1
|
Xie K, Qi J, Deng L, Yu B, Luo Y, Huang Z, Mao X, Yu J, Zheng P, Yan H, Li Y, Li H, He J. Protective effect of dihydromyricetin on intestinal epithelium in weaned pigs upon enterotoxigenic Escherichia coli challenge. Int Immunopharmacol 2024; 140:112806. [PMID: 39098232 DOI: 10.1016/j.intimp.2024.112806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
Dihydromyricetin (DMY), a natural flavonoid compound, are believed to prevent inflammatory response, dealing with pathogens and repairing the intestinal barrier. The objective of this study was to investigate whether DMY supplementation could attenuate intestinal damage in the context of enterotoxigenic Escherichia coli K88 (ETEC F4+) infection. After weaning, different litters of pigs were randomly assigned to one of the following treatments: (1) non-challenged control (CON, fed with basal diet); (2) ETEC-challenged control (ECON, fed with basal diet); and (3) ETEC challenge + DMY treatment (EDMY, fed with basal diet plus 300 mg kg-1 DMY). We observed a significant reduction in fecal Escherichia coli shedding and diarrhea incidence, but an increase in ADG in pigs of EDMY group compared to the pigs of ECON group. Relative to the pigs of ECON group, dietary DMY treatment decreased (P < 0.05) concentrations of the serum D-xylose, D-lactate and diamine oxidase (DAO), but increased the abundance of zonula occludens-1 (ZO-1) in the jejunum of pigs. In addition, DMY also decreased (P < 0.05) the number of S-phase cells and the percentage of total apoptotic epithelial cells of jejunal epithelium in pigs of the EDMY group compared to the pigs of the ECON group. Furthermore, DMY decreased the mRNA expression levels of critical immune-associated genes TLR4, NFκB, Caspase3, Caspase9, IL-1β, IL-6, TNF-α and the protein p-NFκB and p-IκBα expressions of intestinal epithelium in pigs of the EDMY group compared to the pigs of the ECON group. Compared to the ECON group, DMY elevated (P < 0.05) the expression levels of β-defensins PBD1, PBD2, PBD3, PBD129, as well as the abundance of secreted IgA in intestinal mucosae of the EDMY group. Thus, our results indicate that DMY may relieve intestinal integrity damage due to Escherichia coli F4.
Collapse
Affiliation(s)
- Kunhong Xie
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, PR China
| | - Jiawen Qi
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, PR China
| | - Lili Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, PR China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, PR China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, PR China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, PR China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, PR China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, PR China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, PR China
| | - Yan Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, PR China
| | - Hua Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, PR China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, PR China.
| |
Collapse
|
2
|
Rai S, Kumar M, Jas R, Mandal GP, Samanta I, Rajendar M, Tripura S, Das SK, Mondal M, Mandal DK. Antibacterial effect of kitchen herbs against pathogenic multidrug-resistant E. coli isolates from calf diarrhoea. Trop Anim Health Prod 2023; 55:211. [PMID: 37204503 DOI: 10.1007/s11250-023-03628-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
Calf diarrhoea remains the biggest challenge both in the small and large farms. Infectious diarrhoea is associated with many pathogens, Escherichia coli being one, but majority are systematically treated with antibiotics. Since antimicrobial resistance (AMR) is a growing menace, the need to find alternative prophylactic solutions using popular kitchen herbs such as Trachyspermum ammi (carom seeds), Curcuma longa (turmeric) and cinnamon (Cinnamomum sp.) extracts is been investigated against virulent form of E. coli isolated from calf diarrhoea. The virulence factors identified in these isolates were ST (32.5%), LT (20%), eaeA (15%), stx1 (2.5%) and stx2 (5%) with the occurrence of the most common serogroups as O18 (15%) followed by O111 (12.5%). Highest resistance was seen with beta lactam + beta lactamase inhibitor (amoxicillin/clavulanic acid) followed by beta lactams (ampicillin, cefuroxime and cefepime). The zone of inhibition due to cinnamon (methanol) and carom seed (ethanol) extracts (500 to 250 μg/mL concentration) on E. coli bacteria was >19 mm, respectively. Turmeric, cinnamon and carom had the potency of inhibiting the pathogenic E. coli which maybe suggestive of its use in calf diets as prophylaxis against diarrhoea.
Collapse
Affiliation(s)
- Saroj Rai
- Indian Council of Agricultural Research - National Dairy Research Institute, Eastern Regional Station, Kalyani, WB, 741235, India.
| | - M Kumar
- Indian Council of Agricultural Research - National Dairy Research Institute, Eastern Regional Station, Kalyani, WB, 741235, India
| | - R Jas
- West Bengal University of Animal and Fishery Sciences, Belgachia, Kolkata, WB, India
| | - G P Mandal
- West Bengal University of Animal and Fishery Sciences, Belgachia, Kolkata, WB, India
| | - I Samanta
- West Bengal University of Animal and Fishery Sciences, Belgachia, Kolkata, WB, India
| | - M Rajendar
- Indian Council of Agricultural Research - National Dairy Research Institute, Eastern Regional Station, Kalyani, WB, 741235, India
| | - S Tripura
- Indian Council of Agricultural Research - National Dairy Research Institute, Eastern Regional Station, Kalyani, WB, 741235, India
| | - S K Das
- Indian Council of Agricultural Research - National Dairy Research Institute, Eastern Regional Station, Kalyani, WB, 741235, India
| | - M Mondal
- Indian Council of Agricultural Research - National Dairy Research Institute, Eastern Regional Station, Kalyani, WB, 741235, India
| | - D K Mandal
- Indian Council of Agricultural Research - National Dairy Research Institute, Eastern Regional Station, Kalyani, WB, 741235, India
| |
Collapse
|
3
|
Both LTA and LTB Subunits Are Equally Important to Heat-Labile Enterotoxin (LT)-Enhanced Bacterial Adherence. Int J Mol Sci 2023; 24:ijms24021245. [PMID: 36674760 PMCID: PMC9863850 DOI: 10.3390/ijms24021245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/10/2023] Open
Abstract
There is increasing evidence indicating that the production of heat-labile enterotoxin (LT) enhances bacterial adherence within in vitro and in vivo models. However, which subunit plays the main role, and the precise regulatory mechanisms remain unclear. To further elucidate the contribution of the A subunit of LT (LTA) and the B subunit of LT (LTB) in LT-enhanced bacterial adherence, we generated several LT mutants where their ADP-ribosylation activity or GM1 binding ability was impaired and evaluated their abilities to enhance the two LT-deficient E. coli strains (1836-2 and EcNc) adherence. Our results showed that the two LT-deficient strains, expressing either the native LT or LT derivatives, had a significantly greater number of adhesions to host cells than the parent strains. The adherence abilities of strains expressing the LT mutants were significantly reduced compared with the strains expressing the native LT. Moreover, E. coli 1836-2 and EcNc strains when exogenously supplied with cyclic AMP (cAMP) highly up-regulated the adhesion molecules expression and improved their adherence abilities. Ganglioside GM1, the receptor for LTB subunit, is enriched in lipid rafts. The results showed that deletion of cholesterol from cells also significantly decreased the ability of LT to enhance bacterial adherence. Overall, our data indicated that both subunits are equally responsible for LT-enhanced bacterial adherence, the LTA subunit contributes to this process mainly by increasing bacterial adhesion molecules expression, while LTB subunit mainly by mediating the initial interaction with the GM1 receptors of host cells.
Collapse
|
4
|
Heat-labile enterotoxin enhances F4-producing enterotoxigenic E. coli adhesion to porcine intestinal epithelial cells by upregulating bacterial adhesins and STb enterotoxin. Vet Res 2022; 53:88. [PMID: 36303242 PMCID: PMC9615205 DOI: 10.1186/s13567-022-01110-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/19/2022] [Indexed: 11/10/2022] Open
Abstract
As one of the crucial enterotoxins secreted by enterotoxigenic Escherichia coli (ETEC), heat-labile enterotoxin (LT) enhances bacterial adherence both in vivo and in vitro; however, the underlying mechanism remains unclear. To address this, we evaluated the adherence of LT-producing and LT-deficient ETEC strains using the IPEC-J2 cell model. The expression levels of inflammatory cytokines and chemokines, and tight-junction proteins were evaluated in IPEC-J2 cells after infection with various ETEC strains. Further, the levels of adhesins and enterotoxins were also evaluated in F4ac-producing ETEC (F4 + ETEC) strains after treatment with cyclic AMP (cAMP). The adherence of the ΔeltAB mutant was decreased compared with the wild-type strain, whereas adherence of the 1836-2/pBR322-eltAB strain was markedly increased compared with the 1836-2 parental strain. Production of LT up-regulated the expression of TNF-α, IL-6, CXCL-8, and IL-10 genes. However, it did not appear to affect tight junction protein expression. Importantly, we found that cAMP leads to the upregulation of adhesin production and STb enterotoxin. Moreover, the F4 + ETEC strains treated with cAMP also had greater adhesion to IPEC-J2 cells, and the adherence of ΔfaeG, ΔfliC, and ΔestB mutants was decreased. These results indicate that LT enhances the adherence of F4 + ETEC due primarily to the upregulation of F4 fimbriae, flagellin, and STb enterotoxin expression and provide insights into the pathogenic mechanism of LT and ETEC.
Collapse
|
5
|
Colicins of Escherichia coli Lead to Resistance against the Diarrhea-Causing Pathogen Enterotoxigenic E. coli in Pigs. Microbiol Spectr 2022; 10:e0139622. [PMID: 36190425 PMCID: PMC9603048 DOI: 10.1128/spectrum.01396-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Gut microbes can affect host adaptation to various environment conditions. Escherichia coli is a common gut species, including pathogenic strains and nonpathogenic strains. This study was conducted to investigate the effects of different E. coli strains in the gut on the health of pigs. In this study, the complete genomes of two E. coli strains isolated from pigs were sequenced. The whole genomes of Y18J and the enterotoxigenic E. coli strain W25K were compared to determine their roles in pig adaptation to disease. Y18J was isolated from feces of healthy piglets and showed strong antimicrobial activity against W25K in vitro. Gene knockout experiments and complementation analysis followed by modeling the microbe-microbe interactions demonstrated that the antagonistic mechanism of Y18J against W25K relied on the bacteriocins colicin B and colicin M. Compared to W25K, Y18J is devoid of exotoxin-coding genes and has more secondary-metabolite-biosynthetic gene clusters. W25K carries more genes involved in genome replication, in accordance with a shorter cell cycle observed during a growth experiment. The analysis of gut metagenomes in different pig breeds showed that colicins B and M were enriched in Laiwu pigs, a Chinese local breed, but were scarce in boars and Duroc pigs. IMPORTANCE This study revealed the heterogeneity of E. coli strains from pigs, including two strains studied by both in silico and wet experiments in detail and 14 strains studied by bioinformatics analysis. E. coli Y18J may improve the adaptability of pigs toward disease resistance through the production of colicins B and M. Our findings could shed light on the pathogenic and harmless roles of E. coli in modern animal husbandry, leading to a better understanding of intestinal-microbe-pathogen interactions in the course of evolution.
