1
|
Tian F, Wainaina JM, Howard-Varona C, Domínguez-Huerta G, Bolduc B, Gazitúa MC, Smith G, Gittrich MR, Zablocki O, Cronin DR, Eveillard D, Hallam SJ, Sullivan MB. Prokaryotic-virus-encoded auxiliary metabolic genes throughout the global oceans. MICROBIOME 2024; 12:159. [PMID: 39198891 PMCID: PMC11360552 DOI: 10.1186/s40168-024-01876-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/16/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND Prokaryotic microbes have impacted marine biogeochemical cycles for billions of years. Viruses also impact these cycles, through lysis, horizontal gene transfer, and encoding and expressing genes that contribute to metabolic reprogramming of prokaryotic cells. While this impact is difficult to quantify in nature, we hypothesized that it can be examined by surveying virus-encoded auxiliary metabolic genes (AMGs) and assessing their ecological context. RESULTS We systematically developed a global ocean AMG catalog by integrating previously described and newly identified AMGs and then placed this catalog into ecological and metabolic contexts relevant to ocean biogeochemistry. From 7.6 terabases of Tara Oceans paired prokaryote- and virus-enriched metagenomic sequence data, we increased known ocean virus populations to 579,904 (up 16%). From these virus populations, we then conservatively identified 86,913 AMGs that grouped into 22,779 sequence-based gene clusters, 7248 (~ 32%) of which were not previously reported. Using our catalog and modeled data from mock communities, we estimate that ~ 19% of ocean virus populations carry at least one AMG. To understand AMGs in their metabolic context, we identified 340 metabolic pathways encoded by ocean microbes and showed that AMGs map to 128 of them. Furthermore, we identified metabolic "hot spots" targeted by virus AMGs, including nine pathways where most steps (≥ 0.75) were AMG-targeted (involved in carbohydrate, amino acid, fatty acid, and nucleotide metabolism), as well as other pathways where virus-encoded AMGs outnumbered cellular homologs (involved in lipid A phosphates, phosphatidylethanolamine, creatine biosynthesis, phosphoribosylamine-glycine ligase, and carbamoyl-phosphate synthase pathways). CONCLUSIONS Together, this systematically curated, global ocean AMG catalog and analyses provide a valuable resource and foundational observations to understand the role of viruses in modulating global ocean metabolisms and their biogeochemical implications. Video Abstract.
Collapse
Affiliation(s)
- Funing Tian
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, 43210, USA
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - James M Wainaina
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, 43210, USA
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Cristina Howard-Varona
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, 43210, USA
| | - Guillermo Domínguez-Huerta
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH, 43210, USA
- Centro Oceanográfico de Málaga (IEO-CSIC), Puerto Pesquero S/N, 29640, Fuengirola (Málaga), Spain
| | - Benjamin Bolduc
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH, 43210, USA
| | | | - Garrett Smith
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, 43210, USA
| | - Marissa R Gittrich
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, 43210, USA
| | - Olivier Zablocki
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, 43210, USA
| | - Dylan R Cronin
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH, 43210, USA
| | - Damien Eveillard
- Université de Nantes, CNRS, LS2N, Nantes, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara GO-SEE, Paris, France
| | - Steven J Hallam
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Genome Science and Technology Program, University of British Columbia, 2329 West Mall, Vancouver, BC, V6T 1Z4, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- ECOSCOPE Training Program, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Matthew B Sullivan
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA.
- Center of Microbiome Science, Ohio State University, Columbus, OH, 43210, USA.
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH, 43210, USA.
- Department of Civil, Environmental, and Geodetic Engineering, Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
2
|
Peng K, Wu Z, Feng Z, Deng R, Ma X, Fan B, Liu H, Tang Z, Zhao Z, Li Y. A highly integrated digital PCR system with on-chip heating for accurate DNA quantitative analysis. Biosens Bioelectron 2024; 253:116167. [PMID: 38422813 DOI: 10.1016/j.bios.2024.116167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
Digital polymerase chain reaction (dPCR) is extensively used for highly sensitive disease diagnosis due to its single-molecule detection ability. However, current dPCR systems require intricate DNA sample distribution, rely on cumbersome external heaters, and exhibit sluggish thermal cycling, hampering efficiency and speed of the dPCR process. Herein, we presented the development of a microwell array based dPCR system featuring an integrated self-heating dPCR chip. By utilizing hydrodynamic and electrothermal simulations, the chip's structure is optimized, resulting in improved partitioning within microwells and uniform thermal distribution. Through strategic hydrophilic/hydrophobic modifications on the chip's surface, we effectively secured the compartmentalization of sample within the microwells by employing an overlaying oil phase, which renders homogeneity and independence of samples in the microwells. To achieve precise, stable, uniform, and rapid self-heating of the chip, the ITO heating layer and the temperature control algorithm are deliberately designed. With a capacity of 22,500 microwells that can be easily expanded, the system successfully quantified EGFR plasmid solutions, exhibiting a dynamic linear range of 105 and a detection limit of 10 copies per reaction. To further validate its performance, we employed the dPCR platform for quantitative detection of BCR-ABL1 mutation gene fragments, where its performance was compared against the QuantStudio 3D, and the self-heating dPCR system demonstrated similar analytical accuracy to the commercial dPCR system. Notably, the individual chip is produced on a semiconductor manufacturing line, benefiting from mass production capabilities, so the chips are cost-effective and conducive to widespread adoption and accessibility.
Collapse
Affiliation(s)
- Kang Peng
- BOE Technology Group Co Ltd., Beijing, 100176, PR China
| | - Zhihong Wu
- BOE Technology Group Co Ltd., Beijing, 100176, PR China
| | - Zhongxin Feng
- Affiliated Hospital of Guizhou Medical University, Guiyang, 550002, Guizhou, PR China
| | - Ruijun Deng
- BOE Technology Group Co Ltd., Beijing, 100176, PR China
| | - Xiangguo Ma
- BOE Technology Group Co Ltd., Beijing, 100176, PR China
| | - Beiyuan Fan
- BOE Technology Group Co Ltd., Beijing, 100176, PR China
| | - Haonan Liu
- BOE Technology Group Co Ltd., Beijing, 100176, PR China
| | - Zhuzhu Tang
- Affiliated Hospital of Guizhou Medical University, Guiyang, 550002, Guizhou, PR China
| | - Zijian Zhao
- BOE Technology Group Co Ltd., Beijing, 100176, PR China.
| | - Yanzhao Li
- BOE Technology Group Co Ltd., Beijing, 100176, PR China.
| |
Collapse
|
3
|
Zhang YP, Bu JW, Shu RX, Liu SL. Advances in rapid point-of-care virus testing. Analyst 2024; 149:2507-2525. [PMID: 38630498 DOI: 10.1039/d4an00238e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2024]
Abstract
Outbreaks of viral diseases seriously jeopardize people's health and cause huge economic losses. At the same time, virology provides a new perspective for biology, molecular biology and cancer research, and it is important to study the discovered viruses with potential applications. Therefore, the development of immediate and rapid viral detection methods for the prevention and treatment of viral diseases as well as the study of viruses has attracted extensive attention from scientists. With the continuous progress of science and technology, especially in the field of bioanalysis, a series of new detection techniques have been applied to the on-site rapid detection of viruses, which has become a powerful approach for human beings to fight against viruses. In this paper, the latest research progress of rapid point-of-care detection of viral nucleic acids, antigens and antibodies is presented. In addition, the advantages and disadvantages of these technologies are discussed from the perspective of practical application requirements. Finally, the problems and challenges faced by rapid viral detection methods and their development prospects are discussed.
Collapse
Affiliation(s)
- Yu-Peng Zhang
- Technical Center, Shanghai Tobacco Group Co., Ltd, Shanghai 201315, P. R. China.
| | - Jin-Wei Bu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China.
| | - Ru-Xin Shu
- Technical Center, Shanghai Tobacco Group Co., Ltd, Shanghai 201315, P. R. China.
| | - Shu-Lin Liu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China.
| |
Collapse
|
4
|
Pradela Filho LA, Paixão TRLC, Nordin GP, Woolley AT. Leveraging the third dimension in microfluidic devices using 3D printing: no longer just scratching the surface. Anal Bioanal Chem 2024; 416:2031-2037. [PMID: 37470814 PMCID: PMC10799186 DOI: 10.1007/s00216-023-04862-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
3D printers utilize cutting-edge technologies to create three-dimensional objects and are attractive tools for engineering compact microfluidic platforms with complex architectures for chemical and biochemical analyses. 3D printing's popularity is associated with the freedom of creating intricate designs using inexpensive instrumentation, and these tools can produce miniaturized platforms in minutes, facilitating fabrication scaleup. This work discusses key challenges in producing three-dimensional microfluidic structures using currently available 3D printers, addressing considerations about printer capabilities and software limitations encountered in the design and processing of new architectures. This article further communicates the benefits of using three-dimensional structures, including the ability to scalably produce miniaturized analytical systems and the possibility of combining them with multiple processes, such as mixing, pumping, pre-concentration, and detection. Besides increasing analytical applicability, such three-dimensional architectures are important in the eventual design of commercial devices since they can decrease user interferences and reduce the volume of reagents or samples required, making assays more reliable and rapid. Moreover, this manuscript provides insights into research directions involving 3D-printed microfluidic devices. Finally, this work offers an outlook for future developments to provide and take advantage of 3D microfluidic functionality in 3D printing. Graphical abstract Creating three-dimensional microfluidic structures using 3D printing will enable key advances and novel applications in (bio)chemical analysis.
Collapse
Affiliation(s)
- Lauro A Pradela Filho
- Department of Chemistry, University of São Paulo, São Paulo, SP, Brazil
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | | | - Gregory P Nordin
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT, USA
| | - Adam T Woolley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
5
|
Yue Z, Zhang J, Zhang J, Wang X, Li L, Yu H, Liu B, Li Q, Zhu D, Zou Y. Combined virome analysis and metagenomic sequencing to reveal the viral communities and risk of virus-associated antibiotic resistance genes during composting. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132088. [PMID: 37482039 DOI: 10.1016/j.jhazmat.2023.132088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/15/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
The issue of antibiotic resistance genes (ARGs) pollution in manure has garnered significant attention, with viruses now being recognized as crucial carriers and disseminators of ARGs. However, the virus-associated ARG profiles and potential health risks in composts are still unclear. In this study, the viral communities and associated ARGs in biogas residue and pig faeces composts were profiled by virome analysis. The viral communities were dominated by Caudovirales, and non-thermophilic viruses were inactivated during composting. The diversity and abundance of ARGs were lower in virome than in metagenome, while ARGs' risk was greater in virome than in metagenome. There were six bacterial genera identified as viral hosts at the genomic level, Pseudomonas and Clostridium carried high-risk ARGs. Virus-associated ARGs in viral hosts had a higher risk rank than non-virus-associated ARGs. Composting reduced the diversity, abundance and risk of viral ARGs. The risk of ARGs in biogas residues was significantly lower than that of pig faeces in the initial period of composting, and the two different substracts equally less harmful after composting. These results revealed that viruses play a non-negligible role in spreading ARGs, posing high risk to environmental and human health.
