1
|
Rodriguez-Gonzalez RA, Balacheff Q, Debarbieux L, Marchi J, Weitz JS. Metapopulation model of phage therapy of an acute Pseudomonas aeruginosa lung infection. mSystems 2024; 9:e0017124. [PMID: 39230264 DOI: 10.1128/msystems.00171-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/24/2024] [Indexed: 09/05/2024] Open
Abstract
Infections caused by multidrug resistant (MDR) pathogenic bacteria are a global health threat. Bacteriophages ("phage") are increasingly used as alternative or last-resort therapeutics to treat patients infected by MDR bacteria. However, the therapeutic outcomes of phage therapy may be limited by the emergence of phage resistance during treatment and/or by physical constraints that impede phage-bacteria interactions in vivo. In this work, we evaluate the role of lung spatial structure on the efficacy of phage therapy for Pseudomonas aeruginosa infections. To do so, we developed a spatially structured metapopulation network model based on the geometry of the bronchial tree, including host innate immune responses and the emergence of phage-resistant bacterial mutants. We model the ecological interactions between bacteria, phage, and the host innate immune system at the airway (node) level. The model predicts the synergistic elimination of a P. aeruginosa infection due to the combined effects of phage and neutrophils, given the sufficient innate immune activity and efficient phage-induced lysis. The metapopulation model simulations also predict that MDR bacteria are cleared faster at distal nodes of the bronchial tree. Notably, image analysis of lung tissue time series from wild-type and lymphocyte-depleted mice revealed a concordant, statistically significant pattern: infection intensity cleared in the bottom before the top of the lungs. Overall, the combined use of simulations and image analysis of in vivo experiments further supports the use of phage therapy for treating acute lung infections caused by P. aeruginosa, while highlighting potential limits to therapy in a spatially structured environment given impaired innate immune responses and/or inefficient phage-induced lysis. IMPORTANCE Phage therapy is increasingly employed as a compassionate treatment for severe infections caused by multidrug-resistant (MDR) bacteria. However, the mixed outcomes observed in larger clinical studies highlight a gap in understanding when phage therapy succeeds or fails. Previous research from our team, using in vivo experiments and single-compartment mathematical models, demonstrated the synergistic clearance of acute P. aeruginosa pneumonia by phage and neutrophils despite the emergence of phage-resistant bacteria. In fact, the lung environment is highly structured, prompting the question of whether immunophage synergy explains the curative treatment of P. aeruginosa when incorporating realistic physical connectivity. To address this, we developed a metapopulation network model mimicking the lung branching structure to assess phage therapy efficacy for MDR P. aeruginosa pneumonia. The model predicts the synergistic elimination of P. aeruginosa by phage and neutrophils but emphasizes potential challenges in spatially structured environments, suggesting that higher innate immune levels may be required for successful bacterial clearance. Model simulations reveal a spatial pattern in pathogen clearance where P. aeruginosa are cleared faster at distal nodes of the bronchial tree than in primary nodes. Interestingly, image analysis of infected mice reveals a concordant and statistically significant pattern: infection intensity clears in the bottom before the top of the lungs. The combined use of modeling and image analysis supports the application of phage therapy for acute P. aeruginosa pneumonia while emphasizing potential challenges to curative success in spatially structured in vivo environments, including impaired innate immune responses and reduced phage efficacy.
Collapse
Affiliation(s)
- Rogelio A Rodriguez-Gonzalez
- Interdisciplinary Graduate Program in Quantitative Biosciences,Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Quentin Balacheff
- CHU Félix Guyon, Service des maladies respiratoires, La Réunion, France
| | - Laurent Debarbieux
- Department of Microbiology, Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, Paris, France
| | - Jacopo Marchi
- Department of Biology, University of Maryland, College Park, Maryland, USA
| | - Joshua S Weitz
- Department of Biology, University of Maryland, College Park, Maryland, USA
- Department of Physics, University of Maryland, College Park, Maryland, USA
- Institut de Biologie, École Normale Supérieure, Paris, France
| |
Collapse
|
2
|
Van Nieuwenhuyse B, Merabishvili M, Goeders N, Vanneste K, Bogaerts B, de Jode M, Ravau J, Wagemans J, Belkhir L, Van der Linden D. Phage-Mediated Digestive Decolonization in a Gut-On-A-Chip Model: A Tale of Gut-Specific Bacterial Prosperity. Viruses 2024; 16:1047. [PMID: 39066209 PMCID: PMC11281504 DOI: 10.3390/v16071047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Infections due to antimicrobial-resistant bacteria have become a major threat to global health. Some patients may carry resistant bacteria in their gut microbiota. Specific risk factors may trigger the conversion of these carriages into infections in hospitalized patients. Preventively eradicating these carriages has been postulated as a promising preventive intervention. However, previous attempts at such eradication using oral antibiotics or probiotics have led to discouraging results. Phage therapy, the therapeutic use of bacteriophage viruses, might represent a worthy alternative in this context. Taking inspiration from this clinical challenge, we built Gut-On-A-Chip (GOAC) models, which are tridimensional cell culture models mimicking a simplified gut section. These were used to better understand bacterial dynamics under phage pressure using two relevant species: Pseudomonas aeruginosa and Escherichia coli. Model mucus secretion was documented by ELISA assays. Bacterial dynamics assays were performed in GOAC triplicates monitored for 72 h under numerous conditions, such as pre-, per-, or post-bacterial timing of phage introduction, punctual versus continuous phage administration, and phage expression of mucus-binding properties. The potential genomic basis of bacterial phage resistance acquired in the model was investigated by variant sequencing. The bacterial "escape growth" rates under phage pressure were compared to static in vitro conditions. Our results suggest that there is specific bacterial prosperity in this model compared to other in vitro conditions. In E. coli assays, the introduction of a phage harboring unique mucus-binding properties could not shift this balance of power, contradicting previous findings in an in vivo mouse model and highlighting the key differences between these models. Genomic modifications were correlated with bacterial phage resistance acquisition in some but not all instances, suggesting that alternate ways are needed to evade phage predation, which warrants further investigation.
Collapse
Affiliation(s)
- Brieuc Van Nieuwenhuyse
- Institute of Experimental and Clinical Research, Pediatric Department (IREC/PEDI), Université Catholique de Louvain—UCLouvain, 1200 Brussels, Belgium
| | - Maya Merabishvili
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, 1120 Brussels, Belgium
| | - Nathalie Goeders
- Transversal Activities in Applied Genomics, Sciensano, Juliette Wytsmanstraat 14, 1050 Brussels, Belgium (B.B.)
| | - Kevin Vanneste
- Transversal Activities in Applied Genomics, Sciensano, Juliette Wytsmanstraat 14, 1050 Brussels, Belgium (B.B.)
| | - Bert Bogaerts
- Transversal Activities in Applied Genomics, Sciensano, Juliette Wytsmanstraat 14, 1050 Brussels, Belgium (B.B.)
| | - Mathieu de Jode
- Bacterial Diseases, Sciensano, Juliette Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Joachim Ravau
- Institute of Experimental and Clinical Research, Pediatric Department (IREC/PEDI), Université Catholique de Louvain—UCLouvain, 1200 Brussels, Belgium
| | - Jeroen Wagemans
- Laboratory of Gene Technology, KU Leuven, 3000 Leuven, Belgium;
| | - Leïla Belkhir
- Division of Internal Medicine and Infectious Disease, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain—UCLouvain, 1200 Brussels, Belgium
- Louvain Centre for Toxicology and Applied Pharmacology, Institute of Experimental and Clinical Research (IREC/LTAP), Université Catholique de Louvain—UCLouvain, 1200 Brussels, Belgium
| | - Dimitri Van der Linden
- Institute of Experimental and Clinical Research, Pediatric Department (IREC/PEDI), Université Catholique de Louvain—UCLouvain, 1200 Brussels, Belgium
- Pediatric Infectious Diseases, General Pediatrics Department, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain—UCLouvain, 1200 Brussels, Belgium
| |
Collapse
|
3
|
Jhandai P, Mittal D, Gupta R, Kumar M, Khurana R. Therapeutics and prophylactic efficacy of novel lytic Escherichia phage vB_EcoS_PJ16 against multidrug-resistant avian pathogenic E. coli using in vivo study. Int Microbiol 2024; 27:673-687. [PMID: 37632591 DOI: 10.1007/s10123-023-00420-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023]
Abstract
Avian pathogenic Escherichia coli (APEC) is the causative agent of avian colibacillosis, which causes significant economic losses to the poultry industry. The growing resistance of bacteria to antibiotics is a major global public health concern. However, there is limited data on the efficacy of phage therapy in effectively controlling and treating APEC infections. In this study, a novel lytic Escherichia phage, vB_EcoS_PJ16, was isolated from poultry farm wastewater and characterized in both in vitro and in vivo conditions. Transmission electron microscopy analysis revealed the presence of an icosahedral head and a long non-contractile tail, classifying the phage under the Caudoviricetes class. Host range determination showed that Escherichia phage vB_EcoS_PJ16 exhibited lytic activity against multiple strains of pathogenic E. coli, while no significant signs of lysis for Klebsiella pneumoniae, Salmonella Typhimurium, Listeria monocytogenes, and Staphylococcus aureus. Biophysical characterization revealed that the isolated phage was sturdy, as it remained viable for up to 300 days at temperatures of 30 °C, 37 °C, and 42 °C and for up to 24 h at pH 5 to 11, with only minor changes in titer. Kinetic analysis at multiplicity of infection (MOI) 0.1 showed a latency period of about 20 min and a burst size of 26.5 phage particles per infected cell for phage vB_EcoS_PJ16. Whole genome sequencing unveiled that the phage vB_EcoS_PJ16 genome consists of a double-stranded linear DNA molecule with 57,756 bp and a GC content of 43.58%. The Escherichia phage vB_EcoS_PJ16 genome consisted of 98 predicted putative ORFs, with no transfer RNA identified in the genome. Among these 98 genes, 34 genes were predicted to have known functions. A significant reduction in APEC viability was observed at MOI 100 during in vitro bacterial challenge tests conducted at different MOIs (0.01, 1, and 100). In vivo oral evaluation of the isolated phage to limit E. coli infections in day-old chicks indicated a decrease in mortality within both the therapeutic (20%) and prophylactic (30%) groups, when compared to the control group. The findings of this study contribute to our current knowledge of Escherichia phages and suggest a potentially effective role of phages in the therapeutic and prophylactic control of antibiotic-resistant APEC strains.
Collapse
Affiliation(s)
- Punit Jhandai
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, India
| | - Dinesh Mittal
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, India.
| | - Renu Gupta
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, India
| | - Manesh Kumar
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, India
| | - Rajesh Khurana
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, India
| |
Collapse
|
4
|
Kushwaha SO, Sahu SK, Yadav VK, Rathod MC, Patel D, Sahoo DK, Patel A. Bacteriophages as a potential substitute for antibiotics: A comprehensive review. Cell Biochem Funct 2024; 42:e4022. [PMID: 38655589 DOI: 10.1002/cbf.4022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/15/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
Over the years, the administration of antibiotics for the purpose of addressing bacterial infections has become increasingly challenging due to the increased prevalence of antimicrobial resistance exhibited by various strains of bacteria. Multidrug-resistant (MDR) bacterial species are rising due to the unavailability of novel antibiotics, leading to higher mortality rates. With these conditions, there is a need for alternatives in which phage therapy has made promising results. Phage-derived endolysins, phage cocktails, and bioengineered phages are effective and have antimicrobial properties against MDR and extensively drug-resistant strains. Despite these, it has been observed that phages can give antimicrobial activity to more than one bacterial species. Thus, phage cocktail against resistant strains provides broad spectrum treatment and magnitude of effectivity, which is many folds higher than antibiotics. Many commercially available endolysins such as Staphefekt SA.100, Exebacase (CF-301), and N-Rephasin®SAL200 are used in biofilm penetration and treating plant diseases. The role of CMP1 phage endolysin in transgenic tomato plants in preventing Clavibacter michiganensis infection and the effectiveness of phage in protecting Atlantic salmon from vibriosis have been reported. Furthermore, phage-derived endolysin therapy, such as TSPphg phage exogenous treatment, can aid in disrupting cell walls, leading to bacterial cell lysis. As animals in aquaculture and slaughterhouses are highly susceptible to bacterial infections, effective phage therapy instead of antibiotics can help treat poultry animals, preserve them, and facilitate disease-free trade. Using bioengineered phages and phage cocktails enhances the effectiveness by providing a broad spectrum of phages and target specificity. Research is currently being conducted on clinical trials to confirm the efficacy of engineered phages and phage cocktails in humans. Although obtaining commercial approval may be time-consuming, it will be beneficial in the postantibiotic era. This review provides an overview of the significance of phage therapy as a potential alternative to antibiotics in combating resistant bacterial strains and its application to various fields and emphasizes the importance of safeguarding and ensuring treatment efficacy.
