temperature of 2.7 K. In contrast to the ESR properties of other known spin-liquid candidate systems, the resonance seen in NaYbS2 is accessible at low fields (<1 T) and is narrow enough for accurate characterisation of the relaxation rate as well as the g factor of the Yb3+ spins.
Collapse
|
38
|
Zhao Z, Zhang W, He Z. Synthesis, Structure, and Magnetic Properties of Two Mercury Selenite Antiferromagnets HgM(SeO3)2(H2O)2 (M = Co, Ni). Inorg Chem 2019; 58:5671-5676. [DOI: 10.1021/acs.inorgchem.9b00008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhiying Zhao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Wanwan Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Zhangzhen He
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| |
Collapse
|
39
|
Fujiyama S, Kato R. Fragmented Electronic Spins with Quantum Fluctuations in Organic Mott Insulators Near a Quantum Spin Liquid. PHYSICAL REVIEW LETTERS 2019; 122:147204. [PMID: 31050449 DOI: 10.1103/physrevlett.122.147204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Indexed: 06/09/2023]
Abstract
Magnetic structures of organic Mott insulators X[Pd(dmit)_{2}]_{2} (X=Me_{4}P, Me_{4}Sb), of which electronic states are located near a quantum spin liquid (X=EtMe_{3}Sb), are demonstrated by ^{13}C nuclear magnetic resonance. Antiferromagnetic spectra and nuclear relaxations show two distinct magnetic moments within each Pd(dmit)_{2} molecule, which cannot be described by single band dimer-Mott model and requires intramolecular electronic correlation. This unconventional fragmentation of S=1/2 electron spin with strong quantum fluctuation is presumably caused by nearly degenerated intramolecular multiple orbitals, and shares a notion of quantum liquids where electronic excitations are fractionalized and S=1/2 spin is no longer an elementary particle.
Collapse
Affiliation(s)
- S Fujiyama
- RIKEN, Condensed Molecular Materials Laboratory, Wako 351-0198, Japan
| | - R Kato
- RIKEN, Condensed Molecular Materials Laboratory, Wako 351-0198, Japan
| |
Collapse
|
40
|
Iida K, Yoshida H, Okabe H, Katayama N, Ishii Y, Koda A, Inamura Y, Murai N, Ishikado M, Kadono R, Kajimoto R. Quantum magnetisms in uniform triangular lattices Li 2AMo 3O 8 (A = In, Sc). Sci Rep 2019; 9:1826. [PMID: 30755692 PMCID: PMC6372599 DOI: 10.1038/s41598-018-36123-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/07/2018] [Indexed: 12/03/2022] Open
Abstract
Molecular based spin-1/2 triangular lattice systems such as LiZn2Mo3O8 have attracted research interest. Distortions, defects, and intersite disorder are suppressed in such molecular-based magnets, and intrinsic geometrical frustration gives rise to unconventional and unexpected ground states. Li2AMo3O8 (A = In or Sc) is such a compound where spin-1/2 Mo3O13 clusters in place of Mo ions form the uniform triangular lattice. Their ground states are different according to the A site. Li2InMo3O8 undergoes conventional 120° long-range magnetic order below TN = 12 K whereas isomorphic Li2ScMo3O8 exhibits no long-range magnetic order down to 0.5 K. Here, we report exotic magnetisms in Li2InMo3O8 and Li2ScMo3O8 investigated by muon spin rotation (μSR) and inelastic neutron scattering (INS) spectroscopies using polycrystalline samples. Li2InMo3O8 and Li2ScMo3O8 show completely different behaviors observed in both μSR and INS measurements, representing their different ground states. Li2InMo3O8 exhibits spin wave excitation which is quantitatively described by the nearest neighbor anisotropic Heisenberg model based on the 120° spin structure. In contrast, Li2ScMo3O8 undergoes short-range magnetic order below 4 K with quantum-spin-liquid-like magnetic fluctuations down to the base temperature. Origin of the different ground states is discussed in terms of anisotropies of crystal structures and magnetic interactions.
