1
|
Perreault M, Means J, Gerson E, James M, Cotton S, Bergeron CG, Simon M, Carlin DA, Schmidt N, Moore TC, Blasbalg J, Sondheimer N, Ndugga-Kabuye K, Denney WS, Isabella VM, Lubkowicz D, Brennan A, Hava DL. The live biotherapeutic SYNB1353 decreases plasma methionine via directed degradation in animal models and healthy volunteers. Cell Host Microbe 2024; 32:382-395.e10. [PMID: 38309259 DOI: 10.1016/j.chom.2024.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/07/2023] [Accepted: 01/12/2024] [Indexed: 02/05/2024]
Abstract
Methionine is an essential proteinogenic amino acid, but its excess can lead to deleterious effects. Inborn errors of methionine metabolism resulting from loss of function in cystathionine β-synthase (CBS) cause classic homocystinuria (HCU), which is managed by a methionine-restricted diet. Synthetic biotics are gastrointestinal tract-targeted live biotherapeutics that can be engineered to replicate the benefits of dietary restriction. In this study, we assess whether SYNB1353, an E. coli Nissle 1917 derivative, impacts circulating methionine and homocysteine levels in animals and healthy volunteers. In both mice and nonhuman primates (NHPs), SYNB1353 blunts the appearance of plasma methionine and plasma homocysteine in response to an oral methionine load. A phase 1 clinical study conducted in healthy volunteers subjected to an oral methionine challenge demonstrates that SYNB1353 is well tolerated and blunts plasma methionine by 26%. Overall, SYNB1353 represents a promising approach for methionine reduction with potential utility for the treatment of HCU.
Collapse
|
2
|
Zhou T, Wang J, Todd JD, Zhang XH, Zhang Y. Quorum Sensing Regulates the Production of Methanethiol in Vibrio harveyi. Microorganisms 2023; 12:35. [PMID: 38257862 PMCID: PMC10819757 DOI: 10.3390/microorganisms12010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Methanethiol (MeSH) and dimethyl sulfide (DMS) are important volatile organic sulfur compounds involved in atmospheric chemistry and climate regulation. However, little is known about the metabolism of these compounds in the ubiquitous marine vibrios. Here, we investigated MeSH/DMS production and whether these processes were regulated by quorum-sensing (QS) systems in Vibrio harveyi BB120. V. harveyi BB120 exhibited strong MeSH production from methionine (Met) (465 nmol mg total protein-1) and weak DMS production from dimethylsulfoniopropionate (DMSP) cleavage. The homologs of MegL responsible for MeSH production from L-Met widely existed in vibrio genomes. Using BB120 and its nine QS mutants, we found that the MeSH production was regulated by HAI-1, AI-2 and CAI-1 QS pathways, as well as the luxO gene located in the center of this QS cascade. The regulation role of HAI-1 and AI-2 QS systems in MeSH production was further confirmed by applying quorum-quenching enzyme MomL and exogenous autoinducer AI-2. By contrast, the DMS production from DMSP cleavage showed no significant difference between BB120 and its QS mutants. Such QS-regulated MeSH production may help to remove excess Met that can be harmful for vibrio growth. These results emphasize the importance of QS systems and the MeSH production process in vibrios.
Collapse
Affiliation(s)
- Tiantian Zhou
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (T.Z.); (J.W.); (X.-H.Z.)
| | - Jinyan Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (T.Z.); (J.W.); (X.-H.Z.)
| | - Jonathan D. Todd
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK;
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (T.Z.); (J.W.); (X.-H.Z.)
- Institute of Evolution & Marine Biodiversity, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266071, China
| | - Yunhui Zhang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
3
|
Fan L, Xia Y, Wang Y, Han D, Liu Y, Li J, Fu J, Wang L, Gan Z, Liu B, Fu J, Zhu C, Wu Z, Zhao J, Han H, Wu H, He Y, Tang Y, Zhang Q, Wang Y, Zhang F, Zong X, Yin J, Zhou X, Yang X, Wang J, Yin Y, Ren W. Gut microbiota bridges dietary nutrients and host immunity. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2466-2514. [PMID: 37286860 PMCID: PMC10247344 DOI: 10.1007/s11427-023-2346-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/05/2023] [Indexed: 06/09/2023]
Abstract
Dietary nutrients and the gut microbiota are increasingly recognized to cross-regulate and entrain each other, and thus affect host health and immune-mediated diseases. Here, we systematically review the current understanding linking dietary nutrients to gut microbiota-host immune interactions, emphasizing how this axis might influence host immunity in health and diseases. Of relevance, we highlight that the implications of gut microbiota-targeted dietary intervention could be harnessed in orchestrating a spectrum of immune-associated diseases.
Collapse
Affiliation(s)
- Lijuan Fan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yaoyao Xia
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Youxia Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Jiahuan Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Fu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Leli Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Zhending Gan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Bingnan Liu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jian Fu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Congrui Zhu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenhua Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hui Han
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hao Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yiwen He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yulong Tang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Qingzhuo Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yibin Wang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Fan Zhang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Xin Zong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Xihong Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China.
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Wenkai Ren
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
4
|
Abou Zeid AA, Mohamed AH, El-Sayed AS, EL-Shawadfy AM. Biochemical, molecular and anti-tumor characterization of L-methionine gamma lyase produced by local Pseudomonas sp. in Egypt. Saudi J Biol Sci 2023; 30:103682. [PMID: 37305655 PMCID: PMC10248269 DOI: 10.1016/j.sjbs.2023.103682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023] Open
Abstract
A soil inhabiting Pseudomonas sp. has been examined for producing L- methionine gamma-lyase enzyme. The identity of the tested bacteria was verified by VITEK2, and MALDI-TOF analysis in addition to molecular confirmation by 16S rDNA sequence and submitted in Genbank under accession number ON993898.1. Production of the targeted enzyme was done using a commercial medium including L-methionine, as the main substrate. This obtained enzyme was precipitated using acetone (1:1v/v) followed by purification with Sephadex G100 and sepharose columns. The specific activity of the purified enzyme (105.8 µmol/ mg/min) increased by 1.89 folds after the purification steps. The peptide fingerprint of the native MGL was verified from the proteomics analysis, with identical conserved active site domains with database-deposited MGLs. The molecular mass of the pure MGL denatured subunit was (>40 kDa) and that of the native enzyme was (>150 kDa) ensuring their homotetrameric identity. The purified enzyme showed absorption spectra at 280 nm and 420 nm for the apo-MGL and PLP coenzyme, respectively. Amino acids suicide analogues analysis by DTNB, hydroxylamine, iodoacetate, MBTH, mercaptoethanol and guanidine thiocyanate reduced the relative activity of purified MGL. From the kinetic properties, the catalytic effectiveness (Kcat/km) of Pseudomonas sp. MGL was 10.8 mM -1 S-1 for methionine and 5.51 mM -1 S-1 for cysteine, respectively. The purified MGL showed highly significant antiproliferative activity towards the liver carcinoma cell line (HEPG-2) and breast carcinoma cell line (MCF-7) with half inhibitory concentration values (IC50) 7.23 U/ml and 21.14 U/ml, respectively. No obvious signs of toxicity on liver and kidney functions in the examined animal models were observed.
Collapse
Affiliation(s)
- Azza A. Abou Zeid
- Corresponding author at: Botany and Microbiology Deparetment, Faculy of Science, Zagazig University, Zagazig, Egypt.
| | | | | | | |
Collapse
|
5
|
Hendy MH, Hashem AH, Suleiman WB, Sultan MH, Abdelraof M. Purification, Characterization and anticancer activity of L-methionine γ-lyase from thermo-tolerant Aspergillus fumigatus. Microb Cell Fact 2023; 22:8. [PMID: 36635695 PMCID: PMC9837997 DOI: 10.1186/s12934-023-02019-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Purification of L-methionine γ-lyase (MGL) from A. fumigatus was sequentially conducted using heat treatment and gel filtration, resulting in 3.04 of purification fold and 73.9% of enzymatic recovery. The molecular mass of the purified MGL was approximately apparent at 46 KDa based on SDS-PAGE analysis. The enzymatic biochemical properties showed a maximum activity at pH 7 and exhibited plausible stability within pH range 5.0-7.5; meanwhile the highest catalytic activity of MGL was observed at 30-40 °C and the enzymatic stability was noted up to 40 °C. The enzyme molecule was significantly inhibited in the presence of Cu2+, Cd2+, Li2+, Mn2+, Hg2+, sodium azide, iodoacetate, and mercaptoethanol. Moreover, MGL displayed a maximum activity toward the following substrates, L-methionine < DL-methionine < Ethionine < Cysteine. Kinetic studies of MGL for L-methioninase showed catalytic activity at 20.608 mM and 12.34568 µM.min-1. Furthermore, MGL exhibited anticancer activity against cancerous cell lines, where IC50 were 243 ± 4.87 µg/ml (0.486 U/ml), and 726 ± 29.31 µg/ml (1.452 U/ml) against Hep-G2, and HCT116 respectively. In conclusion, A. fumigatus MGL had good catalytic properties along with significantly anticancer activity at low concentration which makes it a probably candidate to apply in the enzymotherapy field.