Collapse
Affiliation(s)
- Shruti O Kushwaha
- Department of Biotechnology, Veer Narmad South Gujarat University, Surat, Gujarat, India
| | - Santosh Kumar Sahu
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Mayuri C Rathod
- Department of Biotechnology, Veer Narmad South Gujarat University, Surat, Gujarat, India
| | - Dhaval Patel
- Bioinformatic Division, Gujarat Biotechnology University, Gandhinagar, Gujarat, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| |
Collapse
|
5
|
Shanmugasundaram S, Nayak N, Puzhankara L, Kedlaya MN, Rajagopal A, Karmakar S. Bacteriophages: the dawn of a new era in periodontal microbiology? Crit Rev Microbiol 2024; 50:212-223. [PMID: 36883683 DOI: 10.1080/1040841x.2023.2182667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/02/2023] [Accepted: 02/15/2023] [Indexed: 03/09/2023]
Abstract
The oral microbiome, populated by a diverse range of species, plays a critical role in the initiation and progression of periodontal disease. The most dominant yet little-discussed players in the microbiome, the bacteriophages, influence the health and disease of the host in various ways. They, not only contribute to periodontal health by preventing the colonization of pathogens and disrupting biofilms but also play a role in periodontal disease by upregulating the virulence of periodontal pathogens through the transfer of antibiotic resistance and virulence factors. Since bacteriophages selectively infect only bacterial cells, they have an enormous scope to be used as a therapeutic strategy; recently, phage therapy has been successfully used to treat antibiotic-resistant systemic infections. Their ability to disrupt biofilms widens the scope against periodontal pathogens and dental plaque biofilms in periodontitis. Future research focussing on the oral phageome and phage therapy's effectiveness and safety could pave way for new avenues in periodontal therapy. This review explores our current understanding of bacteriophages, their interactions in the oral microbiome, and their therapeutic potential in periodontal disease.
Collapse
Affiliation(s)
- Shashikiran Shanmugasundaram
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Namratha Nayak
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Lakshmi Puzhankara
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Madhurya N Kedlaya
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Anjale Rajagopal
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shaswata Karmakar
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
6
|
Bogun K, Peh E, Meyer-Kühling B, Hartmann J, Hirnet J, Plötz M, Kittler S. Investigating bacteriophages as a novel multiple-hurdle measure against Campylobacter: field trials in commercial broiler plants. Sci Rep 2024; 14:3182. [PMID: 38326411 PMCID: PMC10850366 DOI: 10.1038/s41598-024-53365-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/31/2024] [Indexed: 02/09/2024] Open
Abstract
Campylobacter mitigation along the food production chain is considered effective for minimizing the public health burden of human campylobacteriosis. This study is the first combining different measures in a multiple-hurdle approach, using drinking water additives and feed additives in single and combined application schemes in commercial broiler plants. Broiler chickens in the study groups were naturally contaminated with Campylobacter. Application of an organic acid blend via drinking water, consisting of sodium propionate, potassium sorbate, and sodium diacetate, resulted in significant reductions of up to 4.9 log10 CFU/mL in fecal samples and in cecal samples at slaughter. The application of a phage mixture, consisting of Fletchervirus phage NCTC 12673 and Firehammervirus phage vB_CcM-LmqsCPL1/1, resulted in reductions of up to 1.1 log10 CFU/mL in fecal samples 1 day after dosing. The sole administration of curcumin via feed resulted in small and inconsistent reductions. In the group receiving a combination of all tested measures, reductions of up to 1.1 log10 CFU/mL were observed. Based on the results of our field trials, it was shown that both the sole application and the combined application of mitigation measures in primary production can reduce the Campylobacter load in broiler chickens, while no synergism could be observed.
Collapse
Affiliation(s)
- Katrin Bogun
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Elisa Peh
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | | | | | - Juliane Hirnet
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Madeleine Plötz
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Sophie Kittler
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.
| |
Collapse
|
7
|
Narayanan KB, Bhaskar R, Choi SM, Han SS. Development of carrageenan-immobilized lytic coliphage vB_Eco2571-YU1 hydrogel for topical delivery of bacteriophages in wound dressing applications. Int J Biol Macromol 2024; 259:129349. [PMID: 38219934 DOI: 10.1016/j.ijbiomac.2024.129349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/31/2023] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
Bacteriophages are employed as cost-effective and efficient antibacterial agents to counter the emergence of antibiotic-resistant bacteria and other host bacteria in phage therapy. The increasing incidence of skin wounds is a significant concern in clinical practice, especially considering the limitations of antibiotic therapy. Furthermore, the lack of an effective delivery system that preserves the stability of bacteriophages hampers their clinical implementation. In recent years, there has been a growing amount of research on bacteriophage applications in veterinary and biomedical sciences. In our study, lytic coliphage vB_Eco2571-YU1 was isolated against pathogenic Escherichia coli host bacteria, and hydrogel wound dressing materials were fabricated with marine polysaccharide carrageenan (carr-vB_Eco2571-YU1) for their antibacterial activity. Transmission electron microscopy (TEM) morphology identified it as a Myoviridae coliphage with an icosahedral head length and width of approximately 60 and 56.8 nm, respectively, and a tail length of 119.7 nm. The one-step growth curve of coliphage revealed a latent period of 10 min, a rise period of 15 min, and a burst size of 120 virions per cell. The bacteriolytic activity of unimmobilized coliphages was observed within 2 h; however, strain-specific phage resistance was acquired after 9 h. In contrast, carr-vB_Eco2571-YU1 showed a sharp decline in the growth of bacteria in the log phase after 2 h and did not allow for the acquisition of phage resistance by the E. coli strain. The stability of coliphage under different pH, temperature, osmolarity, detergents, and organic solvents was evaluated. We also studied the long-term storage of carr-vB_Eco2571-YU1 hydrogels at 4 °C and found that the titer value decreased during a time-dependent period of 28 days. These hydrogels were also found to be hemocompatible using a hemolysis assay. The addition of plasticizer (0.6 % (w/v)) to the carrageenan (2 % (w/v)) to prepare carr-vB_Eco2571-YU1 hydrogels showed a decrease in compressive strength with enhanced elasticity. This phage therapy using polymeric immobilization of bacteriophages is a promising next-generation wound dressing biomaterial alternative to conventional wound and skin care management.
Collapse
Affiliation(s)
- Kannan Badri Narayanan
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, South Korea.
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Soon Mo Choi
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, South Korea.
| |
Collapse
|
8
|
Oliveira A, Dias C, Oliveira R, Almeida C, Fuciños P, Sillankorva S, Oliveira H. Paving the way forward: Escherichia coli bacteriophages in a One Health approach. Crit Rev Microbiol 2024; 50:87-104. [PMID: 36608263 DOI: 10.1080/1040841x.2022.2161869] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023]
Abstract
Escherichia coli is one of the most notorious pathogens for its ability to adapt, colonize, and proliferate in different habitats through a multitude of acquired virulence factors. Its presence affects the food-processing industry and causes food poisoning, being also a major economic burden for the food, agriculture, and health sectors. Bacteriophages are emerging as an appealing strategy to mitigate bacterial pathogens, including specific E. coli pathovars, without exerting a deleterious effect on humans and animals. This review globally analyzes the applied research on E. coli phages for veterinary, food, and human use. It starts by describing the pathogenic E. coli pathotypes and their relevance in human and animal context. The idea that phages can be used as a One Health approach to control and interrupt the transmission routes of pathogenic E. coli is sustained through an exhaustive revision of the recent literature. The emerging phage formulations, genetic engineering and encapsulation technologies are also discussed as a means of improving phage-based control strategies, with a particular focus on E. coli pathogens.
Collapse
Affiliation(s)
- Ana Oliveira
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Carla Dias
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Ricardo Oliveira
- INIAV, IP-National Institute for Agrarian and Veterinary Research, Vairão, Vila do Conde, Portugal
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
| | - Carina Almeida
- INIAV, IP-National Institute for Agrarian and Veterinary Research, Vairão, Vila do Conde, Portugal
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
| | - Pablo Fuciños
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
| | - Sanna Sillankorva
- INL - International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, Braga, Portugal
| | - Hugo Oliveira
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
9
|
Rodriguez-Gonzalez RA, Balacheff Q, Debarbieux L, Marchi J, Weitz JS. Metapopulation model of phage therapy of an acute Pseudomonas aeruginosa lung infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578251. [PMID: 38352502 PMCID: PMC10862780 DOI: 10.1101/2024.01.31.578251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Infections caused by multi-drug resistant (MDR) pathogenic bacteria are a global health threat. Phage therapy, which uses phage to kill bacterial pathogens, is increasingly used to treat patients infected by MDR bacteria. However, the therapeutic outcome of phage therapy may be limited by the emergence of phage resistance during treatment and/or by physical constraints that impede phage-bacteria interactions in vivo. In this work, we evaluate the role of lung spatial structure on the efficacy of phage therapy for Pseudomonas aeruginosa infection. To do so, we developed a spatially structured metapopulation network model based on the geometry of the bronchial tree, and included the emergence of phage-resistant bacterial mutants and host innate immune responses. We model the ecological interactions between bacteria, phage, and the host innate immune system at the airway (node) level. The model predicts the synergistic elimination of a P. aeruginosa infection due to the combined effects of phage and neutrophils given sufficiently active immune states and suitable phage life history traits. Moreover, the metapopulation model simulations predict that local MDR pathogens are cleared faster at distal nodes of the bronchial tree. Notably, image analysis of lung tissue time series from wild-type and lymphocyte-depleted mice (n=13) revealed a concordant, statistically significant pattern: infection intensity cleared in the bottom before the top of the lungs. Overall, the combined use of simulations and image analysis of in vivo experiments further supports the use of phage therapy for treating acute lung infections caused by P. aeruginosa while highlighting potential limits to therapy given a spatially structured environment, such as impaired innate immune responses and low phage efficacy.
Collapse
Affiliation(s)
- Rogelio A. Rodriguez-Gonzalez
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Quentin Balacheff
- CHU Felix Guyon, Service des maladies respiratoires, La Réunion, France
| | | | - Jacopo Marchi
- Department of Biology, University of Maryland, College Park, Maryland, USA
| | - Joshua S. Weitz
- Department of Biology, University of Maryland, College Park, Maryland, USA
- Department of Physics, University of Maryland, College Park, Maryland, USA
- Institut de Biologie de l’École Normale Supérieure, Paris, France
| |
Collapse
|
10
|
Roson-Calero N, Ballesté-Delpierre C, Fernández J, Vila J. Insights on Current Strategies to Decolonize the Gut from Multidrug-Resistant Bacteria: Pros and Cons. Antibiotics (Basel) 2023; 12:1074. [PMID: 37370393 DOI: 10.3390/antibiotics12061074] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
In the last decades, we have witnessed a steady increase in infections caused by multidrug-resistant (MDR) bacteria. These infections are associated with higher morbidity and mortality. Several interventions should be taken to reduce the emergence and spread of MDR bacteria. The eradication of resistant pathogens colonizing specific human body sites that would likely cause further infection in other sites is one of the most conventional strategies. The objective of this narrative mini-review is to compile and discuss different strategies for the eradication of MDR bacteria from gut microbiota. Here, we analyse the prevalence of MDR bacteria in the community and the hospital and the clinical impact of gut microbiota colonisation with MDR bacteria. Then, several strategies to eliminate MDR bacteria from gut microbiota are described and include: (i) selective decontamination of the digestive tract (SDD) using a cocktail of antibiotics; (ii) the use of pre and probiotics; (iii) fecal microbiota transplantation; (iv) the use of specific phages; (v) engineered CRISPR-Cas Systems. This review intends to provide a state-of-the-art of the most relevant strategies to eradicate MDR bacteria from gut microbiota currently being investigated.
