1
|
Hall B, Amin N, Veeranna, Hisanaga SI, Kulkarni AB. A Retrospective Tribute to Dr. Harish Pant (1938-2023) and His Seminal Work on Cyclin Dependent Kinase 5. Neurochem Res 2024; 49:3181-3186. [PMID: 39235580 PMCID: PMC11502590 DOI: 10.1007/s11064-024-04234-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
Dr. Harish Chandra Pant was Chief of the Section on Neuronal Cytoskeletal Protein Regulation within the National Institute of Neurological Disorders and Stroke at the NIH. A main focus of his group was understanding the mechanisms regulating neuronal cytoskeletal phosphorylation. Phosphorylation of neurofilaments can increase filament stability and confer resistance to proteolysis, but aberrant hyperphosphorylation of neurofilaments can be found in the neurofibrillary tangles that are seen with neurodegenerative diseases like Alzheimer disease (AD). Through his work, Harish would inevitably come across cyclin dependent kinase 5 (Cdk5), a key kinase that can phosphorylate neurofilaments at KSPXK motifs. Cdk5 differs from other Cdks in that its activity is mainly in post-mitotic neurons rather than being involved in the cell cycle in dividing cells. With continued interest in Cdk5, Harish and his group were instrumental in identifying important roles for this neuronal kinase in not only neuronal cytoskeleton phosphorylation but also in neuronal development, synaptogenesis, and neuronal survival. Here, we review the accomplishments of Harish in characterizing the functions of Cdk5 and its involvement in neuronal health and disease.
Collapse
Affiliation(s)
- Bradford Hall
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, Bethesda, MD, 20892, USA
| | - Niranjana Amin
- Cytoskeletal Protein Regulation Section, National Institute of Neurological Disorders and Stroke, National Institutes and Health, Bethesda, MD, 20892, USA
| | - Veeranna
- Cytoskeletal Protein Regulation Section, National Institute of Neurological Disorders and Stroke, National Institutes and Health, Bethesda, MD, 20892, USA
| | - Shin-Ichi Hisanaga
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Ashok B Kulkarni
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, Bethesda, MD, 20892, USA.
| |
Collapse
|
2
|
Devarakonda SS, Basha S, Pithakumar A, L B T, Mukunda DC, Rodrigues J, K A, Biswas S, Pai AR, Belurkar S, Mahato KK. Molecular mechanisms of neurofilament alterations and its application in assessing neurodegenerative disorders. Ageing Res Rev 2024; 102:102566. [PMID: 39481763 DOI: 10.1016/j.arr.2024.102566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/04/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
Neurofilaments are intermediate filaments present in neurons. These provide structural support and maintain the size and shape of the neurons. Dysregulation, mutation, and aggregation of neurofilaments raise the levels of these proteins in the blood and cerebrospinal fluid (CSF), which are characteristic features of axonal damage and certain rare neurological diseases, such as Giant Axonal Neuropathy and Charcot-Mare-Tooth disease. Understanding the structure, dynamics, and function of neurofilaments has been greatly enhanced by a diverse range of biochemical and preclinical investigations conducted over more than four decades. Recently, there has been a resurgence of interest in post-translational modifications of neurofilaments, such as phosphorylation, aggregation, mutation, oxidation, etc. Over the past twenty years, several rare disorders have been studied from structural alterations of neurofilaments. These disorders are monitored by fluid biomarkers such as neurofilament light chains. Currently, there are many tools, such as Enzyme-Linked Immunosorbent Assay, Electrochemiluminescence Assay, Single-Molecule Array, Western/immunoblotting, etc., in use to assess the neurofilament proteins in Blood and CSF. However, all these techniques utilize expensive, non-specific, or antibody-based methods, which make them unsuitable for routine screening of neurodegenerative disorders. This provides room to search for newer sensitive, cost-effective, point-of-care tools for rapid screening of the disease. For a long time, the molecular mechanisms of neurofilaments have been poorly understood due to insufficient research attempts, and a deeper understanding of them remains elusive. Therefore, this review aims to highlight the available literature on molecular mechanisms of neurofilaments and the function of neurofilaments in axonal transport, axonal conduction, axonal growth, and neurofilament aggregation, respectively. Further, this review discusses the role of neurofilaments as potential biomarkers for the identification of several neurodegenerative diseases in clinical laboratory practice.
