1
|
Belli O, Karava K, Farouni R, Platt RJ. Multimodal scanning of genetic variants with base and prime editing. Nat Biotechnol 2024:10.1038/s41587-024-02439-1. [PMID: 39533106 DOI: 10.1038/s41587-024-02439-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 09/18/2024] [Indexed: 11/16/2024]
Abstract
Mutational scanning connects genetic variants to phenotype, enabling the interrogation of protein functions, interactions and variant pathogenicity. However, current methodologies cannot efficiently engineer customizable sets of diverse genetic variants in endogenous loci across cellular contexts in high throughput. Here, we combine cytosine and adenine base editors and a prime editor to assess the pathogenicity of a broad spectrum of variants in the epithelial growth factor receptor gene (EGFR). Using pooled base editing and prime editing guide RNA libraries, we install tens of thousands of variants spanning the full coding sequence of EGFR in multiple cell lines and assess the role of these variants in tumorigenesis and resistance to tyrosine kinase inhibitors. Our EGFR variant scan identifies important hits, supporting the robustness of the approach and revealing underappreciated routes to EGFR activation and drug response. We anticipate that multimodal precision mutational scanning can be applied broadly to characterize genetic variation in any genetic element of interest at high and single-nucleotide resolution.
Collapse
Affiliation(s)
- Olivier Belli
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Kyriaki Karava
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Rick Farouni
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Randall J Platt
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
- Basel Research Centre for Child Health, Basel, Switzerland.
- Department of Chemistry, University of Basel, Basel, Switzerland.
- NCCR Molecular Systems Engineering, Basel, Switzerland.
| |
Collapse
|
2
|
Das A, Biggs MA, Hunt HL, Mahabadi V, Goncalves BG, Phan CAN, Banerjee IA. Design and investigation of novel iridoid-based peptide conjugates for targeting EGFR and its mutants L858R and T790M/L858R/C797S: an in silico study. Mol Divers 2024:10.1007/s11030-024-11007-3. [PMID: 39424745 DOI: 10.1007/s11030-024-11007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/29/2024] [Indexed: 10/21/2024]
Abstract
In this work, we designed novel peptide conjugates with plant-based iridoid and lichen-derived depside derivatives to target the wild-type EGFR (WT) and its mutants, L858R and T790M/L858R/C797S triple mutant. These mutations are often expressed in multiple cancers, particularly lung cancer. Specifically, the iridoids included 7-deoxyloganetic acid (7-DGA) and loganic acid (LG), while the depside derivative was sekikaic acid (SK). These compounds are known for their innate anticancer properties and were conjugated with two separate peptide sequences KLPGWSG (K) and YSIPKSS (Y). These sequences have been shown to target EGFR in previous phage display library screening, although the mechanism is unknown. Thus, we created the di-conjugates for dual targeting and investigated their interactions of the di-conjugates and that of the neat peptides with the kinase domain of EGFR (WT) and the two mutants using molecular docking, molecular dynamics (MD) simulations, and MM-GBSA analysis. Docking studies revealed that the (7-DGA)2-K showed the highest binding affinity at - 9.3 kcal/mol with the L858R mutant, while (LG)2-Y displayed the highest binding affinity at - 9.0 kcal/mol for the triple mutant receptor. Our results indicated that several of the conjugates interacted with crucial residues of the kinase domain, including ASP855 and THR854 (activation loop), MET793 and PRO794 (hinge region), ARG841 (catalytic loop), and LYS728 and LEU718 of the glycine-rich P-loop. Interestingly, strong hydrophobic interactions were also observed with the C-terminal tail residues, such as PHE997 and ALA1000 as well as with ARG999 for the YSIPKSS peptide and most of the conjugates. The hydroxyl group of the cyclopentane ring and the oxygen of the pyran ring of the (7-DGA)2-peptide conjugates contributed to binding particularly in the hinge region, while the peptide components formed an extended structure that bound well into the C-lobe. The (SK)2-Y di-conjugate and KLPGWSG peptide formed hydrogen bonds with the SER797 residue of the triple mutant. Overall, our results show that the (7-DGA)2-K, di-conjugate, the (7-DGA)2-Y di-conjugate, and the neat YSIPKSS demonstrated strong and stable binding with the L858R mutant and the highly resistant triple mutant EGFR, respectively. The novel designed conjugates demonstrate potential for further optimization for laboratory studies aimed at developing new therapeutics for targeting specific EGFR mutant expressing cells.
Collapse
Affiliation(s)
- Amrita Das
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Mary A Biggs
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Hannah L Hunt
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Vida Mahabadi
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Beatriz G Goncalves
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Chau Anh N Phan
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Ipsita A Banerjee
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA.
| |
Collapse
|
3
|
Iyer RS, Needham SR, Galdadas I, Davis BM, Roberts SK, Man RCH, Zanetti-Domingues LC, Clarke DT, Fruhwirth GO, Parker PJ, Rolfe DJ, Gervasio FL, Martin-Fernandez ML. Drug-resistant EGFR mutations promote lung cancer by stabilizing interfaces in ligand-free kinase-active EGFR oligomers. Nat Commun 2024; 15:2130. [PMID: 38503739 PMCID: PMC10951324 DOI: 10.1038/s41467-024-46284-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 02/20/2024] [Indexed: 03/21/2024] Open
Abstract
The Epidermal Growth Factor Receptor (EGFR) is frequently found to be mutated in non-small cell lung cancer. Oncogenic EGFR has been successfully targeted by tyrosine kinase inhibitors, but acquired drug resistance eventually overcomes the efficacy of these treatments. Attempts to surmount this therapeutic challenge are hindered by a poor understanding of how and why cancer mutations specifically amplify ligand-independent EGFR auto-phosphorylation signals to enhance cell survival and how this amplification is related to ligand-dependent cell proliferation. Here we show that drug-resistant EGFR mutations manipulate the assembly of ligand-free, kinase-active oligomers to promote and stabilize the assembly of oligomer-obligate active dimer sub-units and circumvent the need for ligand binding. We reveal the structure and assembly mechanisms of these ligand-free, kinase-active oligomers, uncovering oncogenic functions for hitherto orphan transmembrane and kinase interfaces, and for the ectodomain tethered conformation of EGFR. Importantly, we find that the active dimer sub-units within ligand-free oligomers are the high affinity binding sites competent to bind physiological ligand concentrations and thus drive tumor growth, revealing a link with tumor proliferation. Our findings provide a framework for future drug discovery directed at tackling oncogenic EGFR mutations by disabling oligomer-assembling interactions.
Collapse
Affiliation(s)
- R Sumanth Iyer
- Central Laser Facility, UKRI-STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK
- Immunocore Limited, 92 Park Drive, Milton Park, Abingdon, UK
| | - Sarah R Needham
- Central Laser Facility, UKRI-STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK
| | - Ioannis Galdadas
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- ISPSO, University of Geneva, Geneva, Switzerland
| | - Benjamin M Davis
- Central Laser Facility, UKRI-STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK
| | - Selene K Roberts
- Central Laser Facility, UKRI-STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK
| | - Rico C H Man
- Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, Guy's Campus, King's College London, London, UK
| | | | - David T Clarke
- Central Laser Facility, UKRI-STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK
| | - Gilbert O Fruhwirth
- Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, Guy's Campus, King's College London, London, UK
| | - Peter J Parker
- Protein Phosphorylation Laboratory, The Francis Crick Institute, London, UK
- School of Cancer and Pharmaceutical Sciences, Guy's Campus, King's College London, London, UK
| | - Daniel J Rolfe
- Central Laser Facility, UKRI-STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK.
| | - Francesco L Gervasio
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.
- ISPSO, University of Geneva, Geneva, Switzerland.
- Chemistry Department, University College London, London, UK.
- Swiss Institute of Bioinformatics, University of Geneva, Geneva, Switzerland.
| | | |
Collapse
|
4
|
Macdonald-Obermann JL, Pike LJ. Extracellular domain mutations of the EGF receptor differentially modulate high-affinity and low-affinity responses to EGF receptor ligands. J Biol Chem 2024; 300:105763. [PMID: 38367671 PMCID: PMC10945275 DOI: 10.1016/j.jbc.2024.105763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024] Open
Abstract
The EGF receptor is mutated in a number of cancers. In most cases, the mutations occur in the intracellular tyrosine kinase domain. However, in glioblastomas, many of the mutations are in the extracellular ligand binding domain. To determine what changes in receptor function are induced by such extracellular domain mutations, we analyzed the binding and biological response to the seven different EGF receptor ligands in three common glioblastoma mutants-R84K, A265V, and G574V. Our data indicate that all three mutations significantly increase the binding affinity of all seven ligands. In addition, the mutations increase the potency of all ligands for stimulating receptor autophosphorylation, phospholipase Cγ, Akt, and MAP kinase activity. In all mutants, the rank order of ligand potency seen at the wild-type receptor was retained, suggesting that the receptors still discriminate among the different ligands. However, the low-affinity ligands, EPR and EPG, did show larger than average enhancements of potency for stimulating Akt and MAPK but not receptor autophosphorylation and phospholipase Cγ activation. Relative to the wild-type receptor, these changes lead to an increase in the responsiveness of these mutants to physiological concentrations of ligands and an alteration in the ratio of activation of the different pathways. This may contribute to their oncogenic potential. In the context of recent findings, our data also suggest that so-called "high"-affinity biological responses arise from activation by isolated receptor dimers, whereas "low"-affinity biological responses require clustering of receptors which occurs at higher concentrations of ligand.
Collapse
Affiliation(s)
| | - Linda J Pike
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri.
| |
Collapse
|
5
|
Chakraborty MP, Das D, Mondal P, Kaul P, Bhattacharyya S, Kumar Das P, Das R. Molecular basis of VEGFR1 autoinhibition at the plasma membrane. Nat Commun 2024; 15:1346. [PMID: 38355851 PMCID: PMC10866885 DOI: 10.1038/s41467-024-45499-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
Ligand-independent activation of VEGFRs is a hallmark of diabetes and several cancers. Like EGFR, VEGFR2 is activated spontaneously at high receptor concentrations. VEGFR1, on the other hand, remains constitutively inactive in the unligated state, making it an exception among VEGFRs. Ligand stimulation transiently phosphorylates VEGFR1 and induces weak kinase activation in endothelial cells. Recent studies, however, suggest that VEGFR1 signaling is indispensable in regulating various physiological or pathological events. The reason why VEGFR1 is regulated differently from other VEGFRs remains unknown. Here, we elucidate a mechanism of juxtamembrane inhibition that shifts the equilibrium of VEGFR1 towards the inactive state, rendering it an inefficient kinase. The juxtamembrane inhibition of VEGFR1 suppresses its basal phosphorylation even at high receptor concentrations and transiently stabilizes tyrosine phosphorylation after ligand stimulation. We conclude that a subtle imbalance in phosphatase activation or removing juxtamembrane inhibition is sufficient to induce ligand-independent activation of VEGFR1 and sustain tyrosine phosphorylation.
Collapse
Affiliation(s)
- Manas Pratim Chakraborty
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur, 741246, India
| | - Diptatanu Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur, 741246, India
| | - Purav Mondal
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur, 741246, India
| | - Pragya Kaul
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur, 741246, India
| | - Soumi Bhattacharyya
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur, 741246, India
| | - Prosad Kumar Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur, 741246, India
| | - Rahul Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur, 741246, India.
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur, 741246, India.
| |
Collapse
|
6
|
Haubrich J, Zwier JM, Charrier-Savournin F, Prézeau L, Pin JP. Different EGF-induced receptor dimer conformations for signaling and internalization. FASEB J 2024; 38:e23356. [PMID: 38071470 DOI: 10.1096/fj.202301209r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023]
Abstract
The structural basis of the activation and internalization of EGF receptors (EGFR) is still a matter of debate despite the importance of this target in cancer treatment. Whether agonists induce dimer formation or act on preformed dimers remains discussed. Here, we provide direct evidence that EGF-induced EGFR dimer formation as best illustrated by the very large increase in FRET between snap-tagged EGFR subunits induced by agonists. We confirm that Erlotinib-related TK (tyrosine kinase) inhibitors also induce dimer formation despite the inactive state of the binding domain. Surprisingly, TK inhibitors do not inhibit EGF-induced EGFR internalization despite their ability to fully block EGFR signaling. Only Erlotinib-related TK inhibitors promoting asymmetric dimers could slow down this process while the lapatinib-related ones have almost no effect. These results reveal that the conformation of the intracellular TK dimer, rather than the known EGFR signaling, is critical for EGFR internalization. These results also illustrate clear differences in the mode of action of TK inhibitors on the EGFR and open novel possibilities to control EGFR signaling for cancer treatment.