Collapse
Affiliation(s)
- Kazuki Iida
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), Tokai, Ibaraki, 319-1106, Japan.
| | - Hiroyuki Yoshida
- Department of Physics, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Hirotaka Okabe
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tokai, Ibaraki, 319-1106, Japan
| | - Naoyuki Katayama
- Department of Applied Physics, Nagoya University, Nagoya, Aichi, 464-8603, Japan
| | - Yuto Ishii
- Department of Physics, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Akihiro Koda
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tokai, Ibaraki, 319-1106, Japan
- Department of Materials Structure Science, Sokendai (The Graduate University for Advanced Studies), Tsukuba, Ibaraki, 305-0801, Japan
| | - Yasuhiro Inamura
- J-PARC Center, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki, 319-1195, Japan
| | - Naoki Murai
- J-PARC Center, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki, 319-1195, Japan
| | - Motoyuki Ishikado
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), Tokai, Ibaraki, 319-1106, Japan
| | - Ryosuke Kadono
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tokai, Ibaraki, 319-1106, Japan
- Department of Materials Structure Science, Sokendai (The Graduate University for Advanced Studies), Tsukuba, Ibaraki, 305-0801, Japan
| | - Ryoichi Kajimoto
- J-PARC Center, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki, 319-1195, Japan
| |
Collapse
|
41
|
Yadav R, Ray R, Eldeeb MS, Nishimoto S, Hozoi L, van den Brink J. Strong Effect of Hydrogen Order on Magnetic Kitaev Interactions in H_{3}LiIr_{2}O_{6}. PHYSICAL REVIEW LETTERS 2018; 121:197203. [PMID: 30468592 DOI: 10.1103/physrevlett.121.197203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Indexed: 06/09/2023]
Abstract
Very recently a quantum liquid was reported to form in H_{3}LiIr_{2}O_{6}, an iridate proposed to be a close realization of the Kitaev honeycomb model. To test this assertion we perform detailed quantum chemistry calculations to determine the magnetic interactions between Ir moments. We find that weakly bond dependent ferromagnetic Kitaev exchange dominates over other couplings, but still is substantially lower than in Na_{2}IrO_{3}. This reduction is caused by the peculiar position of the interlayer species: removing hydrogen cations next to a Ir_{2}O_{2} plaquette increases the Kitaev exchange by more than a factor of 3 on the corresponding Ir─Ir link. Consequently, any lack of hydrogen order will have a drastic effect on the magnetic interactions and strongly promote spin disordering.
Collapse
Affiliation(s)
- Ravi Yadav
- Institute for Theoretical Solid State Physics, IFW Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Rajyavardhan Ray
- Institute for Theoretical Solid State Physics, IFW Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany
- Dresden Center for Computational Materials Science (DCMS), TU Dresden, 01062 Dresden, Germany
| | - Mohamed S Eldeeb
- Institute for Theoretical Solid State Physics, IFW Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Satoshi Nishimoto
- Institute for Theoretical Solid State Physics, IFW Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany
- Department of Physics, Technical University Dresden, 01062 Dresden, Germany
| | - Liviu Hozoi
- Institute for Theoretical Solid State Physics, IFW Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Jeroen van den Brink
- Institute for Theoretical Solid State Physics, IFW Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany
- Department of Physics, Technical University Dresden, 01062 Dresden, Germany
| |
Collapse
|
42
|
Shen Y, Li YD, Walker HC, Steffens P, Boehm M, Zhang X, Shen S, Wo H, Chen G, Zhao J. Fractionalized excitations in the partially magnetized spin liquid candidate YbMgGaO 4. Nat Commun 2018; 9:4138. [PMID: 30297766 PMCID: PMC6175835 DOI: 10.1038/s41467-018-06588-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 09/11/2018] [Indexed: 11/18/2022] Open
Abstract
Quantum spin liquids (QSLs) are exotic states of matter characterized by emergent gauge structures and fractionalized elementary excitations. The recently discovered triangular lattice antiferromagnet YbMgGaO4 is a promising QSL candidate, and the nature of its ground state is still under debate. Here we use neutron scattering to study the spin excitations in YbMgGaO4 under various magnetic fields. Our data reveal a dispersive spin excitation continuum with clear upper and lower excitation edges under a weak magnetic field (H = 2.5 T). Moreover, a spectral crossing emerges at the Γ point at the Zeeman-split energy. The corresponding redistribution of the spectral weight and its field-dependent evolution are consistent with the theoretical prediction based on the inter-band and intra-band spinon particle-hole excitations associated with the Zeeman-split spinon bands, implying the presence of fractionalized excitations and spinon Fermi surfaces in the partially magnetized QSL state in YbMgGaO4. Recent experiments have indicated that YbMgGaO4 may be a quantum spin liquid with spinon Fermi surfaces but additional evidence is needed to support this interpretation. Shen et al. show weak magnetic fields cause changes in the excitation continuum that are consistent with spin liquid predictions.