Collapse
Affiliation(s)
| | - Shaik Basha
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Anjana Pithakumar
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Thoshna L B
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | | | - Jackson Rodrigues
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Ameera K
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Shimul Biswas
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Aparna Ramakrishna Pai
- Department of Neurology, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Sushma Belurkar
- Department of Pathology, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India.
| |
Collapse
|
3
|
Espinoza KS, Hermanson KN, Beard CA, Schwartz NU, Snider JM, Low BE, Wiles MV, Hannun YA, Obeid LM, Snider AJ. A novel HSPB1 S139F mouse model of Charcot-Marie-Tooth Disease. Prostaglandins Other Lipid Mediat 2023; 169:106769. [PMID: 37625781 PMCID: PMC10843462 DOI: 10.1016/j.prostaglandins.2023.106769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/01/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Charcot-Marie-Tooth Disease (CMT) is a commonly inherited peripheral polyneuropathy. Clinical manifestations for this disease include symmetrical distal polyneuropathy, altered deep tendon reflexes, distal sensory loss, foot deformities, and gait abnormalities. Genetic mutations in heat shock proteins have been linked to CMT2. Specifically, mutations in the heat shock protein B1 (HSPB1) gene encoding for heat shock protein 27 (Hsp27) have been linked to CMT2F and distal hereditary motor and sensory neuropathy type 2B (dHMSN2B) subtype. The goal of the study was to examine the role of an endogenous mutation in HSPB1 in vivo and to define the effects of this mutation on motor function and pathology in a novel animal model. As sphingolipids have been implicated in hereditary and sensory neuropathies, we examined sphingolipid metabolism in central and peripheral nervous tissues in 3-month-old HspS139F mice. Though sphingolipid levels were not altered in sciatic nerves from HspS139F mice, ceramides and deoxyceramides, as well as sphingomyelins (SMs) were elevated in brain tissues from HspS139F mice. Histology was utilized to further characterize HspS139F mice. HspS139F mice exhibited no alterations to the expression and phosphorylation of neurofilaments, or in the expression of acetylated α-tubulin in the brain or sciatic nerve. Interestingly, HspS139F mice demonstrated cerebellar demyelination. Locomotor function, grip strength and gait were examined to define the role of HspS139F in the clinical phenotypes associated with CMT2F. Gait analysis revealed no differences between HspWT and HspS139F mice. However, both coordination and grip strength were decreased in 3-month-old HspS139F mice. Together these data suggest that the endogenous S139F mutation in HSPB1 may serve as a mouse model for hereditary and sensory neuropathies such as CMT2F.
Collapse
Affiliation(s)
- Keila S Espinoza
- Department of Physiology, University of Arizona, Tucson, AZ 85721, USA
| | - Kyra N Hermanson
- Department of Physiology, University of Arizona, Tucson, AZ 85721, USA
| | - Cameron A Beard
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ 85721, USA
| | - Nicholas U Schwartz
- Department of Neurology, Stanford University Medical Center, Stanford, CA 94304, USA
| | - Justin M Snider
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ 85721, USA; University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85721, USA
| | - Benjamin E Low
- Technology Evaluation and Development, The Jackson Laboratory, Bar Harbor, ME, USA; Genetic Resource Science, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Michael V Wiles
- Technology Evaluation and Development, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Yusuf A Hannun
- Department of Medicine and Stony Brook Cancer Center, Stony Brook, NY 11794, USA; Northport Veterans Affairs Medical Center, Northport, NY 11768, USA
| | - Lina M Obeid
- Department of Medicine and Stony Brook Cancer Center, Stony Brook, NY 11794, USA; Northport Veterans Affairs Medical Center, Northport, NY 11768, USA
| | - Ashley J Snider
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ 85721, USA; University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
4
|
