1
|
Singh P, Nath R, Venkatesh V. Comparative Genome-Wide Characterization of Microsatellites in Candida albicans and Candida dubliniensis Leading to the Development of Species-Specific Marker. Public Health Genomics 2021; 24:1-13. [PMID: 33401274 DOI: 10.1159/000512087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/30/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Microsatellites or simple sequence repeats (SSR) are related to genomic structure, function, and certain diseases of taxonomically different organisms. OBJECTIVE To characterize microsatellites in two closely related Candida species by searching and comparing 1-6 bp nucleotide motifs and utilizing them to develop species-specific markers. METHODS Whole-genome sequence was downloaded from the public domain, microsatellites were mined and analyzed, and primers were synthesized. RESULTS A total of 15,821 and 7,868 microsatellites, with mono-nucleotides (8,679) and trinucleotides (3,156) as most frequent microsatellites, were mined in Candida dubliniensis and Candida albicans, respectively. Chromosome size was found positively correlated with microsatellite number in both the species, whereas it was negatively correlated with the relative abundance and density of microsatellites. A number of unique motifs were also found in both the species. Overall, microsatellite frequencies of each chromosome in C. dubliniensis were higher than in C. albicans. CONCLUSION The features of microsatellite distribution in the two species' genomes revealed that it is probably not conserved in the genus Candida. Data generated in this article could be used for comparative genome mapping and understanding the distribution of microsatellites and genome structure between these closely related and phenotypically misidentified species and may provide a foundation for the development of a new set of species-specific microsatellite markers. Here, we also report a novel microsatellite-based marker for C. dubliniensis-specific identification.
Collapse
Affiliation(s)
- Pallavi Singh
- Department of Biotechnology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, India, .,Department of Computer Science & Engineering, UIET, CSJM University, Kanpur, India,
| | - Ravindra Nath
- Department of Computer Science & Engineering, UIET, CSJM University, Kanpur, India
| | - Vimala Venkatesh
- Department of Microbiology, King George's Medical University, Lucknow, India
| |
Collapse
|
2
|
Gitsels A, Van Lent S, Sanders N, Vanrompay D. Chlamydia: what is on the outside does matter. Crit Rev Microbiol 2020; 46:100-119. [PMID: 32093536 DOI: 10.1080/1040841x.2020.1730300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This review summarises major highlights on the structural biology of the chlamydial envelope. Chlamydiae are obligate intracellular bacteria, characterised by a unique biphasic developmental cycle. Depending on the stage of their lifecycle, they appear in the form of elementary or reticulate bodies. Since these particles have distinctive functions, it is not surprising that their envelope differs in lipid as well as in protein content. Vice versa, by identifying surface proteins, specific characteristics of the particles such as rigidity or immunogenicity may be deduced. Detailed information on the bacterial membranes will increase our understanding on the host-pathogen interactions chlamydiae employ to survive and grow and might lead to new strategies to battle chlamydial infections.
Collapse
Affiliation(s)
- Arlieke Gitsels
- Laboratory of Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Sarah Van Lent
- Laboratory of Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Niek Sanders
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Daisy Vanrompay
- Laboratory of Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
Abstract
AbstractMicrosatellites or simple sequence repeats (SSRs) are among the genetic markers most widely utilized in research. This includes applications in numerous fields such as genetic conservation, paternity testing, and molecular breeding. Though ordered draft genome assemblies of camels have been announced, including for the Arabian camel, systemic analysis of camel SSRs is still limited. The identification and development of informative and robust molecular SSR markers are essential for marker assisted breeding programs and paternity testing. Here we searched and compared perfect SSRs with 1–6 bp nucleotide motifs to characterize microsatellites for draft genome sequences of the Camelidae. We analyzed and compared the occurrence, relative abundance, relative density, and guanine-cytosine (GC) content in four taxonomically different camelid species: Camelus dromedarius, C. bactrianus, C. ferus, and Vicugna pacos. A total of 546762, 544494, 547974, and 437815 SSRs were mined, respectively. Mononucleotide SSRs were the most frequent in the four genomes, followed in descending order by di-, tetra-, tri-, penta-, and hexanucleotide SSRs. GC content was highest in dinucleotide SSRs and lowest in mononucleotide SSRs. Our results provide further evidence that SSRs are more abundant in noncoding regions than in coding regions. Similar distributions of microsatellites were found in all four species, which indicates that the pattern of microsatellites is conserved in family Camelidae.
Collapse
|
4
|
Development of Transposon Mutagenesis for Chlamydia muridarum. J Bacteriol 2019; 201:JB.00366-19. [PMID: 31501283 DOI: 10.1128/jb.00366-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/27/2019] [Indexed: 12/18/2022] Open
Abstract
Functional genetic analysis of Chlamydia has been a challenge due to the historical genetic intractability of Chlamydia, although recent advances in chlamydial genetic manipulation have begun to remove these barriers. Here, we report the development of the Himar C9 transposon system for Chlamydia muridarum, a mouse-adapted Chlamydia species that is widely used in Chlamydia infection models. We demonstrate the generation and characterization of an initial library of 33 chloramphenicol (Cam)-resistant, green fluorescent protein (GFP)-expressing C. muridarum transposon mutants. The majority of the mutants contained single transposon insertions spread throughout the C. muridarum chromosome. In all, the library contained 31 transposon insertions in coding open reading frames (ORFs) and 7 insertions in intergenic regions. Whole-genome sequencing analysis of 17 mutant clones confirmed the chromosomal locations of the insertions. Four mutants with transposon insertions in glgB, pmpI, pmpA, and pmpD were investigated further for in vitro and in vivo phenotypes, including growth, inclusion morphology, and attachment to host cells. The glgB mutant was shown to be incapable of complete glycogen biosynthesis and accumulation in the lumen of mutant inclusions. Of the 3 pmp mutants, pmpI was shown to have the most pronounced growth attenuation defect. This initial library demonstrates the utility and efficacy of stable, isogenic transposon mutants for C. muridarum The generation of a complete library of C. muridarum mutants will ultimately enable comprehensive identification of the functional genetic requirements for Chlamydia infection in vivo IMPORTANCE Historical issues with genetic manipulation of Chlamydia have prevented rigorous functional genetic characterization of the ∼1,000 genes in chlamydial genomes. Here, we report the development of a transposon mutagenesis system for C. muridarum, a mouse-adapted Chlamydia species that is widely used for in vivo investigations of chlamydial pathogenesis. This advance builds on the pioneering development of this system for C. trachomatis We demonstrate the generation of an initial library of 33 mutants containing stable single or double transposon insertions. Using these mutant clones, we characterized in vitro phenotypes associated with genetic disruptions in glycogen biosynthesis and three polymorphic outer membrane proteins.
Collapse
|
5
|
Guo W, Jelocnik M, Li J, Sachse K, Polkinghorne A, Pannekoek Y, Kaltenboeck B, Gong J, You J, Wang C. From genomes to genotypes: molecular epidemiological analysis of Chlamydia gallinacea reveals a high level of genetic diversity for this newly emerging chlamydial pathogen. BMC Genomics 2017; 18:949. [PMID: 29212448 PMCID: PMC5717833 DOI: 10.1186/s12864-017-4343-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 11/21/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chlamydia (C.) gallinacea is a recently identified bacterium that mainly infects domestic chickens. Demonstration of C. gallinacea in human atypical pneumonia suggests its zoonotic potential. Its prevalence in chickens exceeds that of C. psittaci, but genetic and genomic research on C. gallinacea is still at the beginning. In this study, we conducted whole-genome sequencing of C. gallinacea strain JX-1 isolated from an asymptomatic chicken, and comparative genomic analysis between C. gallinacea strains and related chlamydial species. RESULTS The genome of C. gallinacea JX-1 was sequenced by single-molecule, real-time technology and is comprised of a 1,059,522-bp circular chromosome with an overall G + C content of 37.93% and sequence similarity of 99.4% to type strain 08-1274/3. In addition, a plasmid designated pJX-1, almost identical to p1274 of the type strain, except for two point mutations, was only found in field strains from chicken, but not in other hosts. In contrast to chlamydial species with notably variable polymorphic membrane protein (pmp) genes and plasticity zone (PZ), these regions were conserved in both C. gallinacea strains. There were 15 predicted pmp genes, but only B, A, E1, H, G1 and G2 were apparently intact in both strains. In comparison to chlamydial species where the PZ may be up to 50 kbp, C. gallinacea strains displayed gene content reduction in the PZ (14 kbp), with strain JX-1 having a premature STOP codon in the cytotoxin (tox) gene, while tox gene is intact in the type strain. In multilocus sequence typing (MLST), 15 C. gallinacea STs were identified among 25 strains based on cognate MLST allelic profiles of the concatenated sequences. The type strain and all Chinese strains belong to two distinct phylogenetic clades. Clade of the Chinese strains separated into 14 genetically distinct lineages, thus revealing considerable genetic diversity of C. gallinacea strains in China. CONCLUSIONS In this first detailed comparative genomic analysis of C. gallinacea, we have provided evidence for substantial genetic diversity among C. gallinacea strains. How these genetic polymorphisms affect C. gallinacea biology and pathogenicity should be addressed in future studies that focus on phylogenetics and host adaption of this enigmatic bacterial agent.
Collapse
Affiliation(s)
- Weina Guo
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu 225009 People’s Republic of China
- College of Animal Science, Anhui Science and Technology University, Maanshan, Anhui China
| | - Martina Jelocnik
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, QLD Australia
| | - Jing Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu 225009 People’s Republic of China
| | - Konrad Sachse
- Institute of Bioinformatics, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Adam Polkinghorne
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, QLD Australia
| | - Yvonne Pannekoek
- Department of Microbiology, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu China
| | - Jinfeng You
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu 225009 People’s Republic of China
| | - Chengming Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu 225009 People’s Republic of China
- College of Veterinary Medicine, Auburn University, Auburn, AL USA
| |
Collapse
|
6
|
Luczak SET, Smits SHJ, Decker C, Nagel-Steger L, Schmitt L, Hegemann JH. The Chlamydia pneumoniae Adhesin Pmp21 Forms Oligomers with Adhesive Properties. J Biol Chem 2016; 291:22806-22818. [PMID: 27551038 PMCID: PMC5077213 DOI: 10.1074/jbc.m116.728915] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 08/09/2016] [Indexed: 01/31/2023] Open
Abstract
Chlamydiae sp. are obligate intracellular pathogens that cause a variety of diseases in humans. The adhesion of Chlamydiae to the eukaryotic host cell is a pivotal step in pathogenesis. The adhesin family of polymorphic membrane proteins (Pmp) in Chlamydia pneumoniae consists of 21 members. Pmp21 binds to the epidermal growth factor receptor (EGFR). Pmps contain large numbers of FXXN (where X is any amino acid) and GGA(I/L/V) motifs. At least two of these motifs are crucial for adhesion by certain Pmp21 fragments. Here we describe how the two FXXN motifs in Pmp21-D (D-Wt), a domain of Pmp21, influence its self-interaction, folding, and adhesive capacities. Refolded D-Wt molecules form oligomers with high sedimentation values (8-85 S). These oligomers take the form of elongated protofibrils, which exhibit Thioflavin T fluorescence, like the amyloid protein fragment β42. A mutant version of Pmp21-D (D-Mt), with FXXN motifs replaced by SXXV, shows a markedly reduced capacity to form oligomers. Secondary-structure assays revealed that monomers of both variants exist predominantly as random coils, whereas the oligomers form predominantly β-sheets. Adhesion studies revealed that oligomers of D-Wt (D-Wt-O) mediate significantly enhanced binding to human epithelial cells relative to D-Mt-O and monomeric protein species. Moreover, D-Wt-O binds EGFR more efficiently than D-Wt monomers. Importantly, pretreatment of human cells with D-Wt-O reduces infectivity upon subsequent challenge with C. pneumoniae more effectively than all other protein species. Hence, the FXXN motif in D-Wt induces the formation of β-sheet-rich oligomeric protofibrils, which are important for adhesion to, and subsequent infection of human cells.