Collapse
Affiliation(s)
- Jordi Haubrich
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 5, France
| | | | | | - Laurent Prézeau
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 5, France
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 5, France
| |
Collapse
|
7
|
Pei J, Cong Q. Computational analysis of regulatory regions in human protein kinases. Protein Sci 2023; 32:e4764. [PMID: 37632170 PMCID: PMC10503413 DOI: 10.1002/pro.4764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Eukaryotic proteins often feature modular domain structures comprising globular domains that are connected by linker regions and intrinsically disordered regions that may contain important functional motifs. The intramolecular interactions of globular domains and nonglobular regions can play critical roles in different aspects of protein function. However, studying these interactions and their regulatory roles can be challenging due to the flexibility of nonglobular regions, the long insertions separating interacting modules, and the transient nature of some interactions. Obtaining the experimental structures of multiple domains and functional regions is more difficult than determining the structures of individual globular domains. High-quality structural models generated by AlphaFold offer a unique opportunity to study intramolecular interactions in eukaryotic proteins. In this study, we systematically explored intramolecular interactions between human protein kinase domains (KDs) and potential regulatory regions, including globular domains, N- and C-terminal tails, long insertions, and distal nonglobular regions. Our analysis identified intramolecular interactions between human KDs and 35 different types of globular domains, exhibiting a variety of interaction modes that could contribute to orthosteric or allosteric regulation of kinase activity. We also identified prevalent interactions between human KDs and their flanking regions (N- and C-terminal tails). These interactions exhibit group-specific characteristics and can vary within each specific kinase group. Although long-range interactions between KDs and nonglobular regions are relatively rare, structural details of these interactions offer new insights into the regulation mechanisms of several kinases, such as HASPIN, MAPK7, MAPK15, and SIK1B.
Collapse
Affiliation(s)
- Jimin Pei
- Eugene McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Harold C. Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Qian Cong
- Eugene McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Harold C. Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| |
Collapse
|
8
|
Gerritsen JS, Faraguna JS, Bonavia R, Furnari FB, White FM. Predictive data-driven modeling of C-terminal tyrosine function in the EGFR signaling network. Life Sci Alliance 2023; 6:e202201466. [PMID: 37169593 PMCID: PMC10176108 DOI: 10.26508/lsa.202201466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) has been studied extensively because of its critical role in cellular signaling and association with disease. Previous models have elucidated interactions between EGFR and downstream adaptor proteins or showed phenotypes affected by EGFR. However, the link between specific EGFR phosphorylation sites and phenotypic outcomes is still poorly understood. Here, we employed a suite of isogenic cell lines expressing site-specific mutations at each of the EGFR C-terminal phosphorylation sites to interrogate their role in the signaling network and cell biological response to stimulation. Our results demonstrate the resilience of the EGFR network, which was largely similar even in the context of multiple Y-to-F mutations in the EGFR C-terminal tail, while also revealing nodes in the network that have not previously been linked to EGFR signaling. Our data-driven model highlights the signaling network nodes associated with distinct EGF-driven cell responses, including migration, proliferation, and receptor trafficking. Application of this same approach to less-studied RTKs should provide a plethora of novel associations that should lead to an improved understanding of these signaling networks.
Collapse
Affiliation(s)
- Jacqueline S Gerritsen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joseph S Faraguna
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rudy Bonavia
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Frank B Furnari
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, CA, USA
- Department of Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Forest M White
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
9
|
Lin CC, Wieteska L, Poncet-Montange G, Suen KM, Arold ST, Ahmed Z, Ladbury JE. The combined action of the intracellular regions regulates FGFR2 kinase activity. Commun Biol 2023; 6:728. [PMID: 37452126 PMCID: PMC10349056 DOI: 10.1038/s42003-023-05112-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) are typically activated through a precise sequence of intracellular phosphorylation events starting with a tyrosine residue on the activation loop (A-loop) of the kinase domain (KD). From this point the mono-phosphorylated enzyme is active, but subject to stringent regulatory mechanisms which can vary dramatically across the different RTKs. In the absence of extracellular stimulation, fibroblast growth factor receptor 2 (FGFR2) exists in the mono-phosphorylated state in which catalytic activity is regulated to allow rapid response upon ligand binding, whilst restricting ligand-independent activation. Failure of this regulation is responsible for pathologic outcomes including cancer. Here we reveal the molecular mechanistic detail of KD control based on combinatorial interactions of the juxtamembrane (JM) and the C-terminal tail (CT) regions of the receptor. JM stabilizes the asymmetric dimeric KD required for substrate phosphorylation, whilst CT binding opposes dimerization, and down-regulates activity. Direct binding between JM and CT delays the recruitment of downstream effector proteins adding a further control step as the receptor proceeds to full activation. Our findings underscore the diversity in mechanisms of RTK oligomerisation and activation.
Collapse
Affiliation(s)
- Chi-Chuan Lin
- School of Molecular and Cellular Biology, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Lukasz Wieteska
- School of Molecular and Cellular Biology, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Guillaume Poncet-Montange
- Center for the Development of Therapeutics, Broad Institute of MIT & Harvard, Cambridge, MA, 02142, USA
| | - Kin Man Suen
- School of Molecular and Cellular Biology, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Stefan T Arold
- King Abdullah University of Science and Technology, Computational Bioscience Research Center, Division of Biological and Environmental Sciences and Engineering, Thuwal, 23955-6900, Saudi Arabia
- Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, 34090, Montpellier, France
| | - Zamal Ahmed
- Department of Molecular and Cellular Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - John E Ladbury
- School of Molecular and Cellular Biology, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
10
|
Farahani PE, Yang X, Mesev EV, Fomby KA, Brumbaugh-Reed EH, Bashor CJ, Nelson CM, Toettcher JE. pYtags enable spatiotemporal measurements of receptor tyrosine kinase signaling in living cells. eLife 2023; 12:82863. [PMID: 37212240 DOI: 10.7554/elife.82863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 04/24/2023] [Indexed: 05/23/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) are major signaling hubs in metazoans, playing crucial roles in cell proliferation, migration, and differentiation. However, few tools are available to measure the activity of a specific RTK in individual living cells. Here, we present pYtags, a modular approach for monitoring the activity of a user-defined RTK by live-cell microscopy. pYtags consist of an RTK modified with a tyrosine activation motif that, when phosphorylated, recruits a fluorescently labeled tandem SH2 domain with high specificity. We show that pYtags enable the monitoring of a specific RTK on seconds-to-minutes time scales and across subcellular and multicellular length scales. Using a pYtag biosensor for epidermal growth factor receptor (EGFR), we quantitatively characterize how signaling dynamics vary with the identity and dose of activating ligand. We show that orthogonal pYtags can be used to monitor the dynamics of EGFR and ErbB2 activity in the same cell, revealing distinct phases of activation for each RTK. The specificity and modularity of pYtags open the door to robust biosensors of multiple tyrosine kinases and may enable engineering of synthetic receptors with orthogonal response programs.
Collapse
Affiliation(s)
- Payam E Farahani
- Department of Chemical & Biological Engineering, Princeton University, Princeton, United States
| | - Xiaoyu Yang
- Department of Bioengineering, Rice University, Houston, United States
- Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, United States
| | - Emily V Mesev
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Kaylan A Fomby
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Ellen H Brumbaugh-Reed
- Department of Molecular Biology, Princeton University, Princeton, United States
- IRCC International Research Collaboration Center, National Institutes of Natural Sciences, Tokyo, Japan
| | - Caleb J Bashor
- Department of Bioengineering, Rice University, Houston, United States
- Department of Biosciences, Rice University, Houston, United States
| | - Celeste M Nelson
- Department of Chemical & Biological Engineering, Princeton University, Princeton, United States
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton, United States
| |
Collapse
|
11
|
Atwell B, Chen CY, Christofferson M, Montfort WR, Schroeder J. Sorting nexin-dependent therapeutic targeting of oncogenic epidermal growth factor receptor. Cancer Gene Ther 2023; 30:267-276. [PMID: 36253541 PMCID: PMC9935382 DOI: 10.1038/s41417-022-00541-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 09/15/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022]
Abstract
Overexpression and/or overactivation of the Epidermal Growth Factor Receptor (EGFR) is oncogenic in several tumor types yet targeting the kinase domain of wildtype EGFR has had limited success. EGFR has numerous kinase-independent roles, one of which is accomplished through the Sorting Nexin-dependent retrotranslocation of EGFR to the nucleus, which is observed in some metastatic cancers and therapeutically resistant disease. Here, we have utilized the BAR domain of Sorting Nexin 1 to create a peptide-based therapeutic (cSNX1.3) that promotes cell death in EGFR-expressing cancer. We evaluated the efficacy of cSNX1.3 in tumor-bearing WAP-TGFα transgenic mice (an EGFR-dependent model of breast cancer), where cSNX1.3 treatment resulted in significant tumor regression without observable toxicity. Evaluation of remaining tumor tissues found evidence of increased PARP cleavage, suggesting apoptotic tumor cell death. To evaluate the mechanism of action for cSNX1.3, we found that cSNX1.3 binds the C-terminus of the EGFR kinase domain at an interface site opposite the ATP binding domain with a Kd of ~4.0 µM. In vitro analysis found that cSNX1.3 inhibits the nuclear localization of EGFR. To determine specificity, we evaluated cancer cell lines expressing wildtype EGFR (MDA-MB-468, BT20 and A549), mutant EGFR (H1975) and non-transformed lines (CHO and MCF10A). Only transformed lines expressing wildtype EGFR responded to cSNX1.3, while mutant EGFR and normal cells responded better to an EGFR kinase inhibitor. Phenotypically, cSNX1.3 inhibits EGF-, NRG-, and HGF-dependent migration, but not HA-dependent migration. Together, these data indicate that targeting retrotranslocation of EGFR may be a potent therapeutic for RTK-active cancer.
Collapse
Affiliation(s)
- Benjamin Atwell
- Department of Molecular and Cellular Biology, 1007 E Lowell St, Tucson, AZ, 85721, USA
| | - Cheng-Yu Chen
- Department of Chemistry and Biochemistry, 1007 E Lowell St, Tucson, AZ, 85721, USA
| | | | - William R Montfort
- Department of Molecular and Cellular Biology, 1007 E Lowell St, Tucson, AZ, 85721, USA.,Department of Chemistry and Biochemistry, 1007 E Lowell St, Tucson, AZ, 85721, USA.,University of Arizona Cancer Center, 1007 E Lowell St, Tucson, AZ, 85721, USA.,BIO5 Institute, University of Arizona, 1007 E Lowell St, Tucson, AZ, 85721, USA
| | - Joyce Schroeder
- Department of Molecular and Cellular Biology, 1007 E Lowell St, Tucson, AZ, 85721, USA. .,University of Arizona Cancer Center, 1007 E Lowell St, Tucson, AZ, 85721, USA. .,BIO5 Institute, University of Arizona, 1007 E Lowell St, Tucson, AZ, 85721, USA.
| |
Collapse
|
12
|
Srinivasan S, Regmi R, Lin X, Dreyer CA, Chen X, Quinn SD, He W, Coleman MA, Carraway KL, Zhang B, Schlau-Cohen GS. Ligand-induced transmembrane conformational coupling in monomeric EGFR. Nat Commun 2022; 13:3709. [PMID: 35794108 PMCID: PMC9259572 DOI: 10.1038/s41467-022-31299-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 06/13/2022] [Indexed: 01/26/2023] Open
Abstract
Single pass cell surface receptors regulate cellular processes by transmitting ligand-encoded signals across the plasma membrane via changes to their extracellular and intracellular conformations. This transmembrane signaling is generally initiated by ligand binding to the receptors in their monomeric form. While subsequent receptor-receptor interactions are established as key aspects of transmembrane signaling, the contribution of monomeric receptors has been challenging to isolate due to the complexity and ligand-dependence of these interactions. By combining membrane nanodiscs produced with cell-free expression, single-molecule Förster Resonance Energy Transfer measurements, and molecular dynamics simulations, we report that ligand binding induces intracellular conformational changes within monomeric, full-length epidermal growth factor receptor (EGFR). Our observations establish the existence of extracellular/intracellular conformational coupling within a single receptor molecule. We implicate a series of electrostatic interactions in the conformational coupling and find the coupling is inhibited by targeted therapeutics and mutations that also inhibit phosphorylation in cells. Collectively, these results introduce a facile mechanism to link the extracellular and intracellular regions through the single transmembrane helix of monomeric EGFR, and raise the possibility that intramolecular transmembrane conformational changes upon ligand binding are common to single-pass membrane proteins.