Collapse
Affiliation(s)
- Yao Shen
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, 200433, China
| | - Yao-Dong Li
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, 200433, China.,Center for Field Theory and Particle Physics, Fudan University, Shanghai, 200433, China
| | - H C Walker
- ISIS Facility, Rutherford Appleton Laboratory, STFC, Chilton, Didcot, Oxon, OX11 0QX, UK
| | - P Steffens
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042, Grenoble Cedex 9, France
| | - M Boehm
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042, Grenoble Cedex 9, France
| | - Xiaowen Zhang
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, 200433, China
| | - Shoudong Shen
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, 200433, China
| | - Hongliang Wo
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, 200433, China
| | - Gang Chen
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, 200433, China. .,Center for Field Theory and Particle Physics, Fudan University, Shanghai, 200433, China. .,Collaborative Innovation Center of Advanced Microstructures, Nanjing, 210093, China.
| | - Jun Zhao
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, 200433, China. .,Collaborative Innovation Center of Advanced Microstructures, Nanjing, 210093, China.
| |
Collapse
|
43
|
Doki H, Akazawa M, Lee HY, Han JH, Sugii K, Shimozawa M, Kawashima N, Oda M, Yoshida H, Yamashita M. Spin Thermal Hall Conductivity of a Kagome Antiferromagnet. PHYSICAL REVIEW LETTERS 2018; 121:097203. [PMID: 30230896 DOI: 10.1103/physrevlett.121.097203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/10/2018] [Indexed: 06/08/2023]
Abstract
A clear thermal Hall signal (κ_{xy}) was observed in the spin-liquid phase of the S=1/2 kagome antiferromagnet Ca kapellasite [CaCu_{3}(OH)_{6}Cl_{2}·0.6H_{2}O]. We found that κ_{xy} is well reproduced, both qualitatively and quantitatively, using the Schwinger-boson mean-field theory with the Dzyaloshinskii-Moriya interaction of D/J∼0.1. In particular, κ_{xy} values of Ca kapellasite and those of another kagome antiferromagnet, volborthite, converge to one single curve in simulations modeled using Schwinger bosons, indicating a common temperature dependence of κ_{xy} for the spins of a kagome antiferromagnet.
Collapse
Affiliation(s)
- Hayato Doki
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, 277-8581, Japan
| | - Masatoshi Akazawa
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, 277-8581, Japan
| | - Hyun-Yong Lee
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, 277-8581, Japan
| | - Jung Hoon Han
- Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - Kaori Sugii
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, 277-8581, Japan
| | - Masaaki Shimozawa
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, 277-8581, Japan
| | - Naoki Kawashima
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, 277-8581, Japan
| | - Migaku Oda
- Department of Physics, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hiroyuki Yoshida
- Department of Physics, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Minoru Yamashita
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, 277-8581, Japan
| |
Collapse
|
44
|
Pustogow A, Saito Y, Zhukova E, Gorshunov B, Kato R, Lee TH, Fratini S, Dobrosavljević V, Dressel M. Low-Energy Excitations in Quantum Spin Liquids Identified by Optical Spectroscopy. PHYSICAL REVIEW LETTERS 2018; 121:056402. [PMID: 30118313 DOI: 10.1103/physrevlett.121.056402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Indexed: 06/08/2023]
Abstract
The electrodynamic response of organic spin liquids with highly frustrated triangular lattices has been measured in a wide energy range. While the overall optical spectra of these Mott insulators are governed by transitions between the Hubbard bands, distinct in-gap excitations can be identified at low temperatures and frequencies, which we attribute to the quantum-spin-liquid state. For the strongly correlated β^{'}-EtMe_{3}Sb[Pd(dmit)_{2}]_{2}, we discover enhanced conductivity below 175 cm^{-1}, comparable to the energy of the magnetic coupling J≈250 K. For ω→0, these low-frequency excitations vanish faster than the charge-carrier response subject to Mott-Hubbard correlations, resulting in a dome-shaped band peaked at 100 cm^{-1}. Possible relations to spinons, magnons, and disorder are discussed.