Collapse
Affiliation(s)
| | | | - Christina Decker
- Institute of Physical Biology, Heinrich-Heine-University, Universitaetsstrasse 1, 40225 Duesseldorf, Germany and
| | - Luitgard Nagel-Steger
- Institute of Physical Biology, Heinrich-Heine-University, Universitaetsstrasse 1, 40225 Duesseldorf, Germany and
- ICS-6 Research Center Juelich, 52425 Juelich, Germany
| | | | | |
Collapse
|
7
|
Van Lent S, De Vos WH, Huot Creasy H, Marques PX, Ravel J, Vanrompay D, Bavoil P, Hsia RC. Analysis of Polymorphic Membrane Protein Expression in Cultured Cells Identifies PmpA and PmpH of Chlamydia psittaci as Candidate Factors in Pathogenesis and Immunity to Infection. PLoS One 2016; 11:e0162392. [PMID: 27631978 PMCID: PMC5025070 DOI: 10.1371/journal.pone.0162392] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/22/2016] [Indexed: 12/22/2022] Open
Abstract
The polymorphic membrane protein (Pmp) paralogous families of Chlamydia trachomatis, Chlamydia pneumoniae and Chlamydia abortus are putative targets for Chlamydia vaccine development. To determine whether this is also the case for Pmp family members of C. psittaci, we analyzed transcription levels, protein production and localization of several Pmps of C. psittaci. Pmp expression profiles were characterized using quantitative real-time PCR (RT-qPCR), immunofluorescence (IF) and immuno-electron microscopy (IEM) under normal and stress conditions. We found that PmpA was highly produced in all inclusions as early as 12 hpi in all biological replicates. In addition, PmpA and PmpH appeared to be unusually accessible to antibody as determined by both immunofluorescence and immuno-electron microscopy. Our results suggest an important role for these Pmps in the pathogenesis of C. psittaci, and make them promising candidates in vaccine development.
Collapse
Affiliation(s)
- Sarah Van Lent
- Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- * E-mail:
| | - Winnok H. De Vos
- Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Heather Huot Creasy
- Institute for Genome Sciences and Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, Maryland, Unites States of America
| | - Patricia X. Marques
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland, Unites States of America
| | - Jacques Ravel
- Institute for Genome Sciences and Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, Maryland, Unites States of America
| | - Daisy Vanrompay
- Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Patrik Bavoil
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland, Unites States of America
| | - Ru-ching Hsia
- University of Maryland, Baltimore, Electron Microscopy Core Imaging Facility, Maryland, Unites States of America
| |
Collapse
|
8
|
Genome microsatellite diversity within the Apicomplexa phylum. Mol Genet Genomics 2016; 291:2117-2129. [PMID: 27590734 DOI: 10.1007/s00438-016-1244-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 08/27/2016] [Indexed: 10/21/2022]
Abstract
The Apicomplexa phylum groups include unicellular and obligate intracellular protozoan parasites with an apical complex used for attachment and invasion to host cells. In this study, we analyze single sequence repeats (SSRs) in the whole genome of 20 apicomplexan organisms that represent four different lineages within the phylum. Only perfect SSRs with at least 12 nucleotides and composed of 2-6 mers were included. To better understand the association of SSR types with the genomic regions, the SSRs were classified accordingly with the genomic location into exon, intron and intergenic categories. Our results showed heterogeneous SSRs density within the studied genomes. However, the most frequent SSRs types were di- and tri-nucleotide repeats. The former was associated with intergenic regions, while the latter was associated with exon regions.
Collapse
|
9
|
Saeed AF, Wang R, Wang S. Microsatellites in Pursuit of Microbial Genome Evolution. Front Microbiol 2016; 6:1462. [PMID: 26779133 PMCID: PMC4700210 DOI: 10.3389/fmicb.2015.01462] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 12/07/2015] [Indexed: 12/27/2022] Open
Abstract
Microsatellites or short sequence repeats are widespread genetic markers which are hypermutable 1-6 bp long short nucleotide motifs. Significantly, their applications in genetics are extensive due to their ceaseless mutational degree, widespread length variations and hypermutability skills. These features make them useful in determining the driving forces of evolution by using powerful molecular techniques. Consequently, revealing important questions, for example, what is the significance of these abundant sequences in DNA, what are their roles in genomic evolution? The answers of these important questions are hidden in the ways these short motifs contributed in altering the microbial genomes since the origin of life. Even though their size ranges from 1 -to- 6 bases, these repeats are becoming one of the most popular genetic probes in determining their associations and phylogenetic relationships in closely related genomes. Currently, they have been widely used in molecular genetics, biotechnology and evolutionary biology. However, due to limited knowledge; there is a significant gap in research and lack of information concerning hypermutational mechanisms. These mechanisms play a key role in microsatellite loci point mutations and phase variations. This review will extend the understandings of impacts and contributions of microsatellite in genomic evolution and their universal applications in microbiology.
Collapse
Affiliation(s)
- Abdullah F. Saeed
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China
| | | | | |
Collapse
|
10
|
Roulis E, Bachmann N, Humphrys M, Myers G, Huston W, Polkinghorne A, Timms P. Phylogenetic analysis of human Chlamydia pneumoniae strains reveals a distinct Australian indigenous clade that predates European exploration of the continent. BMC Genomics 2015; 16:1094. [PMID: 26694618 PMCID: PMC4687280 DOI: 10.1186/s12864-015-2281-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/08/2015] [Indexed: 12/05/2022] Open
Abstract
Background The obligate intracellular bacterium Chlamydia pneumoniae is a common respiratory pathogen, which has been found in a range of hosts including humans, marsupials and amphibians. Whole genome comparisons of human C. pneumoniae have previously highlighted a highly conserved nucleotide sequence, with minor but key polymorphisms and additional coding capacity when human and animal strains are compared. Results In this study, we sequenced three Australian human C. pneumoniae strains, two of which were isolated from patients in remote indigenous communities, and compared them to all available C. pneumoniae genomes. Our study demonstrated a phylogenetically distinct human C. pneumoniae clade containing the two indigenous Australian strains, with estimates that the most recent common ancestor of these strains predates the arrival of European settlers to Australia. We describe several polymorphisms characteristic to these strains, some of which are similar in sequence to animal C. pneumoniae strains, as well as evidence to suggest that several recombination events have shaped these distinct strains. Conclusions Our study reveals a greater sequence diversity amongst both human and animal C. pneumoniae strains, and suggests that a wider range of strains may be circulating in the human population than current sampling indicates.
Collapse
Affiliation(s)
- Eileen Roulis
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.
| | - Nathan Bachmann
- Centre for Animal Health Innovation, Faculty of Science, Health, Education & Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia.
| | - Michael Humphrys
- Institute for Genomic Sciences, University of Maryland, Baltimore, MD, USA.
| | - Garry Myers
- i3 Institute, University of Technology, Sydney, NSW, Australia.
| | - Wilhelmina Huston
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia. .,i3 Institute, University of Technology, Sydney, NSW, Australia.
| | - Adam Polkinghorne
- Centre for Animal Health Innovation, Faculty of Science, Health, Education & Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia.
| | - Peter Timms
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia. .,Centre for Animal Health Innovation, Faculty of Science, Health, Education & Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia.
| |
Collapse
|
11
|
|
12
|
Comparative genomic analysis of human Chlamydia pneumoniae isolates from respiratory, brain and cardiac tissues. Genomics 2015; 106:373-83. [DOI: 10.1016/j.ygeno.2015.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 08/14/2015] [Accepted: 09/24/2015] [Indexed: 12/18/2022]
|
13
|
Vasilevsky S, Stojanov M, Greub G, Baud D. Chlamydial polymorphic membrane proteins: regulation, function and potential vaccine candidates. Virulence 2015; 7:11-22. [PMID: 26580416 DOI: 10.1080/21505594.2015.1111509] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Pmps (Polymorphic Membrane Proteins) are a group of membrane bound surface exposed chlamydial proteins that have been characterized as autotransporter adhesins and are important in the initial phase of chlamydial infection. These proteins all contain conserved GGA (I, L, V) and FxxN tetrapeptide motifs in the N-terminal portion of each protein. All chlamydial species express Pmps. Even in the chlamydia-related bacteria Waddlia chondrophila, a Pmp-like adhesin has been identified, demonstrating the importance of Pmps in Chlamydiales biology. Chlamydial species vary in the number of pmp genes and their differentially regulated expression during the infectious cycle or in response to stress. Studies have also demonstrated that Pmps are able to induce innate immune functional responses in infected cells, including production of IL-8, IL-6 and MCP-1, by activating the transcription factor NF-κB. Human serum studies have indicated that although anti-Pmp specific antibodies are produced in response to a chlamydial infection, the response is variable depending on the Pmp protein. In C. trachomatis, PmpB, PmpC, PmpD and PmpI were the proteins eliciting the strongest immune response among adolescents with and without pelvic inflammatory disease (PID). In contrast, PmpA and PmpE elicited the weakest antibody response. Interestingly, there seems to be a gender bias for Pmp recognition with a stronger anti-Pmp reactivity in male patients. Furthermore, anti-PmpA antibodies might contribute to adverse pregnancy outcomes, at least among women with PID. In vitro studies indicated that dendritic cells infected with C. muridarum were able to present PmpG and PmpF on their MHC class II receptors and T cells were able to recognize the MHC class-II bound peptides. In addition, vaccination with PmpEFGH and Major Outer Membrane Protein (MOMP) significantly protected mice against a genital tract C. muridarum infection, suggesting that Pmps may be an important component of a multi-subunit chlamydial vaccine. Thus, Pmps might be important not only for the pathogenesis of chlamydial infection, but also as potential candidate vaccine proteins.
Collapse
Affiliation(s)
- Sam Vasilevsky
- a Materno-fetal and Obstetrics Research Unit ; Department of Obstetrics and Gynecology; Maternity; University Hospital ; Lausanne , Switzerland
| | - Milos Stojanov
- a Materno-fetal and Obstetrics Research Unit ; Department of Obstetrics and Gynecology; Maternity; University Hospital ; Lausanne , Switzerland
| | - Gilbert Greub
- b Center for Research on Intracellular Bacteria; Institute of Microbiology; Faculty of Biology and Medicine; University of Lausanne and University Hospital ; Lausanne , Switzerland
| | - David Baud
- a Materno-fetal and Obstetrics Research Unit ; Department of Obstetrics and Gynecology; Maternity; University Hospital ; Lausanne , Switzerland
| |
Collapse
|
14
|
Chlamydia trachomatis In Vivo to In Vitro Transition Reveals Mechanisms of Phase Variation and Down-Regulation of Virulence Factors. PLoS One 2015. [PMID: 26207372 PMCID: PMC4514472 DOI: 10.1371/journal.pone.0133420] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Research on the obligate intracellular bacterium Chlamydia trachomatis demands culture in cell-lines, but the adaptive process behind the in vivo to in vitro transition is not understood. We assessed the genomic and transcriptomic dynamics underlying C. trachomatis in vitro adaptation of strains representing the three disease groups (ocular, epithelial-genital and lymphogranuloma venereum) propagated in epithelial cells over multiple passages. We found genetic features potentially underlying phase variation mechanisms mediating the regulation of a lipid A biosynthesis enzyme (CT533/LpxC), and the functionality of the cytotoxin (CT166) through an ON/OFF mechanism. We detected inactivating mutations in CT713/porB, a scenario suggesting metabolic adaptation to the available carbon source. CT135 was inactivated in a tropism-specific manner, with CT135-negative clones emerging for all epithelial-genital populations (but not for LGV and ocular populations) and rapidly increasing in frequency (~23% mutants per 10 passages). RNA-sequencing analyses revealed that a deletion event involving CT135 impacted the expression of multiple virulence factors, namely effectors known to play a role in the C. trachomatis host-cell invasion or subversion (e.g., CT456/Tarp, CT694, CT875/TepP and CT868/ChlaDub1). This reflects a scenario of attenuation of C. trachomatis virulence in vitro, which may take place independently or in a cumulative fashion with the also observed down-regulation of plasmid-related virulence factors. This issue may be relevant on behalf of the recent advances in Chlamydia mutagenesis and transformation where culture propagation for selecting mutants/transformants is mandatory. Finally, there was an increase in the growth rate for all strains, reflecting gradual fitness enhancement over time. In general, these data shed light on the adaptive process underlying the C. trachomatis in vivo to in vitro transition, and indicates that it would be prudent to restrict culture propagation to minimal passages and check the status of the CT135 genotype in order to avoid the selection of CT135-negative mutants, likely originating less virulent strains.