Nelke A, García-López S, Martínez-Serrano A, Pereira MP. Multifactoriality of Parkinson's Disease as Explored Through Human Neural Stem Cells and Their Transplantation in Middle-Aged Parkinsonian Mice. Front Pharmacol 2022; 12:773925. [PMID: 35126116 PMCID: PMC8807563 DOI: 10.3389/fphar.2021.773925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is an age-associated neurodegenerative disorder for which there is currently no cure. Cell replacement therapy is a potential treatment for PD; however, this therapy has more clinically beneficial outcomes in younger patients with less advanced PD. In this study, hVM1 clone 32 cells, a line of human neural stem cells, were characterized and subsequently transplanted in middle-aged Parkinsonian mice in order to examine cell replacement therapy as a treatment for PD. In vitro analyses revealed that these cells express standard dopamine-centered markers as well as others associated with mitochondrial and peroxisome function, as well as glucose and lipid metabolism. Four months after the transplantation of the hVM1 clone 32 cells, striatal expression of tyrosine hydroxylase was minimally reduced in all Parkinsonian mice but that of dopamine transporter was decreased to a greater extent in buffer compared to cell-treated mice. Behavioral tests showed marked differences between experimental groups, and cell transplant improved hyperactivity and gait alterations, while in the striatum, astroglial populations were increased in all groups due to age and a higher amount of microglia were found in Parkinsonian mice. In the motor cortex, nonphosphorylated neurofilament heavy was increased in all Parkinsonian mice. Overall, these findings demonstrate that hVM1 clone 32 cell transplant prevented motor and non-motor impairments and that PD is a complex disorder with many influencing factors, thus reinforcing the idea of novel targets for PD treatment that tend to be focused on dopamine and nigrostriatal damage.
Collapse
Affiliation(s)
- Anna Nelke
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa UAM-CSIC, Madrid, Spain
- Department of Molecular Biology, Faculty of Science, Universidad Autónoma de Madrid, Madrid, Spain
| | - Silvia García-López
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa UAM-CSIC, Madrid, Spain
- Department of Molecular Biology, Faculty of Science, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alberto Martínez-Serrano
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa UAM-CSIC, Madrid, Spain
- Department of Molecular Biology, Faculty of Science, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta P. Pereira
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa UAM-CSIC, Madrid, Spain
- Department of Molecular Biology, Faculty of Science, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
5
|
Ayanwuyi L, Tokarska N, McLean NA, Johnston JM, Verge VMK. Brief electrical nerve stimulation enhances intrinsic repair capacity of the focally demyelinated central nervous system. Neural Regen Res 2021; 17:1042-1050. [PMID: 34558531 PMCID: PMC8552867 DOI: 10.4103/1673-5374.324848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Our lab has shown that brief electrical nerve stimulation (ES) has a dramatic impact on remyelination of lysophosphatidyl choline (LPC)-induced focally demyelinated rat peripheral nerves, while also inducing an axon-protective phenotype and shifting macrophages from a predominantly pro-inflammatory toward a pro-repair phenotype. Whether this same potential exists in the central nervous system is not known. Thus, for proof of principle studies, the peripheral nerve demyelination and ES model was adapted to the central nervous system, whereby a unilateral focal LPC-induced demyelination of the dorsal column at the lumbar enlargement where the sciatic nerve afferents enter was created, so that subsequent ipsilateral sciatic nerve ES results in increased neural activity in the demyelinated axons. Data reveal a robust focal demyelination at 7 days post-LPC injection. Delivery of 1-hour ES at 7 days post-LPC polarizes macrophages/microglia toward a pro-repair phenotype when examined at 14 days post-LPC; results in smaller LPC-associated regions of inflammation compared to non-stimulated controls; results in significantly more cells of the oligodendroglial lineage in the demyelinated region; elevates myelin basic protein levels; and shifts the paranodal protein Caspr along demyelinated axons to a more restricted distribution, consistent with reformation of the paranodes of the nodes of Ranvier. ES also significantly enhanced levels of phosphorylated neurofilaments detected in the zones of demyelination, which has been shown to confer axon protection. Collectively these findings support that strategies that increase neural activity, such as brief electrical stimulation, can be beneficial for promoting intrinsic repair following focal demyelinating insults in demyelinating diseases such as multiple sclerosis. All animal procedures performed were approved by the University of Saskatchewan's Animal Research Ethics Board (protocol# 20090087; last approval date: November 5, 2020).