Collapse
Affiliation(s)
- Zhengfu Yue
- Key Laboratory of Low-carbon Green Agriculture in Tropical region of China, Ministry of Agriculture and Rural Affairs, Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| | - Jing Zhang
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests, Ministry of Education (School of Plant Protection), Hainan University, Haikou 570228, China
| | - Jing Zhang
- Department of Environmental Sciences, School of Tropical and Laboratory Medicine, Hainan Medical University, Haikou 571199, China; CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xingxiang Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lirong Li
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Haiyang Yu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Beibei Liu
- Key Laboratory of Low-carbon Green Agriculture in Tropical region of China, Ministry of Agriculture and Rural Affairs, Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| | - Qinfen Li
- Key Laboratory of Low-carbon Green Agriculture in Tropical region of China, Ministry of Agriculture and Rural Affairs, Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yukun Zou
- Key Laboratory of Low-carbon Green Agriculture in Tropical region of China, Ministry of Agriculture and Rural Affairs, Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China.
| |
Collapse
|
6
|
Roux S, Camargo AP, Coutinho FH, Dabdoub SM, Dutilh BE, Nayfach S, Tritt A. iPHoP: An integrated machine learning framework to maximize host prediction for metagenome-derived viruses of archaea and bacteria. PLoS Biol 2023; 21:e3002083. [PMID: 37083735 PMCID: PMC10155999 DOI: 10.1371/journal.pbio.3002083] [Citation(s) in RCA: 80] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 05/03/2023] [Accepted: 03/15/2023] [Indexed: 04/22/2023] Open
Abstract
The extraordinary diversity of viruses infecting bacteria and archaea is now primarily studied through metagenomics. While metagenomes enable high-throughput exploration of the viral sequence space, metagenome-derived sequences lack key information compared to isolated viruses, in particular host association. Different computational approaches are available to predict the host(s) of uncultivated viruses based on their genome sequences, but thus far individual approaches are limited either in precision or in recall, i.e., for a number of viruses they yield erroneous predictions or no prediction at all. Here, we describe iPHoP, a two-step framework that integrates multiple methods to reliably predict host taxonomy at the genus rank for a broad range of viruses infecting bacteria and archaea, while retaining a low false discovery rate. Based on a large dataset of metagenome-derived virus genomes from the IMG/VR database, we illustrate how iPHoP can provide extensive host prediction and guide further characterization of uncultivated viruses.
Collapse
Affiliation(s)
- Simon Roux
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Antonio Pedro Camargo
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | | | - Shareef M Dabdoub
- Division of Biostatistics and Computational Biology, University of Iowa College of Dentistry, Iowa City, Iowa, United States of America
| | - Bas E Dutilh
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany
- Theoretical Biology and Bioinformatics, Science for Life, Utrecht University, Utrecht, the Netherlands
| | - Stephen Nayfach
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Andrew Tritt
- Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| |
Collapse
|
7
|
Smith L, Goldobina E, Govi B, Shkoporov AN. Bacteriophages of the Order Crassvirales: What Do We Currently Know about This Keystone Component of the Human Gut Virome? Biomolecules 2023; 13:584. [PMID: 37189332 PMCID: PMC10136315 DOI: 10.3390/biom13040584] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 05/17/2023] Open
Abstract
The order Crassvirales comprises dsDNA bacteriophages infecting bacteria in the phylum Bacteroidetes that are found in a variety of environments but are especially prevalent in the mammalian gut. This review summarises available information on the genomics, diversity, taxonomy, and ecology of this largely uncultured viral taxon. With experimental data available from a handful of cultured representatives, the review highlights key properties of virion morphology, infection, gene expression and replication processes, and phage-host dynamics.
Collapse
|
8
|
Zhang J, Xue J, Luo N, Chen F, Chen B, Zhao Y. Microwell array chip-based single-cell analysis. LAB ON A CHIP 2023; 23:1066-1079. [PMID: 36625143 DOI: 10.1039/d2lc00667g] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Single-cell profiling is key to uncover the cellular heterogeneity and drives deep understanding of cell fate. In recent years, microfluidics has become an ideal tool for single-cell profiling owing to its benefits of high throughput and automation. Among various microfluidic platforms, microwell has the advantages of simple operation and easy integration with in situ analysis ability, making it an ideal technique for single-cell studies. Herein, recent advances of single-cell analysis based on microwell array chips are summarized. We first introduce the design and preparation of different microwell chips. Then microwell-based cell capture and lysis strategies are discussed. We finally focus on advanced microwell-based analysis of single-cell proteins, nucleic acids, and metabolites. The challenges and opportunities for the development of microwell-based single-cell analysis are also presented.
Collapse
Affiliation(s)
- Jin Zhang
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China.
| | - Jing Xue
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China.
| | - Ningfeng Luo
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China.
| | - Feng Chen
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China.
| | - Badong Chen
- Institute of Artificial Intelligence and Robotics and the College of Artificial Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China.
| | - Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China.
| |
Collapse
|
9
|
Boezen D, Johnson ML, Grum-Grzhimaylo AA, van der Vlugt RA, Zwart MP. Evaluation of sequencing and PCR-based methods for the quantification of the viral genome formula. Virus Res 2023; 326:199064. [PMID: 36746340 DOI: 10.1016/j.virusres.2023.199064] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023]
Abstract
Viruses show great diversity in their genome organization. Multipartite viruses package their genome segments into separate particles, most or all of which are required to initiate infection in the host cell. The benefits of such seemingly inefficient genome organization are not well understood. One hypothesised benefit of multipartition is that it allows for flexible changes in gene expression by altering the frequency of each genome segment in different environments, such as encountering different host species. The ratio of the frequency of segments is termed the genome formula (GF). Thus far, formal studies quantifying the GF have been performed for well-characterised virus-host systems in experimental settings using RT-qPCR. However, to understand GF variation in natural populations or novel virus-host systems, a comparison of several methods for GF estimation including high-throughput sequencing (HTS) based methods is needed. Currently, it is unclear how HTS-methods compare a golden standard, such as RT-qPCR. Here we show a comparison of multiple GF quantification methods (RT-qPCR, RT-digital PCR, Illumina RNAseq and Nanopore direct RNA sequencing) using three host plants (Nicotiana tabacum, Nicotiana benthamiana, and Chenopodium quinoa) infected with cucumber mosaic virus (CMV), a tripartite RNA virus. Our results show that all methods give roughly similar results, though there is a significant method effect on genome formula estimates. While the RT-qPCR and RT-dPCR GF estimates are congruent, the GF estimates from HTS methods deviate from those found with PCR. Our findings emphasize the need to tailor the GF quantification method to the experimental aim, and highlight that it may not be possible to compare HTS and PCR-based methods directly. The difference in results between PCR-based methods and HTS highlights that the choice of quantification technique is not trivial.
Collapse
Affiliation(s)
- Dieke Boezen
- Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen 6708PB, The Netherlands; Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands.
| | - Marcelle L Johnson
- Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen 6708PB, The Netherlands; Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands
| | - Alexey A Grum-Grzhimaylo
- Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen 6708PB, The Netherlands; Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht 3584CT, The Netherlands
| | - René Aa van der Vlugt
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands
| | - Mark P Zwart
- Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen 6708PB, The Netherlands
| |
Collapse
|
10
|
Aggarwal S, Dhall A, Patiyal S, Choudhury S, Arora A, Raghava GPS. An ensemble method for prediction of phage-based therapy against bacterial infections. Front Microbiol 2023; 14:1148579. [PMID: 37032893 PMCID: PMC10076811 DOI: 10.3389/fmicb.2023.1148579] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Phage therapy is a viable alternative to antibiotics for treating microbial infections, particularly managing drug-resistant strains of bacteria. One of the major challenges in designing phage-based therapy is to identify the most appropriate potential phage candidate to treat bacterial infections. In this study, an attempt has been made to predict phage-host interactions with high accuracy to identify the potential bacteriophage that can be used for treating a bacterial infection. The developed models have been created using a training dataset containing 826 phage- host interactions, and have been evaluated on a validation dataset comprising 1,201 phage-host interactions. Firstly, alignment-based models have been developed using similarity between phage-phage (BLASTPhage), host-host (BLASTHost) and phage-CRISPR (CRISPRPred), where we achieved accuracy between 42.4-66.2% for BLASTPhage, 55-78.4% for BLASTHost, and 43.7-80.2% for CRISPRPred across five taxonomic levels. Secondly, alignment free models have been developed using machine learning techniques. Thirdly, hybrid models have been developed by integrating the alignment-free models and the similarity-scores where we achieved maximum performance of (60.6-93.5%). Finally, an ensemble model has been developed that combines the hybrid and alignment-based models. Our ensemble model achieved highest accuracy of 67.9, 80.6, 85.5, 90, and 93.5% at Genus, Family, Order, Class, and Phylum levels on validation dataset. In order to serve the scientific community, we have also developed a webserver named PhageTB and provided a standalone software package (https://webs.iiitd.edu.in/raghava/phagetb/) for the same.