Collapse
|
15
|
Qi WH, Jiang XM, Du LM, Xiao GS, Hu TZ, Yue BS, Quan QM. Genome-Wide Survey and Analysis of Microsatellite Sequences in Bovid Species. PLoS One 2015. [PMID: 26196922 PMCID: PMC4510479 DOI: 10.1371/journal.pone.0133667] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Microsatellites or simple sequence repeats (SSRs) have become the most popular source of genetic markers, which are ubiquitously distributed in many eukaryotic and prokaryotic genomes. This is the first study examining and comparing SSRs in completely sequenced genomes of the Bovidae. We analyzed and compared the number of SSRs, relative abundance, relative density, guanine-cytosine (GC) content and proportion of SSRs in six taxonomically different bovid species: Bos taurus, Bubalus bubalis, Bos mutus, Ovis aries, Capra hircus, and Pantholops hodgsonii. Our analysis revealed that, based on our search criteria, the total number of perfect SSRs found ranged from 663,079 to 806,907 and covered from 0.44% to 0.48% of the bovid genomes. Relative abundance and density of SSRs in these Bovinae genomes were non-significantly correlated with genome size (Pearson, r < 0.420, p > 0.05). Perfect mononucleotide SSRs were the most abundant, followed by the pattern: perfect di- > tri- > penta- > tetra- > hexanucleotide SSRs. Generally, the number of SSRs, relative abundance, and relative density of SSRs decreased as the motif repeat length increased in each species of Bovidae. The most GC-content was in trinucleotide SSRs and the least was in the mononucleotide SSRs in the six bovid genomes. The GC-contents of tri- and pentanucleotide SSRs showed a great deal of similarity among different chromosomes of B. taurus, O. aries, and C. hircus. SSR number of all chromosomes in the B. taurus, O.aries, and C. hircus is closely positively correlated with chromosome sequence size (Pearson, r > 0.980, p < 0.01) and significantly negatively correlated with GC-content (Pearson, r < -0.638, p < 0.01). Relative abundance and density of SSRs in all chromosomes of the three species were significantly negatively correlated with GC-content (Pearson, r < -0.333, P < 0.05) but not significantly correlated with chromosome sequence size (Pearson, r < -0.185, P > 0.05). Relative abundances of the same nucleotide SSR type showed great similarity among different chromosomes of B. taurus, O. aries, and C. hircus.
Collapse
Affiliation(s)
- Wen-Hua Qi
- College of Life Science and Engineering, Chongqing Three Gorges University, Chongqing, 404100, China
- * E-mail:
| | - Xue-Mei Jiang
- College of Environmental and Chemistry Engineering, Chongqing Three Gorges University, Chongqing, 404100, China
| | - Lian-Ming Du
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Guo-Sheng Xiao
- College of Life Science and Engineering, Chongqing Three Gorges University, Chongqing, 404100, China
| | - Ting-Zhang Hu
- College of Life Science and Engineering, Chongqing Three Gorges University, Chongqing, 404100, China
| | - Bi-Song Yue
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Qiu-Mei Quan
- School of Life Sciences, China West Normal University, Nanchong, 637009, China
| |
Collapse
|
16
|
Nunes A, Gomes JP, Karunakaran KP, Brunham RC. Bioinformatic Analysis of Chlamydia trachomatis Polymorphic Membrane Proteins PmpE, PmpF, PmpG and PmpH as Potential Vaccine Antigens. PLoS One 2015; 10:e0131695. [PMID: 26131720 PMCID: PMC4488443 DOI: 10.1371/journal.pone.0131695] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/05/2015] [Indexed: 12/31/2022] Open
Abstract
Chlamydia trachomatis is the most important infectious cause of infertility in women with important implications in public health and for which a vaccine is urgently needed. Recent immunoproteomic vaccine studies found that four polymorphic membrane proteins (PmpE, PmpF, PmpG and PmpH) are immunodominant, recognized by various MHC class II haplotypes and protective in mouse models. In the present study, we aimed to evaluate genetic and protein features of Pmps (focusing on the N-terminal 600 amino acids where MHC class II epitopes were mapped) in order to understand antigen variation that may emerge following vaccine induced immune selection. We used several bioinformatics platforms to study: i) Pmps' phylogeny and genetic polymorphism; ii) the location and distribution of protein features (GGA(I, L)/FxxN motifs and cysteine residues) that may impact pathogen-host interactions and protein conformation; and iii) the existence of phase variation mechanisms that may impact Pmps' expression. We used a well-characterized collection of 53 fully-sequenced strains that represent the C. trachomatis serovars associated with the three disease groups: ocular (N=8), epithelial-genital (N=25) and lymphogranuloma venereum (LGV) (N=20). We observed that PmpF and PmpE are highly polymorphic between LGV and epithelial-genital strains, and also within populations of the latter. We also found heterogeneous representation among strains for GGA(I, L)/FxxN motifs and cysteine residues, suggesting possible alterations in adhesion properties, tissue specificity and immunogenicity. PmpG and, to a lesser extent, PmpH revealed low polymorphism and high conservation of protein features among the genital strains (including the LGV group). Uniquely among the four Pmps, pmpG has regulatory sequences suggestive of phase variation. In aggregate, the results suggest that PmpG may be the lead vaccine candidate because of sequence conservation but may need to be paired with another protective antigen (like PmpH) in order to prevent immune selection of phase variants.
Collapse
Affiliation(s)
- Alexandra Nunes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - João P. Gomes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Karuna P. Karunakaran
- Vaccine Research Laboratory, University of British Columbia Centre for Disease Control, Vancouver, Canada
| | - Robert C. Brunham
- Vaccine Research Laboratory, University of British Columbia Centre for Disease Control, Vancouver, Canada
- * E-mail:
| |
Collapse
|
17
|
Kebbi-Beghdadi C, Domröse A, Becker E, Cisse OH, Hegemann JH, Greub G. OmpA family proteins and Pmp-like autotransporter: new adhesins of Waddlia chondrophila. Pathog Dis 2015; 73:ftv035. [PMID: 25986220 DOI: 10.1093/femspd/ftv035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2015] [Indexed: 11/12/2022] Open
Abstract
Waddlia chondrophila is a obligate intracellular bacterium belonging to the Chlamydiales order, a clade that also includes the well-known classical Chlamydia responsible for a number of severe human and animal diseases. Waddlia is an emerging pathogen associated with adverse pregnancy outcomes in humans and abortion in ruminants. Adhesion to the host cell is an essential prerequisite for survival of every strict intracellular bacteria and, in classical Chlamydia, this step is partially mediated by polymorphic outer membrane proteins (Pmps), a family of highly diverse autotransporters that represent about 15% of the bacterial coding capacity. Waddlia chondrophila genome however only encodes one putative Pmp-like protein. Using a proteomic approach, we identified several bacterial proteins potentially implicated in the adhesion process and we characterized their expression during the replication cycle of the bacteria. In addition, we demonstrated that the Waddlia Pmp-like autotransporter as well as OmpA2 and OmpA3, two members of the extended Waddlia OmpA protein family, exhibit adhesive properties on epithelial cells. We hypothesize that the large diversity of the OmpA protein family is linked to the wide host range of these bacteria that are able to enter and multiply in various host cells ranging from protozoa to mammalian and fish cells.
Collapse
Affiliation(s)
- Carole Kebbi-Beghdadi
- Center for Research on Intracellular Bacteria (CRIB), Institute of Microbiology, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland
| | - Andreas Domröse
- Institut für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Elisabeth Becker
- Institut für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Ousmane H Cisse
- Center for Research on Intracellular Bacteria (CRIB), Institute of Microbiology, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland
| | - Johannes H Hegemann
- Institut für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Gilbert Greub
- Center for Research on Intracellular Bacteria (CRIB), Institute of Microbiology, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
18
|
Borges V, Gomes JP. Deep comparative genomics among Chlamydia trachomatis lymphogranuloma venereum isolates highlights genes potentially involved in pathoadaptation. INFECTION GENETICS AND EVOLUTION 2015; 32:74-88. [PMID: 25745888 DOI: 10.1016/j.meegid.2015.02.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/23/2015] [Accepted: 02/26/2015] [Indexed: 11/19/2022]
Abstract
Lymphogranuloma venereum (LGV) is a human sexually transmitted disease caused by the obligate intracellular bacterium Chlamydia trachomatis (serovars L1-L3). LGV clinical manifestations range from severe ulcerative proctitis (anorectal syndrome), primarily caused by the epidemic L2b strains, to painful inguinal lymphadenopathy (the typical LGV bubonic form). Besides potential host-related factors, the differential disease severity and tissue tropism among LGV strains is likely a function of the genetic backbone of the strains. We aimed to characterize the genetic variability among LGV strains as strain- or serovar-specific mutations may underlie phenotypic signatures, and to investigate the mutational events that occurred throughout the pathoadaptation of the epidemic L2b lineage. By analyzing 20 previously published genomes from L1, L2, L2b and L3 strains and two new genomes from L2b strains, we detected 1497 variant sites and about 100 indels, affecting 453 genes and 144 intergenic regions, with 34 genes displaying a clear overrepresentation of nonsynonymous mutations. Effectors and/or type III secretion substrates (almost all of those described in the literature) and inclusion membrane proteins showed amino acid changes that were about fivefold more frequent than silent changes. More than 120 variant sites occurred in plasmid-regulated virulence genes, and 66% yielded amino acid changes. The identified serovar-specific variant sites revealed that the L2b-specific mutations are likely associated with higher fitness and pointed out potential targets for future highly discriminatory diagnostic/typing tests. By evaluating the evolutionary pathway beyond the L2b clonal radiation, we observed that 90.2% of the intra-L2b variant sites occurring in coding regions involve nonsynonymous mutations, where CT456/tarp has been the main target. Considering the progress on C. trachomatis genetic manipulation, this study may constitute an important contribution for prioritizing study targets for functional genomics aiming to dissect the impact of the identified intra-LGV polymorphisms on virulence or tropism dissimilarities among LGV strains.