Collapse
|
6
|
Ntakiyisumba E, Lee S, Won G. Evidence-Based Approaches for Determining Effective Target Antigens to Develop Vaccines against Post-Weaning Diarrhea Caused by Enterotoxigenic Escherichia coli in Pigs: A Systematic Review and Network Meta-Analysis. Animals (Basel) 2022; 12:2136. [PMID: 36009725 PMCID: PMC9405027 DOI: 10.3390/ani12162136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/13/2022] [Accepted: 08/13/2022] [Indexed: 11/24/2022] Open
Abstract
In this study, we conducted a meta-analysis (MA) and systematic review to evaluate the effectiveness of vaccines against post-weaning diarrhea (PWD), caused by enterotoxigenic Escherichia coli (ETEC), in piglets. A Bayesian network meta-analysis (NMA) was also performed to compare the effects of combining different target antigens on vaccine efficacy. Relevant electronic databases were searched using pre-specified search terms, and 17 studies were selected based on three outcomes: diarrhea, mortality, and average daily weight gain (ADWG). In pairwise MA, the vaccinated group showed a significant decrease in diarrhea (OR = 0.124 [0.056, 0.275]) and mortality (OR = 0.273 [0.165, 0.451]), and a significant increase in ADWG (SMD = 0.699 [0.107, 1.290]) compared with those in controls. Furthermore, NMA results showed that all vaccine groups, except for group D (LT enterotoxin), were effective against PWD. Rank probabilities indicated that the F4 + F18 + LT combination was the best regimen for preventing diarrhea (SUCRA score = 0.92) and mortality (SUCRA score = 0.89). NMA also demonstrated that, among the vaccine groups, those inducing simultaneous anti-adhesion and antitoxin immunity had the highest efficacy. Our results provide evidence-based information on the efficacy of vaccines in reducing PWD incidence in pigs and may serve as guidelines for antigen selection for commercial vaccine development in the future.
Collapse
Affiliation(s)
| | | | - Gayeon Won
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, Gobong-ro 79, Iksan 54596, Korea
| |
Collapse
|
7
|
Mohammed Musthafa T, Snigdha K, Asiri AM, Sobahi TR, Asad M. Green synthesis of Chromonyl Chalcone and Pyrazoline as Potential Antimicrobial Agents - DFT, Molecular Docking and Antimicrobial Studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
8
|
Whole-Genome Characterisation of ESBL-Producing E. coli Isolated from Drinking Water and Dog Faeces from Rural Andean Households in Peru. Antibiotics (Basel) 2022; 11:antibiotics11050692. [DOI: 10.3390/antibiotics11050692] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
E. coli that produce extended-spectrum β-lactamases (ESBLs) are major multidrug-resistant bacteria. In Peru, only a few reports have characterised the whole genome of ESBL enterobacteria. We aimed to confirm the identity and antimicrobial resistance (AMR) profile of two ESBL isolates from dog faeces and drinking water of rural Andean households and determine serotype, phylogroup, sequence type (ST)/clonal complex (CC), pathogenicity, virulence genes, ESBL genes, and their plasmids. To confirm the identity and AMR profiles, we used the VITEK®2 system. Whole-genome sequencing (WGS) and bioinformatics analysis were performed subsequently. Both isolates were identified as E. coli, with serotypes -:H46 and O9:H10, phylogroups E and A, and ST/CC 5259/- and 227/10, respectively. The isolates were ESBL-producing, carbapenem-resistant, and not harbouring carbapenemase-encoding genes. Isolate 1143 ST5259 harboured the astA gene, encoding the EAST1 heat-stable toxin. Both genomes carried ESBL genes (blaEC-15, blaCTX-M-8, and blaCTX-M-55). Nine plasmids were detected, namely IncR, IncFIC(FII), IncI, IncFIB(AP001918), Col(pHAD28), IncFII, IncFII(pHN7A8), IncI1, and IncFIB(AP001918). Finding these potentially pathogenic bacteria is worrisome given their sources and highlights the importance of One-Health research efforts in remote Andean communities.
Collapse
|
9
|
Boeckman JX, Sprayberry S, Korn AM, Suchodolski JS, Paulk C, Genovese K, Rech RR, Giaretta PR, Blick AK, Callaway T, Gill JJ. Effect of chronic and acute enterotoxigenic E. coli challenge on growth performance, intestinal inflammation, microbiome, and metabolome of weaned piglets. Sci Rep 2022; 12:5024. [PMID: 35323827 PMCID: PMC8943154 DOI: 10.1038/s41598-022-08446-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/28/2022] [Indexed: 12/17/2022] Open
Abstract
Post-weaning enteropathies in swine caused by pathogenic E. coli, such as post-weaning diarrhea (PWD) or edema disease (ED), remain a significant problem for the swine industry. Reduction in the use of antibiotics over concerns of antibiotic resistance and public health concerns, necessitate the evaluation of effective antibiotic alternatives to prevent significant loss of livestock and/or reductions in swine growth performance. For this purpose, an appropriate piglet model of pathogenic E. coli enteropathy is required. In this study, we attempted to induce clinical signs of post-weaning disease in a piglet model using a one-time acute or lower daily chronic dose of a pathogenic E. coli strain containing genes for both heat stable and labile toxins, as well as Shiga toxin. The induced disease state was monitored by determining fecal shedding and colonization of the challenge strain, animal growth performance, cytokine levels, fecal calprotectin, histology, fecal metabolomics, and fecal microbiome shifts. The most informative analyses were colonization and shedding of the pathogen, serum cytokines, metabolomics, and targeted metagenomics to determine dysbiosis. Histopathological changes of the gastrointestinal (GI) tract and tight junction leakage as measured by fecal calprotectin concentrations were not observed. Chronic dosing was similar to the acute regimen suggesting that a high dose of pathogen, as used in many studies, may not be necessary. The piglet disease model presented here can be used to evaluate alternative PWD treatment options.
Collapse
Affiliation(s)
- Justin X Boeckman
- Department of Animal Science, Texas A&M University, College Station, TX, USA.,Center for Phage Technology, Texas A&M University, College Station, TX, USA
| | - Sarah Sprayberry
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Abby M Korn
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Jan S Suchodolski
- Department of Small Animal Clinical Sciences, Gastrointestinal Laboratory, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Chad Paulk
- Department of Animal Science, Texas A&M University, College Station, TX, USA.,Department of Grain Science and Industry, College of Agriculture, Kansas State University, Manhattan, KS, USA
| | - Kenneth Genovese
- USDA-ARS, Food and Feed Safety Research Unit, College Station, TX, USA
| | - Raquel R Rech
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Paula R Giaretta
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.,School of Veterinary Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Anna K Blick
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Todd Callaway
- USDA-ARS, Food and Feed Safety Research Unit, College Station, TX, USA.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - Jason J Gill
- Department of Animal Science, Texas A&M University, College Station, TX, USA. .,Center for Phage Technology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
10
|
Kipkirui E, Koech M, Ombogo A, Kirera R, Ndonye J, Kipkemoi N, Kirui M, Philip C, Roth A, Flynn A, Odundo E, Kombich J, Daud I. Molecular characterization of enterotoxigenic Escherichia coli toxins and colonization factors in children under five years with acute diarrhea attending Kisii Teaching and Referral Hospital, Kenya. Trop Dis Travel Med Vaccines 2021; 7:31. [PMID: 34906250 PMCID: PMC8670869 DOI: 10.1186/s40794-021-00157-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/13/2021] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Enterotoxigenic Escherichia coli (ETEC) is one of the leading causes of infectious diarrhea in children. There are no licensed vaccines against ETEC. This study aimed at characterizing Escherichia coli for ETEC enterotoxins and colonization factors from children < 5 years with acute diarrhea and had not taken antibiotics prior to seeking medical attention at the hospital.
Methods
A total of 225 randomly selected archived E. coli strains originally isolated from 225 children with acute diarrhea were cultured. DNA was extracted and screened by multiplex polymerase chain reaction (PCR) for three ETEC toxins. All positives were then screened for 11 colonization factors by PCR.
Results
Out of 225 E. coli strains tested, 23 (10.2%) were ETEC. Heat-stable toxin (ST) gene was detected in 16 (69.6%). ETEC isolates with heat-stable toxin of human origin (STh) and heat-stable toxin of porcine origin (STp) distributed as 11 (68.8%) and 5 (31.2%) respectively. Heat-labile toxin gene (LT) was detected in 5 (21.7%) of the ETEC isolates. Both ST and LT toxin genes were detected in 2 (8.7%) of the ETEC isolates. CF genes were detected in 14 (60.9%) ETEC strains with a majority having CS6 6 (42.9%) gene followed by a combination of CFA/I + CS21 gene detected in 3 (21.4%). CS14, CS3, CS7 and a combination of CS5 + CS6, CS2 + CS3 genes were detected equally in 1 (7.1%) ETEC isolate each. CFA/I, CS4, CS5, CS2, CS17/19, CS1/PCFO71 and CS21 genes tested were not detected. We did not detect CF genes in 9 (39.1%) ETEC isolates. More CFs were associated with ETEC strains with ST genes.
Conclusion
ETEC strains with ST genes were the most common and had the most associated CFs. A majority of ETEC strains had CS6 gene. In 9 (39.1%) of the evaluated ETEC isolates, we did not detect an identifiable CF.
Collapse
|
11
|
Pig vaccination strategies based on enterotoxigenic Escherichia coli toxins. Braz J Microbiol 2021; 52:2499-2509. [PMID: 34244980 PMCID: PMC8270777 DOI: 10.1007/s42770-021-00567-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 06/29/2021] [Indexed: 11/16/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) are responsible for diarrhea in humans as well as in farm animals. ETEC infections in newborn, suckling, and especially in post-weaning piglets are associated with reduced growth rate, morbidity, and mortality. ETEC express virulence factors as adhesin and enterotoxins that play a central role in the pathogenic process. Adhesins associated with pigs are of diverse type being either fimbrial or non-fimbrial. Enterotoxins belong to two groups: heat-labile (LT) and heat-stable (ST). Heterogeneity of ETEC strains encompass expression of various fimbriae (F4, F5, F6, F18, and F41) and enterotoxins (LT, STa, STb, and EAST1). In the late years, attempts to immunize animals against neonatal and post-weaning diarrhea were focused on the development of anti-adhesin strategies as this is the initial step of ETEC pathogenesis. Although those vaccines demonstrated some protection against ETEC infections, as enterotoxins are pivotal to the virulence of ETEC, a new generation of vaccinal molecules, which include adhesin and one or more enterotoxins, were recently tested. Some of these newly developed chimeric fusion proteins are intended to control as well human diarrhea as enterotoxins are more or less common with the ones found in pigs. As these could not be tested in the natural host (human), either a mouse or pig model was substituted to evaluate the protection efficacy. For the advancement of pig vaccine, mice were sometimes used for preliminary testing. This review summarizes advances in the anti-enterotoxin immunization strategies considered in the last 10 years.
Collapse
|
12
|
Nengroo ZR, Ahmad A, Tantary A, Ganie AS, Shah ZU. Design and synthesis of fatty acid derived 4-methoxybenzylamides as antimicrobial agents. Heliyon 2021; 7:e06842. [PMID: 33981896 PMCID: PMC8082265 DOI: 10.1016/j.heliyon.2021.e06842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/27/2021] [Accepted: 04/13/2021] [Indexed: 11/30/2022] Open
Abstract
A new series of fatty acid amides viz. N-(4-methoxybenzyl)undec-10-enamide (5), (9Z, 12R)-12-Hydroxy-N-(4-methoxybenzyl)octadec-9-enamide (6) and N-(4-methoxy benzyl)oleamide (7) were synthesized by using a suitable synthetic route involving DCC and DMAP as catalysts. The synthesized compounds were characterized through FTIR, NMR spectroscopy, and mass spectrometry. DNA binding studies through spectroscopy and molecular docking were performed to evaluate the binding mechanism of molecules (5-7) with (ctDNA). The inhibition zone with reference to standards, Minimum Inhibitory Concentration (MIC) and Minimum Killing Concentration (MKC) values were determined to study the in vitro antimicrobial activity for tested compounds. Among all the tested compounds, the compound 6 containing hydroxy group at the fatty acid chain showed most powerful antifungal as well as antibacterial activity.