Collapse
Affiliation(s)
- Lydia Ayanwuyi
- Department of Anatomy, Physiology and Pharmacology; Cameco MS Neuroscience Research Center, University of Saskatchewan, Saskatoon, SK, Canada
| | - Nataliya Tokarska
- Department of Anatomy, Physiology and Pharmacology; Cameco MS Neuroscience Research Center, University of Saskatchewan, Saskatoon, SK, Canada
| | - Nikki A McLean
- Department of Anatomy, Physiology and Pharmacology; Cameco MS Neuroscience Research Center, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jayne M Johnston
- Department of Anatomy, Physiology and Pharmacology; Cameco MS Neuroscience Research Center, University of Saskatchewan, Saskatoon, SK, Canada
| | - Valerie M K Verge
- Department of Anatomy, Physiology and Pharmacology; Cameco MS Neuroscience Research Center, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
6
|
Nasirishargh A, Kumar P, Ramasubramanian L, Clark K, Hao D, Lazar SV, Wang A. Exosomal microRNAs from mesenchymal stem/stromal cells: Biology and applications in neuroprotection. World J Stem Cells 2021; 13:776-794. [PMID: 34367477 PMCID: PMC8316862 DOI: 10.4252/wjsc.v13.i7.776] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/29/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are extensively studied as cell-therapy agents for neurological diseases. Recent studies consider exosomes secreted by MSCs as important mediators for MSCs’ neuroprotective functions. Exosomes transfer functional molecules including proteins, lipids, metabolites, DNAs, and coding and non-coding RNAs from MSCs to their target cells. Emerging evidence shows that exosomal microRNAs (miRNAs) play a key role in the neuroprotective properties of these exosomes by targeting several genes and regulating various biological processes. Multiple exosomal miRNAs have been identified to have neuroprotective effects by promoting neurogenesis, neurite remodeling and survival, and neuroplasticity. Thus, exosomal miRNAs have significant therapeutic potential for neurological disorders such as stroke, traumatic brain injury, and neuroinflammatory or neurodegenerative diseases and disorders. This review discusses the neuroprotective effects of selected miRNAs (miR-21, miR-17-92, miR-133, miR-138, miR-124, miR-30, miR146a, and miR-29b) and explores their mechanisms of action and applications for the treatment of various neurological disease and disorders. It also provides an overview of state-of-the-art bioengineering approaches for isolating exosomes, optimizing their yield and manipulating the miRNA content of their cargo to improve their therapeutic potential.
Collapse
Affiliation(s)
- Aida Nasirishargh
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95817, United States
| | - Priyadarsini Kumar
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, United States
| | - Lalithasri Ramasubramanian
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95817, United States
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States
| | - Kaitlin Clark
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, United States
| | - Dake Hao
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, United States
| | - Sabrina V Lazar
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95817, United States
| | - Aijun Wang
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, United States
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States
| |
Collapse
|
7
|
Shultz RB, Katiyar KS, Laimo FA, Burrell JC, Browne KD, Ali ZS, Cullen DK. Biopreservation of living tissue engineered nerve grafts. J Tissue Eng 2021; 12:20417314211032488. [PMID: 34394908 PMCID: PMC8361542 DOI: 10.1177/20417314211032488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 06/24/2021] [Indexed: 01/22/2023] Open
Abstract
Tissue engineered nerve grafts (TENGs) built from living neurons and aligned axon tracts offer a revolutionary new approach as "living scaffolds" to bridge major peripheral nerve defects. Clinical application, however, necessitates sufficient shelf-life to allow for shipping from manufacturing facility to clinic as well as storage until use. Here, hypothermic storage in commercially available hibernation media is explored as a potential biopreservation strategy for TENGs. After up to 28 days of refrigeration at 4℃, TENGs maintain viability and structure in vitro. Following transplantation into 1 cm rat sciatic defects, biopreserved TENGs routinely survive and persist for at least 2 weeks and recapitulate pro-regenerative mechanisms of fresh TENGs, including the ability to recruit regenerating host tissue into the graft and extend neurites beyond the margins of the graft. The protocols and timelines established here serve as important foundational work for the manufacturing, storage, and translation of other neuron-based tissue engineered therapeutics.