Collapse
Affiliation(s)
- Vítor Borges
- Reference Laboratory of Bacterial Sexually Transmitted Infections, Department of Infectious Diseases, National Institute of Health, Av. Padre Cruz, 1649-016 Lisbon, Portugal; Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Av. Padre Cruz, 1649-016 Lisbon, Portugal
| | - João Paulo Gomes
- Reference Laboratory of Bacterial Sexually Transmitted Infections, Department of Infectious Diseases, National Institute of Health, Av. Padre Cruz, 1649-016 Lisbon, Portugal; Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Av. Padre Cruz, 1649-016 Lisbon, Portugal.
| |
Collapse
|
19
|
Becker E, Hegemann JH. All subtypes of the Pmp adhesin family are implicated in chlamydial virulence and show species-specific function. Microbiologyopen 2014; 3:544-56. [PMID: 24985494 PMCID: PMC4287181 DOI: 10.1002/mbo3.186] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 04/30/2014] [Accepted: 05/15/2014] [Indexed: 01/27/2023] Open
Abstract
The bacterial pathogens Chlamydia trachomatis and C. pneumoniae are obligate intracellular parasites, cause a number of serious diseases, and can infect various cell types in humans. Chlamydial infections are probably initiated by binding of the bacterial outer membrane protein OmcB to host cell glycosaminoglycans (GAGs). Here, we show that all nine members of the polymorphic membrane protein (Pmp) family of C. trachomatis mediate adhesion to human epithelial and endothelial cells. Importantly, exposure of infectious particles to soluble recombinant Pmps blocks subsequent infection, thus implicating an important function of the entire protein family in the infection process. Analogous experiments with pairs of recombinant Pmps or a combination of Pmp and OmcB revealed that all Pmps probably act in an adhesion pathway that is distinct from the OmcB-GAG pathway. Finally, we provide evidence that the Pmps of C. trachomatis and C. pneumoniae exhibit species and tissue specificity. These findings argue for the involvement of C. trachomatis Pmps in the initial phase of infection and suggest that they may interact with a receptor other than the epidermal growth factor receptor recently identified for their counterparts in C. pneumoniae.
Collapse
Affiliation(s)
- Elisabeth Becker
- Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany
| | | |
Collapse
|
20
|
Ouyang Q, Zhao X, Feng H, Tian Y, Li D, Li M, Tan Z. High GC content of simple sequence repeats in Herpes simplex virus type 1 genome. Gene 2012; 499:37-40. [PMID: 22414335 DOI: 10.1016/j.gene.2012.02.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 02/22/2012] [Accepted: 02/24/2012] [Indexed: 10/28/2022]
Abstract
The presence, locations and composition of simple sequence repeats (SSRs) in Herpes simplex virus type 1 (HSV-1) genome were extracted and analyzed by using the software Imperfect Microsatellite Extractor (IMEx). There were 663 mon-, 502 di-, 184 tri-, 20 tetra-, 4 penta- and 4 hexanucleotide SSRs that were observed in different distribution between coding and noncoding regions in the HSV-1 genome. G/C, GC/CG, and (GGC)(n) were predominant in mononucleotide, dinucletide, trinucleotide repeats respectively. Indeed, the results showed that GC content in simple sequence repeats was notably higher than that in entire HSV-1 genome. Our data might be helpful for studying the pathogenesis, genome structure and evolution of HSV-1.
Collapse
Affiliation(s)
- Qingjian Ouyang
- College of Biology, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Saka HA, Thompson JW, Chen YS, Kumar Y, Dubois LG, Moseley MA, Valdivia RH. Quantitative proteomics reveals metabolic and pathogenic properties of Chlamydia trachomatis developmental forms. Mol Microbiol 2011; 82:1185-203. [PMID: 22014092 DOI: 10.1111/j.1365-2958.2011.07877.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Chlamydia trachomatis is an obligate intracellular pathogen responsible for ocular and genital infections of significant public health importance. C. trachomatis undergoes a biphasic developmental cycle alternating between two distinct forms: the infectious elementary body (EB), and the replicative but non-infectious reticulate body (RB). The molecular basis for these developmental transitions and the metabolic properties of the EB and RB forms are poorly understood as these bacteria have traditionally been difficult to manipulate through classical genetic approaches. Using two-dimensional liquid chromatography - tandem mass spectrometry (LC/LC-MS/MS) we performed a large-scale, label-free quantitative proteomic analysis of C. trachomatis LGV-L2 EB and RB forms. Additionally, we carried out LC-MS/MS to analyse the membranes of the pathogen-containing vacuole ('inclusion'). We developed a label-free quantification approaches to measure protein abundance in a mixed-proteome background which we applied for EB and RB quantitative analysis. In this manner, we catalogued the relative distribution of > 54% of the predicted proteins in the C. trachomatis LGV-L2 proteome. Proteins required for central metabolism and glucose catabolism were predominant in the EB, whereas proteins associated with protein synthesis, ATP generation and nutrient transport were more abundant in the RB. These findings suggest that the EB is primed for a burst in metabolic activity upon entry, whereas the RB form is geared towards nutrient utilization, a rapid increase in cellular mass, and securing the resources for an impending transition back to the EB form. The most revealing difference between the two forms was the relative deficiency of cytoplasmic factors required for efficient type III secretion (T3S) in the RB stage at 18 h post infection, suggesting a reduced T3S capacity or a low frequency of active T3S apparatus assembled on a 'per organism' basis. Our results show that EB and RB proteomes are streamlined to fulfil their predicted biological functions: maximum infectivity for EBs and replicative capacity for RBs.
Collapse
Affiliation(s)
- Hector A Saka
- Department of Molecular Genetics and Microbiology and Center for Microbial Pathogenesis, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Wang DZ, Dong HP, Li C, Xie ZX, Lin L, Hong HS. Identification and Characterization of Cell Wall Proteins of a Toxic Dinoflagellate Alexandrium catenella Using 2-D DIGE and MALDI TOF-TOF Mass Spectrometry. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2011; 2011:984080. [PMID: 21904561 PMCID: PMC3167152 DOI: 10.1155/2011/984080] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 06/30/2011] [Indexed: 01/26/2023]
Abstract
The cell wall is an important subcellular component of dinoflagellate cells with regard to various aspects of cell surface-associated ecophysiology, but the full range of cell wall proteins (CWPs) and their functions remain to be elucidated. This study identified and characterized CWPs of a toxic dinoflagellate, Alexandrium catenella, using a combination of 2D fluorescence difference gel electrophoresis (DIGE) and MALDI TOF-TOF mass spectrometry approaches. Using sequential extraction and temperature shock methods, sequentially extracted CWPs and protoplast proteins, respectively, were separated from A. catenella. From the comparison between sequentially extracted CWPs labeled with Cy3 and protoplast proteins labeled with Cy5, 120 CWPs were confidently identified in the 2D DIGE gel. These proteins gave positive identification of protein orthologues in the protein database using de novo sequence analysis and homology-based search. The majority of the prominent CWPs identified were hypothetical or putative proteins with unknown function or no annotation, while cell wall modification enzymes, cell wall structural proteins, transporter/binding proteins, and signaling and defense proteins were tentatively identified in agreement with the expected role of the extracellular matrix in cell physiology. This work represents the first attempt to investigate dinoflagellate CWPs and provides a potential tool for future comprehensive characterization of dinoflagellate CWPs and elucidation of their physiological functions.
Collapse
Affiliation(s)
- Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science, Environmental Science Research Centre, Xiamen University, Xiamen 361005, China
| | - Hong-Po Dong
- State Key Laboratory of Marine Environmental Science, Environmental Science Research Centre, Xiamen University, Xiamen 361005, China
| | - Cheng Li
- State Key Laboratory of Marine Environmental Science, Environmental Science Research Centre, Xiamen University, Xiamen 361005, China
| | - Zhang-Xian Xie
- State Key Laboratory of Marine Environmental Science, Environmental Science Research Centre, Xiamen University, Xiamen 361005, China
| | - Lin Lin
- State Key Laboratory of Marine Environmental Science, Environmental Science Research Centre, Xiamen University, Xiamen 361005, China
| | - Hua-Sheng Hong
- State Key Laboratory of Marine Environmental Science, Environmental Science Research Centre, Xiamen University, Xiamen 361005, China
| |
Collapse
|
23
|
Eko FO, Okenu DN, Singh UP, He Q, Black C, Igietseme JU. Evaluation of a broadly protective Chlamydia-cholera combination vaccine candidate. Vaccine 2011; 29:3802-10. [PMID: 21421002 DOI: 10.1016/j.vaccine.2011.03.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 02/18/2011] [Accepted: 03/05/2011] [Indexed: 12/21/2022]
Abstract
The need to simultaneously target infections with epidemiological overlap in the population with a single vaccine provides the basis for developing combination vaccines. Vibrio cholerae ghosts (rVCG) offer an attractive approach for developing vaccines against a number of human and animal pathogens. In this study, we constructed a multisubunit vaccine candidate co-expressing the serovar D-derived Porin B and polymorphic membrane protein-D proteins of Chlamydia trachomatis and evaluated its ability to simultaneously induce broad-based chlamydial immunity and elicit a vibriocidal antibody response to the Vibrio carrier envelope. Intramuscular (IM) immunization with the vaccine candidate elicited high levels of antigen-specific genital mucosal and systemic Th1 cell-mediated and humoral immune responses against heterologous serovars and strains, including serovars E-H and L. Also, in addition to the multisubunit vaccine, the single subunit constructs conferred significant cross protection against the heterologous mouse strain, Chlamydia muridarum. Furthermore, all mice immunized with rVCG vaccine constructs responded with a significant rise in vibriocidal antibody titer, the surrogate marker for protection in cholera. These findings demonstrate the ability of the multisubunit vaccine to induce cross protective chlamydial as well as vibriocidal immunity and establish the possibility of developing a broadly efficacious Chlamydia-cholera combination vaccine.
Collapse
Affiliation(s)
- F O Eko
- Morehouse School of Medicine, Atlanta, GA, United States.
| | | | | | | | | | | |
Collapse
|
24
|
Induction of immune memory by a multisubunit chlamydial vaccine. Vaccine 2010; 29:1472-80. [PMID: 21184858 DOI: 10.1016/j.vaccine.2010.12.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 11/23/2010] [Accepted: 12/09/2010] [Indexed: 01/03/2023]
Abstract
We tested the hypothesis that intramuscular immunization with a multisubunit chlamydial vaccine candidate will induce long lasting immune responses in mice. Accordingly, groups of female C57BL/6 mice were immunized intramuscularly with Vibrio cholerae ghosts (VCG) expressing the Poring B and polymorphic membrane protein-D proteins of Chlamydia trachomatis or a control antigen. Humoral and cell-mediated immune responses were evaluated following immunization and after live chlamydial infection. Immunization induced an anamnestic response characterized by chlamydial-specific IgG2a and IgA antibodies in sera and vaginal lavage as well as specific genital and splenic T cell responses. The results also revealed that the local mucosal and systemic cellular and humoral immune effectors induced in mice following immunization with the vaccine candidate are long lasting. Vaccinated mice cleared intravaginal challenge with 10(5) chlamydial inclusion forming units within 12 days compared to control mice, which shed up to 2 × 10(3) IFUs at this time point. Moreover, rechallenge of mice 98 days after resolution of the primary infection resulted in the recall and retention of a relatively high frequency of chlamydial-specific Th1 cells and IgG2a in the genital mucosa. These results provide the first evidence that a VCG-based multisubunit chlamydial vaccine is capable of effectively stimulating anamnestic systemic and mucosal immune responses in mice. The data support further vaccine evaluation and testing for induction of long-term protective immunity.
