1
|
Munim MA, Tanni AA, Hossain MM, Chakma K, Mannan A, Islam SMR, Tiwari JG, Gupta SD. Whole genome sequencing of multidrug-resistant Klebsiella pneumoniae from poultry in Noakhali, Bangladesh: Assessing risk of transmission to humans in a pilot study. Comp Immunol Microbiol Infect Dis 2024; 114:102246. [PMID: 39423715 DOI: 10.1016/j.cimid.2024.102246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Multi-drug resistant (MDR) Klebsiella pneumoniae is a public health concern due to its presence in Bangladeshi poultry products and its ability to spread resistance genes. This study genetically characterizes a distinct MDR K. pneumoniae isolate from the gut of poultry in Noakhali, Bangladesh, offering insights into its resistance mechanisms and public health impact. METHODS Klebsiella pneumoniae isolates from broiler and layer poultry were identified using biochemical and molecular analyses. Eleven isolates were tested for antibiotic sensitivity and categorized by their Multiple Antibiotic Resistance Index (MARI) profiles. The isolate with the highest MARI was selected for whole-genome sequencing using Illumina technology. The sequencing data were analyzed for genome annotation, pan-genome analysis, genome similarities, sequence type identification, and the identification of genetic determinants of resistance and virulence genes. RESULT We identified 10 MARI profiles among 11 K. pneumoniae isolates, with values ranging from 0.64 to 0.94. The highest MARI of 0.94 was found in an isolate from a layer poultry. This isolate's genome, 5401,789 base pairs long with 89.6 % coverage, showed potential inter-species dissemination, as indicated by core genome phylogenetic analysis. It possessed genes conferring resistance to fluoroquinolones, aminoglycosides, β-lactams, folate pathway antagonists, fosfomycin, macrolides, quinolones, rifamycin, tetracyclines, and polymyxins, including colistin. CONCLUSION Poultry serve as reservoirs for MDR K. pneumoniae, which can spread to other species and pose significant health risks. Rigorous monitoring of antibiotic use and genetic characterization of MDR bacterial isolates are essential to mitigate this threat.
Collapse
Affiliation(s)
- Md Adnan Munim
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh.
| | - Afroza Akter Tanni
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram 4331, Bangladesh; Next Generation Sequencing, Research and Innovation Laboratory Chattogram (NRICh), Biotechnology Research and Innovation Centre (BRIC), University of Chittagong, Chattogram, Bangladesh.
| | - Md Mobarok Hossain
- International Centre for Diarrhoeal Disease Research (iccdr,b), Bangladesh.
| | - Kallyan Chakma
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram 4331, Bangladesh; Next Generation Sequencing, Research and Innovation Laboratory Chattogram (NRICh), Biotechnology Research and Innovation Centre (BRIC), University of Chittagong, Chattogram, Bangladesh.
| | - Adnan Mannan
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram 4331, Bangladesh; Next Generation Sequencing, Research and Innovation Laboratory Chattogram (NRICh), Biotechnology Research and Innovation Centre (BRIC), University of Chittagong, Chattogram, Bangladesh.
| | - S M Rafiqul Islam
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram 4331, Bangladesh; Next Generation Sequencing, Research and Innovation Laboratory Chattogram (NRICh), Biotechnology Research and Innovation Centre (BRIC), University of Chittagong, Chattogram, Bangladesh.
| | - Jully Gogoi Tiwari
- School of Veterinary Medicine, Murdoch University, 90 South St, Murdoch, WA 6150, Australia.
| | - Shipan Das Gupta
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh.
| |
Collapse
|
2
|
Lin JC, Kristopher Siu LK, Chang FY, Wang CH. Mutations in the pmrB gene constitute the major mechanism underlying chromosomally encoded colistin resistance in clinical Escherichia coli. J Glob Antimicrob Resist 2024; 38:275-280. [PMID: 38996871 DOI: 10.1016/j.jgar.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/06/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
OBJECTIVES The mechanisms underlying chromosomally encoded colistin resistance in Escherichia coli remain insufficiently investigated. In this study, we investigated the contribution of various pmrB mutations from E. coli clinical isolates to colistin resistance. METHODS The resistance mechanisms in eight mcr-negative colistin-resistant E. coli isolates obtained from a nationwide surveillance program in Taiwan using recombinant DNA techniques and complementary experiments were investigated. The minimal inhibitory concentrations (MICs) of colistin in the recombinant strains were compared with those in the parental strains. The expression levels of pmrA and pmrK (which are part of the pmrCAB and pmrHFIJKLM operons associated with colistin resistance) were measured using reverse transcription-quantitative real-time polymerase chain reaction. RESULTS In the complementation experiments, various mutated pmrB alleles from the eight mcr-negative colistin-resistant E. coli strains were introduced into an ATCC25922 mutant with a PmrB deletion, which resulted in colistin resistance. The MIC levels of colistin in the most complemented strains were comparable to those of the parental colistin-resistant strains. Increased expression levels of pmrA and pmrK were consistently detected in most complemented strains. The impact for colistin resistance was confirmed for various novel amino acid substitutions, P94L, G19E, L194P, L98R and R27L in PmrB from the parental clinical strains. The detected amino acid substitutions are distributed in the different functional domains of PmrB. CONCLUSIONS Colistin resistance mediated by amino acid substitutions in PmrB is a major chromosomally encoded mechanism in E. coli of clinical origin.
Collapse
Affiliation(s)
- Jung-Chung Lin
- Division of Infectious Diseases and Tropical Medicine, Department of Internal, Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Leung-Kei Kristopher Siu
- Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Feng-Yee Chang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal, Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ching-Hsun Wang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal, Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
3
|
Alousi S, Saad J, Panossian B, Makhlouf R, Khoury CA, Rahy K, Thoumi S, Araj GF, Khnayzer R, Tokajian S. Genetic and structural basis of colistin resistance in Klebsiella pneumoniae: Unravelling the molecular mechanisms. J Glob Antimicrob Resist 2024; 38:256-264. [PMID: 39029657 DOI: 10.1016/j.jgar.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/28/2024] [Accepted: 06/23/2024] [Indexed: 07/21/2024] Open
Abstract
OBJECTIVE Antimicrobial resistance (AMR), together with multidrug resistance (MDR), mainly among Gram-negative bacteria, has been on the rise. Colistin (polymyxin E) remains one of the primary available last resorts to treat infections caused by MDR bacteria during the rapid emergence of global resistance. As the exact mechanism of bacterial resistance to colistin remains undetermined, this study warranted elucidation of the underlying mechanisms of colistin resistance and heteroresistance among carbapenem-resistant Klebsiella pneumoniae isolates. METHODS Molecular analysis was carried out on the resistant isolates using a genome-wide characterisation approach, as well as MALDI-TOF mass spectrometry, to identify lipid A. RESULTS Among the 32 carbapenem-resistant K. pneumoniae isolates, several isolates showed resistance and intermediate resistance to colistin. The seven isolates with intermediate resistance exhibited the "skip-well" phenomenon, attributed to the presence of resistant subpopulations. The three isolates with full resistance to colistin showed ions using MALDI-TOF mass spectrometry at m/z of 1840 and 1824 representing bisphosphorylated and hexa-acylated lipid A, respectively, with or without hydroxylation at position C'-2 of the fatty acyl chain. Studying the genetic environment of mgrB locus revealed the presence of two insertion sequences that disrupted the mgrB locus in the three colistin-resistant isolates: IS1R and IS903B. CONCLUSIONS Our findings show that colistin resistance/heteroresistance was inducible with mutations in chromosomal regulatory networks controlling the lipid A moiety and insertion sequences disrupting the mgrB gene, leading to elevated minimum inhibitory concentration values and treatment failure. Different treatment strategies should be employed to avoid colistin heteroresistance-linked treatment failures, mainly through combination therapy using colistin with carbapenems, aminoglycosides, or tigecycline.
Collapse
Affiliation(s)
- Sahar Alousi
- Lebanese American University, Department of Natural Sciences, Byblos, Lebanon
| | - Jamal Saad
- Lebanese University, Department of Sciences, Beirut, Lebanon
| | - Balig Panossian
- Lebanese American University, Department of Natural Sciences, Byblos, Lebanon
| | - Rita Makhlouf
- Lebanese American University, Department of Natural Sciences, Byblos, Lebanon
| | - Charbel Al Khoury
- Lebanese American University, Department of Natural Sciences, Byblos, Lebanon
| | - Kelven Rahy
- Lebanese American University, School of Medicine, Byblos, Lebanon
| | - Sergio Thoumi
- Lebanese American University, Department of Computer Science and Mathematics, Beirut, Lebanon
| | - George F Araj
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Rony Khnayzer
- Lebanese American University, Department of Natural Sciences, Byblos, Lebanon.
| | - Sima Tokajian
- Lebanese American University, Department of Natural Sciences, Byblos, Lebanon.
| |
Collapse
|
4
|
Wang X, Meng T, Dai Y, Ou HY, Wang M, Tang B, Sun J, Cheng D, Pan T, Tan R, Qu H. High prevalence of polymyxin-heteroresistant carbapenem-resistant Klebsiella pneumoniae and its within-host evolution to resistance among critically ill scenarios. Infection 2024:10.1007/s15010-024-02365-z. [PMID: 39143437 DOI: 10.1007/s15010-024-02365-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024]
Abstract
PURPOSE We aimed to explore the prevalence and within-host evolution of resistance in polymyxin-heteroresistant carbapenem-resistant Klebsiella pneumoniae (PHR-CRKP) in critically ill patients. METHODS We performed an epidemiological analysis of consecutive patients with PHR-CRKP from clinical cases. Our study investigated the within-host resistance evolution and its clinical significance during polymyxin exposure. Furthermore, we explored the mechanisms underlying the dynamic evolution of polymyxin resistance at both subpopulation and genetic levels, involved population analysis profile test, time-killing assays, competition experiments, and sanger sequencing. Additionally, comparative genomic analysis was performed on 713 carbapenemase-producing K. pneumoniae strains. RESULTS We enrolled 109 consecutive patients, and PHR-CRKP was found in 69.7% of patients without previous polymyxin exposure. 38.1% of PHR-CRKP isolates exhibited polymyxin resistance and led to therapeutic failure in critically ill scenarios. An increased frequency of resistant subpopulations was detected during PHR-CRKP evolution, with rapid regrowth of resistant subpopulations under high polymyxin concentrations, and a fitness cost in an antibiotic-free environment. Mechanistic analysis revealed that diverse mgrB insertions and pmrB hypermutations contributed to the dynamic changes in polymyxin susceptibility in dominant resistant subpopulations during PHR evolution, which were validated by comparative genomic analysis. Several deleterious mutations (e.g. pmrBLeu82Arg, pmrBSer85Arg) were firstly detected during PHR-CRKP evolution. Indeed, specific sequence types of K. pneumoniae demonstrated unique deletions and deleterious mutations. CONCLUSIONS Our study emphasizes the high prevalence of pre-existing heteroresistance in CRKP, which can lead to polymyxin resistance and fatal outcomes. Hence, it is essential to continuously monitor and observe the treatment response to polymyxins in appropriate critically ill scenarios.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin ER Road, Shanghai, 200025, China
| | - Tianjiao Meng
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin ER Road, Shanghai, 200025, China
| | - Yunqi Dai
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin ER Road, Shanghai, 200025, China
| | - Hong-Yu Ou
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Meng Wang
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Bin Tang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin ER Road, Shanghai, 200025, China
| | - Jingyong Sun
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Decui Cheng
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin ER Road, Shanghai, 200025, China
| | - Tingting Pan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin ER Road, Shanghai, 200025, China.
| | - Ruoming Tan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin ER Road, Shanghai, 200025, China.
| | - Hongping Qu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin ER Road, Shanghai, 200025, China.
| |
Collapse
|
5
|
Jiménez-Castellanos JC, Waclaw B, Meynert A, McAteer SP, Schneiders T. Rapid evolution of colistin resistance in a bioreactor model of infection of Klebsiella pneumoniae. Commun Biol 2024; 7:794. [PMID: 38951173 PMCID: PMC11217424 DOI: 10.1038/s42003-024-06378-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/23/2024] [Indexed: 07/03/2024] Open
Abstract
Colistin remains an important antibiotic for the therapeutic management of drug-resistant Klebsiella pneumoniae. Despite the numerous reports of colistin resistance in clinical strains, it remains unclear exactly when and how different mutational events arise resulting in reduced colistin susceptibility. Using a bioreactor model of infection, we modelled the emergence of colistin resistance in a susceptible isolate of K. pneumoniae. Genotypic, phenotypic and mathematical analyses of the antibiotic-challenged and un-challenged population indicates that after an initial decline, the population recovers within 24 h due to a small number of "founder cells" which have single point mutations mainly in the regulatory genes encoding crrB and pmrB that when mutated results in up to 100-fold reduction in colistin susceptibility. Our work underlines the rapid development of colistin resistance during treatment or exposure of susceptible K. pneumoniae infections having implications for the use of cationic antimicrobial peptides as a monotherapy.
Collapse
Affiliation(s)
- Juan-Carlos Jiménez-Castellanos
- Chemical Biology of Antibiotics, Centre for Infection & Immunity (CIIL), Pasteur Institute, INSERM U1019-CNRS UMR 9017, Lille, France
| | - Bartlomiej Waclaw
- School of Physics and Astronomy, The University of Edinburgh, JCMB, Edinburgh, UK.