Collapse
Affiliation(s)
- Suchet Aggarwal
- Department of Computer Science and Engineering, Indraprastha Institute of Information Technology, New Delhi, India
| | - Anjali Dhall
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Sumeet Patiyal
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Shubham Choudhury
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Akanksha Arora
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Gajendra P. S. Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
- *Correspondence: Gajendra P. S. Raghava,
| |
Collapse
|
11
|
Li Z, Sun Q, Du B, Jia H, Dong J, Lyu L, Zhu C, Xing A, Yang X, Wei R, Chen X, Zhang Z, Pan L. Use of Pleural Fluid Digital PCR Analysis to Improve the Diagnosis of Pleural Tuberculosis. Microbiol Spectr 2022; 10:e0163222. [PMID: 36264250 PMCID: PMC9769588 DOI: 10.1128/spectrum.01632-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/28/2022] [Indexed: 01/05/2023] Open
Abstract
The diagnosis of pleural tuberculosis (TB) remains difficult due to the paucity of Mycobacterium tuberculosis in pleural fluid (PF). This study aimed to improve pleural TB diagnosis using highly sensitive digital PCR (dPCR) technique. A total of 310 patients with evidence of PF were consecutively enrolled, 183 of whom suffered from pleural TB and 127 from non-TB. PF samples were prospectively collected and total DNA was extracted. The copy numbers of M. tuberculosis insertion sequence (IS) 6110 and IS1081 in DNA were quantified using dPCR. The overall area under the curve of IS6110-dPCR was greater than that of IS1081-dPCR (0.85 versus 0.79). PF IS6110 OR IS1081-dPCR (according to their cut-off values, "positive" was defined as either of them was positive, while "negative" was defined as both of them were negative) had higher sensitivity and equal specificity compared with single target-dPCR. The sensitivity of PF IS6110 OR IS1081-dPCR for total, definite, and probable pleural TB was 59.0% (95% CI = 51.5% to 66.2%), 72.8% (95% CI = 62.6% to 81.6%), and 45.1% (95% CI = 34.6% to 55.8%), respectively. Its specificity was 100% (95% CI = 97.1% to 100.0%). PF IS6110 OR IS1081-dPCR showed a higher sensitivity than smear microscopy (57.4% versus 7.1%), mycobacterial culture (55.3% versus 31.8%), and Xpert MTB/RIF (57.6% versus 23.0%). Long antituberculosis treatment time (>1 month) was found to be associated with negative dPCR results in pleural TB patients. This study indicates that PF IS6110 OR IS1081-dPCR is an accurate molecular assay, which is more sensitive than routine etiological tests and has the potential to enhance the definite diagnosis of pleural TB. IMPORTANCE Pleural TB is one of the most frequent causes of pleural effusion, especially in areas with high burden of TB. Due to the paucibacillary nature of the disease, the diagnostic sensitivities of all available bacteriological and molecular tests remain poor. There is an urgent need to develop new efficient methods. Digital PCR (dPCR) is the third generation of PCR that enables the exact quantification of trace nucleic acids in samples. This study evaluates the diagnostic performance of pleural fluid (PF) dPCR analysis for pleural TB, and shows that PF IS6110 OR IS1081-dPCR has a higher sensitivity than routine etiological tests such as smear microscopy, mycobacterial culture, and Xpert MTB/RIF. This work provides a new choice for improving the definite diagnosis of pleural TB.
Collapse
Affiliation(s)
- Zihui Li
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Qi Sun
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Boping Du
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Hongyan Jia
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Jing Dong
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Lingna Lyu
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Chuanzhi Zhu
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Aiying Xing
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xinting Yang
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Rongrong Wei
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xiaoyou Chen
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zongde Zhang
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Liping Pan
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| |
Collapse
|
12
|
Cao Z, Ye Y, Li G, Zhang R, Dong S, Liu Y. Monolithically integrated microchannel plate functionalized with ZnO nanorods for fluorescence-enhanced digital polymerase chain reaction. Biosens Bioelectron 2022; 213:114499. [DOI: 10.1016/j.bios.2022.114499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 11/27/2022]
|
13
|
Microbiome-phage interactions in inflammatory bowel disease. Clin Microbiol Infect 2022:S1198-743X(22)00506-7. [PMID: 36191844 DOI: 10.1016/j.cmi.2022.08.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Inflammatory bowel diseases (IBD) constitute a group of auto-inflammatory disorders impacting the gastrointestinal tract and other systemic organs. The gut microbiome contributes to IBD pathology through multiple mechanisms. Bacteriophages (hence termed phages) are viruses that are able to specifically infect bacteria. Considered as part of the gut microbiome, phages may impact bacterial community structure in various clinical contexts. Additionally, exogenous phage administration may represent a means of suppressing IBD-associated pathobionts, yet utilization of phage therapy remains at an early developmental phase. OBJECTIVES Herein, we summarize the latest advances in understanding endogenous phage impacts on the gut microbiome in health and in IBD. We highlight the prospect of phage utilization as a targeted mode of pathobiont eradication, in preventing and treating IBD manifestations and complications. SOURCES Selected peer-reviewed publications regarding the role of phages in health and in IBD, published between 2013 and 2022. CONTENT The human gut microbiome is increasingly suggested to play a significant role in the onset and progression of multiple non-communicable diseases such as IBD. Several studies suggest that this effect may be mediated by discrete disease-contributing commensals. However, eradication of such pathogenic bacteria remains a daunting unmet task. Altered community structure in IBD may be influenced by blooms of phages within the gut bacterial ecosystem. Moreover, combinations of phages specifically targeting disease-contributing pathobiont strain clades may be harnessed as potential eradication treatment preventing and treating IBD, while bearing minimal adverse impacts on the surrounding bacterial microbiome. IMPLICATIONS Understanding endogenous phage-gut commensal interactions in health and in IBD may enable phage utilization in precision gut microbiome editing, towards treating IBD and other non-communicable microbiome-associated diseases. Nevertheless, developing phage combination-mediated IBD pathobiont eradication treatment modalities will likely necessitate better strain-level bacterial target identification and resolution of treatment-related challenges, such as phage delivery, off-target effects, and bacterial resistance.
Collapse
|
14
|
Smith SE, Huang W, Tiamani K, Unterer M, Khan Mirzaei M, Deng L. Emerging technologies in the study of the virome. Curr Opin Virol 2022; 54:101231. [DOI: 10.1016/j.coviro.2022.101231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 11/03/2022]
|
15
|
Tan LL, Loganathan N, Agarwalla S, Yang C, Yuan W, Zeng J, Wu R, Wang W, Duraiswamy S. Current commercial dPCR platforms: technology and market review. Crit Rev Biotechnol 2022; 43:433-464. [PMID: 35291902 DOI: 10.1080/07388551.2022.2037503] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Digital polymerase chain reaction (dPCR) technology has provided a new technique for molecular diagnostics, with superior advantages, such as higher sensitivity, precision, and specificity over quantitative real-time PCRs (qPCR). Eight companies have offered commercial dPCR instruments: Fluidigm Corporation, Bio-Rad, RainDance Technologies, Life Technologies, Qiagen, JN MedSys Clarity, Optolane, and Stilla Technologies Naica. This paper discusses the working principle of each offered dPCR device and compares the associated: technical aspects, usability, costs, and current applications of each dPCR device. Lastly, up-and-coming dPCR technologies are also presented, as anticipation of how the dPCR device landscape may likely morph in the next few years.
Collapse
Affiliation(s)
- Li Ling Tan
- Singapore Institute of Manufacturing Technology, Singapore, Singapore.,Materials Science and Engineering School, Nanyang Technological University, Singapore, Singapore
| | - Nitin Loganathan
- Singapore Institute of Manufacturing Technology, Singapore, Singapore
| | - Sushama Agarwalla
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, India
| | - Chun Yang
- Mechanical and Aerospace Engineering School, Nanyang Technological University, Singapore, Singapore
| | - Weiyong Yuan
- Faculty of Materials & Energy, Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing, China.,Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Chongqing, China
| | - Jasmine Zeng
- Singapore Institute of Manufacturing Technology, Singapore, Singapore
| | - Ruige Wu
- Singapore Institute of Manufacturing Technology, Singapore, Singapore
| | - Wei Wang
- Singapore Institute of Manufacturing Technology, Singapore, Singapore
| | - Suhanya Duraiswamy
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, India
| |
Collapse
|
16
|
Jang HB, Chittick L, Li YF, Zablocki O, Sanderson CM, Carrillo A, van den Engh G, Sullivan MB. Viral tag and grow: a scalable approach to capture and characterize infectious virus-host pairs. ISME COMMUNICATIONS 2022; 2:12. [PMID: 37938680 PMCID: PMC9723727 DOI: 10.1038/s43705-022-00093-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/06/2022] [Accepted: 01/13/2022] [Indexed: 04/27/2023]
Abstract
Viral metagenomics (viromics) has reshaped our understanding of DNA viral diversity, ecology, and evolution across Earth's ecosystems. However, viromics now needs approaches to link newly discovered viruses to their host cells and characterize them at scale. This study adapts one such method, sequencing-enabled viral tagging (VT), to establish "Viral Tag and Grow" (VT + Grow) to rapidly capture and characterize viruses that infect a cultivated target bacterium, Pseudoalteromonas. First, baseline cytometric and microscopy data improved understanding of how infection conditions and host physiology impact populations in VT flow cytograms. Next, we extensively evaluated "and grow" capability to assess where VT signals reflect adsorption alone or wholly successful infections that lead to lysis. Third, we applied VT + Grow to a clonal virus stock, which, coupled to traditional plaque assays, revealed significant variability in burst size-findings that hint at a viral "individuality" parallel to the microbial phenotypic heterogeneity literature. Finally, we established a live protocol for public comment and improvement via protocols.io to maximally empower the research community. Together these efforts provide a robust foundation for VT researchers, and establish VT + Grow as a promising scalable technology to capture and characterize viruses from mixed community source samples that infect cultivable bacteria.
Collapse
Affiliation(s)
- Ho Bin Jang
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Lauren Chittick
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Yueh-Fen Li
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Olivier Zablocki
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | | | - Alfonso Carrillo
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | | | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, OH, USA.
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, USA.
- Center of Microbiome Science, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
17
|
Melo LDR, Monteiro R, Pires DP, Azeredo J. Phage-Host Interaction Analysis by Flow Cytometry Allows for Rapid and Efficient Screening of Phages. Antibiotics (Basel) 2022; 11:antibiotics11020164. [PMID: 35203767 PMCID: PMC8868278 DOI: 10.3390/antibiotics11020164] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
Recently, phages have become popular as an alternative to antibiotics. This increased demand for phage therapy needs rapid and efficient methods to screen phages infecting specific hosts. Existing methods are time-consuming, and for clinical purposes, novel, quick, and reliable screening methods are highly needed. Flow cytometry (FC) allows a quick differentiation and enumeration of bacterial cell populations and has been used to assess in vitro the activity of antimicrobial compounds. In this work, we propose FC as a rapid and reliable method to assess the susceptibility of a bacterial population to phage infection. For that, the interaction of phages vB_PaeM_CEB_DP1 and vB_PaeP_PE3 with Pseudomonas aeruginosa PAO1 was characterized by FC. Synchronous infection assays were performed, and samples were collected at different time points and stained with SYTO BC and PI before analysis. Part of the collected samples was used to characterize the expression of early, middle, and late genes by qPCR. Both FC and qPCR results were correlated with phage propagation assays. Results showed that SYTO BC median fluorescence intensity (MFI) values increased in the first 25 min of PE3 and DP1 infection. The increase of fluorescence is due to the expression of phage genes observed by qPCR. Since SYTO BC MFI values increase with gene expression, it allows the determination of host susceptibility to a phage in a short period of time, avoiding false positives caused by lysis from without. In conclusion, this method may allow for a quick and high-throughput real-time screening of different phages to a specific host, which can be crucial for a quick phage selection in clinical practice.