Collapse
Affiliation(s)
- Mahmoud H Hendy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt.
| | - Waleed B Suleiman
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Mahmoud H Sultan
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Mohamed Abdelraof
- Microbial Chemistry Department, National Research Centre, Dokki, Cairo, 12622, Egypt.
| |
Collapse
|
6
|
Kuznetsova AA, Faleev NG, Morozova EA, Anufrieva NV, Gogoleva OI, Tsvetikova MA, Fedorova OS, Demidkina TV, Kuznetsov NA. Analyses of pre-steady-state kinetics and isotope effects of the γ-elimination reaction catalyzed by Citrobacter freundii methionine γ-lyase. Biochimie 2022; 201:157-167. [PMID: 35691533 DOI: 10.1016/j.biochi.2022.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/18/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022]
Abstract
Methionine γ-lyase (MGL) is a pyridoxal 5'-phosphate-dependent enzyme catalyzing γ-elimination in l-methionine. Pyridoxal 5'-phosphate-dependent enzymes have unique spectral properties that allow to monitor sequential formation and decomposition of various intermediates via the detection of absorbance changes. The kinetic mechanism of the γ-elimination reaction catalyzed by Citrobacter freundii MGL was elucidated here by fast stopped-flow kinetic analysis. Single-wavelength detection of characteristic absorbance changes enabled us to compare transformations of intermediates in the course of the reaction with different substrates. The influence of various γ-substituents in the substrate on the formation of key intermediates was estimated. Kinetic isotope effects of α- and β-protons were determined using deuterium-substituted l-methionine. Contributions of amino acid residues Tyr113 and Tyr58 located in the active site on the formation and decomposition of reaction intermediates were identified too. α-Aminocrotonate formation is the rate-limiting step of the enzymatic γ-elimination reaction. Kinetic isotope effects strongly support concerted reaction mechanisms of transformation between an external aldimine and a ketimine intermediate as well as a ketimine intermediate and an unsaturated ketimine.
Collapse
Affiliation(s)
- Aleksandra A Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Nicolai G Faleev
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Elena A Morozova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Natalya V Anufrieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Olga I Gogoleva
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Marina A Tsvetikova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Olga S Fedorova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Tatyana V Demidkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Nikita A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| |
Collapse
|
7
|
A. Hassabo A, H.Selim M, M.Saad M, Abdelraof M. Optimization of l-methioninase and l-arginase production by newly isolated marine yeast using response surface methodology. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Okawa A, Handa H, Yasuda E, Murota M, Kudo D, Tamura T, Shiba T, Inagaki K. Characterization and application of l-methionine γ-lyase Q349S mutant enzyme with an enhanced activity toward l-homocysteine. J Biosci Bioeng 2021; 133:213-221. [PMID: 34953671 DOI: 10.1016/j.jbiosc.2021.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
l-Methionine γ-lyse (MGL), a pyridoxal 5'-phosphate-dependent enzyme, catalyzes the α,γ-elimination of l-methionine (l-Met) and l-homocysteine (l-Hcy) to produce α-keto acids, thiols, and ammonia. Previously, various mutant enzymes of Pseudomonas putida MGL (PpMGL) were prepared to identify a homocysteine (Hcy)-specific enzyme that would assist the diagnosis of homocystinuria. Among the mutat enzymes the Q349S mutant exhibited high degradation activity toward l-Hcy. In the present study, PpMGL Q349S was characterized; the results suggested that it could be applied to determine the amount of l-Hcy. Compared to the wild-type PpMGL, specific activities of the Q349S mutant with l-Hcy and l-Met were 1.5 and 0.7 times, respectively. Additionally, we confirmed that l-Hcy in plasma samples could be accurately detected using the Q349S mutant by preincubating it with cysteine desulfurase (CsdA). Furthermore, we determined the X-ray crystal structure of PpMGL Q349S l-Met or l-Hcy complexes Michaelis complex, germinal diamine, and external aldimine at 2.25-2.40 Å. These 3D structures showed that the interaction partner of the β-hydroxyl group of Thr355 in the wild-type PpMGL was changed to the carboxyl group of the Hcy-PLP external aldimine in the Q349S mutant. The interaction of Ser349 and Arg375 was different between l-Met and l-Hcy recognition, indicating that it was important for the recognition of the carboxyl group of the substrate.
Collapse
Affiliation(s)
- Atsushi Okawa
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan.
| | - Haruhisa Handa
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan.
| | - Eri Yasuda
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan.
| | - Masaki Murota
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan.
| | - Daizo Kudo
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan.
| | - Takashi Tamura
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan.
| | - Tomoo Shiba
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan; The Center for Advanced Insect Research Promotion (CAIRP), Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto 606-8585, Japan.
| | - Kenji Inagaki
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan.
| |
Collapse
|
9
|
Raboni S, Montalbano S, Stransky S, Garcia BA, Buschini A, Bettati S, Sidoli S, Mozzarelli A. A Key Silencing Histone Mark on Chromatin Is Lost When Colorectal Adenocarcinoma Cells Are Depleted of Methionine by Methionine γ-Lyase. Front Mol Biosci 2021; 8:735303. [PMID: 34660696 PMCID: PMC8517235 DOI: 10.3389/fmolb.2021.735303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
Methionine is an essential amino acid used, beyond protein synthesis, for polyamine formation and DNA/RNA/protein methylation. Cancer cells require particularly high methionine supply for their homeostasis. A successful approach for decreasing methionine concentration is based on the systemic delivery of methionine γ-lyase (MGL), with in vitro and in vivo studies demonstrating its efficacy in cancer therapy. However, the mechanisms explaining how cancer cells suffer from the absence of methionine more significantly than non-malignant cells are still unclear. We analyzed the outcome of the human colorectal adenocarcinoma cancer cell line HT29 to the exposure of MGL for up to 72 h by monitoring cell viability, proteome expression, histone post-translational modifications, and presence of spurious transcription. The rationale of this study was to verify whether reduced methionine supply would affect chromatin decondensation by changing the levels of histone methylation and therefore increasing genomic instability. MGL treatment showed a time-dependent cytotoxic effect on HT29 cancer cells, with an IC50 of 30 µg/ml, while Hs27 normal cells were less affected, with an IC50 of >460 µg/ml. Although the levels of total histone methylation were not altered, a loss of the silencing histone mark H3K9me2 was observed, as well as a decrease in H4K20me3. Since H3K9me2/3 decorate repetitive DNA elements, we proved by qRT-PCR that MGL treatment leads to an increased expression of major satellite units. Our data indicate that selected histone methylation marks may play major roles in the mechanism of methionine starvation in cancer cells, proving that MGL treatment directly impacts chromatin homeostasis.
Collapse
Affiliation(s)
- Samanta Raboni
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parma, Italy.,Institute of Biophysics, National Research Center, Pisa, Italy
| | - Serena Montalbano
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Stephanie Stransky
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Annamaria Buschini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.,Interdepartmental Centre for Molecular and Translational Oncology COMT, University of Parma, Parma, Italy
| | - Stefano Bettati
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parma, Italy.,Institute of Biophysics, National Research Center, Pisa, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Andrea Mozzarelli
- Institute of Biophysics, National Research Center, Pisa, Italy.,Department of Food and Drug, University of Parma, Parma, Italy
| |
Collapse
|
10
|
Li JV, Ashrafian H, Sarafian M, Homola D, Rushton L, Barker G, Cabrera PM, Lewis MR, Darzi A, Lin E, Gletsu-Miller NA, Atkin SL, Sathyapalan T, Gooderham NJ, Nicholson JK, Marchesi JR, Athanasiou T, Holmes E. Roux-en-Y gastric bypass-induced bacterial perturbation contributes to altered host-bacterial co-metabolic phenotype. MICROBIOME 2021; 9:139. [PMID: 34127058 PMCID: PMC8201742 DOI: 10.1186/s40168-021-01086-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 04/27/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND Bariatric surgery, used to achieve effective weight loss in individuals with severe obesity, modifies the gut microbiota and systemic metabolism in both humans and animal models. The aim of the current study was to understand better the metabolic functions of the altered gut microbiome by conducting deep phenotyping of bariatric surgery patients and bacterial culturing to investigate causality of the metabolic observations. METHODS Three bariatric cohorts (n = 84, n = 14 and n = 9) with patients who had undergone Roux-en-Y gastric bypass (RYGB), sleeve gastrectomy (SG) or laparoscopic gastric banding (LGB), respectively, were enrolled. Metabolic and 16S rRNA bacterial profiles were compared between pre- and post-surgery. Faeces from RYGB patients and bacterial isolates were cultured to experimentally associate the observed metabolic changes in biofluids with the altered gut microbiome. RESULTS Compared to SG and LGB, RYGB induced the greatest weight loss and most profound metabolic and bacterial changes. RYGB patients showed increased aromatic amino acids-based host-bacterial co-metabolism, resulting in increased urinary excretion of 4-hydroxyphenylacetate, phenylacetylglutamine, 4-cresyl sulphate and indoxyl sulphate, and increased faecal excretion of tyramine and phenylacetate. Bacterial degradation of choline was increased as evidenced by altered urinary trimethylamine-N-oxide and dimethylamine excretion and faecal concentrations of dimethylamine. RYGB patients' bacteria had a greater capacity to produce tyramine from tyrosine, phenylalanine to phenylacetate and tryptophan to indole and tryptamine, compared to the microbiota from non-surgery, normal weight individuals. 3-Hydroxydicarboxylic acid metabolism and urinary excretion of primary bile acids, serum BCAAs and dimethyl sulfone were also perturbed following bariatric surgery. CONCLUSION Altered bacterial composition and metabolism contribute to metabolic observations in biofluids of patients following RYGB surgery. The impact of these changes on the functional clinical outcomes requires further investigation. Video abstract.
Collapse
Affiliation(s)
- Jia V Li
- Division of Digestive Disease, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, SW7 2AZ, UK
| | - Hutan Ashrafian
- Division of Surgery, Department of Surgery and Cancer, Imperial College London, London, SW7 2AZ, UK
| | - Magali Sarafian
- Division of Digestive Disease, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, SW7 2AZ, UK
| | - Daniel Homola
- Division of Digestive Disease, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, SW7 2AZ, UK
| | - Laura Rushton
- Division of Digestive Disease, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, SW7 2AZ, UK
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, SW7 2AZ, UK
| | - Grace Barker
- Division of Digestive Disease, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, SW7 2AZ, UK
| | - Paula Momo Cabrera
- Division of Digestive Disease, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, SW7 2AZ, UK
| | - Matthew R Lewis
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, SW7 2AZ, UK
| | - Ara Darzi
- Division of Surgery, Department of Surgery and Cancer, Imperial College London, London, SW7 2AZ, UK
| | - Edward Lin
- Division of General and Gastrointestinal Surgery, Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, 30322, USA
| | - Nana Adwoa Gletsu-Miller
- Department of Applied Health Science, School of Public Health, Indiana University Bloomington, 1025 E 7th Street, Bloomington, IN, 47405, USA
| | | | - Thozhukat Sathyapalan
- Department of Academic Endocrinology, Diabetes and Metabolism, Hull-York Medical School, Hull, UK
| | - Nigel J Gooderham
- Division of Digestive Disease, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, SW7 2AZ, UK
| | - Jeremy K Nicholson
- Centre for Computational and Systems Medicine, The Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA, 6150, Australia
| | - Julian R Marchesi
- Division of Digestive Disease, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, SW7 2AZ, UK
| | - Thanos Athanasiou
- Division of Surgery, Department of Surgery and Cancer, Imperial College London, London, SW7 2AZ, UK
| | - Elaine Holmes
- Division of Digestive Disease, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, SW7 2AZ, UK.