- Dioscuri Centre for Physics and Chemistry of Bacteria, Institute of Physical Chemistry, Warsaw, Poland.
| | - Alison Meynert
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Sean P McAteer
- Department of Bacteriology, The Roslin Institute and R(D) SVS, The University of Edinburgh, Easter Bush Campus, Midlothian, Edinburgh, UK
| | - Thamarai Schneiders
- Centre for Inflammation Research, Institute of Regeneration and Repair, Edinburgh Medical School, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
6
|
Diani E, Bianco G, Gatti M, Gibellini D, Gaibani P. Colistin: Lights and Shadows of an Older Antibiotic. Molecules 2024; 29:2969. [PMID: 38998921 PMCID: PMC11243602 DOI: 10.3390/molecules29132969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
The emergence of antimicrobial resistance represents a serious threat to public health and for infections due to multidrug-resistant (MDR) microorganisms, representing one of the most important causes of death worldwide. The renewal of old antimicrobials, such as colistin, has been proposed as a valuable therapeutic alternative to the emergence of the MDR microorganisms. Although colistin is well known to present several adverse toxic effects, its usage in clinical practice has been reconsidered due to its broad spectrum of activity against Gram-negative (GN) bacteria and its important role of "last resort" agent against MDR-GN. Despite the revolutionary perspective of treatment with this old antimicrobial molecule, many questions remain open regarding the emergence of novel phenotypic traits of resistance and the optimal usage of the colistin in clinical practice. In last years, several forward steps have been made in the understanding of the resistance determinants, clinical usage, and pharmacological dosage of this molecule; however, different points regarding the role of colistin in clinical practice and the optimal pharmacokinetic/pharmacodynamic targets are not yet well defined. In this review, we summarize the mode of action, the emerging resistance determinants, and its optimal administration in the treatment of infections that are difficult to treat due to MDR Gram-negative bacteria.
Collapse
Affiliation(s)
- Erica Diani
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Gabriele Bianco
- Department of Experimental Medicine, University of Salento, 73100 Lecce, Italy
| | - Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Davide Gibellini
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Paolo Gaibani
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| |
Collapse
|
7
|
García-Romero I, Srivastava M, Monjarás-Feria J, Korankye SO, MacDonald L, Scott NE, Valvano MA. Drug efflux and lipid A modification by 4-L-aminoarabinose are key mechanisms of polymyxin B resistance in the sepsis pathogen Enterobacter bugandensis. J Glob Antimicrob Resist 2024; 37:108-121. [PMID: 38552872 DOI: 10.1016/j.jgar.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/27/2024] [Accepted: 03/14/2024] [Indexed: 04/26/2024] Open
Abstract
OBJECTIVES A concern with the ESKAPE pathogen, Enterobacter bugandensis, and other species of the Enterobacter cloacae complex, is the frequent appearance of multidrug resistance against last-resort antibiotics, such as polymyxins. METHODS Here, we investigated the responses to polymyxin B (PMB) in two PMB-resistant E. bugandensis clinical isolates by global transcriptomics and deletion mutagenesis. RESULTS In both isolates, the genes of the CrrAB-regulated operon, including crrC and kexD, displayed the highest levels of upregulation in response to PMB. ∆crrC and ∆kexD mutants became highly susceptible to PMB and lost the heteroresistant phenotype. Conversely, heterologous expression of CrrC and KexD proteins increased PMB resistance in a sensitive Enterobacter ludwigii clinical isolate and in the Escherichia coli K12 strain, W3110. The efflux pump, AcrABTolC, and the two component regulators, PhoPQ and CrrAB, also contributed to PMB resistance and heteroresistance. Additionally, the lipid A modification with 4-L-aminoarabinose (L-Ara4N), mediated by the arnBCADTEF operon, was critical to determine PMB resistance. Biochemical experiments, supported by mass spectrometry and structural modelling, indicated that CrrC is an inner membrane protein that interacts with the membrane domain of the KexD pump. Similar interactions were modeled for AcrB and AcrD efflux pumps. CONCLUSION Our results support a model where drug efflux potentiated by CrrC interaction with membrane domains of major efflux pumps combined with resistance to PMB entry by the L-Ara4N lipid A modification, under the control of PhoPQ and CrrAB, confers the bacterium high-level resistance and heteroresistance to PMB.
Collapse
Affiliation(s)
- Inmaculada García-Romero
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, United Kingdom; Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - Mugdha Srivastava
- Functional Genomics & Systems Biology Group, Department of Bioinformatics, Biocenter, Am Hubland, University of Wuerzburg, Wuerzburg, Germany; Core Unit Systems Medicine, University of Wuerzburg, Wuerzburg, Germany
| | - Julia Monjarás-Feria
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Samuel O Korankye
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Lewis MacDonald
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Miguel A Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, United Kingdom.
| |
Collapse
|
8
|
Padhy I, Dwibedy SK, Mohapatra SS. A molecular overview of the polymyxin-LPS interaction in the context of its mode of action and resistance development. Microbiol Res 2024; 283:127679. [PMID: 38508087 DOI: 10.1016/j.micres.2024.127679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
With the rising incidences of antimicrobial resistance (AMR) and the diminishing options of novel antimicrobial agents, it is paramount to decipher the molecular mechanisms of action and the emergence of resistance to the existing drugs. Polymyxin, a cationic antimicrobial lipopeptide, is used to treat infections by Gram-negative bacterial pathogens as a last option. Though polymyxins were identified almost seventy years back, their use has been restricted owing to toxicity issues in humans. However, their clinical use has been increasing in recent times resulting in the rise of polymyxin resistance. Moreover, the detection of "mobile colistin resistance (mcr)" genes in the environment and their spread across the globe have complicated the scenario. The mechanism of polymyxin action and the development of resistance is not thoroughly understood. Specifically, the polymyxin-bacterial lipopolysaccharide (LPS) interaction is a challenging area of investigation. The use of advanced biophysical techniques and improvement in molecular dynamics simulation approaches have furthered our understanding of this interaction, which will help develop polymyxin analogs with better bactericidal effects and lesser toxicity in the future. In this review, we have delved deeper into the mechanisms of polymyxin-LPS interactions, highlighting several models proposed, and the mechanisms of polymyxin resistance development in some of the most critical Gram-negative pathogens.
Collapse
Affiliation(s)
- Indira Padhy
- Molecular Microbiology Lab, Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India
| | - Sambit K Dwibedy
- Molecular Microbiology Lab, Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India
| | - Saswat S Mohapatra
- Molecular Microbiology Lab, Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India.
| |
Collapse
|
9
|
Wang CH, Siu LK, Chang FY, Tsai YK, Huang LY, Lin JC. Influence of PhoPQ and PmrAB two component system alternations on colistin resistance from non-mcr colistin resistant clinical E. Coli strains. BMC Microbiol 2024; 24:109. [PMID: 38565985 PMCID: PMC10986093 DOI: 10.1186/s12866-024-03259-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND The current understanding of acquired chromosomal colistin resistance mechanisms in Enterobacterales primarily involves the disruption of the upstream PmrAB and PhoPQ two-component system (TCS) control caused by mutations in the regulatory genes. Interestingly, previous studies have yielded conflicting results regarding the interaction of regulatory genes related to colistin resistance in Escherichia coli, specifically those surrounding PhoPQ and PmrAB TCS. RESULTS In our study, we focused on two clinical non-mcr colistin-resistant strains of E. coli, TSAREC02 and TSAREC03, to gain a better understanding of their resistance mechanisms. Upon analysis, we discovered that TSAREC02 had a deletion (Δ27-45) in MgrB, as well as substitutions (G206R, Y222H) in PmrB. On the other hand, TSAREC03 exhibited a long deletion (Δ84-224) in PhoP, along with substitutions (M1I, L14P, P178S, T235N) in PmrB. We employed recombinant DNA techniques to explore the interaction between the PhoPQ and PmrAB two-component systems (TCSs) and examine the impact of the mutated phoPQ and pmrB genes on the minimum inhibitory concentrations (MICs) of colistin. We observed significant changes in the expression of the pmrD gene, which encodes a connector protein regulated by the PhoPQ TCS, in the TSAREC02 wild-type (WT)-mgrB replacement mutant and the TSAREC03 WT-phoP replacement mutant, compared to their respective parental strains. However, the expressions of pmrB/pmrA, which reflect PmrAB TCS activity, and the colistin MICs remained unchanged. In contrast, the colistin MICs and pmrB/pmrA expression levels were significantly reduced in the pmrB deletion mutants from both TSAREC02 and TSAREC03, compared to their parental strains. Moreover, we were able to restore colistin resistance and the expressions of pmrB/pmrA by transforming a plasmid containing the parental mutated pmrB back into the TSAREC02 and TSAREC03 mutants, respectively. CONCLUSION While additional data from clinical E. coli isolates are necessary to validate whether our findings could be broadly applied to the E. coli population, our study illuminates distinct regulatory pathway interactions involving colistin resistance in E. coli compared to other species of Enterobacterales. The added information provided by our study contribute to a deeper understanding of the complex pathway interactions within Enterobacterales.
Collapse
Affiliation(s)
- Ching-Hsun Wang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan
| | - L Kristopher Siu
- Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Feng-Yee Chang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan
| | - Yu-Kuo Tsai
- Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Li-Yueh Huang
- Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Jung-Chung Lin
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan.
| |
Collapse
|
10
|
Kim SJ, Shin JH, Kim H, Ko KS. Roles of crrAB two-component regulatory system in Klebsiella pneumoniae: growth yield, survival in initial colistin treatment stage, and virulence. Int J Antimicrob Agents 2024; 63:107011. [PMID: 37863340 DOI: 10.1016/j.ijantimicag.2023.107011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 10/09/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023]
Abstract
OBJECTIVES Alternation of the colistin resistance-regulating two-component regulatory system (crrAB) is a colistin-resistance mechanism in Klebsiella pneumoniae (K. pneumoniae), but its role in bacteria is not fully understood. METHODS Twelve colistin-susceptible K. pneumoniae clinical isolates were included in this study: six crrAB-positive and six crrAB-negative. We deleted the crrAB genes from two crrAB-positive isolates and complemented them. We measured the growth yields by determining growth curves in lysogeny broth and minimal media with or without Fe2+. In vitro selection rates for colistin resistance were determined by exposure to colistin, and survival rates against high concentrations of colistin (20 mg/L) at the early stage of growth (20 min) were investigated. Virulence was determined using a serum bactericidal assay and Galleria mellonella larval infection. RESULTS The presence of crrAB was not associated with colistin resistance and did not increase the in vitro selection rate of colistin resistance after exposure. The growth yield of crrAB-positive isolates was higher in lysogeny broth media and increased when Fe2+ was added to minimal media. The crrAB-positive isolates showed higher survival rates in the early stages of exposure to high colistin concentrations. Decreased serum resistance was identified in the crrAB-deleted mutants. More G. mellonella larvae survived when infected by crrAB-deleted mutants, and higher survival rates of bacteria were identified within the larvae infected with wild-type than crrAB-deletant isolates. CONCLUSION Through rapid response to external signals, crrAB would provide advantages for K. pneumoniae survival by increasing the final growth yield and initial survival against colistin treatment. This may partly contribute to the bacterial virulence.
Collapse
Affiliation(s)
- Sun Ju Kim
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jong Hyun Shin
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Hyunkeun Kim
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kwan Soo Ko
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.
| |
Collapse
|
11
|
Sánchez-León I, Pérez-Nadales E, Marín-Sanz JA, García-Martínez T, Martínez-Martínez L. Heteroresistance to colistin in wild-type Klebsiella pneumoniae isolates from clinical origin. Microbiol Spectr 2023; 11:e0223823. [PMID: 37962370 PMCID: PMC10714954 DOI: 10.1128/spectrum.02238-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/13/2023] [Indexed: 11/15/2023] Open
Abstract
IMPORTANCE Colistin is one of the last remaining therapeutic options for dealing with Enterobacteriaceae. Unfortunately, heteroresistance to colistin is also rapidly increasing. We described the prevalence of colistin heteroresistance in a variety of wild-type strains of Klebsiella pneumoniae and the evolution of these strains with colistin heteroresistance to a resistant phenotype after colistin exposure and withdrawal. Resistant mutants were characterized at the molecular level, and numerous mutations in genes related to lipopolysaccharide formation were observed. In colistin-treated patients, the evolution of K. pneumoniae heteroresistance to resistance phenotype could lead to higher rates of therapeutic failure.
Collapse
Affiliation(s)
- Irene Sánchez-León
- Maimonides Biomedical Research Institute of Cordoba, Cordoba, Spain
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Cordoba, Cordoba, Spain
| | - Elena Pérez-Nadales
- Maimonides Biomedical Research Institute of Cordoba, Cordoba, Spain
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Cordoba, Cordoba, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Antonio Marín-Sanz
- Maimonides Biomedical Research Institute of Cordoba, Cordoba, Spain
- Department of Computer Sciences, University of Cordoba, Cordoba, Spain
| | - Teresa García-Martínez
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Cordoba, Cordoba, Spain
| | - Luis Martínez-Martínez
- Maimonides Biomedical Research Institute of Cordoba, Cordoba, Spain
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Cordoba, Cordoba, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Clinical Unit of Microbiology, Reina Sofía University Hospital, Cordoba, Spain
| |
Collapse
|
12
|
Nwabor OF, Chukamnerd A, Terbtothakun P, Nwabor LC, Surachat K, Roytrakul S, Voravuthikunchai SP, Chusri S. Synergistic effects of polymyxin and vancomycin combinations on carbapenem- and polymyxin-resistant Klebsiella pneumoniae and their molecular characteristics. Microbiol Spectr 2023; 11:e0119923. [PMID: 37905823 PMCID: PMC10715205 DOI: 10.1128/spectrum.01199-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/27/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE This study provides insights into the mechanisms of polymyxin resistance in K. pneumoniae clinical isolates and demonstrates potential strategies of polymyxin and vancomycin combinations for combating this resistance. We also identified possible mechanisms that might be associated with the treatment of these combinations against carbapenem- and polymyxin-resistant K. pneumoniae clinical isolates. The findings have significant implications for the development of alternative therapies and the effective management of infections caused by these pathogens.