Collapse
Affiliation(s)
| | - Aijaz Ahmad
- Department of Biochemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Adil Tantary
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Adil Shafi Ganie
- Environmental Chemistry Section, Department of Chemistry Aligarh Muslim University, Aligarh 202002, India
| | - Zeshan Umar Shah
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| |
Collapse
|
13
|
Application of a Novel Epitope- and Structure-Based Vaccinology-Assisted Fimbria-Toxin Multiepitope Fusion Antigen of Enterotoxigenic Escherichia coli for Development of Multivalent Vaccines against Porcine Postweaning Diarrhea. Appl Environ Microbiol 2020; 86:AEM.00274-20. [PMID: 32144103 DOI: 10.1128/aem.00274-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/02/2020] [Indexed: 11/20/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) strains producing K88 (F4) or F18 fimbriae and enterotoxins are the predominant cause of pig postweaning diarrhea (PWD). We recently identified neutralizing epitopes of fimbriae K88 and F18, heat-labile toxin (LT), heat-stable toxins type I (STa) and type II (STb), and Shiga toxin 2e (Stx2e). In this study, we explored a novel epitope- and structure-based vaccinology platform, multiepitope fusion antigen (MEFA), for PWD vaccine development. By using an epitope substitution LT toxoid, which lacks enterotoxicity but retains immunogenicity, as the backbone to present neutralizing epitopes of two ETEC fimbriae and four toxins, we generated PWD fimbria-toxin MEFA to mimic epitope native antigenicity. We then examined MEFA protein immunogenicity and evaluated MEFA application in PWD vaccine development. Mice subcutaneously immunized with PWD MEFA protein developed strong IgG responses to K88, F18, LT, and STb and moderate responses to the toxins Stx2e and STa. Importantly, MEFA-induced antibodies inhibited adherence of K88 or F18 fimbrial bacteria to pig intestinal cells and also neutralized LT, STa, STb, and Stx2e toxicity. These results indicated that PWD fimbria-toxin MEFA induced neutralizing antibodies against an unprecedent two fimbriae and four toxins and strongly suggested a potential application of this MEFA protein in developing a broadly protective PWD vaccine.IMPORTANCE ETEC-associated postweaning diarrhea (PWD) causes significant economic losses to swine producers worldwide. Currently, there is no effective prevention against PWD. A vaccine that blocks ETEC fimbriae (K88 and F18) from attaching to host receptors and prevents enterotoxins from stimulating water hypersecretion in pig small intestinal epithelial cells can effectively protect against PWD and significantly improves pig health and well-being. The fimbria-toxin MEFA generated from this study induced neutralizing antibodies against both ETEC fimbriae and all four ETEC toxins, suggesting a great potential of this fimbria-toxin MEFA in PWD vaccine development and further supporting the general application of this novel MEFA vaccinology platform for multivalent vaccine development.
Collapse
|
14
|
Improvement of the Enterotoxigenic Escherichia coli Infection Model for Post-Weaning Diarrhea by Controlling for Bacterial Adhesion, Pig Breed and MUC4 Genotype. Vet Sci 2020; 7:vetsci7030106. [PMID: 32784676 PMCID: PMC7557722 DOI: 10.3390/vetsci7030106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/29/2020] [Accepted: 08/06/2020] [Indexed: 11/17/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a major cause of post-weaning diarrhea (PWD) in pigs and causes significant damage to the swine industry worldwide. In recent years, there has been increased regulation against the use of antibacterial agents in swine due to their health risks. Utilizing experimental models that consistently recapitulate PWD is important for the development of non-antibacterial agents against PWD in pigs. In this study, we established a highly reproducible PWD infection model by examining differences in adhesion of ETEC to the intestinal tissue as well as the association between MUC4 polymorphisms and sensitivity to PWD. Post-weaning diarrhea differences between pig breeds were also examined. The adhesion to enterocytes varied from 104.0 to 106.4 CFU/mL even among the F4 ETEC strains. Experimental infection revealed that PWD can be induced in all MUC4 genotypes after infection with 1010 CFU/pig of highly adherent ETEC, although there were variable sensitivities between the genotypes. Lowly adherent ETEC did not cause PWD as efficiently as did highly adherent ETEC. The incidence of PWD was confirmed for all pigs with the ETEC-susceptible MUC4 genotypes in all of the breeds. These results indicate that high-precision and reproducible experimental infection is possible regardless of pig breeds by controlling factors on the pig-end (MUC4 genotype) and the bacterial-end (adhesion ability).
Collapse
|
15
|
Prasad H, Shenoy AR, Visweswariah SS. Cyclic nucleotides, gut physiology and inflammation. FEBS J 2020; 287:1970-1981. [PMID: 31889413 DOI: 10.1111/febs.15198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/10/2019] [Accepted: 12/30/2019] [Indexed: 12/27/2022]
Abstract
Misregulation of gut function and homeostasis impinges on the overall well-being of the entire organism. Diarrheal disease is the second leading cause of death in children under 5 years of age, and globally, 1.7 billion cases of childhood diarrhea are reported every year. Accompanying diarrheal episodes are a number of secondary effects in gut physiology and structure, such as erosion of the mucosal barrier that lines the gut, facilitating further inflammation of the gut in response to the normal microbiome. Here, we focus on pathogenic bacteria-mediated diarrhea, emphasizing the role of cyclic adenosine 3',5'-monophosphate and cyclic guanosine 3',5'-monophosphate in driving signaling outputs that result in the secretion of water and ions from the epithelial cells of the gut. We also speculate on how this aberrant efflux and influx of ions could modulate inflammasome signaling, and therefore cell survival and maintenance of gut architecture and function.
Collapse
Affiliation(s)
- Hari Prasad
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| | | | | |
Collapse
|
16
|
Xia Y, Chen S, Zhao Y, Chen S, Huang R, Zhu G, Yin Y, Ren W, Deng J. GABA attenuates ETEC-induced intestinal epithelial cell apoptosis involving GABA AR signaling and the AMPK-autophagy pathway. Food Funct 2019; 10:7509-7522. [PMID: 31670355 DOI: 10.1039/c9fo01863h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Enterotoxigenic Escherichia coli (ETEC) triggers diarrhea in humans and livestock. We have previously showed that ETEC promotes intestinal epithelial cell apoptosis and increases gamma-aminobutyric acid (GABA) concentration in the jejunum, suggesting that GABA might mediate ETEC-induced apoptosis. Here, we found that GABA alleviates ETEC-induced intestinal barrier dysfunctions, including ETEC-induced apoptosis both in vivo and in vitro. Interestingly, the alleviation of GABA on ETEC-induced apoptosis largely depends on autophagy. Mechanistically, GABA attenuates ETEC-induced apoptosis via activating GABAAR signaling and the AMPK-autophagy pathway. These findings highlight that maintaining intestinal GABA concentration could alleviate intestinal ETEC infection.
Collapse
Affiliation(s)
- Yaoyao Xia
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Siyuan Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Yuanyuan Zhao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Shuai Chen
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China and University of Chinese Academy of Sciences, Beijing, China
| | - Ruilin Huang
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Guoqiang Zhu
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China. and Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China. and Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
17
|
Feng N, Guan W. Expression fusion immunogen by live attenuated Escherichia coli against enterotoxins infection in mice. Microb Biotechnol 2019; 12:946-961. [PMID: 31210426 PMCID: PMC6680629 DOI: 10.1111/1751-7915.13447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/07/2019] [Accepted: 05/20/2019] [Indexed: 11/27/2022] Open
Abstract
Previous epidemiological studies have shown that enterotoxins from enterotoxigenic Escherichia coli (ETEC) appear to be the most important causes of neonatal piglet and porcine post-weaning diarrhoea (PWD). Thus, it is necessary to develop an effective vaccine against ETEC infection. In the present study, the Kil cassette was inserted into the pseudogene yaiT by homologous recombination to create an attenuated E. coli double selection platform O142(yaiT-Kil). After that, PRPL-Kil was replaced with a fusion gene (LTA1-STa13 -STb-LTA2-LTB-STa13 -STb) to establish oral vaccines O142(yaiT::LTA1-STa13 -STb-LTA2-LTB-STa13 -STb) (ER-T). Subsequently, BALB/c mice were orally immunized with ER-T. Results showed that serum IgG and faecal sIgA responded against all ETEC enterotoxins and induced F41 antibody in BALB/c mice by orogastrically inoculation with recombinant E. coli ER-T. Moreover, the determination of cellular immune response demonstrated that the stimulation index (SI) was significantly higher in immunized mice than in control mice, and a clear trend in the helper T-cell (Th) response was Th2-cell (IL-4) exceed Th1-cell (IFN-γ).Our results indicated that recombinant E. coli ER-T provides effective protection against ETEC infection.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antibodies, Bacterial/blood
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Diarrhea/microbiology
- Diarrhea/prevention & control
- Diarrhea/veterinary
- Enterotoxigenic Escherichia coli/immunology
- Enterotoxins/antagonists & inhibitors
- Enterotoxins/genetics
- Enterotoxins/immunology
- Escherichia coli Infections/microbiology
- Escherichia coli Infections/prevention & control
- Escherichia coli Infections/veterinary
- Escherichia coli Vaccines/administration & dosage
- Escherichia coli Vaccines/immunology
- Feces/chemistry
- Immunity, Cellular
- Immunoglobulin A, Secretory/analysis
- Immunoglobulin G/blood
- Mice, Inbred BALB C
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Swine
- Swine Diseases/microbiology
- Swine Diseases/prevention & control
- Treatment Outcome
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Ni Feng
- College of Life Science and Resource EnvironmentYichun UniversityYichunChina
| | - Weikun Guan
- College of Life Science and Resource EnvironmentYichun UniversityYichunChina
| |
Collapse
|
18
|
Duan Q, Xia P, Nandre R, Zhang W, Zhu G. Review of Newly Identified Functions Associated With the Heat-Labile Toxin of Enterotoxigenic Escherichia coli. Front Cell Infect Microbiol 2019; 9:292. [PMID: 31456954 PMCID: PMC6700299 DOI: 10.3389/fcimb.2019.00292] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/29/2019] [Indexed: 12/11/2022] Open
Abstract
Heat-labile toxin (LT) is a well-characterized powerful enterotoxin produced by enterotoxigenic Escherichia coli (ETEC). This toxin is known to contribute to diarrhea in young children in developing countries, international travelers, as well as many different species of young animals. Interestingly, it has also been revealed that LT is involved in other activities in addition to its role in enterotoxicity. Recent studies have indicated that LT toxin enhances enteric pathogen adherence and subsequent intestinal colonization. LT has also been shown to act as a powerful adjuvant capable of upregulating vaccine antigenicity; it also serves as a protein or antigenic peptide display platform for new vaccine development, and can be used as a naturally derived cell targeting and protein delivery tool. This review summarizes the epidemiology, secretion, delivery, and mechanisms of action of LT, while also highlighting new functions revealed by recent studies.
