1
|
Adhikari N, Ayyannan SR. Development and validation of machine learning models for the prediction of SH-2 containing protein tyrosine phosphatase 2 inhibitors. Mol Divers 2024; 28:1889-1905. [PMID: 37552436 DOI: 10.1007/s11030-023-10710-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
Discovery and development of a new drug to the market is a highly challenging and resource consuming process. Although, modern drug discovery technologies have enabled the rapid identification of lead compounds, translation of the lead compounds into successful clinical candidates remains a big challenge. In recent years, the availability of massive structural and biological data of diverse small molecules and macromolecules has helped the researchers to deep mine the multidimensional data with the help of artificial intelligence-based predictive tools to draw useful insights on the structural features of biological or therapeutic significance. The aim of this study was to utilize the available data on small molecule (SH2)-containing protein tyrosine phosphatase 2 (SHP2) inhibitors to build and develop machine learning (ML) models that can predict the SHP2 inhibitory potential of new compounds. The dataset contained 2739 unique small molecule SHP2 inhibitors obtained from the BindingDB, ChEMBL and recent literature. After curation of the data, the predictive models such as XGBoost, K nearest neighbours, neural networks were developed and validated through a tenfold cross-validation testing procedure. Out of the seven models developed, the XGBoost model showed an excellent performance with ROC AUC score of 0.96 and accuracy of 0.97 on the test data. Moreover, the Shapley Additive Explanations method was applied to assess a more in-depth understanding of the influence of variables on the model's predictions. In summary, the XGBoost model developed in this study can be useful in the identification of novel SHP2 inhibitors and therefore, can accelerate the discovery of novel therapeutics for cancer therapy.
Collapse
Affiliation(s)
- Nilanjan Adhikari
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP, 221005, India
| | - Senthil Raja Ayyannan
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP, 221005, India.
| |
Collapse
|
2
|
Chen T, Gao C. Innate immune signal transduction pathways to fungal infection: Components and regulation. CELL INSIGHT 2024; 3:100154. [PMID: 38464417 PMCID: PMC10924179 DOI: 10.1016/j.cellin.2024.100154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 03/12/2024]
Abstract
Candida species are significant causes of mucosal and systemic infections in immune compromised populations, including HIV-infected individuals and cancer patients. Drug resistance and toxicity have limited the use of anti-fungal drugs. A good comprehension of the nature of the immune responses to the pathogenic fungi will aid in the developing of new approaches to the treatment of fungal diseases. In recent years, extensive research has been done to understand the host defending systems to fungal infections. In this review, we described how pattern recognition receptors senses the cognate fungal ligands and the cellular and molecular mechanisms of anti-fungal innate immune responses. Furthermore, particular focus is placed on how anti-fungal signal transduction cascades are being activated for host defense and being modulated to better treat the infections in terms of immunotherapy. Understanding the role that these pathways have in mediating host anti-fungal immunity will be crucial for future therapeutic development.
Collapse
Affiliation(s)
- Tian Chen
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Department of Pathogenic Biology, School of Biomedical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, 250012, Shandong, China
| |
Collapse
|
3
|
Ash LJ, Busia-Bourdain O, Okpattah D, Kamel A, Liberchuk A, Wolfe AL. KRAS: Biology, Inhibition, and Mechanisms of Inhibitor Resistance. Curr Oncol 2024; 31:2024-2046. [PMID: 38668053 PMCID: PMC11049385 DOI: 10.3390/curroncol31040150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
KRAS is a small GTPase that is among the most commonly mutated oncogenes in cancer. Here, we discuss KRAS biology, therapeutic avenues to target it, and mechanisms of resistance that tumors employ in response to KRAS inhibition. Several strategies are under investigation for inhibiting oncogenic KRAS, including small molecule compounds targeting specific KRAS mutations, pan-KRAS inhibitors, PROTACs, siRNAs, PNAs, and mutant KRAS-specific immunostimulatory strategies. A central challenge to therapeutic effectiveness is the frequent development of resistance to these treatments. Direct resistance mechanisms can involve KRAS mutations that reduce drug efficacy or copy number alterations that increase the expression of mutant KRAS. Indirect resistance mechanisms arise from mutations that can rescue mutant KRAS-dependent cells either by reactivating the same signaling or via alternative pathways. Further, non-mutational forms of resistance can take the form of epigenetic marks, transcriptional reprogramming, or alterations within the tumor microenvironment. As the possible strategies to inhibit KRAS expand, understanding the nuances of resistance mechanisms is paramount to the development of both enhanced therapeutics and innovative drug combinations.
Collapse
Affiliation(s)
- Leonard J. Ash
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- Molecular, Cellular, and Developmental Biology Subprogram of the Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY 10031, USA
| | - Ottavia Busia-Bourdain
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
| | - Daniel Okpattah
- Biochemistry Ph.D. Program, Graduate Center, City University of New York, New York, NY 10031, USA
| | - Avrosina Kamel
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- Macaulay Honors College, Hunter College, City University of New York, New York, NY 10065, USA
| | - Ariel Liberchuk
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- Macaulay Honors College, Hunter College, City University of New York, New York, NY 10065, USA
| | - Andrew L. Wolfe
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- Molecular, Cellular, and Developmental Biology Subprogram of the Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY 10031, USA
- Biochemistry Ph.D. Program, Graduate Center, City University of New York, New York, NY 10031, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
4
|
Yang Y, Yan Z, Xie Q, Wang Y, Liu Z, Lei M. Lactobacillus plantarum 45 activates SHP2 through inhibition of oxidative stress to regulate osteoblast and osteoclast differentiation. Aging (Albany NY) 2024; 16:6334-6347. [PMID: 38575308 PMCID: PMC11042941 DOI: 10.18632/aging.205708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 01/19/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND The purpose of this study is to observe LP45 (Lactobacillus plantarum 45) to investigate the mechanism by which LP45 attenuates oxidative stress-induced damage and regulates the osteoblast-osteoclast balance. MATERIALS AND METHODS The oxidative stress level and osteoblast- and osteoclast-related proteins were detected by immunofluorescence staining, Western blotting, ROS fluorescent probe and ELISA. Osteoblast cell proliferation capacity was determined by the CCK-8 assay. X-ray observation and HE staining were used to detect the effect of LP45 on osteoporosis. RESULTS The expression level of SHP2 and Src was significantly increased, and the expression levels of NOX4, P22, P47, IL-1β, NLRP3, IRF3, RANK, β-catenin and INF-β were inhibited in LP45 group and LPS + LP45 group as compared to those in LPS group. Compared with that in LPS group, the concentration of SOD was increased and the concentration of MDA was decreased in LPS + LP45 group. The protein expressions of OPG, RANKL, RUNX3, RANK and β-catenin in LP45 group and LPS + LP45 group increased. The protein expressions of NF-κB, CREB and AP-1 in LP45 group and LPS + LP45 group decreased significantly. The results were also confirmed by immunofluorescence staining and ROS fluorescent probe. X-ray observation and HE staining showed that LP45 could inhibit the progression of osteoporosis. CONCLUSION LP45 can exert its antioxidant effect by inhibiting the production of oxidative stress to activate the SHP2 signaling pathway, thus promoting osteoblast differentiation and repressing osteoclast formation to maintain bone homeostasis and improve bone metabolism.
Collapse
Affiliation(s)
- Yaming Yang
- Department of Clinical Nutrition, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China
| | - Zheng Yan
- School of Public Health, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Qi Xie
- Department of Nutrition, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
| | - Yong Wang
- Department of Research, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China
| | - Zhiying Liu
- School of Public Health, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Min Lei
- Department of Clinical Nutrition, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China
- School of Public Health, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| |
Collapse
|
5
|
Wang P, Han Y, Pan W, Du J, Zuo D, Ba Y, Zhang H. Tyrosine phosphatase SHP2 aggravates tumor progression and glycolysis by dephosphorylating PKM2 in gastric cancer. MedComm (Beijing) 2024; 5:e527. [PMID: 38576457 PMCID: PMC10993348 DOI: 10.1002/mco2.527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 11/26/2023] [Accepted: 12/22/2023] [Indexed: 04/06/2024] Open
Abstract
Gastric cancer (GC) is among the most lethal human malignancies, yet it remains hampered by challenges in fronter of molecular-guided targeted therapy to direct clinical treatment strategies. The protein tyrosine phosphatase Src homology 2 domain-containing phosphatase 2 (SHP2) is involved in the malignant progression of GC. However, the detailed mechanisms of the posttranslational modifications of SHP2 remain poorly understood. Herein, we demonstrated that an allosteric SHP2 inhibitor, SHP099, was able to block tumor proliferation and migration of GC by dephosphorylating the pyruvate kinase M2 type (PKM2) protein. Mechanistically, we found that PKM2 is a bona fide target of SHP2. The dephosphorylation and activation of PKM2 by SHP2 are necessary to exacerbate tumor progression and GC glycolysis. Moreover, we demonstrated a strong correlation between the phosphorylation level of PKM2 and adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) in GC cells. Notably, the low phosphorylation expression of AMPK was negatively correlated with activated SHP2. Besides, we proved that cisplatin could activate SHP2 and SHP099 increased sensitivity to cisplatin in GC. Taken together, our results provide evidence that the SHP2/PKM2/AMPK axis exerts a key role in GC progression and glycolysis and could be a viable therapeutic approach for the therapy of GC.
Collapse
Affiliation(s)
- Peiyun Wang
- Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin Medical UniversityTianjinChina
| | - Yueting Han
- Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin Medical UniversityTianjinChina
| | - Wen Pan
- Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin Medical UniversityTianjinChina
| | - Jian Du
- Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin Medical UniversityTianjinChina
| | - Duo Zuo
- Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin Medical UniversityTianjinChina
| | - Yi Ba
- Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin Medical UniversityTianjinChina
| | - Haiyang Zhang
- Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin Medical UniversityTianjinChina
- The Institute of Translational MedicineTianjin Union Medical Center of Nankai UniversityTianjinChina
| |
Collapse
|
6
|
Suskiewicz MJ. The logic of protein post-translational modifications (PTMs): Chemistry, mechanisms and evolution of protein regulation through covalent attachments. Bioessays 2024; 46:e2300178. [PMID: 38247183 DOI: 10.1002/bies.202300178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
Protein post-translational modifications (PTMs) play a crucial role in all cellular functions by regulating protein activity, interactions and half-life. Despite the enormous diversity of modifications, various PTM systems show parallels in their chemical and catalytic underpinnings. Here, focussing on modifications that involve the addition of new elements to amino-acid sidechains, I describe historical milestones and fundamental concepts that support the current understanding of PTMs. The historical survey covers selected key research programmes, including the study of protein phosphorylation as a regulatory switch, protein ubiquitylation as a degradation signal and histone modifications as a functional code. The contribution of crucial techniques for studying PTMs is also discussed. The central part of the essay explores shared chemical principles and catalytic strategies observed across diverse PTM systems, together with mechanisms of substrate selection, the reversibility of PTMs by erasers and the recognition of PTMs by reader domains. Similarities in the basic chemical mechanism are highlighted and their implications are discussed. The final part is dedicated to the evolutionary trajectories of PTM systems, beginning with their possible emergence in the context of rivalry in the prokaryotic world. Together, the essay provides a unified perspective on the diverse world of major protein modifications.
Collapse
Affiliation(s)
- Marcin J Suskiewicz
- Centre de Biophysique Moléculaire, CNRS - Orléans, UPR 4301, affiliated with Université d'Orléans, Orléans, France
| |
Collapse
|
7
|
Yuan Z, Chen X, Fan S, Chang L, Chu L, Zhang Y, Wang J, Li S, Xie J, Hu J, Miao R, Zhu L, Zhao Z, Li H, Li S. Binding Free Energy Calculation Based on the Fragment Molecular Orbital Method and Its Application in Designing Novel SHP-2 Allosteric Inhibitors. Int J Mol Sci 2024; 25:671. [PMID: 38203841 PMCID: PMC10779950 DOI: 10.3390/ijms25010671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
The accurate prediction of binding free energy is a major challenge in structure-based drug design. Quantum mechanics (QM)-based approaches show promising potential in predicting ligand-protein binding affinity by accurately describing the behavior and structure of electrons. However, traditional QM calculations face computational limitations, hindering their practical application in drug design. Nevertheless, the fragment molecular orbital (FMO) method has gained widespread application in drug design due to its ability to reduce computational costs and achieve efficient ab initio QM calculations. Although the FMO method has demonstrated its reliability in calculating the gas phase potential energy, the binding of proteins and ligands also involves other contributing energy terms, such as solvent effects, the 'deformation energy' of a ligand's bioactive conformations, and entropy. Particularly in cases involving ionized fragments, the calculation of solvation free energy becomes particularly crucial. We conducted an evaluation of some previously reported implicit solvent methods on the same data set to assess their potential for improving the performance of the FMO method. Herein, we develop a new QM-based binding free energy calculation method called FMOScore, which enhances the performance of the FMO method. The FMOScore method incorporates linear fitting of various terms, including gas-phase potential energy, deformation energy, and solvation free energy. Compared to other widely used traditional prediction methods such as FEP+, MM/PBSA, MM/GBSA, and Autodock vina, FMOScore showed good performance in prediction accuracies. By constructing a retrospective case study, it was observed that incorporating calculations for solvation free energy and deformation energy can further enhance the precision of FMO predictions for binding affinity. Furthermore, using FMOScore-guided lead optimization against Src homology-2-containing protein tyrosine phosphatase 2 (SHP-2), we discovered a novel and potent allosteric SHP-2 inhibitor (compound 8).