Collapse
Affiliation(s)
- Ozioma Forstinus Nwabor
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Arnon Chukamnerd
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Pawarisa Terbtothakun
- Division of Biological Science, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Lois Chinwe Nwabor
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Faculty of Medicine, Translational Medicine Research Center, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Supayang Piyawan Voravuthikunchai
- Faculty of Science, Center of Antimicrobial Biomaterial Innovation-Southeast Asia and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Sarunyou Chusri
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
13
|
Li L, Ma J, Cheng P, Li M, Yu Z, Song X, Yu Z, Sun H, Zhang W, Wang Z. Roles of two-component regulatory systems in Klebsiella pneumoniae: Regulation of virulence, antibiotic resistance, and stress responses. Microbiol Res 2023; 272:127374. [PMID: 37031567 DOI: 10.1016/j.micres.2023.127374] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023]
Abstract
Klebsiella pneumoniae is an opportunistic pathogen belonging to the Enterobacteriaceae family, which is the leading cause of nosocomial infections. The emergence of hypervirulent and multi-drug resistant K. pneumoniae is a serious health threat. In the process of infection, K. pneumoniae needs to adapt to different environmental conditions, and the two-component regulatory system (TCS) composed of a sensor histidine kinase and response regulator is an important bacterial regulatory system in response to external stimuli. Understanding how K. pneumoniae perceives and responds to complex environmental stimuli provides insights into TCS regulation mechanisms and new targets for drug design. In this review, we analyzed the TCS composition and summarized the regulation mechanisms of TCSs, focusing on the regulation of genes involved in virulence, antibiotic resistance, and stress response. Collectively, these studies demonstrated that several TCSs play important roles in the regulation of virulence, antibiotic resistance and stress responses of K. pneumoniae. A single two-component regulatory system can participate in the regulation of several stress responses, and one stress response process may include several TCSs, forming a complex regulatory network. However, the function and regulation mechanism of some TCSs require further study. Hence, future research endeavors are required to enhance the understanding of TCS regulatory mechanisms and networks in K. pneumoniae, which is essential for the design of novel drugs targeting TCSs.
Collapse
|
14
|
Sánchez-León I, García-Martínez T, Diene SM, Pérez-Nadales E, Martínez-Martínez L, Rolain JM. Heteroresistance to Colistin in Clinical Isolates of Klebsiella pneumoniae Producing OXA-48. Antibiotics (Basel) 2023; 12:1111. [PMID: 37508209 PMCID: PMC10375995 DOI: 10.3390/antibiotics12071111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Heteroresistance to colistin can be defined as the presence of resistant subpopulations in an isolate that is susceptible to this antibiotic. Colistin resistance in Gram-negative bacteria is more frequently related to chromosomal mutations and insertions. This work aimed to study heteroresistance in nine clinical isolates of Klebsiella pneumoniae producing OXA-48 and to describe genomic changes in mutants with acquired resistance in vitro. Antimicrobial susceptibility was determined by broth microdilution (BMD) and heteroresistance by population analysis profiling (PAP). The proteins related to colistin resistance were analyzed for the presence of mutations. Additionally, PCR of the mgrB gene was performed to identify the presence of insertions. In the nine parental isolates, the PAP method showed colistin heteroresistance of colonies growing on plates with concentrations of up to 64 mg/L, corresponding to stable mutant subpopulations. The MICs of some mutants from the PAP plate containing 4×MIC of colistin had absolute values of ≤2 mg/L that were higher than the parental MICs and were defined as persistent variants. PCR of the mgrB gene identified an insertion sequence that inactivated the gene in 21 mutants. Other substitutions in the investigated mutants were found in PhoP, PhoQ, PmrB, PmrC, CrrA and CrrB proteins. Colistin heteroresistance in K. pneumoniae isolates was attributed mainly to insertions in the mgrB gene and point mutations in colistin resistance proteins. The results of this study will improve understanding regarding the mechanisms of colistin resistance in mutants of K. pneumoniae producing OXA-48.
Collapse
Affiliation(s)
- Irene Sánchez-León
- Maimonides Biomedical Research Institute of Cordoba, 14004 Cordoba, Spain
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence CeiA3, University of Cordoba, 14014 Cordoba, Spain
| | - Teresa García-Martínez
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence CeiA3, University of Cordoba, 14014 Cordoba, Spain
| | - Seydina M Diene
- Microbes Evolution Phylogeny and Infections (MEPHI), IRD, APHM, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-University, 13005 Marseille, France
| | - Elena Pérez-Nadales
- Maimonides Biomedical Research Institute of Cordoba, 14004 Cordoba, Spain
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence CeiA3, University of Cordoba, 14014 Cordoba, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Luis Martínez-Martínez
- Maimonides Biomedical Research Institute of Cordoba, 14004 Cordoba, Spain
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence CeiA3, University of Cordoba, 14014 Cordoba, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Clinical Unit of Microbiology, Reina Sofía University Hospital, 14004 Cordoba, Spain
| | - Jean-Marc Rolain
- Microbes Evolution Phylogeny and Infections (MEPHI), IRD, APHM, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-University, 13005 Marseille, France
| |
Collapse
|
15
|
De Gaetano GV, Lentini G, Famà A, Coppolino F, Beninati C. Antimicrobial Resistance: Two-Component Regulatory Systems and Multidrug Efflux Pumps. Antibiotics (Basel) 2023; 12:965. [PMID: 37370284 DOI: 10.3390/antibiotics12060965] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The number of multidrug-resistant bacteria is rapidly spreading worldwide. Among the various mechanisms determining resistance to antimicrobial agents, multidrug efflux pumps play a noteworthy role because they export extraneous and noxious substrates from the inside to the outside environment of the bacterial cell contributing to multidrug resistance (MDR) and, consequently, to the failure of anti-infective therapies. The expression of multidrug efflux pumps can be under the control of transcriptional regulators and two-component systems (TCS). TCS are a major mechanism by which microorganisms sense and reply to external and/or intramembrane stimuli by coordinating the expression of genes involved not only in pathogenic pathways but also in antibiotic resistance. In this review, we describe the influence of TCS on multidrug efflux pump expression and activity in some Gram-negative and Gram-positive bacteria. Taking into account the strict correlation between TCS and multidrug efflux pumps, the development of drugs targeting TCS, alone or together with already discovered efflux pump inhibitors, may represent a beneficial strategy to contribute to the fight against growing antibiotic resistance.
Collapse
Affiliation(s)
| | - Germana Lentini
- Department of Human Pathology, University of Messina, 98124 Messina, Italy
| | - Agata Famà
- Department of Human Pathology, University of Messina, 98124 Messina, Italy
| | - Francesco Coppolino
- Department of Biomedical, Dental and Imaging Sciences, University of Messina, 98124 Messina, Italy
| | - Concetta Beninati
- Department of Human Pathology, University of Messina, 98124 Messina, Italy
- Scylla Biotech Srl, 98124 Messina, Italy
| |
Collapse
|
16
|
Ahumada Topete VH, de Dios Sanchez KJ, Casas Aparicio GA, Hernandez Silva G, Lopez Vejar CE, Torres Espíndola LM, Aquino-Galvez A, Rodriguez Ganen O, Castillejos Lopez MDJ. Adverse Events and Drug Resistance in Critically Ill Patients Treated with Colistimethate Sodium: A Review of the Literature. Infect Drug Resist 2023; 16:1357-1366. [PMID: 36925725 PMCID: PMC10013588 DOI: 10.2147/idr.s398930] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/11/2023] [Indexed: 03/12/2023] Open
Abstract
The adverse events related to sodium colistimethate have had variability regarding the prevalence of nephrotoxicity, neurotoxicity, and less frequent respiratory depression. In recent years, its use has been relevant due to the increase of multidrug-resistant bacteria since it is considered the last-line drug, being its main adverse event and reason for discrepancies between authors' nephrotoxicity. The indiscriminate use of antibiotic therapy has generated multiple mechanisms of resistance, the most common being related to Colistin, the bactericidal escape effect. Based on the search criteria, no randomized clinical trials were identified showing safety and efficacy with the use of Colistin, inferring that the application of the appropriate dose is governed by expert opinion and retrospective and prospective observational studies, which confounding factors such as the severity of the patient and the predisposition to develop acute renal failure are constant. In this review, we focus on identifying the mechanism of nephrotoxicity and bacterial resistance, where much remains to be known.
Collapse
Affiliation(s)
- Victor Hugo Ahumada Topete
- Hospital Epidemiology and Infectology Unit, National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - Kevin Jesus de Dios Sanchez
- Hospital Epidemiology and Infectology Unit, National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - Gustavo Alejandro Casas Aparicio
- Department of Infectious Disease Research, National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - Graciela Hernandez Silva
- Department of Infectious Disease Research, National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - Cesar Emmanuel Lopez Vejar
- Hospital Epidemiology and Infectology Unit, National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | | | - Arnoldo Aquino-Galvez
- Molecular Biology Laboratory, National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - Odalis Rodriguez Ganen
- Department of Hospital Pharmacy, National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | | |
Collapse
|
17
|
Li Z, Liu X, Lei Z, Li C, Zhang F, Wu Y, Yang X, Zhao J, Zhang Y, Hu Y, Shen F, Wang P, Yang J, Liu Y, Lu B. Genetic Diversity of Polymyxin-Resistance Mechanisms in Clinical Isolates of Carbapenem-Resistant Klebsiella pneumoniae: a Multicenter Study in China. Microbiol Spectr 2023; 11:e0523122. [PMID: 36847569 PMCID: PMC10100843 DOI: 10.1128/spectrum.05231-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/06/2023] [Indexed: 03/01/2023] Open
Abstract
Polymyxin has been the last resort to treat multidrug-resistant Klebsiella pneumonia. However, recent studies have revealed that polymyxin-resistant carbapenem-resistant Klebsiella pneumonia (PR-CRKP) emerged due to the mutations in chromosomal genes or the plasmid-harboring mcr gene, leading to lipopolysaccharide modification or efflux of polymyxin through pumps. Further surveillance was required. In the present study we collected PR-CRKP strains from 8 hospitals in 6 provinces/cities across China to identify the carbapenemase and polymyxin resistance genes and epidemiological features by whole-genome sequencing (WGS). The broth microdilution method (BMD) was performed to determine the MIC of polymyxin. Of 662 nonduplicate CRKP strains, 15.26% (101/662) were defined as PR-CRKP; 10 (9.90%) were confirmed as Klebsiella quasipneumoniae by WGS. The strains were further classified into 21 individual sequence types (STs) by using multilocus sequence typing (MLST), with ST11 being prevalent (68/101, 67.33%). Five carbapenemase types were identified among 92 CR-PRKP, blaKPC-2 (66.67%), blaNDM-1 (16.83%), blaNDM-5 (0.99%), blaIMP-4 (4.95%), and blaIMP-38 (0.99%). Notably, 2 PR-CRKP strains harbored both blaKPC-2 and blaNDM-1. The inactivation of mgrB, associated significantly with high-level polymyxin resistance, was mainly caused by the insertion sequence (IS) insertion (62.96%, 17/27). Furthermore, acrR was inserted coincidently by ISkpn26 (67/101, 66.33%). The deletion or splicing mutations of crrCAB were significantly associated with ST11 and KL47 (capsule locus types), and diverse mutations of the ramR gene were identified. Only one strain carried the mcr gene. In summary, the high IS-inserted mgrB inactivation, the close relationship between ST11 and the deletion or splicing mutations of the crrCAB, and the specific features of PR-K. quasipneumoniae constituted notable features of our PR-CRKP strains in China. IMPORTANCE Polymyxin-resistant CRKP is a serious public health threat whose resistance mechanisms should be under continuous surveillance. Here, we collected 662 nonduplicate CRKP strains across China to identify the carbapenemase and polymyxin resistance genes and epidemiological features. Polymyxin resistance mechanism in 101 PR-CRKP strains in China were also investigated, 9.8% of which (10/101) were K. quasipneumoniae, as determined via WGS, and inactivation of mgrB remained the most crucial polymyxin resistance mechanism, significantly related to high-level resistance. Deletion or splicing mutations of crrCAB were significantly associated with ST11 and KL47. Diverse mutations of the ramR gene were identified. The plasmid complementation experiment and mRNA expression analysis further confirmed that the mgrB promoter and ramR played a critical role in polymyxin resistance. This multicenter study contributed to the understanding of antibiotic resistance forms in China.