- Centre for Computational and Systems Medicine, The Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA, 6150, Australia.
| |
Collapse
|
11
|
Salim N, Santhiagu A, Joji K. Purification, characterization and anticancer evaluation of l-methioninase from Trichoderma harzianum. 3 Biotech 2020; 10:501. [PMID: 33163320 PMCID: PMC7606426 DOI: 10.1007/s13205-020-02494-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/19/2020] [Indexed: 10/23/2022] Open
Abstract
The Trichoderma harzianum l-methioninase was purified 7.15-fold with a recovery of 47.9% and the specific activity of 74.4 U/mg of protein. The purified enzyme has an apparent molecular mass of 48 kDa on SDS-PAGE and exhibited maximum activity at pH 8 and 35 °C. The enzyme was catalytically stable below 50 °C and at a pH range of 6.0-8.5. The thermal inactivation of l-methioninase exhibited first-order kinetics with the k value between 5.71 × 10-4 min-1 and 1.83 × 10-2 min-1. The studies on thermodynamic parameters of l-methioninase indicated the compaction and aggregation of the enzyme molecule during denaturation. This is the first report of thermodynamic analysis of thermal inactivation in l-methioninase. The enzyme activity was enhanced by Li+ and inhibited by Cu2+, Co2+, Fe2+, Hydroxylamine and PMSF. The purified enzyme showed K m , V max and k cat value of 1.19 mM, 21.27 U/mg/min and 16.11 s-1, respectively. The l-methioninase inhibited the growth of human cell lines hepatocellular carcinoma (Hep-G2) and breast carcinoma (MCF-7) with IC50 values of 14.12 μg/ml and 20.07 μg/ml, respectively. The in vivo antitumor activity of l-methioninase was evaluated against DAL cell lines bearing in Swiss albino mice. The enzyme effectively reduced tumor volume, packed cell volume, viable cell count and restored hematological parameters, serum enzyme and lipid profile to normal levels compared to DAL control mice. The present study has demonstrated the high efficacy of Trichoderma harzianum l-methioninase against cancer cell lines in vitro and in vivo conditions. The purified l-methioninase has significant thermal stability and better catalytic properties than the enzyme purified from other sources.
Collapse
Affiliation(s)
- Nisha Salim
- Bioprocess Laboratory, School of Biotechnology, National Institute of Technology, Calicut, India
| | - A. Santhiagu
- Bioprocess Laboratory, School of Biotechnology, National Institute of Technology, Calicut, India
| | - K. Joji
- Bioprocess Laboratory, School of Biotechnology, National Institute of Technology, Calicut, India
| |
Collapse
|
12
|
Cotton CAR, Bernhardsgrütter I, He H, Burgener S, Schulz L, Paczia N, Dronsella B, Erban A, Toman S, Dempfle M, De Maria A, Kopka J, Lindner SN, Erb TJ, Bar-Even A. Underground isoleucine biosynthesis pathways in E. coli. eLife 2020; 9:e54207. [PMID: 32831171 PMCID: PMC7476758 DOI: 10.7554/elife.54207] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 08/22/2020] [Indexed: 12/26/2022] Open
Abstract
The promiscuous activities of enzymes provide fertile ground for the evolution of new metabolic pathways. Here, we systematically explore the ability of E. coli to harness underground metabolism to compensate for the deletion of an essential biosynthetic pathway. By deleting all threonine deaminases, we generated a strain in which isoleucine biosynthesis was interrupted at the level of 2-ketobutyrate. Incubation of this strain under aerobic conditions resulted in the emergence of a novel 2-ketobutyrate biosynthesis pathway based upon the promiscuous cleavage of O-succinyl-L-homoserine by cystathionine γ-synthase (MetB). Under anaerobic conditions, pyruvate formate-lyase enabled 2-ketobutyrate biosynthesis from propionyl-CoA and formate. Surprisingly, we found this anaerobic route to provide a substantial fraction of isoleucine in a wild-type strain when propionate is available in the medium. This study demonstrates the selective advantage underground metabolism offers, providing metabolic redundancy and flexibility which allow for the best use of environmental carbon sources.
Collapse
Affiliation(s)
| | | | - Hai He
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Simon Burgener
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
| | - Luca Schulz
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
| | - Nicole Paczia
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
| | - Beau Dronsella
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Alexander Erban
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Stepan Toman
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Marian Dempfle
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Alberto De Maria
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | | | - Tobias J Erb
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
- LOEWE Research Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| |
Collapse
|
13
|
Mohkam M, Taleban Y, Golkar N, Berenjian A, Dehshahri A, Mobasher MA, Ghasemi Y. Isolation and identification of novel l-Methioninase producing bacteria and optimization of its production by experimental design method. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Alshehri WA. Bacterium Hafnia alvei secretes l-methioninase enzyme: Optimization of the enzyme secretion conditions. Saudi J Biol Sci 2020; 27:1222-1227. [PMID: 32346328 PMCID: PMC7182987 DOI: 10.1016/j.sjbs.2020.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/06/2020] [Accepted: 02/09/2020] [Indexed: 11/29/2022] Open
Abstract
I isolated bacteria from blue cheese in order to find bacterial strains secreting l-methioninase enzyme, and optimized the conditions for the most efficient enzyme secretion. The efficient isolate, identified according to the 16S rRNA gene sequence analysis, was Hafnia alvei belonging to Enterobacteriaceae. I confirmed that the H. alvei strain harbored the methionase gene, mdeA (1194 bp). The environmental (pH, temperature) and nutritional (carbon and nitrogen sources and Mg concentration) factors influencing the l-methioninase production of H. alvei were optimized. The highest yield of l-methioninase enzyme was reached after 48 h of incubation when the acidity of the growing medium was adjusted to pH 7.5 and the temperature was 35 °C. The following concentrations of the supplements increased the l-methioninase yield in the medium: galactose (2.0 g L-1), MgSO4 (0.25 g L-1), l-methionine as an inducer (2.0 g L-1), and l-asparagine as an additional N source (1.5 g L-1). I introduce a bacterial strain of H. alvei that is previously unreported to secrete l-methioninase enzyme and show that a carbon source is a mandatory supplement whereas l-methionine is not a mandatory supplement for l-methioninase enzyme production of H. alvei.
Collapse
Affiliation(s)
- Wafa A. Alshehri
- University of Jeddah, College of Science, Department of Biology, Jeddah, Saudi Arabia
| |
Collapse
|
15
|
Roslund K, Lehto M, Pussinen P, Groop PH, Halonen L, Metsälä M. On-line profiling of volatile compounds produced in vitro by pathogenic oral bacteria. J Breath Res 2019; 14:016010. [PMID: 31698353 DOI: 10.1088/1752-7163/ab5559] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Infections by oral pathogens are one of the most common health problems worldwide. Due to the intimate connection between exhaled breath and the oral cavity, breath analysis could potentially be used to diagnose these infections. However, little is known about the volatile emissions of important oral pathogens that are connected with gingivitis and periodontitis. In this study, we have performed in vitro headspace measurements on four important oral pathogens (P. gingivalis, T. forsythia, P. intermedia and P. nigrescens) using proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS). Some of the most abundant compounds produced by the bacteria include hydrogen sulphide, methanethiol, acetone, dimethylsulphide, isoprene, cyclopentanone and indole as tentatively assigned from the mass spectra. Several other abundant mass signals were recorded but the assignment of these is less certain. Some of the bacterial species can be separated from each other by the emitted volatile fingerprints. The results of this study can be used in potential development of a diagnostic breath test for oral infections. In addition, as several of the measured compounds are known to be toxic, the results point to an intriguing possibility of studying the connection between the bacterial virulence and the emitted volatile compounds.
Collapse
Affiliation(s)
- Kajsa Roslund
- Department of Chemistry, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
16
|
Revtovich S, Morozova E, Kulikova V, Koval V, Anufrieva N, Nikulin A, Demidkina T. Sulfoxides of sulfur-containing amino acids are suicide substrates of Citrobacter freundii methionine γ-lyase. Structural bases of the enzyme inactivation. Biochimie 2019; 168:190-197. [PMID: 31711941 DOI: 10.1016/j.biochi.2019.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/05/2019] [Indexed: 11/18/2022]
Abstract
Interactions of Citrobacter freundii methionine γ-lyase (MGL) with sulfoxides of typical substrates were investigated. It was found that sulfoxides are suicide substrates of the enzyme. The products of the β- and γ-elimination reactions of sulfoxides, thiosulfinates, oxidize three cysteine residues of the enzyme. Three-dimensional structures of MGL inactivated by dimethyl thiosulfinate and diethyl thiosulfinate were determined at 1.46 Å and 1.59 Å resolution. Analysis of the structures identified SH groups oxidized by thiosulfinates and revealed the structural bases of MGL inactivation. The extent of inactivation of MGL in the catalysis of the β-elimination reaction depends on the length of the «tail» at oxidized Cys115. Oxidation of Cys115 results in MGL incapable to catalyze the stage of methyl mercaptan elimination of the physiological reaction.