Collapse
|
25
|
Mölleken K, Schmidt E, Hegemann JH. Members of the Pmp protein family of Chlamydia pneumoniae mediate adhesion to human cells via short repetitive peptide motifs. Mol Microbiol 2010; 78:1004-17. [PMID: 21062373 PMCID: PMC2997323 DOI: 10.1111/j.1365-2958.2010.07386.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Chlamydiae sp. are obligate intracellular pathogens that cause a variety of diseases in humans. Adhesion of the infectious elementary body to the eukaryotic host cell is a pivotal step in chlamydial pathogenesis. Here we describe the characterization of members of the polymorphic membrane protein family (Pmp), the largest protein family (with up to 21 members) unique to Chlamydiaceae. We show that yeast cells displaying Pmp6, Pmp20 or Pmp21 on their surfaces, or beads coated with the recombinant proteins, adhere to human epithelial cells. A hallmark of the Pmp protein family is the presence of multiple repeats of the tetrapeptide motifs FxxN and GGA(I, L, V) and deletion analysis shows that at least two copies of these motifs are needed for adhesion. Importantly, pre-treatment of human cells with recombinant Pmp6, Pmp20 or Pmp21 protein reduces infectivity upon subsequent challenge with Chlamydia pneumoniae and correlates with diminished attachment of Chlamydiae to target cells. Antibodies specific for Pmp21 can neutralize infection in vitro. Finally, a combination of two different Pmp proteins in infection blockage experiments shows additive effects, possibly suggesting similar functions. Our findings imply that Pmp6, Pmp20 and Pmp21 act as adhesins, are vital during infection and thus represent promising vaccine candidates.
Collapse
Affiliation(s)
- Katja Mölleken
- Institut für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, Gebäude 25.02.U1, 40225 Düsseldorf, Germany
| | | | | |
Collapse
|
26
|
Mitchell CM, Hovis KM, Bavoil PM, Myers GSA, Carrasco JA, Timms P. Comparison of koala LPCoLN and human strains of Chlamydia pneumoniae highlights extended genetic diversity in the species. BMC Genomics 2010; 11:442. [PMID: 20646324 PMCID: PMC3091639 DOI: 10.1186/1471-2164-11-442] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 07/21/2010] [Indexed: 11/28/2022] Open
Abstract
Background Chlamydia pneumoniae is a widespread pathogen causing upper and lower respiratory tract infections in addition to a range of other diseases in humans and animals. Previous whole genome analyses have focused on four essentially clonal (> 99% identity) C. pneumoniae human genomes (AR39, CWL029, J138 and TW183), providing relatively little insight into strain diversity and evolution of this species. Results We performed individual gene-by-gene comparisons of the recently sequenced C. pneumoniae koala genome and four C. pneumoniae human genomes to identify species-specific genes, and more importantly, to gain an insight into the genetic diversity and evolution of the species. We selected genes dispersed throughout the chromosome, representing genes that were specific to C. pneumoniae, genes with a demonstrated role in chlamydial biology and/or pathogenicity (n = 49), genes encoding nucleotide salvage or amino acid biosynthesis proteins (n = 6), and extrachromosomal elements (9 plasmid and 2 bacteriophage genes). Conclusions We have identified strain-specific differences and targets for detection of C. pneumoniae isolates from both human and animal origin. Such characterisation is necessary for an improved understanding of disease transmission and intervention.
Collapse
Affiliation(s)
- Candice M Mitchell
- Faculty of Science and Technology, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland 4059, Australia
| | | | | | | | | | | |
Collapse
|
27
|
Identification of Chlamydia trachomatis outer membrane complex proteins by differential proteomics. J Bacteriol 2010; 192:2852-60. [PMID: 20348250 DOI: 10.1128/jb.01628-09] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The extracellular chlamydial infectious particle, or elementary body (EB), is enveloped by an intra- and intermolecular cysteine cross-linked protein shell called the chlamydial outer membrane complex (COMC). A few abundant proteins, including the major outer membrane protein and cysteine-rich proteins (OmcA and OmcB), constitute the overwhelming majority of COMC proteins. The identification of less-abundant COMC proteins has been complicated by limitations of proteomic methodologies and the contamination of COMC fractions with abundant EB proteins. Here, we used parallel liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) analyses of Chlamydia trachomatis serovar L2 434/Bu EB, COMC, and Sarkosyl-soluble EB fractions to identify proteins enriched or depleted from COMC. All well-described COMC proteins were specifically enriched in the COMC fraction. In contrast, multiple COMC-associated proteins found in previous studies were strongly enriched in the Sarkosyl-soluble fraction, suggesting that these proteins are not COMC components or are not stably associated with COMC. Importantly, we also identified novel proteins enriched in COMC. The list of COMC proteins identified in this study has provided reliable information for further understanding chlamydial protein secretion systems and modeling COMC and EB structures.
Collapse
|
28
|
Tan C, Hsia RC, Shou H, Carrasco JA, Rank RG, Bavoil PM. Variable expression of surface-exposed polymorphic membrane proteins in in vitro-grown Chlamydia trachomatis. Cell Microbiol 2010; 12:174-87. [PMID: 19811502 PMCID: PMC3073146 DOI: 10.1111/j.1462-5822.2009.01389.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The hypothesized variable expression of polymorphic membrane proteins (PmpA-PmpI) in Chlamydia trachomatis-infected patients was tested by examination of the expression of each Pmp subtype in in vitro-grown C. trachomatis. A panel of monospecific polyclonal and monoclonal antibodies was used to demonstrate surface exposure of Pmps of each subtype by differential immunofluorescence (IF) with and without prior detergent permeabilization of paraformaldehyde-fixed inclusions and for selected Pmps by immunogold labelling. Although specific transcript was detected for each pmp gene late in development, IF experiments with Pmp subtype-specific antibodies reveal that a number of inclusions in a single infection do not express Pmps of a given subtype. Coexpression experiments suggest that pmp genes are shut off independently from one another in non-expressing inclusions, i.e. different inclusions are switched off for different Pmps. Overall, these studies establish the existence of an efficient shutoff mechanism independently affecting the expression of each member of the pmp gene family in in vitro-grown C. trachomatis. Like other paralogous gene families of bacterial pathogens, the pmp gene family of C. trachomatis may serve the critical dual function of a highly adaptable virulence factor also providing antigenic diversity in the face of the host adaptive immune response.
Collapse
Affiliation(s)
- Chun Tan
- Department of Microbial Pathogenesis, University of Maryland Dental School, 650 West Baltimore Street, Baltimore, MD 21201
| | - Ru-ching Hsia
- Department of Microbial Pathogenesis, University of Maryland Dental School, 650 West Baltimore Street, Baltimore, MD 21201
| | - Huizhong Shou
- Department of Microbial Pathogenesis, University of Maryland Dental School, 650 West Baltimore Street, Baltimore, MD 21201
| | - Jose A. Carrasco
- Department of Microbial Pathogenesis, University of Maryland Dental School, 650 West Baltimore Street, Baltimore, MD 21201
| | - Roger G. Rank
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences and Arkansas Children's Hospital Research Institute, 1120 Marshall St., Little Rock, AR, 72202, USA
| | - Patrik M. Bavoil
- Department of Microbial Pathogenesis, University of Maryland Dental School, 650 West Baltimore Street, Baltimore, MD 21201
| |
Collapse
|
29
|
Tan C, Hsia RC, Shou H, Haggerty CL, Ness RB, Gaydos CA, Dean D, Scurlock AM, Wilson DP, Bavoil PM. Chlamydia trachomatis-infected patients display variable antibody profiles against the nine-member polymorphic membrane protein family. Infect Immun 2009; 77:3218-26. [PMID: 19487469 PMCID: PMC2715660 DOI: 10.1128/iai.01566-08] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 03/04/2009] [Accepted: 05/17/2009] [Indexed: 11/20/2022] Open
Abstract
Genomic analysis of the Chlamydiaceae has revealed a multigene family encoding large, putatively autotransported polymorphic membrane proteins (Pmps) with nine members in the sexually transmitted pathogen Chlamydia trachomatis. While various pathogenesis-related functions are emerging for the Pmps, observed genotypic and phenotypic variation among several chlamydial Pmps in various Chlamydia species has led us to hypothesize that the pmp gene repertoire is the basis of a previously undetected mechanism of antigenic variation. To test this hypothesis, we chose to examine the serologic response of C. trachomatis-infected patients to each Pmp subtype. Immune serum samples were collected from four populations of patients with confirmed C. trachomatis genital infection: 40 women with pelvic inflammatory disease from Pittsburgh, PA; 27 and 34 adolescent/young females from Oakland, CA, and Little Rock, AR, respectively; and 58 adult male patients from Baltimore, MD. The Pmp-specific antibody response was obtained using immunoblot analysis against each of the nine recombinantly expressed Pmps and quantified by densitometry. Our results show that nearly all C. trachomatis-infected patients mount a strong serologic response against individual or multiple Pmp subtypes and that the antibody specificity profile varies between patients. Moreover, our analysis reveals differences in the strengths and specificities of the Pmp subtype-specific antibody reactivity relating to gender and clinical outcome. Overall, our results indicate that the Pmps elicit various serologic responses in C. trachomatis-infected patients and are consistent with the pmp gene family being the basis of a mechanism of antigenic variation.
Collapse
Affiliation(s)
- Chun Tan
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, 21201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Villegas E, Sorlózano A, Camacho A, Gutiérrez J. [Chlamydophila pneumoniae: from its proteomics to arteriosclerosis]. Enferm Infecc Microbiol Clin 2009; 26:629-7. [PMID: 19100193 DOI: 10.1016/s0213-005x(08)75279-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chlamydophila pneumoniae is a highly prevalent intracellular human pathogen with a unique biphasic life cycle. It is a common cause of upper respiratory infection and pneumonia, and is currently being studied as a potential risk factor for the development of atherosclerotic cardiovascular disease. The outer membrane surface antigens of C. pneumoniae are highly complex: some, such as the major outer membrane protein, are specific, but poorly immunodominant, whereas others have stronger immunogenicity, but are cross-reactive among Chlamydia species. Therefore, new, highly immunodominant, species-specific antigens should be sought. In this regard, the polymorphic membrane proteins (PMPs) are a) unique to Chlamydiae, b) often exposed on the surface of the bacteria, and c) highly immunogenic; these factors make them potential candidates for application in laboratory assays. Other chlamydial antigens, such as heat shock protein (HSP) 60, have been associated with atherosclerotic lesions because of their ability to induce an immunological attack on the endothelial wall. Over the last decade, several studies have suggested a potential role of chronic C. pneumoniae infection in human atherosclerosis. Nevertheless, prospective studies with sufficiently large samples and a healthy comparison group, using a combination of direct and indirect microbiological techniques in the same subject and sample, are needed to establish a relationship between the infection and disease activity.
Collapse
Affiliation(s)
- Enrique Villegas
- Departamento de Microbiología, Universidad de Granada, Granada, Spain
| | | | | | | |
Collapse
|
31
|
Chlamydia trachomatis polymorphic membrane protein D is an oligomeric autotransporter with a higher-order structure. Infect Immun 2008; 77:508-16. [PMID: 19001072 DOI: 10.1128/iai.01173-08] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Chlamydia trachomatis is a globally important obligate intracellular bacterial pathogen that is a leading cause of sexually transmitted disease and blinding trachoma. Effective control of these diseases will likely require a preventative vaccine. C. trachomatis polymorphic membrane protein D (PmpD) is an attractive vaccine candidate as it is conserved among C. trachomatis strains and is a target of broadly cross-reactive neutralizing antibodies. We show here that immunoaffinity-purified native PmpD exists as an oligomer with a distinct 23-nm flower-like structure. Two-dimensional blue native-sodium dodecyl sulfate-polyacrylamide gel electrophoresis analyses showed that the oligomers were composed of full-length PmpD (p155) and two proteolytically processed fragments, the p73 passenger domain (PD) and the p82 translocator domain. We also show that PmpD undergoes an infection-dependent proteolytic processing step late in the growth cycle that yields a soluble extended PD (p111) that was processed into a p73 PD and a novel p30 fragment. Interestingly, soluble PmpD peptides possess putative eukaryote-interacting functional motifs, implying potential secondary functions within or distal to infected cells. Collectively, our findings show that PmpD exists as two distinct forms, a surface-associated oligomer exhibiting a higher-order flower-like structure and a soluble form restricted to infected cells. We hypothesize that PmpD is a multifunctional virulence factor important in chlamydial pathogenesis and could represent novel vaccine or drug targets for the control of human chlamydial infections.