Collapse
Affiliation(s)
- Zhen Yuan
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China; (Z.Y.); (X.C.); (S.F.); (Z.Z.)
| | - Xingyu Chen
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China; (Z.Y.); (X.C.); (S.F.); (Z.Z.)
| | - Sisi Fan
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China; (Z.Y.); (X.C.); (S.F.); (Z.Z.)
| | - Longfeng Chang
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China; (Z.Y.); (X.C.); (S.F.); (Z.Z.)
| | - Linna Chu
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China; (Z.Y.); (X.C.); (S.F.); (Z.Z.)
| | - Ying Zhang
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China; (Z.Y.); (X.C.); (S.F.); (Z.Z.)
| | - Jie Wang
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China; (Z.Y.); (X.C.); (S.F.); (Z.Z.)
| | - Shuang Li
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China; (Z.Y.); (X.C.); (S.F.); (Z.Z.)
| | - Jinxin Xie
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China; (Z.Y.); (X.C.); (S.F.); (Z.Z.)
| | - Jianguo Hu
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China; (Z.Y.); (X.C.); (S.F.); (Z.Z.)
| | - Runyu Miao
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China; (Z.Y.); (X.C.); (S.F.); (Z.Z.)
| | - Lili Zhu
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China; (Z.Y.); (X.C.); (S.F.); (Z.Z.)
| | - Zhenjiang Zhao
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China; (Z.Y.); (X.C.); (S.F.); (Z.Z.)
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China; (Z.Y.); (X.C.); (S.F.); (Z.Z.)
- Innovation Center for AI and Drug Discovery, East China Normal University, Shanghai 200062, China
- Lingang Laboratory, Shanghai 200031, China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China; (Z.Y.); (X.C.); (S.F.); (Z.Z.)
- Innovation Center for AI and Drug Discovery, East China Normal University, Shanghai 200062, China
| |
Collapse
|
8
|
Ma CH, Zhao JF, Zhang XG, Ding CH, Hao HH, Ji YH, Li LP, Guo ZT, Liu WS. Discovery of ellagic acid as a competitive inhibitor of Src homology phosphotyrosyl phosphatase 2 (SHP2) for cancer treatment: In vitro and in silico study. Int J Biol Macromol 2024; 254:127845. [PMID: 37935292 DOI: 10.1016/j.ijbiomac.2023.127845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/09/2023]
Abstract
Targeting SHP2 has become a potential cancer treatment strategy. In this study, ellagic acid was first reported as a competitive inhibitor of SHP2, with an IC50 value of 0.69 ± 0.07 μM, and its inhibitory potency was 34.86 times higher that of the positive control NSC87877. Ellagic acid also had high inhibitory activity on the SHP2-E76K and SHP2-E76A mutants, with the IC50 values of 1.55 ± 0.17 μM and 0.39 ± 0.05 μM, respectively. Besides, the IC50 values of ellagic acid on homologous proteins SHP1, PTP1B, and TCPTP were 0.93 ± 0.08 μM, 2.04 ± 0.28 μM, and 11.79 ± 0.83 μM, with selectivity of 1.35, 2.96, and 17.09 times, respectively. The CCK8 proliferation experiment exhibited that ellagic acid would inhibit the proliferation of various cancer cells. It was worth noting that the combination of ellagic acid and KRASG12C inhibitor AMG510 would produce a strong synergistic effect in inhibiting NCI-H358 cells. Western blot experiment exhibited that ellagic acid would downregulate the phosphorylation levels of Erk and Akt in NCI-H358 and MDA-MB-468 cells. Molecular docking and molecular dynamics studies revealed the binding information between SHP2 and ellagic acid. In summary, this study provides new ideas for the development of SHP2 inhibitors.
Collapse
Affiliation(s)
- Chun-Hui Ma
- Department of Clinical Laboratory, Affiliated Hospital of Weifang Medical University, Weifang 261041, Shandong, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261041, Shandong Province, China
| | - Ji-Feng Zhao
- Shandong Key Laboratory of Medicine and Health (Clinical Applied Pharmacology), Department of Pharmacy, Affiliated Hospital of Weifang Medical University, Weifang 261041, Shandong Province, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261041, Shandong Province, China
| | - Xu-Guang Zhang
- Department of Clinical Laboratory, Affiliated Hospital of Weifang Medical University, Weifang 261041, Shandong, China
| | - Chuan-Hua Ding
- Shandong Key Laboratory of Medicine and Health (Clinical Applied Pharmacology), Department of Pharmacy, Affiliated Hospital of Weifang Medical University, Weifang 261041, Shandong Province, China
| | - Hui-Hui Hao
- Shandong Key Laboratory of Medicine and Health (Clinical Applied Pharmacology), Department of Pharmacy, Affiliated Hospital of Weifang Medical University, Weifang 261041, Shandong Province, China
| | - Ying-Hui Ji
- Shandong Key Laboratory of Medicine and Health (Clinical Applied Pharmacology), Department of Pharmacy, Affiliated Hospital of Weifang Medical University, Weifang 261041, Shandong Province, China
| | - Li-Peng Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Zhen-Tao Guo
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang 261041, Shandong, China.
| | - Wen-Shan Liu
- Shandong Key Laboratory of Medicine and Health (Clinical Applied Pharmacology), Department of Pharmacy, Affiliated Hospital of Weifang Medical University, Weifang 261041, Shandong Province, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261041, Shandong Province, China.
| |
Collapse
|
9
|
Wu C, Zheng P, Ma L, Xu C, Hu L, Yang Z, Fei F, Shen Z, Zhang X, Wu Z, Cheng H, Mao W, Ke Y. Protein Tyrosine Phosphatase SHP2 in Macrophages Acts as an Antiatherosclerotic Regulator in Mice. Arterioscler Thromb Vasc Biol 2024; 44:202-217. [PMID: 37942607 DOI: 10.1161/atvbaha.123.319663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Macrophages have versatile roles in atherosclerosis. SHP2 (Src homology 2 containing protein tyrosine phosphatase 2) has been demonstrated to play a critical role in regulating macrophage activation. However, the mechanism of SHP2 regulation of macrophage function in an atherosclerotic microenvironment remains unknown. METHODS APOE (apolipoprotein E) or LDLR (low-density lipoprotein receptor) null mice treated with SHP099 were fed a Western diet for 8 weeks, while Shp2MKO:ApoE-/- or Shp2MKO:Ldlr-/- mice and exo-AAV8-SHP2E76K/ApoE-/- mice were fed a Western diet for 12 weeks. In vitro, levels of proinflammatory factors and phagocytic function were then studied in mouse peritoneal macrophages. RNA sequencing was used to identify PPARγ (peroxisome proliferative activated receptor γ) as the key downstream molecule. A PPARγ agonist was used to rescue the phenotypes observed in SHP2-deleted mice. RESULTS Pharmacological inhibition and selective deletion in macrophages of SHP2 aggravated atherosclerosis in APOE and LDLR null mice with increased plaque macrophages and apoptotic cells. In vitro, SHP2 deficiency in APOE and LDLR null macrophages enhanced proinflammatory polarization and its efferocytosis was dramatically impaired. Conversely, the expression of gain-of-function mutation of SHP2 in mouse macrophages reduced atherosclerosis. The SHP2 agonist lovastatin repressesed macrophage inflammatory activation and enhanced efferocytosis. Mechanistically, RNA sequencing analysis identified PPARγ as a key downstream transcription factor. PPARγ was decreased in macrophages upon SHP2 deletion and inhibition. Importantly, PPARγ agonist decreased atherosclerosis in SHP2 knockout mice, restored efferocytotic defects, and reduced inflammatory activation in SHP2 deleted macrophages. PPARγ was decreased by the ubiquitin-mediated degradation upon SHP2 inhibition or deletion. Finally, we found that SHP2 was downregulated in atherosclerotic vessels. CONCLUSIONS Overall, SHP2 in macrophages was found to act as an antiatherosclerotic regulator by stabilizing PPARγ in APOE/LDLR null mice.
Collapse
Affiliation(s)
- Chenxia Wu
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China (C.W., L.H.)
- Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China (C.W., L.H., W.M.)
| | - Peiyao Zheng
- Department of Pathology and Pathophysiology and Department of Cardiology at Sir Run Run Shaw Hospital (P.Z., C.X., Z.Y., H.C.), Zhejiang University School of Medicine, Hangzhou, China
| | - Lan Ma
- Department of Cardiology, Affiliated Hospital of Nantong University, China (L.M.)
| | - Chen Xu
- Department of Pathology and Pathophysiology and Department of Cardiology at Sir Run Run Shaw Hospital (P.Z., C.X., Z.Y., H.C.), Zhejiang University School of Medicine, Hangzhou, China
| | - Luoxia Hu
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China (C.W., L.H.)
- Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China (C.W., L.H., W.M.)
| | - Zhiyi Yang
- Department of Pathology and Pathophysiology and Department of Cardiology at Sir Run Run Shaw Hospital (P.Z., C.X., Z.Y., H.C.), Zhejiang University School of Medicine, Hangzhou, China
| | - Fan Fei
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China (F.F.)
| | - Zhuxia Shen
- Department of Cardiology, Jing'an District Centre Hospital of Shanghai, Fudan University, China (Z.S.)
| | - Xue Zhang
- Department of Pathology and Pathophysiology and Department of Respiratory Medicine at Sir Run Run Shaw Hospital (X.Z., Y.K.), Zhejiang University School of Medicine, Hangzhou, China
| | - Ziheng Wu
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China (Z.W.)
| | - Hongqiang Cheng
- Department of Pathology and Pathophysiology and Department of Cardiology at Sir Run Run Shaw Hospital (P.Z., C.X., Z.Y., H.C.), Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Mao
- Department of Pathology and Pathophysiology and Department of Cardiology at Sir Run Run Shaw Hospital (P.Z., C.X., Z.Y., H.C.), Zhejiang University School of Medicine, Hangzhou, China
- Department of Cardiology, Affiliated Zhejiang Hospital (W.M.), Zhejiang University School of Medicine, Hangzhou, China
| | - Yuehai Ke
- Department of Pathology and Pathophysiology and Department of Respiratory Medicine at Sir Run Run Shaw Hospital (X.Z., Y.K.), Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
10
|
Lim S, Lee KW, Kim JY, Kim KD. Consideration of SHP-1 as a Molecular Target for Tumor Therapy. Int J Mol Sci 2023; 25:331. [PMID: 38203502 PMCID: PMC10779157 DOI: 10.3390/ijms25010331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/23/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Abnormal activation of receptor tyrosine kinases (RTKs) contributes to tumorigenesis, while protein tyrosine phosphatases (PTPs) contribute to tumor control. One of the most representative PTPs is Src homology region 2 (SH2) domain-containing phosphatase 1 (SHP-1), which is associated with either an increased or decreased survival rate depending on the cancer type. Hypermethylation in the promoter region of PTPN6, the gene for the SHP-1 protein, is a representative epigenetic regulation mechanism that suppresses the expression of SHP-1 in tumor cells. SHP-1 comprises two SH2 domains (N-SH2 and C-SH2) and a catalytic PTP domain. Intramolecular interactions between the N-SH2 and PTP domains inhibit SHP-1 activity. Opening of the PTP domain by a conformational change in SHP-1 increases enzymatic activity and contributes to a tumor control phenotype by inhibiting the activation of the Janus kinase/signal transducer and activator of transcription (JAK/STAT3) pathway. Although various compounds that increase SHP-1 activation or expression have been proposed as tumor therapeutics, except sorafenib and its derivatives, few candidates have demonstrated clinical significance. In some cancers, SHP-1 expression and activation contribute to a tumorigenic phenotype by inducing a tumor-friendly microenvironment. Therefore, developing anticancer drugs targeting SHP-1 must consider the effect of SHP-1 on both cell biological mechanisms of SHP-1 in tumor cells and the tumor microenvironment according to the target cancer type. Furthermore, the use of combination therapies should be considered.