Collapse
Affiliation(s)
- Ziyao Li
- China-Japan Friendship Institute of Clinical Medical Sciences, Beijing, China
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinmeng Liu
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Zichen Lei
- China-Japan Friendship Institute of Clinical Medical Sciences, Beijing, China
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Chen Li
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- Liuyang Traditional Chinese Medicine Hospital, Changsha, Hunan, China
| | - Feilong Zhang
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Yongli Wu
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinrui Yang
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiankang Zhao
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yulin Zhang
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanning Hu
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Fangfang Shen
- Heping Hospital affiliated with Changzhi Medical College, Changzhi, Shanxi, China
| | - Pingbang Wang
- The People’s Hospital of Liuyang, Changsha, Hunan, China
| | - Junwen Yang
- Department of Laboratory Medicine, Zhengzhou Key Laboratory of Children’s Infection and Immunity, Children’s Hospital Affiliated with Zhengzhou University, Zhengzhou, Henan, China
| | - Yulei Liu
- Department of Laboratory Medicine, Beijing Anzhen Hospital, Beijing, China
| | - Binghuai Lu
- China-Japan Friendship Institute of Clinical Medical Sciences, Beijing, China
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| |
Collapse
|
18
|
Sheng Q, Hou X, Wang Y, Wang N, Deng X, Wen Z, Li D, Li L, Zhou Y, Wang J. Naringenin Microsphere as a Novel Adjuvant Reverses Colistin Resistance via Various Strategies against Multidrug-Resistant Klebsiella pneumoniae Infection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16201-16217. [PMID: 36530172 DOI: 10.1021/acs.jafc.2c06615] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The efficacy of colistin, the last option against multidrug-resistant (MDR) Gram-negative bacteria, is severely threatened by the prevalence of plasmid- or chromosome-mediated colistin resistance genes. Herein, naringenin has dramatically restored colistin sensitivity against colistin-resistant Klebsiella pneumoniae infection without affecting bacterial viability, inducing resistance and causing obvious cell toxicity. Mechanism analysis reveals that naringenin potentiates colistin activity by multiple strategies including inhibition of mobilized colistin resistance gene activity, repression of two-component system regulation, and acceleration of reactive oxygen species-mediated oxidative damage. A lung-targeted delivery system of naringenin microspheres has been designed to facilitate naringenin bioavailability, accompanied by an effective potentiation of colistin for Klebsiella pneumoniae infection. Consequently, a new recognition of naringenin microspheres has been elucidated to restore colistin efficacy against colistin-resistant Gram-negative pathogens, which may be an effective strategy of developing potential candidates for MDR Gram-negative bacteria infection.
Collapse
Affiliation(s)
- Qiushuang Sheng
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| | - Xiaoning Hou
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100107, China
| | - Nan Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| | - Xuming Deng
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| | - Zhongmei Wen
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Dan Li
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Li Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| | - Yonglin Zhou
- College of Veterinary Medicine, Jilin University, Changchun 130012, China
| | - Jianfeng Wang
- Wang-College of Veterinary Medicine, Jilin University, Changchun 130012, China
| |
Collapse
|
19
|
Prevalence of Mutated Colistin-Resistant Klebsiella pneumoniae: A Systematic Review and Meta-Analysis. Trop Med Infect Dis 2022; 7:tropicalmed7120414. [PMID: 36548669 PMCID: PMC9782491 DOI: 10.3390/tropicalmed7120414] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
The emergence of genetic mutations in chromosomal genes and the transmissible plasmid-mediated colistin resistance gene may have helped in the spread of colistin resistance among various Klebsiella pneumoniae (K. pneumoniae) isolates and other different bacteria. In this study, the prevalence of mutated colistin-resistant K. pneumoniae isolates was studied globally using a systematic review and meta-analysis approach. A systematic search was conducted in databases including PubMed, ScienceDirect, Scopus and Google Scholar. The pooled prevalence of mutated colistin resistance in K. pneumoniae isolates was analyzed using Comprehensive Meta-Analysis Software (CMA). A total of 50 articles were included in this study. The pooled prevalence of mutated colistin resistance in K. pneumoniae was estimated at 75.4% (95% CI = 67.2−82.1) at high heterogeneity (I2 = 81.742%, p-value < 0.001). Meanwhile, the results of the subgroup analysis demonstrated the highest prevalence in Saudi Arabia with 97.9% (95% CI = 74.1−99.9%) and Egypt, with 4.5% (95% CI = 0.6−26.1%), had the lowest. The majority of mutations could be observed in the mgrB gene (88%), pmrB gene (54%) and phoQ gene (44%). The current study showed a high prevalence of the mutation of colistin resistance genes in K. pneumoniae. Therefore, it is recommended that regular monitoring be performed to control the spread of colistin resistance.
Collapse
|
20
|
Exploring Cluster-Dependent Antibacterial Activities and Resistance Pathways of NOSO-502 and Colistin against Enterobacter cloacae Complex Species. Antimicrob Agents Chemother 2022; 66:e0077622. [PMID: 36200761 DOI: 10.1128/aac.00776-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Enterobacter cloacae complex (ECC) is a group of diverse environmental and clinically relevant bacterial species associated with a variety of infections in humans. ECC have emerged as one of the leading causes of nosocomial infections worldwide. The purpose of this paper is to evaluate the activity of NOSO-502 and colistin (CST) against a panel of ECC clinical isolates, including different Hoffmann's clusters strains, and to investigate the associated resistance mechanisms. NOSO-502 is the first preclinical candidate of a novel antibiotic class, the odilorhabdins (ODLs). MIC50 and MIC90 of NOSO-502 against ECC are 1 μg/mL and 2 μg/mL, respectively, with a MIC range from 0.5 μg/mL to 32 μg/mL. Only strains belonging to clusters XI and XII showed decreased susceptibility to both NOSO-502 and CST while isolates from clusters I, II, IV, and IX were only resistant to CST. To understand this phenomenon, E. cloacae ATCC 13047 from cluster XI was chosen for further study. Results revealed that the two-component system ECL_01761-ECL_01762 (ortholog of CrrAB from Klebsiella pneumoniae) induces NOSO-502 hetero-resistance by expression regulation of the ECL_01758 efflux pump component (ortholog of KexD from K. pneumoniae) which could compete with AcrB to work with the multidrug efflux pump proteins AcrA and TolC. In E. cloacae ATCC 13047, CST-hetero-resistance is conferred via modification of the lipid A by addition of 4-amino-4-deoxy-l-arabinose controlled by PhoPQ. We identified that the response regulator ECL_01761 is also involved in this resistance pathway by regulating the expression of the ECL_01760 membrane transporter.
Collapse
|
21
|
MgrB Mutations and Altered Cell Permeability in Colistin Resistance in Klebsiella pneumoniae. Cells 2022; 11:cells11192995. [PMID: 36230959 PMCID: PMC9564205 DOI: 10.3390/cells11192995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022] Open
Abstract
There has been a resurgence in the clinical use of polymyxin antibiotics such as colistin due to the limited treatment options for infections caused by carbapenem-resistant Enterobacterales (CRE). However, this last-resort antibiotic is currently confronted with challenges which include the emergence of chromosomal and plasmid-borne colistin resistance. Colistin resistance in Klebsiella pneumoniae is commonly caused by the mutations in the chromosomal gene mgrB. MgrB spans the inner membrane and negatively regulates PhoP phosphorylation, which is essential for bacterial outer membrane lipid biosynthesis. The present review intends to draw attention to the role of mgrB chromosomal mutations in membrane permeability in K. pneumoniae that confer colistin resistance. With growing concern regarding the global emergence of colistin resistance, deciphering physical changes of the resistant membrane mediated by mgrB inactivation may provide new insights for the discovery of novel antimicrobials that are highly effective at membrane penetration, in addition to finding out how this can help in alleviating the resistance situation.
Collapse
|
22
|
Huang W, Zhang J, He Y, Hu C, Cheng S, Zeng H, Zheng M, Yu H, Liu X, Zou Q, Cui R. A cyclic adenosine monophosphate response element-binding protein inhibitor enhances the antibacterial activity of polymyxin B by inhibiting the ATP hydrolyzation activity of CrrB. Front Pharmacol 2022; 13:949869. [PMID: 36147339 PMCID: PMC9485624 DOI: 10.3389/fphar.2022.949869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/04/2022] [Indexed: 11/23/2022] Open
Abstract
The emergence of polymyxin B (PB) resistant Gram-negative bacteria poses an important clinical and public health threat. Antibiotic adjuvants development is a complementary strategy that fills the gap in new antibiotics. Here, we described the discovery of the enhancement capacity of compound 666-15, previously identified as an inhibitor of cyclic adenosine monophosphate response element-binding protein (CREB), on the activity of PB against Klebsiella pneumoniae in vitro and in vivo. Mechanistic studies showed that this compound reduced the transcription and translation levels of genes related to lipid A modification in the presence of PB. We also identified that 666-15 reduces the ATP hydrolyzation activity of CrrB, and P151L mutation mediates the resistance of bacteria to the enhancement of 666-15. Our results demonstrated the potential of 666-15 in clinical application and support the further development of a PB synergist based on this compound.
Collapse
Affiliation(s)
- Wei Huang
- Antimicrobial Drug Screening Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- Department of Clinical Microbiology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Jinyong Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yuzhang He
- Department of Pathogen Biology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Chunxia Hu
- Antimicrobial Drug Screening Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Shumin Cheng
- Antimicrobial Drug Screening Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Huan Zeng
- College of Pharmacy, Jinan University, Guangzhou, China
| | | | - Huijuan Yu
- Antimicrobial Drug Screening Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- Department of Clinical Microbiology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Xue Liu
- Department of Pathogen Biology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
- *Correspondence: Xue Liu, ; Quanming Zou, ; Ruiqin Cui,
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
- *Correspondence: Xue Liu, ; Quanming Zou, ; Ruiqin Cui,
| | - Ruiqin Cui
- Antimicrobial Drug Screening Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- *Correspondence: Xue Liu, ; Quanming Zou, ; Ruiqin Cui,
| |
Collapse
|
23
|
Characterization of Carbapenemase-Producing Klebsiella pneumoniae Isolates from Two Romanian Hospitals Co-Presenting Resistance and Heteroresistance to Colistin. Antibiotics (Basel) 2022; 11:antibiotics11091171. [PMID: 36139950 PMCID: PMC9495256 DOI: 10.3390/antibiotics11091171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/12/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Klebsiella pneumoniae is a notorious human pathogen involved in healthcare-associated infections. The worldwide expansion of infections induced by colistin-resistant and carbapenemase-producing Enterobacterales (CPE) isolates has been increasingly reported. This study aims to analyze the phenotypic and molecular profiles of 10 colistin-resistant (CR) isolates and 2 pairs of colistin-heteroresistant (ChR) (parental and the corresponding resistant mutants) isolates of K. pneumoniae CPE sourced from two hospitals. The phenotypes of strains in the selected collection had been previously characterized. Antimicrobial susceptibility testing was performed using a Vitek 2 Compact system (BioMérieux SA, Marcy l’Etoile, France), the disc diffusion method, and broth microdilution (BMD) for colistin. Whole-genome sequencing (WGS) did not uncover evidence of any mobile colistin resistance (mcr) genes, although the mgrB gene of seven isolates appeared to be disrupted by insertion sequences (ISKpn25 or ISKpn26). Possible deleterious missense mutations were found in phoP (L4F), phoQ (Q426L, L26Q, L224Q, Q317K), pmrB (R256G, P95L, T157P, V352E), and crrB (P151S) genes. The identified isolates belonged to the following clonal lineages: ST101 (n = 6), ST147 (n = 5), ST258 (n = 2), and ST307 (n = 1). All strains harbored IncF plasmids. OXA-48 producers carried IncL and IncR plasmids, while one blaNDM-1 genome was found to harbor IncC plasmids. Ceftazidime–avibactam remains a therapeutic option for KPC-2 and OXA-48 producers. Resistance to meropenem–vaborbactam has emerged in some blakPC-2-carrying isolates. Our study demonstrates that the results of WGS can provide essential evidence for the surveillance of antimicrobial resistance.
Collapse
|
24
|
Mmatli M, Mbelle NM, Osei Sekyere J. Global epidemiology, genetic environment, risk factors and therapeutic prospects of mcr genes: A current and emerging update. Front Cell Infect Microbiol 2022; 12:941358. [PMID: 36093193 PMCID: PMC9462459 DOI: 10.3389/fcimb.2022.941358] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/01/2022] [Indexed: 12/28/2022] Open
Abstract
Background Mobile colistin resistance (mcr) genes modify Lipid A molecules of the lipopolysaccharide, changing the overall charge of the outer membrane. Results and discussion Ten mcr genes have been described to date within eleven Enterobacteriaceae species, with Escherichia coli, Klebsiella pneumoniae, and Salmonella species being the most predominant. They are present worldwide in 72 countries, with animal specimens currently having the highest incidence, due to the use of colistin in poultry for promoting growth and treating intestinal infections. The wide dissemination of mcr from food animals to meat, manure, the environment, and wastewater samples has increased the risk of transmission to humans via foodborne and vector-borne routes. The stability and spread of mcr genes were mediated by mobile genetic elements such as the IncHI2 conjugative plasmid, which is associated with multiple mcr genes and other antibiotic resistance genes. The cost of acquiring mcr is reduced by compensatory adaptation mechanisms. MCR proteins are well conserved structurally and via enzymatic action. Thus, therapeutics found effective against MCR-1 should be tested against the remaining MCR proteins. Conclusion The dissemination of mcr genes into the clinical setting, is threatening public health by limiting therapeutics options available. Combination therapies are a promising option for managing and treating colistin-resistant Enterobacteriaceae infections whilst reducing the toxic effects of colistin.
Collapse
Affiliation(s)
- Masego Mmatli
- Department of Medical Microbiology, School of Medicine, University of Pretoria, Pretoria, South Africa
| | - Nontombi Marylucy Mbelle
- Department of Medical Microbiology, School of Medicine, University of Pretoria, Pretoria, South Africa
| | - John Osei Sekyere
- Department of Medical Microbiology, School of Medicine, University of Pretoria, Pretoria, South Africa
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, IN, United States
- Department of Dermatology, School of Medicine, University of Pretoria, Pretoria, South Africa
- *Correspondence: John Osei Sekyere, ;
| |
Collapse
|
25
|
Zhang K, Liu L, Yan M, Chen C, Li X, Tian J, Luo C, Wang X, Wang M. Reduced porin expression with EnvZ-OmpR, PhoPQ, BaeSR two-component system down-regulation in carbapenem resistance of Klebsiella Pneumoniae based on proteomic analysis. Microb Pathog 2022; 170:105686. [PMID: 35917986 DOI: 10.1016/j.micpath.2022.105686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 11/30/2022]
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) has proven to be an urgent threat to human health. Proteomics (TMT/LC-MS/MS) and bioinformatics approaches were employed to explore the potential mechanisms underlying carbapenem resistance. Proteomic profiling of CRKP and susceptible KP (sKP) isolates revealed the involvement of outer membrane, beta-lactam resistance pathway, and two-component systems (TCSs) in carbapenem resistance. 27 CRKP strains and 27 susceptible Klebsiella pneumoniae strains were isolated from inpatients at the Second Xiangya Hospital, China to verify the mechanisms. Modified carbapenem inactivation method (mCIM) and PCR of common carbapenem resistance genes confirmed that 77.8% (21/27) of CRKP isolates were carbapenemase-producing. Porin decrease in CRKP isolates was found by SDS-PAGE and mRNA levels of major porins (OmpK35 and OmpK36). RT-qPCR detection of two-component systems (envZ, ompR, phoP, phoQ, baeS and baeR) revealed down-regulation of EnvZ-OmpR, PhoPQ, BaeSR TCSs. Expression of the TCSs, except ompR, were closely correlated with OMPs with the R-value >0.7. Together, this study reaffirmed the significance of the β-lactam resistance pathway in CRKP based on proteomic analysis. OmpK35/36 porin reduction and the controversial downregulation of EnvZ-OmpR, PhoPQ, and BaeSR TCSs were confirmed in carbapenem resistance of Klebsiella pneumoniae.