Collapse
Affiliation(s)
- Qiangde Duan
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Pengpeng Xia
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Rahul Nandre
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, United States
| | - Weiping Zhang
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Guoqiang Zhu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
19
|
Wang Z, Li J, Li J, Li Y, Wang L, Wang Q, Fang L, Ding X, Huang P, Yin J, Yin Y, Yang H. Protective effect of chicken egg yolk immunoglobulins (IgY) against enterotoxigenic Escherichia coli K88 adhesion in weaned piglets. BMC Vet Res 2019; 15:234. [PMID: 31286936 PMCID: PMC6615277 DOI: 10.1186/s12917-019-1958-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 06/12/2019] [Indexed: 11/17/2022] Open
Abstract
Background Enterotoxigenic Escherichia coli K88 (E. coli K88) are considered as a major cause of diarrhea and death in newly weaned piglets. Oral passive immunization with chicken egg yolk immunoglobulins (IgY) have attracted considerable attention for treatment of gastrointestinal infection due to its high specificity. In this study it was estimated the protective effect of anti-K88 fimbriae IgY against E. coli K88 adhesion to piglet intestinal mucus in vitro and to investigate the potential use of IgY for controlling E. coli-induced diarrhea in weaned piglets in vivo. Results E. coli K88 was incubated with IgY for 24 h, and the bacterial growth profiles showed that specific IgY with a concentration higher than 5 mg/mL was observed to significantly inhibit the growth of E. coli K88 compared to nonspecific yolk powder in a liquid medium. Moreover, pretreatment with 50 mg/mL of IgY was found to significantly decrease the adhesion ability of E. coli K88 to porcine jejunal and ileal mucus, further supported by the observations from our immunofluorescence microscopic analysis. In vivo, administration of IgY successfully protected piglets from diarrhea caused by E. coli K88 challenge. Additionally, IgY treatment efficiently alleviated E. coli-induced intestinal inflammation in piglets as the gene expression levels of inflammatory cytokines TNF-α, IL-22, IL-6 and IL-1β in IgY-treated piglets remained unchanged after E. coli K88 infection. Furthermore, IgY significantly prevented E. coli K88 adhering to the jejunal and ileal mucosa of piglets with E. coli infection and significantly decreased E. coli and enterotoxin expression in colonic contents. Conclusion Outcome of the study demonstrated that IgY against the fimbrial antigen K88 was able to significantly inhibit the growth of E. coli K88, block the binding of E. coli to small intestinal mucus, and protect piglets from E. coli-induced diarrhea. These results indicate that passive immunization with IgY may be useful to prevent bacterial colonization and to control enteric diseases due to E. coli infection. The study has great clinical implication to provide alternative therapy to antibiotics in E coli induced diarrhea. Electronic supplementary material The online version of this article (10.1186/s12917-019-1958-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhaobin Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.,Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agroecological Processes in Subtropical Region, Scientific Observation and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha City, 410125, Hunan, China
| | - Jia Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.,Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agroecological Processes in Subtropical Region, Scientific Observation and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha City, 410125, Hunan, China
| | - Jianzhong Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Yali Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Lixia Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Qingping Wang
- Zyme Fast (Changsha) Biotechnology Co., Ltd, Changsha City, 410311, Hunan, China
| | - Lin Fang
- Zyme Fast (Changsha) Biotechnology Co., Ltd, Changsha City, 410311, Hunan, China
| | - Xueqin Ding
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Pengfei Huang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Jia Yin
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Yulong Yin
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.,Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agroecological Processes in Subtropical Region, Scientific Observation and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha City, 410125, Hunan, China
| | - Huansheng Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China. .,Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agroecological Processes in Subtropical Region, Scientific Observation and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha City, 410125, Hunan, China.
| |
Collapse
|
20
|
Resistance to ETEC F4/F18-mediated piglet diarrhoea: opening the gene black box. Trop Anim Health Prod 2019; 51:1307-1320. [PMID: 31127494 DOI: 10.1007/s11250-019-01934-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 05/15/2019] [Indexed: 01/08/2023]
Abstract
Diarrhoea, a significant problem in pig rearing industry affecting pre- and post-weaning piglets is caused by enterotoxigenic Escherichia coli (ETEC). The ETEC are classified as per the fimbriae types which are responsible for bacterial attachment with enterocytes and release of toxins causing diarrhoea. However, genetic difference exists for susceptibility to ETEC infection in piglets. The different phenotypes found in pigs determine their (pigs') susceptibility or resistance towards fimbrial subtypes/variants (F4ab, F4ac, F4ad and F18). Specific receptors are present on intestinal epithelium for attachment of these fimbriae, which do not express to same level in all animals. This differential expression is genetically determined and thus their genetic causes (may be putative candidate gene or mutations) render some animals resistant or susceptible to one or more fimbrial subtypes. Genetic linkage studies have revealed the mapping location of the receptor loci for the two most frequent variants F4ab and F4ac to SSC13q41 (i.e. q arm of 13th chromosome of Sus scrofa). Some SNPs have been identified in mucin gene family, transferring receptor gene, fucosyltransferase 1 gene and swine leucocyte antigen locus that are proposed to be linked mutations for resistance/susceptibility towards ETEC diarrhoea. However, owing to the variety of fimbrial types and subtypes, it would be difficult to identify a single causative mutation and the candidate loci may involve more number of genes/regions. In this review, we focus on the genetic mutations in genes involved in imparting resistance/susceptibility to F4 or F18 ETEC diarrhoea and possibilities to use them as marker for selection against susceptible animals.
Collapse
|
21
|
Lu T, Seo H, Moxley RA, Zhang W. Mapping the neutralizing epitopes of F18 fimbrial adhesin subunit FedF of enterotoxigenic Escherichia coli (ETEC). Vet Microbiol 2019; 230:171-177. [PMID: 30827385 PMCID: PMC7173344 DOI: 10.1016/j.vetmic.2019.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/05/2019] [Indexed: 11/27/2022]
Abstract
K88 and F18 fimbrial enterotoxigenic Escherichia coli (ETEC) are the major causes of post-weaning diarrhea (PWD) in pigs. A vaccine that induces broad immunity to prevent K88 and F18 fimbrial ETEC bacterial attachment and colonization in pig small intestines and to neutralize enterotoxin enterotoxicity would be effective for PWD. Structure-based multiepitope-fusion-antigen (MEFA) technology using a backbone immunogen to present neutralizing epitopes of representing virulence factors capacitates development of broadly protective ETEC vaccines. Neutralizing epitopes have been identified from K88 fimbrial adhesin (FaeG) and enterotoxins but not F18 fimbrial adhesin. In this study, we in silico identified immunodominant epitopes from F18ac fimbrial subunit FedF which plays a critical role in F18 fimbrial adherence, genetically fused each epitope to a carrier, examined immunogenicity of each epitope fusion, and determined epitope-derived antibodies neutralizing activities against F18 fimbrial adherence. Data showed that seven immune-dominant epitopes were identified from FedF subunit. Fused to heterologous human ETEC adhesin subunit CfaB, epitope fusions induced anti-F18 antibodies in subcutaneously immunized mice. Moreover, antibodies derived from each fusion significantly blocked adherence of a F18-fimbrial E. coli bacteria to pig intestinal cell line IPEC-J2. While all seven epitopes exhibited neutralizing activity, results from this study identified FedF epitopes #3 (IPSSSGTLTCQAGT) and #7 (QPDATGSWYD) the most effective for antibodies against F18 fimbrial adherence, and suggested their future application in PWD vaccine development.
Collapse
Affiliation(s)
- Ti Lu
- Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, USA
| | - Hyesuk Seo
- Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, USA
| | - Rodney A Moxley
- Department of Veterinary Basic Sciences, University of Nebraska-Lincoln, School of Veterinary Medicine and Biomedical Sciences, Lincoln, NE, USA
| | - Weiping Zhang
- Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, USA.
| |
Collapse
|
22
|
Gabr MT, El-Gohary NS, El-Bendary ER, Ni N, Shaaban MI, El-Kerdawy MM. Microwave-assisted synthesis, antimicrobial, antiquorum-sensing and cytotoxic activities of a new series of isatin-β-thiocarbohydrazones. SYNTHETIC COMMUN 2018. [DOI: 10.1080/00397911.2018.1520889] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Moustafa T. Gabr
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | - Nadia S. El-Gohary
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Eman R. El-Bendary
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Nanting Ni
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | - Mona I. Shaaban
- Department of Microbiology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohammed M. El-Kerdawy
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
23
|
Abstract
Polymyxins (e.g., colistin) are the drugs of last resort to treat multidrug-resistant infections in humans. To control mobile colistin resistance, there is a worldwide trend to limit colistin use in animal production. However, simply limiting colistin use in animal production may still not effectively mitigate colistin resistance due to an overlooked non-colistin usage factor(s). Using controlled systems, in this study, we observed that MCR-1 confers cross-resistance to bacitracin, a popular in-feed antibiotic used in food animals. Thus, imprudent and extensive usage of bacitracin in food animals may serve as a non-colistin usage risk factor for the transmissible colistin resistance. Further comprehensive in vitro and in vivo studies are highly warranted to generate science-based information for risk assessment and risk management of colistin resistance, consequently facilitating the development of proactive and effective strategies to mitigate colistin resistance in animal production system and protect public health. Extensive use of colistin in food animals is deemed a major driving force for the emergence and transmission of mcr-1. However, a non-colistin usage factor(s) contributing to mobile colistin resistance may also exist in animal production systems. Given that polymyxin, a bacterium-derived peptide antibiotic, has been successfully used as a surrogate to study bacterial resistance to antimicrobial peptides (AMPs), acquisition of MCR-1 may confer cross-resistance to the unrelated AMPs implicated in practical applications. To test this, we first constructed Escherichia coli recombinant strains differing only in the presence or absence of functional MCR-1. Among diverse tested AMPs, MCR-1 was observed to confer cross-resistance to bacitracin, an in-feed antibiotic widely used in animal industry. The significantly (2-fold) increased bacitracin MIC was confirmed by using different bacitracin products, broth media, and laboratory host strains for susceptibility tests. Subsequently, an original mcr-1 gene-bearing plasmid, pSLy21, was conjugatively transferred to eight clinical E. coli recipient strains isolated from diarrheic pigs, which also led to significantly increased MICs of both colistin (4-fold to 8-fold) and bacitracin (2-fold). Growth curve examination further demonstrated that MCR-1 provides a growth advantage to various E. coli strains in the presence of bacitracin. Given that bacitracin, a feed additive displaying low absorption in the intestine, can be used in food animals with no withdrawal required, imprudent use of bacitracin in food animals may serve as a risk factor to enhance the ecological fitness of MCR-1-positive E. coli strains, consequently facilitating the persistence and transmission of plasmid-mediated colistin resistance in agricultural ecosystem. IMPORTANCE Polymyxins (e.g., colistin) are the drugs of last resort to treat multidrug-resistant infections in humans. To control mobile colistin resistance, there is a worldwide trend to limit colistin use in animal production. However, simply limiting colistin use in animal production may still not effectively mitigate colistin resistance due to an overlooked non-colistin usage factor(s). Using controlled systems, in this study, we observed that MCR-1 confers cross-resistance to bacitracin, a popular in-feed antibiotic used in food animals. Thus, imprudent and extensive usage of bacitracin in food animals may serve as a non-colistin usage risk factor for the transmissible colistin resistance. Further comprehensive in vitro and in vivo studies are highly warranted to generate science-based information for risk assessment and risk management of colistin resistance, consequently facilitating the development of proactive and effective strategies to mitigate colistin resistance in animal production system and protect public health.
