1
|
Carvalho ÂR, Bazana LCG, Ferrão MF, Fuentefria AM. Unraveling the complexities of antifungal susceptibility testing in Candida spp.: Insights from design of experiments. Anal Biochem 2024; 696:115675. [PMID: 39284377 DOI: 10.1016/j.ab.2024.115675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 09/21/2024]
Abstract
Our study delved into the intricate dynamics of antifungal susceptibility testing for Candida spp., employing a Design of Experiments approach. We systematically investigated the influence of pH, temperature, inoculum size, and glucose concentration on both growth patterns and inhibitory concentrations of Candida spp. Our findings underscore the nuanced interplay between these factors, revealing significant impacts on susceptibility outcomes. Notably, even minor adjustments in these parameters yielded substantial variations in growth and inhibitory concentrations, underscoring the critical importance of meticulous control over growth conditions in antifungal susceptibility testing protocols. Each Candida isolates exhibited unique susceptibility profiles, necessitating tailored culture conditions for accurate testing. Our study sheds light on the variability inherent in Candida spp. growth patterns and emphasizes the need for standardized protocols to ensure consistency across laboratories. By leveraging the design of experiments, our research provides a systematic framework for unraveling the complexities of antifungal susceptibility testing, offering valuable insights for optimizing testing protocols and informing clinical decision-making in antifungal treatment. These findings represent a significant step towards enhancing the efficacy and reliability of antifungal susceptibility testing in clinical practice.
Collapse
Affiliation(s)
- Ânderson Ramos Carvalho
- Laboratório de Pesquisa em Micologia Aplicada, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Departamento de Química Inorgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501-970, Brazil.
| | - Luana Candice Genz Bazana
- Laboratório de Pesquisa em Micologia Aplicada, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Marco Flôres Ferrão
- Departamento de Química Inorgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501-970, Brazil; Instituto Nacional de Ciência e Tecnologia-Bioanalítica (INCT-Bioanalítica), Cidade Universitária, Zeferino Vaz s/n, Campinas, São Paulo, Brazil
| | - Alexandre Meneghello Fuentefria
- Laboratório de Pesquisa em Micologia Aplicada, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
2
|
Li CC, Hu R, Hua XM, Ni YX, Ge L, Zhang L, Yu W, Hao NX, Xia H, Fang Q, Tao ZY. Construction and functional verification of size-reduced plasmids based on TMP resistance gene dfrB10. Microbiol Spectr 2023; 11:e0120623. [PMID: 37905802 PMCID: PMC10714783 DOI: 10.1128/spectrum.01206-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/20/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE Plasmid size is one of the factors affecting transfection efficacy in most of the molecular genetic research studies. One effective approach for reducing plasmid size is to replace relatively large, conventional antibiotic resistance genes with the short-size dfrB10 gene. The successful construct of a series of dfrB10-based tool plasmids and their functional validation, via comparison with original plasmids, suggest that dfrB10 is a potent drug resistance selection marker. The antibiotic trimethoprim offers convenient usage comparable to that of ampicillin or kanamycin. Additionally, fluorescence analysis has demonstrated the compatibility of TMP with protein expression in various host cells. Based on these findings, TMP-dfrB10 could be an alternative choice for future use in molecular genetic research studies that require miniature plasmids to achieve optimal results.
Collapse
Affiliation(s)
- Chun-cao Li
- Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, Anhui, China
- Anhui Key Laboratory of Infection and Immunology, Bengbu Medical College, Bengbu, Anhui, China
| | - Rui Hu
- Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, Anhui, China
- Anhui Key Laboratory of Infection and Immunology, Bengbu Medical College, Bengbu, Anhui, China
| | - Xiu-min Hua
- Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, Anhui, China
- Anhui Key Laboratory of Infection and Immunology, Bengbu Medical College, Bengbu, Anhui, China
| | - Yi-xuan Ni
- Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, Anhui, China
- Anhui Key Laboratory of Infection and Immunology, Bengbu Medical College, Bengbu, Anhui, China
| | - Lu Ge
- Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, Anhui, China
- Anhui Key Laboratory of Infection and Immunology, Bengbu Medical College, Bengbu, Anhui, China
| | - Lu Zhang
- Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, Anhui, China
- Anhui Key Laboratory of Infection and Immunology, Bengbu Medical College, Bengbu, Anhui, China
| | - Wen Yu
- Anhui Key Laboratory of Infection and Immunology, Bengbu Medical College, Bengbu, Anhui, China
| | - Ni-xin Hao
- Anhui Key Laboratory of Infection and Immunology, Bengbu Medical College, Bengbu, Anhui, China
| | - Hui Xia
- Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, Anhui, China
- Anhui Key Laboratory of Infection and Immunology, Bengbu Medical College, Bengbu, Anhui, China
| | - Qiang Fang
- Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, Anhui, China
- Anhui Key Laboratory of Infection and Immunology, Bengbu Medical College, Bengbu, Anhui, China
| | - Zhi-yong Tao
- Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, Anhui, China
- Anhui Key Laboratory of Infection and Immunology, Bengbu Medical College, Bengbu, Anhui, China
| |
Collapse
|
3
|
Usach I, Martínez-Álvarez P, Peris JE. Topical delivery systems containing clotrimazole for the management of candidiasis: Effect of different excipients and enhanced antifungal activity of nanovesicles. Int J Pharm 2023; 644:123287. [PMID: 37536641 DOI: 10.1016/j.ijpharm.2023.123287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/30/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
WHO classified Candida albicans as one of the four critical priority fungi for public health worldwide in 2022. Conventional topical formulations commercially available for the treatment of cutaneous candidiasis are associated with low drug bioavailability at the infection site and the lack of a sustained therapeutic effect. The main objectives of this work were to develop new topical administration systems of clotrimazole (CLT) and study the influence of surfactants on the antifungal inhibitory efficacy. Therefore, the minimum concentration of CLT required to inhibit 50 % of growth (MIC50) was determined, obtaining a value of approximately 15 ng/mL. A non-ionic emulsion type 1, Beeler base cream, hydrogel and liposomes containing CLT were designed, prepared, characterized and their antifungal activity against C. albicans was tested. CLT loaded liposomes were small in size (102 nm), homogeneous (polydispersity index = 0.3) and uncharged (+0.07 mV), showing higher antifungal activity against C. albicans than that of the commercially available cream Canesten®. Furthermore, the antifungal activity of CLT was reduced in combination with surfactants such as Tween-80/Span-80 or Brij-S10. Sodium lauryl sulphate showed a fungicidal effect that disappeared when formulated as part of the Beeler base cream.
Collapse
Affiliation(s)
- Iris Usach
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Avda. V. Andrés Estellés, s/n, 46100 Burjassot, Valencia, Spain.
| | - Paula Martínez-Álvarez
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Avda. V. Andrés Estellés, s/n, 46100 Burjassot, Valencia, Spain
| | - José-Esteban Peris
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Avda. V. Andrés Estellés, s/n, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
4
|
Gupta AK, Haas-Neill S, Talukder M. The safety of oral antifungals for the treatment of onychomycosis. Expert Opin Drug Saf 2023; 22:1169-1178. [PMID: 37925672 DOI: 10.1080/14740338.2023.2280137] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
INTRODUCTION Oral antifungals are used for the treatment of moderate-severe onychomycosis. Terbinafine and itraconazole are approved for onychomycosis treatment in North America; additionally, fluconazole is indicated for onychomycosis in Europe. Other oral antifungals such as ketoconazole and griseofulvin are no longer used for the treatment of onychomycosis due to safety concerns and relatively lower efficacy. SEARCH STRATEGY On 7 March 2023, we conducted a comprehensive search in PubMed and Google Scholar, while also manually examining selected article bibliographies and package inserts. AREAS COVERED Terbinafine, itraconazole, and fluconazole have several interactions with cytochrome-p450, and either alone, or when co-administered with other drugs these interactions can facilitate a multitude of adverse events. This article identifies possible hepatic, renal, cutaneous, cardiovascular, neurological, hemopoietic, and obstetric adverse events. We have also compared the rates of hepatotoxicity, clinically apparent liver injury, and alanine transaminase elevations between oral antifungals, and recommendations for hepatic monitoring. EXPERT OPINION We recommend laboratory testing of liver function tests prior to the administration of any oral antifungals, especially when clinically indicated. In the event of a first treatment failure, the diagnosis of onychomycosis must be confirmed, and consideration given to antifungal susceptibility testing. Antifungal stewardship will help reduce the incidence of antifungal resistance.
Collapse
Affiliation(s)
- Aditya K Gupta
- Mediprobe Research Inc, London, ON, Canada
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, Canada
| | | | - Mesbah Talukder
- Mediprobe Research Inc, London, ON, Canada
- School of Pharmacy, BRAC University, Dhaka, Bangladesh
| |
Collapse
|
5
|
Giordano ALPL, Pontes L, Beraquet CAG, Lyra L, Schreiber AZ. Matrix-assisted laser desorption/ionisation-time of flight mass spectrometry azole susceptibility assessment in Candida and Aspergillus species. Mem Inst Oswaldo Cruz 2023; 118:e220213. [PMID: 36921145 PMCID: PMC10014031 DOI: 10.1590/0074-02760220213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/26/2023] [Indexed: 03/15/2023] Open
Abstract
BACKGROUND Matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF MS) allows rapid pathogen identification and potentially can be used for antifungal susceptibility testing (AFST). OBJECTIVES We evaluated the performance of the MALDI-TOF MS in assessing azole susceptibility, with reduced incubation time, by comparing the results with the reference method Broth Microdilution. METHODS Resistant and susceptible strains of Candida (n = 15) were evaluated against fluconazole and Aspergillus (n = 15) against itraconazole and voriconazole. Strains were exposed to serial dilutions of the antifungals for 15 h. Microorganisms' protein spectra against all drug concentrations were acquired and used to generate a composite correlation index (CCI) matrix. The comparison of autocorrelations and cross-correlations between spectra facilitated by CCI was used as a similarity parameter between them, enabling the inference of a minimum profile change concentration breakpoint. Results obtained with the different AFST methods were then compared. FINDINGS The overall agreement between methods was 91.11%. Full agreement (100%) was reached for Aspergillus against voriconazole and Candida against fluconazole, and 73.33% of agreement was obtained for Aspergillus against itraconazole. MAIN CONCLUSIONS This study demonstrates MALDI-TOF MS' potential as a reliable and faster alternative for AFST. More studies are necessary for method optimisation and standardisation for clinical routine application.