Collapse
Affiliation(s)
- Robert B Shultz
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
- Department of Chemistry and Chemical Biology, School of Arts and Sciences, Rutgers University, Piscataway, NJ, USA
- Axonova Medical, LLC, Philadelphia, PA, USA
| | - Kritika S Katiyar
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
- Axonova Medical, LLC, Philadelphia, PA, USA
| | - Franco A Laimo
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Justin C Burrell
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Kevin D Browne
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Zarina S Ali
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
- Penn Nerve Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel K Cullen
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Axonova Medical, LLC, Philadelphia, PA, USA
| |
Collapse
|
8
|
Mikhalkin A, Nikitina N, Merkulyeva N. Heterochrony of postnatal accumulation of nonphosphorylated heavy‐chain neurofilament by neurons of the cat dorsal lateral geniculate nucleus. J Comp Neurol 2020; 529:1430-1441. [DOI: 10.1002/cne.25028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Aleksandr Mikhalkin
- lab Neuromorphology Pavlov Institute of Physiology RAS Makarov emb, 6 Saint‐Petersburg Russia
| | - Nina Nikitina
- lab Neuromorphology Pavlov Institute of Physiology RAS Makarov emb, 6 Saint‐Petersburg Russia
| | - Natalia Merkulyeva
- lab Neuromorphology Pavlov Institute of Physiology RAS Makarov emb, 6 Saint‐Petersburg Russia
| |
Collapse
|
9
|
Horiquini-Barbosa E, Gibb R, Kolb B, Bray D, Lachat JJ. Neonatal tactile stimulation reverses alterations in fine structure of small, but not large myelinated fibers, from the optic nerve of iron-deficient rats: A size-based selectivity. Behav Brain Res 2020; 379:112357. [PMID: 31733310 DOI: 10.1016/j.bbr.2019.112357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/22/2019] [Accepted: 11/12/2019] [Indexed: 10/25/2022]
Abstract
Iron is the most common micronutrient deficiency in the world and it is most prevalent in young children, exposing their developing brain to inadequate iron levels. The damage related to neuroanatomical parameters is not reversed after iron treatment. However, evidence suggest that tactile stimulation (TS) may offer great therapeutic efficacy in cases of nutritional disorders postnatally, since the brain is remarkably responsive to its interaction with the environment. Recently, we shown that neonatal iron deficient rats achieved some remedial effect by exposing them to TS treatment early in life, reinforcing the fact that the TS approach is a positive enriching experience, therefore, here we ask whether exposure to TS treatment, could also be employed to prevent fine structural changes in the fibers from optic nerve of rats maintained on an iron-deficient diet during brain development. To elucidate the protective effect of tactile stimulation, our methods resulted in 10,859 analyzed fibers, divided into small and large fibers. We found that iron deficiency led to a decreased axon, fiber and myelin size of small fibers, however, TS completely reversed the iron-decifiency-induced alteration on those fiber measurements. Large fibers were disproportionately affected by iron deficiency and there was no remediating effect due to tactile stimulation treatment. The present study adds new information regarding different alterations between small and large fibers due to diet and TS, which suggest a size-based selectivity. These results emphasize the concept that compromised brain development can be mitigated at an early age by environmental factors, such as tactile stimulation.