Collapse
|
24
|
Huang J, Duan Q, Zhang W. Significance of Enterotoxigenic Escherichia coli (ETEC) Heat-Labile Toxin (LT) Enzymatic Subunit Epitopes in LT Enterotoxicity and Immunogenicity. Appl Environ Microbiol 2018; 84:e00849-18. [PMID: 29802193 PMCID: PMC6052278 DOI: 10.1128/aem.00849-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/19/2018] [Indexed: 01/28/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) strains producing heat-labile toxin (LT) and/or heat-stable toxin (STa) are a top cause of children's diarrhea and travelers' diarrhea. Holotoxin-structured GM1-binding LT is a strong immunogen and an effective adjuvant, and can serve a carrier or a platform for multivalent vaccine development. However, the significance of peptide domains or epitopes of LT particularly enzymatic LTA subunit in association with LT enterotoxicity and immunogenicity has not been characterized. In this study, we identified B-cell epitopes in silico from LTA subunit and examined epitopes for immunogenicity and association with LT enterotoxicity. Epitopes identified from LTA subunit were individually fused to a modified chicken ovalbumin carrier protein, and each epitope-ovalbumin fusion was used to immunize mice. Data showed all 11 LTA epitopes were immunogenic; epitope 7 (105SPHPYEQEVSA115) induced greater titers of anti-LT antibodies which neutralized LT enterotoxicity more effectively. To examine these epitopes for the significance in LT enterotoxicity, we constructed LT mutants by substituting each of 10 epitopes at the toxic A1 domain of LTA subunit with a foreign epitope and examined LT mutants for enterotoxicity and GM1-binding activity. Data showed that LT mutants exhibited no enterotoxicity but retained GM1-binding activity. The results from this study indicated that while not all immunodominant LTA epitopes were neutralizing, LT mutants with an individual epitope substituted lost enterotoxicity but retained GM1-binding activity. These results provided additional information to understand LT immunogenicity and enterotoxicity and suggested the potential application of LT platform for multivalent vaccines against ETEC diarrhea and other diseases.IMPORTANCE No vaccine is licensed for enterotoxigenic Escherichia coli (ETEC) strains, which remain a leading cause of diarrhea in children from developing countries and international travelers. GM1-binding heat-labile toxin (LT) which is a key virulence factor of ETEC diarrhea is a strong vaccine antigen and a self-adjuvant. LT can also serve a backbone or platform for MEFA (multiepitope fusion antigen), a newly developed structural vaccinology technology, to present heterogeneous epitopes (by replacing LT epitopes) and to mimic epitope antigenicity for development of broadly protective vaccines. Data from this study identified neutralizing LT epitopes and demonstrated that substitution of LT epitopes eliminated LT enterotoxicity without altering GM1-binding activity, suggesting LT is potentially a versatile MEFA platform to present heterogeneous epitopes for multivalent vaccines against ETEC and other pathogens.
Collapse
Affiliation(s)
- Jiachen Huang
- Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, Kansas, USA
| | - Qiangde Duan
- Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, Kansas, USA
| | - Weiping Zhang
- Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, Kansas, USA
| |
Collapse
|
25
|
Duan Q, Lu T, Garcia C, Yañez C, Nandre RM, Sack DA, Zhang W. Co-administered Tag-Less Toxoid Fusion 3xSTa N12S-mnLT R192G/L211A and CFA/I/II/IV MEFA (Multiepitope Fusion Antigen) Induce Neutralizing Antibodies to 7 Adhesins (CFA/I, CS1-CS6) and Both Enterotoxins (LT, STa) of Enterotoxigenic Escherichia coli (ETEC). Front Microbiol 2018; 9:1198. [PMID: 29922268 PMCID: PMC5996201 DOI: 10.3389/fmicb.2018.01198] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/16/2018] [Indexed: 11/23/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) bacteria remain a leading cause of children's diarrhea and travelers' diarrhea. Vaccines that induce antibodies to block ETEC bacterial adherence and to neutralize toxin enterotoxicity can be effective against ETEC-associated diarrhea. Recent studies showed that 6xHis-tagged CFA/I/II/IV multiepitope fusion antigen (MEFA) induced broad-spectrum antibodies to inhibit adherence of the seven most important ETEC adhesins (CFA/I, CS1 to CS6) (Ruan et al., 2014a) and 6xHis-tagged toxoid fusion antigen 3xSTaN12S-mnLTR192G/L211A (previously named as 3xSTaN12S-dmLT) elicited antibodies to neutralize both heat-labile toxin (LT) and heat-stable toxin (STa) produced by ETEC strains (Ruan et al., 2014b). In this study, we constructed two new genes to express tag-less toxoid fusion 3xSTaN12S-mnLTR192G/L211A and tag-less CFA/I/II/IV MEFA and then examined immunogenicity of each tag-less protein in mouse immunization. We further combined two tag-less proteins and investigated antigen co-administration in mice. Data showed that mice immunized with tag-less 3xSTaN12S-mnLTR192G/L211A or tag-less CFA/I/II/IV MEFA developed antigen-specific IgG antibody responses, and mice co-administered with two tag-less proteins induced neutralizing antibodies against seven adhesins and both toxins. These results indicated tag-less toxoid fusion 3xSTaN12S-mnLTR192G/L211A and tag-less CFA/I/II/IV MEFA administered individually or combined induced neutralizing antitoxin and/or anti-adhesin antibodies, and suggested the potential application of two tag-less proteins for ETEC vaccine development.
Collapse
Affiliation(s)
- Qiangde Duan
- Department of Diagnostic Medicine, Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, United States
| | - Ti Lu
- Department of Diagnostic Medicine, Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, United States
| | - Carolina Garcia
- Department of Diagnostic Medicine, Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, United States
| | - Coraima Yañez
- Department of Diagnostic Medicine, Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, United States
| | - Rahul M. Nandre
- Department of Diagnostic Medicine, Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, United States
| | - David A. Sack
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
| | - Weiping Zhang
- Department of Diagnostic Medicine, Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, United States
| |
Collapse
|
26
|
Abstract
Diarrhoeal disease (scours) in piglets, often associated with enterotoxigenic Escherichia coli (ETEC), is a substantial financial burden to the pig industry worldwide. Previous research has not explicitly examined the relationships between farm, pen and microbiological factors. Here we present a state of the art analysis to reveal empirical indirect – as well as direct – associations between management factors as putative risks for scours in pre- and post-weaned piglets. A Bayesian Network is constructed to identify the optimal structural model describing the relationships between risk factors. An additive model is then built to estimate more epidemiologically familiar odds ratios. Farm-level variance dominates the model, making many pen-level associations null. However, there is evidence that pre-weaning scours are less likely on farms with <400 sows (0.14, 0.03–0.50). Our results strongly suggest that smaller production units (piglets/pen) could reduce the incidence of scours in piglets. There is also some evidence that ownership of other livestock is a potential risk factor for pre-weaning scours, although this was observed only at one farm. Future research should be directed at better understanding the role of herd size and investigating the relationship between managing other livestock and the occurrence of scours in pig herds.
Collapse
|
27
|
Rhouma M, Fairbrother JM, Beaudry F, Letellier A. Post weaning diarrhea in pigs: risk factors and non-colistin-based control strategies. Acta Vet Scand 2017; 59:31. [PMID: 28526080 PMCID: PMC5437690 DOI: 10.1186/s13028-017-0299-7] [Citation(s) in RCA: 243] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 05/11/2017] [Indexed: 12/20/2022] Open
Abstract
Post-weaning diarrhea (PWD) is one of the most serious threats for the swine industry worldwide. It is commonly associated with the proliferation of enterotoxigenic Escherichia coli in the pig intestine. Colistin, a cationic antibiotic, is widely used in swine for the oral treatment of intestinal infections caused by E. coli, and particularly of PWD. However, despite the effectiveness of this antibiotic in the treatment of PWD, several studies have reported high rates of colistin resistant E. coli in swine. Furthermore, this antibiotic is considered of very high importance in humans, being used for the treatment of infections due to multidrug-resistant (MDR) Gram-negative bacteria (GNB). Moreover, the recent discovery of the mcr-1 gene encoding for colistin resistance in Enterobacteriaceae on a conjugative stable plasmid has raised great concern about the possible loss of colistin effectiveness for the treatment of MDR-GNB in humans. Consequently, it has been proposed that the use of colistin in animal production should be considered as a last resort treatment only. Thus, to overcome the economic losses, which would result from the restriction of use of colistin, especially for prophylactic purposes in PWD control, we believe that an understanding of the factors contributing to the development of this disease and the putting in place of practical alternative strategies for the control of PWD in swine is crucial. Such alternatives should improve animal gut health and reduce economic losses in pigs without promoting bacterial resistance. The present review begins with an overview of risk factors of PWD and an update of colistin use in PWD control worldwide in terms of quantities and microbiological outcomes. Subsequently, alternative strategies to the use of colistin for the control of this disease are described and discussed. Finally, a practical approach for the control of PWD in its various phases is proposed.
Collapse
|
28
|
Early Events of Enterotoxigenic Escherichia coli Colonization on Gut Barrier Function: No Longer UndETECted? Dig Dis Sci 2017; 62:828-830. [PMID: 28168578 DOI: 10.1007/s10620-017-4481-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
29
|
Van Breda LK, Dhungyel OP, Ginn AN, Iredell JR, Ward MP. Pre- and post-weaning scours in southeastern Australia: A survey of 22 commercial pig herds and characterisation of Escherichia coli isolates. PLoS One 2017; 12:e0172528. [PMID: 28273152 PMCID: PMC5342203 DOI: 10.1371/journal.pone.0172528] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/06/2017] [Indexed: 11/21/2022] Open
Abstract
Diarrhoeal diseases in piglets caused by Escherichia coli are responsible for substantial losses each year in the Australian pig industry. A cross-sectional survey was conducted (September 2013–May 2014) across 22 commercial pig herds located in southeastern Australia: NSW (n = 9); VIC (n = 10); and SA (n = 3), to estimate the prevalence of E. coli associated diarrhoea in pre- and post-weaned piglets and to identify key risk factors associated with E. coli disease. A questionnaire on management and husbandry practices was included. Faecal samples (n = 50 from each herd) were tested for the presence of β-haemolytic E. coli. Species level identification was confirmed by matrix-assisted laser desorption / ionisation time-of-flight mass spectrometry (MALDI-TOF/MS). ETEC virulence and enterotoxin genes (F4, F5, F6, F18, F41, STa, STb and LT) were screened for by multiplex PCR. This study assessed 60 potential risk factors for E. coli disease in post-weaned piglets, with 2 key factors–recent disease events and the presence of bedding, statistically associated with the presence of post-weaning scours. The prevalence of diarrhea in pre-weaned pens was 17% (16/93), compared with 24% (24/102) in post-weaned pens. The most prevalent β-haemolytic ETEC genes were F18 (32%) and STb (32%) but isolates were more likely to contain F4:STb (11 of 22 herds, 23%), than F18:STb (5 of 22 herds, 6%). These findings indicate that recent disease events that have occurred within the last 12 months, and by the use of bedding or not maintaining fresh bedding can have significant impacts on piglet diarrhoea.