Collapse
Affiliation(s)
- Seyeon Lim
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Ki Won Lee
- Anti-Aging Bio Cell Factory—Regional Leading Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Jeong Yoon Kim
- Department of Pharmaceutical Engineering, Institute of Agricultural and Life Science (IALS), Gyeongsang National University, Jinju 52725, Republic of Korea;
| | - Kwang Dong Kim
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Republic of Korea;
- Anti-Aging Bio Cell Factory—Regional Leading Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea;
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
11
|
Chen C, Cheng Y, Lei H, Feng X, Zhang H, Qi L, Wan J, Xu H, Zhao X, Zhang Y, Yang B. SHP2 potentiates anti-PD-1 effectiveness through intervening cell pyroptosis resistance in triple-negative breast cancer. Biomed Pharmacother 2023; 168:115797. [PMID: 37913735 DOI: 10.1016/j.biopha.2023.115797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/14/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023] Open
Abstract
Triple negative breast cancer (TNBC) presents a formidable challenge due to the lack of effective treatment modalities. Immunotherapy stands as a promising therapeutic approach; however, the emergence of drug resistance mechanisms within tumor cells, particularly those targeting apoptosis and pyroptosis, has hampered its clinical efficacy. SHP2 is intricately involved in diverse physiological processes, including immune cell proliferation, infiltration, and tumor progression. Nevertheless, the precise contribution of SHP2 to tumor cell pyroptosis resistance remains inadequately understood. Herein, we demonstrate that SHP2 inhibition hampers the proliferative, migratory, and invasive capabilities of TNBC, accompanied by noticeable alterations in cellular membrane architecture. Mechanistically, we provide evidence that SHP2 depletion triggers the activation of Caspase-1 and GSDMD, resulting in GSDMD-dependent release of LDH, IL-1β, and IL-18. Furthermore, computational analyses and co-localization investigations substantiate the hypothesis that SHP2 may hinder pyroptosis through direct binding to JNK, thereby impeding JNK phosphorylation. Our cellular experiments further corroborate these findings by demonstrating that JNK inhibition rescues pyroptosis induced by SHP2 knockdown. Strikingly, in vivo experiments validate the suppressive impact of SHP2 knockdown on tumor progression via enhanced JNK phosphorylation. Additionally, SHP2 knockdown augments tumor sensitivity to anti-PD-1 therapy, thus reinforcing the pro-pyroptotic effects and inhibiting tumor growth. In summary, our findings elucidate the mechanism by which SHP2 governs TNBC pyroptosis, underscoring the potential of SHP2 inhibition to suppress cell pyroptosis resistance and its utility as an adjunctive agent for tumor immunotherapy.
Collapse
Affiliation(s)
- Chao Chen
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, 126 Ximin street, Chaoyang District, Changchun, Jilin 130021, China
| | - Yuanyuan Cheng
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, 157 Baojian Rd, Nangang District, Harbin, Heilongjiang 150081, China
| | - Haoqi Lei
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, 157 Baojian Rd, Nangang District, Harbin, Heilongjiang 150081, China
| | - Xuefei Feng
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, 157 Baojian Rd, Nangang District, Harbin, Heilongjiang 150081, China
| | - Hongxia Zhang
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, 157 Baojian Rd, Nangang District, Harbin, Heilongjiang 150081, China
| | - Lingling Qi
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, 157 Baojian Rd, Nangang District, Harbin, Heilongjiang 150081, China
| | - Jufeng Wan
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, 157 Baojian Rd, Nangang District, Harbin, Heilongjiang 150081, China
| | - Haiying Xu
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, 157 Baojian Rd, Nangang District, Harbin, Heilongjiang 150081, China
| | - Xin Zhao
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, 157 Baojian Rd, Nangang District, Harbin, Heilongjiang 150081, China.
| | - Yan Zhang
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, 157 Baojian Rd, Nangang District, Harbin, Heilongjiang 150081, China.
| | - Baofeng Yang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, 126 Ximin street, Chaoyang District, Changchun, Jilin 130021, China.
| |
Collapse
|
12
|
Wang N, Zhu S, Lv D, Wang Y, Khawar MB, Sun H. Allosteric modulation of SHP2: Quest from known to unknown. Drug Dev Res 2023; 84:1395-1410. [PMID: 37583266 DOI: 10.1002/ddr.22100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 08/17/2023]
Abstract
Src homology-2 domain-containing protein tyrosine phosphatase-2 (SHP2) is a key regulatory factor in the cell cycle and its activating mutations play an important role in the development of various cancers, making it an important target for antitumor drugs. Due to the highly conserved amino acid sequence and positively charged nature of the active site of SHP2, it is difficult to discover inhibitors with high affinity for the catalytic site of SHP2 and sufficient cell permeability, making it considered an "undruggable" target. However, the discovery of allosteric regulation mechanisms provides new opportunities for transforming undruggable targets into druggable ones. Given the limitations of orthosteric inhibitors, SHP2 allosteric inhibitors have become a more selective and safer research direction. In this review, we elucidate the oncogenic mechanism of SHP2 and summarize the discovery methods of SHP2 allosteric inhibitors, providing new strategies for the design and improvement of SHP2 allosteric inhibitors.
Collapse
Affiliation(s)
- Ning Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, China
| | - Shilin Zhu
- Department of Oncology, Haian Hospital of Traditional Chinese Medicine, Haian, China
| | - Dan Lv
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, China
- School of Life Sciences, Anqing Normal University, Anqing, China
| | - Yajun Wang
- Department of Oncology, Haian Hospital of Traditional Chinese Medicine, Haian, China
| | - Muhammad B Khawar
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, China
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan
| | - Haibo Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, China
| |
Collapse
|
13
|
Lade D, Agazie YM. Targeting SHP2 with an Active Site Inhibitor Blocks Signaling and Breast Cancer Cell Phenotypes. ACS BIO & MED CHEM AU 2023; 3:418-428. [PMID: 37876496 PMCID: PMC10591299 DOI: 10.1021/acsbiomedchemau.3c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 10/26/2023]
Abstract
The Src homology phosphotyrosyl phosphatase 2 (SHP2) is an oncogenic protein for which targeted therapies are being sought. In line with this idea, we have previously reported the development of a specific active site inhibitor named CNBDA that showed effectivity in suppressing the transformation phenotypes of breast cancer cells. To improve efficacy, we introduced limited modifications to the parent compound and tested potency in vitro and under cell culture conditions. Of these modifications, removal of one of the butyric acid groups led to the production of a compound named CNBCA, which showed a 5.7-fold better potency against the SHP2 enzyme activity in vitro. In addition, CNBCA showed better selectivity to SHP2 than the control PTPs (SHP1 and PTP1B) as determined by the phosphatase assay. Furthermore, CNBCA binds and inhibits enzyme activity of full-length SHP2 in cellular contexts, downregulates SHP2 mediated signaling, and suppresses breast cancer cell phenotypes, including cell proliferation, colony formation, and mammosphere growth. These findings show that targeting SHP2 with CNBCA is effective against the cancerous properties of breast cancer cells.
Collapse
Affiliation(s)
- Dhanaji
M. Lade
- One Medical Center Drive, Department
of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, P.O. Box 9142, Morgantown, West Virginia 26506, United States
| | - Yehenew M. Agazie
- One Medical Center Drive, Department
of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, P.O. Box 9142, Morgantown, West Virginia 26506, United States
| |
Collapse
|
14
|
Olou AA, Ambrose J, Jack JL, Walsh M, Ruckert MT, Eades AE, Bye BA, Dandawate P, VanSaun MN. SHP2 regulates adipose maintenance and adipocyte-pancreatic cancer cell crosstalk via PDHA1. J Cell Commun Signal 2023; 17:575-590. [PMID: 36074246 PMCID: PMC10409927 DOI: 10.1007/s12079-022-00691-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/10/2022] [Indexed: 11/26/2022] Open
Abstract
Adipocytes are the most abundant cell type in the adipose tissue, and their dysfunction is a significant driver of obesity-related pathologies, such as cancer. The mechanisms that (1) drive the maintenance and secretory activity of adipocytes and (2) mediate the cancer cellular response to the adipocyte-derived factors are not fully understood. To address that gap of knowledge, we investigated how alterations in Src homology region 2-containing protein (SHP2) activity affect adipocyte function and tumor crosstalk. We found that phospho-SHP2 levels are elevated in adipose tissue of obese mice, obese patients, and differentiating adipocytes. Immunofluorescence and immunoprecipitation analyses as well as in-silico protein-protein interaction modeling demonstrated that SHP2 associates with PDHA1, and that a positive association promotes a reactive oxygen species (ROS)-driven adipogenic program. Accordingly, this SHP2-PDHA1-ROS regulatory axis was crucial for adipocyte maintenance and secretion of interleukin-6 (IL-6), a key cancer-promoting cytokine. Mature adipocytes treated with an inhibitor for SHP2, PDHA1, or ROS exhibited an increased level of pro-lipolytic and thermogenic proteins, corresponding to an increased glycerol release, but a suppression of secreted IL-6. A functional analysis of adipocyte-cancer cell crosstalk demonstrated a decreased migration, invasion, and a slight suppression of cell cycling, corresponding to a reduced growth of pancreatic cancer cells exposed to conditioned media (CM) from mature adipocytes previously treated with inhibitors for SHP2/PDHA1/ROS. Importantly, PDAC cell growth stimulation in response to adipocyte CM correlated with PDHA1 induction but was suppressed by a PDHA1 inhibitor. The data point to a novel role for (1) SHP2-PDHA1-ROS in adipocyte maintenance and secretory activity and (2) PDHA1 as a regulator of the pancreatic cancer cells response to adipocyte-derived factors.
Collapse
Affiliation(s)
- Appolinaire A Olou
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA.
| | - Joe Ambrose
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Jarrid L Jack
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - McKinnon Walsh
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Mariana T Ruckert
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Austin E Eades
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Bailey A Bye
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Prasad Dandawate
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Michael N VanSaun
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA.
| |
Collapse
|
15
|
Welsh CL, Allen S, Madan LK. Setting sail: Maneuvering SHP2 activity and its effects in cancer. Adv Cancer Res 2023; 160:17-60. [PMID: 37704288 PMCID: PMC10500121 DOI: 10.1016/bs.acr.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Since the discovery of tyrosine phosphorylation being a critical modulator of cancer signaling, proteins regulating phosphotyrosine levels in cells have fast become targets of therapeutic intervention. The nonreceptor protein tyrosine phosphatase (PTP) coded by the PTPN11 gene "SHP2" integrates phosphotyrosine signaling from growth factor receptors into the RAS/RAF/ERK pathway and is centrally positioned in processes regulating cell development and oncogenic transformation. Dysregulation of SHP2 expression or activity is linked to tumorigenesis and developmental defects. Even as a compelling anti-cancer target, SHP2 was considered "undruggable" for a long time owing to its conserved catalytic PTP domain that evaded drug development. Recently, SHP2 has risen from the "undruggable curse" with the discovery of small molecules that manipulate its intrinsic allostery for effective inhibition. SHP2's unique domain arrangement and conformation(s) allow for a truly novel paradigm of inhibitor development relying on skillful targeting of noncatalytic sites on proteins. In this review we summarize the biological functions, signaling properties, structural attributes, allostery and inhibitors of SHP2.