Collapse
Affiliation(s)
- Everton Horiquini-Barbosa
- Department of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirao Preto, University of Sao Paulo, Brazil; Laboratory of Neuroanatomy, Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, Brazil
| | - Robbin Gibb
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Alberta, Canada
| | - Bryan Kolb
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Alberta, Canada
| | - Douglas Bray
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Alberta, Canada
| | - João-José Lachat
- Laboratory of Neuroanatomy, Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, Brazil.
| |
Collapse
|
10
|
Hahn I, Voelzmann A, Liew YT, Costa-Gomes B, Prokop A. The model of local axon homeostasis - explaining the role and regulation of microtubule bundles in axon maintenance and pathology. Neural Dev 2019; 14:11. [PMID: 31706327 PMCID: PMC6842214 DOI: 10.1186/s13064-019-0134-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/02/2019] [Indexed: 12/20/2022] Open
Abstract
Axons are the slender, cable-like, up to meter-long projections of neurons that electrically wire our brains and bodies. In spite of their challenging morphology, they usually need to be maintained for an organism's lifetime. This makes them key lesion sites in pathological processes of ageing, injury and neurodegeneration. The morphology and physiology of axons crucially depends on the parallel bundles of microtubules (MTs), running all along to serve as their structural backbones and highways for life-sustaining cargo transport and organelle dynamics. Understanding how these bundles are formed and then maintained will provide important explanations for axon biology and pathology. Currently, much is known about MTs and the proteins that bind and regulate them, but very little about how these factors functionally integrate to regulate axon biology. As an attempt to bridge between molecular mechanisms and their cellular relevance, we explain here the model of local axon homeostasis, based on our own experiments in Drosophila and published data primarily from vertebrates/mammals as well as C. elegans. The model proposes that (1) the physical forces imposed by motor protein-driven transport and dynamics in the confined axonal space, are a life-sustaining necessity, but pose a strong bias for MT bundles to become disorganised. (2) To counterbalance this risk, MT-binding and -regulating proteins of different classes work together to maintain and protect MT bundles as necessary transport highways. Loss of balance between these two fundamental processes can explain the development of axonopathies, in particular those linking to MT-regulating proteins, motors and transport defects. With this perspective in mind, we hope that more researchers incorporate MTs into their work, thus enhancing our chances of deciphering the complex regulatory networks that underpin axon biology and pathology.
Collapse
Affiliation(s)
- Ines Hahn
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, School of Biology, Manchester, UK
| | - André Voelzmann
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, School of Biology, Manchester, UK
| | - Yu-Ting Liew
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, School of Biology, Manchester, UK
| | - Beatriz Costa-Gomes
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, School of Biology, Manchester, UK
| | - Andreas Prokop
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, School of Biology, Manchester, UK.
| |
Collapse
|
11
|
Lee S, Eyer J, Letournel F, Boumil E, Hall G, Shea TB. Neurofilaments form flexible bundles during neuritogenesis in culture and in mature axons in situ. J Neurosci Res 2019; 97:1306-1318. [PMID: 31304612 DOI: 10.1002/jnr.24482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 11/07/2022]
Abstract
Neurofilaments (NFs) undergo cation-dependent phospho-mediated associations with each other and other cytoskeletal elements that support axonal outgrowth. Progressive NF-NF associations generate a resident, bundled population that undergoes exchange with transporting NFs. We examined the properties of bundled NFs. Bundles did not always display a fully linear profile but curved and twisted at various points along the neurite length. Bundles retracted faster than neurites and retracted bundles did not expand following extraction with Triton, indicating that they coiled passively rather than due to pressure from the cell. Bundles consisted of helically wound NFs, which may provide flexibility necessary for turning of growing axons during pathfinding. Interactions between NFs and other cytoskeletal elements may be disrupted en masse during neurite retraction or regionally during remodeling. It is suggested that bundles within long axons that cannot be fully retracted into the soma could provide maintain proximal support yet still allow more distal flexibility for remodeling and changing direction during pathfinding.