Collapse
Affiliation(s)
- Kan Zhang
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Lei Liu
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Min Yan
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Chunmei Chen
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Xianping Li
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Jingjing Tian
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Can Luo
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Xiaofan Wang
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Min Wang
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
26
|
Sun L, Zhang Y, Cai T, Li X, Li N, Xie Z, Yang F, You X. CrrAB regulates PagP-mediated glycerophosphoglycerol palmitoylation in the outer membrane of Klebsiella pneumoniae. J Lipid Res 2022; 63:100251. [PMID: 35841948 PMCID: PMC9403492 DOI: 10.1016/j.jlr.2022.100251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria is an evolving antibiotic barrier composed of a glycerophospholipid (GP) inner leaflet and a lipopolysaccharide (LPS) outer leaflet. The two-component regulatory system CrrAB has only recently been reported to confer high-level polymyxin resistance and virulence in Klebsiella pneumoniae. Mutations in crrB have been shown to lead to the modification of the lipid A moiety of LPS through CrrAB activation. However, functions of CrrAB activation in the regulation of other lipids are unclear. Work here demonstrates CrrAB activation not only stimulates LPS modification, but also regulates synthesis of acyl-glycerophosphoglycerols (acyl-PGs), a lipid species with undefined functions and biosynthesis. Among all possible modulators of acyl-PG identified from proteomic data, we found expression of lipid A palmitoyltransferase (PagP) was significantly up-regulated in the crrB mutant. Furthermore, comparative lipidomics showed that most of the increasing acyl-PG activated by CrrAB was decreased after pagP knockout with CRISPR-Cas9. These results suggest that PagP also transfers a palmitate chain from GPs to PGs, generating acyl-PGs. Further investigation revealed that PagP mainly regulates the GP contents within the OM, leading to an increased ratio of acyl-PG to PG species, and improving OM hydrophobicity, which may contribute to resistance against certain cationic antimicrobial peptides (CAMP) resistance upon LPS modification. Taken together, this work suggests that CrrAB regulates the outer membrane GP contents of K. pneumoniae through upregulation of PagP, which functions along with LPS to form an outer membrane barrier critical for bacterial survival.
Collapse
Affiliation(s)
- Lang Sun
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Youwen Zhang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tanxi Cai
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, China
| | - Xue Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Na Li
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, China
| | - Zhensheng Xie
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, China
| | - Fuquan Yang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, China.
| | - Xuefu You
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
27
|
Huang PH, Chen WY, Chou SH, Wang FD, Lin YT. Risk Factors for the Development of Colistin Resistance during Colistin Treatment of Carbapenem-Resistant Klebsiella pneumoniae Infections. Microbiol Spectr 2022; 10:e0038122. [PMID: 35652641 PMCID: PMC9241908 DOI: 10.1128/spectrum.00381-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/18/2022] [Indexed: 11/20/2022] Open
Abstract
Colistin is one of the last-resort options for carbapenem-resistant Klebsiella pneumoniae (CRKP) infections if novel antibiotics are unavailable, where the development of colistin resistance during treatment represents a major challenge for clinicians. We aimed to investigate the risk factors associated with the development of colistin resistance in patients with CRKP infections following colistin treatment. We conducted a retrospective case-control study of patients with CRKP strains available before and after colistin treatment at a medical center in Taiwan, between October 2016 and November 2020. Cases (n = 35) included patients with an initial colistin-susceptible CRKP (ColS-CRKP) strain and a subsequent colistin-resistant CRKP (ColR-CRKP) strain. Controls (n = 18) included patients with ColS-CRKP as both the initial and subsequent strains. The 30-day mortality rate after the subsequent CRKP isolation was not different between cases and controls (12/35 [34%] versus 5/18 [28%] [P = 0.631]). blaKPC (n = 38) and blaOXA-48 (n = 11) accounted for the major mechanisms of carbapenem resistance. Alterations in mgrB were found in 18/35 (51%) ColR-CRKP strains, and mcr-1 was not detected in any of the strains. More patients received combination therapy in the control group than in the case group (17/18 versus 21/35 [P = 0.008]). The logistic regression model indicated that combination therapy with tigecycline was protective against the acquisition of colistin resistance (odds ratio, 0.17; 95% confidence interval, 0.05 to 0.62 [P = 0.008]). We observed that the inclusion of tigecycline in colistin treatment mitigated the risk of acquiring colistin resistance. These results offer insight into using the combination of tigecycline and colistin for the treatment of CRKP infections in antimicrobial stewardship. IMPORTANCE Treatment of carbapenem-resistant Klebsiella pneumoniae (CRKP) infections is challenging due to the limited options of antibiotics. Colistin is one of the last-resort antibiotics if novel antimicrobial agents are not available. It is crucial to identify modifiable clinical factors associated with the emergence of resistance during colistin treatment. Here, we found that the addition of tigecycline to colistin treatment prevented the acquisition of colistin resistance. Colistin-tigecycline combination therapy is therefore considered a hopeful option in antimicrobial stewardship to treat CRKP infections.
Collapse
Affiliation(s)
- Po-Han Huang
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wen-Yin Chen
- Division of Infectious Diseases, Department of Paediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Sheng-Hua Chou
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Fu-Der Wang
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Tsung Lin
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
28
|
Kim SJ, Cho H, Ko KS. Comparative analysis of the Colistin resistance-regulating gene cluster in Klebsiella species. J Microbiol 2022; 60:461-468. [DOI: 10.1007/s12275-022-1640-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 10/18/2022]
|
29
|
Elias R, Spadar A, Phelan J, Melo-Cristino J, Lito L, Pinto M, Gonçalves L, Campino S, Clark TG, Duarte A, Perdigão J. A phylogenomic approach for the analysis of colistin resistance associated genes in Klebsiella pneumoniae, its mutational diversity and implications for phenotypic resistance. Int J Antimicrob Agents 2022; 59:106581. [DOI: 10.1016/j.ijantimicag.2022.106581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/17/2022] [Accepted: 03/27/2022] [Indexed: 11/05/2022]
|
30
|
Khoshbayan A, Shariati A, Razavi S, Baseri Z, Ghodousi A, Darban-Sarokhalil D. Mutation in mgrB is the major colistin resistance mechanism in Klebsiella pneumoniae clinical isolates in Tehran, Iran. Acta Microbiol Immunol Hung 2022; 69:61-67. [PMID: 35113039 DOI: 10.1556/030.2022.01679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/03/2022] [Indexed: 12/22/2022]
Abstract
Colistin is considered as one of a last resort antimicrobial agent against multidrug-resistant Gram-negative bacteria including Escherichia coli and Klebsiella pneumoniae. However, the recent emergence of colistin resistance (ColR) worldwide that severely restricts therapeutic options is a serious threat to global public health. In this study we have investigated the molecular determinants in ColR K. pneumoniae isolates collected from clinical specimens. A total of 98 E. coli and 195 K. pneumoniae clinical isolates were collected from two hospitals from August 2018 to December 2019 in Tehran, Iran. Colistin susceptibility and minimum inhibitory concentrations (MIC) were determined according to the Clinical and Laboratory Standards Institute by disk diffusion method, and microdilution method, respectively. For isolates with colistin MIC ≥4 μg mL-1, PCR was performed for the detection of mcr-1 to mcr-4 genes. Moreover, nucleotide sequences of mgrB, phoP, phoQ, pmrA, and pmrB genes were determined by sequencing. Finally, the transcriptional level of pmrK and pmrC genes was evaluated by quantitative reverse transcription PCR (RT-qPCR). None of the E. coli isolates were resistant to colistin while 21 out 195 K. pneumoniae isolates were identified as resistant, 19 of which carried mutation in the mgrB gene. Three different mutations were observed in the pmrB gene in 3 K. pneumoniae isolates. None of the ColR isolates showed alternations in pmrA, phoP, and phoQ genes. Furthermore, none of the plasmid-encoding genes were detected. Transcriptional level of the pmrK gene increased in all ColR isolates meanwhile, pmrC overexpression was detected in 16 out 21 (76.19%) isolates. Eventually, all ColR isolates were susceptible to tigecycline. Our results demonstrated that the alternation of mgrB gene is the main mechanism related to colistin resistance among ColR K. pneumoniae isolates in this study.
Collapse
Affiliation(s)
- Amin Khoshbayan
- 1 Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Aref Shariati
- 2 Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| | - Shabnam Razavi
- 1 Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zohre Baseri
- 3 Department of Pathology and Laboratory Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Ghodousi
- 4 Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, Milan, Italy
| | - Davood Darban-Sarokhalil
- 1 Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Liu X, Wu Y, Zhu Y, Jia P, Li X, Jia X, Yu W, Cui Y, Yang R, Xia W, Xu Y, Yang Q. Emergence of colistin-resistant hypervirulent Klebsiella pneumoniae (CoR-HvKp) in China. Emerg Microbes Infect 2022; 11:648-661. [PMID: 35086435 PMCID: PMC8896207 DOI: 10.1080/22221751.2022.2036078] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Colistin is regarded as a last-resort agent to combat infections caused by multidrug-resistant (MDR) Gram-negative bacteria, especially carbapenem-resistant isolates. In recent years, reports of colistin-resistant Klebsiella pneumoniae (CoRKp) are increasing. However, the molecular mechanism and relevance of colistin resistance and virulence remain unclear. Fourteen CoRKp strains were retrospectively screened from 1884 clinical K. pneumoniae isolates during 2017–2018 in China. Six CoRKp strains belonging to ST11 were MDR strains. Plasmid-mediated mobile colistin-resistance genes had a low prevalence in CoRKp. Our results revealed that up-regulated expression of two-component systems, especially phoPQ, contributed more to colistin resistance. mgrB mutation was the most common molecular mechanism of colistin resistance, caused by either nonsense mutations or insertion sequences, which drove the overexpression of phoPQ system. This study also identified three novel point mutations in pmrAB system, in which D313N mutation in pmrB was proved to increase the MIC to colistin by 16-fold. In addition, 6 out of 14 CoRKP strains independently carried hypervirulence genes. All six strains showed medium-to-high virulence phenotype compared with NTUH-K2044 strain in mice intraperitoneal challenge models. We found that 4 strains were biofilm strong producers and transcriptome analysis revealed that three of them significantly up-regulated expression of type III fimbrial shaft gene mrkA. In conclusion, our result revealed the emergence of colistin-resistant and hypervirulent MDR K. pneumoniae, which is a noticeable superbug and could cause a severe challenge to public health.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Medical Technology Academy, Beihua University, Jilin, Jilin Province, China; Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China; Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Ying Zhu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Peiyao Jia
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xue Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xinmiao Jia
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Central Research Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Wei Yu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Wei Xia
- Medical Technology Academy, Beihua University, Jilin, Jilin Province, China; Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China; Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingchun Xu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiwen Yang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
32
|
Zhang S, Abbas M, Rehman MU, Wang M, Jia R, Chen S, Liu M, Zhu D, Zhao X, Gao Q, Tian B, Cheng A. Updates on the global dissemination of colistin-resistant Escherichia coli: An emerging threat to public health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149280. [PMID: 34364270 DOI: 10.1016/j.scitotenv.2021.149280] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Colistin drug resistance is an emerging public health threat worldwide. The adaptability, existence and spread of colistin drug resistance in multiple reservoirs and ecological environmental settings is significantly increasing the rate of occurrence of multidrug resistant (MDR) bacteria such as Escherichia coli (E. coli). Here, we summarized the reports regarding molecular and biological characterization of mobile colistin resistance gene (mcr)-positive E. coli (MCRPEC), originating from diverse reservoirs, including but not limited to humans, environment, waste water treatment plants, wild, pets, and food producing animals. The MCRPEC revealed the abundance of clinically important resistance genes, which are responsible for MDR profile. A number of plasmid replicon types such as IncI2, IncX4, IncP, IncX, and IncFII with a predominance of IncI2 were facilitating the spread of colistin resistance. This study concludes the distribution of multiple sequence types of E. coli carrying mcr gene variants, which are possible threat to "One Health" perspective. In addition, we have briefly explained the newly known mechanisms of colistin resistance i.e. plasmid-encoded resistance determinant as well as presented the chromosomally-encoded resistance mechanisms. The transposition of ISApl1 into the chromosome and existence of intact Tn6330 are important for transmission and stability for mcr gene. Further, genetic environment of co-localized mcr gene with carbapenem-resistance or extended-spectrum β-lactamases genes has also been elaborated, which is limiting human beings to choose last resort antibiotics. Finally, environmental health and safety control measures along with spread mechanisms of mcr genes are discussed to avoid further propagation and environmental hazards of colistin resistance.