Collapse
Affiliation(s)
| | - Lais Pontes
- Universidade Estadual de Campinas, Faculdade de Ciências Médicas, Campinas, SP, Brasil
| | | | - Luzia Lyra
- Universidade Estadual de Campinas, Faculdade de Ciências Médicas, Campinas, SP, Brasil
| | | |
Collapse
|
6
|
Ghasemi R, Lotfali E, Rezaei K, Madinehzad SA, Tafti MF, Aliabadi N, Kouhsari E, Fattahi M. Meyerozyma guilliermondii species complex: review of current epidemiology, antifungal resistance, and mechanisms. Braz J Microbiol 2022; 53:1761-1779. [PMID: 36306113 PMCID: PMC9679122 DOI: 10.1007/s42770-022-00813-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 06/30/2022] [Indexed: 01/13/2023] Open
Abstract
Meyerozyma guilliermondii has been accepted as a complex composed of Meyerozyma guilliermondii, Meyerozyma carpophila, and Meyerozyma caribbica. M. guilliermondii is a saprophyte detected on human mucosa and skin. It can lead to serious infections in patients with risk factors like chemotherapy, immunodeficiency, gastrointestinal or cardiovascular surgery, and oncology disorders. Most deaths related to M. guilliermondii infections occur in individuals with malignancy. In recent decades, incidence of M. guilliermondii infections is increased. Sensitivity of this microorganism to conventional antifungals (e.g., amphotericin B, fluconazole, micafungin and anidulafungin) was reduced. Prophylactic and empirical uses of these drugs are linked to elevated minimal inhibitory concentrations (MICs) of M. guilliermondii. Drug resistance has concerned many researchers across the world. They are attempting to discover appropriate solution to combat this challenge. This study reviews the most important mechanisms of resistance to antifungals developed by in M. guilliermondii species complex.
Collapse
Affiliation(s)
- Reza Ghasemi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ensieh Lotfali
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamran Rezaei
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Ataollah Madinehzad
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Falah Tafti
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nikta Aliabadi
- Microbiology Department Islamic, Azad University Tehran Branch, Tehran, Iran
| | - Ebrahim Kouhsari
- Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgan, Iran
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mahsa Fattahi
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Gupta H, Gupta P, Kairamkonda M, Poluri KM. Molecular investigations on Candida glabrata clinical isolates for pharmacological targeting. RSC Adv 2022; 12:17570-17584. [PMID: 35765448 PMCID: PMC9194923 DOI: 10.1039/d2ra02092k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/03/2022] [Indexed: 12/12/2022] Open
Abstract
Prevalence of drug resistant C. glabrata strains in hospitalized immune-compromised patients with invasive fungal infections has increased at an unexpected pace. This has greatly pushed researchers in identification of mutations/variations in clinical isolates for better assessment of the prevailing drug resistance trends and also for updating of antifungal therapy regime. In the present investigation, the clinical isolates of C. glabrata were comprehensively characterized at a molecular level using metabolic profiling and transcriptional expression analysis approaches in combination with biochemical, morphological and chemical profiling methods. Biochemically, significant variations in azole susceptibility, surface hydrophobicity, and oxidative stress generation were observed among the isolates as compared to wild-type. The 1H NMR profiling identified 18 differential metabolites in clinical strains compared to wild-type and were classified into five categories, that include: sugars (7), amino acids and their derivatives (7), nitrogen bases (3) and coenzymes (1). Transcriptional analysis of selective metabolic and regulatory enzymes established that the major differences were found in cell membrane stress, carbohydrate metabolism, amino acid biosynthesis, ergosterol pathway and turnover of nitrogen bases. This detailed molecular level/metabolic fingerprint study is a useful approach for differentiating pathogenic/clinical isolates to that of wild-type. This study comprehensively delineated the differential cellular pathways at a molecular level that have been re-wired by the pathogenic clinical isolates for enhanced pathogenicity and virulence traits.
Collapse
Affiliation(s)
- Hrishikesh Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee (IIT-Roorkee) Roorkee-247667 Uttarakhand India
| | - Payal Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee (IIT-Roorkee) Roorkee-247667 Uttarakhand India
| | - Manikyaprabhu Kairamkonda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee (IIT-Roorkee) Roorkee-247667 Uttarakhand India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee (IIT-Roorkee) Roorkee-247667 Uttarakhand India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee Roorkee-247667 Uttarakhand India
| |
Collapse
|
8
|
Jahantiq AS, Ayatollahi Mousavi SA, Mohamadi N, Sharififar F. Inhibitory effect of standardized extract and fractions of Nigella sativa L. on nystatin susceptible and clinically nystatin resistant Candida albicans. Curr Drug Discov Technol 2022; 19:e120522204695. [PMID: 35549875 DOI: 10.2174/1570163819666220512164337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/24/2021] [Accepted: 01/24/2022] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Candidiasis infection is caused by different species of Candida, which are characterized by host immunologic weakness. Black cumin seeds (Nigella sativa) have shown inhibitory effect against Candida albicans. In this work, the inhibitory effect of standardized extract and different fractions of Nigella sativa seeds has been evaluated on nystatin susceptible. MATERIALS AND METHOD Canadida albicans (NSCA) with ATCC 76645 and nystatin resistant Candida albicans (NRCA) was prepared from oral samples of HIV individuals. Total extract and different fractions of N. sativa were prepared using maceration and sonication methods. Thymoquinone (TQ) content of the plant was determined by spectrophotometry. Total extract (TTE) and the fractions along with TQ were evaluated on NSCA and NRCA by microdilution method. TQ content of the plant was 0.92±0.37g/100g dried extract. The least MIC and MFC (62.5 and 125 µg/ml respectively) was due to petroleum ether fraction (PEF) against both NSCA and NRCA followed by chloroform fraction (CHF) with MIC and MFC of 125 and 250 µg/ml. TQ exhibited MIC of 0.78 and 3.12 µg/ml against NSCA and NRCA which was stronger than nystatin (MIC of 2 and 16 µg/ml). Results Thymoquinone was detected in the PEF and CHF. CONCLUSION Considering more inhibitory effects of PEF and CHF than TTE, can conclude that active components of the plant belong to non-polar compounds. PEF showed identical inhibitory effect on NRCA and NSCA that is valuable result for finding novel medicaments against NRCA infections.
Collapse
Affiliation(s)
| | | | - Neda Mohamadi
- Herbal and Traditional Medicines Research Center, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Fariba Sharififar
- Herbal and Traditional Medicines Research Center, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
9
|
ALMEIDA PD, BLANCO-PASCUAL N, ROSOLEN D, CISILOTTO J, CRECZYNSKI-PASA T, LAURINDO J. Antioxidant and antifungal properties of essential oils of oregano (Origanum vulgare) and mint (Mentha arvensis) against Aspergillus flavus and Penicillium commune for use in food preservation. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.64921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Durand C, Maubon D, Cornet M, Wang Y, Aldebert D, Garnaud C. Can We Improve Antifungal Susceptibility Testing? Front Cell Infect Microbiol 2021; 11:720609. [PMID: 34568095 PMCID: PMC8461061 DOI: 10.3389/fcimb.2021.720609] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/23/2021] [Indexed: 11/24/2022] Open
Abstract
Systemic antifungal agents are increasingly used for prevention or treatment of invasive fungal infections, whose prognosis remains poor. At the same time, emergence of resistant or even multi-resistant strains is of concern as the antifungal arsenal is limited. Antifungal susceptibility testing (AFST) is therefore of key importance for patient management and antifungal stewardship. Current AFST methods, including reference and commercial types, are based on growth inhibition in the presence of an antifungal, in liquid or solid media. They usually enable Minimal Inhibitory Concentrations (MIC) to be determined with direct clinical application. However, they are limited by a high turnaround time (TAT). Several innovative methods are currently under development to improve AFST. Techniques based on MALDI-TOF are promising with short TAT, but still need extensive clinical validation. Flow cytometry and computed imaging techniques detecting cellular responses to antifungal stress other than growth inhibition are also of interest. Finally, molecular detection of mutations associated with antifungal resistance is an intriguing alternative to standard AFST, already used in routine microbiology labs for detection of azole resistance in Aspergillus and even directly from samples. It is still restricted to known mutations. The development of Next Generation Sequencing (NGS) and whole-genome approaches may overcome this limitation in the near future. While promising approaches are under development, they are not perfect and the ideal AFST technique (user-friendly, reproducible, low-cost, fast and accurate) still needs to be set up routinely in clinical laboratories.
Collapse
Affiliation(s)
| | - Danièle Maubon
- TIMC, Univ Grenoble Alpes, CNRS, Grenoble INP, Grenoble, France.,Parasitology-Mycology, CHU Grenoble Alpes, Grenoble, France
| | - Muriel Cornet
- TIMC, Univ Grenoble Alpes, CNRS, Grenoble INP, Grenoble, France.,Parasitology-Mycology, CHU Grenoble Alpes, Grenoble, France
| | | | | | - Cécile Garnaud
- TIMC, Univ Grenoble Alpes, CNRS, Grenoble INP, Grenoble, France.,Parasitology-Mycology, CHU Grenoble Alpes, Grenoble, France
| |
Collapse
|
11
|
Kidd SE, Crawford LC, Halliday CL. Antifungal Susceptibility Testing and Identification. Infect Dis Clin North Am 2021; 35:313-339. [PMID: 34016280 DOI: 10.1016/j.idc.2021.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The requirement for antifungal susceptibility testing is increasing given the availability of new drugs, increasing populations of individuals at risk for fungal infection, and emerging multiresistant fungi. Rapid and accurate fungal identification remains at the forefront of laboratory efforts to guide empiric therapy. Antifungal susceptibility testing methods have greatly improved, but are subject to variation in results between methods. Careful standardization, validation, and extensive training of users is essential to ensure susceptibility results are clinically useful and interpreted appropriately. Interpretive criteria for many drugs and species are still lacking, but this will continue to evolve.