Collapse
Affiliation(s)
- A Pustogow
- 1. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
| | - Y Saito
- 1. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
- Department of Physics, Hokkaido University, Sapporo 060-0810, Japan
| | - E Zhukova
- Moscow Institute of Physics and Technology (State University), 141700, Dolgoprudny, Moscow Region, Russia
| | - B Gorshunov
- Moscow Institute of Physics and Technology (State University), 141700, Dolgoprudny, Moscow Region, Russia
| | - R Kato
- Condensed Molecular Materials Laboratory, RIKEN, Wako-shi, Saitama 351-0198, Japan
| | - T-H Lee
- Department of Physics and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306, USA
| | - S Fratini
- Institut Néel-CNRS and Université Grenoble Alpes, 38042 Grenoble Cedex 9, France
| | - V Dobrosavljević
- Department of Physics and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306, USA
| | - M Dressel
- 1. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
| |
Collapse
|
45
|
Kasahara Y, Sugii K, Ohnishi T, Shimozawa M, Yamashita M, Kurita N, Tanaka H, Nasu J, Motome Y, Shibauchi T, Matsuda Y. Unusual Thermal Hall Effect in a Kitaev Spin Liquid Candidate α-RuCl_{3}. PHYSICAL REVIEW LETTERS 2018; 120:217205. [PMID: 29883185 DOI: 10.1103/physrevlett.120.217205] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 04/17/2018] [Indexed: 06/08/2023]
Abstract
The Kitaev quantum spin liquid displays the fractionalization of quantum spins into Majorana fermions. The emergent Majorana edge current is predicted to manifest itself in the form of a finite thermal Hall effect, a feature commonly discussed in topological superconductors. Here we report on thermal Hall conductivity κ_{xy} measurements in α-RuCl_{3}, a candidate Kitaev magnet with the two-dimensional honeycomb lattice. In a spin-liquid (Kitaev paramagnetic) state below the temperature characterized by the Kitaev interaction J_{K}/k_{B}∼80 K, positive κ_{xy} develops gradually upon cooling, demonstrating the presence of highly unusual itinerant excitations. Although the zero-temperature property is masked by the magnetic ordering at T_{N}=7 K, the sign, magnitude, and T dependence of κ_{xy}/T at intermediate temperatures follows the predicted trend of the itinerant Majorana excitations.