Collapse
Affiliation(s)
- Svetlana Revtovich
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, Russia.
| | - Elena Morozova
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Vitalia Kulikova
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Vasiliy Koval
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Natalya Anufrieva
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Alexei Nikulin
- Institute of Protein Research of the Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Tatyana Demidkina
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
17
|
Kato S, Inagaki K, Oikawa T. Application of l-methionine γ-lyase in chiral amino acid analysis. Anal Biochem 2019; 580:56-61. [PMID: 31163123 DOI: 10.1016/j.ab.2019.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/09/2019] [Accepted: 05/31/2019] [Indexed: 10/26/2022]
Abstract
Here, a conventional chiral amino acid analysis method using high-performance liquid chromatography was coupled with a sample pretreatment using l-methionine γ-lyase from Pseudomonas putida ICR 3460 for the selective analysis of l-methionine and l-tryptophan. The sample was analyzed after the degradation of l-methionine with l-methionine γ-lyase, as l-methionine coelutes with l-tryptophan under the standard chiral amino acid analytical conditions used for precolumn derivatization with o-phthalaldehyde and N-acetyl-l-cysteine. The l-tryptophan in the sample was then eluted as a clearly separated peak and analyzed further. Since the l-methionine γ-lyase did not act on l-tryptophan, we were able to calculate the l-methionine or l-tryptophan concentration based on the data obtained from 2 individual runs: the sample with and without l-methionine γ-lyase pretreatment. The concentration of l-tryptophan was calculated from the data obtained from the sample with l-methionine γ-lyase pretreatment, while the concentration of l-methionine was calculated using the following equation: l-methionine concentration = {the data from the sample without l-methionine γ-lyase pretreatment}-{the data from the sample with l-methionine γ-lyase pretreatment}. Model samples containing authentic amino acids and a fermented food sample were analyzed by our method, and the calculated concentrations of l-methionine and l-tryptophan were consistently in agreement with the theoretical values.
Collapse
Affiliation(s)
- Shiro Kato
- Kansai University High Technology Research Center, 3-3-35 Yamate-Cho, Suita, Osaka, 564-8680, Japan
| | - Kenji Inagaki
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama, 700-8530, Japan
| | - Tadao Oikawa
- Kansai University High Technology Research Center, 3-3-35 Yamate-Cho, Suita, Osaka, 564-8680, Japan; Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-Cho, Suita, Osaka, 564-8680, Japan.
| |
Collapse
|
18
|
Abdelraof M, Selim MH, Abo Elsoud MM, Ali MM. Statistically optimized production of extracellular l-methionine γ-lyase by Streptomyces Sp. DMMMH60 and evaluation of purified enzyme in sub-culturing cell lines. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Raboni S, Revtovich S, Demitri N, Giabbai B, Storici P, Cocconcelli C, Faggiano S, Rosini E, Pollegioni L, Galati S, Buschini A, Morozova E, Kulikova V, Nikulin A, Gabellieri E, Cioni P, Demidkina T, Mozzarelli A. Engineering methionine γ-lyase from Citrobacter freundii for anticancer activity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:1260-1270. [PMID: 30268810 DOI: 10.1016/j.bbapap.2018.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/27/2018] [Accepted: 09/25/2018] [Indexed: 12/16/2022]
Abstract
Methionine deprivation of cancer cells, which are deficient in methionine biosynthesis, has been envisioned as a therapeutic strategy to reduce cancer cell viability. Methionine γ-lyase (MGL), an enzyme that degrades methionine, has been exploited to selectively remove the amino acid from cancer cell environment. In order to increase MGL catalytic activity, we performed sequence and structure conservation analysis of MGLs from various microorganisms. Whereas most of the residues in the active site and at the dimer interface were found to be conserved, residues located in the C-terminal flexible loop, forming a wall of the active site entry channel, were found to be variable. Therefore, we carried out site-saturation mutagenesis at four independent positions of the C-terminal flexible loop, P357, V358, P360 and A366 of MGL from Citrobacter freundii, generating libraries that were screened for activity. Among the active variants, V358Y exhibits a 1.9-fold increase in the catalytic rate and a 3-fold increase in KM, resulting in a catalytic efficiency similar to wild type MGL. V358Y cytotoxic activity was assessed towards a panel of cancer and nonmalignant cell lines and found to exhibit IC50 lower than the wild type. The comparison of the 3D-structure of V358Y MGL with other MGL available structures indicates that the C-terminal loop is either in an open or closed conformation that does not depend on the amino acid at position 358. Nevertheless, mutations at this position allosterically affects catalysis.
Collapse
Affiliation(s)
- Samanta Raboni
- Department of Food and Drug, University of Parma, Parma, Italy; Institute of Biophysics, National Research Council, Pisa, Italy
| | - Svetlana Revtovich
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | - Serena Faggiano
- Department of Food and Drug, University of Parma, Parma, Italy; Institute of Biophysics, National Research Council, Pisa, Italy
| | - Elena Rosini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Serena Galati
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Annamaria Buschini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Elena Morozova
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Vitalia Kulikova
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Alexey Nikulin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
| | - Edi Gabellieri
- Institute of Biophysics, National Research Council, Pisa, Italy
| | - Patrizia Cioni
- Institute of Biophysics, National Research Council, Pisa, Italy
| | - Tatyana Demidkina
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, Russia.
| | - Andrea Mozzarelli
- Department of Food and Drug, University of Parma, Parma, Italy; Institute of Biophysics, National Research Council, Pisa, Italy; National Institute of Biostructures and Biosystems, Rome, Italy.
| |
Collapse
|
20
|
Lin B, Tian G, Liu Y. Mechanistic insights into the γ-elimination reaction of l-methionine catalyzed by methionine γ-lyase (MGL). Theor Chem Acc 2017. [DOI: 10.1007/s00214-017-2140-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Plasma methionine depletion and pharmacokinetic properties in mice of methionine γ-lyase from Citrobacter freundii, Clostridium tetani and Clostridium sporogenes. Biomed Pharmacother 2017; 88:978-984. [PMID: 28178629 DOI: 10.1016/j.biopha.2017.01.127] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/21/2017] [Accepted: 01/21/2017] [Indexed: 11/21/2022] Open
Abstract
PK studies were carried out after a single i.v. administration of 500 and 1000 U/kg by measuring of MGL activity in plasma samples. L-methionine concentration was measured by mass spectrometry. After single i.v. injection of 500U/kg the circulating T1/2 of enzymes in mice varies from 73 to 123min. The AUC0-tinf values determined for MGL 500U/kg from C. freundii, C. tetani and C. sporogenes are 8.21±0.28, 9.04±0.33 and 13.88±0.39U/(ml×h), respectively. Comparison of PK parameters of three MGL sources in the dose of 500U/kg indicated the MGL C. sporogenes to have better PK parameters: clearance 0.83(95%CI: 0.779-0.871) - was lower than C. tetanii 1.27(95%CI: 1.18-1.36) and C. freundii 1.39(95%CI: 1.30-1.49). Mice plasma methionine decreased to undetectable level 10min after MGL 1000 U/kg injection. After MGL C. sporogenes 500U/kg injection plasma methionine level completely omitted after 10min till 6h, assuming the sustainability of negligible levels of methionine (<5μM) in plasma of mice for about 6h. The recovery of methionine concentration showed the advantageous efficiency of MGL from C. sporogenes: 95% 0.010-0.022 vs 0.023-0.061 for MGL C. freundii and 0.036-0.056 for MGL C. tetani. There are no significant differences between methionine cleavage after MGL C. tetani and MGL C. sporogenes i.v. injection at all doses. MGL from C. sporogenes may be considered as promising enzyme for further investigation as potential anticancer agent.
Collapse
|
22
|
Engineered Citrobacter freundii methionine γ-lyase effectively produces antimicrobial thiosulfinates. Biochimie 2016; 128-129:92-8. [DOI: 10.1016/j.biochi.2016.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/13/2016] [Indexed: 11/20/2022]
|
23
|
Control of Clostridium difficile Physiopathology in Response to Cysteine Availability. Infect Immun 2016; 84:2389-405. [PMID: 27297391 DOI: 10.1128/iai.00121-16] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/31/2016] [Indexed: 11/20/2022] Open
Abstract
The pathogenicity of Clostridium difficile is linked to its ability to produce two toxins: TcdA and TcdB. The level of toxin synthesis is influenced by environmental signals, such as phosphotransferase system (PTS) sugars, biotin, and amino acids, especially cysteine. To understand the molecular mechanisms of cysteine-dependent repression of toxin production, we reconstructed the sulfur metabolism pathways of C. difficile strain 630 in silico and validated some of them by testing C. difficile growth in the presence of various sulfur sources. High levels of sulfide and pyruvate were produced in the presence of 10 mM cysteine, indicating that cysteine is actively catabolized by cysteine desulfhydrases. Using a transcriptomic approach, we analyzed cysteine-dependent control of gene expression and showed that cysteine modulates the expression of genes involved in cysteine metabolism, amino acid biosynthesis, fermentation, energy metabolism, iron acquisition, and the stress response. Additionally, a sigma factor (SigL) and global regulators (CcpA, CodY, and Fur) were tested to elucidate their roles in the cysteine-dependent regulation of toxin production. Among these regulators, only sigL inactivation resulted in the derepression of toxin gene expression in the presence of cysteine. Interestingly, the sigL mutant produced less pyruvate and H2S than the wild-type strain. Unlike cysteine, the addition of 10 mM pyruvate to the medium for a short time during the growth of the wild-type and sigL mutant strains reduced expression of the toxin genes, indicating that cysteine-dependent repression of toxin production is mainly due to the accumulation of cysteine by-products during growth. Finally, we showed that the effect of pyruvate on toxin gene expression is mediated at least in part by the two-component system CD2602-CD2601.