Collapse
Affiliation(s)
- Sarah E Kidd
- National Mycology Reference Centre, Microbiology & Infectious Diseases, SA Pathology, SA Pathology (Frome Campus), PO Box 14, Rundle Mall, Adelaide, South Australia 5000, Australia; School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.
| | - Lucy C Crawford
- Microbiology & Infectious Diseases, SA Pathology, PO Box 14, Rundle Mall, Adelaide, South Australia 5000, Australia; Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Catriona L Halliday
- Clinical Mycology Reference Laboratory, Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, The University of Sydney, Level 3 ICPMR, Darcy Road, Westmead, New South Wales 2145, Australia
| |
Collapse
|
12
|
Fan S, Yue H, Zheng Q, Bing J, Tian S, Chen J, Ennis CL, Nobile CJ, Huang G, Du H. Filamentous growth is a general feature of Candida auris clinical isolates. Med Mycol 2021; 59:734-740. [PMID: 33485272 DOI: 10.1093/mmy/myaa116] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/03/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022] Open
Abstract
A striking feature of pathogenic Candida species is morphological plasticity that facilitates environmental adaptation and host infection. Candida auris is an emerging multidrug-resistant fungal pathogen first described in Japan in 2009. In this study, we demonstrate that clinical isolates of C. auris have multiple colony and cellular morphologies including the yeast, filamentous, aggregated, and elongated forms. This phenotypic diversity has been observed in eight clinical isolates of C. auris representing four major genetic clades, suggesting that it could be a general characteristic. We further demonstrate that different cell types of C. auris exhibit distinct antifungal resistance and virulence properties in a Galleria mellonella infection model. Our findings imply that morphological diversity is an important biological feature of C. auris and could be a contributor to its emergence and rapid prevalence worldwide. LAY SUMMARY Candida auris is an emerging multidrug-resistant fungal pathogen. Morphological analyses indicate that filamentation is a general feature of clinical isolates of C. auris. This ability is associated with antifungal resistance and virulence.
Collapse
Affiliation(s)
- Shuru Fan
- Department of Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Huizhen Yue
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qiushi Zheng
- Department of Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jian Bing
- Department of Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Sufei Tian
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jingjing Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Craig L Ennis
- Department of Molecular and Cell Biology, University of California, Merced, Merced, USA.,Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, USA
| | - Clarissa J Nobile
- Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, USA
| | - Guanghua Huang
- Department of Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Han Du
- Department of Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Candida parapsilosis Colony Morphotype Forecasts Biofilm Formation of Clinical Isolates. J Fungi (Basel) 2021; 7:jof7010033. [PMID: 33430377 PMCID: PMC7827155 DOI: 10.3390/jof7010033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 02/06/2023] Open
Abstract
Candida parapsilosis is a frequent cause of fungal bloodstream infections, especially in critically ill neonates or immunocompromised patients. Due to the formation of biofilms, the use of indwelling catheters and other medical devices increases the risk of infection and complicates treatment, as cells embedded in biofilms display reduced drug susceptibility. Therefore, biofilm formation may be a significant clinical parameter, guiding downstream therapeutic choices. Here, we phenotypically characterized 120 selected isolates out of a prospective collection of 215 clinical C. parapsilosis isolates, determining biofilm formation, major emerging colony morphotype, and antifungal drug susceptibility of the isolates and their biofilms. In our isolate set, increased biofilm formation capacity was independent of body site of isolation and not predictable using standard or modified European Committee on Antimicrobial Susceptibility Testing (EUCAST) drug susceptibility testing protocols. In contrast, biofilm formation was strongly correlated with the appearance of non-smooth colony morphotypes and invasiveness into agar plates. Our data suggest that the observation of non-smooth colony morphotypes in cultures of C. parapsilosis may help as an indicator to consider the initiation of anti-biofilm-active therapy, such as the switch from azole- to echinocandin- or polyene-based strategies, especially in case of infections by potent biofilm-forming strains.
Collapse
|
14
|
Experimental Evolution Identifies Adaptive Aneuploidy as a Mechanism of Fluconazole Resistance in Candida auris. Antimicrob Agents Chemother 2020; 65:AAC.01466-20. [PMID: 33077664 DOI: 10.1128/aac.01466-20] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022] Open
Abstract
Candida auris is a newly emerging fungal pathogen of humans and has attracted considerable attention from both the clinical and basic research communities. Clinical isolates of C. auris are often resistant to one or more antifungal agents. To explore how antifungal resistance develops, we performed experimental evolution assays using a fluconazole-susceptible isolate of C. auris (BJCA001). After a series of passages through medium containing increasing concentrations of fluconazole, fungal cells acquired resistance. By sequencing and comparing the genomes of the parental fluconazole-susceptible strain and 26 experimentally evolved strains of C. auris, we found that a portion of fluconazole-resistant strains carried one extra copy of chromosome V. In the absence of fluconazole, C. auris cells rapidly became susceptible and lost the extra copy of chromosome V. Genomic and transcriptome sequencing (RNA-Seq) analyses indicate that this chromosome carries a number of drug resistance-related genes, which were transcriptionally upregulated in the resistant, aneuploid strains. Moreover, missense mutations were identified in the genes TAC1B, RRP6, and SFT2 in all experimentally evolved strains. Our findings suggest that the gain of an extra copy of chromosome V is associated with the rapid acquisition of fluconazole resistance and may represent an important evolutionary mechanism of antifungal resistance in C. auris.
Collapse
|
15
|
Fan S, Li C, Bing J, Huang G, Du H. Discovery of the Diploid Form of the Emerging Fungal Pathogen Candida auris. ACS Infect Dis 2020; 6:2641-2646. [PMID: 32902947 DOI: 10.1021/acsinfecdis.0c00282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The new multidrug-resistant pathogen Candida auris was first described in 2009 in Japan and has emerged in many countries worldwide. This human fungal pathogen has long been considered a haploid fungus. Here, we report the discovery of the diploid form and spontaneous ploidy shifts in clinical isolates of C. auris. Haploid and diploid cells of C. auris differ in several aspects including growth rates, virulence, and global gene expression profiles. For example, diploid cells exhibit a slower growth rate than haploid cells in in vitro culture media; however, they are more virulent than haploid cells in a mouse systemic infection model. Global transcriptional expression analysis demonstrates that both haploid and diploid cells express a set of ploidy-enriched genes, which are involved in the regulation of metabolism, cell wall maintenance, translation and DNA replication, and other important biological processes. Antifungal susceptibility testing shows that haploid and diploid cells exhibit similar responses when treated with a number of antifungals. Taken together, haploid and diploid cells may have different fitness responses to diverse niches, and ploidy changes could be an adaptive strategy of C. auris to environmental changes. Our findings shed new light on the biology and pathogenesis of this emerging fungal pathogen.
Collapse
Affiliation(s)
- Shuru Fan
- Department of Infectious Diseases, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chao Li
- Department of Infectious Diseases, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian Bing
- Department of Infectious Diseases, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Guanghua Huang
- Department of Infectious Diseases, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Han Du
- Department of Infectious Diseases, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
16
|
Fatahinia M, Halvaeizadeh M, Zarei Mahmoudabadi A, AboualiGalehdari E, Kiasat N. In vitro antifungal susceptibilities of six antifungal drugs against clinical Candida glabrata isolates according to EUCAST. Curr Med Mycol 2020; 6:1-6. [PMID: 33628974 PMCID: PMC7888517 DOI: 10.18502/cmm.6.2.2692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background and Purpose: Candida glabrata is the second cause of candidiasis. The mortality rate of C. glabrata infections is about 40%; accordingly, it may be life threatening, especially in immunocompromised hosts. Regarding this, the current study was conducted to evaluate the regional patterns of the antifungal susceptibility of clinical C. glabrataisolated from the patients referring to the health centers located in Ahvaz, Iran Materials and Methods: In this study, a total of 30 clinical strains of C. glabrata isolates were recovered from different body sites (i.e., vagina, mouth, and urine). Phenotypic characteristics and molecular methods were used to identify the isolates. The minimum inhibitory concentration (MIC) was determined according to the European Committee on Antimicrobial Susceptibility Testing Results: Our findings demonstrated that 20%, 80%, and 6.7% of the isolates were resistant to amphotericin B, terbinafine, and posaconazole, respectively, while all the isolates were found to be fluconazole susceptible dose dependent and susceptible to voriconazole and caspofungin Conclusion: Our study suggested that voriconazole had high potency against C. glabrata isolates. Consequently, this antifungal agent can be an alternative drug in the treatment of resistant patients. These results can be helpful for the successful treatment of patients in different regions
Collapse
Affiliation(s)
- Mahnaz Fatahinia
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Medical Mycology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Marzieh Halvaeizadeh
- Department of Medical Mycology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Zarei Mahmoudabadi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Medical Mycology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elham AboualiGalehdari
- Department of Medical Mycology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Neda Kiasat
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
17
|
Roberto AEM, Xavier DE, Vidal EE, Vidal CFDL, Neves RP, de Lima-Neto RG. Rapid Detection of Echinocandins Resistance by MALDI-TOF MS in Candida parapsilosis Complex. Microorganisms 2020; 8:microorganisms8010109. [PMID: 31940988 PMCID: PMC7023175 DOI: 10.3390/microorganisms8010109] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 11/16/2022] Open
Abstract
Mass spectrometry by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) was used to identify and differentiate the pattern of susceptibility of clinical isolates of Candida parapsilosis complex. 17 C. parapsilosis sensu stricto, 2 C. orthopsilosis, and 1 C. metapsilosis strains were obtained from blood cultures, and three different inocula (103, 105, and 107 CFU/mL) were evaluated against three echinocandins at concentrations ranging from 0.03 to 16 µg/mL after incubation of 1 h, 2 h, and 3 h. Drug-free control was used. The spectra obtained at these concentrations were applied to generate composite correlation index (CCI) matrices for each yeast individually. After cross correlations and autocorrelations of each spectra with null (zero) and maximal (16) concentrations, the CCI was used as separation parameter among spectra. Incubation time and inoculum were critical factors to reach higher precision and reliability of this trial. With an incubation time of 3 h and inoculum of 107 CFU/mL, it was possible to determine the breakpoint of the clinical yeasts by MALDI-TOF that presented high agreement with the clinical laboratory standard institute (CLSI) reference method. Herein, we show that mass spectrometry using the MALDI-TOF technique is powerful when it exploits antifungal susceptibility testing assays.