Collapse
Affiliation(s)
- Colin L Welsh
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Sarah Allen
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, United States
| | - Lalima K Madan
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, United States; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
16
|
Design and synthesis of improved active-site SHP2 inhibitors with anti-breast cancer cell effects. Eur J Med Chem 2023; 247:115017. [PMID: 36584630 DOI: 10.1016/j.ejmech.2022.115017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
The Src homology containing phosphotyrosyl phosphatase 2 (SHP2) is a bona fide oncogene particularly in cancers driven by overexpression of receptor tyrosine kinases (RTKs). As such, there is a growing interest to target SHP2 in cancer. Based on these premises, several active site (type I) and allosteric site (type II) inhibitors have been developed, but no SHP2 targeting therapies have reached the clinic yet. In an effort to fill these gaps, we embarked on producing optimized versions of our parent active-site SHP2 inhibitor CNBDA. The objectives were to produce derivatives with increased inhibitory potential and improved selectivity. Accordingly, we designed derivatives around the CNBDA scaffold and predicted their binding property by in silico molecular modeling. Based on comparative differences in free energy of binding to the SHP2 versus the SHP1 active sites, ten were selected, chemically synthesized, and evaluated by NMR and mass spectroscopy for structural integrity. Among the ten derivatives, BPDA2 was found to be the most potent and highly selective compound, inhibiting the SHP2 enzyme activity with an IC50 of 92 nM when DiFMUP was used as a substrate and with an IC50 of 47 nM when pNPP was used as a substrate. Furthermore, enzyme kinetic analyses showed that BPDA2 is a competitive SHP2 inhibitor. Selectivity comparisons in a PTPase assay using DiFMUP as a substrate demonstrated that BPDA2 is more selective to SHP2 than to SHP1 and PTP1B by more than 369-fold and 442-fold, respectively. Evaluation with a cellular thermal shift assay (CETSA) confirmed that BPDA2 binds to wild-type SHP2 in a cellular context, and stabilizes it in solution. Treatment of cells with DBDA2 downregulates mitogenic and cell survival signaling and RTK expression in a concentration dependent manner. Furthermore, treatment of cells with BPDA2 suppresses anchorage independent growth and cancer stem cell properties of breast cancer cells. Overall, data described in this report show that BPDA2 is a more potent derivative of CNBDA with a highly improved selectivity for SHP2.
Collapse
|
17
|
Ooki A, Osumi H, Chin K, Watanabe M, Yamaguchi K. Potent molecular-targeted therapies for advanced esophageal squamous cell carcinoma. Ther Adv Med Oncol 2023; 15:17588359221138377. [PMID: 36872946 PMCID: PMC9978325 DOI: 10.1177/17588359221138377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 10/21/2022] [Indexed: 01/15/2023] Open
Abstract
Esophageal cancer (EC) remains a public health concern with a high mortality and disease burden worldwide. Esophageal squamous cell carcinoma (ESCC) is a predominant histological subtype of EC that has unique etiology, molecular profiles, and clinicopathological features. Although systemic chemotherapy, including cytotoxic agents and immune checkpoint inhibitors, is the main therapeutic option for recurrent or metastatic ESCC patients, the clinical benefits are limited with poor prognosis. Personalized molecular-targeted therapies have been hampered due to the lack of robust treatment efficacy in clinical trials. Therefore, there is an urgent need to develop effective therapeutic strategies. In this review, we summarize the molecular profiles of ESCC based on the findings of pivotal comprehensive molecular analyses, highlighting potent therapeutic targets for establishing future precision medicine for ESCC patients, with the most recent results of clinical trials.
Collapse
Affiliation(s)
- Akira Ooki
- Department of Gastroenterological Chemotherapy,
Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31
Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Hiroki Osumi
- Department of Gastroenterological Chemotherapy,
Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo,
Japan
| | - Keisho Chin
- Department of Gastroenterological Chemotherapy,
Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo,
Japan
| | - Masayuki Watanabe
- Department of Gastroenterological Surgery,
Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo,
Japan
| | - Kensei Yamaguchi
- Department of Gastroenterological Chemotherapy,
Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo,
Japan
| |
Collapse
|
18
|
Wu J, Deng Y, Zhang X, Ma J, Zheng X, Chen Y. Suchilactone inhibits the growth of acute myeloid leukaemia by inactivating SHP2. PHARMACEUTICAL BIOLOGY 2022; 60:144-153. [PMID: 34962431 PMCID: PMC8725822 DOI: 10.1080/13880209.2021.2017467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 12/07/2021] [Indexed: 05/12/2023]
Abstract
CONTEXT Suchilactone, a lignan compound extracted from Monsonia angustifolia E.Mey. ex A.Rich. (Geraniaceae), has little research on pharmacological activity; whether suchilactone has inhibitory effect on acute myeloid leukaemia (AML) is unclear. OBJECTIVE To investigate the antitumor effect of suchilactone and its mechanism in AML. MATERIALS AND METHODS The effects of suchilactone on cell growth were detected by CCK-8 and flow cytometry. Network pharmacology was conducted to explore target of suchilactone. Gene expression was detected by western blot and RT-PCR. SHI-1 cells (1 × 106 cell per mouse) were subcutaneously inoculated into the female SCID mice. Suchilactone (15 and 30 mg/kg) was dissolved in PBS with 0.5% carboxymethylcellulose sodium and administered (i.g.) to mice once a day for 19 days, while the control group received PBS with 0.5% carboxymethylcellulose sodium. Tumour tissues were stained with Ki-67 and TUNEL. RESULTS Suchilactone exerted an effective inhibition on the growth of SHI-1 cells with IC50 of 17.01 μM. Then, we found that suchilactone binds to the SHP2 protein and inhibits its activation, and suchilactone interacted with SHP2 to inhibit cell proliferation and promote cell apoptosis via blocking the activation of SHP2. Moreover, Suchilaction inhibited tumour growth of AML xenografts in mice, as the tumour weight decreased from 0.618 g (control) to 0.35 g (15 mg/kg) and 0.258 g (30 mg/kg). Suchilactone inhibited Ki-67 expression and increased TUNEL expression in tumour tissue. DISCUSSION AND CONCLUSIONS Our study is the first to demonstrate suchilactone inhibits AML growth, suggesting that suchilactone is a candidate drug for the treatment of AML.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Mice
- Antineoplastic Agents, Phytogenic/administration & dosage
- Antineoplastic Agents, Phytogenic/isolation & purification
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Dose-Response Relationship, Drug
- Geraniaceae/chemistry
- Leukemia, Myeloid, Acute/drug therapy
- Mice, Inbred BALB C
- Mice, SCID
- Network Pharmacology
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Jingjing Wu
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai’an, China
| | - Yuan Deng
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai’an, China
| | - Xin Zhang
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai’an, China
| | - Jingjing Ma
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai’an, China
| | - Xinqi Zheng
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai’an, China
| | - Yue Chen
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai’an, China
| |
Collapse
|
19
|
Solman M, Woutersen DTJ, den Hertog J. Modeling (not so) rare developmental disorders associated with mutations in the protein-tyrosine phosphatase SHP2. Front Cell Dev Biol 2022; 10:1046415. [PMID: 36407105 PMCID: PMC9672471 DOI: 10.3389/fcell.2022.1046415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Src homology region 2 (SH2)-containing protein tyrosine phosphatase 2 (SHP2) is a highly conserved protein tyrosine phosphatase (PTP), which is encoded by PTPN11 and is indispensable during embryonic development. Mutations in PTPN11 in human patients cause aberrant signaling of SHP2, resulting in multiple rare hereditary diseases, including Noonan Syndrome (NS), Noonan Syndrome with Multiple Lentigines (NSML), Juvenile Myelomonocytic Leukemia (JMML) and Metachondromatosis (MC). Somatic mutations in PTPN11 have been found to cause cancer. Here, we focus on the role of SHP2 variants in rare diseases and advances in the understanding of its pathogenesis using model systems.
Collapse
Affiliation(s)
- Maja Solman
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Jeroen den Hertog
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht, Netherlands
- Institute Biology Leiden, Leiden University, Leiden, Netherlands
- *Correspondence: Jeroen den Hertog,
| |
Collapse
|
20
|
Protein Tyrosine Kinase 6 regulates activation of SRC kinase. J Biol Chem 2022; 298:102584. [DOI: 10.1016/j.jbc.2022.102584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 11/07/2022] Open
|
21
|
Cao Y, Duan H, Su A, Xu L, Lai B. A pan-cancer analysis confirms PTPN11's potential as a prognostic and immunological biomarker. Aging (Albany NY) 2022; 14:5590-5610. [PMID: 35802774 PMCID: PMC9320542 DOI: 10.18632/aging.204171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/01/2022] [Indexed: 11/25/2022]
Abstract
Protein tyrosine phosphatase, non-receptor type 11 (PTPN11) is a multifunctional tyrosine phosphatase and has a significant part in many types of tumors. As of yet, neither the expression profile of PTPN11 nor its significance in pan-cancer diagnosis has been clarified. With the assistance of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), we have comprehensively mapped the expression profiles, prognostic significance, genetic alteration, phosphorylation status, infiltration of immune cells, and functional properties of PTPN11 in 33 human tumors. There was an inconsistent expression of PTPN11 in different tumors, and the alteration of PTPN11 expression predicted the survival outcomes of cancer patients. A significant association was found between the genetic alteration levels of PTPN11 and some tumor predictions. Besides, the reduced PTPN11 phosphorylation levels were observed in breast cancer, clear cell RCC, head and neck carcinoma, and lung adenocarcinoma (LUAD). Furthermore, there was a significant association between PTPN11 expression and infiltration of cancer-associated fibroblasts and endothelial cells, along with tumor mutation burden, microsatellite instability, mismatch repair genes, and immunoregulators. Finally, pathway enrichment analysis demonstrated that PTPN11-associated terms and pathways were involved in malignancy. Taken together, PTPN11 may become a new biomarker and target for cancer therapy.
Collapse
Affiliation(s)
- Yapeng Cao
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, China
| | - Haixia Duan
- Department of Reproduction Gynecology, Northwest Women and Children's Hospital, Xi'an, Shaanxi 710061, China
| | - Ailing Su
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, China
| | - Liran Xu
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, China
| | - Baochang Lai
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, China
| |
Collapse
|
22
|
Pan J, Zhou L, Zhang C, Xu Q, Sun Y. Targeting protein phosphatases for the treatment of inflammation-related diseases: From signaling to therapy. Signal Transduct Target Ther 2022; 7:177. [PMID: 35665742 PMCID: PMC9166240 DOI: 10.1038/s41392-022-01038-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/28/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
Inflammation is the common pathological basis of autoimmune diseases, metabolic diseases, malignant tumors, and other major chronic diseases. Inflammation plays an important role in tissue homeostasis. On one hand, inflammation can sense changes in the tissue environment, induce imbalance of tissue homeostasis, and cause tissue damage. On the other hand, inflammation can also initiate tissue damage repair and maintain normal tissue function by resolving injury and restoring homeostasis. These opposing functions emphasize the significance of accurate regulation of inflammatory homeostasis to ameliorate inflammation-related diseases. Potential mechanisms involve protein phosphorylation modifications by kinases and phosphatases, which have a crucial role in inflammatory homeostasis. The mechanisms by which many kinases resolve inflammation have been well reviewed, whereas a systematic summary of the functions of protein phosphatases in regulating inflammatory homeostasis is lacking. The molecular knowledge of protein phosphatases, and especially the unique biochemical traits of each family member, will be of critical importance for developing drugs that target phosphatases. Here, we provide a comprehensive summary of the structure, the "double-edged sword" function, and the extensive signaling pathways of all protein phosphatases in inflammation-related diseases, as well as their potential inhibitors or activators that can be used in therapeutic interventions in preclinical or clinical trials. We provide an integrated perspective on the current understanding of all the protein phosphatases associated with inflammation-related diseases, with the aim of facilitating the development of drugs that target protein phosphatases for the treatment of inflammation-related diseases.
Collapse
Affiliation(s)
- Jie Pan
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Lisha Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Chenyang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
23
|
Bellacchio E. Intramolecular Interaction with the E6 Region Stabilizes the Closed Conformation of the N-SH2 Domain and Concurs with the Self-Inhibitory Docking in Downregulating the Activity of the SHP2 Tyrosine Phosphatase: A Molecular Dynamics Study. Int J Mol Sci 2022; 23:ijms23094794. [PMID: 35563185 PMCID: PMC9105505 DOI: 10.3390/ijms23094794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/04/2022] Open
Abstract
The localization and activity of the SHP2 tyrosine phosphatase across different cellular compartments to the target substrates are steered by the binding of phosphotyrosine (pY) peptides to the tandem SH2 domains. The most N-terminal domain (N-SH2) can also keep the enzyme inactive by intramolecular occlusion of the catalytic site. Enzyme activity can be recovered by an allosteric disruption of this self-inhibitory docking upon the binding of pY peptides to the N-SH2 domain. Prior to this, the N-SH2 domain must abandon the closed conformation because it impedes the access of pY peptides to the binding cleft. Although it cooperates with the self-inhibitory docking in the negative regulation of the phosphatase activity, the structural determinants of the stability of the closed conformation in the self-inhibited phosphatase are still elusive. To address this issue, a molecular dynamics simulation study is carried out. It is shown that the closed conformation is stabilized by the interaction of the N-SH2 domain with a conserved peptide portion in the region encoded by PTPN11 exon 6 (E6).