Collapse
|
24
|
Hossain Z, Mustafa G, Sakata K, Komatsu S. Insights into the proteomic response of soybean towards Al₂O₃, ZnO, and Ag nanoparticles stress. JOURNAL OF HAZARDOUS MATERIALS 2016; 304:291-305. [PMID: 26561753 DOI: 10.1016/j.jhazmat.2015.10.071] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 10/15/2015] [Accepted: 10/28/2015] [Indexed: 05/24/2023]
Abstract
Understanding the complex mechanisms involved in plant response to nanoparticles is indispensable in assessing the impact of nano-pollutants on environment. The present study compares the phytotoxicity of three different metal-based nanoparticles (Al2O3, ZnO, and Ag) in soybean seedling at proteome level. Plant growth, rigidity of roots, and root cell viability were markedly affected by ZnO- and Ag-NPs stress; while, Al2O3-NPs challenged soybean maintained normal seedling growth like control. Moreover, severe oxidative burst was evident in ZnO-NPs and Ag-NPs treatments. Gel-free proteomic analysis of NPs stressed soybean roots revealed 104 commonly changed proteins primarily associated with secondary metabolism, cell organization, and hormone metabolism. Oxidation-reduction cascade related genes, such as GDSL motif lipase 5, SKU5 similar 4, galactose oxidase, and quinone reductase were up-regulated in Al2O3-NPs challenged roots and down-regulated in ZnO- and Ag-NPs treatments. In comparison to root, 16 common proteins were found to be significantly changed in leaves of NPs exposed soybean that were predominantly associated to photosystem and protein degradation. The proteomic findings suggest that high abundance of proteins involved in oxidation-reduction, stress signaling, hormonal pathways related to growth and development might be the principal key for optimum growth of soybean under Al2O3-NPs stress.
Collapse
Affiliation(s)
- Zahed Hossain
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan; Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India.
| | - Ghazala Mustafa
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Katsumi Sakata
- Maebashi Institute of Technology, Maebashi 371-0816, Japan
| | - Setsuko Komatsu
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| |
Collapse
|
25
|
Deng YF, Di Liao X, Wang Y, Liang JB, Tufarelli V. Prebiotics MitigateIn VitroSulfur-Containing Odour Generation in Caecal Content of Pigs. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2015.3762] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Selim MH, Karm Eldin EZ, Saad MM, Mostafa ESE, Shetia YH, Anise AAH. Purification, Characterization of L-Methioninase from Candida tropicalis, and Its Application as an Anticancer. BIOTECHNOLOGY RESEARCH INTERNATIONAL 2015; 2015:173140. [PMID: 26691554 PMCID: PMC4672112 DOI: 10.1155/2015/173140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/10/2015] [Accepted: 10/13/2015] [Indexed: 02/08/2023]
Abstract
The aim of the present study is to purify L-methioninase from Candida tropicalis 34.19-fold with 27.98% recovery after ion exchange chromatography followed by gel filtration. The purified enzyme revealed a single band on SDS-PAGE gel with a molecular weight of 46 KDa. Its optimum temperature was 45 to 55 and thermal stability was 55°C for 15 min. The enzyme had optimum pH at 6.5 and stability at a pH range of 5.5 to 7.0 for 24 hr. The maximum activity was observed with substrate concentration of 30 µM and Km was 0.5 mM. The enzyme was strongly inhibited by Cd(+2) and Cu(+2) while it was enhanced by Na(+), Ni(+2), and Mg(+2) at 10 mM while Ca(+2) had slight activation at 20 mM. In addition, the potential application of the L-methioninase as an anticancer agent against various types of tumor cell lines is discussed.
Collapse
|
27
|
Bromke MA, Hesse H. Phylogenetic analysis of methionine synthesis genes from Thalassiosira pseudonana. SPRINGERPLUS 2015; 4:391. [PMID: 26251775 PMCID: PMC4523565 DOI: 10.1186/s40064-015-1163-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/17/2015] [Indexed: 02/08/2023]
Abstract
Diatoms are unicellular algae responsible for approximately 20% of global carbon fixation. Their evolution by secondary endocytobiosis resulted in a complex cellular structure and metabolism compared to algae with primary plastids. The sulfate assimilation and methionine synthesis pathways provide S-containing amino acids for the synthesis of proteins and a range of metabolites such as dimethylsulfoniopropionate. To obtain an insight into the localization and organization of the sulfur metabolism pathways we surveyed the genome of Thalassiosira pseudonana-a model organism for diatom research. We have identified and annotated genes for enzymes involved in respective pathways. Protein localization was predicted using similarities to known signal peptide motifs. We performed detailed phylogenetic analyses of enzymes involved in sulfate uptake/reduction and methionine metabolism. Moreover, we have found in up-stream sequences of studied diatoms methionine biosynthesis genes a conserved motif, which shows similarity to the Met31, a cis-motif regulating expression of methionine biosynthesis genes in yeast.
Collapse
Affiliation(s)
- Mariusz A Bromke
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Holger Hesse
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
28
|
Kudou D, Yasuda E, Hirai Y, Tamura T, Inagaki K. Molecular cloning and characterization of l-methionine γ-lyase from Streptomyces avermitilis. J Biosci Bioeng 2015; 120:380-3. [PMID: 25817696 DOI: 10.1016/j.jbiosc.2015.02.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 02/25/2015] [Accepted: 02/28/2015] [Indexed: 11/27/2022]
Abstract
A pyridoxal 5'-phosphate-dependent methionine γ-lyase (MGL) was cloned from Streptomyces avermitilis catalyzed the degradation of methionine to α-ketobutyrate, methanethiol, and ammonia. The sav7062 gene (1,242 bp) was corresponded to 413 amino acid residues with a molecular mass of 42,994 Da. The deduced amino acid sequence showed a high degree of similarity to those of other MGL enzymes. The sav7062 gene was overexpressed in Escherichia coli. The enzyme was purified to homogeneity and exhibited the MGL catalytic activities. We cloned the enzyme that has the MGL activity in Streptomyces for the first time.
Collapse
Affiliation(s)
- Daizou Kudou
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama-shi, Okayama 700-8530, Japan.
| | - Eri Yasuda
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama-shi, Okayama 700-8530, Japan.
| | - Yoshiyuki Hirai
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama-shi, Okayama 700-8530, Japan.
| | - Takashi Tamura
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama-shi, Okayama 700-8530, Japan.
| | - Kenji Inagaki
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama-shi, Okayama 700-8530, Japan.
| |
Collapse
|
29
|
Anufrieva NV, Faleev NG, Morozova EA, Bazhulina NP, Revtovich SV, Timofeev VP, Tkachev YV, Nikulin AD, Demidkina TV. The role of active site tyrosine 58 in Citrobacter freundii methionine γ-lyase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1220-8. [PMID: 25584856 DOI: 10.1016/j.bbapap.2014.12.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/29/2014] [Accepted: 12/30/2014] [Indexed: 10/24/2022]
Abstract
In the spatial structure of methionine γ-lyase (MGL, EC 4.4.1.11) from Citrobacter freundii, Tyr58 is located at H-bonding distance to the oxygen atom of the phosphate "handle" of pyridoxal 5'-phosphate (PLP). It was replaced for phenylalanine by site-directed mutagenesis. The X-ray structure of the mutant enzyme was determined at 1.96Å resolution. Comparison of spatial structures and absorption spectra of wild-type and mutant holoenzymes demonstrated that the replacement did not result in essential changes of the conformation of the active site Tyr58Phe MGL. The Kd value of PLP for Tyr58Phe MGL proved to be comparable to the Kd value for the wild-type enzyme. The replacement led to a decrease of catalytic efficiencies in both γ- and β-elimination reactions of about two orders of magnitude as compared to those for the wild-type enzyme. The rates of exchange of C-α- and C-β- protons of inhibitors in D2O catalyzed by the mutant form are comparable with those for the wild-type enzyme. Spectral data on the complexes of the mutant form with the substrates and inhibitors showed that the replacement led to a change of rate the limiting step of the physiological reaction. The results allowed us to conclude that Tyr58 is involved in an optimal positioning of the active site Lys210 at some stages of γ- and β-elimination reactions. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications.
Collapse
Affiliation(s)
- Natalya V Anufrieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, ul. Vavilova 32, Moscow 119991, Russia
| | - Nicolai G Faleev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow 117813, Russia
| | - Elena A Morozova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, ul. Vavilova 32, Moscow 119991, Russia
| | - Natalia P Bazhulina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, ul. Vavilova 32, Moscow 119991, Russia
| | - Svetlana V Revtovich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, ul. Vavilova 32, Moscow 119991, Russia
| | - Vladimir P Timofeev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, ul. Vavilova 32, Moscow 119991, Russia
| | - Yaroslav V Tkachev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, ul. Vavilova 32, Moscow 119991, Russia
| | - Alexei D Nikulin
- Institute of Protein Research, Russian Academy of Sciences, ul. Institutskaya 4, Pushchino, Moscow Region 142290, Russia
| | - Tatyana V Demidkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, ul. Vavilova 32, Moscow 119991, Russia.
| |
Collapse
|
30
|
Batuev EA, Lisunov AY, Morozova EA, Klochkov VV, Anufrieva NV, Demidkina TV, Polshakov VI. NMR screening of potential inhibitors of methionine γ-lyase from Citrobacter freundii. Mol Biol 2014. [DOI: 10.1134/s0026893314060028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Song H, Xu R, Guo Z. Identification and characterization of a methionine γ-lyase in the calicheamicin biosynthetic cluster of Micromonospora echinospora. Chembiochem 2014; 16:100-9. [PMID: 25404066 DOI: 10.1002/cbic.201402489] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Indexed: 11/07/2022]
Abstract
CalE6 is a previously uncharacterized protein involved in the biosynthesis of calicheamicins in Micromonospora echinospora. It is a pyridoxal-5'-phosphate-dependent enzyme and exhibits high sequence homology to cystathionine γ-lyases and cystathionine γ-synthases. However, it was found to be active towards methionine and to convert this amino acid into α-ketobutyrate, ammonium, and methanethiol. The crystal structure of the cofactor-bound holoenzyme was resolved at 2.0 Å; it contains two active site residues, Gly105 and Val322, specific for methionine γ-lyases. Modeling of methionine into the active site allows identification of the active site residues responsible for substrate recognition and catalysis. These findings support that CalE6 is a putative methionine γ-lyase producing methanethiol as a building block in biosynthesis of calicheamicins.