Collapse
Affiliation(s)
- Natalia Roson-Calero
- Barcelona Institute for Global Health (ISGlobal), 08036 Barcelona, Spain
- Department of Basic Clinical Practice, School of Medicine, University of Barcelona, 08036 Barcelona, Spain
| | - Clara Ballesté-Delpierre
- Barcelona Institute for Global Health (ISGlobal), 08036 Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Javier Fernández
- Liver ICU, Liver Unit, Hospital Clinic, University of Barcelona, IDIBAPS and CIBERehd, 08036 Barcelona, Spain
- European Foundation for the Study of Chronic Liver Failure (EF-Clif), 08021 Barcelona, Spain
| | - Jordi Vila
- Barcelona Institute for Global Health (ISGlobal), 08036 Barcelona, Spain
- Department of Basic Clinical Practice, School of Medicine, University of Barcelona, 08036 Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto Salud Carlos III, 28029 Madrid, Spain
- Department of Clinical Microbiology, Biomedical Diagnostic Center, Hospital Clinic, 08036 Barcelona, Spain
| |
Collapse
|
11
|
Nikulin N, Nikulina A, Zimin A, Aminov R. Phages for treatment of Escherichia coli infections. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 200:171-206. [PMID: 37739555 DOI: 10.1016/bs.pmbts.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Diseases due to infections by pathogenic Escherichia coli strains are on the rise and with the growing antimicrobial resistance among bacterial pathogens, including this group. Thus, alternative therapeutic options are actively investigated. Among these alternatives is phage therapy. In the case of E. coli, the combination of the well understood biology of this species and its bacteriophages represents a good guiding example for the establishment of phage therapy principles against this and other pathogenic bacteria. In this chapter, the procedures toward the development of phage therapy against pathogenic E. coli with the use of T-even group of phages are discussed. These steps involve the isolation, purification, characterisation and large-scale production of these phages, with formulation of phage cocktails for in vitro and in vivo studies. The main emphasis is made on phage therapy of enteropathogenic E. coli O157:H, which is one of the prominent human pathogens but persists as a commensal bacterium in many food animals. The implementation of phage therapy against E. coli O157:H within the One Health framework in carrier animals and for treatment of meat, vegetables, fruits and other agricultural produce thus would allow controlling and interrupting the transmission routes of this pathogen to the human food chain and preventing human disease. Examples of successful control and elimination of E. coli O157:H are given, while the problems encountered in phage treatment of this pathogen are also discussed.
Collapse
Affiliation(s)
- Nikita Nikulin
- Laboratory of Molecular Microbiology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Pushchino, Russia
| | - Alexandra Nikulina
- Laboratory of Molecular Microbiology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Pushchino, Russia
| | - Andrei Zimin
- Laboratory of Molecular Microbiology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Pushchino, Russia
| | - Rustam Aminov
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom.
| |
Collapse
|
12
|
Carroll-Portillo A, Rumsey KN, Braun CA, Lin DM, Coffman CN, Alcock JA, Singh SB, Lin HC. Mucin and Agitation Shape Predation of Escherichia coli by Lytic Coliphage. Microorganisms 2023; 11:microorganisms11020508. [PMID: 36838472 PMCID: PMC9966288 DOI: 10.3390/microorganisms11020508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
The ability of bacteriophage (phage), abundant within the gastrointestinal microbiome, to regulate bacterial populations within the same micro-environment offers prophylactic and therapeutic opportunities. Bacteria and phage have both been shown to interact intimately with mucin, and these interactions invariably effect the outcomes of phage predation within the intestine. To better understand the influence of the gastrointestinal micro-environment on phage predation, we employed enclosed, in vitro systems to investigate the roles of mucin concentration and agitation as a function of phage type and number on bacterial killing. Using two lytic coliphage, T4 and PhiX174, bacterial viability was quantified following exposure to phages at different multiplicities of infection (MOI) within increasing, physiological levels of mucin (0-4%) with and without agitation. Comparison of bacterial viability outcomes demonstrated that at low MOI, agitation in combination with higher mucin concentration (>2%) inhibited phage predation by both phages. However, when MOI was increased, PhiX predation was recovered regardless of mucin concentration or agitation. In contrast, only constant agitation of samples containing a high MOI of T4 demonstrated phage predation; briefly agitated samples remained hindered. Our results demonstrate that each phage-bacteria pairing is uniquely influenced by environmental factors, and these should be considered when determining the potential efficacy of phage predation under homeostatic or therapeutic circumstances.
Collapse
Affiliation(s)
- Amanda Carroll-Portillo
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
- Correspondence:
| | - Kellin N. Rumsey
- Statistical Sciences, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Cody A. Braun
- Biomedical Research Institute of New Mexico, Albuquerque, NM 87108, USA
| | - Derek M. Lin
- Biomedical Research Institute of New Mexico, Albuquerque, NM 87108, USA
| | | | - Joe A. Alcock
- Department of Emergency Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Sudha B. Singh
- Biomedical Research Institute of New Mexico, Albuquerque, NM 87108, USA
| | - Henry C. Lin
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
- Medicine Service, New Mexico VA Health Care System, Albuquerque, NM 87108, USA
| |
Collapse
|
13
|
Zhou S, Liu Z, Song J, Chen Y. Disarm The Bacteria: What Temperate Phages Can Do. Curr Issues Mol Biol 2023; 45:1149-1167. [PMID: 36826021 PMCID: PMC9955262 DOI: 10.3390/cimb45020076] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
In the field of phage applications and clinical treatment, virulent phages have been in the spotlight whereas temperate phages received, relatively speaking, less attention. The fact that temperate phages often carry virulent or drug-resistant genes is a constant concern and drawback in temperate phage applications. However, temperate phages also play a role in bacterial regulation. This review elucidates the biological properties of temperate phages based on their life cycle and introduces the latest work on temperate phage applications, such as on host virulence reduction, biofilm degradation, genetic engineering and phage display. The versatile use of temperate phages coupled with their inherent properties, such as economy, ready accessibility, wide variety and host specificity, make temperate phages a solid candidate in tackling bacterial infections.
Collapse
Affiliation(s)
- Shiyue Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Zhengjie Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jiaoyang Song
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yibao Chen
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
14
|
Laucirica DR, Stick SM, Garratt LW, Kicic A. Bacteriophage: A new therapeutic player to combat neutrophilic inflammation in chronic airway diseases. Front Med (Lausanne) 2022; 9:1069929. [PMID: 36590945 PMCID: PMC9794625 DOI: 10.3389/fmed.2022.1069929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Persistent respiratory bacterial infections are a clinical burden in several chronic inflammatory airway diseases and are often associated with neutrophil infiltration into the lungs. Following recruitment, dysregulated neutrophil effector functions such as increased granule release and formation of neutrophil extracellular traps (NETs) result in damage to airway tissue, contributing to the progression of lung disease. Bacterial pathogens are a major driver of airway neutrophilic inflammation, but traditional management of infections with antibiotic therapy is becoming less effective as rates of antimicrobial resistance rise. Bacteriophages (phages) are now frequently identified as antimicrobial alternatives for antimicrobial resistant (AMR) airway infections. Despite growing recognition of their bactericidal function, less is known about how phages influence activity of neutrophils recruited to sites of bacterial infection in the lungs. In this review, we summarize current in vitro and in vivo findings on the effects of phage therapy on neutrophils and their inflammatory mediators, as well as mechanisms of phage-neutrophil interactions. Understanding these effects provides further validation of their safe use in humans, but also identifies phages as a targeted neutrophil-modulating therapeutic for inflammatory airway conditions.
Collapse
Affiliation(s)
- Daniel R. Laucirica
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
| | - Stephen M. Stick
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Nedlands, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
| | - Luke W. Garratt
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
| | - Anthony Kicic
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Nedlands, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- School of Population Health, Curtin University, Bentley, WA, Australia
| |
Collapse
|
15
|
Yang F, Guo T, Zhou Y, Han S, Sun S, Luo F. Biological functions of active ingredients in quinoa bran: Advance and prospective. Crit Rev Food Sci Nutr 2022; 64:4101-4115. [PMID: 36315046 DOI: 10.1080/10408398.2022.2139219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Quinoa is known to be a rich source of nutrients and bioactive components. Quinoa bran, used mainly as animal feed in processing by-products, is also a potential source of bioactive ingredients being conducive to human health. The importance of nutrition and function of quinoa seed has been discussed in many studies, but the bioactive properties of quinoa bran often are overlooked. This review systemically summarized the progress in bioactive components, extraction, and functional investigations of quinoa bran. It suggests that chemically assisted electronic fractionation could be used to extract albumin from quinoa bran. Ultrasound-assisted extraction method is a very useful method for extracting phenolic acids, triterpene saponins, and flavonoids from quinoa bran. Based on in vitro and in vivo studies for biological activities, quinoa bran extract exhibits a wide range of beneficial properties, including anti-oxidant, anti-diabetes, anti-inflammation, anti-bacterial and anti-cancer functions. However, human experiments and action mechanisms need to investigate. Further exploring quinoa bran will promote its applications in functional foods, pharmaceuticals, and poultry feed in the future.
Collapse
Affiliation(s)
- Feiyan Yang
- National Research Center of Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Tianyi Guo
- National Research Center of Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Yaping Zhou
- National Research Center of Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Shuai Han
- National Research Center of Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Shuguo Sun
- National Research Center of Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Feijun Luo
- National Research Center of Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| |
Collapse
|
16
|
Zhang L, Wang X, Hua X, Yu Y, Leptihn S, Loh B. Therapeutic evaluation of the Acinetobacter baumannii phage Phab24 for clinical use. Virus Res 2022; 320:198889. [PMID: 35970267 DOI: 10.1016/j.virusres.2022.198889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022]
Abstract
Phages have shown to be effective in treating bacterial infections. However, when evaluating the therapeutic potential of novel phage isolates which have the ability to infect and kill a pathogen, it is important to include parameters such as stability (crucial for storage and delivery), infection dynamics in vitro and in vivo (for efficacy and dosing), and an in-depth genome analysis (to exclude the presence of virulence or lysogeny genes), among others. In this study, we characterized bacteriophage Phab24, which infects a colistin-resistant strain of the notorious nosocomial pathogen Acinetobacter baumannii. Our study is crucial for the use of Phab24 in therapy, while also advancing our understanding of phage predation.
Collapse
Affiliation(s)
- Liwei Zhang
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, Zhejiang University, International Campus, Haining, Zhejiang, China
| | - Xiaoqing Wang
- School of Medicine, Lishui University, Lishui, China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sebastian Leptihn
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, Zhejiang University, International Campus, Haining, Zhejiang, China; Department of Infectious Diseases, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; University of Edinburgh Medical School, Biomedical Sciences, College of Medicine & Veterinary Medicine, The University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, United Kingdom.
| | - Belinda Loh
- Department of Vaccines and Infection Models, Fraunhofer Institute for Cell Therapy and Immunology, Perlickstrasse 1, Leipzig 04103, Germany.
| |
Collapse
|
17
|
Yun YB, Um Y, Kim YK. Optimization of the Bacteriophage Cocktail for the Prevention of Brown Blotch Disease Caused by Pseudomonas tolaasii. THE PLANT PATHOLOGY JOURNAL 2022; 38:472-481. [PMID: 36221919 PMCID: PMC9561164 DOI: 10.5423/ppj.oa.03.2022.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/11/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
Brown blotch disease, caused by Pseudomonas tolaasii, is one of the most serious diseases in mushroom cultivation, and its control remains an important issue. This study isolated and evaluated pathogen-specific bacteriophages for the biological control of the disease. In previous studies, 23 varieties of P. tolaasii were isolated from infected mushrooms with disease symptoms and classified into three subtypes, Ptα, Ptβ, and Ptγ, based on their 16S rRNA gene sequences analysis and pathogenic characters. In this study, 42 virulent bacteriophages were isolated against these pathogens and tested for their host range. Some phages could lyse more than two pathogens only within the corresponding subtype, and no phage exhibited a wide host range across different pathogen subtypes. To eliminate all pathogens of the Ptα, Ptβ, and Ptγ subtype, corresponding phages of one, six, and one strains were required, respectively. These phages were able to suppress the disease completely, as confirmed by the field-scale on-farm cultivation experiments. These results suggested that a cocktail of these eight phages is sufficient to control the disease induced by all 23 P. tolaasii pathogens. Additionally, the antibacterial effect of this phage cocktail persisted in the second cycle of mushroom growth on the cultivation bed.