Collapse
Affiliation(s)
- Ana Emília M. Roberto
- Graduate Program in Fungal Biology, Federal University of Pernambuco (UFPE), Recife-PE 50.740-600, Brazil;
| | - Danilo E. Xavier
- Instituto Aggeu Magalhães, FIOCRUZ, Recife-PE 50.670-420, Brazil;
| | - Esteban E. Vidal
- Center for Strategic Technologies Northeastern (CETENE), Recife-PE 50.740-545, Brazil;
| | | | - Rejane P. Neves
- Graduate Program in Fungal Biology, Federal University of Pernambuco (UFPE), Recife-PE 50.740-600, Brazil;
- Correspondence: (R.P.N.); (R.G.d.L.-N.)
| | - Reginaldo G. de Lima-Neto
- Graduate Program in Fungal Biology, Federal University of Pernambuco (UFPE), Recife-PE 50.740-600, Brazil;
- Correspondence: (R.P.N.); (R.G.d.L.-N.)
| |
Collapse
|
18
|
Widiasih Widiyanto T, Chen X, Iwatani S, Chibana H, Kajiwara S. Role of major facilitator superfamily transporter Qdr2p in biofilm formation by Candida glabrata. Mycoses 2019; 62:1154-1163. [PMID: 31519064 DOI: 10.1111/myc.13005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 11/30/2022]
Abstract
Candida glabrata represents the second-most frequent cause of candidiasis infections of the mucosa, bloodstream and genito-urinary tract in immunocompromised individuals. The incidence of C glabrata infection has increased significantly in the last two decades, mainly due to this species' abilities to resist various antifungal drugs and to form biofilms. We focused on the relationship between biofilm formation and the product of QDR2, a C glabrata member of the major facilitator superfamily (MFS) gene family, given that fungal biofilm formation limits drug penetration and is associated with persistent infection. The fungal cells in biofilms were compared between a C glabrata ∆qdr2 mutant and its wild-type strain. Cells were analysed for metabolism activity and drug susceptibility (using tetrazolium assay), adhesion activity, growth assay and intracellular pH (using flow cytometry). Compared to the wild type, the C glabrata ∆qdr2 showed lower adhesion activity and higher fluconazole susceptibility when assessed as a biofilm. The mutant also showed decreased metabolic activity during biofilm formation. Furthermore, the mutant grew more slowly under neutral-basic pH conditions. The qdr2 deletion in C glabrata resulted in an impaired ability to maintain pH homeostasis, which led in turn to a reduction of cell growth and of adherence to an artificial matrix. These results suggested that the Qdr2p function is needed for proper biofilm formation and biofilm maintenance in C glabrata as well as biofilm drug resistance towards fluconazole. Qdr2p may play an important role in C glabrata's ability to form biofilms on implanted medical devices in human bodies.
Collapse
Affiliation(s)
| | - Xinyue Chen
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Shun Iwatani
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Hiroji Chibana
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Susumu Kajiwara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
19
|
Kiasat N, Rezaei-Matehkolaei A, Mahmoudabadi AZ. Microsatellite Typing and Antifungal Susceptibility of Candida glabrata Strains Isolated From Patients With Candida Vaginitis. Front Microbiol 2019; 10:1678. [PMID: 31417505 PMCID: PMC6685060 DOI: 10.3389/fmicb.2019.01678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/08/2019] [Indexed: 01/30/2023] Open
Abstract
Vulvovaginal candidiasis (VVC) is a yeast infection with a global reach and millions of dollars are spent annually for its diagnosis and treatment. Recently, Candida glabrata with different degrees of antifungal resistance has been considered as the second most common cause of vaginal infections. The aim of the present study is to determine the antifungal susceptibility and molecular epidemiology profiles of C. glabrata isolates from patients with VVC. Sixty-one C. glabrata isolates were examined for antifungal susceptibility using the EUCAST broth microdilution method. Moreover, microsatellite length polymorphism (MLP) was used for typing the C. glabrata isolates using six microsatellite markers. Overall, 13, 3.3, and 0% of the isolates were non-wild types to itraconazole, posaconazole, and voriconazole, respectively. Sixty (98.4%) isolates were an intermediate phenotype to fluconazole and only one isolate was fluconazole resistant. Microsatellite length polymorphism with a discriminatory power of 0.964 identified 35 distinct types and 24 singleton genotypes. The assessment of the population genetic structure revealed that the non-wild-type population had a moderate genetic differentiation compared to the wild type population (FST = 0.1457). It was also found that the most common genotypes were G27 (eight strains), G12 (six strains), and G4 (five strains). We found that eight strains were resistant/a non-wild phenotype to itraconazole. Five out of eight (62.5%) resistant/non-wild phenotype strains correlated to a predominant genotype (GT27) and the rest belonged to GT11 (12.5%), GT29 (12.5%), and GT28 (12.5%). The current study is the first molecular epidemiology study in the southwest of Iran and demonstrates the antifungal susceptibility profiles of C. glabrata in it. This study shows a wide range of the genetic diversity of C. glabrata (35 different genotypes) from VVC in the southwest of Iran. The majority of the non-wild isolates had a dominant genotype or genotypes related to this dominant genotype (clonal cluster one).
Collapse
Affiliation(s)
- Neda Kiasat
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Medical Mycology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Rezaei-Matehkolaei
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Medical Mycology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Zarei Mahmoudabadi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Medical Mycology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
20
|
Paul S, Singh P, A S S, Rudramurthy SM, Chakrabarti A, Ghosh AK. Rapid detection of fluconazole resistance in Candida tropicalis by MALDI-TOF MS. Med Mycol 2018; 56:234-241. [PMID: 28992333 DOI: 10.1093/mmy/myx042] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/04/2017] [Indexed: 01/11/2023] Open
Abstract
With the changing epidemiology and emergence of antifungal resistance among Candida species, rapid antifungal susceptibility testing (AFST) is crucial for optimization of antifungal therapy. This study was conducted to standardize a matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI -TOF MS) based AFST method (ms-AFST) for susceptibility of Candida tropicalis isolates. Clinical isolates of C. tropicalis were confirmed for fluconazole resistance by the CLSI (M27-A3) method. The incubation period and drug concentration were optimized to determine the minimal profile change concentration (MPCC) by MALDI-TOF MS. The data were analyzed first by direct visual observation of the spectra followed by composite correlation index (CCI) matrix analysis, virtual gel analysis, and cluster analysis for confirmation. Finally, the correlation between minimum inhibitory concentrations (MICs) and MPCCs was evaluated. A total of 15 fluconazole resistant (MICs ranging from 16 to 128 μg/ml) and 19 fluconazole susceptible C. tropicalis isolates (MIC ≤1 μg/ml) were included in this study. All C. tropicalis isolates had significant spectral changes after 4h incubation with fluconazole. Of 34 isolates, MPCCs and MICs were equivalent for 16 isolates, and the MPCC was one dilution lower than the respective MIC in the remaining 18 isolates. This finding was further supported by visual analysis, CCI matrix analysis, virtual gel and principal component analysis dendrogram analysis. The correlation between MPCC and MIC was significant (P < .05). Therefore, a MALDI-TOF MS based AFST assay may be used as a rapid screening technique for fluconazole resistance in C. tropicalis.
Collapse
Affiliation(s)
- Saikat Paul
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Pankaj Singh
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Shamanth A S
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Anup K Ghosh
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| |
Collapse
|
21
|
Arslan A, Kose Ozkan C, Sig AK, Dogan E, Esim O, Cetinkaya S, Atalay F, Tas C, Savaser A, Ozkan Y. Evaluation of a novel oxiconazole nitrate formulation: The thermosensitive gel. Saudi Pharm J 2018; 26:665-672. [PMID: 29991910 PMCID: PMC6035325 DOI: 10.1016/j.jsps.2018.02.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/11/2018] [Indexed: 11/29/2022] Open
Abstract
Superficial fungal infections caused by Candida species are common skin diseases. Therefore, this study aimed to develop a new formulation containing oxiconazole nitrate, which is an azole group derivative for antifungal treatment, as a thermosensitive gel since there has been no literature study until now. MIC value of the novel thermosensitive formulation against three Candida species was calculated and time-dependent antifungal activity analysis was performed. Viscosity, transition temperature Tsol-gel (°C) and gelation time of the thermosensitive gel formulation were also determined in the viscometer. The measurements performed on the tensilometer device were analyzed for adhesion hardness and elongation percentages of the formulation. In the FT-IR spectrometer, the spectrum of solution and gel state was compared between 650 and 4000 cm-1 and it was found that there is no difference between them. It was found that the temperature is reversible on the formulation and did not cause any disruption of its components. Characterization parameters of the thermosensitive gel formulation containing oxiconazole nitrate and time-dependent activity against Candida species was observed to be the same as those of the solution containing only oxiconazole nitrate. MIC, MFC and time-dependent antifungal analysis did not show any particular difference between formulation and oxiconazole nitrate itself. Thermosensitive gel formulation containing oxiconazole nitrate was found to be effective on superficial fungal infections. We believe it is also appropriate for in vivo usage, but it is necessary to perform animal and human research. It is also needed to evaluate the formulation against other etiologic agents of superficial fungal infections.