Collapse
Affiliation(s)
- Emanuele Bellacchio
- Area di Ricerca Genetica e Malattie Rare, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| |
Collapse
|
24
|
Ding WX, Wang H, Zhang Y. Recent insights into the pathogeneses and therapeutic targets of liver diseases: Summary of the 4th Chinese American Liver Society/Society of Chinese Bioscientists in America Hepatology Division Symposium in 2021. LIVER RESEARCH 2022; 6:50-57. [PMID: 35747395 PMCID: PMC9216220 DOI: 10.1016/j.livres.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The 4th Chinese American Liver Society (CALS)/Society of Chinese Bioscientists in America (SCBA) Hepatology Division Annual Symposium was held virtually on October 29-30, 2021. The goal of the CALS Symposium was to present and discuss the recent research data on the pathogeneses and therapeutic targets of liver diseases among the CALS members, trainees and invited speakers. Here we briefly introduce the history of the CALS/SCBA Hepatology Division and highlight the presentations that focus on the current progresses on basic and translational research in liver metabolism, bile acid biology, alcohol-related liver disease, drug-induced liver injury, cholestatic liver injury, non-alcoholic fatty liver disease/non-alcoholic steatohepatitis and liver cancer.
Collapse
Affiliation(s)
- Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA,Corresponding author. Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA. (W.-X. Ding)
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuxia Zhang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
25
|
Sun Z, Liu Q, Lv Z, Li J, Xu X, Sun H, Wang M, Sun K, Shi T, Liu Z, Tan G, Yan W, Wu R, Yang YX, Ikegawa S, Jiang Q, Sun Y, Shi D. Targeting macrophagic SHP2 for ameliorating osteoarthritis via TLR signaling. Acta Pharm Sin B 2022; 12:3073-3084. [PMID: 35865095 PMCID: PMC9293663 DOI: 10.1016/j.apsb.2022.02.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/15/2021] [Accepted: 01/20/2022] [Indexed: 01/31/2023] Open
Abstract
Osteoarthritis (OA), in which M1 macrophage polarization in the synovium exacerbates disease progression, is a major cause of cartilage degeneration and functional disabilities. Therapeutic strategies of OA designed to interfere with the polarization of macrophages have rarely been reported. Here, we report that SHP099, as an allosteric inhibitor of src-homology 2-containing protein tyrosine phosphatase 2 (SHP2), attenuated osteoarthritis progression by inhibiting M1 macrophage polarization. We demonstrated that M1 macrophage polarization was accompanied by the overexpression of SHP2 in the synovial tissues of OA patients and OA model mice. Compared to wild-type (WT) mice, myeloid lineage conditional Shp2 knockout (cKO) mice showed decreased M1 macrophage polarization and attenuated severity of synovitis, an elevated expression of cartilage phenotype protein collagen II (COL2), and a decreased expression of cartilage degradation markers collagen X (COL10) and matrix metalloproteinase 3 (MMP3) in OA cartilage. Further mechanistic analysis showed thatSHP099 inhibited lipopolysaccharide (LPS)-induced Toll-like receptor (TLR) signaling mediated by nuclear factor kappa B (NF-κB) and PI3K–AKT signaling. Moreover, intra-articular injection of SHP099 also significantly attenuated OA progression, including joint synovitis and cartilage damage. These results indicated that allosteric inhibition of SHP2 might be a promising therapeutic strategy for the treatment of OA.
Collapse
Affiliation(s)
- Ziying Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Qianqian Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing 210023, China
| | - Zhongyang Lv
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Jiawei Li
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Xingquan Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Heng Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Maochun Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Kuoyang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Tianshu Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Zizheng Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Guihua Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Wenqiang Yan
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Rui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Yannick Xiaofan Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Drum Tower of Clinical Medicine, Nanjing Medical University, Nanjing 210008, China
| | - Shiro Ikegawa
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Science (IMS, RIKEN), Tokyo 108-8639, Japan
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing 210023, China
- Corresponding authors.
| | - Dongquan Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
- Corresponding authors.
| |
Collapse
|
26
|
Quilang RC, Lui S, Forbes K. miR-514a-3p: a novel SHP-2 regulatory miRNA that modulates human cytotrophoblast proliferation. J Mol Endocrinol 2022; 68:99-110. [PMID: 34792485 PMCID: PMC8789026 DOI: 10.1530/jme-21-0175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/18/2021] [Indexed: 11/08/2022]
Abstract
Src homology-2 domain-containing protein tyrosine phosphatase 2 (SHP-2), encoded by the PTPN11 gene, forms a central component of multiple signalling pathways and is required for insulin-like growth factor (IGF)-induced placental growth. Altered expression of SHP-2 is associated with aberrant placental and fetal growth indicating that drugs modulating SHP-2 expression may improve adverse pregnancy outcome associated with altered placental growth. We have previously demonstrated that placental PTPN11/SHP-2 expression is controlled by miRNAs. SHP-2 regulatory miRNAs may have therapeutic potential; however, the individual miRNA(s) that regulate SHP-2 expression in the placenta remain to be established. We performed in silico analysis of 3'UTR target prediction databases to identify libraries of Hela cells transfected with individual miRNA mimetics, enriched in potential SHP-2 regulatory miRNAs. Analysis of PTPN11 levels by quantitative (q) PCR revealed that miR-758-3p increased, while miR-514a-3p reduced PTPN11 expression. The expression of miR-514a-3p and miR-758-3p within the human placenta was confirmed by qPCR; miR-514a-3p (but not miR-758-3p) levels inversely correlated with PTPN11 expression. To assess the interaction between these miRNAs and PTPN11/SHP-2, specific mimetics were transfected into first-trimester human placental explants and then cultured for up to 4 days. Overexpression of miR-514a-3p, but not miR-758-3p, significantly reduced PTPN11 and SHP-2 expression. microRNA-ribonucleoprotein complex (miRNP)-associated mRNA assays confirmed that this interaction was direct. miR-514a-3p overexpression attenuated IGF-I-induced trophoblast proliferation (BrdU incorporation). miR-758-3p did not alter trophoblast proliferation. These data demonstrate that by modulating SHP-2 expression, miR-514a-3p is a novel regulator of IGF signalling and proliferation in the human placenta and may have therapeutic potential in pregnancies complicated by altered placental growth.
Collapse
Affiliation(s)
- Rachel C Quilang
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Sylvia Lui
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- St. Mary’s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Karen Forbes
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
27
|
Allosteric inhibition reveals SHP2-mediated tumor immunosuppression in colon cancer by single-cell transcriptomics. Acta Pharm Sin B 2022; 12:149-166. [PMID: 35127377 PMCID: PMC8802865 DOI: 10.1016/j.apsb.2021.08.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/20/2022] Open
Abstract
Colorectal cancer (CRC), a malignant tumor worldwide consists of microsatellite instability (MSI) and stable (MSS) phenotypes. Although SHP2 is a hopeful target for cancer therapy, its relationship with innate immunosuppression remains elusive. To address that, single-cell RNA sequencing was performed to explore the role of SHP2 in all cell types of tumor microenvironment (TME) from murine MC38 xenografts. Intratumoral cells were found to be functionally heterogeneous and responded significantly to SHP099, a SHP2 allosteric inhibitor. The malignant evolution of tumor cells was remarkably arrested by SHP099. Mechanistically, STING-TBK1-IRF3-mediated type I interferon signaling was highly activated by SHP099 in infiltrated myeloid cells. Notably, CRC patients with MSS phenotype exhibited greater macrophage infiltration and more potent SHP2 phosphorylation in CD68+ macrophages than MSI-high phenotypes, suggesting the potential role of macrophagic SHP2 in TME. Collectively, our data reveals a mechanism of innate immunosuppression mediated by SHP2, suggesting that SHP2 is a promising target for colon cancer immunotherapy.
Collapse
Key Words
- APC, antigen-presenting cell
- BTLA, B- and T-lymphocyte attenuator
- CNVs, copy number variations
- CRC, colorectal cancer
- Colorectal cancer
- DSBs, double-strand breaks
- GSEA, gene set enrichment analysis
- KRAS, Kirsten rat sarcoma viral oncogene homolog
- MAPK, mitogen-activated kinase
- MSI, microsatellite instability
- MSS, microsatellite stable
- Macrophage
- PCA, principal component analysis
- PD-1, programmed cell death 1
- PTPN11
- SHP099
- STING
- STING, stimulator of interferon genes
- TME, tumor microenvironment
- Tumor microenvironment
- Type I interferon
- scRNA-seq
- scRNA-seq, single-cell RNA-sequencing
- t-SNE, t-distributed stochastic neighbor embedding
Collapse
|
28
|
Sun Z, Xu X, Lv Z, Li J, Shi T, Sun H, Sun K, Tan G, Yan W, Yang YX, Wu R, Xu J, Guo H, Jiang Q, Shi D. Intraarticular injection of SHP2 inhibitor SHP099 promotes the repair of rabbit full-thickness cartilage defect. J Orthop Translat 2022; 32:112-120. [PMID: 35228993 PMCID: PMC8857578 DOI: 10.1016/j.jot.2022.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/06/2022] [Accepted: 01/13/2022] [Indexed: 11/19/2022] Open
Abstract
Background Cartilage repair has been a challenge in the field of orthopaedics for decades, highlighting the significance of investigating potential therapeutic drugs. In this study, we explored the effect of the SHP2 inhibitor SHP099, a small-molecule drug, on cartilage repair. Methods Human synovial mesenchymal stem cells (SMSCs) were isolated, and their three-way differentiation potential was examined. After treatment with chondrogenic medium, the chondrogenic effect of SHP099 on SMSCs was examined by western blot, qPCR, and immunofluorescence (IF). Micro-mass culture was also used to detect the effect of SHP099. To explore the chondrogenic effects of SHP099 in vivo, full-thickness cartilage defects with microfractures were constructed in the right femoral trochlea of New Zealand White rabbits. Intraarticular injection of SHP099 or normal saline was performed twice a week for 6 weeks. Cartilage repair was evaluated by haematoxylin and eosin (HE) staining and safranin O/fast green staining. Immunohistochemistry (IHC) for collagen II (COL2) was also conducted to verify the abundance of cartilage extracellular matrix after SHP099 treatment. The mechanism involving yes-associated protein (YAP) and WNT signalling was investigated in vitro. Results SMSCs isolated from human synovium have optimal multi-differentiation potential. SHP099 increased chondrogenic marker (SOX9, COL2) expression and decreased hypertrophic marker (COL10, RUNX2) expression in SMSCs. In micro-mass culture, the SHP099-induced cartilage tissues had a better result of Safranin O and Toluidine blue staining and are enriched in cartilage-specific collagen II. Inhibition of YAP and WNT signalling was also observed. Moreover, compared to the normal saline group at 6 weeks, intraarticular injection of SHP099 resulted in better defect filling, forming increased hyaline cartilage-like tissue with higher levels of glycosaminoglycan (GAG) and COL2. Conclusion SHP099 promotes the repair of rabbit full-thickness cartilage defects, representing a potential therapeutic drug for cartilage repair. The Translational potential of this article This study provides evidence that SHP2 inhibition promotes chondrogenesis and the repair of cartilage in defect area, which could be a novel therapeutic approach for cartilage repair.