Collapse
|
32
|
Chlamydial effector proteins localized to the host cell cytoplasmic compartment. Infect Immun 2008; 76:4842-50. [PMID: 18710866 DOI: 10.1128/iai.00715-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Disease-causing microbes utilize various strategies to modify their environment in order to create a favorable location for growth and survival. Gram-negative bacterial pathogens often use specialized secretion systems to translocate effector proteins directly into the cytosol of the eukaryotic cells they infect. These bacterial proteins are responsible for modulating eukaryotic cell functions. Identification of the bacterial effectors has been a critical step toward understanding the molecular basis for the pathogenesis of the bacteria that use them. Chlamydiae are obligate intracellular bacterial pathogens that have a type III secretion system believed to translocate virulence effector proteins into the cytosol of their host cells. Selective permeabilization of the eukaryotic cell membrane was used in conjunction with metabolic labeling of bacterial proteins to identify chlamydial proteins that localize within the cytosol of infected cells. More than 20 Chlamydia trachomatis and C. pneumoniae proteins were detected within the cytoplasmic compartment of infected cells. While a number of cytosolic proteins were shared, others were unique to each species, suggesting that variation among cytosolic chlamydial proteins contributes to the differences in the pathogenesis of the chlamydial species. The spectrum of chlamydial proteins exported differed concomitant with the progress of the developmental cycle. These data confirm that a dynamic relationship exists between Chlamydia and its host and that translocation of bacterial proteins into the cytosol is developmentally dependent.
Collapse
|
33
|
Juul N, Timmerman E, Gevaert K, Christiansen G, Birkelund S. Proteolytic cleavage of the Chlamydia pneumoniae major outer membrane protein in the absence of Pmp10. Proteomics 2008; 7:4477-87. [PMID: 18022938 DOI: 10.1002/pmic.200700447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The genome of the obligate intracellular bacteria Chlamydia pneumoniae contains 21 genes encoding polymorphic membrane proteins (Pmp). While no function has yet been attributed to the Pmps, they may be involved in an antigenic variation of the Chlamydia surface. It has previously been demonstrated that Pmp10 is differentially expressed in the C. pneumoniae CWL029 isolate. To evaluate whether the absence of Pmp10 in the outer membrane causes further changes to the C. pneumoniae protein profile, we subcloned the CWL029 isolate and selected a clone with minimal Pmp10 expression. Subsequently, we compared the proteome of the CWL029 isolate with the proteome of the subcloned strain and identified a specific cleavage of the C-terminal part of the major outer membrane protein (MOMP), which occurred only in the absence of Pmp10. In contrast, when Pmp10 was expressed we predominantly observed full-length MOMP. No other proteins appeared to be regulated according to the presence or absence of Pmp10. These results suggest a close association between MOMP and Pmp10, where Pmp10 may protect the C-terminal part of MOMP from proteolytic cleavage.
Collapse
Affiliation(s)
- Nicolai Juul
- Institute of Medical Microbiology and Immunology, University of Aarhus, Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
34
|
Harley R, Herring A, Egan K, Howard P, Gruffydd-Jones T, Azuma Y, Shirai M, Helps C. Molecular characterisation of 12 Chlamydophila felis polymorphic membrane protein genes. Vet Microbiol 2007; 124:230-8. [PMID: 17498895 DOI: 10.1016/j.vetmic.2007.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 03/27/2007] [Accepted: 04/05/2007] [Indexed: 10/23/2022]
Abstract
A group of genes thought to encode members of the unique chlamydial polymorphic membrane protein (pmp) family were recently described in the Chlamydophila felis genome. This study aimed to commence characterisation of a subset of 12 of these putative pmp genes by developing and using gene-specific real-time (Q)PCR assays to confirm their presence in a wide range of C. felis field isolates and laboratory strains, and to look for pmp mRNA expression during in vitro infection. Sequencing of 525-698 base pair regions of pmp genes 7, 9-11, 13-20 for two laboratory strains of C. felis and alignment with the published Fe/C-56 sequence found only a single nucleotide polymorphism present in pmp9. Following the development of gene-specific (Q)PCR assays, analysis of genomic DNA extracted from 40 C. felis field isolates and 4 laboratory strains found that all 12 pmp genes were represented in all cases. Reverse transcription (RT)-QPCR analysis of RNA extracted from cell cultures at 24 and 48 h post inoculation with 1 of 5 different strains of C. felis detected transcripts for all 12 pmp genes at both time points. Analysis of the relative levels of pmp gene transcription suggested that down-regulation of the expression of multiple C. felis pmp genes occurs between 24 and 48 h post inoculation. This study provides the first evidence that 12 of the putative pmp C. felis genes are transcribed during in vitro infection, and shows that these genes are present in a large range of C. felis field isolates and multiple passage laboratory-grown strains.
Collapse
Affiliation(s)
- Ross Harley
- School of Clinical Veterinary Science, University of Bristol, Langford House, Langford, Bristol BS40 5DU, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Mäurer AP, Mehlitz A, Mollenkopf HJ, Meyer TF. Gene expression profiles of Chlamydophila pneumoniae during the developmental cycle and iron depletion-mediated persistence. PLoS Pathog 2007; 3:e83. [PMID: 17590080 PMCID: PMC1894823 DOI: 10.1371/journal.ppat.0030083] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Accepted: 04/23/2007] [Indexed: 12/01/2022] Open
Abstract
The obligate intracellular, gram-negative bacterium Chlamydophila pneumoniae (Cpn) has impact as a human pathogen. Little is known about changes in the Cpn transcriptome during its biphasic developmental cycle (the acute infection) and persistence. The latter stage has been linked to chronic diseases. To analyze Cpn CWL029 gene expression, we designed a pathogen-specific oligo microarray and optimized the extraction method for pathogen RNA. Throughout the acute infection, ratio expression profiles for each gene were generated using 48 h post infection as a reference. Based on these profiles, significantly expressed genes were separated into 12 expression clusters using self-organizing map clustering and manual sorting into the “early”, “mid”, “late”, and “tardy” cluster classes. The latter two were differentiated because the “tardy” class showed steadily increasing expression at the end of the cycle. The transcriptome of the Cpn elementary body (EB) and published EB proteomics data were compared to the cluster profile of the acute infection. We found an intriguing association between “late” genes and genes coding for EB proteins, whereas “tardy” genes were mainly associated with genes coding for EB mRNA. It has been published that iron depletion leads to Cpn persistence. We compared the gene expression profiles during iron depletion–mediated persistence with the expression clusters of the acute infection. This led to the finding that establishment of iron depletion–mediated persistence is more likely a mid-cycle arrest in development rather than a completely distinct gene expression pattern. Here, we describe the Cpn transcriptome during the acute infection, differentiating “late” genes, which correlate to EB proteins, and “tardy” genes, which lead to EB mRNA. Expression profiles during iron mediated–persistence led us to propose the hypothesis that the transcriptomic “clock” is arrested during acute mid-cycle. Chlamydophila (Chlamydia) pneumoniae (Cpn) accounts for approximately one-tenth of the cases of community-acquired pneumonia worldwide, and persistent Cpn infections are thought to be associated with a variety of chronic diseases. Little is known about Cpn transcriptome changes during its biphasic developmental cycle (the acute infection) and persistence stages. Iron limitation, among several other treatments, has recently been shown to lead to persistent Cpn infection. How this pathogen reacts to iron-limiting host defense mechanisms is of great interest, as iron is an important factor affecting virulence. This article reports on the Cpn transcriptome during the developmental cycle and iron depletion–mediated persistence and reveals that genes coding for proteins of the infectious particle (the elementary body [EB]) were expressed constantly at the end of the cycle. In contrast, genes contributing to EB mRNA but not to EB protein showed an increasing expression at the end of the cycle. This suggested that most EB proteins are made in mid-cycle, and the redifferentiation process is initiated only by a limited number of genes. During iron depletion–mediated persistence, the Cpn transcriptome was altered in such a way that an arrest in Cpn gene expression can be proposed.
Collapse
Affiliation(s)
- André P Mäurer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Adrian Mehlitz
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Hans J Mollenkopf
- Microarray Core Facility, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
36
|
Abstract
Simple-sequence repeats (SSRs) have increasingly become the marker of choice for population genetic analyses. Unfortunately, the development of traditional 'anonymous' SSRs from genomic DNA is costly and time-consuming. These problems are further compounded by a paucity of resources in taxa that lack clear economic importance. However, the advent of the genomics age has resulted in the production of vast amounts of publicly available DNA sequence data, including large collections of expressed sequence tags (ESTs) from a variety of different taxa. Recent research has revealed that ESTs are a potentially rich source of SSRs that reveal polymorphisms not only within the source taxon, but in related taxa, as well. In this paper, we review what is known about the transferability of EST-SSRs from one taxon to another with particular reference to the potential of these markers to facilitate population genetic studies. As an example of the utility of these resources, we then cross-reference existing EST databases against lists of rare, endangered and invasive plant species and conclude that half of all suitable EST databases could be exploited for the population genetic analysis of species of conservation concern. We then discuss the advantages and disadvantages of EST-SSRs in the context of population genetic applications.
Collapse
Affiliation(s)
- J R Ellis
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA.
| | | |
Collapse
|
37
|
Thorpe C, Edwards L, Snelgrove R, Finco O, Rae A, Grandi G, Guilio R, Hussell T. Discovery of a vaccine antigen that protects mice from Chlamydia pneumoniae infection. Vaccine 2006; 25:2252-60. [PMID: 17275142 DOI: 10.1016/j.vaccine.2006.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 06/20/2006] [Accepted: 12/04/2006] [Indexed: 10/23/2022]
Abstract
Chlamydiae are atypical intracellular bacteria that infect via mucosal surfaces causing, for example, trachoma, pneumonia, cervicitis, urethritis and infertility. Existing antibiotics are only partially effective and no vaccines are available. Using surface expressed or secreted proteins previously identified by genomics and proteomics we tested five as vaccines against intranasal challenge with Chlamydia pneumoniae. One antigen, LcrE, induced CD4+ and CD8+ T cell activation, type 1 cytokine secretion and neutralising antibodies and was completely effective in eliminating infection. Such antigens are highly conserved and essential to all Chlamydial species. The discovery of an effective vaccine for Chlamydiae pneumoniae has potential wide benefits for human health.
Collapse
Affiliation(s)
- Callum Thorpe
- Kennedy Institute of Rheumatology, Imperial College London, Charing Cross Hospital Campus, 1 Aspenlea Rd., Hammersmith, London W8 8LH, UK
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abdelrahman YM, Belland RJ. The chlamydial developmental cycle. FEMS Microbiol Rev 2005; 29:949-59. [PMID: 16043254 DOI: 10.1016/j.femsre.2005.03.002] [Citation(s) in RCA: 431] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2004] [Revised: 03/09/2005] [Accepted: 03/18/2005] [Indexed: 11/28/2022] Open
Abstract
Intracellular parasitism by bacterial pathogens is a complex, multi-factorial process that has been exploited successfully by a wide variety of organisms. Members of the Order Chlamydiales are obligate intracellular bacteria that are transmitted as metabolically inactive particles and must differentiate, replicate, and re-differentiate within the host cell to carry out their life cycle. Understanding the developmental cycle has been greatly advanced by the availability of complete genome sequences, DNA microarrays, and advanced cell biology techniques. Measuring transcriptional changes throughout the cycle has allowed investigators to determine the nature of the temporal gene expression changes required for bacterial growth and development.