Collapse
Affiliation(s)
- Alper Arslan
- University of Health Sciences, Department of Pharmaceutical Technology, Gulhane Campus, Ankara, Turkey
| | - Cansel Kose Ozkan
- University of Health Sciences, Department of Pharmaceutical Technology, Gulhane Campus, Ankara, Turkey
| | - Ali Korhan Sig
- University of Health Sciences, Department of Medical Microbiology, Gulhane Campus, Ankara, Turkey
| | - Eyup Dogan
- University of Health Sciences, Department of Medical Microbiology, Gulhane Campus, Ankara, Turkey
| | - Ozgur Esim
- University of Health Sciences, Department of Pharmaceutical Technology, Gulhane Campus, Ankara, Turkey
| | - Serdar Cetinkaya
- University of Health Sciences, Department of Pharmaceutical Toxicology, Gulhane Campus, Ankara, Turkey
| | - Filiz Atalay
- University of Health Sciences, Department of Pharmaceutical Technology, Gulhane Campus, Ankara, Turkey
| | - Cetin Tas
- University of Health Sciences, Department of Pharmaceutical Technology, Gulhane Campus, Ankara, Turkey
| | - Ayhan Savaser
- University of Health Sciences, Department of Pharmaceutical Technology, Gulhane Campus, Ankara, Turkey
| | - Yalcin Ozkan
- University of Health Sciences, Department of Pharmaceutical Technology, Gulhane Campus, Ankara, Turkey
| |
Collapse
|
22
|
Du H, Zheng Q, Bing J, Bennett RJ, Huang G. A coupled process of same- and opposite-sex mating generates polyploidy and genetic diversity in Candida tropicalis. PLoS Genet 2018; 14:e1007377. [PMID: 29734333 PMCID: PMC5957450 DOI: 10.1371/journal.pgen.1007377] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/17/2018] [Accepted: 04/24/2018] [Indexed: 01/04/2023] Open
Abstract
Sexual reproduction is a universal mechanism for generating genetic diversity in eukaryotes. Fungi exhibit diverse strategies for sexual reproduction both in nature and in the laboratory. In this study, we report the discovery of same-sex (homothallic) mating in the human fungal pathogen Candida tropicalis. We show that same-sex mating occurs between two cells carrying the same mating type (MTLa/a or α/α) and requires the presence of pheromone from the opposite mating type as well as the receptor for this pheromone. In ménage à trois mating mixes (i.e., “a x a + α helper” or “α x α + a helper” mixes), pheromone secreted by helper strains promotes diploid C. tropicalis cells to undergo same-sex mating and form tetraploid products. Surprisingly, however, the tetraploid mating products can then efficiently mate with cells of the opposite mating type to generate hexaploid products. The unstable hexaploid progeny generated from this coupled process of same- and opposite-sex mating undergo rapid chromosome loss and generate extensive genetic variation. Phenotypic analysis demonstrated that the mating progeny-derived strains exhibit diverse morphologies and phenotypes, including differences in secreted aspartic proteinase (Sap) activity and susceptibility to the antifungal drugs. Thus, the coupling of same- and opposite-sex mating represents a novel mode to generate polyploidy and genetic diversity, which may facilitate the evolution of new traits in C. tropicalis and adaptation to changing environments. The fungal pathogen Candida tropicalis not only lives as a commensal in humans but is also widely distributed in diverse environments. Until recently, C. tropicalis was thought to be an asexual diploid organism. In this study, we report the discovery of same-sex mating and reveal an unusual process in which same- and opposite-sex mating are coupled in this fungus. The coupling process represents a novel mode of mating which produces unstable polyploid products and results in a high level of genetic and phenotypic diversity. This biological process may benefit the adaptation of C. tropicalis to a variety of ecological niches and promotes survival under stressful conditions. Our study expands the repertoire of mating strategies in fungi and sheds new lights on the generation of polyploidy and genomic flexibility.
Collapse
Affiliation(s)
- Han Du
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- * E-mail:
| | - Qiushi Zheng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian Bing
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Richard J. Bennett
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Guanghua Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
Antifungal Susceptibility Testing of Ascomycetous Yeasts Isolated from Animals. Antimicrob Agents Chemother 2016; 60:5026-8. [PMID: 27216048 DOI: 10.1128/aac.00306-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/15/2016] [Indexed: 11/20/2022] Open
Abstract
Recent studies suggest that antifungal resistance in yeast isolates of veterinary origin may be an underdiagnosed threat. We tested a collection of 92 ascomycetous yeast isolates that were obtained in Spain from birds, mammals and insects for antifungal susceptibility. MICs to amphotericin B and azoles were low, and no resistant isolates were detected. Despite these results, and given the potential role of animals as reservoirs of resistant strains, continuous monitoring of antifungal susceptibility in the veterinary setting is recommended.
Collapse
|
24
|
Lee SB. Antifungal Activity of Bee Venom and Sweet Bee Venom against Clinically Isolated Candida albicans. J Pharmacopuncture 2016; 19:45-50. [PMID: 27280049 PMCID: PMC4887751 DOI: 10.3831/kpi.2016.19.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES The purpose of this study was to investigate the antifungal effect of bee venom (BV) and sweet bee venom (SBV) against Candida albicans (C. albicans) clinical isolates. METHODS In this study, BV and SBV were examined for antifungal activities against the Korean Collection for Type Cultures (KCTC) strain and 10 clinical isolates of C. albicans. The disk diffusion method was used to measure the antifungal activity and minimum inhibitory concentration (MIC) assays were performed by using a broth microdilution method. Also, a killing curve assay was conducted to investigate the kinetics of the anti- fungal action. RESULTS BV and SBV showed antifungal activity against 10 clinical isolates of C. albicans that were cultured from blood and the vagina by using disk diffusion method. The MIC values obtained for clinical isolates by using the broth microdilution method varied from 62.5 μg/ mL to 125 μg/mL for BV and from 15.63 μg/mL to 62.5 μg/mL for SBV. In the killing-curve assay, SBV behaved as amphotericin B, which was used as positive control, did. The antifungal efficacy of SBV was much higher than that of BV. CONCLUSION BV and SBV showed antifungal activity against C. albicans clinical strains that were isolated from blood and the vagina. Especially, SBV might be a candidate for a new antifungal agent against C. albicans clinical isolates.
Collapse
Affiliation(s)
- Seung-Bae Lee
- Department of Animal Resources and Life Science, Sangji University, Wonju, Korea
| |
Collapse
|
25
|
Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-Zeichner L, Reboli AC, Schuster MG, Vazquez JA, Walsh TJ, Zaoutis TE, Sobel JD. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin Infect Dis 2016; 62:e1-50. [PMID: 26679628 PMCID: PMC4725385 DOI: 10.1093/cid/civ933] [Citation(s) in RCA: 1912] [Impact Index Per Article: 239.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/02/2015] [Indexed: 02/06/2023] Open
Abstract
It is important to realize that guidelines cannot always account for individual variation among patients. They are not intended to supplant physician judgment with respect to particular patients or special clinical situations. IDSA considers adherence to these guidelines to be voluntary, with the ultimate determination regarding their application to be made by the physician in the light of each patient's individual circumstances.
Collapse
Affiliation(s)
| | - Carol A Kauffman
- Veterans Affairs Ann Arbor Healthcare System and University of Michigan Medical School, Ann Arbor
| | | | | | - Kieren A Marr
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | | | | | - Thomas J Walsh
- Weill Cornell Medical Center and Cornell University, New York, New York
| | | | - Jack D Sobel
- Harper University Hospital and Wayne State University, Detroit, Michigan
| |
Collapse
|
26
|
Behboudi-Gandevani S, Imani S, Moghaddam-Banaem L, Roudbar-Mohammadi S. Can intrauterine contraceptive devices lead to VulvoVaginal Candidiasis (VVC) andanemia in Iranian new users? SEXUAL & REPRODUCTIVE HEALTHCARE 2015; 6:40-3. [DOI: 10.1016/j.srhc.2014.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 09/01/2014] [Accepted: 09/08/2014] [Indexed: 10/24/2022]
|
27
|
Contribution of clinically derived mutations in ERG11 to azole resistance in Candida albicans. Antimicrob Agents Chemother 2014; 59:450-60. [PMID: 25385095 DOI: 10.1128/aac.03470-14] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Candida albicans, the ERG11 gene encodes lanosterol demethylase, the target of the azole antifungals. Mutations in ERG11 that result in an amino acid substitution alter the abilities of the azoles to bind to and inhibit Erg11, resulting in resistance. Although ERG11 mutations have been observed in clinical isolates, the specific contributions of individual ERG11 mutations to azole resistance in C. albicans have not been widely explored. We sequenced ERG11 in 63 fluconazole (FLC)-resistant clinical isolates. Fifty-five isolates carried at least one mutation in ERG11, and we observed 26 distinct positions in which amino acid substitutions occurred. We mapped the 26 distinct variant positions in these alleles to four regions in the predicted structure for Erg11, including its predicted catalytic site, extended fungus-specific external loop, proximal surface, and proximal surface-to-heme region. In total, 31 distinct ERG11 alleles were recovered, with 10 ERG11 alleles containing a single amino acid substitution. We then characterized 19 distinct ERG11 alleles by introducing them into the wild-type azole-susceptible C. albicans SC5314 strain and testing them for susceptibilities to FLC, itraconazole (ITC), and voriconazole (VRC). The strains that were homozygous for the single amino acid substitutions Y132F, K143R, F145L, S405F, D446E, G448E, F449V, G450E, and G464S had a ≥ 4-fold increase in FLC MIC. The strains that were homozygous for several double amino acid substitutions had decreased azole susceptibilities beyond those conferred by any single amino acid substitution. These findings indicate that mutations in ERG11 are prevalent among azole-resistant clinical isolates and that most mutations result in appreciable changes in FLC and VRC susceptibilities.