Collapse
Affiliation(s)
- Sangmook Lee
- Laboratory for Neuroscience, Department of Biology Science, UMass Lowell, Lowell, Massachusetts
| | - Joel Eyer
- Institut de Biologie en Santé PBH-IRIS, Universitaire d'Angers, Angers, France
| | | | - Edward Boumil
- Center for Vision Research, SUNY Upstate, Syracuse, New York
| | - Garth Hall
- Laboratory for Neuroscience, Department of Biology Science, UMass Lowell, Lowell, Massachusetts
| | - Thomas B Shea
- Laboratory for Neuroscience, Department of Biology Science, UMass Lowell, Lowell, Massachusetts
| |
Collapse
|
12
|
Yu F, Xu X, Ren Z, Yang J, Kong F. Maternal high-decibel acoustic exposure elevates prenatal stress, impairing postnatal hearing thresholds associated with decreasing ribbon synapses in young rats. Reprod Toxicol 2019; 89:21-27. [PMID: 31238098 DOI: 10.1016/j.reprotox.2019.05.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 05/16/2019] [Accepted: 05/30/2019] [Indexed: 10/26/2022]
Abstract
Maternal stress may affect the fetal auditory system than direct sound exposure. The objective of this study was to evaluate the role of prenatal stress due to high-decibel (dB) sound exposure on postnatal hearing and cochlear structure. Pregnant rats were exposed to 95 or 65 dB noise or music for 2 h once a day from gestational day 15 until delivery. The serum corticosterone was measured in the pregnant dams and pups. On postnatal day 22, pups underwent auditory brainstem response (ABR) testing. Then, the cochleae were immediately harvested for biochemical and molecular investigations. Prenatal stress impaired reproductive parameters, increased serum corticosterone and ABR thresholds with the decrease in wave I peak amplitude and the number of pre-synaptic ribbon. Thus, prenatal stress induces postnatal hearing loss in young rats, which are related to the reduction of ribbon synapses.
Collapse
Affiliation(s)
- Fei Yu
- School of Public Health, He University, No.66 Sishui Street, Hunnan New District, Shenyang, 110163, China.
| | - Xueying Xu
- School of Public Health, He University, No.66 Sishui Street, Hunnan New District, Shenyang, 110163, China
| | - Zhongjuan Ren
- School of Public Health, He University, No.66 Sishui Street, Hunnan New District, Shenyang, 110163, China
| | - Jun Yang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, China
| | - Fanxue Kong
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, No.222 Zhongshan Road, Xigang District, Dalian, China.
| |
Collapse
|
13
|
Boumil EF, Vohnoutka R, Lee S, Pant H, Shea TB. Assembly and turnover of neurofilaments in growing axonal neurites. Biol Open 2018; 7:bio.028795. [PMID: 29158321 PMCID: PMC5829495 DOI: 10.1242/bio.028795] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Neurofilaments (NFs) are thought to provide stability to the axon. We examined NF dynamics within axonal neurites of NB2a/d1 neuroblastoma by transient transfection with green fluorescent protein-tagged NF-heavy (GFP-H) under the control of a tetracycline-inducible promoter. Immunofluorescent and biochemical analyses demonstrated that GFP-H expressed early during neurite outgrowth associated with a population of centrally-situated, highly-phosphorylated crosslinked NFs along the length of axonal neurites (‘bundled NFs’). By contrast, GFP-H expressed after considerable neurite outgrowth displayed markedly reduced association with bundled NFs and was instead more evenly distributed throughout the axon. This differential localization was maintained for up to 2 weeks in culture. Once considerable neurite outgrowth had progressed, GFP that had previously associated with the NF bundle during early expression was irreversibly depleted by photobleaching. Cessation of expression allowed monitoring of NF turnover. GFP-H associated bundled NFs underwent slower decay than GFP-H associated with surrounding, less-phosphorylated NFs. Notably, GFP associated with bundled NFs underwent similar decay rates within the core and edges of this bundle. These results are consistent with previous demonstration of a resident NF population within axonal neurites, but suggest that this population is more dynamic than previously considered. Summary: Immunofluorescent and radiolabel analyses demonstrate that neurofilaments establish a resident population within growing axonal neurites that undergoes exchange with a surrounding, transporting pool.