Collapse
Affiliation(s)
- Ziying Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, 210093, Jiangsu, PR China
| | - Xingquan Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, 210093, Jiangsu, PR China
| | - Zhongyang Lv
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, 210093, Jiangsu, PR China
| | - Jiawei Li
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, 210093, Jiangsu, PR China
| | - Tianshu Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, 210093, Jiangsu, PR China
| | - Heng Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, 210093, Jiangsu, PR China
| | - Kuoyang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, 210093, Jiangsu, PR China
| | - Guihua Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, 210093, Jiangsu, PR China
| | - Wenqiang Yan
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, 210093, Jiangsu, PR China
| | - Yannick Xiaofan Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Drum Tower of Clinical Medicine, Nanjing Medical University, Nanjing, 210008, Jiangsu, PR China
| | - Rui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, 210093, Jiangsu, PR China
| | - Jia Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Drum Tower of Clinical Medicine, Nanjing Medical University, Nanjing, 210008, Jiangsu, PR China
| | - Hu Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, 210093, Jiangsu, PR China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, 210093, Jiangsu, PR China
| | - Dongquan Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, 210093, Jiangsu, PR China
- Corresponding author. Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China.
| |
Collapse
|
29
|
Zhang Y, Lu W, Zhao Q, Chen J, Wang T, Ji J. The role of the protein tyrosine phosphatase SHP2 in ossification. Dev Dyn 2021; 251:748-758. [PMID: 34962674 DOI: 10.1002/dvdy.449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/09/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022] Open
Abstract
SHP2, encoded by the PTPN11 gene, participates in multiple cell functions including cell proliferation, movement, and differentiation. PTPN11 loss-of-function and gain-of-function mutations are both associated with diseases, such as Noonan syndrome, whose manifestations include bone defects, suggesting a crucial role for SHP2 in the skeleton. However, the exact mechanisms by which SHP2 regulates bone development remain unclear. This review focuses on the current understanding of the regulation of SHP2 and highlights the vital roles of SHP2 in skeletal development, especially its roles in ossification. Overall, a better understanding of the functions of SHP2 in ossification will provide a new avenue to treat-related skeletal diseases.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China.,Nanjing Key Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Wei Lu
- Department of Prosthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Qing Zhao
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China.,Nanjing Key Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Jindong Chen
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Tiancong Wang
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Jun Ji
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China.,Nanjing Key Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| |
Collapse
|
30
|
Zhu Y, Wu Z, Yan W, Shao F, Ke B, Jiang X, Gao J, Guo W, Lai Y, Ma H, Chen D, Xu Q, Sun Y. Allosteric inhibition of SHP2 uncovers aberrant TLR7 trafficking in aggravating psoriasis. EMBO Mol Med 2021; 14:e14455. [PMID: 34936223 PMCID: PMC8899919 DOI: 10.15252/emmm.202114455] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 02/05/2023] Open
Abstract
Psoriasis is a complex chronic inflammatory skin disease with unclear molecular mechanisms. We found that the Src homology‐2 domain‐containing protein tyrosine phosphatase‐2 (SHP2) was highly expressed in both psoriatic patients and imiquimod (IMQ)‐induced psoriasis‐like mice. Also, the SHP2 allosteric inhibitor SHP099 reduced pro‐inflammatory cytokine expression in PBMCs taken from psoriatic patients. Consistently, SHP099 significantly ameliorated IMQ‐triggered skin inflammation in mice. Single‐cell RNA sequencing of murine skin demonstrated that SHP2 inhibition impaired skin inflammation in myeloid cells, especially macrophages. Furthermore, IMQ‐induced psoriasis‐like skin inflammation was significantly alleviated in myeloid cells (monocytes, mature macrophages, and granulocytes)—but not dendritic cells conditional SHP2 knockout mice. Mechanistically, SHP2 promoted the trafficking of toll‐like receptor 7 (TLR7) from the Golgi to the endosome in macrophages by dephosphorylating TLR7 at Tyr1024, boosting the ubiquitination of TLR7 and NF‐κB‐mediated skin inflammation. Importantly, Tlr7 point‐mutant knock‐in mice showed an attenuated psoriasis‐like phenotype compared to wild‐type littermates following IMQ treatment. Collectively, our findings identify SHP2 as a novel regulator of psoriasis and suggest that SHP2 inhibition may be a promising therapeutic approach for psoriatic patients.
Collapse
Affiliation(s)
- Yuyu Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China.,College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhigui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wei Yan
- Department of Dermatology and Venereology, West China Hospital, Sichuan University, Chengdu, China
| | - Fenli Shao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Bowen Ke
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Xian Jiang
- Department of Dermatology and Venereology, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Gao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yuping Lai
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Hongyue Ma
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dijun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| |
Collapse
|
31
|
Liu M, Gao S, Elhassan RM, Hou X, Fang H. Strategies to overcome drug resistance using SHP2 inhibitors. Acta Pharm Sin B 2021; 11:3908-3924. [PMID: 35024315 PMCID: PMC8727779 DOI: 10.1016/j.apsb.2021.03.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 12/17/2022] Open
Abstract
Encoded by PTPN11, the SHP2 (Src homology-2 domain-containing protein tyrosine phosphatase-2) is widely recognized as a carcinogenic phosphatase. As a promising anti-cancer drug target, SHP2 regulates many signaling pathways such as RAS-RAF-ERK, PI3K-AKT and JAK-STAT. Meanwhile, SHP2 plays a significant role in regulating immune cell function in the tumor microenvironment. Heretofore, five SHP2 allosteric inhibitors have been recruited in clinical studies for the treatment of cancer. Most recently, studies have proved the therapeutic potential of SHP2 inhibitor in overcoming drug resistance of kinase inhibitors and programmed cell death-1 (PD-1) blockade. Herein, we review the structure, function and small molecular inhibitors of SHP2, and highlight recent progress in overcoming drug resistance using SHP2 inhibitor. We hope this review would facilitate the future clinical development of SHP2 inhibitors.
Collapse
Affiliation(s)
| | | | | | - Xuben Hou
- Corresponding author. Tel./fax: +86 531 88381168.
| | - Hao Fang
- Corresponding author. Tel./fax: +86 531 88381168.
| |
Collapse
|
32
|
PIAS Factors from Rainbow Trout Control NF-κB- and STAT-Dependent Gene Expression. Int J Mol Sci 2021; 22:ijms222312815. [PMID: 34884614 PMCID: PMC8657546 DOI: 10.3390/ijms222312815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022] Open
Abstract
Four ‘protein inhibitors of activated STAT’ (PIAS) control STAT-dependent and NF-κB-dependent immune signalling in humans. The genome of rainbow trout (Oncorhynchus mykiss) contains eight pias genes, which encode at least 14 different pias transcripts that are differentially expressed in a tissue- and cell-specific manner. Pias1a2 was the most strongly expressed variant among the analysed pias genes in most tissues, while pias4a2 was commonly low or absent. Since the knock-out of Pias factors in salmonid CHSE cells using CRISPR/Cas9 technology failed, three structurally different Pias protein variants were selected for overexpression studies in CHSE-214 cells. All three factors quenched the basal activity of an NF-κB promoter in a dose-dependent fashion, while the activity of an Mx promoter remained unaffected. Nevertheless, all three overexpressed Pias variants from trout strongly reduced the transcript level of the antiviral Stat-dependent mx gene in ifnγ-expressing CHSE-214 cells. Unlike mx, the overexpressed Pias factors modulated the transcript levels of NF-κB-dependent immune genes (mainly il6, il10, ifna3, and stat4) in ifnγ-expressing CHSE-214 cells in different ways. This dissimilar modulation of expression may result from the physical cooperation of the Pias proteins from trout with differential sets of interacting factors bound to distinct nuclear structures, as reflected by the differential nuclear localisation of trout Pias factors. In conclusion, this study provides evidence for the multiplication of pias genes and their sub-functionalisation during salmonid evolution.
Collapse
|
33
|
Wang F, Yang W, Li Z, Zhou B. Studies on molecular mechanism between SHP2 and pyridine derivatives by 3D-QSAR, molecular docking and MD simulations. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
Sigaud R, Dussault N, Berenguer-Daizé C, Vellutini C, Benyahia Z, Cayol M, Parat F, Mabrouk K, Vázquez R, Riveiro ME, Metellus P, Ouafik L. Role of the Tyrosine Phosphatase SHP-2 in Mediating Adrenomedullin Proangiogenic Activity in Solid Tumors. Front Oncol 2021; 11:753244. [PMID: 34692535 PMCID: PMC8531523 DOI: 10.3389/fonc.2021.753244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022] Open
Abstract
VE-cadherin is an essential adhesion molecule in endothelial adherens junctions, and the integrity of these complexes is thought to be regulated by VE-cadherin tyrosine phosphorylation. We have previously shown that adrenomedullin (AM) blockade correlates with elevated levels of phosphorylated VE-cadherin (pVE-cadherinY731) in endothelial cells, associated with impaired barrier function and a persistent increase in vascular endothelial cell permeability. However, the mechanism underlying this effect is unknown. In this article, we demonstrate that the AM-mediated dephosphorylation of pVE-cadherinY731 takes place through activation of the tyrosine phosphatase SHP-2, as judged by the rise of its active fraction phosphorylated at tyrosine 542 (pSHP-2Y542) in HUVECs and glioblastoma-derived-endothelial cells. Both pre-incubation of HUVECs with SHP-2 inhibitors NSC-87877 and SHP099 and SHP-2 silencing hindered AM-induced dephosphorylation of pVE-cadherinY731 in a dose dependent-manner, showing the role of SHP-2 in the regulation of endothelial cell contacts. Furthermore, SHP-2 inhibition impaired AM-induced HUVECs differentiation into cord-like structures in vitro and impeded AM-induced neovascularization in in vivo Matrigel plugs bioassays. Subcutaneously transplanted U87-glioma tumor xenograft mice treated with AM-receptors-blocking antibodies showed a decrease in pSHP-2Y542 associated with VE-cadherin in nascent tumor vasculature when compared to control IgG-treated xenografts. Our findings show that AM acts on VE-cadherin dynamics through pSHP-2Y542 to finally modulate cell-cell junctions in the angiogenesis process, thereby promoting a stable and functional tumor vasculature.
Collapse
Affiliation(s)
- Romain Sigaud
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Institut de Neurophysiopathologie( INP), Inst Neurophysiopathol, Marseille, France
| | - Nadège Dussault
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Institut de Neurophysiopathologie( INP), Inst Neurophysiopathol, Marseille, France
| | - Caroline Berenguer-Daizé
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Institut de Neurophysiopathologie( INP), Inst Neurophysiopathol, Marseille, France
| | - Christine Vellutini
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Institut de Neurophysiopathologie( INP), Inst Neurophysiopathol, Marseille, France
| | - Zohra Benyahia
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Institut de Neurophysiopathologie( INP), Inst Neurophysiopathol, Marseille, France
| | - Mylène Cayol
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Institut de Neurophysiopathologie( INP), Inst Neurophysiopathol, Marseille, France
| | - Fabrice Parat
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Institut de Neurophysiopathologie( INP), Inst Neurophysiopathol, Marseille, France
| | - Kamel Mabrouk
- Aix Marseille University, CNRS, Institut de Chimie Radicalaire (ICR), Unité Mixte de Recherche (UMR) 7273 Chimie Radicalaire Organique et Polymères de Spécialité (CROPS), Marseille, France
| | - Ramiro Vázquez
- Preclinical Department, Early Drug Development Group (E2DG), Boulogne-Billancourt, France.,Center for Genomic Science of Istituto Italiano di Tecnologia, Center for Genomic Science, European School of Molecular Medicine (IIT@SEMM), Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Maria E Riveiro
- Preclinical Department, Early Drug Development Group (E2DG), Boulogne-Billancourt, France
| | - Philippe Metellus
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Institut de Neurophysiopathologie( INP), Inst Neurophysiopathol, Marseille, France.,Centre Hospitalier Clairval, Département de Neurochirurgie, Marseille, France
| | - L'Houcine Ouafik
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Institut de Neurophysiopathologie( INP), Inst Neurophysiopathol, Marseille, France.,Assistance Publique Hôpitaux de Marseille (APHM), Centre Hospitalo Universitaire (CHU) Nord, Service d'OncoBiologie, Marseille, France
| |
Collapse
|
35
|
Chang CJ, Lin CF, Chen BC, Lin PY, Chen CL. SHP2: The protein tyrosine phosphatase involved in chronic pulmonary inflammation and fibrosis. IUBMB Life 2021; 74:131-142. [PMID: 34590785 DOI: 10.1002/iub.2559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/24/2021] [Accepted: 09/11/2021] [Indexed: 12/19/2022]
Abstract
Chronic respiratory diseases (CRDs), including pulmonary fibrosis, chronic obstructive pulmonary disease (COPD), lung cancer, and asthma, are significant global health problems due to their prevalence and rising incidence. The roles of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs) in controlling tyrosine phosphorylation of targeting proteins modulate multiple physiological cellular responses and contribute to the pathogenesis of CRDs. Src homology-2 domain-containing PTP2 (SHP2) plays a pivotal role in modulating downstream growth factor receptor signaling and cytoplasmic PTKs, including MAPK/ERK, PI3K/AKT, and JAK/STAT pathways, to regulate cell survival and proliferation. In addition, SHP2 mutation and activation are commonly implicated in tumorigenesis. However, little is known about SHP2 in chronic pulmonary inflammation and fibrosis. This review discusses the potential involvement of SHP2 deregulation in chronic pulmonary inflammation and fibrosis, as well as the therapeutic effects of targeting SHP2 in CRDs.