Collapse
Affiliation(s)
- Shwetha Srinivasan
- grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Raju Regmi
- grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA ,grid.4444.00000 0001 2112 9282Present Address: Institut Curie, CNRS, Laboratoire Physico Chimie Curie, Paris, France
| | - Xingcheng Lin
- grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Courtney A. Dreyer
- grid.27860.3b0000 0004 1936 9684Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Xuyan Chen
- grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Steven D. Quinn
- grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA ,grid.5685.e0000 0004 1936 9668Present Address: Department of Physics, University of York, York, UK
| | - Wei He
- grid.250008.f0000 0001 2160 9702Lawrence Livermore National Laboratory, Livermore, CA 94550 USA
| | - Matthew A. Coleman
- grid.250008.f0000 0001 2160 9702Lawrence Livermore National Laboratory, Livermore, CA 94550 USA ,grid.27860.3b0000 0004 1936 9684Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Kermit L. Carraway
- grid.27860.3b0000 0004 1936 9684Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Bin Zhang
- grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Gabriela S. Schlau-Cohen
- grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| |
Collapse
|
13
|
Met–HER3 crosstalk supports proliferation via MPZL3 in MET-amplified cancer cells. Cell Mol Life Sci 2022; 79:178. [PMID: 35249128 PMCID: PMC8898245 DOI: 10.1007/s00018-022-04149-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/11/2022]
Abstract
AbstractReceptor tyrosine kinases (RTKs) are recognized as targets of precision medicine in human cancer upon their gene amplification or constitutive activation, resulting in increased downstream signal complexity including heterotypic crosstalk with other RTKs. The Met RTK exhibits such reciprocal crosstalk with several members of the human EGFR (HER) family of RTKs when amplified in cancer cells. We show that Met signaling converges on HER3–tyrosine phosphorylation across a panel of seven MET-amplified cancer cell lines and that HER3 is required for cancer cell expansion and oncogenic capacity in vitro and in vivo. Gene expression analysis of HER3-depleted cells identified MPZL3, encoding a single-pass transmembrane protein, as HER3-dependent effector in multiple MET-amplified cancer cell lines. MPZL3 interacts with HER3 and MPZL3 loss phenocopies HER3 loss in MET-amplified cells, while MPZL3 overexpression can partially rescue proliferation upon HER3 depletion. Together, these data support an oncogenic role for a HER3–MPZL3 axis in MET-amplified cancers.
Collapse
|
14
|
Structural Insight and Development of EGFR Tyrosine Kinase Inhibitors. Molecules 2022; 27:molecules27030819. [PMID: 35164092 PMCID: PMC8838133 DOI: 10.3390/molecules27030819] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Lung cancer has a high prevalence, with a growing number of new cases and mortality every year. Furthermore, the survival rate of patients with non-small-cell lung carcinoma (NSCLC) is still quite low in the majority of cases. Despite the use of conventional therapy such as tyrosine kinase inhibitor for Epidermal Growth Factor Receptor (EGFR), which is highly expressed in most NSCLC cases, there was still no substantial improvement in patient survival. This is due to the drug’s ineffectiveness and high rate of resistance among individuals with mutant EGFR. Therefore, the development of new inhibitors is urgently needed. Understanding the EGFR structure, including its kinase domain and other parts of the protein, and its activation mechanism can accelerate the discovery of novel compounds targeting this protein. This study described the structure of the extracellular, transmembrane, and intracellular domains of EGFR. This was carried out along with identifying the binding pose of commercially available inhibitors in the ATP-binding and allosteric sites, thereby clarifying the research gaps that can be filled. The binding mechanism of inhibitors that have been used clinically was also explained, thereby aiding the structure-based development of new drugs.
Collapse
|
15
|
Purba ER, Saita EI, Akhouri RR, Öfverstedt LG, Wilken G, Skoglund U, Maruyama IN. Allosteric activation of preformed EGF receptor dimers by a single ligand binding event. Front Endocrinol (Lausanne) 2022; 13:1042787. [PMID: 36531494 PMCID: PMC9748436 DOI: 10.3389/fendo.2022.1042787] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/14/2022] [Indexed: 12/02/2022] Open
Abstract
Aberrant activation of the epidermal growth factor receptor (EGFR) by mutations has been implicated in a variety of human cancers. Elucidation of the structure of the full-length receptor is essential to understand the molecular mechanisms underlying its activation. Unlike previously anticipated, here, we report that purified full-length EGFR adopts a homodimeric form in vitro before and after ligand binding. Cryo-electron tomography analysis of the purified receptor also showed that the extracellular domains of the receptor dimer, which are conformationally flexible before activation, are stabilized by ligand binding. This conformational flexibility stabilization most likely accompanies rotation of the entire extracellular domain and the transmembrane domain, resulting in dissociation of the intracellular kinase dimer and, thus, rearranging it into an active form. Consistently, mutations of amino acid residues at the interface of the symmetric inactive kinase dimer spontaneously activate the receptor in vivo. Optical observation also indicated that binding of only one ligand activates the receptor dimer on the cell surface. Our results suggest how oncogenic mutations spontaneously activate the receptor and shed light on the development of novel cancer therapies.
Collapse
Affiliation(s)
- Endang R. Purba
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Ei-ichiro Saita
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Reetesh R. Akhouri
- Cellular Structural Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Lars-Goran Öfverstedt
- Cellular Structural Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Gunnar Wilken
- Cellular Structural Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Ulf Skoglund
- Cellular Structural Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Ichiro N. Maruyama
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- *Correspondence: Ichiro N. Maruyama,
| |
Collapse
|
16
|
Lucas LM, Dwivedi V, Senfeld JI, Cullum RL, Mill CP, Piazza JT, Bryant IN, Cook LJ, Miller ST, Lott JH, Kelley CM, Knerr EL, Markham JA, Kaufmann DP, Jacobi MA, Shen J, Riese DJ. The Yin and Yang of ERBB4: Tumor Suppressor and Oncoprotein. Pharmacol Rev 2022; 74:18-47. [PMID: 34987087 PMCID: PMC11060329 DOI: 10.1124/pharmrev.121.000381] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/15/2021] [Indexed: 12/11/2022] Open
Abstract
ERBB4 (HER4) is a member of the ERBB family of receptor tyrosine kinases, a family that includes the epidermal growth factor receptor (EGFR/ERBB1/HER1), ERBB2 (Neu/HER2), and ERBB3 (HER3). EGFR and ERBB2 are oncoproteins and validated targets for therapeutic intervention in a variety of solid tumors. In contrast, the role that ERBB4 plays in human malignancies is ambiguous. Thus, here we review the literature regarding ERBB4 function in human malignancies. We review the mechanisms of ERBB4 signaling with an emphasis on mechanisms of signaling specificity. In the context of this signaling specificity, we discuss the hypothesis that ERBB4 appears to function as a tumor suppressor protein and as an oncoprotein. Next, we review the literature that describes the role of ERBB4 in tumors of the bladder, liver, prostate, brain, colon, stomach, lung, bone, ovary, thyroid, hematopoietic tissues, pancreas, breast, skin, head, and neck. Whenever possible, we discuss the possibility that ERBB4 mutants function as biomarkers in these tumors. Finally, we discuss the potential roles of ERBB4 mutants in the staging of human tumors and how ERBB4 function may dictate the treatment of human tumors. SIGNIFICANCE STATEMENT: This articles reviews ERBB4 function in the context of the mechanistic model that ERBB4 homodimers function as tumor suppressors, whereas ERBB4-EGFR or ERBB4-ERBB2 heterodimers act as oncogenes. Thus, this review serves as a mechanistic framework for clinicians and scientists to consider the role of ERBB4 and ERBB4 mutants in staging and treating human tumors.
Collapse
Affiliation(s)
- Lauren M Lucas
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Vipasha Dwivedi
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Jared I Senfeld
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Richard L Cullum
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Christopher P Mill
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - J Tyler Piazza
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Ianthe N Bryant
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Laura J Cook
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - S Tyler Miller
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - James H Lott
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Connor M Kelley
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Elizabeth L Knerr
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Jessica A Markham
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - David P Kaufmann
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Megan A Jacobi
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Jianzhong Shen
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - David J Riese
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| |
Collapse
|
17
|
Franco Nitta C, Green EW, Jhamba ED, Keth JM, Ortiz-Caraveo I, Grattan RM, Schodt DJ, Gibson AC, Rajput A, Lidke KA, Wilson BS, Steinkamp MP, Lidke DS. EGFR transactivates RON to drive oncogenic crosstalk. eLife 2021; 10:63678. [PMID: 34821550 PMCID: PMC8654365 DOI: 10.7554/elife.63678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/24/2021] [Indexed: 12/22/2022] Open
Abstract
Crosstalk between different receptor tyrosine kinases (RTKs) is thought to drive oncogenic signaling and allow therapeutic escape. EGFR and RON are two such RTKs from different subfamilies, which engage in crosstalk through unknown mechanisms. We combined high-resolution imaging with biochemical and mutational studies to ask how EGFR and RON communicate. EGF stimulation promotes EGFR-dependent phosphorylation of RON, but ligand stimulation of RON does not trigger EGFR phosphorylation – arguing that crosstalk is unidirectional. Nanoscale imaging reveals association of EGFR and RON in common plasma membrane microdomains. Two-color single particle tracking captured formation of complexes between RON and EGF-bound EGFR. Our results further show that RON is a substrate for EGFR kinase, and that transactivation of RON requires formation of a signaling competent EGFR dimer. These results support a role for direct EGFR/RON interactions in propagating crosstalk, such that EGF-stimulated EGFR phosphorylates RON to activate RON-directed signaling.
Collapse
Affiliation(s)
| | - Ellen W Green
- Department of Pathology, University of New Mexico, Albuquerque, United States
| | - Elton D Jhamba
- Department of Pathology, University of New Mexico, Albuquerque, United States
| | - Justine M Keth
- Department of Pathology, University of New Mexico, Albuquerque, United States
| | - Iraís Ortiz-Caraveo
- Department of Pathology, University of New Mexico, Albuquerque, United States
| | - Rachel M Grattan
- Department of Pathology, University of New Mexico, Albuquerque, United States
| | - David J Schodt
- Department of Physics & Astronomy, University of New Mexico, Albuquerque, United States
| | - Aubrey C Gibson
- Department of Pathology, University of New Mexico, Albuquerque, United States
| | - Ashwani Rajput
- Department of Surgery, University of New Mexico, Albuquerque, United States.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, United States
| | - Keith A Lidke
- Department of Physics & Astronomy, University of New Mexico, Albuquerque, United States.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, United States
| | - Bridget S Wilson
- Department of Pathology, University of New Mexico, Albuquerque, United States.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, United States
| | - Mara P Steinkamp
- Department of Pathology, University of New Mexico, Albuquerque, United States.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, United States
| | - Diane S Lidke
- Department of Pathology, University of New Mexico, Albuquerque, United States.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, United States
| |
Collapse
|
18
|
Pinet L, Assrir N, van Heijenoort C. Expanding the Disorder-Function Paradigm in the C-Terminal Tails of Erbbs. Biomolecules 2021; 11:1690. [PMID: 34827688 PMCID: PMC8615588 DOI: 10.3390/biom11111690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 12/16/2022] Open
Abstract
ErbBs are receptor tyrosine kinases involved not only in development, but also in a wide variety of diseases, particularly cancer. Their extracellular, transmembrane, juxtamembrane, and kinase folded domains were described extensively over the past 20 years, structurally and functionally. However, their whole C-terminal tails (CTs) following the kinase domain were only described at atomic resolution in the last 4 years. They were shown to be intrinsically disordered. The CTs are known to be tyrosine-phosphorylated when the activated homo- or hetero-dimers of ErbBs are formed. Their phosphorylation triggers interaction with phosphotyrosine binding (PTB) or Src Homology 2 (SH2) domains and activates several signaling pathways controling cellular motility, proliferation, adhesion, and apoptosis. Beyond this passive role of phosphorylated domain and site display for partners, recent structural and function studies unveiled active roles in regulation of phosphorylation and interaction: the CT regulates activity of the kinase domain; different phosphorylation states have different compaction levels, potentially modulating the succession of phosphorylation events; and prolines have an important role in structure, dynamics, and possibly regulatory interactions. Here, we review both the canonical role of the disordered CT domains of ErbBs as phosphotyrosine display domains and the recent findings that expand the known range of their regulation functions linked to specific structural and dynamic features.