Collapse
Affiliation(s)
- Haigang Song
- Department of Chemistry and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)
| | | | | |
Collapse
|
32
|
Kuznetsov NA, Faleev NG, Kuznetsova AA, Morozova EA, Revtovich SV, Anufrieva NV, Nikulin AD, Fedorova OS, Demidkina TV. Pre-steady-state kinetic and structural analysis of interaction of methionine γ-lyase from Citrobacter freundii with inhibitors. J Biol Chem 2014; 290:671-81. [PMID: 25398880 DOI: 10.1074/jbc.m114.586511] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Methionine γ-lyase (MGL) catalyzes the γ-elimination of l-methionine and its derivatives as well as the β-elimination of l-cysteine and its analogs. These reactions yield α-keto acids and thiols. The mechanism of chemical conversion of amino acids includes numerous reaction intermediates. The detailed analysis of MGL interaction with glycine, l-alanine, l-norvaline, and l-cycloserine was performed by pre-steady-state stopped-flow kinetics. The structure of side chains of the amino acids is important both for their binding with enzyme and for the stability of the external aldimine and ketimine intermediates. X-ray structure of the MGL·l-cycloserine complex has been solved at 1.6 Å resolution. The structure models the ketimine intermediate of physiological reaction. The results elucidate the mechanisms of the intermediate interconversion at the stages of external aldimine and ketimine formation.
Collapse
Affiliation(s)
- Nikita A Kuznetsov
- From the Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, the Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090
| | | | - Alexandra A Kuznetsova
- From the Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, the Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090
| | - Elena A Morozova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, and
| | - Svetlana V Revtovich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, and
| | - Natalya V Anufrieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, and
| | - Alexei D Nikulin
- the Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Olga S Fedorova
- From the Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, the Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090,
| | - Tatyana V Demidkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, and
| |
Collapse
|
33
|
Morozova EA, Revtovich SV, Anufrieva NV, Kulikova VV, Nikulin AD, Demidkina TV. Alliin is a suicide substrate ofCitrobacter freundiimethionine γ-lyase: structural bases of inactivation of the enzyme. ACTA ACUST UNITED AC 2014; 70:3034-42. [DOI: 10.1107/s1399004714020938] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 09/19/2014] [Indexed: 11/10/2022]
Abstract
The interaction ofCitrobacter freundiimethionine γ-lyase (MGL) and the mutant form in which Cys115 is replaced by Ala (MGL C115A) with the nonprotein amino acid (2R)-2-amino-3-[(S)-prop-2-enylsulfinyl]propanoic acid (alliin) was investigated. It was found that MGL catalyzes the β-elimination reaction of alliin to form 2-propenethiosulfinate (allicin), pyruvate and ammonia. The β-elimination reaction of alliin is followed by the inactivation and modification of SH groups of the wild-type and mutant enzymes. Three-dimensional structures of inactivated wild-type MGL (iMGL wild type) and a C115A mutant form (iMGL C115A) were determined at 1.85 and 1.45 Å resolution and allowed the identification of the SH groups that were oxidized by allicin. On this basis, the mechanism of the inactivation of MGL by alliin, a new suicide substrate of MGL, is proposed.
Collapse
|
34
|
He X, Slupsky CM. Metabolic fingerprint of dimethyl sulfone (DMSO2) in microbial-mammalian co-metabolism. J Proteome Res 2014; 13:5281-92. [PMID: 25245235 DOI: 10.1021/pr500629t] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is growing awareness that intestinal microbiota alters the energy harvesting capacity of the host and regulates metabolism. It has been postulated that intestinal microbiota are able to degrade unabsorbed dietary components and transform xenobiotic compounds. The resulting microbial metabolites derived from the gastrointestinal tract can potentially enter the circulation system, which, in turn, affects host metabolism. Yet, the metabolic capacity of intestinal microbiota and its interaction with mammalian metabolism remains largely unexplored. Here, we review a metabolic pathway that integrates the microbial catabolism of methionine with mammalian metabolism of methanethiol (MT), dimethyl sulfide (DMS), and dimethyl sulfoxide (DMSO), which together provide evidence that supports the microbial origin of dimethyl sulfone (DMSO2) in the human metabolome. Understanding the pathway of DMSO2 co-metabolism expends our knowledge of microbial-derived metabolites and motivates future metabolomics-based studies on ascertaining the metabolic consequences of intestinal microbiota on human health, including detoxification processes and sulfur xenobiotic metabolism.
Collapse
Affiliation(s)
- Xuan He
- Department of Nutrition, Department of Food Science and Technology, One Shields Avenue , University of California, Davis, Davis, California 95616, United States
| | | |
Collapse
|
35
|
Crystal structure of the external aldimine of Citrobacter freundii methionine γ-lyase with glycine provides insight in mechanisms of two stages of physiological reaction and isotope exchange of α- and β-protons of competitive inhibitors. Biochimie 2014; 101:161-7. [DOI: 10.1016/j.biochi.2014.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 01/09/2014] [Indexed: 11/17/2022]
|
36
|
Kotova VY, Ryzhenkova KV, Manukhov IV, Zavilgelsky GB. Inducible specific lux-biosensors for the detection of antibiotics: Construction and main parameters. APPL BIOCHEM MICRO+ 2013. [DOI: 10.1134/s0003683814010074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Martínez-Cuesta MDC, Peláez C, Requena T. Methionine metabolism: major pathways and enzymes involved and strategies for control and diversification of volatile sulfur compounds in cheese. Crit Rev Food Sci Nutr 2013; 53:366-85. [PMID: 23320908 DOI: 10.1080/10408398.2010.536918] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
For economical reasons and to accommodate current market trends, cheese manufacturers and product developers are increasingly interested in controlling cheese flavor formation and developing new flavors. Due to their low detection threshold and diversity, volatile sulfur compounds (VSCs) are of prime importance in the overall flavor of cheese and make a significant contribution to their typical flavors. Thus, the control of VSCs formation offers considerable potential for industrial applications. This paper gives an overview of the main VSCs found in cheese, along with the major pathways and key enzymes leading to the formation of methanethiol from methionine, which is subsequently converted into other sulfur-bearing compounds. As these compounds arise primarily from methionine, the metabolism of this amino acid and its regulation is presented. Attention is focused in the enzymatic potential of lactic acid bacteria (LAB) that are widely used as starter and adjunct cultures in cheese-making. In view of industrial applications, different strategies such as the enhancement of the abilities of LAB to produce high amounts and diversity of VSCs are highlighted as the principal future research trend.
Collapse
Affiliation(s)
- María Del Carmen Martínez-Cuesta
- Department of Biotechnology and Microbiology, Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Campus Universidad Autónoma, Madrid, Spain.
| | | | | |
Collapse
|
38
|
Nguyen HC, Hoefgen R, Hesse H. Improving the nutritive value of rice seeds: elevation of cysteine and methionine contents in rice plants by ectopic expression of a bacterial serine acetyltransferase. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5991-6001. [PMID: 23048130 DOI: 10.1093/jxb/ers253] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
With the aim of increasing the cysteine level in rice (Oryza sativa L.) and thus improving its nutritional quality, transgenic rice plants were generated expressing an Escherichia coli serine acetyltransferase isoform (EcSAT), the enzyme synthesizing O-acetylserine, the precursor of cysteine. The gene was fused to the transit peptide of the Arabidopsis Rubisco and driven by a ubiquitin promoter to target the enzyme to plastids. Twenty-two transgenic plants were examined for transgene protein expression, and five lines with a high expression level and enzymatic activity, respectively, were selected for further analysis. In these lines, the contents of cysteine and glutathione increased 2.4-fold and 2-fold, respectively. More important is the increase in free methionine and methionine incorporated into the water-soluble protein fraction in seeds. Free methionine increased in leaves up to 2.7-fold, in seeds up to 1.4-fold, and bound to seed proteins up to 4.8-fold, respectively, while the bound methionine level remained constant or even decreased in leaves. Notably, the transgenic lines exhibited higher isoleucine, leucine, and valine contents (each up to 2-fold depending on tissue, free, or bound), indicating a potential conversion of methionine via methionine γ-lyase to isoleucine. As the transgenic rice plants overexpressing EcSAT had significantly higher levels of both soluble and protein-bound methionine, isoleucine, cysteine, and glutathione in rice they may represent a model and target system for improving the nutritional quality of cereal crops.
Collapse
Affiliation(s)
- Huu Cuong Nguyen
- Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | | | | |
Collapse
|
39
|
The role of amino acid residues in the active site of L-methionine γ-lyase from Pseudomonas putida. Biosci Biotechnol Biochem 2012; 76:1275-84. [PMID: 22785484 DOI: 10.1271/bbb.110906] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cys116, Lys240*, and Asp241* (asterisks indicate residues from the second subunit of the active dimer) at the active site of L-methionine γ-lyase of Pseudomonas putida (MGL_Pp) are highly conserved among heterologous MGLs. In a previous study, we found that substitution of Cys116 for His led to a drastic increase in activity toward L-cysteine and a decrease in that toward L-methionine. In this study, we examined some properties of the C116H mutant by kinetic analysis and 3D structural analysis. We assumed that substitution of Cys116 for His broke the original hydrogen-bond network and that this induced a significant effect of Tyr114 as a general acid catalyst, possibly due to the narrow space in the active site. The C116H mutant acquired a novel β-elimination activity and lead a drastic conformation change in the histidine residue at position 116 by binding the substrate, suggesting that this His residue affects the reaction specificity of C116H. Furthermore, we suggest that Lys240* is important for substrate recognition and structural stability and that Asp241* is also involved in substrate specificity in the elimination reaction. Based on this, we suggest that the hydrogen-bond network among Cys116, Lys240*, and Asp241* contributes to substrate specificity that is, to L-methionine recognition at the active site in MGL_Pp.