Collapse
Affiliation(s)
- Shaqiu Zhang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Muhammad Abbas
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Livestock and Dairy Development Department Lahore, Punjab 54000, Pakistan
| | - Mujeeb Ur Rehman
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Disease Investigation Laboratory, Livestock & Dairy Development Department, Zhob 85200, Balochistan, Pakistan
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Shun Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Mafeng Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xinxin Zhao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Qun Gao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Bin Tian
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China.
| |
Collapse
|
33
|
Ngbede EO, Adekanmbi F, Poudel A, Kalalah A, Kelly P, Yang Y, Adamu AM, Daniel ST, Adikwu AA, Akwuobu CA, Abba PO, Mamfe LM, Maurice NA, Adah MI, Lockyear O, Butaye P, Wang C. Concurrent Resistance to Carbapenem and Colistin Among Enterobacteriaceae Recovered From Human and Animal Sources in Nigeria Is Associated With Multiple Genetic Mechanisms. Front Microbiol 2021; 12:740348. [PMID: 34690985 PMCID: PMC8528161 DOI: 10.3389/fmicb.2021.740348] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/09/2021] [Indexed: 01/01/2023] Open
Abstract
Resistance to last resort drugs such as carbapenem and colistin is a serious global health threat. This study investigated carbapenem and colistin resistance in 583 non-duplicate Enterobacteriaceae isolates utilizing phenotypic methods and whole genome sequencing (WGS). Of the 583 isolates recovered from humans, animals and the environment in Nigeria, 18.9% (110/583) were resistant to at least one carbapenem (meropenem, ertapenem, and imipenem) and 9.1% (53/583) exhibited concurrent carbapenem-colistin resistance. The minimum inhibitory concentrations of carbapenem and colistin were 2–32 μg/mL and 8 to >64 μg/mL, respectively. No carbapenem resistant isolates produced carbapenemase nor harbored any known carbapenemase producing genes. WGS supported that concurrent carbapenem-colistin resistance was mediated by novel and previously described alterations in chromosomal efflux regulatory genes, particularly mgrB (M1V) ompC (M1_V24del) ompK37 (I70M, I128M) ramR (M1V), and marR (M1V). In addition, alterations/mutations were detected in the etpA, arnT, ccrB, pmrB in colistin resistant bacteria and ompK36 in carbapenem resistant bacteria. The bacterial isolates were distributed into 37 sequence types and characterized by the presence of internationally recognized high-risk clones. The results indicate that humans and animals in Nigeria may serve as reservoirs and vehicles for the global spread of the isolates. Further studies on antimicrobial resistance in African countries are warranted.
Collapse
Affiliation(s)
- Emmanuel O Ngbede
- Department of Veterinary Microbiology, College of Veterinary Medicine, Federal University of Agriculture Makurdi, Makurdi, Nigeria
| | - Folasade Adekanmbi
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn, AL, United States
| | - Anil Poudel
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn, AL, United States
| | - Anwar Kalalah
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn, AL, United States
| | - Patrick Kelly
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Yi Yang
- Yangzhou University College of Veterinary Medicine, Yangzhou, China
| | - Andrew M Adamu
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Abuja, Abuja, Nigeria
| | - Salem T Daniel
- Department of Microbiology, College of Sciences, Federal University of Agriculture Makurdi, Makurdi, Nigeria
| | - Alex A Adikwu
- Department of Veterinary Public Health and Preventive Medicine, College of Veterinary Medicine, Federal University of Agriculture Makurdi, Makurdi, Nigeria
| | - Chinedu A Akwuobu
- Department of Veterinary Microbiology, College of Veterinary Medicine, Federal University of Agriculture Makurdi, Makurdi, Nigeria
| | - Paul O Abba
- Department of Medical Microbiology and Parasitology, Benue State University Teaching Hospital, Makurdi, Nigeria
| | - Levi M Mamfe
- Department of Veterinary Microbiology, College of Veterinary Medicine, Federal University of Agriculture Makurdi, Makurdi, Nigeria
| | - Nanven A Maurice
- Department of Diagnostics and Extension, National Veterinary Research Institute, Vom, Nigeria
| | - Mohammed I Adah
- Department of Veterinary Medicine, College of Veterinary Medicine, Federal University of Agriculture Makurdi, Makurdi, Nigeria
| | - Olivia Lockyear
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn, AL, United States
| | - Patrick Butaye
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis.,Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Chengming Wang
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn, AL, United States
| |
Collapse
|
34
|
Binsker U, Käsbohrer A, Hammerl JA. Global colistin use: A review of the emergence of resistant Enterobacterales and the impact on their genetic basis. FEMS Microbiol Rev 2021; 46:6382128. [PMID: 34612488 PMCID: PMC8829026 DOI: 10.1093/femsre/fuab049] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/04/2021] [Indexed: 02/06/2023] Open
Abstract
The dramatic global rise of MDR and XDR Enterobacterales in human medicine forced clinicians to the reintroduction of colistin as last-resort drug. Meanwhile, colistin is used in the veterinary medicine since its discovery, leading to a steadily increasing prevalence of resistant isolates in the livestock and meat-based food sector. Consequently, transmission of resistant isolates from animals to humans, acquisition via food and exposure to colistin in the clinic are reasons for the increased prevalence of colistin-resistant Enterobacterales in humans in the last decades. Initially, resistance mechanisms were caused by mutations in chromosomal genes. However, since the discovery in 2015, the focus has shifted exclusively to mobile colistin resistances (mcr). This review will advance the understanding of chromosomal-mediated resistance mechanisms in Enterobacterales. We provide an overview about genes involved in colistin resistance and the current global situation of colistin-resistant Enterobacterales. A comparison of the global colistin use in veterinary and human medicine highlights the effort to reduce colistin sales in veterinary medicine under the One Health approach. In contrast, it uncovers the alarming rise in colistin consumption in human medicine due to the emergence of MDR Enterobacterales, which might be an important driver for the increasing emergence of chromosome-mediated colistin resistance.
Collapse
Affiliation(s)
- Ulrike Binsker
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Annemarie Käsbohrer
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany.,Department for Farm Animals and Veterinary Public Health, Institute of Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jens A Hammerl
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
35
|
Anyanwu MU, Jaja IF, Okpala COR, Jaja CJI, Oguttu JW, Chah KF, Shoyinka VS. Potential sources and characteristic occurrence of mobile colistin resistance ( mcr) gene-harbouring bacteria recovered from the poultry sector: a literature synthesis specific to high-income countries. PeerJ 2021; 9:e11606. [PMID: 34707919 PMCID: PMC8500085 DOI: 10.7717/peerj.11606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 05/23/2021] [Indexed: 11/20/2022] Open
Abstract
Understanding the sources, prevalence, phenotypic and genotypic characteristics of mcr gene-harbouring bacteria (MGHB) in the poultry sector is crucial to supplement existing information. Through this, the plasmid-mediated colistin resistance (PMCR) could be tackled to improve food safety and reduce public health risks. Therefore, we conducted a literature synthesis of potential sources and characteristic occurrence of MGHB recovered from the poultry sector specific to the high-income countries (HICs). Colistin (COL) is a last-resort antibiotic used for treating deadly infections. For more than 60 years, COL has been used in the poultry sector globally, including the HICs. The emergence and rapid spread of mobile COL resistance (mcr) genes threaten the clinical use of COL. Currently, ten mcr genes (mcr-1 to mcr-10) have been described. By horizontal and vertical transfer, the mcr-1, mcr-2, mcr-3, mcr-4, mcr-5, and mcr-9 genes have disseminated in the poultry sector in HICs, thus posing a grave danger to animal and human health, as harboured by Escherichia coli, Klebsiella pneumoniae, Salmonella species, and Aeromonas isolates. Conjugative and non-conjugative plasmids are the major backbones for mcr in poultry isolates from HICs. The mcr-1, mcr-3 and mcr-9 have been integrated into the chromosome, making them persist among the clones. Transposons, insertion sequences (IS), especially ISApl1 located downstream and upstream of mcr, and integrons also drive the COL resistance in isolates recovered from the poultry sector in HICs. Genes coding multi-and extensive-drug resistance and virulence factors are often co-carried with mcr on chromosome and plasmids in poultry isolates. Transmission of mcr to/among poultry strains in HICs is clonally unrestricted. Additionally, the contact with poultry birds, manure, meat/egg, farmer's wears/farm equipment, consumption of contaminated poultry meat/egg and associated products, and trade of poultry-related products continue to serve as transmission routes of MGHB in HICs. Indeed, the policymakers, especially those involved in antimicrobial resistance and agricultural and poultry sector stakeholders-clinical microbiologists, farmers, veterinarians, occupational health clinicians and related specialists, consumers, and the general public will find this current literature synthesis very useful.
Collapse
Affiliation(s)
- Madubuike Umunna Anyanwu
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Nsukka, Enugu, Nigeria
| | - Ishmael Festus Jaja
- Livestock and Pasture Science, University of Fort Hare, Alice, Eastern Cape, South Africa
| | - Charles Odilichukwu R. Okpala
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Chinwe-Juliana Iwu Jaja
- Department of Nursing and Midwifery, Faculty of Medicine and Health Sciences, University of Stellenbosch, Cape Town, Western Cape, South Africa
| | - James Wabwire Oguttu
- Department of Agriculture and Animal Health, University of South Africa, Johannesburg, Gauteng, South Africa
| | - Kennedy Foinkfu Chah
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Nsukka, Enugu, Nigeria
| | - Vincent Shodeinde Shoyinka
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Nsukka, Enugu, Nigeria
| |
Collapse
|
36
|
Gogry FA, Siddiqui MT, Sultan I, Haq QMR. Current Update on Intrinsic and Acquired Colistin Resistance Mechanisms in Bacteria. Front Med (Lausanne) 2021; 8:677720. [PMID: 34476235 PMCID: PMC8406936 DOI: 10.3389/fmed.2021.677720] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/09/2021] [Indexed: 01/07/2023] Open
Abstract
Colistin regained global interest as a consequence of the rising prevalence of multidrug-resistant Gram-negative Enterobacteriaceae. In parallel, colistin-resistant bacteria emerged in response to the unregulated use of this antibiotic. However, some Gram-negative species are intrinsically resistant to colistin activity, such as Neisseria meningitides, Burkholderia species, and Proteus mirabilis. Most identified colistin resistance usually involves modulation of lipid A that decreases or removes early charge-based interaction with colistin through up-regulation of multistep capsular polysaccharide expression. The membrane modifications occur by the addition of cationic phosphoethanolamine (pEtN) or 4-amino-l-arabinose on lipid A that results in decrease in the negative charge on the bacterial surface. Therefore, electrostatic interaction between polycationic colistin and lipopolysaccharide (LPS) is halted. It has been reported that these modifications on the bacterial surface occur due to overexpression of chromosomally mediated two-component system genes (PmrAB and PhoPQ) and mutation in lipid A biosynthesis genes that result in loss of the ability to produce lipid A and consequently LPS chain, thereafter recently identified variants of plasmid-borne genes (mcr-1 to mcr-10). It was hypothesized that mcr genes derived from intrinsically resistant environmental bacteria that carried chromosomal pmrC gene, a part of the pmrCAB operon, code three proteins viz. pEtN response regulator PmrA, sensor kinase protein PmrAB, and phosphotransferase PmrC. These plasmid-borne mcr genes become a serious concern as they assist in the dissemination of colistin resistance to other pathogenic bacteria. This review presents the progress of multiple strategies of colistin resistance mechanisms in bacteria, mainly focusing on surface changes of the outer membrane LPS structure and other resistance genetic determinants. New handier and versatile methods have been discussed for rapid detection of colistin resistance determinants and the latest approaches to revert colistin resistance that include the use of new drugs, drug combinations and inhibitors. Indeed, more investigations are required to identify the exact role of different colistin resistance determinants that will aid in developing new less toxic and potent drugs to treat bacterial infections. Therefore, colistin resistance should be considered a severe medical issue requiring multisectoral research with proper surveillance and suitable monitoring systems to report the dissemination rate of these resistant genes.
Collapse
Affiliation(s)
| | | | - Insha Sultan
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | | |
Collapse
|
37
|
Genotyping of paired KPC-producing Klebsiella pneumoniae isolates with and without divergent polymyxin B susceptibility profiles. Braz J Microbiol 2021; 52:1981-1989. [PMID: 34460074 DOI: 10.1007/s42770-021-00600-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022] Open
Abstract
Polymyxins are still used mainly in treating infections caused by carbapenem-resistant Klebsiella pneumoniae worldwide. The most frequent mechanism of acquired resistance to polymyxins in Gram-negative bacilli is the occurrence of mutations in chromosomal genes regulating operons responsible for lipopolysaccharide modification. As we observed at Santa Casa de São Paulo hospital the occurrence of infections caused by isolates resistant to polymyxins in patients previously treated with this antimicrobial, and new infections caused by the same polymyxin-susceptible species, in this study, we aimed to determine the clonality of consecutive K. pneumoniae isolates from the same patients and characterize the molecular determinants of polymyxin resistance in paired or clonal isolates. A total of 24 pairs and one trio of K. pneumoniae isolates were included in this study. Species identification was achieved by mass spectrometry and multiplex PCR. Polymyxin B minimal inhibitory concentrations were determined by broth microdilution. Clonality was evaluated using pulsed-field gel electrophoresis. The presence of insertions in mgrB gene was tested by PCR, and mutations on pmrA, pmrB, phoP, and phoQ were evaluated by PCR and complete nucleotide sequencing. A fraction of 23.8% of strains resistant to polymyxin B had an insertion in mgrB. Amino acid substitution F204L in PmrB may be implicated in polymyxin resistance. Substitutions T246A and R256G in PmrB were not implicated in polymyxin resistance. In this study, polymyxin resistance after a first susceptible isolate was detected was most frequently due to an infection caused by a distinct clone.