Collapse
Affiliation(s)
- Luís D. R. Melo
- LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4700-057 Braga, Portugal; (R.M.); (D.P.P.)
- LABBELS—Associate Laboratory, Braga, 4800-122 Guimarães, Portugal
- Correspondence: (L.D.R.M.); (J.A.); Tel.: +351-253-601-989 (L.D.R.M.); +351-253-604-414 (J.A.)
| | - Rodrigo Monteiro
- LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4700-057 Braga, Portugal; (R.M.); (D.P.P.)
- LABBELS—Associate Laboratory, Braga, 4800-122 Guimarães, Portugal
| | - Diana P. Pires
- LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4700-057 Braga, Portugal; (R.M.); (D.P.P.)
- LABBELS—Associate Laboratory, Braga, 4800-122 Guimarães, Portugal
| | - Joana Azeredo
- LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4700-057 Braga, Portugal; (R.M.); (D.P.P.)
- LABBELS—Associate Laboratory, Braga, 4800-122 Guimarães, Portugal
- Correspondence: (L.D.R.M.); (J.A.); Tel.: +351-253-601-989 (L.D.R.M.); +351-253-604-414 (J.A.)
| |
Collapse
|
18
|
Tadmor AD, Phillips R. MCRL: using a reference library to compress a metagenome into a non-redundant list of sequences, considering viruses as a case study. Bioinformatics 2022; 38:631-647. [PMID: 34636854 PMCID: PMC10060711 DOI: 10.1093/bioinformatics/btab703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 10/03/2021] [Accepted: 10/07/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Metagenomes offer a glimpse into the total genomic diversity contained within a sample. Currently, however, there is no straightforward way to obtain a non-redundant list of all putative homologs of a set of reference sequences present in a metagenome. RESULTS To address this problem, we developed a novel clustering approach called 'metagenomic clustering by reference library' (MCRL), where a reference library containing a set of reference genes is clustered with respect to an assembled metagenome. According to our proposed approach, reference genes homologous to similar sets of metagenomic sequences, termed 'signatures', are iteratively clustered in a greedy fashion, retaining at each step the reference genes yielding the lowest E values, and terminating when signatures of remaining reference genes have a minimal overlap. The outcome of this computation is a non-redundant list of reference genes homologous to minimally overlapping sets of contigs, representing potential candidates for gene families present in the metagenome. Unlike metagenomic clustering methods, there is no need for contigs to overlap to be associated with a cluster, enabling MCRL to draw on more information encoded in the metagenome when computing tentative gene families. We demonstrate how MCRL can be used to extract candidate viral gene families from an oral metagenome and an oral virome that otherwise could not be determined using standard approaches. We evaluate the sensitivity, accuracy and robustness of our proposed method for the viral case study and compare it with existing analysis approaches. AVAILABILITY AND IMPLEMENTATION https://github.com/a-tadmor/MCRL. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Arbel D Tadmor
- TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University, 55131 Mainz, Germany
- Department of Biochemistry and Molecular Biophysics, California Institute of Technology, Pasadena, CA 91125, USA
| | - Rob Phillips
- Department of Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
- Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
19
|
Cao L, Guo X, Mao P, Ren Y, Li Z, You M, Hu J, Tian M, Yao C, Li F, Xu F. A Portable Digital Loop-Mediated Isothermal Amplification Platform Based on Microgel Array and Hand-Held Reader. ACS Sens 2021; 6:3564-3574. [PMID: 34606243 DOI: 10.1021/acssensors.1c00603] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Digital polymerase chain reaction (dPCR) has found widespread applications in molecular diagnosis of various diseases owing to its sensitive single-molecule detection capability. However, the existing dPCR platforms rely on the auxiliary procedure to disperse DNA samples, which needs complicated operation, expensive apparatus, and consumables. Besides, the complex and costly dPCR readers also impede the applications of dPCR for point-of-care testing (POCT). Herein, we developed a portable digital loop-mediated isothermal amplification (dLAMP) platform, integrating a microscale hydrogel (microgel) array chip for sample partition, a miniaturized heater for DNA amplification, and a hand-held reader for digital readout. In the platform, the chip with thousands of isolated microgels holds the capability of self-absorption and partition of DNA samples, thus avoiding auxiliary equipment and professional personnel operations. Using the integrated dLAMP platform, λDNA templates have been quantified with a good linear detection range of 2-1000 copies/μL and a detection limit of 1 copy/μL. As a demonstration, the epidermal growth factor receptor L858R gene mutation, a crucial factor for the susceptibility of the tyrosine kinase inhibitor in non-small-cell lung cancer treatment, has been accurately identified by the dLAMP platform with a spiked plasma sample. This work shows that the developed dLAMP platform provides a low-cost, facile, and user-friendly solution for the absolute quantification of DNA, showing great potential for the POCT of nucleic acids.
Collapse
Affiliation(s)
- Lei Cao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, China
| | - Xiaojin Guo
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, China
- Department of Chemistry, School of Science, Xi’an Jiaotong University, Xi’an 710049, China
| | - Ping Mao
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yulin Ren
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, China
| | - Zedong Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, China
| | - Minli You
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, China
| | - Jie Hu
- Suzhou DiYinAn Biotechnology Company Ltd., Suzhou 215000, China
| | - Miao Tian
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, China
| | - Chunyan Yao
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Fei Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
20
|
Visualizing active viral infection reveals diverse cell fates in synchronized algal bloom demise. Proc Natl Acad Sci U S A 2021; 118:2021586118. [PMID: 33707211 PMCID: PMC7980383 DOI: 10.1073/pnas.2021586118] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Marine viruses are the most abundant biological entity in the ocean and are considered as major evolutionary drivers of microbial life [C. A. Suttle, Nat. Rev. Microbiol. 5, 801-812 (2007)]. Yet, we lack quantitative approaches to assess their impact on the marine ecosystem. Here, we provide quantification of active viral infection in the bloom forming single-celled phytoplankton Emiliania huxleyi infected by the large virus EhV, using high-throughput single-molecule messenger RNA in situ hybridization (smFISH) of both virus and host transcripts. In natural samples, viral infection reached only 25% of the population despite synchronized bloom demise exposing the coexistence of infected and noninfected subpopulations. We prove that photosynthetically active cells chronically release viral particles through nonlytic infection and that viral-induced cell lysis can occur without viral release, thus challenging major assumptions regarding the life cycle of giant viruses. We could also assess active infection in cell aggregates linking viral infection and carbon export to the deep ocean [C. P. Laber et al., Nat. Microbiol. 3, 537-547 (2018)] and suggest a potential host defense strategy by enrichment of infected cells in sinking aggregates. Our approach can be applied to diverse marine microbial systems, opening a mechanistic dimension to the study of biotic interactions in the ocean.
Collapse
|
21
|
Li M, Wang Y, Li F, Zhao Y, Liu M, Zhang S, Bin Y, Smith AI, Webb GI, Li J, Song J, Xia J. A Deep Learning-Based Method for Identification of Bacteriophage-Host Interaction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:1801-1810. [PMID: 32813660 PMCID: PMC8703204 DOI: 10.1109/tcbb.2020.3017386] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Multi-drug resistance (MDR) has become one of the greatest threats to human health worldwide, and novel treatment methods of infections caused by MDR bacteria are urgently needed. Phage therapy is a promising alternative to solve this problem, to which the key is correctly matching target pathogenic bacteria with the corresponding therapeutic phage. Deep learning is powerful for mining complex patterns to generate accurate predictions. In this study, we develop PredPHI (Predicting Phage-Host Interactions), a deep learning-based tool capable of predicting the host of phages from sequence data. We collect >3000 phage-host pairs along with their protein sequences from PhagesDB and GenBank databases and extract a set of features. Then we select high-quality negative samples based on the K-Means clustering method and construct a balanced training set. Finally, we employ a deep convolutional neural network to build the predictive model. The results indicate that PredPHI can achieve a predictive performance of 81 percent in terms of the area under the receiver operating characteristic curve on the test set, and the clustering-based method is significantly more robust than that based on randomly selecting negative samples. These results highlight that PredPHI is a useful and accurate tool for identifying phage-host interactions from sequence data.
Collapse
|
22
|
Diebold PJ, New FN, Hovan M, Satlin MJ, Brito IL. Linking plasmid-based beta-lactamases to their bacterial hosts using single-cell fusion PCR. eLife 2021; 10:66834. [PMID: 34282723 PMCID: PMC8294855 DOI: 10.7554/elife.66834] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/30/2021] [Indexed: 12/17/2022] Open
Abstract
The horizonal transfer of plasmid-encoded genes allows bacteria to adapt to constantly shifting environmental pressures, bestowing functional advantages to their bacterial hosts such as antibiotic resistance, metal resistance, virulence factors, and polysaccharide utilization. However, common molecular methods such as short- and long-read sequencing of microbiomes cannot associate extrachromosomal plasmids with the genome of the host bacterium. Alternative methods to link plasmids to host bacteria are either laborious, expensive, or prone to contamination. Here we present the One-step Isolation and Lysis PCR (OIL-PCR) method, which molecularly links plasmid-encoded genes with the bacterial 16S rRNA gene via fusion PCR performed within an emulsion. After validating this method, we apply it to identify the bacterial hosts of three clinically relevant beta-lactamases within the gut microbiomes of neutropenic patients, as they are particularly vulnerable multidrug-resistant infections. We successfully detect the known association of a multi-drug resistant plasmid with Klebsiella pneumoniae, as well as the novel associations of two low-abundance genera, Romboutsia and Agathobacter. Further investigation with OIL-PCR confirmed that our detection of Romboutsia is due to its physical association with Klebsiella as opposed to directly harboring the beta-lactamase genes. Here we put forth a robust, accessible, and high-throughput platform for sensitively surveying the bacterial hosts of mobile genes, as well as detecting physical bacterial associations such as those occurring within biofilms and complex microbial communities.