Collapse
|
19
|
Kadry YA, Lee JY, Witze ES. Regulation of EGFR signalling by palmitoylation and its role in tumorigenesis. Open Biol 2021; 11:210033. [PMID: 34610265 PMCID: PMC8492172 DOI: 10.1098/rsob.210033] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is an essential driver of oncogenic signalling, and EGFR inhibitors are some of the earliest examples of successful targeted therapies in multiple types of cancer. The tractability of EGFR as a therapeutic target is overshadowed by the inevitable drug resistance that develops. Overcoming resistance mechanisms requires a deeper understanding of EGFR regulation in cancer cells. In this review, we discuss our recent discovery that the palmitoyltransferase DHHC20 palmitoylates EGFR on the C-terminal domain and plays a critical role in signal regulation during oncogenesis. Inhibiting DHHC20 expression or mutating the palmitoylation site on EGFR alters the EGF-induced signalling kinetics from a transient signal to a sustained signal. The change in signalling is accompanied by a decrease in cell proliferation in multiple human cancer cell lines. Our in vivo studies demonstrate that ablating the gene Zdhhc20 by CRISPR/Cas9-mediated inhibition in a mouse model of oncogenic Kras-driven lung adenocarcinoma potently inhibits tumorigenesis. The negative effect on tumorigenesis is mediated by EGFR since the expression of a palmitoylation-resistant mutant form of EGFR also inhibits Kras-driven lung adenocarcinoma. Finally, reducing EGFR palmitoylation increases the sensitivity of multiple cancer cell lines to existing inhibitors of EGFR and downstream signalling effector pathways. We will discuss the implications of these effects and strategies for targeting these new vulnerabilities.
Collapse
Affiliation(s)
- Yasmin A. Kadry
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jia-Ying Lee
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eric S. Witze
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
20
|
Wang L, Zhang G, Qin L, Ye H, Wang Y, Long B, Jiao Z. Anti-EGFR Binding Nanobody Delivery System to Improve the Diagnosis and Treatment of Solid Tumours. Recent Pat Anticancer Drug Discov 2021; 15:200-211. [PMID: 32885759 DOI: 10.2174/1574892815666200904111728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 12/09/2022]
Abstract
BACKGROUND Epidermal Growth Factor Receptor (EGFR) and members of its homologous protein family mediate transmembrane signal transduction by binding to a specific ligand, which leads to regulated cell growth, differentiation, proliferation and metastasis. With the development and application of Genetically Engineered Antibodies (GEAs), Nanobodies (Nbs) constitute a new research hot spot in many diseases. A Nb is characterized by its low molecular weight, deep tissue penetration, good solubility and high antigen-binding affinity, the anti-EGFR Nbs are of significance for the diagnosis and treatment of EGFR-positive tumours. OBJECTIVE This review aims to provide a comprehensive overview of the information about the molecular structure of EGFR and its transmembrane signal transduction mechanism, and discuss the anti-EGFR-Nbs influence on the diagnosis and treatment of solid tumours. METHODS Data were obtained from PubMed, Embase and Web of Science. All patents are searched from the following websites: the World Intellectual Property Organization (WIPO®), the United States Patent Trademark Office (USPTO®) and Google Patents. RESULTS EGFR is a key target for regulating transmembrane signaling. The anti-EGFR-Nbs for targeted drugs could effectively improve the diagnosis and treatment of solid tumours. CONCLUSION EGFR plays a role in transmembrane signal transduction. The Nbs, especially anti- EGFR-Nbs, have shown effectiveness in the diagnosis and treatment of solid tumours. How to increase the affinity of Nb and reduce its immunogenicity remain a great challenge.
Collapse
Affiliation(s)
- Long Wang
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, Gansu Province, China
| | - Gengyuan Zhang
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, Gansu Province, China
| | - Long Qin
- The Cuiying Center, Lanzhou University Second Hospital, Lanzhou 730000, Gansu, China
| | - Huili Ye
- The Cuiying Center, Lanzhou University Second Hospital, Lanzhou 730000, Gansu, China
| | - Yan Wang
- The Cuiying Center, Lanzhou University Second Hospital, Lanzhou 730000, Gansu, China
| | - Bo Long
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, Gansu Province, China
| | - Zuoyi Jiao
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
21
|
Corso S, Pietrantonio F, Apicella M, Migliore C, Conticelli D, Petrelli A, D'Errico L, Durando S, Moya-Rull D, Bellomo SE, Ughetto S, Degiuli M, Reddavid R, Fumagalli U, De Pascale S, Sgroi G, Rausa E, Baiocchi GL, Molfino S, De Manzoni G, Bencivenga M, Siena S, Sartore-Bianchi A, Morano F, Corallo S, Prisciandaro M, Di Bartolomeo M, Gloghini A, Marsoni S, Sottile A, Sapino A, Marchiò C, Dahle-Smith A, Miedzybrodzka Z, Lee J, Ali SM, Ross JS, Alexander BM, Miller VA, Petty R, Schrock AB, Giordano S. Optimized EGFR Blockade Strategies in EGFR Addicted Gastroesophageal Adenocarcinomas. Clin Cancer Res 2021; 27:3126-3140. [PMID: 33542076 DOI: 10.1158/1078-0432.ccr-20-0121] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 12/04/2020] [Accepted: 02/01/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Gastric and gastroesophageal adenocarcinomas represent the third leading cause of cancer mortality worldwide. Despite significant therapeutic improvement, the outcome of patients with advanced gastroesophageal adenocarcinoma is poor. Randomized clinical trials failed to show a significant survival benefit in molecularly unselected patients with advanced gastroesophageal adenocarcinoma treated with anti-EGFR agents. EXPERIMENTAL DESIGN We performed analyses on four cohorts: IRCC (570 patients), Foundation Medicine, Inc. (9,397 patients), COG (214 patients), and the Fondazione IRCCS Istituto Nazionale dei Tumori (206 patients). Preclinical trials were conducted in patient-derived xenografts (PDX). RESULTS The analysis of different gastroesophageal adenocarcinoma patient cohorts suggests that EGFR amplification drives aggressive behavior and poor prognosis. We also observed that EGFR inhibitors are active in patients with EGFR copy-number gain and that coamplification of other receptor tyrosine kinases or KRAS is associated with worse response. Preclinical trials performed on EGFR-amplified gastroesophageal adenocarcinoma PDX models revealed that the combination of an EGFR mAb and an EGFR tyrosine kinase inhibitor (TKI) was more effective than each monotherapy and resulted in a deeper and durable response. In a highly EGFR-amplified nonresponding PDX, where resistance to EGFR drugs was due to inactivation of the TSC2 tumor suppressor, cotreatment with the mTOR inhibitor everolimus restored sensitivity to EGFR inhibition. CONCLUSIONS This study underscores EGFR as a potential therapeutic target in gastric cancer and identifies the combination of an EGFR TKI and a mAb as an effective therapeutic approach. Finally, it recognizes mTOR pathway activation as a novel mechanism of primary resistance that can be overcome by the combination of EGFR and mTOR inhibitors.See related commentary by Openshaw et al., p. 2964.
Collapse
Affiliation(s)
- Simona Corso
- Department of Oncology, University of Torino, Candiolo, Torino, Italy.
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | - Filippo Pietrantonio
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Maria Apicella
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | - Cristina Migliore
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | - Daniela Conticelli
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | | | - Laura D'Errico
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | | | | | - Sara E Bellomo
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | - Stefano Ughetto
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | - Maurizio Degiuli
- Department of Oncology, University of Torino, Orbassano, Torino, Italy
| | - Rossella Reddavid
- Department of Oncology, University of Torino, Orbassano, Torino, Italy
| | | | | | - Giovanni Sgroi
- Surgical Oncology Unit, Department of Surgical Science, ASST Bergamo Ovest, Treviglio, Bergamo, Italy
| | - Emanuele Rausa
- Surgical Oncology Unit, Department of Surgical Science, ASST Bergamo Ovest, Treviglio, Bergamo, Italy
| | - Gian Luca Baiocchi
- Department of Clinical and Experimental Sciences, Surgical Clinic, University of Brescia, Brescia, Italy
| | - Sarah Molfino
- Department of Clinical and Experimental Sciences, Surgical Clinic, University of Brescia, Brescia, Italy
| | - Giovanni De Manzoni
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, Section of Surgery, University of Verona, Verona, Italy
| | - Maria Bencivenga
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, Section of Surgery, University of Verona, Verona, Italy
| | - Salvatore Siena
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Andrea Sartore-Bianchi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Federica Morano
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Salvatore Corallo
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Michele Prisciandaro
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maria Di Bartolomeo
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Annunziata Gloghini
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Silvia Marsoni
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | | | - Anna Sapino
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Caterina Marchiò
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Asa Dahle-Smith
- Tayside Cancer Centre, Ninewells Hospital, Dundee, Scotland, United Kingdom
| | | | - Jessica Lee
- Foundation Medicine, Inc., Cambridge, Massachusetts
| | - Siraj M Ali
- Foundation Medicine, Inc., Cambridge, Massachusetts
| | - Jeffrey S Ross
- Foundation Medicine, Inc., Cambridge, Massachusetts
- Department of Pathology, Upstate Medical University, Syracuse, New York
| | | | | | - Russell Petty
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, Scotland, United Kingdom
| | | | - Silvia Giordano
- Department of Oncology, University of Torino, Candiolo, Torino, Italy.
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| |
Collapse
|
22
|
Pinet L, Wang YH, Deville C, Lescop E, Guerlesquin F, Badache A, Bontems F, Morellet N, Durand D, Assrir N, van Heijenoort C. Structural and dynamic characterization of the C-terminal tail of ErbB2: Disordered but not random. Biophys J 2021; 120:1869-1882. [PMID: 33741354 DOI: 10.1016/j.bpj.2021.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 01/23/2023] Open
Abstract
ErbB2 (or HER2) is a receptor tyrosine kinase overexpressed in some breast cancers and associated with poor prognosis. Treatments targeting the receptor extracellular and kinase domains have greatly improved disease outcome in the last 20 years. In parallel, the structures of these domains have been described, enabling better mechanistic understanding of the receptor function and targeted inhibition. However, the ErbB2 disordered C-terminal cytoplasmic tail (CtErbB2) remains very poorly characterized in terms of structure, dynamics, and detailed functional mechanism. Yet, it is where signal transduction is triggered via phosphorylation of tyrosine residues and carried out via interaction with adaptor proteins. Here, we report the first description, to our knowledge, of the ErbB2 disordered tail at atomic resolution using NMR, complemented by small-angle x-ray scattering. We show that although no part of CtErbB2 has any fully populated secondary or tertiary structure, it contains several transient α-helices and numerous transient polyproline II helices, populated up to 20 and 40%, respectively, and low but significant compaction. The presence of some structural elements suggests, along the lines of the results obtained for EGFR (ErbB1), that they may have a functional role in ErbB2's autoregulation processes. In addition, the transient formation of polyproline II helices is compliant with previously suggested interactions with SH3 domains. All in all, our in-depth structural study opens perspectives in the mechanistic understanding of ErbB2.
Collapse
Affiliation(s)
- Louise Pinet
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, Gif-sur-Yvette, France; Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Ying-Hui Wang
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, Gif-sur-Yvette, France; SGS Taiwan LTD, New Taipei City, Taiwan
| | - Célia Deville
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, Gif-sur-Yvette, France; IGBMC, University of Strasbourg, CNRS UMR, Illkirch, France
| | - Ewen Lescop
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Françoise Guerlesquin
- LISM, Institut de Microbiologie de la Méditerranée, CNRS and Aix-Marseille University, Marseille, France
| | - Ali Badache
- Centre de Recherche en Cancérologie de Marseille, Aix-Marseille Univ, INSERM, Institut Paoli-Calmettes, CNRS, Marseille, France
| | - François Bontems
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, Gif-sur-Yvette, France; Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France
| | - Nelly Morellet
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Dominique Durand
- I2BC, Université Paris-Saclay, CNRS UMR 9198, Gif-sur-Yvette, France
| | - Nadine Assrir
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Carine van Heijenoort
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, Gif-sur-Yvette, France.
| |
Collapse
|
23
|
Sinclair JKL, Robertson WE, Mozumdar D, Quach K, Schepartz A. Allosteric Inhibition of the Epidermal Growth Factor Receptor. Biochemistry 2021; 60:500-512. [PMID: 33557518 DOI: 10.1021/acs.biochem.0c00978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We previously reported a family of hydrocarbon-stapled peptides designed to interact with the epidermal growth factor receptor (EGFR) juxtamembrane (JM) segment, blocking its ability to form a coiled coil dimer that is essential for receptor activation. These hydrocarbon-stapled peptides, most notably E1S, decreased the proliferation of cell lines that express wild-type EGFR (H2030 and A431) as well as those expressing the oncogenic mutants EGFR L858R (H3255) and L858R/T790M (H1975). Although our previous investigations provided evidence that E1S interacted with EGFR directly, the location and details of these interactions were not established. Here we apply biochemical and cross-linking mass spectrometry tools to better define the interactions between E1S and EGFR. Taken with previously reported structure-activity relationships, our results support a model in which E1S interacts simultaneously with both the JM and the C-lobe of the activator kinase, effectively displacing the JM of the receiver kinase. Our results also reveal potential interactions between E1S and the N-terminal region of the C-terminal tail. We propose a model in which E1S inhibits EGFR by both mimicking and inhibiting JM coiled coil formation. This model could be used to design novel, allosteric (and perhaps nonpeptidic) EGFR inhibitors.