Collapse
Affiliation(s)
- Y Kasahara
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| | - K Sugii
- Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan
| | - T Ohnishi
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| | - M Shimozawa
- Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan
| | - M Yamashita
- Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan
| | - N Kurita
- Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan
| | - H Tanaka
- Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan
| | - J Nasu
- Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan
| | - Y Motome
- Department of Applied Physics, University of Tokyo, Bunkyo, Tokyo 113-8656, Japan
| | - T Shibauchi
- Department of Advanced Materials Science, University of Tokyo, Chiba 277-8561, Japan
| | - Y Matsuda
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
46
|
Raman Scattering as a Probe of the Magnetic State of BEDT-TTF Based Mott Insulators. CRYSTALS 2018. [DOI: 10.3390/cryst8060233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Keleş A, Zhao E. Absence of Long-Range Order in a Triangular Spin System with Dipolar Interactions. PHYSICAL REVIEW LETTERS 2018; 120:187202. [PMID: 29775325 DOI: 10.1103/physrevlett.120.187202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Indexed: 06/08/2023]
Abstract
The antiferromagnetic Heisenberg model on the triangular lattice is perhaps the best known example of frustrated magnets, but it orders at low temperatures. Recent density matrix renormalization group (DMRG) calculations find that the next nearest neighbor interaction J_{2} enhances the frustration, and it leads to a spin liquid for J_{2}/J_{1}∈(0.08,0.15). In addition, a DMRG study of a dipolar Heisenberg model with longer range interactions gives evidence for a spin liquid at a small dipole tilting angle θ∈[0,10°). In both cases, the putative spin liquid region appears to be small. Here, we show that for the triangular lattice dipolar Heisenberg model, a robust quantum paramagnetic phase exists in a surprisingly wide region, θ∈[0,54°), for dipoles tilted along the lattice diagonal direction. We obtain the phase diagram of the model by functional renormalization group (RG), which treats all magnetic instabilities on equal footing. The quantum paramagnetic phase is characterized by a smooth continuous flow of vertex functions and spin susceptibility down to the lowest RG scale, in contrast to the apparent breakdown of RG flow in phases with stripe or spiral order. Our finding points to a promising direction to search for quantum spin liquids in ultracold dipolar molecules.
Collapse
Affiliation(s)
- Ahmet Keleş
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
- Department of Physics and Astronomy, George Mason University, Fairfax, Virginia 22030, USA
| | - Erhai Zhao
- Department of Physics and Astronomy, George Mason University, Fairfax, Virginia 22030, USA
| |
Collapse
|
48
|
Chowdhury D, Sodemann I, Senthil T. Mixed-valence insulators with neutral Fermi surfaces. Nat Commun 2018; 9:1766. [PMID: 29720630 PMCID: PMC5932084 DOI: 10.1038/s41467-018-04163-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/28/2018] [Indexed: 11/13/2022] Open
Abstract
Samarium hexaboride is a classic three-dimensional mixed valence system with a high-temperature metallic phase that evolves into a paramagnetic charge insulator below 40 K. A number of recent experiments have suggested the possibility that the low-temperature insulating bulk hosts electrically neutral gapless fermionic excitations. Here we show that a possible ground state of strongly correlated mixed valence insulators—a composite exciton Fermi liquid—hosts a three dimensional Fermi surface of a neutral fermion, that we name the “composite exciton.” We describe the mechanism responsible for the formation of such excitons, discuss the phenomenology of the composite exciton Fermi liquids and make comparison to experiments in SmB6. Samarium hexaboride is a candidate topological insulator but recent experiments have found behaviour indicative of a metallic Fermi liquid phase. Here the authors show that the conflicting observations can be accommodated by a model where strong interactions drive the formation of exotic neutral quasiparticles.
Collapse
Affiliation(s)
- Debanjan Chowdhury
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Inti Sodemann
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Max-Planck Institute for the Physics of Complex Systems, Dresden, 01187, Germany
| | - T Senthil
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
49
|
Yu F, Li J, Cao ZH, Kurmoo M, Zuo JL. Electrical Conductivity of Copper Hexamers Tuned by their Ground-State Valences. Inorg Chem 2018. [PMID: 29517912 DOI: 10.1021/acs.inorgchem.8b00243] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new design concept has been realized for the construction of molecular conductors, whereby the building unit contains a core reservoir of carriers made up of metal ions with controllable valence states and shelled by flat organic ligands having an extended π-system to promote supramolecular electronic communication. Therefore, reacting the conjugated multidentate ligand 5,5'-pyridyl-3,3'-bi-1 H-pyrazole with different copper salts solvothermally led to three interesting hexameric salts having different ground-state valences, [CuII6(L)4(NO3)(CH3OH)2](NO3)3·4CH3OH, [(CH3)2NH2][CuICuII5(L)4](SO4)2·4H2O, and [CuI2CuII4(L)4](NO3)2·2CH3OH. The monovalent CuII6 salt is an insulator, but the mixed-valent CuII5-CuI and CuII4-CuI2 salts are semiconductors. Magnetic exchange interactions up to JNN = -158 cm-1 dominate the susceptibilities and lead to ground-state spin ST = 1 (CuII6), 1/2 (CuII5-CuI), and 0 (CuII4-CuI2) at 40 K. Cyclic voltammetry shows the stepwise one-electron oxidation-reduction through all the possible valence states. The theoretical calculations of the electronic and band structures of the three compounds substantiate the experimentally observed physical properties.