Collapse
Affiliation(s)
- Chun-Jung Chang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Respiratory Therapy, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chiou-Feng Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Bing-Chang Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pei-Yun Lin
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Ling Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
36
|
Nensi S, Ashton J. ALK-positive non-small cell lung cancer; potential combination drug treatments. Curr Cancer Drug Targets 2021; 21:737-748. [PMID: 34325640 DOI: 10.2174/1568009621666210729100647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022]
Abstract
Advances in chromosomally rearranged ALK positive non-small cell lung cancer have been dramatic in only the last few years. Survival times have improved dramatically due to the introduction of ever more efficacious ALK inhibitors. These improvements have been due largely to improvements in blood-brain barrier penetration and the breadth of ligand binding pocket mutations against which the drugs are effective. However, the advances maybe slow as compared to the frequency of cancers with compound resistance mutations are appearing, suggesting the need to develop multiple ALK inhibitors to target different compound mutations.Another research area that promises to provide further gains is the use of drug combinations, with an ALK inhibitor combined with a drug targeting a "second driver" to overcome resistance. In this review, the range of secondary targets for ALK+ lung cancer and the potential for their clinical success are reviewed.
Collapse
Affiliation(s)
- Shrestha Nensi
- Department of Pharmacology & Toxicology, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - John Ashton
- Department of Pharmacology & Toxicology, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
37
|
Wei B, Xu L, Guo W, Wang Y, Wu J, Li X, Cai X, Hu J, Wang M, Xu Q, Liu W, Gu Y. SHP2-Mediated Inhibition of DNA Repair Contributes to cGAS-STING Activation and Chemotherapeutic Sensitivity in Colon Cancer. Cancer Res 2021; 81:3215-3228. [PMID: 33820798 DOI: 10.1158/0008-5472.can-20-3738] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/11/2021] [Accepted: 03/31/2021] [Indexed: 12/24/2022]
Abstract
As a cytoplasmic sensor of double-stranded DNA (dsDNA), the cyclic GMP-AMP synthase-stimulator of IFN genes (STING) pathway plays an important role in antitumor immunity. In this study, we investigated the effect of Src homology-2 domain-containing protein tyrosine phosphatase-2 (SHP2) on tumor cell-intrinsic STING pathway activity and DNA repair in colon cancer. SHP2 interacted with and dephosphorylated PARP1 after DNA damage. PARP1 inhibition by SHP2 resulted in reduced DNA repair and accumulation of dsDNA in cells, thus promoting hyperactivation of the STING pathway. The SHP2 agonist lovastatin was able to enhance SHP2 activity and promote STING pathway activation. Moreover, lovastatin significantly enhanced the efficacy of chemotherapy in colon cancer models, in part via STING pathway-mediated antitumor immunity. These findings suggest that SHP2 exacerbates STING pathway activation by restricting PARP1-mediated DNA repair in tumor cells, providing a basis for the combined use of lovastatin and chemotherapy in the treatment of colon cancer. SIGNIFICANCE: Dephosphorylation of PARP1 by SHP2 simultaneously suppresses DNA repair and enhances STING pathway-mediated antitumor immunity, highlighting SHP2 activation as a potential therapeutic approach in colon cancer.
Collapse
Affiliation(s)
- Bin Wei
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China.,Department of Oncology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, P.R. China
| | - Lingyan Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, P.R. China
| | - Yuanyuan Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Jingjing Wu
- Department of Oncology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, P.R. China
| | - Xiaofei Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Xiaomin Cai
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Jinbo Hu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, P.R. China
| | - Meijing Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, P.R. China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, P.R. China
| | - Wen Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, P.R. China.
| | - Yanhong Gu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China.
| |
Collapse
|
38
|
Dong L, Han D, Meng X, Xu M, Zheng C, Xia Q. Activating Mutation of SHP2 Establishes a Tumorigenic Phonotype Through Cell-Autonomous and Non-Cell-Autonomous Mechanisms. Front Cell Dev Biol 2021; 9:630712. [PMID: 33777940 PMCID: PMC7991796 DOI: 10.3389/fcell.2021.630712] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/04/2021] [Indexed: 01/18/2023] Open
Abstract
Gain-of-function mutation of SHP2 is a central regulator in tumorigenesis and cancer progression through cell-autonomous mechanisms. Activating mutation of SHP2 in microenvironment was identified to promote cancerous transformation of hematopoietic stem cell in non-autonomous mechanisms. It is interesting to see whether therapies directed against SHP2 in tumor or microenvironmental cells augment antitumor efficacy. In this review, we summarized different types of gain-of-function SHP2 mutations from a human disease. In general, gain-of-function mutations destroy the auto-inhibition state from wild-type SHP2, leading to consistency activation of SHP2. We illustrated how somatic or germline mutation of SHP2 plays an oncogenic role in tumorigenesis, stemness maintenance, invasion, etc. Moreover, the small-molecule SHP2 inhibitors are considered as a potential strategy for enhancing the efficacy of antitumor immunotherapy and chemotherapy. We also discussed the interconnection between phase separation and activating mutation of SHP2 in drug resistance of antitumor therapy.
Collapse
Affiliation(s)
- Lei Dong
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Da Han
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Xinyi Meng
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Mengchuan Xu
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Chuwen Zheng
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Qin Xia
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
39
|
Protein Tyrosine Phosphatase SHP2 Suppresses Host Innate Immunity against Influenza A Virus by Regulating EGFR-Mediated Signaling. J Virol 2021; 95:JVI.02001-20. [PMID: 33361428 DOI: 10.1128/jvi.02001-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/13/2020] [Indexed: 12/14/2022] Open
Abstract
Influenza A virus (IAV) is a highly contagious pathogen, causing acute respiratory illnesses in human beings and animals and frequently giving rise to epidemic outbreaks. Evasion by IAV of host immunity facilitates viral replication and spread, which can be initiated through various mechanisms, including epidermal growth factor receptor (EGFR) activation. However, how EGFR mediates the suppression of antiviral systems remains unclear. Here, we examined host innate immune responses and their relevant signaling to EGFR upon IAV infection. IAV was found to induce the phosphorylation of EGFR and extracellular signal-regulated kinase (ERK) at an early stage of infection. Inhibition of EGFR or ERK suppressed the viral replication but increased the expression of type I and type III interferons (IFNs) and interferon-stimulated genes (ISGs), supporting the idea that IAV escapes from antiviral innate immunity by activating EGFR/ERK signaling. Meanwhile, IAV infection also induced the activation of Src homology region 2-containing protein tyrosine phosphatase 2 (SHP2). Pharmacological inhibition or small interfering RNA (siRNA)-based silencing of SHP2 enhanced the IFN-dependent antiviral activity and reduced virion production. Furthermore, knockdown of SHP2 attenuated the EGFR-mediated ERK phosphorylation triggered by viral infection or EGF stimulation. Conversely, ectopic expression of constitutively active SHP2 noticeably promoted ERK activation and viral replication, concomitant with diminished immune function. Altogether, the results indicate that SHP2 is crucial for IAV-induced activation of the EGFR/ERK pathway to suppress host antiviral responses.IMPORTANCE Viral immune evasion is the most important strategy whereby viruses evolve for their survival. This work shows that influenza A virus (IAV) suppressed the antiviral innate immunity through downregulation of IFNs and ISGs by activating EGFR/ERK signaling. Meanwhile, IAV also induced the activation of protein tyrosine phosphatase SHP2, which was found to be responsible for modulating the EGFR-mediated ERK activity and subsequent antiviral effectiveness both in vitro and in vivo The results suggest that SHP2 is a key signal transducer between EGFR and ERK and plays a crucial role in suppressing host innate immunity during IAV infection. The finding enhances our understanding of influenza immune evasion and provides a new therapeutic approach to viral infection.
Collapse
|
40
|
Li J, Zhu Y. Recent Advances in Liver Cancer Stem Cells: Non-coding RNAs, Oncogenes and Oncoproteins. Front Cell Dev Biol 2020; 8:548335. [PMID: 33117795 PMCID: PMC7575754 DOI: 10.3389/fcell.2020.548335] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies worldwide, with high morbidity, relapse, metastasis and mortality rates. Although liver surgical resection, transplantation, chemotherapy, radiotherapy and some molecular targeted therapeutics may prolong the survival of HCC patients to a certain degree, the curative effect is still poor, primarily because of tumor recurrence and the drug resistance of HCC cells. Liver cancer stem cells (LCSCs), also known as liver tumor-initiating cells, represent one small subset of cancer cells that are responsible for disease recurrence, drug resistance and death. Therefore, understanding the regulatory mechanism of LCSCs in HCC is of vital importance. Thus, new studies that present gene regulation strategies to control LCSC differentiation and replication are under development. In this review, we provide an update on the latest advances in experimental studies on non-coding RNAs (ncRNAs), oncogenes and oncoproteins. All the articles addressed the crosstalk between different ncRNAs, oncogenes and oncoproteins, as well as their upstream and downstream products targeting LCSCs. In this review, we summarize three pathways, the Wnt/β-catenin signaling pathway, phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway, and interleukin 6/Janus kinase 2/signal transducer and activator of transcription 3 (IL6/JAK2/STAT3) signaling pathway, and their targeting gene, c-Myc. Furthermore, we conclude that octamer 4 (OCT4) and Nanog are two important functional genes that play a pivotal role in LCSC regulation and HCC prognosis.
Collapse
Affiliation(s)
- Juan Li
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Zhu
- Department of Infectious Disease, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Liver Disease Center of Integrated Traditional and Western Medicine, Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
41
|
Hartman Z, Geldenhuys WJ, Agazie YM. Novel Small-Molecule Inhibitor for the Oncogenic Tyrosine Phosphatase SHP2 with Anti-Breast Cancer Cell Effects. ACS OMEGA 2020; 5:25113-25124. [PMID: 33043190 PMCID: PMC7542598 DOI: 10.1021/acsomega.0c02746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/14/2020] [Indexed: 05/08/2023]
Abstract
The oncogenic property of the Src homology phosphotyrosine phosphatase 2 (SHP2) is well-known, but developing specific inhibitors has been very difficult. Based on our previous reports that showed the importance of acidic residues surrounding SHP2 substrate phosphotyrosines for specific recognition, we have rationally designed and chemically synthesized a small-molecule SHP2 inhibitor named 4,4'-(4'-carboxy)-4-nonyloxy-[1,1'-biphenyl]-3,5-diyl)dibutanoic acid (CNBDA). Molecular modeling predicted that CNBDA packs well into the SHP2 active site and makes extended interactions primarily with positively charged and polar amino acids surrounding the active site. In vitro PTPase assays showed that CNBDA inhibits SHP2 with an IC50 of 5 μM. However, the IC50 of CNBDA toward SHP1, the close structural homologue of SHP2, was 125 μM, suggesting an approximately 25-fold effectiveness against SHP2 than SHP1. Because SHP2 is known for its positive role in breast cancer (BC) cell biology, we tested the effect of SHP2 inhibition with CNBDA in HER2-positive BC cells. Treatment with CNBDA suppressed cell proliferation in 2D culture, anchorage-independent growth in soft agar, and mammosphere (tumorisphere) formation in suspension cultures in a concentration-dependent manner. Furthermore, CNBDA inhibited EGF-induced signaling and expression of HER2 by inhibiting the PTPase activity of SHP2 in BC cells. These findings suggest that CNBDA is a promising anti-SHP2 lead compound with anti-BC cell effects.
Collapse
Affiliation(s)
- Zachary Hartman
- Department
of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Werner J. Geldenhuys
- School
of Medicine; Department of Basic Pharmaceutical Sciences, School of
Pharmacy, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Yehenew M. Agazie
- Department
of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, United States
- WVU
Cancer Institute, West Virginia University Morgantown, West Virginia 26506, United States
- . Phone: (304) 293-7756. Fax: (304) 293-6486
| |
Collapse
|
42
|
Yang L, Han X, Zhang C, Sun C, Huang S, Xiao W, Gao Y, Liang Q, Luo F, Lu W, Fu J, Zhou Y. Hsa_circ_0060450 Negatively Regulates Type I Interferon-Induced Inflammation by Serving as miR-199a-5p Sponge in Type 1 Diabetes Mellitus. Front Immunol 2020; 11:576903. [PMID: 33133095 PMCID: PMC7550460 DOI: 10.3389/fimmu.2020.576903] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022] Open
Abstract
Circular RNAs (circRNAs) constitute a class of covalently circular non-coding RNA molecules formed by 5′ and 3′ end back-splicing. The rapid development of bioinformatics and large-scale sequencing has led to the identification of functional circRNAs. Despite an overall upward trend, studies focusing on the roles of circRNAs in immune diseases remain relatively scarce. In the present study, we obtained a differential circRNA expression profile based on microarray analysis of peripheral blood mononuclear cells (PBMCs) in children with type 1 diabetes mellitus (T1DM). We characterized one differentially expressed circRNA back-spliced from the MYB Proto-Oncogene Like 2 (MYBL2) gene in patients with T1DM, termed as hsa_circ_0060450. Subsequent assays revealed that hsa_circ_0060450 can serve as the sponge of miR-199a-5p, release its target gene, Src homology 2 (SH2)-containing protein tyrosine phosphatase 2 (SHP2), encoded by the tyrosine-protein phosphatase non-receptor type 11 gene (PTPN11), and further suppress the JAK-STAT signaling pathway triggered by type I interferon (IFN-I) to inhibit macrophage-mediated inflammation, which indicates the important roles of circRNAs in T1DM and represents a promising therapeutic molecule in the treatment of T1DM.