Collapse
Affiliation(s)
- Yeong-Bae Yun
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju 28644,
Korea
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju 36040,
Korea
| | - Yurry Um
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju 36040,
Korea
| | - Young-Kee Kim
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju 28644,
Korea
| |
Collapse
|
18
|
Zhao M, Xie R, Wang S, Huang X, Yang H, Wu W, Lin L, Chen H, Fan J, Hua L, Liang W, Zhang J, Wang X, Chen H, Peng Z, Wu B. Identification of a broad-spectrum lytic Myoviridae bacteriophage using multidrug resistant Salmonella isolates from pig slaughterhouses as the indicator and its application in combating Salmonella infections. BMC Vet Res 2022; 18:270. [PMID: 35821025 PMCID: PMC9277904 DOI: 10.1186/s12917-022-03372-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022] Open
Abstract
Background Salmonella is a leading foodborne and zoonotic pathogen, and is widely distributed in different nodes of the pork supply chain. In recent years, the increasing prevalence of antimicrobial resistant Salmonella poses a threat to global public health. The purpose of this study is to the prevalence of antimicrobial resistant Salmonella in pig slaughterhouses in Hubei Province in China, and explore the effect of using lytic bacteriophages fighting against antimicrobial resistant Salmonella. Results We collected a total of 1289 samples including anal swabs of pigs (862/1289), environmental swabs (204/1289), carcass surface swabs (36/1289) and environmental agar plates (187/1289) from eleven slaughterhouses in seven cities in Hubei Province and recovered 106 Salmonella isolates. Antimicrobial susceptibility testing revealed that these isolates showed a high rate of antimicrobial resistance; over 99.06% (105/106) of them were multidrug resistant. To combat these drug resistant Salmonella, we isolated 37 lytic phages using 106 isolates as indicator bacteria. One of them, designated ph 2–2, which belonged to the Myoviridae family, displayed good capacity to kill Salmonella under different adverse conditions (exposure to different temperatures, pHs, UV, and/or 75% ethanol) and had a wide lytic spectrum. Evaluation in mouse models showed that ph 2–2 was safe and saved 80% (administrated by gavage) and 100% (administrated through intraperitoneal injection) mice from infections caused by Salmonella Typhimurium. Conclusions The data presented herein demonstrated that Salmonella contamination remains a problem in some pig slaughter houses in China and Salmonella isolates recovered in slaughter houses displayed a high rate of antimicrobial resistance. In addition, broad-spectrum lytic bacteriophages may represent a good candidate for the development of anti-antimicrobial resistant Salmonella agents. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03372-8.
Collapse
Affiliation(s)
- Mengfei Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Rui Xie
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xi Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenqing Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin Lin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongjian Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Fan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin Hua
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wan Liang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China.,Present address: Hubei Jin Xu Agricultural Development Limited by Share Ltd., Wuhan, China
| | - Jianmin Zhang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhong Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China. .,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China. .,Hubei Hongshan Laboratory, Wuhan, China.
| | - Bin Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China. .,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
19
|
Tinney KR, Dover JA, Doore SM, Parent KN. Shigella viruses Sf22 and KRT47 require outer membrane protein C for infection. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183920. [PMID: 35358430 PMCID: PMC10037218 DOI: 10.1016/j.bbamem.2022.183920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/18/2022] [Accepted: 03/23/2022] [Indexed: 12/26/2022]
Abstract
Viruses rely on hosts for their replication: thus, a critical step in the infection process is identifying a suitable host cell. Bacterial viruses, known as bacteriophages or phages, often use receptor binding proteins to discriminate between susceptible and non-susceptible hosts. By being able to evade predation, bacteria with modified or deleted receptor-encoding genes often undergo positive selection during growth in the presence of phage. Depending on the specific receptor(s) a phage uses, this may subsequently affect the bacteria's ability to form biofilms, its resistance to antibiotics, pathogenicity, or its phenotype in various environments. In this study, we characterize the interactions between two T4-like phages, Sf22 and KRT47, and their host receptor S. flexneri outer membrane protein C (OmpC). Results indicate that these phages use a variety of surface features on the protein, and that complete resistance most frequently occurs when hosts delete the ompC gene in full, encode premature stop codons to prevent OmpC synthesis, or eliminate specific regions encoding exterior loops.
Collapse
Affiliation(s)
- Kendal R Tinney
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - John A Dover
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Sarah M Doore
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA; Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611.
| | - Kristin N Parent
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
20
|
Nair A, Ghugare GS, Khairnar K. An Appraisal of Bacteriophage Isolation Techniques from Environment. MICROBIAL ECOLOGY 2022; 83:519-535. [PMID: 34136953 DOI: 10.1007/s00248-021-01782-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
Researchers have recently renewed interest in bacteriophages. Being valuable models for the study of eukaryotic viruses, and more importantly, natural killers of bacteria, bacteriophages are being tapped for their potential role in multiple applications. Bacteriophages are also being increasingly sought for bacteriophage therapy due to rising antimicrobial resistance among pathogens. Reports show that there is an increasing trend in therapeutic application of natural bacteriophages, genetically engineered bacteriophages, and bacteriophage-encoded products as antimicrobial agents. In view of these applications, the isolation and characterization of bacteriophages from the environment has caught attention. In this review, various methods for isolation of bacteriophages from environmental sources like water, soil, and air are comprehensively described. The review also draws attention towards a handful on-field bacteriophage isolation techniques and the need for their further rapid development.
Collapse
Affiliation(s)
- Aparna Nair
- Environmental Virology Cell, Council of Scientific and Industrial Research-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Gaurav S Ghugare
- Environmental Virology Cell, Council of Scientific and Industrial Research-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Krishna Khairnar
- Environmental Virology Cell, Council of Scientific and Industrial Research-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
21
|
Oral Toxicity Study for Salmonella Killing Lytic Bacteriophage NINP13076 in BALB/c Mice and Its Effect on Probiotic Microbiota. Curr Microbiol 2022; 79:89. [PMID: 35129700 DOI: 10.1007/s00284-021-02754-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 12/24/2021] [Indexed: 11/03/2022]
Abstract
Viruses that infect bacteria are emerging as attractive biocontrol agents and biopreservatives for foods. Since these bacteriophages kill the target pathogens by lysis and are also consumed along with food, it is essential to evaluate their collateral toxicity on the probiotic gut microbiota. In this study, we examined the acute oral toxicity of a Salmonella phage isolated from sewage in mice. Acute oral administration of the Salmonella phage for five consecutive days did not show any significant pathological changes in the vital organs like lung, kidneys, heart, liver, and intestine. In addition, growth of typical probiotic microbiota remained unaffected even after incubation up to 24 h with the Salmonella phage. The results of this study clearly showed that oral administration of the lytic Salmonella phage did not have any significant adverse effects on the animals, may not harm the probiotic gut microbiota, and are likely to be safe for use in food preservation.
Collapse
|
22
|
Li N, Zeng Y, Bao R, Zhu T, Tan D, Hu B. Isolation and Characterization of Novel Phages Targeting Pathogenic Klebsiella pneumoniae. Front Cell Infect Microbiol 2021; 11:792305. [PMID: 34926329 PMCID: PMC8677704 DOI: 10.3389/fcimb.2021.792305] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/11/2021] [Indexed: 11/30/2022] Open
Abstract
Klebsiella pneumoniae is a dominant cause of community-acquired and nosocomial infections, specifically among immunocompromised individuals. The increasing occurrence of multidrug-resistant (MDR) isolates has significantly impacted the effectiveness of antimicrobial agents. As antibiotic resistance is becoming increasingly prevalent worldwide, the use of bacteriophages to treat pathogenic bacterial infections has recently gained attention. Elucidating the details of phage-bacteria interactions will provide insights into phage biology and the better development of phage therapy. In this study, a total of 22 K. pneumoniae isolates were assessed for their genetic and phenotypic relatedness by multi-locus sequence typing (MLST), endonuclease S1 nuclease pulsed-field gel electrophoresis (S1-PFGE), and in vitro antibiotic susceptibility testing. In addition, the beta-lactamase gene (blaKPC) was characterized to determine the spread and outbreak of K. pneumoniae carbapenemase (KPC)-producing enterobacterial pathogens. Using these ST11 carbapenem-resistant K. pneumoniae isolates, three phages (NL_ZS_1, NL_ZS_2, and NL_ZS_3) from the family of Podoviridae were isolated and characterized to evaluate the application of lytic phages against the MDR K. pneumoniae isolates. In vitro inhibition assays with three phages and K. pneumoniae strain ZS15 demonstrated the strong lytic potential of the phages, however, followed by the rapid growth of phage-resistant and phage-sensitive mutants, suggesting several anti-phage mechanisms had developed in the host populations. Together, this data adds more comprehensive knowledge to known phage biology and further emphasizes their complexity and future challenges to overcome prior to using phages for controlling this important MDR bacterium.
Collapse
Affiliation(s)
- Na Li
- Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yigang Zeng
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Rong Bao
- Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tongyu Zhu
- Zhongshan Hospital, Fudan University, Shanghai, China
| | - Demeng Tan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Bijie Hu
- Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Lin W, Li D, Gao M, Qin W, Xu L, Pan L, Liu W, Fan H, Mi Z, Tong Y. Isolation, characterization and biocontrol efficacy of a T4-like phage virulent to multidrug-resistant Enterobacter hormaechei. DISEASES OF AQUATIC ORGANISMS 2021; 147:97-109. [PMID: 34913439 DOI: 10.3354/dao03622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Enterobacter hormaechei is an important emerging pathogen, often exhibiting resistance to multiple clinically important antibiotics. In this study, E. hormaechei was found, for the first time, to be lethal to fish. Bacteriophages are considered potential treatments for bacterial infections. The lytic phage vB_EhoM-IME523 (abbreviated 'IME523') infecting multidrug-resistant E. hormaechei was isolated from hospital sewage. IME523 exhibits T4-like morphology, including a prolate icosahedral head 110 ± 1.89 nm (mean ± SD) long and 82 ± 0.75 nm wide, and a contractile tail of ca. 110 ± 0.91 nm in length. The complete genome length of phage IME523 is 172763 bp, with a G + C content of 39.97%. The whole genome sequence of IME523 has a 93.10% average nucleotide identity (ANI) and a 53.3% in silico DNA-DNA hybridization (isDDH) value with the closest-related Enterobacter phage vB_EclM_CIP9 ('CIP9'). ANI and isDDH values between IME523 and other phages were lower than 78 and 22%, respectively. IME523 and CIP9 formed a monophyletic branch in a phylogenetic tree based on the terminase large subunit, DNA polymerase protein and whole genome phylogenetic analysis. Results suggest that IME523 is a novel species in the subfamily Tevenvirinae and forms a novel genus together with CIP9. No IME523 open reading frame was found to be associated with virulence factors or antibiotic resistance genes. IME523 showed promising protection to zebrafish and brocade carp against E. hormaechei challenge.
Collapse
Affiliation(s)
- Wei Lin
- Zhejiang Key Laboratory of Marine Biotechnology, Ningbo University, Ningbo 315832, Zhejiang, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Javaudin F, Bémer P, Batard E, Montassier E. Impact of Phage Therapy on Multidrug-Resistant Escherichia coli Intestinal Carriage in a Murine Model. Microorganisms 2021; 9:microorganisms9122580. [PMID: 34946183 PMCID: PMC8708983 DOI: 10.3390/microorganisms9122580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 01/21/2023] Open
Abstract
INTRODUCTION The growing resistance of bacteria to antibiotics is a major global public health concern. An important reservoir of this resistance is the gut microbiota. However, limited data are available on the ability of phage therapy to reduce the digestive carriage of multidrug-resistant bacteria. MATERIALS AND METHODS Four novel lytic phages were isolated in vitro for efficacy against an extended-spectrum beta-lactamase-producing (ESBL) Escherichia coli strain also resistant to carbapenems through a carbapenemase OXA-48. The first step was to develop models of ESBL E. coli digestive carriage in mice. The second step was to test the efficacy of an oral and rectal phage therapy (a cocktail of four phages or microencapsulated phage) to reduce this carriage. RESULTS The two most intense models of digestive carriage were obtained by administering amoxicillin (0.5 g·L-1) continuously in the drinking water (Model 1) or pantoprazole (0.1 g·L-1) continuously in the drinking water, combined with amoxicillin (0.5 g·L-1), for the first 8 days (Model 2). Oral administration of the phage cocktail to Model 1 resulted in a transient reduction in the concentration of ESBL E. coli in the faeces 9 days after the bacterial challenge (median = 5.33 × 108 versus 2.76 × 109 CFU·g-1, p = 0.02). In contrast, in Model 2, oral or oral + rectal administration of this cocktail did not alter the bacterial titre compared to the control (area under the curve, AUC, 3.49 × 109; 3.41 × 109 and 3.82 × 109 for the control, oral and oral + rectal groups, respectively; p-value > 0.8 for each two-by-two group comparison), as well as the administration of an oral microencapsulated phage in Model 1 (AUC = 8.93 × 109 versus 9.04 × 109, p = 0.81). CONCLUSIONS Oral treatment with amoxicillin promoted digestive carriage in mice, which was also the case for the addition of pantoprazole. However, our study confirms the difficulty of achieving efficacy with phage therapy to reduce multidrug-resistant bacterial digestive carriage in vivo.
Collapse
Affiliation(s)
- François Javaudin
- MiHAR Laboratary, EE1701, University of Nantes, 44200 Nantes, France; (P.B.); (E.B.); (E.M.)
- Emergency Department, Nantes University Hospital, 44000 Nantes, France
- Correspondence:
| | - Pascale Bémer
- MiHAR Laboratary, EE1701, University of Nantes, 44200 Nantes, France; (P.B.); (E.B.); (E.M.)