Collapse
Affiliation(s)
- Fei Yu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210023 , P. R. China
| | - Jing Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210023 , P. R. China
| | - Zi-Heng Cao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210023 , P. R. China
| | - Mohamedally Kurmoo
- Institut de Chimie de Strasbourg , Université de Strasbourg, CNRS-UMR 7177 , 4 rue Blaise Pascal , 67008 Strasbourg , France
| | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210023 , P. R. China
| |
Collapse
|
50
|
Hentrich R, Wolter AUB, Zotos X, Brenig W, Nowak D, Isaeva A, Doert T, Banerjee A, Lampen-Kelley P, Mandrus DG, Nagler SE, Sears J, Kim YJ, Büchner B, Hess C. Unusual Phonon Heat Transport in α-RuCl_{3}: Strong Spin-Phonon Scattering and Field-Induced Spin Gap. PHYSICAL REVIEW LETTERS 2018; 120:117204. [PMID: 29601734 DOI: 10.1103/physrevlett.120.117204] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Indexed: 06/08/2023]
Abstract
The honeycomb Kitaev-Heisenberg model is a source of a quantum spin liquid with Majorana fermions and gauge flux excitations as fractional quasiparticles. Here we unveil the highly unusual low-temperature heat conductivity κ of α-RuCl_{3}, a prime candidate for realizing such physics: beyond a magnetic field of B_{c}≈7.5 T, κ increases by about one order of magnitude, both for in-plane as well as out-of-plane transport. This clarifies the unusual magnetic field dependence unambiguously to be the result of severe scattering of phonons off putative Kitaev-Heisenberg excitations in combination with a drastic field-induced change of the magnetic excitation spectrum. In particular, an unexpected, large energy gap arises, which increases linearly with the magnetic field, reaching remarkable ℏω_{0}/k_{B}≈50 K at 18 T.
Collapse
Affiliation(s)
- Richard Hentrich
- Leibniz Institute for Solid State and Materials Research, 01069 Dresden, Germany
| | - Anja U B Wolter
- Leibniz Institute for Solid State and Materials Research, 01069 Dresden, Germany
| | - Xenophon Zotos
- Leibniz Institute for Solid State and Materials Research, 01069 Dresden, Germany
- ITCP and CCQCN, Department of Physics, University of Crete, 71003 Heraklion, Greece
| | - Wolfram Brenig
- Institute for Theoretical Physics, TU Braunschweig, 38106 Braunschweig, Germany
| | - Domenic Nowak
- Department of Chemistry and Food Chemistry, TU Dresden, 01062 Dresden, Germany
| | - Anna Isaeva
- Department of Chemistry and Food Chemistry, TU Dresden, 01062 Dresden, Germany
| | - Thomas Doert
- Department of Chemistry and Food Chemistry, TU Dresden, 01062 Dresden, Germany
| | - Arnab Banerjee
- Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Paula Lampen-Kelley
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - David G Mandrus
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Stephen E Nagler
- Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Jennifer Sears
- Department of Physics and Center for Quantum Materials, University of Toronto, 60 St. George Street, Toronto, Ontario, Canada M5S 1A7
| | - Young-June Kim
- Department of Physics and Center for Quantum Materials, University of Toronto, 60 St. George Street, Toronto, Ontario, Canada M5S 1A7
| | - Bernd Büchner
- Leibniz Institute for Solid State and Materials Research, 01069 Dresden, Germany
- Institute of Solid State Physics, TU Dresden, 01069 Dresden, Germany
- Center for Transport and Devices, TU Dresden, 01069 Dresden, Germany
| | - Christian Hess
- Leibniz Institute for Solid State and Materials Research, 01069 Dresden, Germany
- Center for Transport and Devices, TU Dresden, 01069 Dresden, Germany
| |
Collapse
|