Collapse
Affiliation(s)
| | - Om P. Dhungyel
- The University of Sydney, Faculty of Veterinary Science, Camden, Australia
| | - Andrew N. Ginn
- Centre for Infectious Diseases and Microbiology, The Westmead Millennium Institute for Medical Research, The University of Sydney, Westmead Hospital, Westmead, Australia
- Antimicrobial Resistance Reference Laboratory, Centre for Infectious Diseases and Microbiology Laboratory Services, Pathology West, Westmead, Australia
| | - Jonathan R. Iredell
- Centre for Infectious Diseases and Microbiology, The Westmead Millennium Institute for Medical Research, The University of Sydney, Westmead Hospital, Westmead, Australia
| | - Michael P. Ward
- The University of Sydney, Faculty of Veterinary Science, Camden, Australia
- * E-mail:
| |
Collapse
|
30
|
Nandre RM, Duan Q, Wang Y, Zhang W. Passive antibodies derived from intramuscularly immunized toxoid fusion 3xSTa N12S-dmLT protect against STa+ enterotoxigenic Escherichia coli (ETEC) diarrhea in a pig model. Vaccine 2016; 35:552-556. [PMID: 28017433 DOI: 10.1016/j.vaccine.2016.12.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/28/2016] [Accepted: 12/10/2016] [Indexed: 10/20/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) strains are among the most common causes of children's diarrhea and travelers' diarrhea. Developing effective vaccines against ETEC associated diarrhea becomes a top priority. ETEC heat-labile toxin (LT) and heat-stable toxin (STa) toxoid fusion 3xSTaN12S-dmLT was demonstrated recently to induce neutralizing antitoxin antibodies in intraperitoneally or subcutaneously immunized mice. However, whether antibodies derived from this toxoid fusion are protective against ETEC diarrhea has not been examined. In this study, we intramuscularly immunized pregnant gilts with toxoid fusion 3xSTaN12S-dmLT, challenged suckling piglets with a STa-positive ETEC strain, and assessed protective efficacy of passive acquire antitoxin antibodies against ETEC diarrhea. Data showed all three immunized gilts developed anti-STa IgG and IgA antibodies, and piglets born to the immunized dams acquired anti-STa and anti-LT antibodies. When challenged with a STa+ ETEC strain, none of the piglets born to the immunized dams developed watery diarrhea, with 20 piglets remained normal and the other 8 piglets developed mild diarrhea indicated with stained butt. In contrast, the control dams and born piglets had no anti-STa or anti-LT antibodies detected, and 26 out 32 piglets developed watery diarrhea after challenge of the STa+ ETEC strain. These results indicated that passive acquired anti-STa antibodies are protective against ETEC diarrhea, and suggested potential application of toxoid fusion 3xSTaN12S-dmLT in ETEC vaccine development.
Collapse
Affiliation(s)
- Rahul M Nandre
- Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA
| | - Qiangde Duan
- Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA
| | - Yin Wang
- Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA
| | - Weiping Zhang
- Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA.
| |
Collapse
|
31
|
Dubreuil JD, Isaacson RE, Schifferli DM. Animal Enterotoxigenic Escherichia coli. EcoSal Plus 2016; 7:10.1128/ecosalplus.ESP-0006-2016. [PMID: 27735786 PMCID: PMC5123703 DOI: 10.1128/ecosalplus.esp-0006-2016] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Indexed: 12/13/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is the most common cause of E. coli diarrhea in farm animals. ETEC are characterized by the ability to produce two types of virulence factors: adhesins that promote binding to specific enterocyte receptors for intestinal colonization and enterotoxins responsible for fluid secretion. The best-characterized adhesins are expressed in the context of fimbriae, such as the F4 (also designated K88), F5 (K99), F6 (987P), F17, and F18 fimbriae. Once established in the animal small intestine, ETEC produce enterotoxin(s) that lead to diarrhea. The enterotoxins belong to two major classes: heat-labile toxins that consist of one active and five binding subunits (LT), and heat-stable toxins that are small polypeptides (STa, STb, and EAST1). This review describes the disease and pathogenesis of animal ETEC, the corresponding virulence genes and protein products of these bacteria, their regulation and targets in animal hosts, as well as mechanisms of action. Furthermore, vaccines, inhibitors, probiotics, and the identification of potential new targets by genomics are presented in the context of animal ETEC.
Collapse
Affiliation(s)
- J Daniel Dubreuil
- Faculté de Médecine Vétérinaire, Université de Montréal, Québec J2S 7C6, Canada
| | - Richard E Isaacson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108
| | - Dieter M Schifferli
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
32
|
Rausch D, Ruan X, Nandre R, Duan Q, Hashish E, Casey TA, Zhang W. Antibodies derived from a toxoid MEFA (multiepitope fusion antigen) show neutralizing activities against heat-labile toxin (LT), heat-stable toxins (STa, STb), and Shiga toxin 2e (Stx2e) of porcine enterotoxigenic Escherichia coli (ETEC). Vet Microbiol 2016; 202:79-89. [PMID: 26878972 PMCID: PMC7172483 DOI: 10.1016/j.vetmic.2016.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/22/2016] [Accepted: 02/04/2016] [Indexed: 11/18/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) strains are the main cause of diarrhea in pigs. Pig diarrhea especially post-weaning diarrhea remains one of the most important swine diseases. ETEC bacterial fimbriae including K88, F18, 987P, K99 and F41 promote bacterial attachment to intestinal epithelial cells and facilitate ETEC colonization in pig small intestine. ETEC enterotoxins including heat-labile toxin (LT) and heat-stable toxins type Ia (porcine-type STa) and type II (STb) stimulate fluid hyper-secretion, leading to watery diarrhea. Blocking bacteria colonization and/or neutralizing enterotoxicity of ETEC toxins are considered effective prevention against ETEC diarrhea. In this study, we applied the MEFA (multiepitope fusion antigen) strategy to create toxoid MEFAs that carried antigenic elements of ETEC toxins, and examined for broad antitoxin immunogenicity in a murine model. By embedding STa toxoid STaP12F (NTFYCCELCCNFACAGCY), a STb epitope (KKDLCEHY), and an epitope of Stx2e A subunit (QSYVSSLN) into the A1 peptide of a monomeric LT toxoid (LTR192G), two toxoid MEFAs, 'LTR192G-STb-Stx2e-STaP12F' and 'LTR192G-STb-Stx2e-3xSTaP12F' which carried three copies of STaP12F, were constructed. Mice intraperitoneally immunized with each toxoid MEFA developed IgG antibodies to all four toxins. Induced antibodies showed in vitro neutralizing activities against LT, STa, STb and Stx2e toxins. Moreover, suckling piglets born by a gilt immunized with 'LTR192G-STb-Stx2e-3xSTaP12F' were protected when challenged with ETEC strains, whereas piglets born by a control gilt developed diarrhea. Results from this study showed that the toxoid MEFA induced broadly antitoxin antibodies, and suggested potential application of the toxoid MEFA for developing a broad-spectrum vaccine against ETEC diarrhea in pigs.
Collapse
Affiliation(s)
- Dana Rausch
- The Center for Infectious Disease Research & Vaccinology/Veterinary & Biomedical Sciences Department, South Dakota State University, Brookings, SD 57006, USA
| | - Xiaosai Ruan
- The Center for Infectious Disease Research & Vaccinology/Veterinary & Biomedical Sciences Department, South Dakota State University, Brookings, SD 57006, USA; Kansas State University College of Veterinary Medicine, Diagnostic Medicine/Pathobiology Department, Manhattan, KS 66506, USA
| | - Rahul Nandre
- Kansas State University College of Veterinary Medicine, Diagnostic Medicine/Pathobiology Department, Manhattan, KS 66506, USA
| | - Qiangde Duan
- Kansas State University College of Veterinary Medicine, Diagnostic Medicine/Pathobiology Department, Manhattan, KS 66506, USA
| | - Emad Hashish
- The Center for Infectious Disease Research & Vaccinology/Veterinary & Biomedical Sciences Department, South Dakota State University, Brookings, SD 57006, USA
| | - Thomas A Casey
- National Animal Disease Center, Agricultural Research Service, USDA, Ames, IA 50010, USA
| | - Weiping Zhang
- The Center for Infectious Disease Research & Vaccinology/Veterinary & Biomedical Sciences Department, South Dakota State University, Brookings, SD 57006, USA; Kansas State University College of Veterinary Medicine, Diagnostic Medicine/Pathobiology Department, Manhattan, KS 66506, USA.
| |
Collapse
|
33
|
Ling M, Peng Z, Cheng L, Deng L. Rapid Fluorescent Detection of Enterotoxigenic Escherichia coli (ETEC) K88 Based on Graphene Oxide-Dependent Nanoquencher and Klenow Fragment-Triggered Target Cyclic Amplification. APPLIED SPECTROSCOPY 2015; 69:1175-1181. [PMID: 26449811 DOI: 10.1366/15-07881] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Based on Klenow fragment (KF)-assisted target recycling amplification and graphene oxide (GO), a novel aptasensor, containing a capture probe (CP) and a signal probe (SP), was constructed and applied for the rapid detection of enterotoxigenic Escherichia coli (ETEC) K88. The CP was constructed of regions I and II, where the region I is aptamer sequence of ETEC K88 and the region II can form a double-stranded DNA structure with the SP. The SP was labeled with carboxyfluorescein (FAM) and acted as the primer sequence of the polymerization reaction. Before the targets were added, the two probes formed a partial double-strand junction (PDSJ) on the surface of the GO and the fluorescence was completely quenched. In the presence of the targets, the fluorescence was recovered due to the formation of the target-aptamer complex and its separation from the surface of the GO. Following this, the target-aptamer complex initiated the polymerization of the DNA strand in the presence of deoxynucleotides (dNTPs) and the KF. The displaced target then combined into another PDSJ, and the cycle started anew, leading to the formation of numerous complementary double-stranded DNAs. Meanwhile, the fluorescence signal was significantly enhanced. The results indicated that the established sensor has higher sensitivity specificity to its target bacteria in a wide range of 1 × 10(2) to 1 × 10(8) colony-forming units (CFU) mL(-1). The detection limit based on a signal-to-noise ratio (S/N) of 3 is 1 × 10(2) CFU mL(-1). More important, this rapid detection method is superior to other methods, having not only a short detection time but also a low fluorescence background, and is cheaper and has a wider applicability because its probes are easily designed and synthesized. Given these factors, our detection system has great prospects as a potential alternative to conventional ETEC K88 detection.
Collapse
Affiliation(s)
- Min Ling
- Hunan Normal University, Department of Microbiology, College of Life Science, Changsha 410081, China
| | | | | | | |
Collapse
|
34
|
Heat-labile enterotoxin of Escherichia coli promotes intestinal colonization of Salmonella enterica. Comp Immunol Microbiol Infect Dis 2015; 43:1-7. [PMID: 26616654 DOI: 10.1016/j.cimid.2015.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 08/31/2015] [Accepted: 09/12/2015] [Indexed: 02/04/2023]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is an important cause of infantile and travellers' diarrhoea, which poses a serious health burden, especially in developing countries. In addition, ETEC bacteria are a major cause of illness and death in neonatal and recently weaned pigs. The production of a heat-labile enterotoxin (LT) promotes the colonization and pathogenicity of ETEC and may exacerbate co-infections with other enteric pathogens such as Salmonella enterica. We showed that the intraintestinal presence of LT dramatically increased the intestinal Salmonella Typhimurium load in experimentally inoculated pigs. This could not be explained by direct alteration of the invasion or survival capacity of Salmonella in enterocytes, in vitro. However, we demonstrated that LT affects the enteric mucus layer composition in a mucus-secreting goblet cell line by significantly decreasing the expression of mucin 4. The current results show that LT alters the intestinal mucus composition and aggravates a Salmonella Typhimurium infection, which may result in the exacerbation of the diarrhoeal illness.