Collapse
Affiliation(s)
- Peter J Diebold
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, United States
| | - Felicia N New
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, United States
| | - Michael Hovan
- Robert Wood Johnson Medical School, New Brunswick, United States
| | - Michael J Satlin
- Weill Cornell Medicine, Cornell University, New York, United States
| | - Ilana L Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, United States
| |
Collapse
|
23
|
Global overview and major challenges of host prediction methods for uncultivated phages. Curr Opin Virol 2021; 49:117-126. [PMID: 34126465 DOI: 10.1016/j.coviro.2021.05.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/14/2022]
Abstract
Bacterial communities play critical roles across all of Earth's biomes, affecting human health and global ecosystem functioning. They do so under strong constraints exerted by viruses, that is, bacteriophages or 'phages'. Phages can reshape bacterial communities' structure, influence long-term evolution of bacterial populations, and alter host cell metabolism during infection. Metagenomics approaches, that is, shotgun sequencing of environmental DNA or RNA, recently enabled large-scale exploration of phage genomic diversity, yielding several millions of phage genomes now to be further analyzed and characterized. One major challenge however is the lack of direct host information for these phages. Several methods and tools have been proposed to bioinformatically predict the potential host(s) of uncultivated phages based only on genome sequence information. Here we review these different approaches and highlight their distinct strengths and limitations. We also outline complementary experimental assays which are being proposed to validate and refine these bioinformatic predictions.
Collapse
|
24
|
Khan Mirzaei M, Deng L. New technologies for developing phage-based tools to manipulate the human microbiome. Trends Microbiol 2021; 30:131-142. [PMID: 34016512 DOI: 10.1016/j.tim.2021.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022]
Abstract
Gut bacteria play an essential role in the human body by regulating multiple functions, producing essential metabolites, protecting against pathogen invasion, and much more. Conversely, changes in their community structure are linked to several gastrointestinal (GI) and non-GI conditions. Fortunately, these bacteria are amenable to external perturbations, but we need specific tools for their safe manipulation as nonspecific changes can cause unpredicted long-term consequences. Here, we mainly discuss recent advances in cultivation-independent technologies and argue their relevance to different key steps, that is, identifying the modulation targets and developing phage-based tools to precisely modulate gut bacteria and restore a sustainable microbiome in humans. We finally suggest multiple modulating strategies for different dysbiosis-associated diseases.
Collapse
Affiliation(s)
- Mohammadali Khan Mirzaei
- Institute of Virology, Helmholtz Centre Munich and Technical University of Munich, Neuherberg, Bavaria 85764, Germany
| | - Li Deng
- Institute of Virology, Helmholtz Centre Munich and Technical University of Munich, Neuherberg, Bavaria 85764, Germany.
| |
Collapse
|
25
|
Interaction dynamics and virus-host range for estuarine actinophages captured by epicPCR. Nat Microbiol 2021; 6:630-642. [PMID: 33633401 DOI: 10.1038/s41564-021-00873-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 01/28/2021] [Indexed: 01/31/2023]
Abstract
Viruses impact microbial diversity, gene flow and function through virus-host interactions. Although metagenomics surveys are rapidly cataloguing viral diversity, methods are needed to capture specific virus-host interactions in situ. Here, we leveraged metagenomics and repurposed emulsion paired isolation-concatenation PCR (epicPCR) to investigate viral diversity and virus-host interactions in situ over time in an estuarine environment. The method fuses a phage marker, the ribonucleotide reductase gene, with the host 16S rRNA gene of infected bacterial cells within emulsion droplets providing single-cell resolution for dozens of samples. EpicPCR captured in situ virus-host interactions for viral clades with no closely related database representatives. Abundant freshwater Actinobacteria lineages, in particular Rhodoluna sp., were the most common hosts for these poorly characterized viruses, with interactions correlated with environmental factors. Multiple methods used to identify virus-host interactions, including epicPCR, identified different and largely non-overlapping interactions within the vast virus-host interaction space. Tracking virus-host interaction dynamics also revealed that multi-host viruses had significantly longer periods with observed virus-host interactions, whereas single-host viruses were observed interacting with hosts at lower minimum abundances, suggesting more efficient interactions. Capturing in situ interactions with epicPCR revealed environmental and ecological factors shaping virus-host interactions, highlighting epicPCR as a valuable technique in viral ecology.
Collapse
|
26
|
Abstract
Oral bacteriophages (or phages), especially periodontal ones, constitute a growing area of interest, but research on oral phages is still in its infancy. Phages are bacterial viruses that may persist as intracellular parasitic deoxyribonucleic acid (DNA) or use bacterial metabolism to replicate and cause bacterial lysis. The microbiomes of saliva, oral mucosa, and dental plaque contain active phage virions, bacterial lysogens (ie, carrying dormant prophages), and bacterial strains containing short fragments of phage DNA. In excess of 2000 oral phages have been confirmed or predicted to infect species of the phyla Actinobacteria (>300 phages), Bacteroidetes (>300 phages), Firmicutes (>1000 phages), Fusobacteria (>200 phages), and Proteobacteria (>700 phages) and three additional phyla (few phages only). This article assesses the current knowledge of the diversity of the oral phage population and the mechanisms by which phages may impact the ecology of oral biofilms. The potential use of phage-based therapy to control major periodontal pathogens is also discussed.
Collapse
Affiliation(s)
- Szymon P Szafrański
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| | - Jørgen Slots
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, Ostrow School of Dentistry of USC, University of Southern California, Los Angeles, California, USA
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| |
Collapse
|
27
|
Han X, Liu Y, Yin J, Yue M, Mu Y. Microfluidic devices for multiplexed detection of foodborne pathogens. Food Res Int 2021; 143:110246. [PMID: 33992358 DOI: 10.1016/j.foodres.2021.110246] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/02/2021] [Accepted: 02/16/2021] [Indexed: 01/10/2023]
Abstract
The global burden of foodborne diseases is substantial and foodborne pathogens are the major cause for human illnesses. In order to prevent the spread of foodborne pathogens, detection methods are constantly being updated towards rapid, portable, inexpensive, and multiplexed on-site detection. Due to the nature of the small size and low volume, microfluidics has been applied to rapid, time-saving, sensitive, and portable devices to meet the requirements of on-site detection. Simultaneous detection of multiple pathogens is another key parameter to ensure food safety. Multiplexed detection technology, including microfluidic chip design, offers a new opportunity to achieve this goal. In this review, we introduced several sample preparation and corresponding detection methods on microfluidic devices for multiplexed detection of foodborne pathogens. In the sample preparation section, methods of cell capture and enrichment, as well as nucleic acid sample preparation, were described in detail, and in the section of detection methods, amplification, immunoassay, surface plasmon resonance and impedance spectroscopy were exhaustively illustrated. The limitations and advantages of all available experimental options were also summarized and discussed in order to form a comprehensive understanding of cutting-edge technologies and provide a comparative assessment for future investigation and in-field application.
Collapse
Affiliation(s)
- Xiaoying Han
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310023, PR China; College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yuanhui Liu
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310023, PR China; College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Juxin Yin
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310023, PR China
| | - Min Yue
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou 310058, PR China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, PR China; Hainan Institute of Zhejiang University, Sanya 572025, PR China.
| | - Ying Mu
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310023, PR China.
| |
Collapse
|
28
|
Moon K, Cho JC. Metaviromics coupled with phage-host identification to open the viral 'black box'. J Microbiol 2021; 59:311-323. [PMID: 33624268 DOI: 10.1007/s12275-021-1016-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 12/22/2022]
Abstract
Viruses are found in almost all biomes on Earth, with bacteriophages (phages) accounting for the majority of viral particles in most ecosystems. Phages have been isolated from natural environments using the plaque assay and liquid medium-based dilution culturing. However, phage cultivation is restricted by the current limitations in the number of culturable bacterial strains. Unlike prokaryotes, which possess universally conserved 16S rRNA genes, phages lack universal marker genes for viral taxonomy, thus restricting cultureindependent analyses of viral diversity. To circumvent these limitations, shotgun viral metagenome sequencing (i.e., metaviromics) has been developed to enable the extensive sequencing of a variety of viral particles present in the environment and is now widely used. Using metaviromics, numerous studies on viral communities have been conducted in oceans, lakes, rivers, and soils, resulting in many novel phage sequences. Furthermore, auxiliary metabolic genes such as ammonic monooxygenase C and β-lactamase have been discovered in viral contigs assembled from viral metagenomes. Current attempts to identify putative bacterial hosts of viral metagenome sequences based on sequence homology have been limited due to viral sequence variations. Therefore, culture-independent approaches have been developed to predict bacterial hosts using single-cell genomics and fluorescentlabeling. This review focuses on recent viral metagenome studies conducted in natural environments, especially in aquatic ecosystems, and their contributions to phage ecology. Here, we concluded that although metaviromics is a key tool for the study of viral ecology, this approach must be supplemented with phage-host identification, which in turn requires the cultivation of phage-bacteria systems.
Collapse
Affiliation(s)
- Kira Moon
- Biological Resources Utilization Division, Honam National Institute of Biological Resources, Mokpo, 58762, Republic of Korea
| | - Jang-Cheon Cho
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
29
|
Abstract
FISH has gained an irreplaceable place in microbiology because of its ability to detect and locate a microorganism, or a group of organisms, within complex samples. However, FISH role has evolved drastically in the last few decades and its value has been boosted by several advances in signal intensity, imaging acquisitions, automation, method robustness, and, thus, versatility. This has resulted in a range of FISH variants that gave researchers the ability to access a variety of other valuable information such as complex population composition, metabolic activity, gene detection/quantification, or subcellular location of genetic elements. In this chapter, we will review the more relevant FISH variants, their intended use, and how they address particular challenges of classical FISH.