Collapse
|
28
|
Tragiannidis A, Tsoulas C, Groll AH. Invasive candidiasis and candidaemia in neonates and children: update on current guidelines. Mycoses 2014; 58:10-21. [PMID: 25350572 DOI: 10.1111/myc.12268] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 10/03/2014] [Accepted: 10/07/2014] [Indexed: 10/24/2022]
Abstract
Invasive candidiasis (IC) and candidaemia are leading causes of infectious morbidity and mortality among immunocompromised paediatric patients and those admitted to intensive care units. Despite improvements in diagnosis, prevention and treatment, both mortality rates and the economic burden of disease still remain high. To address this issue, several international societies and organisations have proposed guidelines for the management of IC/candidaemia in both neonates and children. In this article, we review current recommendations of the Infectious Diseases Society of America, the European Conference on Infection in Leukaemia, the European Society of Clinical Microbiology and Infectious Diseases and the German Speaking Mycological Society/Paul-Ehrlich Society for Chemotherapy for the management and prevention of IC/candidaemia in children and neonates.
Collapse
Affiliation(s)
- Athanasios Tragiannidis
- Hematology Oncology Unit, 2nd Pediatric Department, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| | | | | |
Collapse
|
29
|
van Hal SJ, Chen SCA, Sorrell TC, Ellis DH, Slavin M, Marriott DM. Support for the EUCAST and revised CLSI fluconazole clinical breakpoints by Sensititre® YeastOne® for Candida albicans: a prospective observational cohort study. J Antimicrob Chemother 2014; 69:2210-4. [PMID: 24788656 DOI: 10.1093/jac/dku124] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Species-specific clinical breakpoints (CBPs) for Candida spp. were established following consideration of clinical outcomes in patients with oesophageal candidiasis. We sought to further determine the validity of the current CBPs based on data from a prospective candidaemia study. PATIENTS AND METHODS All Candida albicans candidaemia episodes in patients enrolled in the Australian Candidaemia Study and who were treated with fluconazole monotherapy were included. Fluconazole MICs were established using Sensititre(®) YeastOne(®). RESULTS Two hundred and seventeen evaluable episodes were identified, 93.5% of which occurred in adult patients. Fluconazole was commenced within 72 h of blood culture positivity in 96.3% (209/217) of episodes. Fluconazole doses were appropriate in 89.9% (195/217) of episodes and the median duration of therapy was 14 days (IQR 8-21 days) for the whole cohort. The all-cause 30 day mortality was 19.8% (43/217), with 37.2% (16/43) of deaths attributed to candidaemia. Classification and regression tree (CART) analysis identified a fluconazole MIC target of ≥2 mg/L for infection-related mortality and ≥4 mg/L for overall 30 day mortality. Overall mortality was no different in episodes with isolates above or below the identified MIC target, although there was a trend towards significance (P = 0.051). On univariate analysis, infection-related mortality was significantly increased in C. albicans episodes with an MIC ≥2 mg/L compared with those below this MIC target (20.6% versus 4.9%; P = 0.001). This target remained an independent predictor of infection-related mortality (OR 8.2; 95% CI 2.3-29.7; P = 0.001). CONCLUSIONS We observed a direct relationship between infection-related mortality and rising fluconazole MIC for C. albicans candidaemia; overall, the data support the EUCAST and revised CLSI fluconazole clinical breakpoints.
Collapse
Affiliation(s)
- S J van Hal
- Department of Microbiology and Infectious Diseases, Royal Prince Alfred Hospital, Camperdown, Sydney, Australia
| | - S C-A Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR-Pathology West, Westmead Hospital, Westmead, Sydney, Australia
| | - T C Sorrell
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, Australia Westmead Millennium Institute, Westmead, Sydney, NSW, Australia
| | - D H Ellis
- School of Molecular & Biomedical Science, The University of Adelaide, Adelaide, Australia
| | - M Slavin
- Peter MacCallum Cancer Centre and University of Melbourne, Melbourne, Australia
| | - D M Marriott
- Department of Clinical Microbiology and Infectious Diseases, St Vincent's Hospital, Sydney, Australia
| |
Collapse
|
30
|
Pfaller MA, Castanheira M, Messer SA, Rhomberg PR, Jones RN. Comparison of EUCAST and CLSI broth microdilution methods for the susceptibility testing of 10 systemically active antifungal agents when tested against Candida spp. Diagn Microbiol Infect Dis 2014; 79:198-204. [PMID: 24736096 DOI: 10.1016/j.diagmicrobio.2014.03.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 02/27/2014] [Accepted: 03/05/2014] [Indexed: 11/25/2022]
Abstract
The antifungal broth microdilution (BMD) method of the European Committee on Antimicrobial Susceptibility Testing (EUCAST) was compared with Clinical and Laboratory Standards Institute (CLSI) BMD method M27-A3 for amphotericin B, flucytosine, anidulafungin, caspofungin, micafungin, fluconazole, isavuconazole, itraconazole, posaconazole, and voriconazole susceptibility testing of 357 isolates of Candida. The isolates were selected from global surveillance collections to represent both wild-type (WT) and non-WT MIC results for the azoles (12% of fluconazole and voriconazole results were non-WT) and the echinocandins (6% of anidulafungin and micafungin results were non-WT). The study collection included 114 isolates of Candida albicans, 73 of C. glabrata, 76 of C. parapsilosis, 60 of C. tropicalis, and 34 of C. krusei. The overall essential agreement (EA) between EUCAST and CLSI results ranged from 78.9% (posaconazole) to 99.6% (flucytosine). The categorical agreement (CA) between methods and species of Candida was assessed using previously determined CLSI epidemiological cutoff values. The overall CA between methods was 95.0% with 2.5% very major (VM) and major (M) discrepancies. The CA was >93% for all antifungal agents with the exception of caspofungin (84.6%), where 10% of the results were categorized as non-WT by the EUCAST method and WT by the CLSI method. Problem areas with low EA or CA include testing of amphotericin B, anidulafungin, and isavuconazole against C. glabrata, itraconazole, and posaconazole against most species, and caspofungin against C. parapsilosis, C. tropicalis, and C. krusei. We confirm high level EA and CA (>90%) between the 2 methods for testing fluconazole, voriconazole, and micafungin against all 5 species. The results indicate that the EUCAST and CLSI methods produce comparable results for testing the systemically active antifungal agents against the 5 most common species of Candida; however, there are several areas where additional steps toward harmonization are warranted.
Collapse
|
31
|
Smith WJ, Drew RH, Perfect JR. Posaconazole’s impact on prophylaxis and treatment of invasive fungal infections: an update. Expert Rev Anti Infect Ther 2014; 7:165-81. [DOI: 10.1586/14787210.7.2.165] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Cuenca-Estrella M, Rodriguez-Tudela JL. The current role of the reference procedures by CLSI and EUCAST in the detection of resistance to antifungal agentsin vitro. Expert Rev Anti Infect Ther 2014; 8:267-76. [DOI: 10.1586/eri.10.2] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Melhem MSC, Bertoletti A, Lucca HRL, Silva RBO, Meneghin FA, Szeszs MW. Use of the VITEK 2 system to identify and test the antifungal susceptibility of clinically relevant yeast species. Braz J Microbiol 2013; 44:1257-66. [PMID: 24688520 PMCID: PMC3958196 DOI: 10.1590/s1517-83822014005000018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 09/10/2012] [Indexed: 11/21/2022] Open
Abstract
Eleven quality control isolates (Candida albicans ATCC 64548, C. tropicalis ATCC 200956, C. glabrata ATCC 90030, C. lusitaniae ATCC 200951, C. parapsilosis ATCC 22019, C. krusei ATCC 6258, C. dubliniensis ATCC 6330, Saccharomyces cerevisiae ATCC 9763, Cryptococcus neoformans ATCC 90012, C. gattii FIOCRUZ-CPF 60, and Trichosporon mucoides ATCC 204094) and 32 bloodstream isolates, including C. albicans, C. tropicalis, C. parapsilosis, C. glabrata, C. krusei, C. guilliermondii, C. pelliculosa (Pichia anomala), C. haemulonii, C. lusitaniae, and C. kefyr were identified at the species level by the VITEK 2 system. A set of clinical isolates (32 total) were used as challenge strains to evaluate the ability of the VITEK 2 system to determine the antifungal susceptibility of yeasts compared with the CLSI and EUCAST BMD reference standards. The VITEK 2 system correctly identified 100% of the challenge strains. The identification of yeast species and the evaluation of their susceptibility profiles were performed in an automated manner by the VITEK 2 system after approximately 15 h of growth for most species of Candida. The VITEK 2 system ensures that each test is performed in a standardized manner and provides quantitative MIC results that are reproducible and accurate when compared with the BMD reference methods. This system was able to determine the MICs of amphotericin B, flucytosine, voriconazole, and fluconazole in 15 h or less for the most common clinically relevant Candida species. In addition, the VITEK 2 system could reliably identify resistance to flucytosine, voriconazole, and fluconazole and exhibits excellent quantitative and qualitative agreement with the CLSI or EUCAST broth microdilution reference methods.