Collapse
Affiliation(s)
- Julie K L Sinclair
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Wesley E Robertson
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, United States
| | - Deepto Mozumdar
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Department of Chemistry, University of California, Berkeley, California 94705, United States
| | - Kim Quach
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Alanna Schepartz
- Department of Chemistry, University of California, Berkeley, California 94705, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, California 94705, United States
| |
Collapse
|
24
|
Sunderhaus A, Imran R, Goudelock A, Nassar M, Cooper K, Patterson D, Abdel Aziz MH. Engineering soluble artificial epidermal growth factor receptor mimics capable of spontaneous in vitro dimerization. Biotechnol Bioeng 2021; 118:1466-1475. [PMID: 33331661 DOI: 10.1002/bit.27659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/08/2020] [Accepted: 12/12/2020] [Indexed: 12/11/2022]
Abstract
Epidermal growth factor receptor (EGFR) is a clinically validated target for a multitude of human cancers. The receptor is activated upon ligand binding through a critical dimerization step. Dimerization can be replicated in vitro by locally concentrating the receptor kinase domains on the surface of lipid-based vesicles. In this study we investigated the use of coiled coils to induce spontaneous receptor kinase domain dimerization in vitro to form non-membrane-bound artificial receptor mimics in solution. Two engineered forms of EGFR kinase domain fused to coiled coil complementary peptides were designed to self-associate upon mixing. Two fusion protein species (P3-EGFR and P4-EGFR) independently showed the same activity and polymerization profile known to exist with EGFR kinase domains. Upon mixing the two species, coiled coil heterodimers were formed that induced EGFR association to form dimers of the kinase domains. This was accompanied by 11.5-fold increase in the phosphorylation rate indicative of kinase domain activation equivalent to the levels achieved using vesicle localization and mimicking in vivo ligand-induced activation. This study presents a soluble tyrosine kinase receptor mimic capable of spontaneous in vitro activation that can facilitate functional and drug discovery studies for this clinically important receptor class.
Collapse
Affiliation(s)
- Allison Sunderhaus
- Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, Texas, USA
| | - Ramsha Imran
- Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, Texas, USA
| | - Amanda Goudelock
- Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, Texas, USA
| | - Manon Nassar
- Department of Chemistry and Biochemistry, The University of Texas at Tyler, Tyler, Texas, USA
| | - Kendall Cooper
- Department of Chemistry and Biochemistry, The University of Texas at Tyler, Tyler, Texas, USA
| | - Dustin Patterson
- Department of Chemistry and Biochemistry, The University of Texas at Tyler, Tyler, Texas, USA
| | - May H Abdel Aziz
- Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, Texas, USA
| |
Collapse
|
25
|
Regmi R, Srinivasan S, Latham AP, Kukshal V, Cui W, Zhang B, Bose R, Schlau-Cohen GS. Phosphorylation-Dependent Conformations of the Disordered Carboxyl-Terminus Domain in the Epidermal Growth Factor Receptor. J Phys Chem Lett 2020; 11:10037-10044. [PMID: 33179922 PMCID: PMC8063277 DOI: 10.1021/acs.jpclett.0c02327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The epidermal growth factor receptor (EGFR), a receptor tyrosine kinase, regulates basic cellular functions and is a major target for anticancer therapeutics. The carboxyl-terminus domain is a disordered region of EGFR that contains the tyrosine residues, which undergo autophosphorylation followed by docking of signaling proteins. Local phosphorylation-dependent secondary structure has been identified and is thought to be associated with the signaling cascade. Deciphering and distinguishing the overall conformations, however, have been challenging because of the disordered nature of the carboxyl-terminus domain and resultant lack of well-defined three-dimensional structure for most of the domain. We investigated the overall conformational states of the isolated EGFR carboxyl-terminus domain using single-molecule Förster resonance energy transfer and coarse-grained simulations. Our results suggest that electrostatic interactions between charged residues emerge within the disordered domain upon phosphorylation, producing a looplike conformation. This conformation may enable binding of downstream signaling proteins and potentially reflect a general mechanism in which electrostatics transiently generate functional architectures in disordered regions of a well-folded protein.
Collapse
Affiliation(s)
- Raju Regmi
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Shwetha Srinivasan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Andrew P Latham
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Vandna Kukshal
- Department of Medicine and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Weidong Cui
- Department of Chemistry, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Ron Bose
- Department of Medicine and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Gabriela S Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
26
|
Zanetti-Domingues LC, Bonner SE, Martin-Fernandez ML, Huber V. Mechanisms of Action of EGFR Tyrosine Kinase Receptor Incorporated in Extracellular Vesicles. Cells 2020; 9:cells9112505. [PMID: 33228060 PMCID: PMC7699420 DOI: 10.3390/cells9112505] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/09/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
EGFR and some of the cognate ligands extensively traffic in extracellular vesicles (EVs) from different biogenesis pathways. EGFR belongs to a family of four homologous tyrosine kinase receptors (TKRs). This family are one of the major drivers of cancer and is involved in several of the most frequent malignancies such as non-small cell lung cancer, breast cancer, colorectal cancer and ovarian cancer. The carrier EVs exert crucial biological effects on recipient cells, impacting immunity, pre-metastatic niche preparation, angiogenesis, cancer cell stemness and horizontal oncogene transfer. While EV-mediated EGFR signalling is important to EGFR-driven cancers, little is known about the precise mechanisms by which TKRs incorporated in EVs play their biological role, their stoichiometry and associations to other proteins relevant to cancer pathology and EV biogenesis, and their means of incorporation in the target cell. In addition, it remains unclear whether different subtypes of EVs incorporate different complexes of TKRs with specific functions. A raft of high spatial and temporal resolution methods is emerging that could solve these and other questions regarding the activity of EGFR and its ligands in EVs. More importantly, methods are emerging to block or mitigate EV activity to suppress cancer progression and drug resistance. By highlighting key findings and areas that remain obscure at the intersection of EGFR signalling and EV action, we hope to cross-fertilise the two fields and speed up the application of novel techniques and paradigms to both.
Collapse
Affiliation(s)
- Laura C. Zanetti-Domingues
- Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, UK;
- Correspondence: (L.C.Z.-D.); (V.H.)
| | - Scott E. Bonner
- The Wood Lab, Department of Paediatrics, University of Oxford, Oxford OX1 3QX, UK;
| | - Marisa L. Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, UK;
| | - Veronica Huber
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
- Correspondence: (L.C.Z.-D.); (V.H.)
| |
Collapse
|
27
|
Koseska A, Bastiaens PI. Processing Temporal Growth Factor Patterns by an Epidermal Growth Factor Receptor Network Dynamically Established in Space. Annu Rev Cell Dev Biol 2020; 36:359-383. [DOI: 10.1146/annurev-cellbio-013020-103810] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The proto-oncogenic epidermal growth factor (EGF) receptor (EGFR) is a tyrosine kinase whose sensitivity and response to growth factor signals that vary over time and space determine cellular behavior within a developing tissue. The molecular reorganization of the receptors on the plasma membrane and the enzyme-kinetic mechanisms of phosphorylation are key determinants that couple growth factor binding to EGFR signaling. To enable signal initiation and termination while simultaneously accounting for suppression of aberrant signaling, a coordinated coupling of EGFR kinase and protein tyrosine phosphatase activity is established through space by vesicular dynamics. The dynamical operation mode of this network enables not only time-varying growth factor sensing but also adaptation of the response depending on cellular context. By connecting spatially coupled enzymatic kinase/phosphatase processes and the corresponding dynamical systems description of the EGFR network, we elaborate on the general principles necessary for processing complex growth factor signals.
Collapse
Affiliation(s)
- Aneta Koseska
- Lise Meitner Group Cellular Computations and Learning, Centre of Advanced European Studies and Research (caesar), D-53175 Bonn, Germany
| | - Philippe I.H. Bastiaens
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| |
Collapse
|
28
|
Byrne PO, Hristova K, Leahy DJ. EGFR forms ligand-independent oligomers that are distinct from the active state. J Biol Chem 2020; 295:13353-13362. [PMID: 32727847 DOI: 10.1074/jbc.ra120.012852] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/27/2020] [Indexed: 01/15/2023] Open
Abstract
The human epidermal growth factor receptor (EGFR/ERBB1) is a receptor tyrosine kinase (RTK) that forms activated oligomers in response to ligand. Much evidence indicates that EGFR/ERBB1 also forms oligomers in the absence of ligand, but the structure and physiological role of these ligand-independent oligomers remain unclear. To examine these features, we use fluorescence microscopy to measure the oligomer stability and FRET efficiency for homo- and hetero-oligomers of fluorescent protein-labeled forms of EGFR and its paralog, human epidermal growth factor receptor 2 (HER2/ERBB2) in vesicles derived from mammalian cell membranes. We observe that both receptors form ligand-independent oligomers at physiological plasma membrane concentrations. Mutations introduced in the kinase region at the active state asymmetric kinase dimer interface do not affect the stability of ligand-independent EGFR oligomers. These results indicate that ligand-independent EGFR oligomers form using interactions that are distinct from the EGFR active state.
Collapse
Affiliation(s)
- Patrick O Byrne
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, USA
| | - Kalina Hristova
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Daniel J Leahy
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, USA.
| |
Collapse
|
29
|
Moritsugu K, Nishino Y, Kidera A. Inter-lobe Motions Allosterically Regulate the Structure and Function of EGFR Kinase. J Mol Biol 2020; 432:4561-4575. [PMID: 32534062 DOI: 10.1016/j.jmb.2020.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/19/2020] [Accepted: 06/08/2020] [Indexed: 10/24/2022]
Abstract
Protein kinases play important roles in cellular signaling and have been one of the best-studied drug targets. The kinase domain of epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that has been extensively studied for cancer drug discovery and for understanding the unique activation mechanism by dimerization. Here, we analyzed all available 206 crystal structures of the EGFR kinase and the dynamics observed in molecular simulations to identify how these structures are determined. It was found that the arrangement between the N- and C-terminal lobes plays a key role in regulating the kinase structure by sensitively responding to the intermolecular interactions, or the crystal environment. A whole variety of crystal forms in the database is thus reflected in the broad distribution of the inter-lobe arrangement. The configuration of the catalytically important motifs as well as the bound ATP is closely coupled with the inter-lobe motion. When the intermolecular interactions are those of the activating asymmetric dimer, EGFR kinase takes the open-lobe arrangement that constructs the catalytically active configuration.
Collapse
Affiliation(s)
- Kei Moritsugu
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| | - Yoshihiko Nishino
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Akinori Kidera
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
30
|
Choi B, Cha M, Eun GS, Lee DH, Lee S, Ehsan M, Chae PS, Heo WD, Park Y, Yoon TY. Single-molecule functional anatomy of endogenous HER2-HER3 heterodimers. eLife 2020; 9:53934. [PMID: 32267234 PMCID: PMC7176432 DOI: 10.7554/elife.53934] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/07/2020] [Indexed: 12/14/2022] Open
Abstract
Human epidermal growth factor receptors (HERs) are the primary targets of many directed cancer therapies. However, the reason a specific dimer of HERs generates a stronger proliferative signal than other permutations remains unclear. Here, we used single-molecule immunoprecipitation to develop a biochemical assay for endogenously-formed, entire HER2-HER3 heterodimers. We observed unexpected, large conformational fluctuations in juxta-membrane and kinase domains of the HER2-HER3 heterodimer. Nevertheless, the individual HER2-HER3 heterodimers catalyze tyrosine phosphorylation at an unusually high rate, while simultaneously interacting with multiple copies of downstream signaling effectors. Our results suggest that the high catalytic rate and multi-tasking capability make a concerted contribution to the strong signaling potency of the HER2-HER3 heterodimers.