Collapse
|
40
|
The MetJ regulon in gammaproteobacteria determined by comparative genomics methods. BMC Genomics 2011; 12:558. [PMID: 22082356 PMCID: PMC3228920 DOI: 10.1186/1471-2164-12-558] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 11/14/2011] [Indexed: 02/06/2023] Open
Abstract
Background Whole-genome sequencing of bacteria has proceeded at an exponential pace but annotation validation has lagged behind. For instance, the MetJ regulon, which controls methionine biosynthesis and transport, has been studied almost exclusively in E. coli and Salmonella, but homologs of MetJ exist in a variety of other species. These include some that are pathogenic (e.g. Yersinia) and some that are important for environmental remediation (e.g. Shewanella) but many of which have not been extensively characterized in the literature. Results We have determined the likely composition of the MetJ regulon in all species which have MetJ homologs using bioinformatics techniques. We show that the core genes known from E. coli are consistently regulated in other species, and we identify previously unknown members of the regulon. These include the cobalamin transporter, btuB; all the genes involved in the methionine salvage pathway; as well as several enzymes and transporters of unknown specificity. Conclusions The MetJ regulon is present and functional in five orders of gammaproteobacteria: Enterobacteriales, Pasteurellales, Vibrionales, Aeromonadales and Alteromonadales. New regulatory activity for MetJ was identified in the genomic data and verified experimentally. This strategy should be applicable for the elucidation of regulatory pathways in other systems by using the extensive sequencing data currently being generated.
Collapse
|
41
|
Kahraman H, Aytan E, Kurt AG. Production of methionine γ- lyase in recombinant Citrobacter freundii bearing the hemoglobin gene. BMB Rep 2011; 44:590-4. [DOI: 10.5483/bmbrep.2011.44.9.590] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
42
|
Revtovich SV, Morozova EA, Khurs EN, Zakomirdina LN, Nikulin AD, Demidkina TV, Khomutov RM. Three-dimensional structures of noncovalent complexes of Citrobacter freundii methionine γ-lyase with substrates. BIOCHEMISTRY (MOSCOW) 2011; 76:564-70. [DOI: 10.1134/s0006297911050063] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
El-Sayed AS, Shindia AA. Characterization and immobilization of purified Aspergillus flavipesl-methioninase: continuous production of methanethiol. J Appl Microbiol 2011; 111:54-69. [PMID: 21466637 DOI: 10.1111/j.1365-2672.2011.05027.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To immobilize the purified Aspergillus flavipesl-methioninase on solid carriers for continuous production of methanethiol with high purity, by the enzymatic methods. METHODS AND RESULTS The purified l-methioninase was immobilized using different methods, and physicochemical and kinetic studies for the potent immobilized enzyme were conducted parallel to the soluble one. The activity of the purified extracellular enzyme was 1·8-fold higher than intracellular one from submerged cultures of A. flavipes. Among the tested methods, polyacrylamide (42·2%), Ca-alginate (40·9%) and chitin (40·8%) displayed the highest immobilization efficiency. The thermal inactivation rate was strongly decreased for chitin-immobilized enzyme (0·222 s⁻¹) comparing to soluble enzyme (0·51 s⁻¹). Enzyme immobilization efficiency was greatly improved using 4·0% glutaraldehyde and 41·6/6·3 (T/C) as spacers for chitin and polyacrylamide-enzyme conjugates, comparing to their controls. Also the incorporation of lysine, glutathione, cysteine and dithiothreitol as active site protectants significantly enhance the catalytic efficiency of immobilized enzyme. The activity of enzyme was increased by 4·5- and 3·5-fold using glutathione plus DDT and glutathione plus methionine, for chitin and polyacrylamide enzyme, respectively. CONCLUSION Chitin enzyme gave a plausible stability till fourth cycle for production of methanethiol under controlled system. Applying GC and HNMR analysis, methanethiol has identical chemical structure to the standard compound. SIGNIFICANCE AND IMPACT OF THE STUDY Technically, a new method for continuous production of pure methanethiol, with broad applications, was developed using a simple low expenses method.
Collapse
Affiliation(s)
- A S El-Sayed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt.
| | | |
Collapse
|
44
|
El-Sayed ASA. Purification and characterization of a new L-methioninase from solid cultures of Aspergillus flavipes. J Microbiol 2011; 49:130-40. [PMID: 21369990 DOI: 10.1007/s12275-011-0259-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 09/14/2010] [Indexed: 11/27/2022]
Abstract
L-Methioninase was purified to electrophoretic homogeneity from cultures of Aspergillus flavipes using anion-exchange and gel filtration chromatography by 12.1 fold compared to the crude enzyme preparation. The purified enzyme had a molecular mass of 47 kDa under denaturing conditions and an isoelectric point of 5.8 with no structural glycosyl residues. The enzyme had optimum activity at pH 7.8 and pH stability from 6.8-8.0 at 35°C. The enzyme appeared to be catalytically stable below 40°C. The enzyme activity was strongly inhibited by DL-propargylglycine, hydroxylamine, PMSF, 2-mercaptoethanol, Hg(+), Cu(2+), and Fe(2+), with slight inhibition by Triton X-(100). A flavipes L-methioninase has a higher catalytic affinity towards L-methionine (Km, 6.5 mM and Kcat, 14.1 S(-1)) followed by a relative demethiolating activity to L-homo-cysteine (Km, 12 mM and Kcat, 9.3 S(-1)). The enzyme has two absorption maxima at 280 and 420 nm, typical of other PLP-enzymes. Apo-L-methioninase has the ability to reconstitute its structural catalytic state completely upon addition of 0.15 mM PLP. L-Methioninase has neither an appreciable effect on liver function, platelet aggregation, nor hemolysis of human blood. The purified L-methioninase from solid cultures of A. flavipes displayed unique biochemical and catalytic properties over the currently applied Pseudomonad enzyme.
Collapse
Affiliation(s)
- Ashraf S A El-Sayed
- Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
45
|
Forquin MP, Hébert A, Roux A, Aubert J, Proux C, Heilier JF, Landaud S, Junot C, Bonnarme P, Martin-Verstraete I. Global regulation of the response to sulfur availability in the cheese-related bacterium Brevibacterium aurantiacum. Appl Environ Microbiol 2011; 77:1449-59. [PMID: 21169450 PMCID: PMC3067248 DOI: 10.1128/aem.01708-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 12/05/2010] [Indexed: 11/20/2022] Open
Abstract
In this study, we combined metabolic reconstruction, growth assays, and metabolome and transcriptome analyses to obtain a global view of the sulfur metabolic network and of the response to sulfur availability in Brevibacterium aurantiacum. In agreement with the growth of B. aurantiacum in the presence of sulfate and cystine, the metabolic reconstruction showed the presence of a sulfate assimilation pathway, thiolation pathways that produce cysteine (cysE and cysK) or homocysteine (metX and metY) from sulfide, at least one gene of the transsulfuration pathway (aecD), and genes encoding three MetE-type methionine synthases. We also compared the expression profiles of B. aurantiacum ATCC 9175 during sulfur starvation or in the presence of sulfate. Under sulfur starvation, 690 genes, including 21 genes involved in sulfur metabolism and 29 genes encoding amino acids and peptide transporters, were differentially expressed. We also investigated changes in pools of sulfur-containing metabolites and in expression profiles after growth in the presence of sulfate, cystine, or methionine plus cystine. The expression of genes involved in sulfate assimilation and cysteine synthesis was repressed in the presence of cystine, whereas the expression of metX, metY, metE1, metE2, and BL613, encoding a probable cystathionine-γ-synthase, decreased in the presence of methionine. We identified three ABC transporters: two operons encoding transporters were transcribed more strongly during cysteine limitation, and one was transcribed more strongly during methionine depletion. Finally, the expression of genes encoding a methionine γ-lyase (BL929) and a methionine transporter (metPS) was induced in the presence of methionine in conjunction with a significant increase in volatile sulfur compound production.