- Department of Bacteriology, Nantes University Hospital, 44000 Nantes, France
| | - Eric Batard
- MiHAR Laboratary, EE1701, University of Nantes, 44200 Nantes, France; (P.B.); (E.B.); (E.M.)
- Emergency Department, Nantes University Hospital, 44000 Nantes, France
| | - Emmanuel Montassier
- MiHAR Laboratary, EE1701, University of Nantes, 44200 Nantes, France; (P.B.); (E.B.); (E.M.)
- Emergency Department, Nantes University Hospital, 44000 Nantes, France
| |
Collapse
|
25
|
Li P, Wang H, Li M, Qi W, Qi Z, Chen W, Dong Y, Xu Z, Zhang W. Characterization and genome analysis of a broad lytic spectrum bacteriophage P479 against multidrug-resistant Escherichia coli. Virus Res 2021; 308:198628. [PMID: 34780885 DOI: 10.1016/j.virusres.2021.198628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022]
Abstract
The increase of multi-drug resistant and multi-serotypes of pathogenic Escherichia coli has brought more severe challenge to control infection. Nowadays, bacteriophage is a promising tool to treat colibacillosis as an alternative of antibiotics. A coliphage P479, isolated from sewage of poultry farm, could lyse multiple serotypes, including not only O1, O2, O8, O9, O21, O78, O83, O145 of Avian pathogenic E. coli, but O157:H7 of Enterohaemorrhagic E. coli and O18:K1:H7 Neonatal meningitis E. coli. Additionally, P479 could also lyse multi-drug resistant E. coli. These indicated that P479 had good lytic ability. One-step growth curve revealed that the latent time period of P479 was 10 min and the burst size was about 318 PFU/cell. Stability tests demonstrated that P479 had good stability under various temperature (4 to 50 °C) and pH (3 to11) conditions. P479 contained of a linear, double-stranded DNA molecule of 172,033 bp with 40.3% GC content. P479 contained 296 putative coding sequences (CDSs) and two tRNA genes. Based on genomic comparison, P479 was classified as a member of genus Gaprivervirus, subfamily Tevenvirinae, family Myoviridae, order Caudovirales. No known virulent or lysogenic genes were detected in the genome of P479, manifesting P479 was safe to adhibit. Antibacterial activity in vitro manifested that P479 has varying degrees bacteriostatic activity against different bacteria. According to the above properties, P479 has the potential to be applied in phage therapy in the future.
Collapse
Affiliation(s)
- Pei Li
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Xuanwu District Nanjing City 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, No.1 Weigang, Xuanwu District Nanjing City 210095, China; OIE Reference Lab for Swine Streptococcosis, No.1 Weigang, Xuanwu District Nanjing City 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Xuanwu District Nanjing City 210095, China
| | - Hui Wang
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Xuanwu District Nanjing City 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, No.1 Weigang, Xuanwu District Nanjing City 210095, China; OIE Reference Lab for Swine Streptococcosis, No.1 Weigang, Xuanwu District Nanjing City 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Xuanwu District Nanjing City 210095, China
| | - Min Li
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Xuanwu District Nanjing City 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, No.1 Weigang, Xuanwu District Nanjing City 210095, China; OIE Reference Lab for Swine Streptococcosis, No.1 Weigang, Xuanwu District Nanjing City 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Xuanwu District Nanjing City 210095, China
| | - Weiling Qi
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Xuanwu District Nanjing City 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, No.1 Weigang, Xuanwu District Nanjing City 210095, China; OIE Reference Lab for Swine Streptococcosis, No.1 Weigang, Xuanwu District Nanjing City 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Xuanwu District Nanjing City 210095, China
| | - Zitai Qi
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Xuanwu District Nanjing City 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, No.1 Weigang, Xuanwu District Nanjing City 210095, China; OIE Reference Lab for Swine Streptococcosis, No.1 Weigang, Xuanwu District Nanjing City 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Xuanwu District Nanjing City 210095, China
| | - Weiye Chen
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Xuanwu District Nanjing City 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, No.1 Weigang, Xuanwu District Nanjing City 210095, China; OIE Reference Lab for Swine Streptococcosis, No.1 Weigang, Xuanwu District Nanjing City 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Xuanwu District Nanjing City 210095, China
| | - Yongyi Dong
- Jiangsu Animal Disease Control Center, 124 Caochangmen street, Gulou District, Nanjing 210036, China
| | - Zhengjun Xu
- Jiangsu Animal Disease Control Center, 124 Caochangmen street, Gulou District, Nanjing 210036, China.
| | - Wei Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Xuanwu District Nanjing City 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, No.1 Weigang, Xuanwu District Nanjing City 210095, China; OIE Reference Lab for Swine Streptococcosis, No.1 Weigang, Xuanwu District Nanjing City 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Xuanwu District Nanjing City 210095, China.
| |
Collapse
|
26
|
Abstract
Several human intestinal microbiota studies suggest that bacteriophages, viruses infecting bacteria, play a role in gut homeostasis. Currently, bacteriophages are considered a tool to precisely engineer the intestinal microbiota, but they have also attracted considerable attention as a possible solution to fight against bacterial pathogens resistant to antibiotics. These two applications necessitate bacteriophages to reach and kill their bacterial target within the gut environment. Unfortunately, exploitable clinical data in this field are scarce. Here, we review the administration of bacteriophages to target intestinal bacteria in mammalian experimental models. While bacteriophage amplification in the gut was often confirmed, we found that in most studies, it had no significant impact on the load of the targeted bacteria. In particular, we observed that the outcome of bacteriophage treatments is linked to the behavior of the target bacteria toward each animal model. Treatment efficacy ranges from poor in asymptomatic intestinal carriage to high in intestinal disease. This broad range of efficacy underlines the difficulties to reach a consensus on the impact of bacteriophages in the gut and calls for deeper investigations of key parameters that influence the success of such interventions before launching clinical trials.
Collapse
|
27
|
Zhang L, Roy S. Opioid Modulation of the Gut-Brain Axis in Opioid-Associated Comorbidities. Cold Spring Harb Perspect Med 2021; 11:a040485. [PMID: 32816876 PMCID: PMC8415294 DOI: 10.1101/cshperspect.a040485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Growing evidence from animal and human studies show that opioids have a major impact on the composition and function of gut microbiota. This leads to disruption in gut permeability and altered microbial metabolites, driving both systemic and neuroinflammation, which in turn impacts central nervous system (CNS) homeostasis. Tolerance and dependence are the major comorbidities associated with prolonged opioid use. Inflammatory mediators and signaling pathways have been implicated in both opioid tolerance and dependence. We provide evidence that targeting the gut microbiome during opioid use through prebiotics, probiotics, antibiotics, and fecal microbial transplantation holds the greatest promise for novel treatments for opioid abuse. Basic research and clinical trials are required to examine what is more efficacious to yield new insights into the role of the gut-brain axis in opioid abuse.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pharmacology, University of Minnesota, Minnesota McGuire Translational Research Facility, Minneapolis, Minnesota 55455, USA
| | - Sabita Roy
- Department of Pharmacology, University of Minnesota, Minnesota McGuire Translational Research Facility, Minneapolis, Minnesota 55455, USA
- Department of Surgery, University of Miami, Miami, Florida 33153, USA
| |
Collapse
|
28
|
Rahimzadeh G, Saeedi M, Moosazadeh M, Hashemi SMH, Babaei A, Rezai MS, Kamel K, Asare-Addo K, Nokhodchi A. Encapsulation of bacteriophage cocktail into chitosan for the treatment of bacterial diarrhea. Sci Rep 2021; 11:15603. [PMID: 34341399 PMCID: PMC8329165 DOI: 10.1038/s41598-021-95132-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/19/2021] [Indexed: 11/28/2022] Open
Abstract
The therapeutic effectiveness of a chitosan encapsulated bacteriophage cocktail as a smart biocontrol agent was evaluated in this study to be used as a preventative and treatment option for gastrointestinal infections. To evaluate the effect of the bacteriophage formulation on the treatment of gastrointestinal infection, rats were infected with Salmonella enterica, Shigella flexneri, and Escherichia coli. The rats were weighed and their stools cultured. The results showed that the group which had the chitosan encapsulated bacteriophage cocktail did not lose weight after 3 days and had significantly lower group weight changes. Weight loss was significant in the rats that had cefixime administered instead. Positive cultured stools were reduced after 4 days compared to 2 days in the treated group with the chitosan encapsulated bacteriophage cocktail. The chitosan encapsulated bacteriophage cocktail can therefore be effective in the treatment of gastrointestinal infections.
Collapse
Affiliation(s)
- Golnar Rahimzadeh
- Pediatric Infectious Diseases Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Majid Saeedi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahmood Moosazadeh
- Gastrointestinal Cancer Research Center, Non-communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Amirhossein Babaei
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Sadegh Rezai
- Pediatric Infectious Diseases Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Kosar Kamel
- Department of Animal Science, Sari Agriculture Science and Natural Resources University, Sari, Iran
| | - Kofi Asare-Addo
- Department of Pharmacy, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | - Ali Nokhodchi
- Pharmaceutics Research Lab, School of Life Sciences, University of Sussex, Brighton, UK.
| |
Collapse
|
29
|
Sarhan WA, Salem HG, Khalil MAF, El-Sherbiny IM, Azzazy HME. Fabrication of gelatin/silk fibroin/phage nanofiber scaffold effective against multidrug resistant Pseudomonas aeruginosa. Drug Dev Ind Pharm 2021; 47:947-953. [PMID: 34278896 DOI: 10.1080/03639045.2021.1957915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The alarming rise of multi-drug resistant (MDR) Pseudomonas aeruginosa has prompted the World Health Organization to consider it a serious threat to human health. Although phage (Phg), an effective antibacterial treatment option, can maintain long-term infectivity via lyophilized storage, freeze-drying can be expensive and time-consuming. Thus, we propose electrospun gelatin/fibroin (G/F) nanofibrous formulation for dehydrating and storing phage against MDR P. aeruginosa. SIGNIFICANCE The formulation of phage within the nanofibrous structure of the electrospun G/F scaffold would result in antimicrobial activity against MDR P. aeruginosa leading to enhanced wound healing. METHODS Phg effective against MDR P. aeruginosa was isolated, characterized and loaded within G/F nanofibers by electrospinning. Morphology, crystallinity and thermal stability as well as the antimicrobial activity and the biocompatibility of the developed G/F/Phg nanofibers were determined. RESULTS Phg-loaded G/F nanofibers revealed an amorphous structure with good thermal stability at temperatures below 300 °C and exhibited effective antibacterial activity against MDR P. aeruginosa with ∼2 log reduction in the bacterial count which increased to ∼4 log reduction in bacterial count after 16 h as compared to both the G/F nanofibers and the negative control. Lack of cytotoxic effects on cultured fibroblasts supported the biocompatibility of G/F/Phg nanofibers. CONCLUSION The developed G/F/Phg nanofibers are able to maintain the viability of phage and represent a promising antimicrobial dressing for wounds infected with MDR P. aeruginosa.
Collapse
Affiliation(s)
- W A Sarhan
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt.,Center for Materials Science, Zewail City of Science and Technology, Giza, Egypt
| | - H G Salem
- Department of Mechanical Engineering, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
| | - M A F Khalil
- Department of Microbiology and Immunology, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | - I M El-Sherbiny
- Center for Materials Science, Zewail City of Science and Technology, Giza, Egypt
| | - H M E Azzazy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| |
Collapse
|
30
|
Lorenzo-Rebenaque L, Malik DJ, Catalá-Gregori P, Marin C, Sevilla-Navarro S. In Vitro and In Vivo Gastrointestinal Survival of Non-Encapsulated and Microencapsulated Salmonella Bacteriophages: Implications for Bacteriophage Therapy in Poultry. Pharmaceuticals (Basel) 2021; 14:ph14050434. [PMID: 34066346 PMCID: PMC8148174 DOI: 10.3390/ph14050434] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/24/2021] [Accepted: 04/30/2021] [Indexed: 01/13/2023] Open
Abstract
The therapeutic use of bacteriophages is recognized as a viable method to control Salmonella. Microencapsulation of phages in oral dosage forms may protect phages from inherent challenges of the gastrointestinal tract in chickens. Therefore, the main objective of this study was to assess the survival of Salmonella BP FGS011 (non-encapsulated and microencapsulated) through the gastrointestinal tract under in vitro as well as in vivo conditions after oral administration to 1-day-old chicks. To this end, the phage FGS011 was encapsulated in two different pH-responsive formulations with polymers Eudragit® L100, and Eudragit® S100 using the process of spray drying. Phages encapsulated in either of the two formulations were able to survive exposure to the proventriculus-gizzard in vitro conditions whereas free phages did not. Moreover, phages formulated in polymer Eudragit® S100 would be better suited to deliver phage to the caeca in chickens. In the in vivo assay, no statistically significant differences were observed in the phage concentrations across the gastrointestinal tract for either the free phage or the encapsulated phage given to chicks. This suggested that the pH of the proventriculus/gizzard in young chicks is not sufficiently acidic to cause differential phage titre reductions, thereby allowing free phage survival in vivo.