Collapse
Affiliation(s)
- Byoungsan Choi
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea.,Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Minkwon Cha
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Gee Sung Eun
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | | | - Seul Lee
- Proteina Co. Ltd., Seoul, Republic of Korea
| | - Muhammad Ehsan
- Department of Bionanotechnology, Hanyang University, Ansan, Republic of Korea
| | - Pil Seok Chae
- Department of Bionanotechnology, Hanyang University, Ansan, Republic of Korea
| | - Won Do Heo
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - YongKeun Park
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Tae-Young Yoon
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
31
|
Yeung W, Ruan Z, Kannan N. Emerging roles of the αC-β4 loop in protein kinase structure, function, evolution, and disease. IUBMB Life 2020; 72:1189-1202. [PMID: 32101380 DOI: 10.1002/iub.2253] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/07/2020] [Indexed: 12/11/2022]
Abstract
The faithful propagation of cellular signals in most organisms relies on the coordinated functions of a large family of protein kinases that share a conserved catalytic domain. The catalytic domain is a dynamic scaffold that undergoes large conformational changes upon activation. Most of these conformational changes, such as movement of the regulatory αC-helix from an "out" to "in" conformation, hinge on a conserved, but understudied, loop termed the αC-β4 loop, which mediates conserved interactions to tether flexible structural elements to the kinase core. We previously showed that the αC-β4 loop is a unique feature of eukaryotic protein kinases. Here, we review the emerging roles of this loop in kinase structure, function, regulation, and diseases. Through a kinome-wide analysis, we define the boundaries of the loop for the first time and show that sequence and structural variation in the loop correlate with conformational and regulatory variation. Many recurrent disease mutations map to the αC-β4 loop and contribute to drug resistance and abnormal kinase activation by relieving key auto-inhibitory interactions associated with αC-helix and inter-lobe movement. The αC-β4 loop is a hotspot for post-translational modifications, protein-protein interaction, and Hsp90 mediated folding. Our kinome-wide analysis provides insights for hypothesis-driven characterization of understudied kinases and the development of allosteric protein kinase inhibitors.
Collapse
Affiliation(s)
- Wayland Yeung
- Institute of Bioinformatics, University of Georgia, Athens, Georgia
| | - Zheng Ruan
- Institute of Bioinformatics, University of Georgia, Athens, Georgia
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, Athens, Georgia.,Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia
| |
Collapse
|
32
|
Salazar-Cavazos E, Nitta CF, Mitra ED, Wilson BS, Lidke KA, Hlavacek WS, Lidke DS. Multisite EGFR phosphorylation is regulated by adaptor protein abundances and dimer lifetimes. Mol Biol Cell 2020; 31:695-708. [PMID: 31913761 PMCID: PMC7202077 DOI: 10.1091/mbc.e19-09-0548] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Differential epidermal growth factor receptor (EGFR) phosphorylation is thought to couple receptor activation to distinct signaling pathways. However, the molecular mechanisms responsible for biased signaling are unresolved due to a lack of insight into the phosphorylation patterns of full-length EGFR. We extended a single-molecule pull-down technique previously used to study protein-protein interactions to allow for robust measurement of receptor phosphorylation. We found that EGFR is predominantly phosphorylated at multiple sites, yet phosphorylation at specific tyrosines is variable and only a subset of receptors share phosphorylation at the same site, even with saturating ligand concentrations. We found distinct populations of receptors as soon as 1 min after ligand stimulation, indicating early diversification of function. To understand this heterogeneity, we developed a mathematical model. The model predicted that variations in phosphorylation are dependent on the abundances of signaling partners, while phosphorylation levels are dependent on dimer lifetimes. The predictions were confirmed in studies of cell lines with different expression levels of signaling partners, and in experiments comparing low- and high-affinity ligands and oncogenic EGFR mutants. These results reveal how ligand-regulated receptor dimerization dynamics and adaptor protein concentrations play critical roles in EGFR signaling.
Collapse
Affiliation(s)
| | | | - Eshan D Mitra
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545
| | | | - Keith A Lidke
- Comprehensive Cancer Center, and.,Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131
| | - William S Hlavacek
- Comprehensive Cancer Center, and.,Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Diane S Lidke
- Department of Pathology.,Comprehensive Cancer Center, and
| |
Collapse
|
33
|
Kozer N, Clayton AHA. In-cell structural dynamics of an EGF receptor during ligand-induced dimer-oligomer transition. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2019; 49:21-37. [PMID: 31740999 DOI: 10.1007/s00249-019-01410-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/24/2019] [Accepted: 11/07/2019] [Indexed: 10/25/2022]
Abstract
The epidermal growth factor receptor (EGFR) is a membrane protein that regulates cell proliferation, differentiation and survival, and is a drug target for cancer therapy. Ligand-induced activation of the EGFR kinase is generally regarded to require ligand-bound-dimers, while phosphorylation and down-stream signalling is modulated by oligomers. Recent work has unveiled changes in EGFR dynamics from ligand-induced dimerization in membranes extracted from cells, however, less is known about the changes in EGFR dynamics that accompany the ligand-induced oligomerization in a live cell environment. Here, we determine the dynamics of a c-terminal GFP tag attached to EGFR in the unliganded dimer and in the liganded oligomers. By means of the single-frequency polarized phasor ellipse approach we extracted two correlation times on the sub-nanosecond and super-nanosecond timescales, respectively. EGF binding to the EGFR-GFP dimer lengthened the sub-nanosecond correlation time (from 0.1 to 1.3 ns) and shortened the super-nanosecond correlation time (from 210 to 56 ns) of the c-terminal GFP probe. The sub-nanosecond depolarization processes were assigned to electronic energy migration between proximal GFPs in the EGFR dimer or oligomer, while the super-nanosecond correlation times were assigned to nanosecond fluctuations of the GFP probe in the EGFR complex. Accordingly, these results show that ligand binding increased the average separation between the c-terminal tags and increased their rotational mobility. We propose that the dynamics are linked to an inhibitory function of the c-terminal tail in the un-liganded dimer and to the requirement of facile stochastic switching between kinase activation and cytoplasmic adaptor/effector binding in the active oligomers.
Collapse
Affiliation(s)
- Noga Kozer
- Cell Biophysics Laboratory, Department of Physics and Astronomy, Faculty of Science, Engineering and Technology, Centre for Micro-Photonics, School of Science, Swinburne University of Technology, Melbourne, Australia
| | - Andrew H A Clayton
- Cell Biophysics Laboratory, Department of Physics and Astronomy, Faculty of Science, Engineering and Technology, Centre for Micro-Photonics, School of Science, Swinburne University of Technology, Melbourne, Australia.
| |
Collapse
|
34
|
Nguyen ATQ, Lee SY, Chin HJ, Le QVC, Lee D. Kinase activity of ERBB3 contributes to intestinal organoids growth and intestinal tumorigenesis. Cancer Sci 2019; 111:137-147. [PMID: 31724799 PMCID: PMC6942447 DOI: 10.1111/cas.14235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/20/2019] [Accepted: 10/28/2019] [Indexed: 12/18/2022] Open
Abstract
As a member of the epidermal growth factor receptor (EGFR) family, ERBB3 plays an essential role in development and disease independent of inherently inactive kinase domain. Recently, ERBB3 has been found to bind to ATP and has catalytic activity in vitro. However, the biological function of ERBB3 kinase activity remains elusive in vivo. Here we have identified the physiological function of inactivated ERBB3 kinase activity by creating Erbb3‐K740M knockin mice in which ATP cannot bind to ERBB3. Unlike Erbb3 knockout mice, kinase‐inactive Erbb3K740M homozygous mice were born in Mendelian ratios and showed normal development. After dextran sulfate sodium‐induced colitis, the kinase‐inactive Erbb3 mutant mice showed normal recovery. However, the outgrowth of ileal organoids by neuregulin‐1 treatment was more attenuated in Erbb3 mutant mice than in WT mice. Moreover, in combination with the ApcMin mouse, the proportion of polyps less than 1 mm in diameter in mutant mice was higher than in control mice and an increase in the number of apoptotic cells was observed in polyps from mutant mice compared with polyps from control mice. Taken together, the ERBB3 kinase activity contributes to the outgrowth of ileal organoids and intestinal tumorigenesis, and the development of ERBB3 kinase inhibitors, including epidermal growth factor receptor family members, can be a potential way to target colorectal cancer.
Collapse
Affiliation(s)
| | - So-Young Lee
- Department of Life Science, Ewha Womans University, Seoul, South Korea
| | - Hyun Jung Chin
- Department of Life Science, Ewha Womans University, Seoul, South Korea
| | - Quy Van-Chanh Le
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, South Korea
| | - Daekee Lee
- Department of Life Science, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
35
|
Zheng C, Terreni M, Sollogoub M, Zhang Y. Ganglioside GM3 and Its Role in Cancer. Curr Med Chem 2019; 26:2933-2947. [PMID: 29376491 DOI: 10.2174/0929867325666180129100619] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/03/2018] [Accepted: 01/25/2018] [Indexed: 11/22/2022]
Abstract
Ganglioside GM3 is strongly related with human tumors, such as lung, brain cancers and melanomas, and more and more evidences have revealed that GM3 possesses powerful effects on cancer development and progression. GM3 is over expressed on several types of cancers, and can be as a tumor-associated carbohydrate antigen, used for immunotherapy of cancers. GM3 can also inhibit tumor cells growth by anti-angiogenesis or motility and so on. Especially, GM3 has effects on the EGFR tyrosine kinase signaling, uPAR-related signaling and glycolipid-enriched microdomains, which are essential for cancer signaling conduction. It is obvious that GM3 will be a promising target for cancer treatment.
Collapse
Affiliation(s)
- Changping Zheng
- Sorbonne Universite, CNRS, Institut Parisien de Chimie Moleculaire (UMR 8232), 4 Place Jussieu, 75005 Paris, France
| | - Marco Terreni
- Drug Sciences Department, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Matthieu Sollogoub
- Sorbonne Universite, CNRS, Institut Parisien de Chimie Moleculaire (UMR 8232), 4 Place Jussieu, 75005 Paris, France
| | - Yongmin Zhang
- Sorbonne Universite, CNRS, Institut Parisien de Chimie Moleculaire (UMR 8232), 4 Place Jussieu, 75005 Paris, France.,Institute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, 430056 Wuhan, China
| |
Collapse
|
36
|
Lan T, Pang J, Wang Z, Wang Y, Qian H, Chen Y, Wu Y. Type II cGMP-dependent protein kinase phosphorylates EGFR at threonine 669 and thereby inhibits its activation. Biochem Biophys Res Commun 2019; 518:14-18. [PMID: 31395339 DOI: 10.1016/j.bbrc.2019.07.126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023]
Abstract
Our previous study demonstrated that type II cGMP-dependent protein kinase (PKG II) inhibited epidermal growth factor (EGF) induced tyrosine phosphorylation/activation of the EGF receptor (EGFR). This paper was designed to investigate the mechanism of the inhibition of PKG II on EGFR activation. Gastric cancer cells HGC-27 and AGS were infected with an adenoviral vector encoding the cDNA of PKG II (Ad-PKG II) to overexpress PKG II and treated with 8-(4-chlorophenylthio) guanosine-3',5'-cyclic monophosphate (8-pCPT-cGMP) to activate the kinase. Co-immunoprecipitation (Co-IP) and bimolecular fluorescence complementation (BiFC) assay were performed to detect the interaction between PKG II and EGFR. Western blotting, mass spectrometry (MS) and site mutagenesis were performed to detect the PKG II-specific phosphorylation site on EGFR. The results showed that in living COS-7 cells, which were infected with Ad-PKG II and treated with 8-pCPT-cGMP, there was an interaction between PKG II and EGFR. The results also showed that PKG II caused threonine 669 (T669) phosphorylation of EGFR in HGC-27 and AGS cells infected with Ad-PKG II and treated with 8-pCPT-cGMP, and then inhibited the activation of EGFR. When T669 of EGFR was mutated to alanine, the inhibitory effect of PKG II on the activation of EGFR was eradicated. These findings suggested a PKG II-specific phosphorylation site on EGFR, and might be beneficial to illuminate the anti-tumor role of PKG II.