Collapse
|
35
|
Li X, Wang L, Zhen Y, Li S, Xu Y. Chicken egg yolk antibodies (IgY) as non-antibiotic production enhancers for use in swine production: a review. J Anim Sci Biotechnol 2015. [PMID: 26309735 DOI: 10.1186/s40104-015-0038-8.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In recent years, the use of in-feed antibiotics for growth and disease prevention in livestock production has been under severe scrutiny. The use and misuse of in-feed antibiotics has led to problems with drug residues in animal products and increased bacterial resistance. Chicken egg yolk antibodies (IgY) have attracted considerable attention as an alternative to antibiotics to maintain swine health and performance. Oral administration of IgY possesses many advantages over mammalian IgG such as cost-effectiveness, convenience and high yield. This review presents an overview of the potential to use IgY immunotherapy for the prevention and treatment of swine diarrhea diseases and speculates on the future of IgY technology. Included are a review of the potential applications of IgY in the control of enteric infections of either bacterial or viral origin such as enterotoxigenic Escherichia coli, Salmonella spp., rotavirus, porcine transmissible gastroenteritis virus, and porcine epidemic diarrhea virus. Some potential obstacles to the adoption of IgY technology are also discussed.
Collapse
Affiliation(s)
- Xiaoyu Li
- School of Life Science and Technology, Dalian University of Technology, Dalian, 116024 China ; Ministry of Education Center for Food Safety of Animal Origin, Dalian, 116620 China
| | - Lili Wang
- School of Life Science and Technology, Dalian University of Technology, Dalian, 116024 China ; Ministry of Education Center for Food Safety of Animal Origin, Dalian, 116620 China
| | - Yuhong Zhen
- Department of Pharmacy, Dalian Medical University, Dalian, 116044 China
| | - Shuying Li
- Dalian SEM Bio-Engineering Technology Co. Ltd, Dalian, 116620 China
| | - Yongping Xu
- School of Life Science and Technology, Dalian University of Technology, Dalian, 116024 China ; Ministry of Education Center for Food Safety of Animal Origin, Dalian, 116620 China
| |
Collapse
|
36
|
Li X, Wang L, Zhen Y, Li S, Xu Y. Chicken egg yolk antibodies (IgY) as non-antibiotic production enhancers for use in swine production: a review. J Anim Sci Biotechnol 2015; 6:40. [PMID: 26309735 PMCID: PMC4549021 DOI: 10.1186/s40104-015-0038-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/30/2015] [Indexed: 11/20/2022] Open
Abstract
In recent years, the use of in-feed antibiotics for growth and disease prevention in livestock production has been under severe scrutiny. The use and misuse of in-feed antibiotics has led to problems with drug residues in animal products and increased bacterial resistance. Chicken egg yolk antibodies (IgY) have attracted considerable attention as an alternative to antibiotics to maintain swine health and performance. Oral administration of IgY possesses many advantages over mammalian IgG such as cost-effectiveness, convenience and high yield. This review presents an overview of the potential to use IgY immunotherapy for the prevention and treatment of swine diarrhea diseases and speculates on the future of IgY technology. Included are a review of the potential applications of IgY in the control of enteric infections of either bacterial or viral origin such as enterotoxigenic Escherichia coli, Salmonella spp., rotavirus, porcine transmissible gastroenteritis virus, and porcine epidemic diarrhea virus. Some potential obstacles to the adoption of IgY technology are also discussed.
Collapse
Affiliation(s)
- Xiaoyu Li
- />School of Life Science and Technology, Dalian University of Technology, Dalian, 116024 China
- />Ministry of Education Center for Food Safety of Animal Origin, Dalian, 116620 China
| | - Lili Wang
- />School of Life Science and Technology, Dalian University of Technology, Dalian, 116024 China
- />Ministry of Education Center for Food Safety of Animal Origin, Dalian, 116620 China
| | - Yuhong Zhen
- />Department of Pharmacy, Dalian Medical University, Dalian, 116044 China
| | - Shuying Li
- />Dalian SEM Bio-Engineering Technology Co. Ltd, Dalian, 116620 China
| | - Yongping Xu
- />School of Life Science and Technology, Dalian University of Technology, Dalian, 116024 China
- />Ministry of Education Center for Food Safety of Animal Origin, Dalian, 116620 China
| |
Collapse
|
37
|
Relationship between heat-labile enterotoxin secretion capacity and virulence in wild type porcine-origin enterotoxigenic Escherichia coli strains. PLoS One 2015; 10:e0117663. [PMID: 25768732 PMCID: PMC4358887 DOI: 10.1371/journal.pone.0117663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 12/30/2014] [Indexed: 02/07/2023] Open
Abstract
Heat-labile enterotoxin (LT) is an important virulence factor secreted by some strains of enterotoxigenic Escherichia coli (ETEC). The prototypic human-origin strain H10407 secretes LT via a type II secretion system (T2SS). We sought to determine the relationship between the capacity to secrete LT and virulence in porcine-origin wild type (WT) ETEC strains. Sixteen WT ETEC strains isolated from cases of severe diarrheal disease were analyzed by GM1ganglioside enzyme-linked immunosorbent assay to measure LT concentrations in culture supernatants. All strains had detectable LT in supernatants by 2 h of culture and 1 strain, which was particularly virulent in gnotobiotic piglets (3030-2), had the highest LT secretion level all porcine-origin WT strains tested (P<0.05). The level of LT secretion (concentration in supernatants at 6-h culture) explained 92% of the variation in time-to-a-moribund-condition (R2 = 0.92, P<0.0001) in gnotobiotic piglets inoculated with either strain 3030-2, or an ETEC strain of lesser virulence (2534-86), or a non-enterotoxigenic WT strain (G58-1). All 16 porcine ETEC strains were positive by PCR analysis for the T2SS genes, gspD and gspK, and bioinformatic analysis of 4 porcine-origin strains for which complete genomic sequences were available revealed a T2SS with a high degree of homology to that of H10407. Maximum Likelihood phylogenetic trees constructed using T2SS genes gspC, gspD, gspE and homologs showed that strains 2534-86 and 3030-2 clustered together in the same clade with other porcine-origin ETEC strains in the database, UMNK88 and UMN18. Protein modeling of the ATPase gene (gspE) further revealed a direct relationship between the predicted ATP-binding capacities and LT secretion levels as follows: H10407, -8.8 kcal/mol and 199 ng/ml; 3030-2, -8.6 kcal/mol and 133 ng/ml; and 2534-86, -8.5 kcal/mol and 80 ng/ml. This study demonstrated a direct relationship between predicted ATP-binding capacity of GspE and LT secretion, and between the latter and virulence.
Collapse
|
38
|
Nassour H, Dubreuil JD. Escherichia coli STb enterotoxin dislodges claudin-1 from epithelial tight junctions. PLoS One 2014; 9:e113273. [PMID: 25409315 PMCID: PMC4237405 DOI: 10.1371/journal.pone.0113273] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 10/25/2014] [Indexed: 12/26/2022] Open
Abstract
Enterotoxigenic Escherichia coli produce various heat-labile and heat-stable enterotoxins. STb is a low molecular weight heat-resistant toxin responsible for diarrhea in farm animals, mainly young pigs. A previous study demonstrated that cells having internalized STb toxin induce epithelial barrier dysfunction through changes in tight junction (TJ) proteins. These modifications contribute probably to the diarrhea observed. To gain insight into the mechanism of increased intestinal permeability following STb exposure we treated human colon cells (T84) with purified STb toxin after which cells were harvested and proteins extracted. Using a 1% Nonidet P-40-containing solution we investigated the distribution of claudin-1, a major structural and functional TJ protein responsible for the epithelium impermeability, between membrane (NP40-insoluble) and the cytoplasmic (NP-40 soluble) location. Using immunoblot and confocal microscopy, we observed that treatment of T84 cell monolayers with STb induced redistribution of claudin-1. After 24 h, cells grown in Ca++-free medium treated with STb showed about 40% more claudin-1 in the cytoplasm compare to the control. Switching from Ca++-free to Ca++-enriched medium (1.8 mM) increased the dislodgement rate of claudin-1 as comparable quantitative delocalization was observed after only 6 h. Medium supplemented with the same concentration of Mg++ or Zn++ did not affect the dislodgement rate compared to the Ca++-free medium. Using anti-phosphoserine and anti-phosphothreonine antibodies, we observed that the loss of membrane claudin-1 was accompanied by dephosphorylation of this TJ protein. Overall, our findings showed an important redistribution of claudin-1 in cells treated with STb toxin. The loss of phosphorylated TJ membrane claudin-1 is likely to be involved in the increased permeability observed. The mechanisms by which these changes are brought about remain to be elucidated.
Collapse
Affiliation(s)
- Hassan Nassour
- GREMIP, Faculty of Veterinary Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - J Daniel Dubreuil
- GREMIP, Faculty of Veterinary Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
39
|
Shamsuzzaman, Dar AM, Khanam H, Gatoo MA. Anticancer and antimicrobial evaluation of newly synthesized steroidal 5,6 fused benzothiazines. ARAB J CHEM 2014. [DOI: 10.1016/j.arabjc.2013.06.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
40
|
Regon M, Pathak DC, Tamuli SM, Baruah GK. Serotyping of Escherichia coli isolated from piglet diarrhea. Vet World 2014. [DOI: 10.14202/vetworld.2014.614-616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
41
|
You J, Xu Y, Li H, Wang L, Wu F, Xu F, Jin L, Li S, Li X. Chicken egg yolk immunoglobulin (IgY) developed against fusion protein LTB-STa-STb neutralizes the toxicity of Escherichia coli
heat-stable enterotoxins. J Appl Microbiol 2014; 117:320-8. [DOI: 10.1111/jam.12525] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/07/2014] [Accepted: 04/12/2014] [Indexed: 11/28/2022]
Affiliation(s)
- J. You
- School of Life Science and Biotechnology; Dalian University of Technology; Dalian Liaoning China
- Postdoctoral Working Station; Dalian SEM Bio-Engineering Technology Co., Ltd.; Dalian Liaoning China
| | - Y. Xu
- School of Life Science and Biotechnology; Dalian University of Technology; Dalian Liaoning China
- Ministry of Education Center for Food Safety of Animal Origin; Dalian Liaoning China
| | - H. Li
- School of Life Science and Biotechnology; Dalian University of Technology; Dalian Liaoning China
| | - L. Wang
- School of Life Science and Biotechnology; Dalian University of Technology; Dalian Liaoning China
| | - F. Wu
- School of Life Science and Biotechnology; Dalian University of Technology; Dalian Liaoning China
| | - F. Xu
- School of Life Science and Biotechnology; Dalian University of Technology; Dalian Liaoning China
| | - L. Jin
- School of Life Science and Biotechnology; Dalian University of Technology; Dalian Liaoning China
- Ministry of Education Center for Food Safety of Animal Origin; Dalian Liaoning China
| | - S. Li
- Postdoctoral Working Station; Dalian SEM Bio-Engineering Technology Co., Ltd.; Dalian Liaoning China
| | - X. Li
- School of Life Science and Biotechnology; Dalian University of Technology; Dalian Liaoning China
- Ministry of Education Center for Food Safety of Animal Origin; Dalian Liaoning China
| |
Collapse
|
42
|
Zhou M, Yu H, Yin X, Sabour PM, Chen W, Gong J. Lactobacillus zeae protects Caenorhabditis elegans from enterotoxigenic Escherichia coli-caused death by inhibiting enterotoxin gene expression of the pathogen. PLoS One 2014; 9:e89004. [PMID: 24558463 PMCID: PMC3928337 DOI: 10.1371/journal.pone.0089004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 01/13/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The nematode Caenorhabditis elegans has become increasingly used for screening antimicrobials and probiotics for pathogen control. It also provides a useful tool for studying microbe-host interactions. This study has established a C. elegans life-span assay to preselect probiotic bacteria for controlling K88(+) enterotoxigenic Escherichia coli (ETEC), a pathogen causing pig diarrhea, and has determined a potential mechanism underlying the protection provided by Lactobacillus. METHODOLOGY/PRINCIPAL FINDINGS Life-span of C. elegans was used to measure the response of worms to ETEC infection and protection provided by lactic acid-producing bacteria (LAB). Among 13 LAB isolates that varied in their ability to protect C. elegans from death induced by ETEC strain JG280, Lactobacillus zeae LB1 offered the highest level of protection (86%). The treatment with Lactobacillus did not reduce ETEC JG280 colonization in the nematode intestine. Feeding E. coli strain JFF4 (K88(+) but lacking enterotoxin genes of estA, estB, and elt) did not cause death of worms. There was a significant increase in gene expression of estA, estB, and elt during ETEC JG280 infection, which was remarkably inhibited by isolate LB1. The clone with either estA or estB expressed in E. coli DH5α was as effective as ETEC JG280 in killing the nematode. However, the elt clone killed only approximately 40% of worms. The killing by the clones could also be prevented by isolate LB1. The same isolate only partially inhibited the gene expression of enterotoxins in both ETEC JG280 and E. coli DH5α in-vitro. CONCLUSIONS/SIGNIFICANCE The established life-span assay can be used for studies of probiotics to control ETEC (for effective selection and mechanistic studies). Heat-stable enterotoxins appeared to be the main factors responsible for the death of C. elegans. Inhibition of ETEC enterotoxin production, rather than interference of its intestinal colonization, appears to be the mechanism of protection offered by Lactobacillus.