Collapse
Affiliation(s)
- MSC Melhem
- Instituto Adolfo Lutz, Secretaria da Saúde, Governo do Estado de São Paulo, São Paulo, SP, Brazil
| | - A Bertoletti
- Instituto Adolfo Lutz, Secretaria da Saúde, Governo do Estado de São Paulo, São Paulo, SP, Brazil
| | - HRL Lucca
- Instituto Adolfo Lutz, Secretaria da Saúde, Governo do Estado de São Paulo, São Paulo, SP, Brazil
| | | | - FA Meneghin
- Instituto Adolfo Lutz, Secretaria da Saúde, Governo do Estado de São Paulo, São Paulo, SP, Brazil
| | - MW Szeszs
- Instituto Adolfo Lutz, Secretaria da Saúde, Governo do Estado de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
34
|
Mikulska M, Novelli A, Aversa F, Cesaro S, de Rosa FG, Girmenia C, Micozzi A, Sanguinetti M, Viscoli C. Voriconazole in clinical practice. J Chemother 2013; 24:311-27. [DOI: 10.1179/1973947812y.0000000051] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
35
|
Senthilkumar A, Venkatesalu V. In vitrofungitoxic and cytotoxic efficacy of Chloroxylon swieteniaDC. leaf essential oil. JOURNAL OF ESSENTIAL OIL RESEARCH 2013. [DOI: 10.1080/10412905.2013.782472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
36
|
Rementeria A, Sanchez-Vargas LO, Villar M, Casals JB, Carrillo-Munoz AJ, Rodriguez Andres C, Eraso E, Quindos G. Comparison of Tablet and Disk Diffusion Methods for Fluconazole and VoriconazoleIn VitroActivity Testing Against Clinical Yeast Isolates. J Chemother 2013; 19:172-7. [PMID: 17434826 DOI: 10.1179/joc.2007.19.2.172] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
We have compared a commercially available tablet diffusion method for the in vitro antifungal susceptibility testing of fluconazole (FCZ) and voriconazole (VCZ) with the disk diffusion method M44 (CLSI) with 282 clinical yeast isolates. The superior stability of antifungal agents in tablets can explain the differences for each category of susceptibility by both methods.Neo-Sensitabs tablets antifungal susceptibility testing showed an excellent correlation (0.98 for FCZ and 0.98 for VCZ at 24h and 0.96 for FCZ and 0.94 for VCZ at 48 h ), a reduced percentage of disagreements (4.6% and 8.2% for FCZ at 24h and 48 h respectively; 1.1% and 2.1% for VCZ at 24h and 48 h respectively) and the absence of statistically significant difference in comparison with the reference protocol for performing antifungal susceptibility testing with the agar diffusion method.
Collapse
Affiliation(s)
- A Rementeria
- Departamento de Immunología, Microbiología y Parasitología, Universidad del País Vasco, Bilbao, Spain
| | | | | | | | | | | | | | | |
Collapse
|
37
|
EUCAST and CLSI: Working Together Towards a Harmonized Method for Antifungal Susceptibility Testing. CURRENT FUNGAL INFECTION REPORTS 2013. [DOI: 10.1007/s12281-012-0125-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
38
|
Kingsbury JM, Heitman J, Pinnell SR. Calcofluor white combination antifungal treatments for Trichophyton rubrum and Candida albicans. PLoS One 2012; 7:e39405. [PMID: 22792174 PMCID: PMC3391284 DOI: 10.1371/journal.pone.0039405] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 05/24/2012] [Indexed: 12/31/2022] Open
Abstract
Superficial mycoses caused by dermatophyte fungi are among the most common infections worldwide, yet treatment is restricted by limited effective drugs available, drug toxicity, and emergence of drug resistance. The stilbene fluorescent brightener calcofluor white (CFW) inhibits fungi by binding chitin in the cell wall, disrupting cell wall integrity, and thus entails a different mechanism of inhibition than currently available antifungal drugs. To identify novel therapeutic options for the treatment of skin infections, we compared the sensitivity of representative strains of the dermatophyte Trichophyton rubrum and Candida albicans to CFW and a panel of fluorescent brighteners and phytoalexin compounds. We identified the structurally related stilbene fluorescent brighteners 71, 85, 113 and 134 as fungicidal to both T. rubrum and C. albicans to a similar degree as CFW, and the stilbene phytoalexins pinosylvan monomethyl ether and pterostilbene inhibited to a lesser degree, allowing us to develop a structure-activity relationship for fungal inhibition. Given the abilities of CFW to absorb UV(365 nm) and bind specifically to fungal cell walls, we tested whether CFW combined with UV(365 nm) irradiation would be synergistic to fungi and provide a novel photodynamic treatment option. However, while both treatments individually were cytocidal, UV(365 nm) irradiation reduced sensitivity to CFW, which we attribute to CFW photoinactivation. We also tested combination treatments of CFW with other fungal inhibitors and identified synergistic interactions between CFW and some ergosterol biosynthesis inhibitors in C. albicans. Therefore, our studies identify novel fungal inhibitors and drug interactions, offering promise for combination topical treatment regimes for superficial mycoses.
Collapse
Affiliation(s)
- Joanne M Kingsbury
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America.
| | | | | |
Collapse
|
39
|
Alastruey-Izquierdo A, Cuenca-Estrella M. EUCAST and CLSI: How to Assess in Vitro Susceptibility and Clinical Resistance. CURRENT FUNGAL INFECTION REPORTS 2012. [DOI: 10.1007/s12281-012-0100-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Progress in antifungal susceptibility testing of Candida spp. by use of Clinical and Laboratory Standards Institute broth microdilution methods, 2010 to 2012. J Clin Microbiol 2012; 50:2846-56. [PMID: 22740712 DOI: 10.1128/jcm.00937-12] [Citation(s) in RCA: 357] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antifungal susceptibility testing of Candida has been standardized and refined and now may play a useful role in managing Candida infections. Important new developments include validation of 24-h reading times for all antifungal agents and the establishment of species-specific epidemiological cutoff values (ECVs) for the systemically active antifungal agents and both common and uncommon species of Candida. The clinical breakpoints (CBPs) for fluconazole, voriconazole, and the echinocandins have been revised to provide species-specific interpretive criteria for the six most common species. The revised CBPs not only are predictive of clinical outcome but also provide a more sensitive means of identifying those strains with acquired or mutational resistance mechanisms. This brief review serves as an update on the new developments in the antifungal susceptibility testing of Candida spp. using Clinical and Laboratory Standards Institute (CLSI) broth microdilution (BMD) methods.
Collapse
|
41
|
Pfaller MA, Castanheira M, Jones RN. Advances in Antifungal Susceptibility Testing of Candida, 2010–2012. CURRENT FUNGAL INFECTION REPORTS 2012. [DOI: 10.1007/s12281-012-0092-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
42
|
Interlaboratory reproducibility of Etest amphotericin B and caspofungin yeast susceptibility testing and comparison with the CLSI method. J Clin Microbiol 2012; 50:2305-9. [PMID: 22553230 DOI: 10.1128/jcm.00490-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study aimed to assess the interlaboratory reproducibility at four university hospital laboratories in the southeast region of France of the Etest technique for the determination of caspofungin (CAS) and amphotericin B (AMB) MICs and to compare it to the CLSI broth microdilution reference method. Consecutive clinical yeast isolates (n = 198) were included in the study. AMB and CAS MICs were read at 24 and 48 h. Interlaboratory reproducibility was estimated by using (i) an intraclass correlation coefficient (ICC), (ii) essential agreement (EA), and (iii) categorical agreement (CA). For Etest interlaboratory reproducibility for CAS, ICCs were 0.80 (95% confidence interval [CI], 0.76 to 0.84) and 0.81 (95% CI, 0.77 to 0.85) at 24 and 48 h, respectively. For AMB, the ICCs were 0.51 (95% CI, 0.43 to 0.58) and 0.69 (95% CI, 0.63 to 0.74) at 24 and 48 h, respectively. At 48 h, the between-center EAs ranged from 94.4 to 99.0% for both antifungals. For the comparison of the CLSI method and the Etest, the between-technique ICCs were 0.69 (95% CI, 0.63 to 0.74) and 0.62 (95% CI, 0.55 to 0.68) for CAS and AMB, respectively. The EAs ranged from 76.5 to 98.5% for CAS and from 90.3 to 97.4% for AMB according to the centers. CAs ranged from 87.9% to 91.4%, with four very major errors for 2 strains (1 Candida albicans strain and 1 Candida krusei strain), for CAS and from 97.5 to 99.5%, with four major errors, for AMB. In conclusion, the Etest showed a good interlaboratory reproducibility and a good correlation with the CLSI technique. It is well suited for the routine clinical laboratory and can thus be used to monitor clinical yeast isolates' in vitro susceptibilities in this setting.
Collapse
|
43
|
Ruhnke M, Rickerts V, Cornely OA, Buchheidt D, Glöckner A, Heinz W, Höhl R, Horré R, Karthaus M, Kujath P, Willinger B, Presterl E, Rath P, Ritter J, Glasmacher A, Lass-Flörl C, Groll AH. Diagnosis and therapy of Candida infections: joint recommendations of the German Speaking Mycological Society and the Paul-Ehrlich-Society for Chemotherapy. Mycoses 2011; 54:279-310. [PMID: 21672038 DOI: 10.1111/j.1439-0507.2011.02040.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Invasive Candida infections are important causes of morbidity and mortality in immunocompromised and hospitalised patients. This article provides the joint recommendations of the German-speaking Mycological Society (Deutschsprachige Mykologische Gesellschaft, DMyKG) and the Paul-Ehrlich-Society for Chemotherapy (PEG) for diagnosis and treatment of invasive and superficial Candida infections. The recommendations are based on published results of clinical trials, case-series and expert opinion using the evidence criteria set forth by the Infectious Diseases Society of America (IDSA). Key recommendations are summarised here: The cornerstone of diagnosis remains the detection of the organism by culture with identification of the isolate at the species level; in vitro susceptibility testing is mandatory for invasive isolates. Options for initial therapy of candidaemia and other invasive Candida infections in non-granulocytopenic patients include fluconazole or one of the three approved echinocandin compounds; liposomal amphotericin B and voriconazole are secondary alternatives because of their less favourable pharmacological properties. In granulocytopenic patients, an echinocandin or liposomal amphotericin B is recommended as initial therapy based on the fungicidal mode of action. Indwelling central venous catheters serve as a main source of infection independent of the pathogenesis of candidaemia in the individual patients and should be removed whenever feasible. Pre-existing immunosuppressive treatment, particularly by glucocorticosteroids, ought to be discontinued, if feasible, or reduced. The duration of treatment for uncomplicated candidaemia is 14 days following the first negative blood culture and resolution of all associated symptoms and findings. Ophthalmoscopy is recommended prior to the discontinuation of antifungal chemotherapy to rule out endophthalmitis or chorioretinitis. Beyond these key recommendations, this article provides detailed recommendations for specific disease entities, for antifungal treatment in paediatric patients as well as a comprehensive discussion of epidemiology, clinical presentation and emerging diagnostic options of invasive and superficial Candida infections.