Collapse
Affiliation(s)
- Laura Lorenzo-Rebenaque
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Instituto de Ciencias Biomédicas, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Tirant lo Blanc, 7, 46115 Alfara del Patriarca, Spain; (L.L.-R.); (P.C.-G.); (S.S.-N.)
| | - Danish J. Malik
- Chemical Engineering Department, Loughborough University, Loughborough LE11 3TU, UK;
| | - Pablo Catalá-Gregori
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Instituto de Ciencias Biomédicas, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Tirant lo Blanc, 7, 46115 Alfara del Patriarca, Spain; (L.L.-R.); (P.C.-G.); (S.S.-N.)
- Centro de Calidad Avícola y Alimentacion Animal de la Comunidad Valenciana (CECAV), 12539 Castellón, Spain
| | - Clara Marin
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Instituto de Ciencias Biomédicas, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Tirant lo Blanc, 7, 46115 Alfara del Patriarca, Spain; (L.L.-R.); (P.C.-G.); (S.S.-N.)
- Correspondence: ; Tel.: +34-657506085
| | - Sandra Sevilla-Navarro
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Instituto de Ciencias Biomédicas, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Tirant lo Blanc, 7, 46115 Alfara del Patriarca, Spain; (L.L.-R.); (P.C.-G.); (S.S.-N.)
- Centro de Calidad Avícola y Alimentacion Animal de la Comunidad Valenciana (CECAV), 12539 Castellón, Spain
| |
Collapse
|
31
|
Grigonyte AM, Hapeshi A, Constantinidou C, Millard A. Modification of Bacteriophages to Increase Their Association with Lung Epithelium Cells In Vitro. Pharmaceuticals (Basel) 2021; 14:308. [PMID: 33915737 PMCID: PMC8067280 DOI: 10.3390/ph14040308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/10/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
There is currently a renaissance in research on bacteriophages as alternatives to antibiotics. Phage specificity to their bacterial host, in addition to a plethora of other advantages, makes them ideal candidates for a broad range of applications, including bacterial detection, drug delivery, and phage therapy in particular. One issue obstructing phage efficiency in phage therapy settings is their poor localization to the site of infection in the human body. Here, we engineered phage T7 with lung tissue targeting homing peptides. We then used in vitro studies to demonstrate that the engineered T7 phages had a more significant association with the lung epithelium cells than wild-type T7. In addition, we showed that, in general, there was a trend of increased association of engineered phages with the lung epithelium cells but not mouse fibroblast cells, allowing for targeted tissue specificity. These results indicate that appending phages with homing peptides would potentially allow for greater phage concentrations and greater efficacy at the infection site.
Collapse
Affiliation(s)
- Aurelija M. Grigonyte
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK;
| | - Alexia Hapeshi
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK;
| | | | - Andrew Millard
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| |
Collapse
|
32
|
Pinto AM, Silva MD, Pastrana LM, Bañobre-López M, Sillankorva S. The clinical path to deliver encapsulated phages and lysins. FEMS Microbiol Rev 2021; 45:6204673. [PMID: 33784387 DOI: 10.1093/femsre/fuab019] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
The global emergence of multidrug-resistant pathogens is shaping the current dogma regarding the use of antibiotherapy. Many bacteria have evolved to become resistant to conventional antibiotherapy, representing a health and economic burden for those afflicted. The search for alternative and complementary therapeutic approaches has intensified and revived phage therapy. In recent decades, the exogenous use of lysins, encoded in phage genomes, has shown encouraging effectiveness. These two antimicrobial agents reduce bacterial populations; however, many barriers challenge their prompt delivery at the infection site. Encapsulation in delivery vehicles provides targeted therapy with a controlled compound delivery, surpassing chemical, physical and immunological barriers that can inactivate and eliminate them. This review explores phages and lysins' current use to resolve bacterial infections in the respiratory, digestive, and integumentary systems. We also highlight the different challenges they face in each of the three systems and discuss the advances towards a more expansive use of delivery vehicles.
Collapse
Affiliation(s)
- Ana Mafalda Pinto
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal.,INL - International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, Braga 4715-330, Portugal
| | - Maria Daniela Silva
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal.,INL - International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, Braga 4715-330, Portugal
| | - Lorenzo M Pastrana
- INL - International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, Braga 4715-330, Portugal
| | - Manuel Bañobre-López
- INL - International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, Braga 4715-330, Portugal
| | - Sanna Sillankorva
- INL - International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, Braga 4715-330, Portugal
| |
Collapse
|
33
|
Korf IHE, Kittler S, Bierbrodt A, Mengden R, Rohde C, Rohde M, Kroj A, Lehnherr T, Fruth A, Flieger A, Lehnherr H, Wittmann J. In Vitro Evaluation of a Phage Cocktail Controlling Infections with Escherichia coli. Viruses 2020; 12:v12121470. [PMID: 33352791 PMCID: PMC7768485 DOI: 10.3390/v12121470] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Worldwide, poultry industry suffers from infections caused by avian pathogenic Escherichia coli. Therapeutic failure due to resistant bacteria is of increasing concern and poses a threat to human and animal health. This causes a high demand to find alternatives to fight bacterial infections in animal farming. Bacteriophages are being especially considered for the control of multi-drug resistant bacteria due to their high specificity and lack of serious side effects. Therefore, the study aimed on characterizing phages and composing a phage cocktail suitable for the prevention of infections with E. coli. Six phages were isolated or selected from our collections and characterized individually and in combination with regard to host range, stability, reproduction, and efficacy in vitro. The cocktail consisting of six phages was able to inhibit formation of biofilms by some E. coli strains but not by all. Phage-resistant variants arose when bacterial cells were challenged with a single phage but not when challenged by a combination of four or six phages. Resistant variants arising showed changes in carbon metabolism and/or motility. Genomic comparison of wild type and phage-resistant mutant E28.G28R3 revealed a deletion of several genes putatively involved in phage adsorption and infection.
Collapse
Affiliation(s)
- Imke H. E. Korf
- Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany; (C.R.); (J.W.)
- Correspondence:
| | - Sophie Kittler
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany;
| | | | - Ruth Mengden
- Food Inspection, Animal Welfare and Veterinary Service of the Land of Bremen, Border Control Post Bremerhaven, Senator-Borttscheller-Straße 8, 27568 Bremerhaven, Germany;
| | - Christine Rohde
- Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany; (C.R.); (J.W.)
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz-Centre for Infection Research (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany;
| | - Andrea Kroj
- PTC Phage Technology Center GmbH, Siemensstraße 42, 59199 Bönen, Germany; (A.K.); (T.L.); (H.L.)
| | - Tatiana Lehnherr
- PTC Phage Technology Center GmbH, Siemensstraße 42, 59199 Bönen, Germany; (A.K.); (T.L.); (H.L.)
| | - Angelika Fruth
- Robert Koch Institute, Burgstraße 37, 38855 Wernigerode, Germany; (A.F.); (A.F.)
| | - Antje Flieger
- Robert Koch Institute, Burgstraße 37, 38855 Wernigerode, Germany; (A.F.); (A.F.)
| | - Hansjörg Lehnherr
- PTC Phage Technology Center GmbH, Siemensstraße 42, 59199 Bönen, Germany; (A.K.); (T.L.); (H.L.)
| | - Johannes Wittmann
- Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany; (C.R.); (J.W.)
| |
Collapse
|
34
|
Luong T, Salabarria AC, Edwards RA, Roach DR. Standardized bacteriophage purification for personalized phage therapy. Nat Protoc 2020; 15:2867-2890. [PMID: 32709990 DOI: 10.1038/s41596-020-0346-0] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/24/2020] [Indexed: 02/08/2023]
Abstract
The world is on the cusp of a post-antibiotic era, but researchers and medical doctors have found a way forward-by looking back at how infections were treated before the advent of antibiotics, namely using phage therapy. Although bacteriophages (phages) continue to lack drug approval in Western medicine, an increasing number of patients are being treated on an expanded-access emergency investigational new drug basis. To streamline the production of high-quality and clinically safe phage preparations, we developed a systematic procedure for medicinal phage isolation, liter-scale cultivation, concentration and purification. The 16- to 21-day procedure described in this protocol uses a combination of modified classic techniques, modern membrane filtration processes and no organic solvents to yield on average 23 mL of 1011 plaque-forming units (PFUs) per milliliter for Pseudomonas, Klebsiella, and Serratia phages tested. Thus, a single production run can produce up to 64,000 treatment doses at 109 PFUs, which would be sufficient for most expanded-access phage therapy cases and potentially for clinical phase I/II applications. The protocol focuses on removing endotoxins early by conducting multiple low-speed centrifugations, microfiltration, and cross-flow ultrafiltration, which reduced endotoxins by up to 106-fold in phage preparations. Implementation of a standardized phage cultivation and purification across research laboratories participating in phage production for expanded-access phage therapy might be pivotal to reintroduce phage therapy to Western medicine.
Collapse
Affiliation(s)
- Tiffany Luong
- Department of Biology, San Diego State University, San Diego, CA, USA
| | | | - Robert A Edwards
- Department of Biology, San Diego State University, San Diego, CA, USA.,Viral Information Institute, San Diego State University, San Diego, CA, USA
| | - Dwayne R Roach
- Department of Biology, San Diego State University, San Diego, CA, USA. .,Viral Information Institute, San Diego State University, San Diego, CA, USA.
| |
Collapse
|
35
|
Adesanya O, Oduselu T, Akin-Ajani O, Adewumi OM, Ademowo OG. An exegesis of bacteriophage therapy: An emerging player in the fight against anti-microbial resistance. AIMS Microbiol 2020; 6:204-230. [PMID: 33134741 PMCID: PMC7595837 DOI: 10.3934/microbiol.2020014] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/19/2020] [Indexed: 12/14/2022] Open
Abstract
Bacteriophages (simply referred to as Phages) are a class of viruses with the ability to infect and kill prokaryotic cells (bacteria), but are unable to infect mammalian cells. This unique ability to achieve specific infectiousness by bacteriophages has been harnessed in antibacterial treatments dating back almost a decade before the antibiotic era began. Bacteriophages were used as therapeutic agents in treatment of dysentery caused by Shigella dysenteriae as far back as 1919 and in the experimental treatment of a wide variety of other bacterial infections caused by Vibriocholerae, Staphylococcussp., Pseudomonas sp. etc, with varying degrees of success. Phage therapy and its many prospects soon fell out of favour in western medicine after the Second World War, with the discovery of penicillin. The Soviet Union and other countries in Eastern Europe however mastered the craft of bacteriophage isolation, purification and cocktail preparation, with phage-based therapeutics becoming widely available over-the-counter. With the recent rise in cases of multi-drug resistant bacterial infections, the clamour for a return to phage therapy, as a potential solution to the anti-microbial resistance (AMR) crisis has grown louder. This review provides an extensive exposé on phage therapy, addressing its historical use, evidences of its safety and efficacy, its pros and cons when compared with antibiotics, cases of compassionate use for treating life-threatening antibiotic-resistant infections, the limitations to its acceptance and how these may be circumvented.
Collapse
Affiliation(s)
| | - Tolulope Oduselu
- Department of Medical Laboratory Science, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Olubusuyi M Adewumi
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olusegun G Ademowo
- Department of Pharmacology & Therapeutics, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
36
|
Rasmussen TS, Koefoed AK, Jakobsen RR, Deng L, Castro-Mejía JL, Brunse A, Neve H, Vogensen FK, Nielsen DS. Bacteriophage-mediated manipulation of the gut microbiome – promises and presents limitations. FEMS Microbiol Rev 2020; 44:507-521. [DOI: 10.1093/femsre/fuaa020] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
ABSTRACT
Gut microbiome (GM) composition and function are linked to human health and disease, and routes for manipulating the GM have become an area of intense research. Due to its high treatment efficacy, the use of fecal microbiota transplantation (FMT) is generally accepted as a promising experimental treatment for patients suffering from GM imbalances (dysbiosis), e.g. caused by recurrent Clostridioides difficile infections (rCDI). Mounting evidence suggests that bacteriophages (phages) play a key role in successful FMT treatment by restoring the dysbiotic bacterial GM. As a refinement to FMT, removing the bacterial component of donor feces by sterile filtration, also referred to as fecal virome transplantation (FVT), decreases the risk of invasive infections caused by bacteria. However, eukaryotic viruses and prophage-encoded virulence factors remain a safety issue. Recent in vivo studies show how cascading effects are initiated when phage communities are transferred to the gut by e.g. FVT, which leads to changes in the GM composition, host metabolome, and improve host health such as alleviating symptoms of obesity and type-2-diabetes (T2D). In this review, we discuss the promises and limitations of FVT along with the perspectives of using FVT to treat various diseases associated with GM dysbiosis.