Collapse
Affiliation(s)
- Marie-Pierre Forquin
- INRA-AgroParisTech, UMR 782 Génie et Microbiologie des Procédés Alimentaires, Centre de Biotechnologies Agro-Industrielles, 78850 Thiverval-Grignon, France, Institut Pasteur, Laboratoire Pathogenèse des Bactéries Anaérobies, 25-28 Rue du Docteur Roux, 75724 Paris Cedex 15, France, INRA-AgroParisTech, UMR 1319 Micalis, Centre de Biotechnologies Agro-Industrielles, 78850 Thiverval-Grignon, France, CEA, Service de Pharmacologie et d'Immunoanalyse, DSV/iBiTec-S, CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France, INRA-AgroParisTech, UMR 518 Mathématiques et Informatiques Appliquées, Paris, France, Institut Pasteur, Plate-forme Puces à ADN, 28 Rue du Docteur Roux, 75724 Paris Cedex 15, France, Université Catholique de Louvain, Louvain Centre for Toxicology and Applied Pharmacology, Brussels, Belgium, Université Paris 7-Denis Diderot, 75205 Paris, France
| | - Agnès Hébert
- INRA-AgroParisTech, UMR 782 Génie et Microbiologie des Procédés Alimentaires, Centre de Biotechnologies Agro-Industrielles, 78850 Thiverval-Grignon, France, Institut Pasteur, Laboratoire Pathogenèse des Bactéries Anaérobies, 25-28 Rue du Docteur Roux, 75724 Paris Cedex 15, France, INRA-AgroParisTech, UMR 1319 Micalis, Centre de Biotechnologies Agro-Industrielles, 78850 Thiverval-Grignon, France, CEA, Service de Pharmacologie et d'Immunoanalyse, DSV/iBiTec-S, CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France, INRA-AgroParisTech, UMR 518 Mathématiques et Informatiques Appliquées, Paris, France, Institut Pasteur, Plate-forme Puces à ADN, 28 Rue du Docteur Roux, 75724 Paris Cedex 15, France, Université Catholique de Louvain, Louvain Centre for Toxicology and Applied Pharmacology, Brussels, Belgium, Université Paris 7-Denis Diderot, 75205 Paris, France
| | - Aurélie Roux
- INRA-AgroParisTech, UMR 782 Génie et Microbiologie des Procédés Alimentaires, Centre de Biotechnologies Agro-Industrielles, 78850 Thiverval-Grignon, France, Institut Pasteur, Laboratoire Pathogenèse des Bactéries Anaérobies, 25-28 Rue du Docteur Roux, 75724 Paris Cedex 15, France, INRA-AgroParisTech, UMR 1319 Micalis, Centre de Biotechnologies Agro-Industrielles, 78850 Thiverval-Grignon, France, CEA, Service de Pharmacologie et d'Immunoanalyse, DSV/iBiTec-S, CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France, INRA-AgroParisTech, UMR 518 Mathématiques et Informatiques Appliquées, Paris, France, Institut Pasteur, Plate-forme Puces à ADN, 28 Rue du Docteur Roux, 75724 Paris Cedex 15, France, Université Catholique de Louvain, Louvain Centre for Toxicology and Applied Pharmacology, Brussels, Belgium, Université Paris 7-Denis Diderot, 75205 Paris, France
| | - Julie Aubert
- INRA-AgroParisTech, UMR 782 Génie et Microbiologie des Procédés Alimentaires, Centre de Biotechnologies Agro-Industrielles, 78850 Thiverval-Grignon, France, Institut Pasteur, Laboratoire Pathogenèse des Bactéries Anaérobies, 25-28 Rue du Docteur Roux, 75724 Paris Cedex 15, France, INRA-AgroParisTech, UMR 1319 Micalis, Centre de Biotechnologies Agro-Industrielles, 78850 Thiverval-Grignon, France, CEA, Service de Pharmacologie et d'Immunoanalyse, DSV/iBiTec-S, CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France, INRA-AgroParisTech, UMR 518 Mathématiques et Informatiques Appliquées, Paris, France, Institut Pasteur, Plate-forme Puces à ADN, 28 Rue du Docteur Roux, 75724 Paris Cedex 15, France, Université Catholique de Louvain, Louvain Centre for Toxicology and Applied Pharmacology, Brussels, Belgium, Université Paris 7-Denis Diderot, 75205 Paris, France
| | - Caroline Proux
- INRA-AgroParisTech, UMR 782 Génie et Microbiologie des Procédés Alimentaires, Centre de Biotechnologies Agro-Industrielles, 78850 Thiverval-Grignon, France, Institut Pasteur, Laboratoire Pathogenèse des Bactéries Anaérobies, 25-28 Rue du Docteur Roux, 75724 Paris Cedex 15, France, INRA-AgroParisTech, UMR 1319 Micalis, Centre de Biotechnologies Agro-Industrielles, 78850 Thiverval-Grignon, France, CEA, Service de Pharmacologie et d'Immunoanalyse, DSV/iBiTec-S, CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France, INRA-AgroParisTech, UMR 518 Mathématiques et Informatiques Appliquées, Paris, France, Institut Pasteur, Plate-forme Puces à ADN, 28 Rue du Docteur Roux, 75724 Paris Cedex 15, France, Université Catholique de Louvain, Louvain Centre for Toxicology and Applied Pharmacology, Brussels, Belgium, Université Paris 7-Denis Diderot, 75205 Paris, France
| | - Jean-François Heilier
- INRA-AgroParisTech, UMR 782 Génie et Microbiologie des Procédés Alimentaires, Centre de Biotechnologies Agro-Industrielles, 78850 Thiverval-Grignon, France, Institut Pasteur, Laboratoire Pathogenèse des Bactéries Anaérobies, 25-28 Rue du Docteur Roux, 75724 Paris Cedex 15, France, INRA-AgroParisTech, UMR 1319 Micalis, Centre de Biotechnologies Agro-Industrielles, 78850 Thiverval-Grignon, France, CEA, Service de Pharmacologie et d'Immunoanalyse, DSV/iBiTec-S, CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France, INRA-AgroParisTech, UMR 518 Mathématiques et Informatiques Appliquées, Paris, France, Institut Pasteur, Plate-forme Puces à ADN, 28 Rue du Docteur Roux, 75724 Paris Cedex 15, France, Université Catholique de Louvain, Louvain Centre for Toxicology and Applied Pharmacology, Brussels, Belgium, Université Paris 7-Denis Diderot, 75205 Paris, France
| | - Sophie Landaud
- INRA-AgroParisTech, UMR 782 Génie et Microbiologie des Procédés Alimentaires, Centre de Biotechnologies Agro-Industrielles, 78850 Thiverval-Grignon, France, Institut Pasteur, Laboratoire Pathogenèse des Bactéries Anaérobies, 25-28 Rue du Docteur Roux, 75724 Paris Cedex 15, France, INRA-AgroParisTech, UMR 1319 Micalis, Centre de Biotechnologies Agro-Industrielles, 78850 Thiverval-Grignon, France, CEA, Service de Pharmacologie et d'Immunoanalyse, DSV/iBiTec-S, CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France, INRA-AgroParisTech, UMR 518 Mathématiques et Informatiques Appliquées, Paris, France, Institut Pasteur, Plate-forme Puces à ADN, 28 Rue du Docteur Roux, 75724 Paris Cedex 15, France, Université Catholique de Louvain, Louvain Centre for Toxicology and Applied Pharmacology, Brussels, Belgium, Université Paris 7-Denis Diderot, 75205 Paris, France
| | - Christophe Junot
- INRA-AgroParisTech, UMR 782 Génie et Microbiologie des Procédés Alimentaires, Centre de Biotechnologies Agro-Industrielles, 78850 Thiverval-Grignon, France, Institut Pasteur, Laboratoire Pathogenèse des Bactéries Anaérobies, 25-28 Rue du Docteur Roux, 75724 Paris Cedex 15, France, INRA-AgroParisTech, UMR 1319 Micalis, Centre de Biotechnologies Agro-Industrielles, 78850 Thiverval-Grignon, France, CEA, Service de Pharmacologie et d'Immunoanalyse, DSV/iBiTec-S, CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France, INRA-AgroParisTech, UMR 518 Mathématiques et Informatiques Appliquées, Paris, France, Institut Pasteur, Plate-forme Puces à ADN, 28 Rue du Docteur Roux, 75724 Paris Cedex 15, France, Université Catholique de Louvain, Louvain Centre for Toxicology and Applied Pharmacology, Brussels, Belgium, Université Paris 7-Denis Diderot, 75205 Paris, France
| | - Pascal Bonnarme
- INRA-AgroParisTech, UMR 782 Génie et Microbiologie des Procédés Alimentaires, Centre de Biotechnologies Agro-Industrielles, 78850 Thiverval-Grignon, France, Institut Pasteur, Laboratoire Pathogenèse des Bactéries Anaérobies, 25-28 Rue du Docteur Roux, 75724 Paris Cedex 15, France, INRA-AgroParisTech, UMR 1319 Micalis, Centre de Biotechnologies Agro-Industrielles, 78850 Thiverval-Grignon, France, CEA, Service de Pharmacologie et d'Immunoanalyse, DSV/iBiTec-S, CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France, INRA-AgroParisTech, UMR 518 Mathématiques et Informatiques Appliquées, Paris, France, Institut Pasteur, Plate-forme Puces à ADN, 28 Rue du Docteur Roux, 75724 Paris Cedex 15, France, Université Catholique de Louvain, Louvain Centre for Toxicology and Applied Pharmacology, Brussels, Belgium, Université Paris 7-Denis Diderot, 75205 Paris, France
| | - Isabelle Martin-Verstraete
- INRA-AgroParisTech, UMR 782 Génie et Microbiologie des Procédés Alimentaires, Centre de Biotechnologies Agro-Industrielles, 78850 Thiverval-Grignon, France, Institut Pasteur, Laboratoire Pathogenèse des Bactéries Anaérobies, 25-28 Rue du Docteur Roux, 75724 Paris Cedex 15, France, INRA-AgroParisTech, UMR 1319 Micalis, Centre de Biotechnologies Agro-Industrielles, 78850 Thiverval-Grignon, France, CEA, Service de Pharmacologie et d'Immunoanalyse, DSV/iBiTec-S, CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France, INRA-AgroParisTech, UMR 518 Mathématiques et Informatiques Appliquées, Paris, France, Institut Pasteur, Plate-forme Puces à ADN, 28 Rue du Docteur Roux, 75724 Paris Cedex 15, France, Université Catholique de Louvain, Louvain Centre for Toxicology and Applied Pharmacology, Brussels, Belgium, Université Paris 7-Denis Diderot, 75205 Paris, France
| |
Collapse
|
46
|
Stereospecificity of isotopic exchange of C-α-protons of glycine catalyzed by three PLP-dependent lyases: the unusual case of tyrosine phenol-lyase. Amino Acids 2010; 41:1247-56. [DOI: 10.1007/s00726-010-0802-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 10/28/2010] [Indexed: 11/29/2022]
|
47
|
Morozova EA, Bazhulina NP, Anufrieva NV, Mamaeva DV, Tkachev YV, Streltsov SA, Timofeev VP, Faleev NG, Demidkina TV. Kinetic and spectral parameters of interaction of Citrobacter freundii methionine γ-lyase with amino acids. BIOCHEMISTRY (MOSCOW) 2010; 75:1272-80. [DOI: 10.1134/s0006297910100093] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
El-Sayed AS. Microbial l-methioninase: production, molecular characterization, and therapeutic applications. Appl Microbiol Biotechnol 2010; 86:445-67. [DOI: 10.1007/s00253-009-2303-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 10/08/2009] [Accepted: 10/10/2009] [Indexed: 10/19/2022]
|
49
|
Sato D, Nozaki T. Methionine gamma-lyase: The unique reaction mechanism, physiological roles, and therapeutic applications against infectious diseases and cancers. IUBMB Life 2009; 61:1019-28. [DOI: 10.1002/iub.255] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
50
|
Methionine γ-lyase: Mechanistic deductions from the kinetic pH-effects. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1414-20. [DOI: 10.1016/j.bbapap.2009.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 05/22/2009] [Accepted: 06/01/2009] [Indexed: 11/19/2022]
|