Collapse
Affiliation(s)
- Markus Ruhnke
- Medizinische Klinik m S Onkologie u Hämatologie, Charité Universitätsmedizin, Charité, Campus Mitte, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The epidemiology of Candida infections has changed over the last two decades: The number of patients suffering from such infections has increased dramatically and the Candida species involved have become more numerous as Candida albicans is replaced as an infecting agent by various non-C. albicans species (NAC). At the same time, additional antifungal agents have become available. The different Candida species may vary in their susceptibility for these various antifungals. This draws more attention to in vitro susceptibility testing. Unfortunately, several different test methods exist that may deliver different results. Moreover, clinical breakpoints (CBP) that classify test results into susceptible, intermediate and resistant are controver- sial between CLSI and EUCAST. Therefore, clinicians should be aware that interpretations may vary with the test system being followed by the microbiological laboratory. Thus, knowledge of actual MIC values and pharmacokinetic properties of individual antifungal agents is important in delivering appropriate therapy to patients
Collapse
Affiliation(s)
- C Rodloff
- Institut für Medizinische Mikrobiologie, und Infektionsepidemiologie, Universitätsklinikum Leipzig, Liebigstr, Germany.
| | | | | |
Collapse
|
45
|
Pemán J, Salavert M, Cantón E, Jarque I, Romá E, Zaragoza R, Viudes Á, Gobernado M. Voriconazole in the management of nosocomial invasive fungal infections. Ther Clin Risk Manag 2011; 2:129-58. [PMID: 18360588 PMCID: PMC1661660 DOI: 10.2147/tcrm.2006.2.2.129] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Voriconazole is a new triazole developed for the treatment of life-threatening fungal infections. The drug is available for both oral and intravenous administration; the oral formulation has excellent bioavailability. The side-effect profile of voriconazole presents an acceptable safety and tolerability spectrum: transient visual disturbances, liver enzyme abnormalities, and skin rashes are the most frequently reported side effects but rarely lead to discontinuation. The potential for drug–drug interactions is high, because of its extensive hepatic metabolism. Careful attention to dosage is required, and serum levels and the effects of interacting drugs should be monitored. Review of 25 470 isolates of yeasts and 3216 isolates of filamentous fungi showed voriconazole to have broad-spectrum activity against pathogenic yeasts including intrinsically fluconazole-resistant isolates such as Candida krusei, dimorphic fungi, and opportunistic moulds like Aspergillus spp, amphotericin-B-resistant Aspergillus terreus, Fusarium spp, and Scedosporium apiospermum. It displays excellent clinical efficacy in patients with fluconazole-resistant and -susceptible Candida infections, invasive bone and central nervous system aspergillosis, and various refractory fungal infections. Voriconazole has been approved by the US Food and Drug Administration and by the European Medicines Agency for the treatment of invasive aspergillosis, serious infections caused by Fusarium and S. apiospermum, fluconazole-resistant invasive Candida infections, and candidemia in nonneutropenic patients.
Collapse
Affiliation(s)
- Javier Pemán
- Microbiology Department, Hospital Universitario La FeValencia, Spain
| | - Miguel Salavert
- Infectious Diseases Unit, Hospital Universitario La FeValencia, Spain
| | - Emilia Cantón
- Experimental Microbiology Unit, Hospital Universitario La FeValencia, Spain
| | - Isidro Jarque
- Hematology Department, Hospital Universitario La FeValencia, Spain
| | - Eva Romá
- Pharmacy Department, Hospital Universitario La FeValencia, Spain
| | - Rafael Zaragoza
- Intensive Care Unit, Hospital Universitario Dr. PesetValencia, Spain
| | | | - Miguel Gobernado
- Microbiology Department, Hospital Universitario La FeValencia, Spain
| |
Collapse
|
46
|
Perkhofer S, Mrazek C, Hartl L, Lass-Flörl C. In Vitro Susceptibility Testing in Fungi: What is its Role in Clinical Practice? Curr Infect Dis Rep 2011; 12:401-8. [PMID: 21308547 DOI: 10.1007/s11908-010-0134-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An increasing number of patients are undergoing transplantation procedures or receiving aggressive immunosuppression and chemotherapy. The growing population of immunocompromised hosts has led to a rise in the prevalence of invasive fungal infections due to yeasts and molds. The introduction of new antifungal agents and recent reports of resistance emerging during treatment of fungal infections have highlighted the need for in vitro susceptibility testing. Various testing procedures have been proposed, including macrodilution and microdilution, agar diffusion, disk diffusion, and Etest (AB Biodisk, Solna, Sweden). Establishing clinical correlation with antifungal susceptibility testing, however, is a huge challenge because susceptibility techniques do not take into account the dynamic and complex biology of fungi exposed to an antifungal in vivo. This paper reviews the available methods for antifungal susceptibility testing of yeasts and filamentous fungi and the data regarding the clinical implications of in vitro testing.
Collapse
Affiliation(s)
- Susanne Perkhofer
- Division of Hygiene and Medical Microbiology, Innsbruck Medical University, Fritz Pregl Strasse 3, 6020, Innsbruck, Austria,
| | | | | | | |
Collapse
|
47
|
Clinical breakpoints for voriconazole and Candida spp. revisited: review of microbiologic, molecular, pharmacodynamic, and clinical data as they pertain to the development of species-specific interpretive criteria. Diagn Microbiol Infect Dis 2011; 70:330-43. [DOI: 10.1016/j.diagmicrobio.2011.03.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 02/21/2011] [Accepted: 03/07/2011] [Indexed: 11/23/2022]
|
48
|
Validation of 24-hour posaconazole and voriconazole MIC readings versus the CLSI 48-hour broth microdilution reference method: application of epidemiological cutoff values to results from a global Candida antifungal surveillance program. J Clin Microbiol 2011; 49:1274-9. [PMID: 21289155 DOI: 10.1128/jcm.02437-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We performed 24- and 48-h MIC determinations of posaconazole and voriconazole against more than 16,000 clinical isolates of Candida species. By using the 24- and 48-h epidemiological cutoff values (ECVs), the categorical agreement between the 24-h and reference 48-h broth microdilution results ranged from 97.1% (C. parapsilosis and voriconazole) to 99.8% (C. krusei and voriconazole), with 0.0 to 2.9% very major discrepancies (VMD). The essential agreement (within 2 log(2) dilutions) between the 24- and 48-h results was 99.6% for both posaconazole and voriconazole. The MIC results obtained for both posaconazole and voriconazole after only 24 h of incubation may be used to determine the susceptibilities of Candida spp. to these important antifungal agents. The applications of ECVs to this large collection of Candida isolates suggests the potential to develop 24-h species-specific clinical breakpoints for both posaconazole and voriconazole.
Collapse
|
49
|
Comparison of the broth microdilution (BMD) method of the European Committee on Antimicrobial Susceptibility Testing with the 24-hour CLSI BMD method for testing susceptibility of Candida species to fluconazole, posaconazole, and voriconazole by use of epidemiological cutoff values. J Clin Microbiol 2011; 49:845-50. [PMID: 21227994 DOI: 10.1128/jcm.02441-10] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The antifungal broth microdilution (BMD) method of the European Committee on Antimicrobial Susceptibility Testing (EUCAST) was compared with CLSI BMD method M27-A3 for fluconazole, posaconazole, and voriconazole susceptibility testing of 1,056 isolates of Candida. The isolates were obtained in 2009 from more than 60 centers worldwide and included 560 isolates of C. albicans, 175 of C. glabrata, 162 of C. parapsilosis, 124 of C. tropicalis, and 35 of C. krusei. The overall essential agreement (EA) between EUCAST and CLSI results ranged from 96.9% (voriconazole) to 98.6% (fluconazole). The categorical agreement (CA) between methods and species of Candida was assessed using previously determined epidemiological cutoff values (ECVs). The ECVs (expressed as μg/ml) for fluconazole, posaconazole, and voriconazole, respectively, were as follows: 0.12, 0.06, and 0.03 for C. albicans; 32, 2, and 0.5 for C. glabrata; 2, 0.25, and 0.12 for C. parapsilosis; 2, 0.12, and 0.06 for C. tropicalis; 64, 0.5, and 0.5 for C. krusei. Excellent CA was observed for all comparisons between the EUCAST and CLSI results for fluconazole, posaconazole, and voriconazole, respectively, for each species: 98.9%, 93.6%, and 98.6% for C. albicans; 96.0%, 98.9%, and 93.7% for C. glabrata; 90.8%, 98.1%, and 98.1% for C. parapsilosis; 99.2%, 99.2%, and 96.8% for C. tropicalis; 97.1%, 97.1%, and 97.1% for C. krusei. We demonstrate high levels of EA and CA between the CLSI and EUCAST BMD methods for testing of triazoles against Candida when the MICs were determined after 24 h and ECVs were used to differentiate wild-type (WT) from non-WT strains. These results provide additional data in favor of the harmonization of these two methods.
Collapse
|
50
|
Comparison of the broth microdilution methods of the European Committee on Antimicrobial Susceptibility Testing and the Clinical and Laboratory Standards Institute for testing itraconazole, posaconazole, and voriconazole against Aspergillus isolates. J Clin Microbiol 2011; 49:1110-2. [PMID: 21209166 DOI: 10.1128/jcm.02432-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We compared EUCAST and CLSI antifungal susceptibility testing methods for itraconazole, posaconazole, and voriconazole by testing 245 Aspergillus clinical isolates. The essential agreement (EA) between methods was excellent: 100% (itraconazole), 98.4% (posaconazole), and 99.6% (voriconazole) assessing EA at ±2 dilutions and 99.6% (itraconazole), 87.7% (posaconazole), and 96.3% (voriconazole) at ±1 dilution.
Collapse
|