Collapse
Affiliation(s)
- Nuno M Guimarães
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal.
| | - Nuno F Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Carina Almeida
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- INIAV - National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
30
|
Zhang Y, Nunoura T, Nishiura D, Hirai M, Shimamura S, Kurosawa K, Ishiwata C, Deguchi S. A single-molecule counting approach for convenient and ultrasensitive measurement of restriction digest efficiencies. PLoS One 2020; 15:e0244464. [PMID: 33382779 PMCID: PMC7775078 DOI: 10.1371/journal.pone.0244464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Restriction endonucleases play a central role in the microbial immune system against viruses and are widely used in DNA specific cleavage, which is called restriction digestion, for genetic engineering. Herein, we applied digital cell-free protein synthesis as an easy-to-use orthogonal readout means to assess the restriction digest efficiency, a new application of digital bioassays. The digital counting principle enabled an unprecedentedly sensitive trace analysis of undigested DNA at the single-molecule level in a PCR-free manner. Our approach can quantify the template DNA of much lower concentrations that cannot be detected by ensemble-based methods such as gold-standard DNA electrophoresis techniques. The sensitive and quantitative measurements revealed a considerable variation in the digest efficiency among restriction endonucleases, from less than 70% to more than 99%. Intriguingly, none of them showed truly complete digestion within reasonably long periods of reaction time. The same rationale was extended to a multiplexed assay and applicable to any DNA-degrading or genome-editing enzymes. The enzyme kinetic parameters and the flanking sequence-dependent digest efficiency can also be interrogated with the proposed digital counting method. The absolute number of residual intact DNA molecules per microliter was concluded to be at least 107, drawing attention to the residual issue of genetic materials associated with the interpretation of nucleases' behaviors and functions in daily genetic engineering experiments.
Collapse
Affiliation(s)
- Yi Zhang
- SUGAR Program, X-star, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience, Research Institute for Marine Resources Utilization, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Daisuke Nishiura
- Center for Mathematical Science and Advanced Technology, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Miho Hirai
- SUGAR Program, X-star, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Shigeru Shimamura
- SUGAR Program, X-star, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Kanako Kurosawa
- SUGAR Program, X-star, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Chieko Ishiwata
- Center for Mathematical Science and Advanced Technology, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Shigeru Deguchi
- Research Center for Bioscience and Nanoscience, Research Institute for Marine Resources Utilization, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| |
Collapse
|
31
|
Quantitative Detection of Beef and Beef Meat Products Adulteration by the Addition of Duck Meat Using Micro Drop Digital Polymerase Chain Reaction. J FOOD QUALITY 2020. [DOI: 10.1155/2020/2843056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A single-copy specific primer was designed based on beef and duck samples and through drop digital polymerase chain reaction (ddPCR) for the quantitative analysis. Results revealed that the primers had no specific amplification with sheep, chicken, pork, or other species. Both the relationships between meat weight and DNA weight and between DNA weight and DNA copy number (C) were nearly linear within the dynamic range. To calculate the original meat weight from the DNA copy number, the DNA weight was used as the intermediate value to establish the following formulae: Mbeef = 0.058C − 1.86; Mduck = 0.0268C − 7.78. To achieve a good quantitative analysis, all species used in the experiment were made of lean meat. The accuracy of the method was verified by artificial adulteration of different proportions. Testing of the commercial samples indicated that adulteration is present in the market. The established digital PCR method provided an effective tool for monitoring the adulterated meat products and reducing the adulteration in the market.
Collapse
|
32
|
Yin J, Zou Z, Yin F, Liang H, Hu Z, Fang W, Lv S, Zhang T, Wang B, Mu Y. A Self-Priming Digital Polymerase Chain Reaction Chip for Multiplex Genetic Analysis. ACS NANO 2020; 14:10385-10393. [PMID: 32794742 DOI: 10.1021/acsnano.0c04177] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Digital PCR (polymerase chain reaction) is a powerful and attractive tool for the quantification of nucleic acids. However, the multiplex detection capabilities of this system are limited or require expensive instrumentation and reagents, all of which can hinder multiplex detection goals. Here, we propose strategies toward solving these issues regarding digital PCR. We designed and tested a self-priming digital PCR chip containing 6-plex detection capabilities using monochrome fluorescence, which has six detection areas and four-layer structures. This strategy achieved multiplex digital detection by the use of self-priming to preintroduce the specific reaction mix to a certain detection area. This avoids competition when multiple primer pairs coexist, allowing for multiplexing in a shorter time while using less reagents and low-cost instruments. This also prevents the digital PCR chip from experiencing long sample introduction time and evaporation. For further validation, this multiplex digital PCR chip was used to detect five types of EGFR (epidermal growth factor receptor) gene mutations in 15 blood samples from lung cancer patients. We conclude that this technique can precisely quantify EGFR mutations in high-performance diagnostics. This multiplex digital detection chip is a simple and inexpensive test intended for liquid biopsies. It can be applied and used in prenatal diagnostics, the monitoring of residual disease, rapid pathogen detection, and many other procedures.
Collapse
Affiliation(s)
- Juxin Yin
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Zheyu Zou
- College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Fangfang Yin
- Weifang People's Hospital, Weifang 261000, China
| | - Hongxiao Liang
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Zhenming Hu
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Weibo Fang
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Shaowu Lv
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun 130000, China
| | - Tao Zhang
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Ben Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Ying Mu
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| |
Collapse
|
33
|
Lei S, Gu X, Xue W, Rong Z, Wang Z, Chen S, Zhong Q. A 4-plex Droplet Digital PCR Method for Simultaneous Quantification and Differentiation of Pathogenic and Non-pathogenic Vibrio parahaemolyticus Based on Single Intact Cells. Front Microbiol 2020; 11:1727. [PMID: 32903334 PMCID: PMC7434843 DOI: 10.3389/fmicb.2020.01727] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/01/2020] [Indexed: 01/17/2023] Open
Abstract
Vibrio parahaemolyticus is a significant seafood-borne pathogen, leading to serious acute gastrointestinal diseases worldwide. In this study, a reliable 4-plex droplet digital PCR (ddPCR) was successfully established and evaluated for the simultaneous detection of V. parahaemolyticus based on tlh, tdh, ureR, and orf8 in food samples using single intact cells. The targets tlh and ureR were labeled with 6-Carboxyfluorescein (FAM), and the targets tdh and orf8 were labeled with 5’-Hexachlorofluorescein (HEX). Due to reasonable proration of primers and probes corresponding into the two fluorescence channels of the ddPCR detecting platforms, the clearly separated 16 (24) clusters based on fluorescence amplitude were obtained. For better results, the sample hot lysis time and the cycle number were optimized. The results showed that the minimum number of “rain” and maximum fluorescence amplification were presented for precise detection in the condition of 25 min of the sample hot lysis time and 55 cycles. The sensitivity of this 4-plex ddPCR assay was 39 CFU/mL, which was in accordance with that of the conventional plate counting and was 10-fold sensitive than that of qPCR. In conclusion, the 4-plex ddPCR assay presented in this paper was a rapid, specific, sensitive, and accurate tool for the detection of V. parahaemolyticus including pandemic group strains and could be applied in the differentiation of V. parahaemolyticus in a wide variety of samples.
Collapse
Affiliation(s)
- Shuwen Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Xiaokui Gu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China.,Guangdong Shunde Innovative Design Institute, Foshan, China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Zhangquan Rong
- Guangdong Shunde Innovative Design Institute, Foshan, China
| | - Zhe Wang
- Guangdong Shunde Innovative Design Institute, Foshan, China
| | - Song Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qingping Zhong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
34
|
Castillo YM, Sebastián M, Forn I, Grimsley N, Yau S, Moraru C, Vaqué D. Visualization of Viral Infection Dynamics in a Unicellular Eukaryote and Quantification of Viral Production Using Virus Fluorescence in situ Hybridization. Front Microbiol 2020; 11:1559. [PMID: 32765451 PMCID: PMC7379908 DOI: 10.3389/fmicb.2020.01559] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/16/2020] [Indexed: 11/13/2022] Open
Abstract
One of the major challenges in viral ecology is to assess the impact of viruses in controlling the abundance of specific hosts in the environment. To this end, techniques that enable the detection and quantification of virus-host interactions at the single-cell level are essential. With this goal in mind, we implemented virus fluorescence in situ hybridization (VirusFISH) using as a model the marine picoeukaryote Ostreococcus tauri and its virus Ostreococcus tauri virus 5 (OtV5). VirusFISH allowed the visualization and quantification of the proportion of infected cells during an infection cycle in experimental conditions. We were also able to quantify the abundance of free viruses released during cell lysis, discriminating OtV5 from other mid-level fluorescence phages in our non-axenic infected culture that were not easily distinguishable with flow cytometry. Our results showed that although the major lysis of the culture occurred between 24 and 48 h after OtV5 inoculation, some new viruses were already produced between 8 and 24 h. With this work, we demonstrate that VirusFISH is a promising technique to study specific virus-host interactions in non-axenic cultures and establish a framework for its application in complex natural communities.
Collapse
Affiliation(s)
- Yaiza M Castillo
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (CSIC), Barcelona, Spain
| | - Marta Sebastián
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (CSIC), Barcelona, Spain.,Institute of Oceanography and Global Change (IOCAG), University of Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - Irene Forn
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (CSIC), Barcelona, Spain
| | - Nigel Grimsley
- Integrative Biology of Marine Organisms (BIOM), Sorbonne University, CNRS, Oceanographic Observatory of Banyuls, Banyuls-sur-Mer, France
| | - Sheree Yau
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (CSIC), Barcelona, Spain.,Integrative Biology of Marine Organisms (BIOM), Sorbonne University, CNRS, Oceanographic Observatory of Banyuls, Banyuls-sur-Mer, France
| | - Cristina Moraru
- Department of the Biology of Geological Processes, Institute for Chemistry and Biology of the Marine Environment, Oldenburg, Germany
| | - Dolors Vaqué
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (CSIC), Barcelona, Spain
| |
Collapse
|
35
|
Wu C, Maley AM, Walt DR. Single-molecule measurements in microwells for clinical applications. Crit Rev Clin Lab Sci 2019:1-21. [PMID: 31865834 DOI: 10.1080/10408363.2019.1700903] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ability to detect and analyze proteins, nucleic acids, and other biomolecules is critical for clinical diagnostics and for understanding the underlying mechanisms of disease. Current detection methods in clinical and research laboratories rely upon bulk measurement techniques such as immunoassays, polymerase chain reaction, and mass spectrometry to detect these biomarkers. However, many potentially useful protein or nucleic acid biomarkers in blood, saliva, or other biofluids exist at concentrations well below the detection limits of current methods, necessitating the development of more sensitive technologies. Single-molecule measurements are poised to address this challenge, vastly improving sensitivity for detecting low abundance biomarkers and rare events within a population. Microwell arrays have emerged as a powerful tool for single-molecule measurements, enabling ultrasensitive detection of disease-relevant biomolecules in easily accessible biofluids. This review discusses the development, fundamentals, and clinical applications of microwell-based single-molecule methods, as well as challenges and future directions for translating these methods to the clinic.