Collapse
Affiliation(s)
- Yasser M Abdelrahman
- Department of Molecular Sciences, University of Tennessee Health Sciences Center, 858 Madison Avenue, Memphis, TN 38163, USA
| | | |
Collapse
|
39
|
Thomson NR, Yeats C, Bell K, Holden MTG, Bentley SD, Livingstone M, Cerdeño-Tárraga AM, Harris B, Doggett J, Ormond D, Mungall K, Clarke K, Feltwell T, Hance Z, Sanders M, Quail MA, Price C, Barrell BG, Parkhill J, Longbottom D. The Chlamydophila abortus genome sequence reveals an array of variable proteins that contribute to interspecies variation. Genome Res 2005; 15:629-40. [PMID: 15837807 PMCID: PMC1088291 DOI: 10.1101/gr.3684805] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Accepted: 02/23/2005] [Indexed: 11/24/2022]
Abstract
The obligate intracellular bacterial pathogen Chlamydophila abortus strain S26/3 (formerly the abortion subtype of Chlamydia psittaci) is an important cause of late gestation abortions in ruminants and pigs. Furthermore, although relatively rare, zoonotic infection can result in acute illness and miscarriage in pregnant women. The complete genome sequence was determined and shows a high level of conservation in both sequence and overall gene content in comparison to other Chlamydiaceae. The 1,144,377-bp genome contains 961 predicted coding sequences, 842 of which are conserved with those of Chlamydophila caviae and Chlamydophila pneumoniae. Within this conserved Cp. abortus core genome we have identified the major regions of variation and have focused our analysis on these loci, several of which were found to encode highly variable protein families, such as TMH/Inc and Pmp families, which are strong candidates for the source of diversity in host tropism and disease causation in this group of organisms. Significantly, Cp. abortus lacks any toxin genes, and also lacks genes involved in tryptophan metabolism and nucleotide salvaging (guaB is present as a pseudogene), suggesting that the genetic basis of niche adaptation of this species is distinct from those previously proposed for other chlamydial species.
Collapse
Affiliation(s)
- Nicholas R Thomson
- The Pathogen Sequencing Unit, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Finco O, Bonci A, Agnusdei M, Scarselli M, Petracca R, Norais N, Ferrari G, Garaguso I, Donati M, Sambri V, Cevenini R, Ratti G, Grandi G. Identification of new potential vaccine candidates against Chlamydia pneumoniae by multiple screenings. Vaccine 2005; 23:1178-88. [PMID: 15629361 DOI: 10.1016/j.vaccine.2004.07.045] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2004] [Accepted: 07/26/2004] [Indexed: 10/26/2022]
Abstract
Chlamydia are intracellular bacteria associated to serious human disease. A vaccine has proved difficult to obtain so far, and current opinions agree that multi-antigen combinations may be required to induce optimal protective responses. In order to identify new potential vaccine candidates, we recently screened the Chlamydia pneumoniae (Cpn) genome and described 53 recombinant proteins which elicited antibodies binding to purified Cpn cells. We now report that six proteins in this group can also induce in vitro neutralizing antibodies. Antibody specificity for the corresponding antigens was assessed by immunoblot analysis of 2DE Cpn protein maps. Furthermore, four of the six in vitro neutralizing antigens (Pmp2, Pmp10, OmpH-like and enolase) could inhibit Cpn dissemination in a hamster model. The results show that these Cpn proteins are immunoaccessible in infectious EBs, and recommend further investigation on their value as vaccine components.
Collapse
Affiliation(s)
- Oretta Finco
- IRIS Research Centre, Chiron Vaccines, Via Fiorentina, Siena 153100, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Gomes JP, Hsia RC, Mead S, Borrego MJ, Dean D. Immunoreactivity and differential developmental expression of known and putative Chlamydia trachomatis membrane proteins for biologically variant serovars representing distinct disease groups. Microbes Infect 2005; 7:410-20. [PMID: 15784185 DOI: 10.1016/j.micinf.2004.11.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Accepted: 11/20/2004] [Indexed: 10/25/2022]
Abstract
Chlamydia trachomatis is an intracellular bacterium that causes ocular and urogenital diseases worldwide. Membrane proteins have only been partially characterized, and the discovery of a nine-member polymorphic membrane protein gene family has enhanced interest in defining their function. We previously reported two putative insertion sequence-like elements in pmpC for biovariant Ba and one each for G and L2, suggesting horizontal gene transfer. Because of this and the tissue tropism differences for these biovariants, we analyzed by quantitative real-time RT-PCR pmpC expression relative to immunogenic protein genes ompA, groEL and gseA throughout development. Sera from infected adolescents were reacted by immunoblot against recombinant (r)PmpC and rMOMP. ompA and groEL revealed different developmental transcriptome profiles among the biovariants. pmpC expression occurred at 2 h, peaked at 18 for L2 (at 24 for Ba and G), with the highest mRNA levels throughout development for L2. pmpC expression as a function of time paralleled ompA expression with higher mRNA levels compared with groEL later in development. Only sera from D-, E- and G-infected patients reacted to rPmpC; all infected patients reacted to rMOMP. pmpC expression during logarithmic growth suggests a role in membrane building and/or integrity, which is supported by the presence of a signal peptidase and C-terminal phenylalanine in PmpC. Because phylogenetic analyses of pmpC segregate serovars according to tissue tropism, we speculate that biovariant transcriptome differences may contribute to this tropism. The heterogeneous biovariant pmpC expression throughout development and differential PmpC immunoreactivity also suggest a role for pmpC in antigenic variation.
Collapse
Affiliation(s)
- João P Gomes
- Department of Bacteriology, National Institute of Health, Avenue Padre Cruz, 1649-016 Lisbon, Portugal
| | | | | | | | | |
Collapse
|
42
|
Henderson IR, Navarro-Garcia F, Desvaux M, Fernandez RC, Ala'Aldeen D. Type V protein secretion pathway: the autotransporter story. Microbiol Mol Biol Rev 2004; 68:692-744. [PMID: 15590781 PMCID: PMC539010 DOI: 10.1128/mmbr.68.4.692-744.2004] [Citation(s) in RCA: 595] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Gram-negative bacteria possess an outer membrane layer which constrains uptake and secretion of solutes and polypeptides. To overcome this barrier, bacteria have developed several systems for protein secretion. The type V secretion pathway encompasses the autotransporter proteins, the two-partner secretion system, and the recently described type Vc or AT-2 family of proteins. Since its discovery in the late 1980s, this family of secreted proteins has expanded continuously, due largely to the advent of the genomic age, to become the largest group of secreted proteins in gram-negative bacteria. Several of these proteins play essential roles in the pathogenesis of bacterial infections and have been characterized in detail, demonstrating a diverse array of function including the ability to condense host cell actin and to modulate apoptosis. However, most of the autotransporter proteins remain to be characterized. In light of new discoveries and controversies in this research field, this review considers the autotransporter secretion process in the context of the more general field of bacterial protein translocation and exoprotein function.
Collapse
Affiliation(s)
- Ian R Henderson
- Division of Immunity and Infection, University of Birmingham, Birmingham B15 2TT, UK.
| | | | | | | | | |
Collapse
|
43
|
Eko FO, He Q, Brown T, McMillan L, Ifere GO, Ananaba GA, Lyn D, Lubitz W, Kellar KL, Black CM, Igietseme JU. A novel recombinant multisubunit vaccine against Chlamydia. THE JOURNAL OF IMMUNOLOGY 2004; 173:3375-82. [PMID: 15322201 DOI: 10.4049/jimmunol.173.5.3375] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The administration of an efficacious vaccine is the most effective long-term measure to control the oculogenital infections caused by Chlamydia trachomatis in humans. Chlamydia genome sequencing has identified a number of potential vaccine candidates, and the current challenge is to develop an effective delivery vehicle for induction of a high level of mucosal T and complementary B cell responses. Vibrio cholerae ghosts (VCG) are nontoxic, effective delivery vehicles with potent adjuvant properties, and are capable of inducing both T cell and Ab responses in mucosal tissues. We investigated the hypothesis that rVCG could serve as effective delivery vehicles for single or multiple subunit chlamydial vaccines to induce a high level of protective immunity. rVCG-expressing chlamydial outer membrane proteins were produced by a two-step genetic process, involving cloning of Omp genes in V. cholerae, followed by gene E-mediated lysis of the cells. The immunogenicity and vaccine efficacy of rVCG-expressing single and multiple subunits were compared. Immunologic analysis indicated that i.m. immunization of mice with either vaccine construct induced a strong mucosal and systemic specific Th1 response against the whole chlamydial organism. However, there was an immunogenic advantage associated with the multiple subunit vaccine that induced a higher frequency of Th1 cells and a relatively greater ability to confer protective immunity, compared with the single subunit construct. These results support the operational theory that the ability of a vaccine to confer protective immunity against Chlamydia is a function of the level of Th1 response elicited.
Collapse
Affiliation(s)
- Francis O Eko
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Mygind T, Vandahl B, Pedersen AS, Christiansen G, Höllsberg P, Birkelund S. Identification of an in vivo CD4+ T cell-mediated response to polymorphic membrane proteins of Chlamydia pneumoniae during experimental infection. ACTA ACUST UNITED AC 2004; 40:129-37. [PMID: 14987731 DOI: 10.1016/s0928-8244(03)00300-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Revised: 10/10/2003] [Accepted: 10/12/2003] [Indexed: 10/26/2022]
Abstract
Chlamydia pneumoniae is an obligate intracellular bacterium that causes upper and lower respiratory tract infection in humans. C. pneumoniae harbors the polymorphic membrane protein (Pmp) family with 21 different proteins with a molecular mass around 100 kDa. The Pmps are species-specific, abundant and, together with major outer membrane protein and outer membrane protein 2, the dominant proteins in the C. pneumoniae outer membrane complex. Nevertheless, it is unknown whether Pmps are recognized by the cell-mediated immune response. To address this issue, C57BL/6J mice were infected intranasally with C. pneumoniae and the immune response to primary infection was investigated. We demonstrate, as expected, that the primary response is of the Th1 type by IgG2a- and IgG1-specific sELISA (Medac) on serum. In vivo-primed spleen lymphocytes were found to be reactive to Pmp8, Pmp20 and Pmp21 in an interferon-gamma ELISpot assay. The responses were shown to be mediated by CD4(+) T cells. To our knowledge, this is the first identification of antigens recognized by CD4(+) T cells during murine C. pneumoniae infection.
Collapse
Affiliation(s)
- Tina Mygind
- Loke Diagnostics ApS, Science Park Aarhus, Gustav Wiedsvej 10C, DK-8000 Aarhus C, Denmark.
| | | | | | | | | | | |
Collapse
|
45
|
Gomes JP, Bruno WJ, Borrego MJ, Dean D. Recombination in the genome of Chlamydia trachomatis involving the polymorphic membrane protein C gene relative to ompA and evidence for horizontal gene transfer. J Bacteriol 2004; 186:4295-306. [PMID: 15205432 PMCID: PMC421610 DOI: 10.1128/jb.186.13.4295-4306.2004] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Genome sequencing of Chlamydia trachomatis serovar D has identified polymorphic membrane proteins (Pmp) that are a newly recognized protein family unique to the Chlamydiaceae family. Cumulative data suggest that these diverse proteins are expressed on the cell surface and might be immunologically important. We performed phylogenetic analyses and statistical modeling with 18 reference serovars and 1 genovariant of C. trachomatis to examine the evolutionary characteristics and comparative genetics of PmpC and pmpC, the gene that encodes this protein. We also examined 12 recently isolated ocular and urogenital clinical samples, since reference serovars are laboratory adapted and may not represent strains that are presently responsible for human disease. Phylogenetic reconstructions revealed a clear distinction for disease groups, corresponding to levels of tissue specificity and virulence of the organism. Further, the most prevalent serovars, E, F, and Da, formed a distinct clade. According to the results of comparative genetic analyses, these three genital serovars contained two putative insertion sequence (IS)-like elements with 10- and 15-bp direct repeats, respectively, while all other genital serovars contained one IS-like element. Ocular trachoma serovars also contained both insertions. Previously, no IS-like elements have been identified for Chlamydiaceae. Surprisingly, 7 (58%) of 12 clinical isolates revealed pmpC sequences that were identical to the sequences of other serovars, providing clear evidence for a high rate of whole-gene recombination. Recombination and the differential presence of IS-like elements among distinct disease and prevalence groups may contribute to genome plasticity, which may lead to adaptive changes in tissue tropism and pathogenesis over the course of the organism's evolution.