Collapse
Affiliation(s)
- Ting Lan
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, China; School of Medical Technology, Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Ji Pang
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, China
| | - Zhongcheng Wang
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, China; School of Basic Medical Science, Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Ying Wang
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, China
| | - Hai Qian
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, China
| | - Yongchang Chen
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, China
| | - Yan Wu
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, China.
| |
Collapse
|
37
|
Black LE, Longo JF, Carroll SL. Mechanisms of Receptor Tyrosine-Protein Kinase ErbB-3 (ERBB3) Action in Human Neoplasia. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1898-1912. [PMID: 31351986 DOI: 10.1016/j.ajpath.2019.06.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/16/2022]
Abstract
It is well established that the epidermal growth factor (EGF) receptor, receptor tyrosine-protein kinase erbB-2 (ERBB2)/human EGF receptor 2 (HER2), and, to a lesser extent, ERBB4/HER4, promote the pathogenesis of many types of human cancers. In contrast, the role that ERBB3/HER3, the fourth member of the ERBB family of receptor tyrosine kinases, plays in these diseases is poorly understood and, until recently, underappreciated. In large part, this was because early structural and functional studies suggested that ERBB3 had little, if any, intrinsic tyrosine kinase activity and, thus, was unlikely to be an important therapeutic target. Since then, however, numerous publications have demonstrated an important role for ERBB3 in carcinogenesis, metastasis, and acquired drug resistance. Furthermore, somatic ERBB3 mutations are frequently encountered in many types of human cancers. Dysregulation of ERBB3 trafficking as well as cooperation with other receptor tyrosine kinases further enhance ERBB3's role in tumorigenesis and drug resistance. As a result of these advances in our understanding of the structure and biochemistry of ERBB3, and a growing focus on the development of precision and combinatorial therapeutic regimens, ERBB3 is increasingly considered to be an important therapeutic target in human cancers. In this review, we discuss the unique structural and functional features of ERBB3 and how this information is being used to develop effective new therapeutic agents that target ERBB3 in human cancers.
Collapse
Affiliation(s)
- Laurel E Black
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Jody F Longo
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Steven L Carroll
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
38
|
Sarcar B, Gimbrone NT, Wright G, Remsing Rix LL, Gordian ER, Rix U, Chiappori AA, Reuther GW, Santiago-Cardona PG, Muñoz-Antonia T, Cress WD. Characterization of epidermal growth factor receptor (EGFR) P848L, an unusual EGFR variant present in lung cancer patients, in a murine Ba/F3 model. FEBS Open Bio 2019; 9:1689-1704. [PMID: 31314158 PMCID: PMC6768113 DOI: 10.1002/2211-5463.12702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/22/2019] [Accepted: 07/16/2019] [Indexed: 11/06/2022] Open
Abstract
Lung cancer patients with mutations in epidermal growth factor receptor (EGFR) benefit from treatments targeting tyrosine kinase inhibitors (TKIs). However, both intrinsic and acquired resistance of tumors to TKIs are common, and EGFR variants have been identified that are resistant to multiple TKIs. In the present study, we characterized selected EGFR variants previously observed in lung cancer patients and expressed in a murine bone marrow pro-B Ba/F3 cell model. Among these EGFR variants, we report that an exon 20 deletion/insertion mutation S768insVGH is resistant to erlotinib (a first-generation TKI), but sensitive to osimertinib (a third-generation TKI). We also characterized a rare exon 21 germline variant, EGFR P848L, which transformed Ba/F3 cells and conferred resistance to multiple EGFR-targeting TKIs. Our analysis revealed that P848L (a) does not bind erlotinib; (b) is turned over less rapidly than L858R (a common tumor-derived EGFR mutation); (c) is not autophosphorylated at Tyr 1045 [the major docking site for Cbl proto-oncogene (c-Cbl) binding]; and (d) does not bind c-Cbl. Using viability assays including 300 clinically relevant targeted compounds, we observed that Ba/F3 cells transduced with EGFR P848L, S768insVGH, or L858R have very different drug-sensitivity profiles. In particular, EGFR P848L, but not L858R or S768insVGH, was sensitive to multiple Janus kinase 1/2 inhibitors. In contrast, cells driven by L858R, but not by P848L, were sensitive to multikinase MAPK/extracellular-signal-regulated kinase (ERK) kinase and ERK inhibitors including EGFR-specific TKIs. These observations suggest that continued investigation of rare TKI-resistant EGFR variants is warranted to identify optimal treatments for cancer.
Collapse
Affiliation(s)
- Bhaswati Sarcar
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Nicholas T Gimbrone
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Gabriela Wright
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Lily L Remsing Rix
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Edna R Gordian
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Uwe Rix
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Alberto A Chiappori
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.,Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Gary W Reuther
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | - Teresita Muñoz-Antonia
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - William Douglas Cress
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.,Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
39
|
Gocheva G, Ivanova A. A Look at Receptor–Ligand Pairs for Active-Targeting Drug Delivery from Crystallographic and Molecular Dynamics Perspectives. Mol Pharm 2019; 16:3293-3321. [DOI: 10.1021/acs.molpharmaceut.9b00250] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gergana Gocheva
- Sofia University “St. Kliment Ohridski”, Faculty of Chemistry and Pharmacy, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Anela Ivanova
- Sofia University “St. Kliment Ohridski”, Faculty of Chemistry and Pharmacy, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria
| |
Collapse
|
40
|
Martin-Fernandez ML, Clarke DT, Roberts SK, Zanetti-Domingues LC, Gervasio FL. Structure and Dynamics of the EGF Receptor as Revealed by Experiments and Simulations and Its Relevance to Non-Small Cell Lung Cancer. Cells 2019; 8:E316. [PMID: 30959819 PMCID: PMC6523254 DOI: 10.3390/cells8040316] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 12/25/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is historically the prototypical receptor tyrosine kinase, being the first cloned and the first where the importance of ligand-induced dimer activation was ascertained. However, many years of structure determination has shown that EGFR is not completely understood. One challenge is that the many structure fragments stored at the PDB only provide a partial view because full-length proteins are flexible entities and dynamics play a key role in their functionality. Another challenge is the shortage of high-resolution data on functionally important higher-order complexes. Still, the interest in the structure/function relationships of EGFR remains unabated because of the crucial role played by oncogenic EGFR mutants in driving non-small cell lung cancer (NSCLC). Despite targeted therapies against EGFR setting a milestone in the treatment of this disease, ubiquitous drug resistance inevitably emerges after one year or so of treatment. The magnitude of the challenge has inspired novel strategies. Among these, the combination of multi-disciplinary experiments and molecular dynamic (MD) simulations have been pivotal in revealing the basic nature of EGFR monomers, dimers and multimers, and the structure-function relationships that underpin the mechanisms by which EGFR dysregulation contributes to the onset of NSCLC and resistance to treatment.
Collapse
Affiliation(s)
- Marisa L Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX, UK.
| | - David T Clarke
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX, UK.
| | - Selene K Roberts
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX, UK.
| | - Laura C Zanetti-Domingues
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX, UK.
| | | |
Collapse
|
41
|
Clarke DT, Martin-Fernandez ML. A Brief History of Single-Particle Tracking of the Epidermal Growth Factor Receptor. Methods Protoc 2019; 2:mps2010012. [PMID: 31164594 PMCID: PMC6481046 DOI: 10.3390/mps2010012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/15/2022] Open
Abstract
Single-particle tracking (SPT) has been used and developed over the last 25 years as a method to investigate molecular dynamics, structure, interactions, and function in the cellular context. SPT is able to show how fast and how far individual molecules move, identify different dynamic populations, measure the duration and strength of intermolecular interactions, and map out structures on the nanoscale in cells. In combination with other techniques such as macromolecular crystallography and molecular dynamics simulation, it allows us to build models of complex structures, and develop and test hypotheses of how these complexes perform their biological roles in health as well as in disease states. Here, we use the example of the epidermal growth factor receptor (EGFR), which has been studied extensively by SPT, demonstrating how the method has been used to increase our understanding of the receptor’s organization and function, including its interaction with the plasma membrane, its activation, clustering, and oligomerization, and the role of other receptors and endocytosis. The examples shown demonstrate how SPT might be employed in the investigation of other biomolecules and systems.
Collapse
Affiliation(s)
- David T Clarke
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK.
| | - Marisa L Martin-Fernandez
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK.
| |
Collapse
|
42
|
Zanetti-Domingues LC, Korovesis D, Needham SR, Tynan CJ, Sagawa S, Roberts SK, Kuzmanic A, Ortiz-Zapater E, Jain P, Roovers RC, Lajevardipour A, van Bergen En Henegouwen PMP, Santis G, Clayton AHA, Clarke DT, Gervasio FL, Shan Y, Shaw DE, Rolfe DJ, Parker PJ, Martin-Fernandez ML. The architecture of EGFR's basal complexes reveals autoinhibition mechanisms in dimers and oligomers. Nat Commun 2018; 9:4325. [PMID: 30337523 PMCID: PMC6193980 DOI: 10.1038/s41467-018-06632-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 09/11/2018] [Indexed: 11/09/2022] Open
Abstract
Our current understanding of epidermal growth factor receptor (EGFR) autoinhibition is based on X-ray structural data of monomer and dimer receptor fragments and does not explain how mutations achieve ligand-independent phosphorylation. Using a repertoire of imaging technologies and simulations we reveal an extracellular head-to-head interaction through which ligand-free receptor polymer chains of various lengths assemble. The architecture of the head-to-head interaction prevents kinase-mediated dimerisation. The latter, afforded by mutation or intracellular treatments, splits the autoinhibited head-to-head polymers to form stalk-to-stalk flexible non-extended dimers structurally coupled across the plasma membrane to active asymmetric tyrosine kinase dimers, and extended dimers coupled to inactive symmetric kinase dimers. Contrary to the previously proposed main autoinhibitory function of the inactive symmetric kinase dimer, our data suggest that only dysregulated species bear populations of symmetric and asymmetric kinase dimers that coexist in equilibrium at the plasma membrane under the modulation of the C-terminal domain.
Collapse
Affiliation(s)
- Laura C Zanetti-Domingues
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford, OX11 0QX, UK
| | - Dimitrios Korovesis
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford, OX11 0QX, UK
| | - Sarah R Needham
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford, OX11 0QX, UK
| | - Christopher J Tynan
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford, OX11 0QX, UK
| | | | - Selene K Roberts
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford, OX11 0QX, UK
| | - Antonija Kuzmanic
- Department of Chemistry, Faculty of Maths & Physical Sciences, University College London, London, WC1H 0AJ, UK
| | - Elena Ortiz-Zapater
- Peter Gore Department of Immunobiology, School of Immunology & Microbial Sciences, Kings College London, London, SE1 9RT, UK
| | - Purvi Jain
- Division of Cell Biology, Science Faculty, Department of Biology, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Rob C Roovers
- Merus, LSI, Yalelaan 62, 3584 CM, Utrecht, The Netherlands
| | - Alireza Lajevardipour
- Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | | | - George Santis
- Peter Gore Department of Immunobiology, School of Immunology & Microbial Sciences, Kings College London, London, SE1 9RT, UK
| | - Andrew H A Clayton
- Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - David T Clarke
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford, OX11 0QX, UK
| | - Francesco L Gervasio
- Department of Chemistry, Faculty of Maths & Physical Sciences, University College London, London, WC1H 0AJ, UK
| | - Yibing Shan
- D. E. Shaw Research, New York, NY, 10036, USA
| | - David E Shaw
- D. E. Shaw Research, New York, NY, 10036, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Daniel J Rolfe
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford, OX11 0QX, UK
| | - Peter J Parker
- Protein Phosphorylation Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW 1 1AT, UK
- School of Cancer and Pharmaceutical Sciences, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Marisa L Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford, OX11 0QX, UK.
| |
Collapse
|
43
|
Stanoev A, Mhamane A, Schuermann KC, Grecco HE, Stallaert W, Baumdick M, Brüggemann Y, Joshi MS, Roda-Navarro P, Fengler S, Stockert R, Roßmannek L, Luig J, Koseska A, Bastiaens PIH. Interdependence between EGFR and Phosphatases Spatially Established by Vesicular Dynamics Generates a Growth Factor Sensing and Responding Network. Cell Syst 2018; 7:295-309.e11. [PMID: 30145116 PMCID: PMC6167251 DOI: 10.1016/j.cels.2018.06.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/22/2017] [Accepted: 06/07/2018] [Indexed: 12/20/2022]
Abstract
The proto-oncogenic epidermal growth factor receptor (EGFR) is a tyrosine kinase whose sensitivity to growth factors and signal duration determines cellular behavior. We resolve how EGFR's response to epidermal growth factor (EGF) originates from dynamically established recursive interactions with spatially organized protein tyrosine phosphatases (PTPs). Reciprocal genetic PTP perturbations enabled identification of receptor-like PTPRG/J at the plasma membrane and ER-associated PTPN2 as the major EGFR dephosphorylating activities. Imaging spatial-temporal PTP reactivity revealed that vesicular trafficking establishes a spatially distributed negative feedback with PTPN2 that determines signal duration. On the other hand, single-cell dose-response analysis uncovered a reactive oxygen species-mediated toggle switch between autocatalytically activated monomeric EGFR and the tumor suppressor PTPRG that governs EGFR's sensitivity to EGF. Vesicular recycling of monomeric EGFR unifies the interactions with these PTPs on distinct membrane systems, dynamically generating a network architecture that can sense and respond to time-varying growth factor signals.