Collapse
Affiliation(s)
- Connie Wu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Adam M Maley
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - David R Walt
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| |
Collapse
|
36
|
A triple-amplification differential pulse voltammetry for sensitive detection of DNA based on exonuclease III, strand displacement reaction and terminal deoxynucleotidyl transferase. Biosens Bioelectron 2019; 143:111609. [DOI: 10.1016/j.bios.2019.111609] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/14/2019] [Accepted: 08/17/2019] [Indexed: 01/17/2023]
|
37
|
Castillo YM, Mangot J, Benites LF, Logares R, Kuronishi M, Ogata H, Jaillon O, Massana R, Sebastián M, Vaqué D. Assessing the viral content of uncultured picoeukaryotes in the global‐ocean by single cell genomics. Mol Ecol 2019; 28:4272-4289. [DOI: 10.1111/mec.15210] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 07/23/2019] [Accepted: 08/01/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Yaiza M. Castillo
- Department of Marine Biology and Oceanography Institute of Marine Sciences (ICM) CSIC Barcelona Spain
| | - Jean‐François Mangot
- Department of Marine Biology and Oceanography Institute of Marine Sciences (ICM) CSIC Barcelona Spain
| | - Luiz Felipe Benites
- Integrative Biology of Marine Organisms (BIOM) CNRS Oceanological Observatory of Banyuls Sorbonne University Banyuls‐sur‐Mer France
| | - Ramiro Logares
- Department of Marine Biology and Oceanography Institute of Marine Sciences (ICM) CSIC Barcelona Spain
| | - Megumi Kuronishi
- Bioinformatic Center Institute for Chemical Research Kyoto University Uji Japan
| | - Hiroyuki Ogata
- Bioinformatic Center Institute for Chemical Research Kyoto University Uji Japan
| | - Olivier Jaillon
- Génomique Métabolique Genoscope Institut de biologie François Jacob CEA CNRS Université d'Evry Université Paris‐Saclay Evry France
| | - Ramon Massana
- Department of Marine Biology and Oceanography Institute of Marine Sciences (ICM) CSIC Barcelona Spain
| | - Marta Sebastián
- Department of Marine Biology and Oceanography Institute of Marine Sciences (ICM) CSIC Barcelona Spain
- Institute of Oceanography and Global Change (IOCAG) University of Las Palmas de Gran Canaria Telde Spain
| | - Dolors Vaqué
- Department of Marine Biology and Oceanography Institute of Marine Sciences (ICM) CSIC Barcelona Spain
| |
Collapse
|
38
|
Defining the human gut host–phage network through single-cell viral tagging. Nat Microbiol 2019; 4:2192-2203. [DOI: 10.1038/s41564-019-0526-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 06/25/2019] [Indexed: 12/18/2022]
|
39
|
O’Keefe CM, Kaushik AM, Wang TH. Highly Efficient Real-Time Droplet Analysis Platform for High-Throughput Interrogation of DNA Sequences by Melt. Anal Chem 2019; 91:11275-11282. [DOI: 10.1021/acs.analchem.9b02346] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Christine M. O’Keefe
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Aniruddha M. Kaushik
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
40
|
Roux S, Brum JR. A viral reckoning: viruses emerge as essential manipulators of global ecosystems. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:3-8. [PMID: 30298570 DOI: 10.1111/1758-2229.12700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 09/30/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Simon Roux
- US DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, CA, 94598, USA
| | - Jennifer R Brum
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA, 70808, USA
| |
Collapse
|
41
|
Lin X, Huang X, Zhu Y, Urmann K, Xie X, Hoffmann MR. Asymmetric Membrane for Digital Detection of Single Bacteria in Milliliters of Complex Water Samples. ACS NANO 2018; 12:10281-10290. [PMID: 30211534 PMCID: PMC6202633 DOI: 10.1021/acsnano.8b05384] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/13/2018] [Indexed: 05/22/2023]
Abstract
In this work, we introduce an asymmetric membrane as a simple and robust nanofluidic platform for digital detection of single pathogenic bacteria directly in 10 mL of unprocessed environmental water samples. The asymmetric membrane, consisting of uniform micropores on one side and a high density of vertically aligned nanochannels on the other side, was prepared within 1 min by a facile method. The single membrane covers all the processing steps from sample concentration, purification, and partition to final digital loop-mediated isothermal amplification (LAMP). By simple filtration, bacteria were enriched and partitioned inside the micropores, while inhibitors typically found in the environmental samples ( i.e., proteins, heavy metals, and organics) were washed away through the nanochannels. Meanwhile, large particles, indigenous plankton, and positively charged pollutants in the samples were excluded by using a sacrificial membrane stacked on top. After initial filtration, modified LAMP reagents, including NaF and lysozyme, were loaded onto the membrane. Each pore in the asymmetric membrane functioned as an individual nanoreactor for selective, rapid, and efficient isothermal amplification of single bacteria, generating a bright fluorescence for direct counting. Even though high levels of inhibitors were present, absolute quantification of Escherichia coli and Salmonella directly in an unprocessed environmental sample (seawater and pond water) was achieved within 1 h, with sensitivity down to single cell and a dynamic range of 0.3-10000 cells/mL. The simple and low-cost analysis platform described herein has an enormous potential for the detection of pathogens, exosomes, stem cells, and viruses as well as single-cell heterogeneity analysis in environmental, food, and clinical research.
Collapse
Affiliation(s)
- Xingyu Lin
- Linde
+ Robinson Laboratories, California Institute
of Technology, Pasadena, California 91125, United States
| | - Xiao Huang
- Linde
+ Robinson Laboratories, California Institute
of Technology, Pasadena, California 91125, United States
| | - Yanzhe Zhu
- Linde
+ Robinson Laboratories, California Institute
of Technology, Pasadena, California 91125, United States
| | - Katharina Urmann
- Linde
+ Robinson Laboratories, California Institute
of Technology, Pasadena, California 91125, United States
| | - Xing Xie
- Linde
+ Robinson Laboratories, California Institute
of Technology, Pasadena, California 91125, United States
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Michael R. Hoffmann
- Linde
+ Robinson Laboratories, California Institute
of Technology, Pasadena, California 91125, United States
- E-mail:
| |
Collapse
|
42
|
Viruses of Eukaryotic Algae: Diversity, Methods for Detection, and Future Directions. Viruses 2018; 10:v10090487. [PMID: 30208617 PMCID: PMC6165237 DOI: 10.3390/v10090487] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 11/16/2022] Open
Abstract
The scope for ecological studies of eukaryotic algal viruses has greatly improved with the development of molecular and bioinformatic approaches that do not require algal cultures. Here, we review the history and perceived future opportunities for research on eukaryotic algal viruses. We begin with a summary of the 65 eukaryotic algal viruses that are presently in culture collections, with emphasis on shared evolutionary traits (e.g., conserved core genes) of each known viral type. We then describe how core genes have been used to enable molecular detection of viruses in the environment, ranging from PCR-based amplification to community scale "-omics" approaches. Special attention is given to recent studies that have employed network-analyses of -omics data to predict virus-host relationships, from which a general bioinformatics pipeline is described for this type of approach. Finally, we conclude with acknowledgement of how the field of aquatic virology is adapting to these advances, and highlight the need to properly characterize new virus-host systems that may be isolated using preliminary molecular surveys. Researchers can approach this work using lessons learned from the Chlorella virus system, which is not only the best characterized algal-virus system, but is also responsible for much of the foundation in the field of aquatic virology.
Collapse
|
43
|
Morella NM, Yang SC, Hernandez CA, Koskella B. Rapid quantification of bacteriophages and their bacterial hosts in vitro and in vivo using droplet digital PCR. J Virol Methods 2018; 259:18-24. [DOI: 10.1016/j.jviromet.2018.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/07/2018] [Accepted: 05/12/2018] [Indexed: 10/16/2022]
|
44
|
de Jonge PA, Nobrega FL, Brouns SJJ, Dutilh BE. Molecular and Evolutionary Determinants of Bacteriophage Host Range. Trends Microbiol 2018; 27:51-63. [PMID: 30181062 DOI: 10.1016/j.tim.2018.08.006] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/07/2018] [Accepted: 08/13/2018] [Indexed: 01/12/2023]
Abstract
The host range of a bacteriophage is the taxonomic diversity of hosts it can successfully infect. Host range, one of the central traits to understand in phages, is determined by a range of molecular interactions between phage and host throughout the infection cycle. While many well studied model phages seem to exhibit a narrow host range, recent ecological and metagenomics studies indicate that phages may have specificities that range from narrow to broad. There is a growing body of studies on the molecular mechanisms that enable phages to infect multiple hosts. These mechanisms, and their evolution, are of considerable importance to understanding phage ecology and the various clinical, industrial, and biotechnological applications of phage. Here we review knowledge of the molecular mechanisms that determine host range, provide a framework defining broad host range in an evolutionary context, and highlight areas for additional research.
Collapse
Affiliation(s)
- Patrick A de Jonge
- Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8 3584 CH Utrecht, The Netherlands; Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9 2629 HZ, Delft, The Netherlands
| | - Franklin L Nobrega
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9 2629 HZ, Delft, The Netherlands
| | - Stan J J Brouns
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9 2629 HZ, Delft, The Netherlands; Laboratory for Microbiology, Wageningen University, Stippeneng 4 6708 WE, Wageningen, The Netherlands; These authors made equal contributions
| | - Bas E Dutilh
- Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8 3584 CH Utrecht, The Netherlands; Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Geert Grooteplein Zuid 26-28, 6525GA Nijmegen, The Netherlands; These authors made equal contributions.