Collapse
Affiliation(s)
- João P Gomes
- Department of Bacteriology, National Institute of Health, Lisbon, Portugal
| | | | | | | |
Collapse
|
46
|
Wehrl W, Brinkmann V, Jungblut PR, Meyer TF, Szczepek AJ. From the inside out - processing of the Chlamydial autotransporter PmpD and its role in bacterial adhesion and activation of human host cells. Mol Microbiol 2004; 51:319-34. [PMID: 14756775 DOI: 10.1046/j.1365-2958.2003.03838.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Polymorphic membrane protein (Pmp)21 otherwise known as PmpD is the longest of 21 Pmps expressed by Chlamydophila pneumoniae. Recent bioinformatical analyses annotated PmpD as belonging to a family of exported Gram-negative bacterial proteins designated autotransporters. This prediction, however, was never experimentally supported, nor was the function of PmpD known. Here, using 1D and 2D PAGE we demonstrate that PmpD is processed into two parts, N-terminal (N-pmpD), middle (M-pmpD) and presumably third, C-terminal part (C-pmpD). Based on localization of the external part on the outer membrane as shown by immunofluorescence, immuno-electron microscopy and immunoblotting combined with trypsinization, we demonstrate that N-pmpD translocates to the surface of bacteria where it non-covalently binds other components of the outer membrane. We propose that N-pmpD functions as an adhesin, as antibodies raised against N-pmpD blocked chlamydial infectivity in the epithelial cells. In addition, recombinant N-pmpD activated human monocytes in vitro by upregulating their metabolic activity and by stimulating IL-8 release in a dose-dependent manner. These results demonstrate that N-PmpD is an autotransporter component of chlamydial outer membrane, important for bacterial invasion and host inflammation.
Collapse
Affiliation(s)
- Wolfgang Wehrl
- Max-Planck Institute for Infection Biology, Department of Molecular Biology, Schumannstr. 21/22, 10117 Berlin, Germany
| | | | | | | | | |
Collapse
|
47
|
Vretou E, Giannikopoulou P, Longbottom D, Psarrou E. Antigenic organization of the N-terminal part of the polymorphic outer membrane proteins 90, 91A, and 91B of Chlamydophila abortus. Infect Immun 2003; 71:3240-50. [PMID: 12761105 PMCID: PMC155774 DOI: 10.1128/iai.71.6.3240-3250.2003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A series of overlapping recombinant antigens, 61 to 74 residues in length, representing polymorphic outer membrane protein 90 (POMP90) of Chlamydophila abortus and two recombinant peptides spanning gene fragment p91Bf99 of POMP91B were assessed by immunoblotting to determine the antigen-binding sites of 20 monoclonal antibodies to POMP90, -91A, and -91B. The epitopes were further restricted by scanning 52 overlapping synthetic 12-mer peptides representing the N-terminal part of POMP90, and the 12-mer epitopes were then analyzed by using hexapeptides to the resolution of a single amino acid. Ten epitopes were defined: 1, TSEEFQVKETSSGT; 2, SGAIYTCEGNVCISYAGKDSPL; 3, SLVFHKNCSTAE; 4, AIYADKLTIVSGGPTLFS; 5, SPKGGAISIKDS; 6, ITFDGNKIIKTS; 7, LRAKDGFGIFFY; 7a, DGFGIF; 7b, GIFFYD; 8, IFFYDPITGGGS; 8a, FFYDPIT; 9, GKIVFSGE; and 10, DLGTTL. The 20-mer peptide LRAKDGFGIFFYDPITGGGS was a major epitope that was recognized by seven antibodies. Epitopes 7 to 10 were conserved in reference strains of the former species C. psittaci, whereas the strong antigenic peptides FYDPIT and IVFSGE were conserved among members of the genus CHLAMYDOPHILA: Epitopes 3 to 8 were located within the best-scoring beta-helical wrap (residues 148 to 293) predicted for POMP91B by the program BETAWRAP. Other studies have suggested an association of the POMPs with type V secretory autotransporter proteins. The results presented in this study provide some evidence for a passenger domain that is folded as a beta-helix pyramid with compact antigenic organization.
Collapse
Affiliation(s)
- Evangelia Vretou
- Laboratory of Biotechnology, Department of Microbiology, Hellenic Pasteur Institute, Athens 115 21, Greece.
| | | | | | | |
Collapse
|
48
|
Viratyosin W, Campbell LA, Kuo CC, Rockey DD. Intrastrain and interstrain genetic variation within a paralogous gene family in Chlamydia pneumoniae. BMC Microbiol 2002; 2:38. [PMID: 12460455 PMCID: PMC140016 DOI: 10.1186/1471-2180-2-38] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2002] [Accepted: 12/02/2002] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chlamydia pneumoniae causes human respiratory diseases and has recently been associated with atherosclerosis. Analysis of the three recently published C. pneumoniae genomes has led to the identification of a new gene family (the Cpn 1054 family) that consists of 11 predicted genes and gene fragments. Each member encodes a polypeptide with a hydrophobic domain characteristic of proteins localized to the inclusion membrane. RESULTS Comparative analysis of this gene family within the published genome sequences provided evidence that multiple levels of genetic variation are evident within this single collection of paralogous genes. Frameshift mutations are found that result in both truncated gene products and pseudogenes that vary among isolates. Several genes in this family contain polycytosine (polyC) tracts either upstream or within the terminal 5' end of the predicted coding sequence. The length of the polyC stretch varies between paralogous genes and within single genes in the three genomes. Sequence analysis of genomic DNA from a collection of 12 C. pneumoniae clinical isolates was used to determine the extent of the variation in the Cpn 1054 gene family. CONCLUSIONS These studies demonstrate that sequence variability is present both among strains and within strains at several of the loci. In particular, changes in the length of the polyC tract associated with the different Cpn 1054 gene family members are common within each tested C. pneumoniae isolate. The variability identified within this newly described gene family may modulate either phase or antigenic variation and subsequent physiologic diversity within a C. pneumoniae population.
Collapse
Affiliation(s)
- Wasna Viratyosin
- Department of Microbiology, Oregon State University, Corvallis, 97331-3804, USA
- Present Address: National Center for Genetic Engineering and Biotechnology, 113 Paholyothin Rd., Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Lee Ann Campbell
- Department of Pathobiology, University of Washington, Seattle, 98195, USA
| | - Cho-Chou Kuo
- Department of Pathobiology, University of Washington, Seattle, 98195, USA
| | - Daniel D Rockey
- Department of Microbiology, Oregon State University, Corvallis, 97331-3804, USA
| |
Collapse
|
49
|
Vandahl BB, Pedersen AS, Gevaert K, Holm A, Vandekerckhove J, Christiansen G, Birkelund S. The expression, processing and localization of polymorphic membrane proteins in Chlamydia pneumoniae strain CWL029. BMC Microbiol 2002; 2:36. [PMID: 12453305 PMCID: PMC140015 DOI: 10.1186/1471-2180-2-36] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2002] [Accepted: 11/26/2002] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Chlamydiae are obligate intracellular bacteria, which are important human pathogens. Genome sequences of C. trachomatis and C. pneumoniae have revealed the presence of a Chlamydia specific gene family encoding polymorphic outer membrane proteins, Pmps. In C. pneumoniae the family comprises twenty-one members, which are all transcribed. In the present study, the expression, processing and localisation of the sixteen full-length Pmps in C. pneumoniae strain CWL029 have been further investigated by two-dimensional gel electrophoresis and immunofluorescence microscopy. RESULTS Ten Pmps were identified in elementary bodies (EBs). Eight of these were investigated with respect to time dependent expression and all were found to be up-regulated between 36 and 48 hours post infection. Antibodies against Pmp6, 8, 10, 11 and 21 reacted with chlamydiae when infected cells were formalin fixed. Pmp6, Pmp20 and Pmp21 were found in cleaved forms, and the cleavage sites of Pmp6 and Pmp21 were identified. CONCLUSIONS The Pmps are heavily up-regulated at the time of conversion of RB to EB, and at least ten Pmps are present in EBs. Due to their reaction in formalin fixation it is likely that Pmp6, 8, 10, 11 and 21 are surface exposed. The identified cleavage sites of Pmp6 and Pmp21 are in agreement with the theory that the Pmps are autotransporters.
Collapse
Affiliation(s)
- Brian Berg Vandahl
- Department of Medical Microbiology and Immunology, University of Aarhus, Denmark
- LOKE Diagnostics ApS., Science Park Aarhus, Denmark
| | | | - Kris Gevaert
- Flanders Interuniversity Institute for Biotechnology, Department of Medical Protein Research, Ghent University, Belgium
| | - Arne Holm
- LOKE Diagnostics ApS., Science Park Aarhus, Denmark
| | - Joël Vandekerckhove
- Flanders Interuniversity Institute for Biotechnology, Department of Medical Protein Research, Ghent University, Belgium
| | - Gunna Christiansen
- Department of Medical Microbiology and Immunology, University of Aarhus, Denmark
| | - Svend Birkelund
- Department of Medical Microbiology and Immunology, University of Aarhus, Denmark
- LOKE Diagnostics ApS., Science Park Aarhus, Denmark
| |
Collapse
|
50
|
Rocha EPC, Pradillon O, Bui H, Sayada C, Denamur E. A new family of highly variable proteins in the Chlamydophila pneumoniae genome. Nucleic Acids Res 2002; 30:4351-60. [PMID: 12384581 PMCID: PMC137135 DOI: 10.1093/nar/gkf571] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2002] [Revised: 08/23/2002] [Accepted: 08/23/2002] [Indexed: 11/14/2022] Open
Abstract
Chlamydiaceae are obligate intracellular bacterial pathogens characterized by a wide range of vertebrate host, tissue tropism and spectrum of diseases. To get insights into the biological mechanisms involved in these differences, we have put forward a computational and experimental procedure to identify the genome recombination hotspots, as frequent sequence variation allows rapid adaptation to environmental changes. We find a larger potential for recombination in Chlamydophila pneumoniae genomes as compared with Chlamydia trachomatis or Chlamydia muridarum. Such potential is mostly concentrated in a family of seven previously uncharacterized species-specific elements that we named ppp for C.pneumoniae polymorphic protein genes, which have the potential to vary by homologous recombination and slipped-mispair. Experimentally, we show that these sequences are indeed highly polymorphic among a collection of nine C.pneumoniae strains of very diverse geographical and pathological origins, mainly by slippage of a poly(C) tract. We also show that most elements are transcribed during infection. In silico analyses suggest that Ppps correspond to outer membrane proteins. Given their species specificity, their putative location in the outer membrane and their extreme polymorphism, Ppps are most likely to be important in the pathogenesis of C.pneumoniae and could represent targets for future vaccine development.
Collapse
|