Collapse
Affiliation(s)
- Lan Yang
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Xiao Han
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Caiyan Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Chengjun Sun
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Saihua Huang
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Wenfeng Xiao
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Yajing Gao
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Qiuyan Liang
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Feihong Luo
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Wei Lu
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Jinrong Fu
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yufeng Zhou
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| |
Collapse
|
43
|
Phosphatase-independent functions of SHP2 and its regulation by small molecule compounds. J Pharmacol Sci 2020; 144:139-146. [PMID: 32921395 DOI: 10.1016/j.jphs.2020.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022] Open
Abstract
SHP2 is a non-receptor protein tyrosine phosphatase encoded by the PTPN11 gene in human. Clinically, SHP2 has been identified as a causal factor of several diseases, such as Noonan syndrome, LEOPARD syndrome as well as myeloid malignancies. Interestingly, both loss-of-function and gain-of-function mutations occur in the PTPN11 gene. Analyses by biochemical and cell biological means as well as probing with small molecule compounds have demonstrated that SHP2 has both phosphatase-dependent and independent functions. In comparison with its phosphatase activity, the non-phosphatase-like function of SHP2 has not been well introduced or summarized. This review mainly focuses on the phosphatase-independent functions and its regulation by small molecule compounds as well as their use for disease therapy.
Collapse
|
44
|
A Fish Leukocyte Immune-Type Receptor Uses a Novel Intracytoplasmic Tail Networking Mechanism to Cross-Inhibit the Phagocytic Response. Int J Mol Sci 2020; 21:ijms21145146. [PMID: 32708174 PMCID: PMC7404264 DOI: 10.3390/ijms21145146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 02/04/2023] Open
Abstract
Channel catfish (Ictalurus punctatus) leukocyte immune-type receptors (IpLITRs) are a family of immunoregulatory proteins shown to regulate several innate immune cell effector responses, including phagocytosis. The precise mechanisms of IpLITR-mediated regulation of the phagocytic process are not entirely understood, but we have previously shown that different IpLITR-types use classical as well as novel pathways for controlling immune cell-mediated target engulfment. To date, all functional assessments of IpLITR-mediated regulatory actions have focused on the independent characterization of select IpLITR-types in transfected cells. As members of the immunoglobulin superfamily, many IpLITRs share similar extracellular Ig-like domains, thus it is possible that various IpLITR actions are influenced by cross-talk mechanisms between different IpLITR-types; analogous to the paired innate receptor paradigm in mammals. Here, we describe in detail the co-expression of different IpLITR-types in the human embryonic AD293 cell line and examination of their receptor cross-talk mechanisms during the regulation of the phagocytic response using imaging flow cytometry, confocal microscopy, and immunoprecipitation protocols. Overall, our data provides interesting new insights into the integrated control of phagocytosis via the antagonistic networking of independent IpLITR-types that requires the selective recruitment of inhibitory signaling molecules for the initiation and sustained cross-inhibition of phagocytosis.
Collapse
|
45
|
Abstract
RAS was identified as a human oncogene in the early 1980s and subsequently found to be mutated in nearly 30% of all human cancers. More importantly, RAS plays a central role in driving tumor development and maintenance. Despite decades of effort, there remain no FDA approved drugs that directly inhibit RAS. The prevalence of RAS mutations in cancer and the lack of effective anti-RAS therapies stem from RAS' core role in growth factor signaling, unique structural features, and biochemistry. However, recent advances have brought promising new drugs to clinical trials and shone a ray of hope in the field. Here, we will exposit the details of RAS biology that illustrate its key role in cell signaling and shed light on the difficulties in therapeutically targeting RAS. Furthermore, past and current efforts to develop RAS inhibitors will be discussed in depth.
Collapse
Affiliation(s)
- J Matthew Rhett
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson VA Medical Center, Charleston, SC, United States
| | - Imran Khan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson VA Medical Center, Charleston, SC, United States
| | - John P O'Bryan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson VA Medical Center, Charleston, SC, United States.
| |
Collapse
|
46
|
Chen D, Barsoumian HB, Yang L, Younes AI, Verma V, Hu Y, Menon H, Wasley M, Masropour F, Mosaffa S, Ozgen T, Klein K, Cortez MA, Welsh JW. SHP-2 and PD-L1 Inhibition Combined with Radiotherapy Enhances Systemic Antitumor Effects in an Anti-PD-1-Resistant Model of Non-Small Cell Lung Cancer. Cancer Immunol Res 2020; 8:883-894. [PMID: 32299915 PMCID: PMC10173258 DOI: 10.1158/2326-6066.cir-19-0744] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/16/2020] [Accepted: 04/03/2020] [Indexed: 02/03/2023]
Abstract
Immune checkpoint inhibitors, such as anti-PD-1/PD-L1, have emerged as promising therapies for advanced non-small cell lung cancer (NSCLC). However, approximately 80% of patients do not respond to immunotherapy given alone because of intrinsic or acquired resistance. Radiotherapy (XRT) can overcome PD-1 resistance and improve treatment outcomes, but its efficacy remains suboptimal. The tyrosine phosphatase SHP-2, expressed in some cancers and in immune cells, has been shown to negatively affect antitumor immunity. Our hypothesis was that SHP-2 inhibition in combination with anti-PD-L1 would enhance immune-mediated responses to XRT and synergistically boost antitumor effects in an anti-PD-1-resistant mouse model. We treated 129Sv/Ev mice with anti-PD-1-resistant 344SQ NSCLC adenocarcinoma with oral SHP099 (a SHP-2 inhibitor) combined with XRT and intraperitoneal anti-PD-L1. Primary tumors were treated with XRT (three fractions of 12 Gy each), whereas abscopal (out-of-field) tumors were observed but not treated. XRT in combination with SHP099 and anti-PD-L1 promoted local and abscopal responses, reduced lung metastases, and improved mouse survival. XRT also increased SHP-2+ M1 tumor-associated macrophages in abscopal tumors (P = 0.019). The addition of SHP099 also associated with a higher M1/M2 ratio, greater numbers of CD8+ T cells, and fewer regulatory T cells. This triple-combination therapy had strong antitumor effects in a mouse model of anti-PD-1-resistant NSCLC and may be a novel therapeutic approach for anti-PD-1-resistant NSCLC in patients.
Collapse
Affiliation(s)
- Dawei Chen
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Affiliated to Shandong University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Hampartsoum B Barsoumian
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Liangpeng Yang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ahmed I Younes
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vivek Verma
- Department of Radiation Oncology, Allegheny General Hospital, Pittsburgh, Pennsylvania
| | - Yun Hu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hari Menon
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mark Wasley
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Fatemeh Masropour
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Tugce Ozgen
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Katherine Klein
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Maria Angelica Cortez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - James W Welsh
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
47
|
Li L, Xu X, Du Y, Zhang M, Feng Y, Qian X, Li S, Du T, Peng X, Chen F. ATPR induces acute promyelocytic leukemia cells differentiation and growth arrest by blockade of SHP2/Rho/ROCK1 pathway. Toxicol Appl Pharmacol 2020; 399:115053. [DOI: 10.1016/j.taap.2020.115053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/04/2020] [Accepted: 05/12/2020] [Indexed: 01/04/2023]
|
48
|
Xu Y, Zhang Y, Yang Y, Liu Y, Tian Q, Liu P, Ding Z, Cheng H, Zhang X, Ke Y. Tyrosine phosphatase Shp2 regulates p115RhoGEF/Rho-dependent dendritic cell migration. Cell Mol Immunol 2020; 18:755-757. [PMID: 32350404 DOI: 10.1038/s41423-020-0414-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 03/07/2020] [Indexed: 12/25/2022] Open
Affiliation(s)
- Yun Xu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Yun Zhang
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanyan Yang
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Yanqi Liu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Qiaoying Tian
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Pan Liu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Zhifan Ding
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Hongqiang Cheng
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Xue Zhang
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China. .,Department of Pathology and Pathophysiology and Department of Respiratory Medicine at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.
| | - Yuehai Ke
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China. .,Department of Pathology and Pathophysiology and Department of Respiratory Medicine at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
49
|
Ahmed TA, Adamopoulos C, Karoulia Z, Wu X, Sachidanandam R, Aaronson SA, Poulikakos PI. SHP2 Drives Adaptive Resistance to ERK Signaling Inhibition in Molecularly Defined Subsets of ERK-Dependent Tumors. Cell Rep 2020; 26:65-78.e5. [PMID: 30605687 PMCID: PMC6396678 DOI: 10.1016/j.celrep.2018.12.013] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/08/2018] [Accepted: 12/03/2018] [Indexed: 02/04/2023] Open
Abstract
Pharmacologic targeting of components of ERK signaling in ERK-dependent tumors is often limited by adaptive resistance, frequently mediated by feedback-activation of RTK signaling and rebound of ERK activity. Here, we show that combinatorial pharmacologic targeting of ERK signaling and the SHP2 phosphatase prevents adaptive resistance in defined subsets of ERK-dependent tumors. In each tumor that was sensitive to combined treatment, p(Y542)SHP2 induction was observed in response to ERK signaling inhibition. The strategy was broadly effective in TNBC models and tumors with RAS mutations at G12, whereas tumors with RAS(G13D) or RAS(Q61X) mutations were resistant. In addition, we identified a subset of BRAF(V600E) tumors that were resistant to the combined treatment, in which FGFR was found to drive feedback-induced RAS activation, independently of SHP2. Thus, we identify molecular determinants of response to combined ERK signaling and SHP2 inhibition in ERK-dependent tumors.
Collapse
Affiliation(s)
- Tamer A Ahmed
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Dermatology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christos Adamopoulos
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Dermatology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zoi Karoulia
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Dermatology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xuewei Wu
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Dermatology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ravi Sachidanandam
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stuart A Aaronson
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Poulikos I Poulikakos
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Dermatology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
50
|
Hartman Z, Geldenhuys WJ, Agazie YM. A specific amino acid context in EGFR and HER2 phosphorylation sites enables selective binding to the active site of Src homology phosphatase 2 (SHP2). J Biol Chem 2020; 295:3563-3575. [PMID: 32024694 DOI: 10.1074/jbc.ra119.011422] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/22/2020] [Indexed: 11/06/2022] Open
Abstract
The Src homology phosphatase 2 (SHP2) is a cytoplasmic enzyme that mediates signaling induced by multiple receptor tyrosine kinases, including signaling by the epidermal growth factor receptor (EGFR) family (EGFR1-4 or the human homologs HER1-4). In EGFR (HER1) and EGFR2 (HER2) signaling, SHP2 increases the half-life of activated Ras by blocking recruitment of Ras GTPase-activating protein (RasGAP) to the plasma membrane through dephosphorylation of docking sites on the receptors. However, it is unclear how SHP2 selectively recognizes RasGAP-binding sites on EGFR and HER2. In this report, we show that SHP2-targeted pTyr residues exist in a specific amino acid context that allows selective binding. More specifically, we show that acidic residues N-terminal to the substrate pTyr in EGFR and HER2 mediate specific binding by the SHP2 active site, leading to blockade of RasGAP binding and optimal signaling by the two receptors. Molecular modeling studies revealed that a peptide derived from the region of pTyr992-EGFR packs well and makes stronger interactions with the SHP2 active site than with the SHP1 active site, suggesting a built-in mechanism that enables selective substrate recognition by SHP2. A phosphorylated form of this peptide inhibits SHP2 activity in vitro and EGFR and HER2 signaling in cells, suggesting inhibition of SHP2 protein tyrosine phosphatase activity by this peptide. Although we do not expect this peptide to be a strong inhibitor by itself, we foresee that the insights into SHP2 selectivity described here will be useful in future development of active-site small molecule-based inhibitors.
Collapse
Affiliation(s)
- Zachary Hartman
- Department of Biochemistry, School of Medicine West Virginia University, Morgantown, West Virginia 26506
| | - Werner J Geldenhuys
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia 26506
| | - Yehenew M Agazie
- Department of Biochemistry, School of Medicine West Virginia University, Morgantown, West Virginia 26506; WVU Cancer Institute, School of Medicine, West Virginia University, Morgantown, West Virginia 26506.
| |
Collapse
|