Collapse
Affiliation(s)
- Torben Sølbeck Rasmussen
- Section of Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26 4th floor - 1958, Frederiksberg, Denmark
| | - Anna Kirstine Koefoed
- Section of Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26 4th floor - 1958, Frederiksberg, Denmark
| | - Rasmus Riemer Jakobsen
- Section of Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26 4th floor - 1958, Frederiksberg, Denmark
| | - Ling Deng
- Section of Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26 4th floor - 1958, Frederiksberg, Denmark
| | - Josué L Castro-Mejía
- Section of Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26 4th floor - 1958, Frederiksberg, Denmark
| | - Anders Brunse
- Section of Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Ridebanevej 9, 2nd floor - 1870, Frederiksberg, Denmark
| | - Horst Neve
- Institute of Microbiology and Biotechnology, Max Rubner-Institut, Hermann-Weigmann-Straße 1 - 24103, Kiel, Germany
| | - Finn Kvist Vogensen
- Section of Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26 4th floor - 1958, Frederiksberg, Denmark
| | - Dennis Sandris Nielsen
- Section of Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26 4th floor - 1958, Frederiksberg, Denmark
| |
Collapse
|
37
|
Li M, Shi D, Li Y, Xiao Y, Chen M, Chen L, Du H, Zhang W. Recombination of T4-like Phages and Its Activity against Pathogenic Escherichia coli in Planktonic and Biofilm Forms. Virol Sin 2020; 35:651-661. [PMID: 32451882 DOI: 10.1007/s12250-020-00233-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/10/2020] [Indexed: 01/13/2023] Open
Abstract
The increasing emergence of multi-drug resistant Escherichia coli (E. coli) has become a global concern, primarily due to the limitation of antimicrobial treatment options. Phage therapy has been considered as a promising alternative for treating infections caused by multi-drug resistant E. coli. However, the application of phages as a promising antimicrobial agent is limited by their narrow host range and specificity. In this research, a recombinant T4-like phage, named WGqlae, has been obtained by changing the receptor specificity determinant region of gene 37, using a homologous recombination platform of T4-like phages established by our laboratory previously. The engineered phage WGqlae can lyse four additional hosts, comparing to its parental phages WG01 and QL01. WGqlae showed similar characteristics, including thermo and pH stability, optimal multiplicity of infection and one-step growth curve, to the donor phage QL01. In addition, sequencing results showed that gene 37 of recombinant phage WGqlae had genetically stable even after 20 generations. In planktonic test, phage WGqlae had significant antimicrobial effects on E. coli DE192 and DE205B. The optical density at 600 nm (OD600) of E. coli in phage WGqlae treating group was significantly lower than that of the control group (P < 0.01). Besides, phage WGqlae demonstrated an obvious inhibitory effect on the biofilm formation and the clearance of mature biofilms. Our study suggested that engineered phages may be promising candidates for future phage therapy applications against pathogenic E. coli in planktonic and biofilm forms.
Collapse
Affiliation(s)
- Min Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Donglin Shi
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanxiu Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuyi Xiao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mianmian Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Department of Veterinary Medicine, College of Animal Science and Technology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Liang Chen
- Hackensack-Meridian Health Center for Discovery and Innovation, Nutley, NJ, 07110, USA
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| | - Wei Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China.
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
38
|
Xiong S, Liu X, Deng W, Zhou Z, Li Y, Tu Y, Chen L, Wang G, Fu B. Pharmacological Interventions for Bacterial Prostatitis. Front Pharmacol 2020; 11:504. [PMID: 32425775 PMCID: PMC7203426 DOI: 10.3389/fphar.2020.00504] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/31/2020] [Indexed: 12/16/2022] Open
Abstract
Prostatitis is a common urinary tract condition but bring innumerable trouble to clinicians in treatment, as well as great financial burden to patients and the society. Bacterial prostatitis (acute bacterial prostatitis plus chronic bacterial prostatitis) accounting for approximately 20% among all prostatitis have made the urological clinics complain about the genital and urinary systems all over the world. The international challenges of antibacterial treatment (emergence of multidrug-resistant bacteria, extended-spectrum beta-lactamase-producing bacteria, bacterial biofilms production and the shift in bacterial etiology) and the transformation of therapeutic strategy for classic therapy have attracted worldwide attention. To the best of our knowledge currently, there is not a single comprehensive review, which can completely elaborate these important topics and the corresponding treatment strategy in an effective way. This review summarizes the general treatment choices for bacterial prostatitis also provides the alternative pharmacological therapies for those patients resistant or intolerant to general treatment.
Collapse
Affiliation(s)
- Situ Xiong
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaoqiang Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| | - Wen Deng
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| | - Zhengtao Zhou
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| | - Yulei Li
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| | - Yechao Tu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Luyao Chen
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Gongxian Wang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| | - Bin Fu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| |
Collapse
|
39
|
Kittler S, Mengden R, Korf IHE, Bierbrodt A, Wittmann J, Plötz M, Jung A, Lehnherr T, Rohde C, Lehnherr H, Klein G, Kehrenberg C. Impact of Bacteriophage-Supplemented Drinking Water on the E. coli Population in the Chicken Gut. Pathogens 2020; 9:E293. [PMID: 32316373 PMCID: PMC7238078 DOI: 10.3390/pathogens9040293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 03/30/2020] [Accepted: 04/13/2020] [Indexed: 01/31/2023] Open
Abstract
Among intestinal coliform microbes in the broiler gut, there are potentially pathogenic Escherichia (E.) coli that can cause avian colibacillosis. The treatment with antibiotics favors the selection of multidrug-resistant bacteria and an alternative to this treatment is urgently required. A chicken model of intestinal colonization with an apathogenic model strain of E. coli was used to test if oral phage application can prevent or reduce the gut colonization of extraintestinal pathogenic E. coli variants in two individual experiments. The E. coli strain E28 was used as a model strain, which could be differentiated from other E. coli strains colonizing the broiler gut, and was susceptible to all cocktail phages applied. In the first trial, a mixture of six phages was continuously applied via drinking water. No reduction of the model E. coli strain E28 occurred, but phage replication could be demonstrated. In the second trial, the applied mixture was limited to the four phages, which showed highest efficacy in vitro. E. coli colonization was reduced in this trial, but again, no reduction of the E. coli strain E28 was observed. The results of the trials presented here can improve the understanding of the effect of phages on single strains in the multi-strain microbiota of the chicken gut.
Collapse
Affiliation(s)
- Sophie Kittler
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany;
| | - Ruth Mengden
- Food Inspection, Animal Welfare and Veterinary Service of the Land of Bremen, Border Control Post Bremerhaven, Senator-Borttscheller-Straße 8, 27568 Bremerhaven, Germany;
| | - Imke H. E. Korf
- Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany; (I.H.E.K.); (J.W.); (C.R.)
| | - Anna Bierbrodt
- Institute for Hazardous Materials Research, Waldring 97, 44789 Bochum, Germany;
| | - Johannes Wittmann
- Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany; (I.H.E.K.); (J.W.); (C.R.)
| | - Madeleine Plötz
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany;
| | - Arne Jung
- Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559 Hannover, Germany;
| | - Tatiana Lehnherr
- PTC Phage Technology Center GmbH, Siemensstraße 42, 59199 Bönen, Germany; (T.L.); (H.L.)
| | - Christine Rohde
- Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany; (I.H.E.K.); (J.W.); (C.R.)
| | - Hansjörg Lehnherr
- PTC Phage Technology Center GmbH, Siemensstraße 42, 59199 Bönen, Germany; (T.L.); (H.L.)
| | - Günter Klein
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany;
| | - Corinna Kehrenberg
- Institute for Veterinary Food Science, Justus-Liebig-University Giessen, Frankfurter Straße 92, 35392 Giessen, Germany;
| |
Collapse
|
40
|
Sausset R, Petit MA, Gaboriau-Routhiau V, De Paepe M. New insights into intestinal phages. Mucosal Immunol 2020; 13:205-215. [PMID: 31907364 PMCID: PMC7039812 DOI: 10.1038/s41385-019-0250-5] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/13/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
The intestinal microbiota plays important roles in human health. This last decade, the viral fraction of the intestinal microbiota, composed essentially of phages that infect bacteria, received increasing attention. Numerous novel phage families have been discovered in parallel with the development of viral metagenomics. However, since the discovery of intestinal phages by d'Hérelle in 1917, our understanding of the impact of phages on gut microbiota structure remains scarce. Changes in viral community composition have been observed in several diseases. However, whether these changes reflect a direct involvement of phages in diseases etiology or simply result from modifications in bacterial composition is currently unknown. Here we present an overview of the current knowledge in intestinal phages, their identity, lifestyles, and their possible effects on the gut microbiota. We also gather the main data on phage interactions with the immune system, with a particular emphasis on recent findings.
Collapse
Affiliation(s)
- R Sausset
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
- Myriade, 68 boulevard de Port Royal, 75005, Paris, France
| | - M A Petit
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - V Gaboriau-Routhiau
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
- Laboratory of Intestinal Immunity, INSERM UMR 1163, Institut Imagine, Paris, France
- Université Paris Descartes-Sorbonne Paris Cité, 75006, Paris, France
| | - M De Paepe
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| |
Collapse
|
41
|
Cornuault JK, Moncaut E, Loux V, Mathieu A, Sokol H, Petit MA, De Paepe M. The enemy from within: a prophage of Roseburia intestinalis systematically turns lytic in the mouse gut, driving bacterial adaptation by CRISPR spacer acquisition. THE ISME JOURNAL 2020; 14:771-787. [PMID: 31827247 PMCID: PMC7031369 DOI: 10.1038/s41396-019-0566-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 11/28/2019] [Indexed: 12/13/2022]
Abstract
Despite an overall temporal stability in time of the human gut microbiota at the phylum level, strong variations in species abundance have been observed. We are far from a clear understanding of what promotes or disrupts the stability of microbiome communities. Environmental factors, like food or antibiotic use, modify the gut microbiota composition, but their overall impacts remain relatively low. Phages, the viruses that infect bacteria, might constitute important factors explaining temporal variations in species abundance. Gut bacteria harbour numerous prophages, or dormant viruses, which can evolve to become ultravirulent phage mutants, potentially leading to important bacterial death. Whether such phenomenon occurs in the mammal's microbiota has been largely unexplored. Here we studied temperate phage-bacteria coevolution in gnotoxenic mice colonised with Roseburia intestinalis, a dominant symbiont of the human gut microbiota, and Escherichia coli, a sub-dominant member of the same microbiota. We show that R. intestinalis L1-82 harbours two active prophages, Jekyll and Shimadzu. We observed the systematic evolution in mice of ultravirulent Shimadzu phage mutants, which led to a collapse of R. intestinalis population. In a second step, phage infection drove the fast counter-evolution of host phage resistance mainly through phage-derived spacer acquisition in a clustered regularly interspaced short palindromic repeats array. Alternatively, phage resistance was conferred by a prophage originating from an ultravirulent phage with a restored ability to lysogenize. Our results demonstrate that prophages are a potential source of ultravirulent phages that can successfully infect most of the susceptible bacteria. This suggests that prophages can play important roles in the short-term temporal variations observed in the composition of the gut microbiota.