Collapse
Affiliation(s)
- Mengzhou Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Hai Yu
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Xianhua Yin
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Parviz M. Sabour
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Joshua Gong
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| |
Collapse
|
43
|
Characterization of heat-stable (STa) toxoids of enterotoxigenic Escherichia coli fused to double mutant heat-labile toxin peptide in inducing neutralizing Anti-STa antibodies. Infect Immun 2014; 82:1823-32. [PMID: 24549325 DOI: 10.1128/iai.01394-13] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A long-standing challenge in developing vaccines against enterotoxigenic Escherichia coli (ETEC), the most common bacteria causing diarrhea in children of developing countries and travelers to these countries, is to protect against heat-stable toxin type Ib (STa or hSTa). STa and heat-labile toxin (LT) are virulence determinants in ETEC diarrhea. LT antigens are often used in vaccine development, but STa has not been included because of its poor immunogenicity and potent toxicity. Toxic STa is not safe for vaccines, but only STa possessing toxicity is believed to be able to induce neutralizing antibodies. However, recent studies demonstrated that nontoxic STa derivatives (toxoids), after being fused to an LT protein, induced neutralizing antibodies and suggested that different STa toxoids fused to an LT protein might exhibit different STa antigenic propensity. In this study, we selected 14 STa toxoids from a mini-STa toxoid library based on toxicity reduction and reactivity to anti-native STa antibodies, and genetically fused each toxoid to a monomeric double mutant LT (dmLT) peptide for 14 STa-toxoid-dmLT toxoid fusions. These toxoid fusions were used to immunize mice and were characterized for induction of anti-STa antibody response. The results showed that different STa toxoids (in fusions) varied greatly in anti-STa antigenicity. Among them, STaN12S, STaN12T, and STaA14H were the top toxoids in inducing anti-STa antibodies. In vitro neutralization assays indicated that antibodies induced by the 3×STaN12S-dmLT fusion antigen exhibited the greatest neutralizing activity against STa toxin. These results suggested 3×STaN12S-dmLT is a preferred fusion antigen to induce an anti-STa antibody response and provided long-awaited information for effective ETEC vaccine development.
Collapse
|
44
|
Khan SA, Asiri AM, Basheike AA, Sharma K. Green synthesis of novel pyrazole containing Schiff base derivatives as antibacterial agents on the bases of in-vitro and DFT. ACTA ACUST UNITED AC 2013. [DOI: 10.5155/eurjchem.4.4.454-458.784] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
45
|
Ahmad A, Ahmad A, Varshney H, Rauf A, Rehan M, Subbarao N, Khan AU. Designing and synthesis of novel antimicrobial heterocyclic analogs of fatty acids. Eur J Med Chem 2013; 70:887-900. [DOI: 10.1016/j.ejmech.2013.10.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 10/14/2013] [Accepted: 10/21/2013] [Indexed: 11/26/2022]
|
46
|
|
47
|
Fekete PZ, Mateo KS, Zhang W, Moxley RA, Kaushik RS, Francis DH. Both enzymatic and non-enzymatic properties of heat-labile enterotoxin are responsible for LT-enhanced adherence of enterotoxigenic Escherichia coli to porcine IPEC-J2 cells. Vet Microbiol 2013; 164:330-5. [PMID: 23517763 DOI: 10.1016/j.vetmic.2013.02.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 02/18/2013] [Accepted: 02/20/2013] [Indexed: 10/27/2022]
Abstract
Previous studies in piglets indicate that heat labile enterotoxin (LT) expression enhances intestinal colonization by K88 adhesin-producing enterotoxigenic Escherichia coli (ETEC) as wild-type ETEC adhered to intestinal epithelium in substantially greater numbers than did non-toxigenic constructs. Enzymatic activity of the toxin was also shown to contribute to the adhesion of ETEC and non-ETEC bacteria to epithelial cells in culture. To further characterize the contribution of LT to host cell adhesion, a nontoxigenic, K88-producing E. coli was transformed with either the gene encoding for LT holotoxin, a catalytically-attenuated form of the toxin [LT(R192G)], or LTB subunits, and resultant changes in bacterial adherence to IPEC-J2 porcine intestinal epithelial cells were measured. Strains expressing LT holotoxin or mutants were able to adhere in significantly higher numbers to IPEC-J2 cells than was an isogenic, toxin-negative construct. LT+ strains were also able to significantly block binding of a wild-type LT+ ETEC strain to IPEC-J2 cells. Adherence of isogenic strains to IPEC-J2 cells was unaltered by cycloheximide treatment, suggesting that LT enhances ETEC adherence to IPEC-J2 cells independent of host cell protein synthesis. However, pretreating IPEC-J2 cells with LT promoted adherence of negatively charged latex beads (a surrogate for bacteria which carry a negative change), which adherence was inhibited by cycloheximide, suggesting LT may induce a change in epithelial cell membrane potential. Overall, these data suggest that LT may enhance ETEC adherence by promoting an association between LTB and epithelial cells, and by altering the surface charge of the host plasma membrane to promote non-specific adherence.
Collapse
Affiliation(s)
- Peter Z Fekete
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | | | | | | | | | | |
Collapse
|
48
|
Sun Z, Lawson S, Langenhorst R, McCormick KL, Brunick C, Opriessnig T, Baker R, Yoon KJ, Zhang W, Huber VC, Fang Y. Construction and immunogenicity evaluation of an epitope-based antigen against swine influenza A virus using Escherichia coli heat-labile toxin B subunit as a carrier-adjuvant. Vet Microbiol 2013; 164:229-38. [PMID: 23497910 DOI: 10.1016/j.vetmic.2013.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 02/07/2013] [Accepted: 02/15/2013] [Indexed: 11/28/2022]
Abstract
Influenza A virus causes a highly contagious respiratory disease in a variety of avian and mammalian hosts, including humans and pigs. The primary means for preventing influenza epidemics is vaccination. Epitope-based vaccine represents a new approach to achieve protective immunity. The objective of this study was to construct and evaluate the immunogenicity of an epitope-based antigen for its potential application in future influenza vaccine development. The antigen, comprised of a set of consensus influenza A virus epitopes (IAVe), was genetically linked to a subunit of the bacterial heat-labile enterotoxin (LTB) as an adjuvant. Immunogenicity of this LTB-IAVe antigen was evaluated in a pig model. Despite an inability to detect neutralizing antibodies directed toward the whole virus, humoral immunity against the IAVe was demonstrated in both serum (IgA and IgG) and mucosal secretions (IgG) of immunized pigs. Specific cellular immunity was also induced after LTB-IAVe immunization, as evidenced by up-regulating of IL-1β, IL-8, and IL-4 expression in peripheral blood mononuclear cells (PBMCs) of vaccinated pigs. In comparison to the non-immunized pigs, pigs immunized with the LTB-IAVe showed improved protection against a pathogenic H1N1 swine influenza virus challenge, with about 50% decrease of pneumonic lesions and 10-fold reduction of the viral load in lung and nasal secretion at five days post challenge. This study establishes a platform for future construction of epitope-based vaccines against influenza A virus infection.
Collapse
Affiliation(s)
- Zhi Sun
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ruan X, Zhang W. Oral immunization of a live attenuated Escherichia coli strain expressing a holotoxin-structured adhesin-toxoid fusion (1FaeG-FedF-LTA₂:5LTB) protected young pigs against enterotoxigenic E. coli (ETEC) infection. Vaccine 2013; 31:1458-63. [PMID: 23375979 DOI: 10.1016/j.vaccine.2013.01.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 01/02/2013] [Accepted: 01/15/2013] [Indexed: 10/27/2022]
Abstract
ETEC strains expressing K88 (F4) or F18 fimbriae and enterotoxins are the predominant cause of porcine post-weaning diarrhea (PWD). PWD continues causing significant economic losses to swine producers worldwide. Vaccines effectively protecting against PWD are needed. Our recent study revealed that a tripartite adhesin-toxin monomer (FaeG-FedF-LT(A2-B)) elicited protective antibodies. In this study, we constructed a new adhesin-toxoid fusion, expressed it as a 1A:5B holotoxin-structured antigen (1FaeG-FedF-LT(192A2):5LT(B)) in an avirulent Escherichia coli strain, and evaluated its vaccine potential in pig challenge studies. Piglets orally inoculated with this live strain showed no adverse effects but developed systemic and mucosal antibodies that neutralized cholera toxin and inhibited adherence of K88 and F18 fimbriae in vitro. Moreover, the immunized piglets, when were challenged with ETEC strain 3030-2 (K88ac/LT/STb), had significant fewer bacteria colonized at small intestines and did not develop diarrhea; whereas the control piglets developed severe diarrhea and died. These results indicated the 1FaeG-FedF-LT(192A2):5LT(B) fusion antigen induced protective antiadhesin and antitoxin immunity in pigs, and suggested a live attenuated vaccine can be potentially developed against porcine ETEC diarrhea. Additionally, presenting antigens in a holotoxin structure to target host local mucosal immunity can be used in vaccine development against other enteric diseases.
Collapse
Affiliation(s)
- Xiaosai Ruan
- Veterinary & Biomedical Sciences Department, The Center for Infectious Disease Research & Vaccinology, South Dakota State University, Brookings, SD 57007, USA
| | | |
Collapse
|
50
|
Khan SA, Asiri AM. Synthesis andIn VitroAntibacterial Activity of Novel Steroidal (6R)-Spiro-1,3,4-thiadiazoline Derivatives. J Heterocycl Chem 2012. [DOI: 10.1002/jhet.1014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Salman A. Khan
- Chemistry Department; Faculty of Science, King Abdul Aziz University; Jeddah 21589; Saudi Arabia
| | | |
Collapse
|