| |
Collapse
|
45
|
Yang H, Chen Z, Cao X, Li Z, Stavrakis S, Choo J, deMello AJ, Howes PD, He N. A sample-in-digital-answer-out system for rapid detection and quantitation of infectious pathogens in bodily fluids. Anal Bioanal Chem 2018; 410:7019-7030. [PMID: 30155705 DOI: 10.1007/s00216-018-1335-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/02/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022]
Abstract
A variety of automated sample-in-answer-out systems for in vitro molecular diagnostics have been presented and even commercialized. Although efficient in operation, they are incapable of quantifying targets, since quantitation based on analog analytical methods (via standard curve analysis) is complex, expensive, and challenging. To address this issue, herein, we describe an integrated sample-in-digital-answer-out (SIDAO) diagnostic system incorporating DNA extraction and digital recombinase polymerase amplification, which enables rapid and quantitative nucleic acid analysis from bodily fluids within a disposable cartridge. Inside the cartridge, reagents are pre-stored in sterilized tubes, with an automated pipetting module allowing facile liquid transfer. For digital analysis, we fabricate a simple, single-layer polydimethylsiloxane microfluidic device and develop a novel and simple sample compartmentalization strategy. Sample solution is partitioned into an array of 40,044 fL-volume microwells by sealing the microfluidic device through the application of mechanical pressure. The entire analysis is performed in a portable, fully automated instrument. We evaluate the quantitative capabilities of the system by analyzing Mycobacterium tuberculosis genomic DNA from both spiked saliva and serum samples, and demonstrate excellent analytical accuracy and specificity. This SIDAO system provides a promising diagnostic platform for quantitative nucleic acid testing at the point-of-care. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Haowen Yang
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland.,Department of Biosystems Science and Engineering, ETH Zürich, 4058, Basel, Switzerland
| | - Zhu Chen
- Economical Forest Cultivation and Utilization of 2011 Collaborative Innovation Center in Hunan Province, Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, Hunan, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Xiaobao Cao
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| | - Zhiyang Li
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Stavros Stavrakis
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| | - Jaebum Choo
- Department of Bionano Technology, Hanyang University, Sa-1-dong 1271, Ansan, 15588, South Korea
| | - Andrew J deMello
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland.
| | - Philip D Howes
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| | - Nongyue He
- Economical Forest Cultivation and Utilization of 2011 Collaborative Innovation Center in Hunan Province, Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, Hunan, China. .,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, China.
| |
Collapse
|
46
|
Limitations of Correlation-Based Inference in Complex Virus-Microbe Communities. mSystems 2018; 3:mSystems00084-18. [PMID: 30175237 PMCID: PMC6113591 DOI: 10.1128/msystems.00084-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/24/2018] [Indexed: 11/25/2022] Open
Abstract
Inferring interactions from population time series is an active and ongoing area of research. It is relevant across many biological systems—particularly in virus-microbe communities, but also in gene regulatory networks, neural networks, and ecological communities broadly. Correlation-based inference—using correlations to predict interactions—is widespread. However, it is well-known that “correlation does not imply causation.” Despite this, many studies apply correlation-based inference methods to experimental time series without first assessing the potential scope for accurate inference. Here, we find that several correlation-based inference methods fail to recover interactions within in silico virus-microbe communities, raising questions on their relevance when applied in situ. Microbes are present in high abundances in the environment and in human-associated microbiomes, often exceeding 1 million per ml. Viruses of microbes are present in even higher abundances and are important in shaping microbial populations, communities, and ecosystems. Given the relative specificity of viral infection, it is essential to identify the functional linkages between viruses and their microbial hosts, particularly given dynamic changes in virus and host abundances. Multiple approaches have been proposed to infer infection networks from time series of in situ communities, among which correlation-based approaches have emerged as the de facto standard. In this work, we evaluate the accuracy of correlation-based inference methods using an in silico approach. In doing so, we compare predicted networks to actual networks to assess the self-consistency of correlation-based inference. At odds with assumptions underlying its widespread use, we find that correlation is a poor predictor of interactions in the context of viral infection and lysis of microbial hosts. The failure to predict interactions holds for methods that leverage product-moment, time-lagged, and relative-abundance-based correlations. In closing, we discuss alternative inference methods, particularly model-based methods, as a means to infer interactions in complex microbial communities with viruses. IMPORTANCE Inferring interactions from population time series is an active and ongoing area of research. It is relevant across many biological systems—particularly in virus-microbe communities, but also in gene regulatory networks, neural networks, and ecological communities broadly. Correlation-based inference—using correlations to predict interactions—is widespread. However, it is well-known that “correlation does not imply causation.” Despite this, many studies apply correlation-based inference methods to experimental time series without first assessing the potential scope for accurate inference. Here, we find that several correlation-based inference methods fail to recover interactions within in silico virus-microbe communities, raising questions on their relevance when applied in situ.
Collapse
|
47
|
Breitbart M, Bonnain C, Malki K, Sawaya NA. Phage puppet masters of the marine microbial realm. Nat Microbiol 2018; 3:754-766. [PMID: 29867096 DOI: 10.1038/s41564-018-0166-y] [Citation(s) in RCA: 333] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 04/20/2018] [Indexed: 11/09/2022]
Abstract
Viruses numerically dominate our oceans; however, we have only just begun to document the diversity, host range and infection dynamics of marine viruses, as well as the subsequent effects of infection on both host cell metabolism and oceanic biogeochemistry. Bacteriophages (that is, phages: viruses that infect bacteria) are highly abundant and are known to play critical roles in bacterial mortality, biogeochemical cycling and horizontal gene transfer. This Review Article summarizes current knowledge of marine viral ecology and highlights the importance of phage particles to the dissolved organic matter pool, as well as the complex interactions between phages and their bacterial hosts. We emphasize the newly recognized roles of phages as puppet masters of their bacterial hosts, where phages are capable of altering the metabolism of infected bacteria through the expression of auxiliary metabolic genes and the redirection of host gene expression patterns. Finally, we propose the 'royal family model' as a hypothesis to describe successional patterns of bacteria and phages over time in marine systems, where despite high richness and significant seasonal differences, only a small number of phages appear to continually dominate a given marine ecosystem. Although further testing is required, this model provides a framework for assessing the specificity and ecological consequences of phage-host dynamics.
Collapse
Affiliation(s)
- Mya Breitbart
- College of Marine Science, University of South Florida, Saint Petersburg, FL, USA.
| | - Chelsea Bonnain
- College of Marine Science, University of South Florida, Saint Petersburg, FL, USA
| | - Kema Malki
- College of Marine Science, University of South Florida, Saint Petersburg, FL, USA
| | - Natalie A Sawaya
- College of Marine Science, University of South Florida, Saint Petersburg, FL, USA
| |
Collapse
|
48
|
Munson-McGee JH, Peng S, Dewerff S, Stepanauskas R, Whitaker RJ, Weitz JS, Young MJ. A virus or more in (nearly) every cell: ubiquitous networks of virus-host interactions in extreme environments. THE ISME JOURNAL 2018; 12:1706-1714. [PMID: 29467398 PMCID: PMC6018696 DOI: 10.1038/s41396-018-0071-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 12/04/2017] [Accepted: 12/20/2017] [Indexed: 01/23/2023]
Abstract
The application of viral and cellular metagenomics to natural environments has expanded our understanding of the structure, functioning, and diversity of microbial and viral communities. The high diversity of many communities, e.g., soils, surface ocean waters, and animal-associated microbiomes, make it difficult to establish virus-host associations at the single cell (rather than population) level, assign cellular hosts, or determine the extent of viral host range from metagenomics studies alone. Here, we combine single-cell sequencing with environmental metagenomics to characterize the structure of virus-host associations in a Yellowstone National Park (YNP) hot spring microbial community. Leveraging the relatively low diversity of the YNP environment, we are able to overlay evidence at the single-cell level with contextualized viral and cellular community structure. Combining evidence from hexanucelotide analysis, single cell read mapping, network-based analytics, and CRISPR-based inference, we conservatively estimate that >60% of cells contain at least one virus type and a majority of these cells contain two or more virus types. Of the detected virus types, nearly 50% were found in more than 2 cellular clades, indicative of a broad host range. The new lens provided by the combination of metaviromics and single-cell genomics reveals a network of virus-host interactions in extreme environments, provides evidence that extensive virus-host associations are common, and further expands the unseen impact of viruses on cellular life.
Collapse
Affiliation(s)
- Jacob H Munson-McGee
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA
| | - Shengyun Peng
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Samantha Dewerff
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | | - Rachel J Whitaker
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Joshua S Weitz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Mark J Young
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA.
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana, USA.
| |
Collapse
|
49
|
Abstract
Viruses infect all kingdoms of marine life from bacteria to whales. Viruses in the world's oceans play important roles in the mortality of phytoplankton, and as drivers of evolution and biogeochemical cycling. They shape host population abundance and distribution and can lead to the termination of algal blooms. As discoveries about this huge reservoir of genetic and biological diversity grow, our understanding of the major influences viruses exert in the global marine environment continues to expand. This chapter discusses the key discoveries that have been made to date about marine viruses and the current direction of this field of research.
Collapse
Affiliation(s)
- Karen D Weynberg
- School of Chemistry & Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
50
|
Tikhe CV, Husseneder C. Metavirome Sequencing of the Termite Gut Reveals the Presence of an Unexplored Bacteriophage Community. Front Microbiol 2018; 8:2548. [PMID: 29354098 PMCID: PMC5759034 DOI: 10.3389/fmicb.2017.02548] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/08/2017] [Indexed: 12/25/2022] Open
Abstract
The Formosan subterranean termite; Coptotermes formosanus is nutritionally dependent on the complex and diverse community of bacteria and protozoa in their gut. Although, there have been many studies to decipher the taxonomic and functional diversity of bacterial communities in the guts of termites, their bacteriophages remain unstudied. We sequenced the metavirome of the guts of Formosan subterranean termite workers to study the diversity of bacteriophages and other associated viruses. Results showed that the termites harbor a virome in their gut comprised of varied and previously unknown bacteriophages. Between 87-90% of the predicted dsDNA virus genes by Metavir showed similarity to the tailed bacteriophages (Caudovirales). Many predicted genes from the virome matched to bacterial prophage regions. These data are suggestive of a virome dominated by temperate bacteriophages. We predicted the genomes of seven novel Caudovirales bacteriophages from the termite gut. Three of these predicted bacteriophage genomes were found in high proportions in all the three termite colonies tested. Two bacteriophages are predicted to infect endosymbiotic bacteria of the gut protozoa. The presence of these putative bacteriophages infecting endosymbionts of the gut protozoa, suggests a quadripartite relationship between the termites their symbiotic protozoa, endosymbiotic bacteria of the protozoa and their bacteriophages. Other than Caudovirales, ss-DNA virus related genes were also present in the termite gut. We predicted the genomes of 12 novel Microviridae phages from the termite gut and seven of those possibly represent a new proposed subfamily. Circovirus like genomes were also assembled from the termite gut at lower relative abundance. We predicted 10 novel circovirus genomes in this study. Whether these circoviruses infect the termites remains elusive at the moment. The functional and taxonomical annotations suggest that the termites may harbor a core virome comprised of the bacteriophages infecting endosymbionts of the gut protozoa.
Collapse
Affiliation(s)
- Chinmay V Tikhe
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Claudia Husseneder
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| |
Collapse
|