Collapse
|
38
|
Mohapatra SS, Dwibedy SK, Padhy I. Polymyxins, the last-resort antibiotics: Mode of action, resistance emergence, and potential solutions. J Biosci 2021. [PMID: 34475315 PMCID: PMC8387214 DOI: 10.1007/s12038-021-00209-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Infections caused by multi-drug resistant (MDR) bacterial pathogens are a leading cause of mortality and morbidity across the world. Indiscriminate use of broad-spectrum antibiotics has seriously affected this situation. With the diminishing discovery of novel antibiotics, new treatment methods are urgently required to combat MDR pathogens. Polymyxins, the cationic lipopeptide antibiotics, discovered more than half a century ago, are considered to be the last-line of antibiotics available at the moment. This antibiotic shows a great bactericidal effect against Gram-negative bacteria. Polymyxins primarily target the bacterial membrane and disrupt them, causing lethality. Because of their membrane interacting mode of action, polymyxins cause nephrotoxicity and neurotoxicity in humans, limiting their usability. However, recent modifications in their chemical structure have been able to reduce the toxic effects. The development of better dosing regimens has also helped in getting better clinical outcomes in the infections caused by MDR pathogens. Since the mid-1990s the use of polymyxins has increased manifold in clinical settings, resulting in the emergence of polymyxin-resistant strains. The risk posed by the polymyxin-resistant nosocomial pathogens such as the Enterobacteriaceae group, Pseudomonas aeruginosa, and Acinetobacter baumannii, etc. is very serious considering these pathogens are resistant to almost all available antibacterial drugs. In this review article, the mode of action of the polymyxins and the genetic regulatory mechanism responsible for the emergence of resistance are discussed. Specifically, this review aims to update our current understanding in the field and suggest possible solutions that can be pursued for future antibiotic development. As polymyxins primarily target the bacterial membranes, resistance to polymyxins arises primarily by the modification of the lipopolysaccharides (LPS) in the outer membrane (OM). The LPS modification pathways are largely regulated by the bacterial two-component signal transduction (TCS) systems. Therefore, targeting or modulating the TCS signalling mechanisms can be pursued as an alternative to treat the infections caused by polymyxin-resistant MDR pathogens. In this review article, this aspect is also highlighted.
Collapse
Affiliation(s)
- Saswat S Mohapatra
- Molecular Microbiology Lab, Department of Bioscience and Bioinformatics, Khallikote University, Konisi, Berhampur, 761 008 Odisha India
| | - Sambit K Dwibedy
- Molecular Microbiology Lab, Department of Bioscience and Bioinformatics, Khallikote University, Konisi, Berhampur, 761 008 Odisha India
| | - Indira Padhy
- Molecular Microbiology Lab, Department of Bioscience and Bioinformatics, Khallikote University, Konisi, Berhampur, 761 008 Odisha India
| |
Collapse
|
39
|
Rodríguez-Santiago J, Cornejo-Juárez P, Silva-Sánchez J, Garza-Ramos U. Polymyxin resistance in Enterobacterales: overview and epidemiology in the Americas. Int J Antimicrob Agents 2021; 58:106426. [PMID: 34419579 DOI: 10.1016/j.ijantimicag.2021.106426] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/07/2021] [Accepted: 08/15/2021] [Indexed: 12/30/2022]
Abstract
The worldwide spread of carbapenem- and polymyxin-resistant Enterobacterales represents an urgent public-health threat. However, for most countries in the Americas, the available data are limited, although Latin America has been suggested as a silent spreading reservoir for isolates carrying plasmid-mediated polymyxin resistance mechanisms. This work provides an overall update on polymyxin and polymyxin resistance and focuses on uses, availability and susceptibility testing. Moreover, a comprehensive review of the current polymyxin resistance epidemiology in the Americas is provided. We found that reports in the English and Spanish literature show widespread carbapenemase-producing and colistin-resistant Klebsiella pneumoniae in the Americas determined by the clonal expansion of the pandemic clone ST258 and mgrB-mediated colistin resistance. In addition, widespread IncI2 and IncX4 plasmids carrying mcr-1 in Escherichia coli come mainly from human sources; however, plasmid-mediated colistin resistance in the Americas is underreported in the veterinary sector. These findings demonstrate the urgent need for the implementation of polymyxin resistance surveillance in Enterobacterales as well as appropriate regulatory measures for antimicrobial use in veterinary medicine.
Collapse
Affiliation(s)
- J Rodríguez-Santiago
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Cuernavaca, Morelos, México; Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - P Cornejo-Juárez
- Departamento de Infectología, Instituto Nacional de Cancerología (INCan), Ciudad de México, México
| | - J Silva-Sánchez
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Cuernavaca, Morelos, México
| | - U Garza-Ramos
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Cuernavaca, Morelos, México.
| |
Collapse
|
40
|
Elias R, Duarte A, Perdigão J. A Molecular Perspective on Colistin and Klebsiella pneumoniae: Mode of Action, Resistance Genetics, and Phenotypic Susceptibility. Diagnostics (Basel) 2021; 11:1165. [PMID: 34202395 PMCID: PMC8305994 DOI: 10.3390/diagnostics11071165] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/26/2022] Open
Abstract
Klebsiella pneumoniae is a rod-shaped, encapsulated, Gram-negative bacteria associated with multiple nosocomial infections. Multidrug-resistant (MDR) K. pneumoniae strains have been increasing and the therapeutic options are increasingly limited. Colistin is a long-used, polycationic, heptapeptide that has regained attention due to its activity against Gram-negative bacteria, including the MDR K. pneumoniae strains. However, this antibiotic has a complex mode of action that is still under research along with numerous side-effects. The acquisition of colistin resistance is mainly associated with alteration of lipid A net charge through the addition of cationic groups synthesized by the gene products of a multi-genic regulatory network. Besides mutations in these chromosomal genes, colistin resistance can also be achieved through the acquisition of plasmid-encoded genes. Nevertheless, the diversity of molecular markers for colistin resistance along with some adverse colistin properties compromises the reliability of colistin-resistance monitorization methods. The present review is focused on the colistin action and molecular resistance mechanisms, along with specific limitations on drug susceptibility testing for K. pneumoniae.
Collapse
Affiliation(s)
- Rita Elias
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Aida Duarte
- Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Monte da Caparica, 2829-511 Almada, Portugal
| | - João Perdigão
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| |
Collapse
|
41
|
Lu J, Dong N, Liu C, Zeng Y, Sun Q, Zhou H, Hu Y, Chen S, Shen Z, Zhang R. Prevalence and molecular epidemiology of mcr-1-positive Klebsiella pneumoniae in healthy adults from China. J Antimicrob Chemother 2021; 75:2485-2494. [PMID: 32516364 DOI: 10.1093/jac/dkaa210] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To investigate the nationwide prevalence of mcr-1-positive Klebsiella pneumoniae (MCRPKP) strains among healthy adults in China and identify their phenotypic and genomic characterizations. METHODS A total of 7401 rectal swab samples were collected from healthy individuals in 30 hospitals located in 30 provinces and municipalities of mainland China in 2016. Colistin-resistant bacteria were enriched in colistin-supplemented lysogeny broth. MCRPKP strains were isolated and characterized with MALDI-TOF MS, PCR analysis and antimicrobial susceptibility testing. The genomic characteristics of MCRPKP strains were determined by WGS and bioinformatics analysis. RESULTS Seven MCRPKP strains and one mcr-1-positive Klebsiella variicola strain were selectively isolated from six locales (three from Henan and one from each of Tianjin, Jiangxi, Yunnan, Gansu and Tibet). Antimicrobial susceptibility testing results indicated that all mcr-1-positive strains were susceptible to meropenem, aztreonam and ceftazidime/avibactam. WGS analysis suggested these strains belonged to seven distinct STs: ST15, ST1425, ST1462, ST273, ST307, ST391 and ST37-SLV. mcr-1 genes were carried by diverse plasmids, including IncHI2 (n = 3), IncX4 (n = 2), IncHI2/IncN (n = 1), IncFIB (n = 1) and one other plasmid type. Two ST15 strains harboured both mcr-1 and mcr-8 genes, which has not been reported before. CONCLUSIONS Our data indicated a low prevalence of mcr-1-positive Klebsiella strains (0.11%, 8/7401) in healthy individuals in mainland China and most of these strains remained susceptible to clinically important antibiotics. The prevalence and coexistence of mcr-1 and mcr-8 in K. pneumoniae may further threaten public health through either the food chain or environmental routes.
Collapse
Affiliation(s)
- Jiayue Lu
- Department of Clinical Laboratory, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ning Dong
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Congcong Liu
- Department of Clinical Laboratory, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yu Zeng
- Department of Clinical Laboratory, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Qiaoling Sun
- Department of Clinical Laboratory, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Hongwei Zhou
- Department of Clinical Laboratory, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yanyan Hu
- Department of Clinical Laboratory, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Zhangqi Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Rong Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
42
|
Nwabor OF, Terbtothakun P, Voravuthikunchai SP, Chusri S. A Bibliometric Meta-Analysis of Colistin Resistance in Klebsiella pneumoniae. Diseases 2021; 9:44. [PMID: 34202931 PMCID: PMC8293170 DOI: 10.3390/diseases9020044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
Colistin is a last resort antibiotic medication for the treatment of infections caused by carbapenem-resistant Klebsiella pneumoniae. In recent years, various mechanisms have been reported to mediate colistin resistance in K. pneumoniae. This study reports a bibliometric analysis of published articles retrieved from the Scopus database relating to colistin resistance in K. pneumoniae. The research trends in colistin resistance and mechanisms of resistance were considered. A total of 1819 research articles published between 1995 and 2019 were retrieved, and the results indicated that 50.19% of the documents were published within 2017-2019. The USA had the highest participation with 340 (14.31%) articles and 14087 (17.61%) citations. Classification based on the WHO global epidemiological regions showed that the European Region contributed 42% of the articles while the American Region contributed 21%. The result further indicated that 45 countries had published at least 10 documents with strong international collaborations amounting to 272 links and a total linkage strength of 735. A total of 2282 keywords were retrieved; however, 57 keywords had ≥15 occurrences with 764 links and a total linkage strength of 2388. Furthermore, mcr-1, colistin resistance, NDM, mgrB, ceftazidime-avibactam, MDR, combination therapy, and carbapenem-resistant Enterobacteriaceae were the trending keywords. Concerning funders, the USA National Institute of Health funded 9.1% of the total research articles, topping the list. The analysis indicated poor research output, collaboration, and funding from Africa and South-East Asia and demands for improvement in international research collaboration.
Collapse
Affiliation(s)
- Ozioma Forstinus Nwabor
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; (O.F.N.); (P.T.)
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand;
| | - Pawarisa Terbtothakun
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; (O.F.N.); (P.T.)
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand;
| | - Supayang P. Voravuthikunchai
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand;
| | - Sarunyou Chusri
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; (O.F.N.); (P.T.)
| |
Collapse
|
43
|
Various Novel Colistin Resistance Mechanisms Interact To Facilitate Adaptation of Aeromonas hydrophila to Complex Colistin Environments. Antimicrob Agents Chemother 2021; 65:e0007121. [PMID: 33903105 PMCID: PMC8373241 DOI: 10.1128/aac.00071-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aeromonas hydrophila, a heterotrophic and Gram-negative bacterium, has attracted considerable attention owing to the increasing prevalence of reported infections. Colistin is a last-resort antibiotic that can treat life-threatening infections caused by multidrug-resistant Gram-negative bacteria. However, the mechanisms underlying colistin resistance in A. hydrophila remain unclear. The present study reveals four novel colistin resistance mechanisms in A. hydrophila: (i) EnvZ/OmpR upregulates the expression of the arnBCADTEF operon to mediate lipopolysaccharide (LPS) modification by 4-amino-4-deoxy-l-arabinose, (ii) EnvZ/OmpR regulates the expression of the autotransporter gene3832 to decrease outer membrane permeability in response to colistin, (iii) deletion of envZ/ompR activates PhoP/PhoQ, which functions as a substitute two-component system to mediate the addition of phosphoethanolamine to lipid A via pmrC, and (iv) the mlaFD173A mutant confers high-level colistin resistance via upregulation of the Mla pathway. The EnvZ/OmpR two-component system-mediated resistance mechanism is the leading form of colistin resistance in A. hydrophila, which enables it to rapidly generate low- to medium-level colistin resistance. As colistin concentrations in the environment continue to rise, antibiotic resistance mediated by EnvZ/OmpR becomes insufficient to ensure bacterial survival. Consequently, A. hydrophila has developed an mlaF mutation that results in high-level colistin resistance. Our findings indicate that A. hydrophila can thrive in a complex environment through various colistin resistance mechanisms.