Collapse
Affiliation(s)
- Jeffrey K Cornuault
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Elisabeth Moncaut
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Valentin Loux
- Université Paris-Saclay, INRAE, MaIAGE, 78350, Jouy-en-Josas, France
| | - Aurélie Mathieu
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Harry Sokol
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint Antoine, Service de Gastroenterologie, F-75012, Paris, France
- Department of Gastroenterology, Saint-Antoine Hospital, Assistance Publique - Hôpitaux de Paris, UPMC, Paris, France
| | - Marie-Agnès Petit
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Marianne De Paepe
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France.
| |
Collapse
|
42
|
Melo LDR, Oliveira H, Pires DP, Dabrowska K, Azeredo J. Phage therapy efficacy: a review of the last 10 years of preclinical studies. Crit Rev Microbiol 2020; 46:78-99. [DOI: 10.1080/1040841x.2020.1729695] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Luís D. R. Melo
- CEB – Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Hugo Oliveira
- CEB – Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Diana P. Pires
- CEB – Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Krystyna Dabrowska
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Joana Azeredo
- CEB – Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
43
|
Sabino J, Hirten RP, Colombel JF. Review article: bacteriophages in gastroenterology-from biology to clinical applications. Aliment Pharmacol Ther 2020; 51:53-63. [PMID: 31696976 DOI: 10.1111/apt.15557] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 04/25/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND The gut microbiota plays an important role in the pathogenesis of several gastrointestinal diseases. Its composition and function are shaped by host-microbiota and intra-microbiota interactions. Bacteriophages (phages) are viruses that target bacteria and have the potential to modulate bacterial communities. AIMS To summarise phage biology and the clinical applications of phages in gastroenterology METHODS: PubMed was searched to identify relevant studies. RESULTS Phages induce bacterial cell lysis, integration of viral DNA into the bacteria and/or coexistence in a stable equilibrium. Bacteria and phages have co-evolved and their dynamic interactions are yet to be fully understood. The increasing need to modulate microbial communities (e.g., gut microbiota, multidrug-resistant bacteria) has been a strong stimulus for research in phages as an antibacterial therapy. In gastroenterology, phage therapy has been mainly studied in infectious diseases such as cholera. However, it is currently being explored in several other circumstances such as treating Clostridioides difficile colitis, targeting adherent-invasive Escherichia coli in Crohn's disease or eradicating Fusobacterium nucleatum in colorectal cancer. Overall, phage therapy has a favourable and acceptable safety profile. Presently, trials with phage therapy are ongoing in Crohn's disease. CONCLUSIONS Phage therapy is a promising therapeutic tool against pathogenic bacteria in the fields of infectious diseases and gastroenterology. Randomised, placebo-controlled trials with phage therapy for gastroenterological diseases are ongoing.
Collapse
Affiliation(s)
- João Sabino
- The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Gastroenterology, University Hospitals of Leuven, Leuven, Belgium
| | - Robert P Hirten
- The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean-Frederic Colombel
- The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
44
|
Dąbrowska K, Abedon ST. Pharmacologically Aware Phage Therapy: Pharmacodynamic and Pharmacokinetic Obstacles to Phage Antibacterial Action in Animal and Human Bodies. Microbiol Mol Biol Rev 2019; 83:e00012-19. [PMID: 31666296 PMCID: PMC6822990 DOI: 10.1128/mmbr.00012-19] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The use of viruses infecting bacteria (bacteriophages or phages) to treat bacterial infections has been ongoing clinically for approximately 100 years. Despite that long history, the growing international crisis of resistance to standard antibiotics, abundant anecdotal evidence of efficacy, and one successful modern clinical trial of efficacy, this phage therapy is not yet a mainstream approach in medicine. One explanation for why phage therapy has not been subject to more widespread implementation is that phage therapy research, both preclinical and clinical, can be insufficiently pharmacologically aware. Consequently, here we consider the pharmacological obstacles to phage therapy effectiveness, with phages in phage therapy explicitly being considered to serve as drug equivalents. The study of pharmacology has traditionally been differentiated into pharmacokinetic and pharmacodynamic aspects. We therefore separately consider the difficulties that phages as virions can have in traveling through body compartments toward reaching their target bacteria (pharmacokinetics) and the difficulties that phages can have in exerting antibacterial activity once they have reached those bacteria (pharmacodynamics). The latter difficulties, at least in part, are functions of phage host range and bacterial resistance to phages. Given the apparently low toxicity of phages and the minimal side effects of phage therapy as practiced, phage therapy should be successful so long as phages can reach the targeted bacteria in sufficiently high numbers, adsorb, and then kill those bacteria. Greater awareness of what obstacles to this success generally or specifically can exist, as documented in this review, should aid in the further development of phage therapy toward wider use.
Collapse
Affiliation(s)
- Krystyna Dąbrowska
- Bacteriophage Laboratory, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Stephen T Abedon
- Department of Microbiology, The Ohio State University, Mansfield, Ohio, USA
| |
Collapse
|
45
|
Impact of bacteria motility in the encounter rates with bacteriophage in mucus. Sci Rep 2019; 9:16427. [PMID: 31712565 PMCID: PMC6848219 DOI: 10.1038/s41598-019-52794-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 10/15/2019] [Indexed: 12/31/2022] Open
Abstract
Bacteriophages—or phages—are viruses that infect bacteria and are present in large concentrations in the mucosa that cover the internal organs of animals. Immunoglobulin (Ig) domains on the phage surface interact with mucin molecules, and this has been attributed to an increase in the encounter rates of phage with bacteria in mucus. However, the physical mechanism behind this phenomenon remains unclear. A continuous time random walk (CTRW) model simulating the diffusion due to mucin-T4 phage interactions was developed and calibrated to empirical data. A Langevin stochastic method for Escherichia coli (E. coli) run-and-tumble motility was combined with the phage CTRW model to describe phage-bacteria encounter rates in mucus for different mucus concentrations. Contrary to previous theoretical analyses, the emergent subdiffusion of T4 in mucus did not enhance the encounter rate of T4 against bacteria. Instead, for static E. coli, the diffusive T4 mutant lacking Ig domains outperformed the subdiffusive T4 wild type. E. coli’s motility dominated the encounter rates with both phage types in mucus. It is proposed, that the local fluid-flow generated by E. coli’s motility combined with T4 interacting with mucins may be the mechanism for increasing the encounter rates between the T4 phage and E. coli bacteria.
Collapse
|
46
|
Dissanayake U, Ukhanova M, Moye ZD, Sulakvelidze A, Mai V. Bacteriophages Reduce Pathogenic Escherichia coli Counts in Mice Without Distorting Gut Microbiota. Front Microbiol 2019; 10:1984. [PMID: 31551950 PMCID: PMC6748168 DOI: 10.3389/fmicb.2019.01984] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/13/2019] [Indexed: 12/21/2022] Open
Abstract
We performed a study to (i) investigate efficacy of an Escherichia coli/Salmonella spp./Listeria monocytogenes-targeting bacteriophage cocktail (tentatively named F.O.P.) to reduce a human pathogenic E. coli strain O157:H7 in experimentally infected mice, and (ii) determine how bacteriophages impact the normal gut microbiota when compared with antibiotic therapy. A total of 85 mice were inoculated with E. coli O157:H7 strain Ec231 [nalidixic acid resistant (NalAcR)] via oral gavage, and were randomized into six groups separated into three categories: 1st category received PBS or No phage/No PBS (control), 2nd category received either F.O.P., F.O.P. at 1:10 dilution, or only the E. coli phage component of F.O.P. (EcoShield PXTM), and 3rd category received the antibiotic ampicillin. All therapies were administered twice daily for four consecutive days including before and after bacterial challenge; except ampicillin which was administered only before and after bacterial challenge on day 0. Fecal samples were collected at Days 0, 1, 2, 3, 5, and 10. Samples were homogenized and plated on LB plates supplemented with NalAc to determine viable Ec231 counts. Body weights were measured at every fecal sample collection point. qPCR was performed using specific E. coli O157:H7 primers to quantify the number of E. coli O157:H7 genome copies. Microbiota community profiles were analyzed using Denature Gradient Gel Electrophoresis (DGGE) and 16S rRNA sequencing. F.O.P. significantly (P < 0.05) reduced E. coli O157:H7 pathogen counts by 54%. Ampicillin therapy significantly (P < 0.05) reduced E. coli O157:H7 pathogen counts by 79%. Greater initial weight-loss occurred in mice treated with ampicillin (−5.44%) compared to other treatment groups. No notable changes in the gut microbiota profiles were observed for control and F.O.P. groups. In contrast, the antibiotic group displayed noticeable distortion of the gut microbiota composition, only partially returning to normal by Day 10. In conclusion, we found that F.O.P. administration was effective in reducing viable E. coli O157:H7 in infected mice with a similar efficacy to ampicillin therapy. However, the F.O.P. bacteriophage preparation had less impact on the gut microbiota compared to ampicillin.
Collapse
Affiliation(s)
- Upuli Dissanayake
- Department of Epidemiology, College of Medicine, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States.,Laboratory 300B, Department of Epidemiology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Maria Ukhanova
- Laboratory 300B, Department of Epidemiology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | | | | | - Volker Mai
- Department of Epidemiology, College of Medicine, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States.,Laboratory 300B, Department of Epidemiology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
47
|
Wroe JA, Johnson CT, García AJ. Bacteriophage delivering hydrogels reduce biofilm formation in vitro and infection in vivo. J Biomed Mater Res A 2019; 108:39-49. [PMID: 31443115 DOI: 10.1002/jbm.a.36790] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/14/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022]
Abstract
Implanted orthopedic devices become infected more frequently than any other implanted surgical device. These infections can be extremely costly and result in significant patient morbidity. Current treatment options typically involve the long term, systemic administration of a combination of antibiotics, often followed by implant removal. Here we engineered an injectable hydrogel capable of encapsulating Pseudomonas aeruginosa bacteriophage and delivering active phage to the site of bone infections. Bacteriophage retain their bacteriolytic activity after encapsulation and release from the hydrogel, and their rate of release from the hydrogel can be controlled by gel formulation. Bacteriophage-encapsulating hydrogels effectively kill their host bacteria in both planktonic and biofilm phenotypes in vitro without influencing the metabolic activity of human mesenchymal stromal cells. Bacteriophage-encapsulating hydrogels were used to treat murine radial segmental defects infected with P. aeruginosa. The hydrogels achieved a 4.7-fold reduction in live P. aeruginosa counts at the infection site compared to bacteriophage-free hydrogels at 7 days postimplantation. These results support the development of bacteriophage-delivering hydrogels to treat local bone infections.
Collapse
Affiliation(s)
- James A Wroe
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia.,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Christopher T Johnson
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia.,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Andrés J García
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia.,Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
48
|
Hsu BB, Gibson TE, Yeliseyev V, Liu Q, Lyon L, Bry L, Silver PA, Gerber GK. Dynamic Modulation of the Gut Microbiota and Metabolome by Bacteriophages in a Mouse Model. Cell Host Microbe 2019; 25:803-814.e5. [PMID: 31175044 DOI: 10.1101/454579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/09/2019] [Accepted: 04/30/2019] [Indexed: 05/18/2023]
Abstract
The human gut microbiome is comprised of densely colonizing microorganisms including bacteriophages, which are in dynamic interaction with each other and the mammalian host. To address how bacteriophages impact bacterial communities in the gut, we investigated the dynamic effects of phages on a model microbiome. Gnotobiotic mice were colonized with defined human gut commensal bacteria and subjected to predation by cognate lytic phages. We found that phage predation not only directly impacts susceptible bacteria but also leads to cascading effects on other bacterial species via interbacterial interactions. Metabolomic profiling revealed that shifts in the microbiome caused by phage predation have a direct consequence on the gut metabolome. Our work provides insight into the ecological importance of phages as modulators of bacterial colonization, and it additionally suggests the potential impact of gut phages on the mammalian host with implications for their therapeutic use to precisely modulate the microbiome.
Collapse
Affiliation(s)
- Bryan B Hsu
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Travis E Gibson
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vladimir Yeliseyev
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Qing Liu
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lorena Lyon
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Lynn Bry
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Pamela A Silver
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| | - Georg K Gerber
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
49
|
Hsu BB, Gibson TE, Yeliseyev V, Liu Q, Lyon L, Bry L, Silver PA, Gerber GK. Dynamic Modulation of the Gut Microbiota and Metabolome by Bacteriophages in a Mouse Model. Cell Host Microbe 2019; 25:803-814.e5. [PMID: 31175044 PMCID: PMC6579560 DOI: 10.1016/j.chom.2019.05.001] [Citation(s) in RCA: 297] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/09/2019] [Accepted: 04/30/2019] [Indexed: 02/07/2023]
Abstract
The human gut microbiome is comprised of densely colonizing microorganisms including bacteriophages, which are in dynamic interaction with each other and the mammalian host. To address how bacteriophages impact bacterial communities in the gut, we investigated the dynamic effects of phages on a model microbiome. Gnotobiotic mice were colonized with defined human gut commensal bacteria and subjected to predation by cognate lytic phages. We found that phage predation not only directly impacts susceptible bacteria but also leads to cascading effects on other bacterial species via interbacterial interactions. Metabolomic profiling revealed that shifts in the microbiome caused by phage predation have a direct consequence on the gut metabolome. Our work provides insight into the ecological importance of phages as modulators of bacterial colonization, and it additionally suggests the potential impact of gut phages on the mammalian host with implications for their therapeutic use to precisely modulate the microbiome.
Collapse
Affiliation(s)
- Bryan B Hsu
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Travis E Gibson
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vladimir Yeliseyev
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Qing Liu
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lorena Lyon
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Lynn Bry
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Pamela A Silver
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| | - Georg K Gerber
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
50
|
|