Collapse
Affiliation(s)
- Angel Stanoev
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, 44227 Dortmund, Germany
| | - Amit Mhamane
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, 44227 Dortmund, Germany
| | - Klaus C Schuermann
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, 44227 Dortmund, Germany
| | - Hernán E Grecco
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, 44227 Dortmund, Germany
| | - Wayne Stallaert
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, 44227 Dortmund, Germany
| | - Martin Baumdick
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, 44227 Dortmund, Germany
| | - Yannick Brüggemann
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, 44227 Dortmund, Germany; Faculty of Chemistry and Chemical Biology, TU Dortmund, 44227 Dortmund, Germany
| | - Maitreyi S Joshi
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, 44227 Dortmund, Germany
| | - Pedro Roda-Navarro
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, 44227 Dortmund, Germany
| | - Sven Fengler
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, 44227 Dortmund, Germany
| | - Rabea Stockert
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, 44227 Dortmund, Germany
| | - Lisaweta Roßmannek
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, 44227 Dortmund, Germany
| | - Jutta Luig
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, 44227 Dortmund, Germany
| | - Aneta Koseska
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, 44227 Dortmund, Germany; Faculty of Chemistry and Chemical Biology, TU Dortmund, 44227 Dortmund, Germany.
| | - Philippe I H Bastiaens
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, 44227 Dortmund, Germany; Faculty of Chemistry and Chemical Biology, TU Dortmund, 44227 Dortmund, Germany.
| |
Collapse
|
44
|
Baumdick M, Gelléri M, Uttamapinant C, Beránek V, Chin JW, Bastiaens PIH. A conformational sensor based on genetic code expansion reveals an autocatalytic component in EGFR activation. Nat Commun 2018; 9:3847. [PMID: 30242154 PMCID: PMC6155120 DOI: 10.1038/s41467-018-06299-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/10/2018] [Indexed: 12/26/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) activation by growth factors (GFs) relies on dimerization and allosteric activation of its intrinsic kinase activity, resulting in trans-phosphorylation of tyrosines on its C-terminal tail. While structural and biochemical studies identified this EGF-induced allosteric activation, imaging collective EGFR activation in cells and molecular dynamics simulations pointed at additional catalytic EGFR activation mechanisms. To gain more insight into EGFR activation mechanisms in living cells, we develop a Förster resonance energy transfer (FRET)-based conformational EGFR indicator (CONEGI) using genetic code expansion that reports on conformational transitions in the EGFR activation loop. Comparing conformational transitions, self-association and auto-phosphorylation of CONEGI and its Y845F mutant reveals that Y845 phosphorylation induces a catalytically active conformation in EGFR monomers. This conformational transition depends on EGFR kinase activity and auto-phosphorylation on its C-terminal tail, generating a looped causality that leads to autocatalytic amplification of EGFR phosphorylation at low EGF dose. Upon ligand binding epidermal growth factor receptor (EGFR) dimerizes and activates its intrinsic kinase to auto-phosphorylate EGFR. Here, the authors engineer and image a FRET-based conformational EGFR indicator which reveals that activation loop phosphorylation induces a catalytically active conformation in EGFR monomers.
Collapse
Affiliation(s)
- Martin Baumdick
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Street 11, 44227, Dortmund, Germany
| | - Márton Gelléri
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Street 11, 44227, Dortmund, Germany.,Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Street 6, 44227, Dortmund, Germany
| | - Chayasith Uttamapinant
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Václav Beránek
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Philippe I H Bastiaens
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Street 11, 44227, Dortmund, Germany. .,Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Street 6, 44227, Dortmund, Germany.
| |
Collapse
|
45
|
Deep mutational analysis reveals functional trade-offs in the sequences of EGFR autophosphorylation sites. Proc Natl Acad Sci U S A 2018; 115:E7303-E7312. [PMID: 30012625 PMCID: PMC6077704 DOI: 10.1073/pnas.1803598115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Upon activation, the epidermal growth factor receptor (EGFR) phosphorylates tyrosine residues in its cytoplasmic tail, which triggers the binding of Src homology 2 (SH2) and phosphotyrosine-binding (PTB) domains and initiates downstream signaling. The sequences flanking the tyrosine residues (referred to as "phosphosites") must be compatible with phosphorylation by the EGFR kinase domain and the recruitment of adapter proteins, while minimizing phosphorylation that would reduce the fidelity of signal transmission. To understand how phosphosite sequences encode these functions within a small set of residues, we carried out high-throughput mutational analysis of three phosphosite sequences in the EGFR tail. We used bacterial surface display of peptides coupled with deep sequencing to monitor phosphorylation efficiency and the binding of the SH2 and PTB domains of the adapter proteins Grb2 and Shc1, respectively. We found that the sequences of phosphosites in the EGFR tail are restricted to a subset of the range of sequences that can be phosphorylated efficiently by EGFR. Although efficient phosphorylation by EGFR can occur with either acidic or large hydrophobic residues at the -1 position with respect to the tyrosine, hydrophobic residues are generally excluded from this position in tail sequences. The mutational data suggest that this restriction results in weaker binding to adapter proteins but also disfavors phosphorylation by the cytoplasmic tyrosine kinases c-Src and c-Abl. Our results show how EGFR-family phosphosites achieve a trade-off between minimizing off-pathway phosphorylation and maintaining the ability to recruit the diverse complement of effectors required for downstream pathway activation.
Collapse
|
46
|
Macdonald-Obermann JL, Pike LJ. Allosteric regulation of epidermal growth factor (EGF) receptor ligand binding by tyrosine kinase inhibitors. J Biol Chem 2018; 293:13401-13414. [PMID: 29997256 DOI: 10.1074/jbc.ra118.004139] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/09/2018] [Indexed: 01/30/2023] Open
Abstract
The epidermal growth factor (EGF) receptor is a classical receptor tyrosine kinase with an extracellular ligand-binding domain and an intracellular kinase domain. Mutations in the EGF receptor have been shown to drive uncontrolled cell growth and are associated with a number of different tumors. Two different types of ATP-competitive EGF receptor tyrosine kinase inhibitors have been identified that bind to either the active (type I) or inactive (type II) conformation of the kinase domain. Despite the fact that both types of inhibitors block tyrosine kinase activity, they exhibit differential efficacies in different tumor types. Here, we show that in addition to inhibiting kinase activity, these inhibitors allosterically modulate ligand binding. Our data suggest that the conformations of the EGF receptor extracellular domain and intracellular kinase domain are coupled and that these conformations exist in equilibrium. Allosteric regulators, such as the small-molecule tyrosine kinase inhibitors, as well as mutations in the EGF receptor itself, shift the conformational equilibrium among the active and inactive species, leading to changes in EGF receptor-binding affinity. Our studies also reveal unexpected positive cooperativity between EGF receptor subunits in dimers formed in the presence of type II inhibitors. These findings indicate that there is strong functional coupling between the intracellular and extracellular domains of this receptor. Such coupling may impact the therapeutic synergy between small-molecule tyrosine kinase inhibitors and monoclonal antibodies in vivo.
Collapse
Affiliation(s)
- Jennifer L Macdonald-Obermann
- From the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Linda J Pike
- From the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
47
|
Boutin L, Scotet E. Towards Deciphering the Hidden Mechanisms That Contribute to the Antigenic Activation Process of Human Vγ9Vδ2 T Cells. Front Immunol 2018; 9:828. [PMID: 29731756 PMCID: PMC5919976 DOI: 10.3389/fimmu.2018.00828] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/05/2018] [Indexed: 12/11/2022] Open
Abstract
Vγ9Vδ2 T cells represent a major unconventional γδ T cell subset located in the peripheral blood of adults in humans and several non-human primates. Lymphocytes that constitute this transitional subset can sense subtle level changes of intracellular phosphorylated intermediates of the isoprenoid biosynthesis pathway (phosphoantigens, pAg), such as isopentenyl pyrophosphate, during cell stress events. This unique antigenic activation process operates in a rigorous framework that requires the expression of butyrophilin 3A1 (BTN3A1/CD277) molecules, which are type I glycoproteins that belong to the B7 family. Several studies have further shown that pAg specifically bind to the intracellular B30.2 domain of BTN3A1 linked to the antigenic activation of Vγ9Vδ2 T cells. Here, we highlight the recent advances in BTN3A1 dynamics induced upon the binding of pAg and the contribution of the different subunits to this activation process. Recent reports support that conformational modifications of BTN3A1 might represent a key step in the detection of infection or tumorigenesis by Vγ9Vδ2 T cells. A better understanding of this mechanism will help optimize novel immunotherapeutical approaches that target defined functions of this unique γδ T cell subset.
Collapse
Affiliation(s)
- Lola Boutin
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,Sanofi R&D, Biologics Research, Centre de Recherche Vitry Alfortville, Paris, France
| | - Emmanuel Scotet
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| |
Collapse
|
48
|
Liu L, Thaker TM, Freed DM, Frazier N, Malhotra K, Lemmon MA, Jura N. Regulation of Kinase Activity in the Caenorhabditis elegans EGF Receptor, LET-23. Structure 2018; 26:270-281.e4. [PMID: 29358026 DOI: 10.1016/j.str.2017.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/07/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022]
Abstract
In the active HER receptor dimers, kinases play distinct roles; one is the catalytically active kinase and the other is its allosteric activator. This specialization enables signaling by the catalytically inactive HER3, which functions exclusively as an allosteric activator upon heterodimerization with other HER receptors. It is unclear whether the allosteric activation mechanism evolved before HER receptors functionally specialized. We determined the crystal structure of the kinase domain of the only EGF receptor in Caenorhabditis elegans, LET-23. Our structure of a non-human EGFR kinase reveals autoinhibitory features conserved in the human counterpart. Strikingly, mutations within the putative allosteric dimer interface abrogate activity of the isolated LET-23 kinase and of the full-length receptor despite these regions being only partially conserved with human EGFR. Our results indicate that ancestral EGFRs have built-in features that poise them for allosteric activation that could facilitate emergence of the catalytically dead, yet functional, orthologs.
Collapse
Affiliation(s)
- Lijun Liu
- Cardiovascular Research Institute, University of California - San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California - San Francisco, San Francisco, CA 94158, USA
| | - Tarjani M Thaker
- Cardiovascular Research Institute, University of California - San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California - San Francisco, San Francisco, CA 94158, USA
| | - Daniel M Freed
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Nicole Frazier
- Cardiovascular Research Institute, University of California - San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California - San Francisco, San Francisco, CA 94158, USA
| | - Ketan Malhotra
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Mark A Lemmon
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Natalia Jura
- Cardiovascular Research Institute, University of California - San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California - San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
49
|
Paviolo C, Chon JWM, Clayton AHA. The Effect of Nanoparticles on the Cluster Size Distributions of Activated EGFR Measured with Photobleaching Image Correlation Spectroscopy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1112:41-52. [PMID: 30637689 DOI: 10.1007/978-981-13-3065-0_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The epidermal growth factor receptor (EGFR) is an important cell surface receptor in normal physiology and disease. Recent work has shown that EGF-gold nanoparticle conjugates can influence cell behaviour, but the underlying mechanism at the receptor quaternary structural level remains poorly understood.In the present work, the cluster density and cluster size of activated (phosphorylated) EGFR clusters in HeLa cells were determined with photobleaching image correlation spectroscopy. EGFR activation was probed via immunofluorescence-detected phosphorylation of tyrosines (pY-mAb) located in the kinase domain of EGFR (Y845) and at the EGFR cytoplasmic tail (Y1173). Cell activation was probed via nuclear extracellular-regulated kinase (ERK) phosphorylation. The cluster size of activated EGFR was 1.3-2.4 pY-mAb/cluster in unstimulated HeLa cells. EGF or nanorod treatment led to an increase in EGFR oligomers containing multiple phosphotyrosines (>2 phosphotyrosines per EGFR oligomer, average cluster size range = 3-5 pY-mAb/cluster) which paralleled increases in nuclear p-ERK. In contrast, EGF-nanorods decreased the contribution from higher-order phospho-clusters and decreased nuclear p-ERK relative to the nanorod control. These studies provide direct evidence that targeted nanotechnology can manipulate receptor organization and lead to changes in receptor activation and subsequent signalling processes.
Collapse
Affiliation(s)
- Chiara Paviolo
- Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - James W M Chon
- Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, Australia.
| | - Andrew H A Clayton
- Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, Australia.
| |
Collapse
|
50
|
Bocharov EV. Alternative dimerization of receptor tyrosine kinases with signal transduction through a cellular membrane. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1068162017050041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|