Collapse
|
44
|
Campos PAD, Fuga B, Ferreira ML, Brígido RTES, Lincopan N, Gontijo-Filho PP, Ribas RM. Genetic Alterations Associated with Polymyxin B Resistance in Nosocomial KPC-2-Producing Klebsiella pneumoniae from Brazil. Microb Drug Resist 2021; 27:1677-1684. [PMID: 34129401 DOI: 10.1089/mdr.2020.0531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The rapid increased multidrug resistance in Klebsiella pneumoniae has led to a renewed interest in polymyxin antibiotics, such as colistin, as antibiotics of last resort, not least in low/middle income countries. We conducted a genomic survey of clinical polymyxin-resistant K. pneumoniae to investigate the genetic alterations in isolates harboring blaKPC-2. Whole-genome sequencing was performed using an Illumina NextSeq 500 paired-end reads. Mutations and insertion sequence detection were analyzed to seven isolates recovered from clinical specimens of patients hospitalized in Brazil, focusing on key genes associated with polymyxin resistance. Furthermore, the levels of mRNA expression of genes associated with resistance to polymyxin B and other antimicrobials were evaluated by quantitative real-time PCR. Eighty-five percent of the isolates were assigned to clonal complex 258, with a minimum inhibitory concentration range of 4 to >256 mg/L for polymyxin B. It was possible to observe the presence of one important insertion element, ISKpn13, in a strain recovered from the blood that have blaKPC-2. Deleterious mutations reported in PmrB (R256G), YciM (N212T), and AcrB (T598A) were common, and mobile colistin resistance (mcr) genes were absent in all the isolates. RT-qPCR analysis revealed an overexpression of the pmrC (1.160-fold), pmrD (2.258-fold), and kpnE (1.530-fold) genes in the polymyxin B-resistant isolates compared with the expression of the polymyxin B-susceptible K. pneumoniae isolate. Overall, these results demonstrate the diversity of genetic variations in polymyxin-resistant populations derived from the different clonal strains, but the same sequence types, and suggest that there are still unknown mechanisms of polymyxin resistance in K. pneumoniae.
Collapse
Affiliation(s)
- Paola Amaral de Campos
- Laboratório de Microbiologia Molecular, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Bruna Fuga
- Laboratório de Microbiologia Molecular, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil.,Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Melina Lorraine Ferreira
- Laboratório de Microbiologia Molecular, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | | | - Nilton Lincopan
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Paulo P Gontijo-Filho
- Laboratório de Microbiologia Molecular, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Rosineide Marques Ribas
- Laboratório de Microbiologia Molecular, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| |
Collapse
|
45
|
Cheng YH, Huang TW, Juan CH, Chou SH, Tseng YY, Chen TW, Yang TC, Lin YT. Tigecycline-non-susceptible hypervirulent Klebsiella pneumoniae strains in Taiwan. J Antimicrob Chemother 2021; 75:309-317. [PMID: 31702790 DOI: 10.1093/jac/dkz450] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/10/2019] [Accepted: 10/01/2019] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Emergent antimicrobial-resistant hypervirulent Klebsiella pneumoniae (hvKp) is an important public health issue. We aimed to investigate resistance mechanisms and hypervirulent traits among tigecycline-non-susceptible (TNS) K. pneumoniae clinical strains, focusing on one hvKp strain with in vivo evolution of tigecycline resistance. METHODS TNS K. pneumoniae strains causing invasive diseases in a medical centre in Taiwan between July 2015 and April 2018 were collected. Resistance mechanisms were determined and hvKp strains were defined as rmpA/rmpA2-carrying strains. Isogenic strains with and without tigecycline resistance were subjected to WGS and in vivo virulence testing. Further, site-directed mutagenesis was used to confirm the resistance mechanism. RESULTS In total, 31 TNS K. pneumoniae strains were isolated, including six hypervirulent strains. Tigecycline resistance mechanisms were mostly caused by overexpression of AcrAB and OqxAB together with up-regulation of RamA or RarA, respectively. One TNS hypervirulent strain (KP1692; MIC=6 mg/L) derived from its tigecycline-susceptible counterpart (KP1677; MIC=0.75 mg/L) showed acrAB overexpression. WGS revealed four genetic variations between KP1677 and KP1692. In addition, using site-directed mutagenesis, we confirmed that a 1 bp insertion in the ramA upstream region (RamR-binding site), leading to ramA and acrAB overexpression in KP1692, was responsible for tigecycline resistance. The in vivo virulence experiment showed that the TNS hvKp strain KP1692 still retained its high virulence compared with KP1677. CONCLUSIONS hvKp strains accounted for 19.4% among TNS strains. We identified alterations in the ramA upstream region as a mechanism of in vivo tigecycline resistance development in an hvKp strain.
Collapse
Affiliation(s)
- Yi-Hsiang Cheng
- Institute of Emergency and Critical Care Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Tzu-Wen Huang
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Han Juan
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Sheng-Hua Chou
- Institute of Emergency and Critical Care Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yao-Yi Tseng
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ting-Wen Chen
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan.,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.,Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, Hsinchu, Taiwan
| | - Tsuey-Ching Yang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Tsung Lin
- Institute of Emergency and Critical Care Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
46
|
Asenjo A, Oteo-Iglesias J, Alós JI. What's new in mechanisms of antibiotic resistance in bacteria of clinical origin? ACTA ACUST UNITED AC 2021; 39:291-299. [PMID: 34088451 DOI: 10.1016/j.eimce.2020.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/22/2020] [Indexed: 11/18/2022]
Abstract
The discovery, commercialization and administration of antibiotics revolutionized the world of medicine in the middle of the last century, generating a significant change in the therapeutic paradigm of the infectious diseases. Nevertheless, this great breakthrough was soon threatened due to the enormous adaptive ability that bacteria have, through which they are able to develop or acquire different mechanisms that allow them to survive the exposure to antibiotics. We are faced with a complex, multifactorial and inevitable but potentially manageable threat. To fight against it, a global and multidisciplinary approach is necessary, based on the support, guidance and training of the next generation of professionals. Nevertheless, the information published regarding the resistance mechanisms to antibiotics are abundant, varied and, unfortunately, not always well structured. The objective of this review is to structure the, in our opinion, most relevant and novel information regarding the mechanisms of resistance to antibiotics that has been published from January 2014 to September 2019, analysing their possible clinical and epidemiological impact.
Collapse
Affiliation(s)
- Alejandra Asenjo
- Servicio de Microbiología, Hospital Universitario de Getafe, Getafe, Madrid, Spain
| | - Jesús Oteo-Iglesias
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| | - Juan-Ignacio Alós
- Servicio de Microbiología, Hospital Universitario de Getafe, Getafe, Madrid, Spain.
| |
Collapse
|
47
|
Galani I, Karaiskos I, Giamarellou H. Multidrug-resistant Klebsiella pneumoniae: mechanisms of resistance including updated data for novel β-lactam-β-lactamase inhibitor combinations. Expert Rev Anti Infect Ther 2021; 19:1457-1468. [PMID: 33945387 DOI: 10.1080/14787210.2021.1924674] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Multi-drug-resistant Klebsiella pneumoniae is currently one of the most pressing emerging issues in bacterial resistance. Treatment of K.pneumoniae infections is often problematic due to the lack of available therapeutic options, with a relevant impact in terms of morbidity, mortality and healthcare-associated costs. Soon after the launch of Ceftazidime-Avibactam, one of the approved new β-lactam/β-lactamase inhibitor combinations, reports of ceftazidime-avibactam-resistant strains developing resistance during treatment were published. Being a hospital-associated pathogen, K.pneumoniae is continuously exposed to multiple antibiotics resulting in constant selective pressure, which in turn leads to additional mutations that are positively selected.Areas covered: Herein the authors present the K.pneumoniae mechanisms of resistance to different antimicrobials, including updated data for ceftazidime-avibactam.Expert opinion: K.pneumoniae is a nosocomial pathogen commonly implicated in hospital outbreaks with a propensity for antimicrobial resistance toward mainstay β-lactam antibiotics and multiple other antibiotic classes. Following the development of drug resistance and understanding the mechanisms involved, we can improve the efficacy of current antimicrobials, by applying careful stewardship and rational use to preserve their potential utility. The knowledge on antibiotic resistance mechanisms should be used to inform the design of novel therapeutic agents that might not be subject to, or can circumvent, mechanisms of resistance.
Collapse
Affiliation(s)
- Irene Galani
- Medicine, Infectious Diseases Laboratory, 4thDepartment of Internal Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ilias Karaiskos
- 1st Department of Internal Medicine-Infectious Diseases, Hygeia General Hospital, Athens, Greece
| | - Helen Giamarellou
- 1 Department of Internal Medicine-Infectious Diseases, Hygeia General Hospital, Athens, Greece
| |
Collapse
|
48
|
Missense Mutations in the CrrB Protein Mediate Odilorhabdin Derivative Resistance in Klebsiella pneumoniae. Antimicrob Agents Chemother 2021; 65:AAC.00139-21. [PMID: 33685902 PMCID: PMC8092918 DOI: 10.1128/aac.00139-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NOSO-502 is a preclinical antibiotic candidate of the Odilorhabdin class. This compound exhibits activity against Enterobacteriaceae pathogens, including carbapenemase-producing bacteria and most of the Colistin (CST)-resistant strains. Among a collection of CST-resistant Klebsiella pneumoniae strains harboring mutations on genes pmrAB, mgrB, phoPQ, and crrB, only those bearing mutations in gene crrB were found to be resistant to NOSO-502.CrrB is a histidine kinase which acts with the response regulator CrrA to modulate the PmrAB system, which finally induces the restructuring of the lipopolysaccharide present on the outer membrane and thus leading to CST resistance. Moreover, crrB mutations also enhance the transcription of neighboring genes such as H239_3063, an ABC transporter transmembrane region; H239_3064, a putative efflux pump also known as KexD; and H239_3065, a N-acetyltransferase.To elucidate the mechanism of resistance to NOSO-502 induced by CrrB missense mutations in K. pneumoniae, mutants of NCTC 13442 and ATCC BAA-2146 strains resistant to NOSO-502 and CST with single amino acid substitutions in CrrB (S8N, F33Y, Y34N, W140R, N141I, P151A, P151L, P151S, P151T, F303Y) were selected. Full susceptibility to NOSO-502 was restored in crrA or crrB deleted K. pneumoniae NCTC 13442 CrrB(P151L) mutants, confirming the role of CrrAB in controlling this resistance pathway. Deletion of kexD (but no other neighboring genes) in the same mutant also restored NOSO-502-susceptibility. Upregulation of the kexD gene expression was observed for all CrrB mutants. Finally, plasmid expression of kexD in a K. pneumoniae strain missing the locus crrABC and kexD significantly increased resistance to NOSO-502.
Collapse
|
49
|
Risk factors and mechanisms of in vivo emergence of colistin resistance in carbapenem-resistant Klebsiella pneumoniae. Int J Antimicrob Agents 2021; 57:106342. [PMID: 33864932 DOI: 10.1016/j.ijantimicag.2021.106342] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/07/2021] [Accepted: 04/03/2021] [Indexed: 11/21/2022]
Abstract
Colistin is one of the last-resort antibiotics for treating carbapenem-resistant Klebsiella pneumoniae (CRKP). However, colistin resistance in CRKP poses a global antimicrobial crisis, as therapeutic options are limited. We investigated risk factors for in vivo emergence of colistin resistance in CRKP and explored the underlying resistance mechanisms. We conducted this matched case-control study of patients with sequential CRKP clinical strains at a medical centre in Taiwan between October 2016 and June 2019. The case group included patients with an index colistin-resistant CRKP (ColR-CRKP) strain and a previous colistin-susceptible CRKP (ColS-CRKP) counterpart. The control group encompassed patients with both an index and previous ColS-CRKP strains. Cases and controls were matched according to the time at risk, and conditional logistic regression was used to evaluate potential risk factors. Alterations in genes associated with resistance were compared between ColR-CRKP and ColS-CRKP strains. We identified 24 CRKP cases with in vivo-emergent colistin resistance, matched in a 1:2 ratio with controls. Multivariate analysis showed that colistin exposure is the only independent risk factor predisposing to colistin resistance (adjusted odds ratio = 19.09, 95% confidence interval 1.26-290.45; P = 0.034). Alteration in the mgrB gene was the predominant mechanism for emergent colistin resistance (17/24; 71%). In conclusion, colistin use is a risk factor for in vivo emergence of colistin resistance in CRKP. Given the lack of a rapid and reliable method to detect colistin resistance in daily practice, physicians should be vigilant for the emergence of resistance during colistin treatment.
Collapse
|
50
|
Abstract
Antibiotic resistance is a major global health challenge and, worryingly, several key Gram negative pathogens can become resistant to most currently available antibiotics. Polymyxins have been revived as a last-line therapeutic option for the treatment of infections caused by multidrug-resistant Gram negative bacteria, in particular Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacterales. Polymyxins were first discovered in the late 1940s but were abandoned soon after their approval in the late 1950s as a result of toxicities (e.g., nephrotoxicity) and the availability of "safer" antibiotics approved at that time. Therefore, knowledge on polymyxins had been scarce until recently, when enormous efforts have been made by several research teams around the world to elucidate the chemical, microbiological, pharmacokinetic/pharmacodynamic, and toxicological properties of polymyxins. One of the major achievements is the development of the first scientifically based dosage regimens for colistin that are crucial to ensure its safe and effective use in patients. Although the guideline has not been developed for polymyxin B, a large clinical trial is currently being conducted to optimize its clinical use. Importantly, several novel, safer polymyxin-like lipopeptides are developed to overcome the nephrotoxicity, poor efficacy against pulmonary infections, and narrow therapeutic windows of the currently used polymyxin B and colistin. This review discusses the latest achievements on polymyxins and highlights the major challenges ahead in optimizing their clinical use and discovering new-generation polymyxins. To save lives from the deadly infections caused by Gram negative "superbugs," every effort must be made to improve the clinical utility of the last-line polymyxins. SIGNIFICANCE STATEMENT: Antimicrobial resistance poses a significant threat to global health. The increasing prevalence of multidrug-resistant (MDR) bacterial infections has been highlighted by leading global health organizations and authorities. Polymyxins are a last-line defense against difficult-to-treat MDR Gram negative pathogens. Unfortunately, the pharmacological information on polymyxins was very limited until recently. This review provides a comprehensive overview on the major achievements and challenges in polymyxin pharmacology and clinical use and how the recent findings have been employed to improve clinical practice worldwide.
Collapse
Affiliation(s)
- Sue C Nang
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Mohammad A K Azad
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Tony Velkov
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Qi Tony Zhou
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Jian Li
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| |
Collapse
|