Collapse
Affiliation(s)
- Edward F Boumil
- Laboratory for Neuroscience, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Rishel Vohnoutka
- Laboratory for Neuroscience, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Sangmook Lee
- Laboratory for Neuroscience, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Harish Pant
- Cytoskeletal Protein Regulation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892 , USA
| | - Thomas B Shea
- Laboratory for Neuroscience, University of Massachusetts Lowell, Lowell, MA 01854, USA
| |
Collapse
|
14
|
Vohnoutka RB, Boumil EF, Liu Y, Uchida A, Pant HC, Shea TB. Influence of a GSK3β phosphorylation site within the proximal C-terminus of Neurofilament-H on neurofilament dynamics. Biol Open 2017; 6:1516-1527. [PMID: 28882840 PMCID: PMC5665472 DOI: 10.1242/bio.028522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphorylation of the C-terminal tail of the heavy neurofilament subunit (NF-H) impacts neurofilament (NF) axonal transport and residence within axons by fostering NF-NF associations that compete with transport. We tested the role of phosphorylation of a GSK-3β consensus site (S493) located in the proximal portion of the NF-H tail in NF dynamics by transfection of NB2a/d1 cells with NF-H, where S493 was mutated to aspartic acid (S493D) or to alanine (S493A) to mimic constitutive phosphorylation and non-phosphorylation. S493D underwent increased transport into axonal neurites, while S493A displayed increased perikaryal NF aggregates that were decorated by anti-kinesin. Increased levels of S493A co-precipitated with anti-kinesin indicating that reduced transport of S493A was not due to reduced kinesin association but due to premature NF-NF interactions within perikarya. S493D displayed increased phospho-immunoreactivity within axonal neurites at downstream C-terminal sites attributable to mitogen-activated protein kinase and cyclin-dependent kinase 5. However, S493D was more prone to proteolysis following kinase inhibition, suggesting that S493 phosphorylation is an early event that alters sidearm configuration in a manner that promotes appropriate NF distribution. We propose a novel model for sidearm configuration. Summary: We demonstrate that phosphorylation of a critical site regulates neurofilament transport, proteolysis and interaction with other axonal cytoskeletal elements, and present evidence that it does so by altering protein conformation. This article has an associated First Person interview with the first author of the paper as part of the supplementary information.
Collapse
Affiliation(s)
| | - Edward F Boumil
- Laboratory for Neuroscience, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Yuguan Liu
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Atsuko Uchida
- Department of Neuroscience, Ohio State University, Columbus, OH 43210, USA
| | - Harish C Pant
- Cytoskeletal Protein Regulation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas B Shea
- Laboratory for Neuroscience, University of Massachusetts Lowell, Lowell, MA 01854, USA
| |
Collapse
|
15
|
Ding P, Ren D, He S, He M, Zhang G, Chen Y, Sang H, Peng Z, Yan W. Sirt1 mediates improvement in cognitive defects induced by focal cerebral ischemia following hyperbaric oxygen preconditioning in rats. Physiol Res 2017; 66:1029-1039. [PMID: 28937253 DOI: 10.33549/physiolres.933544] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hyperbaric oxygen preconditioning (HBO-PC) has been proposed as a safe and practical approach for neuroprotection in ischemic stroke. However, it is not known whether HPO-PC can improve cognitive deficits induced by cerebral ischemia, and the mechanistic basis for any beneficial effects remains unclear. We addressed this in the present study using rats subjected to middle cerebral artery occlusion (MCAO) as an ischemic stroke model following HBO-PC. Cognitive function and expression of phosphorylated neurofilament heavy polypeptide (pNF-H) and doublecortin (DCX) in the hippocampus were evaluated 14 days after reperfusion and after short interfering RNA-mediated knockdown of sirtuin1 (Sirt1). HBO-PC increased pNF-H and DCX expression and mitigated cognitive deficits in MCAO rats. However, these effects were abolished by Sirt1 knockdown. Our results suggest that HBO-PC can protect the brain from injury caused by ischemia-reperfusion and that Sirt1 is a potential molecular target for therapeutic approaches designed to minimize cognitive deficits caused by cerebral ischemia.
Collapse
Affiliation(s)
- P Ding
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, China, Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China. pengzhengwu1446@ 163.com and
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Prior R, Van Helleputte L, Benoy V, Van Den Bosch L. Defective axonal transport: A common pathological mechanism in inherited and acquired peripheral neuropathies. Neurobiol Dis 2017; 105:300-320. [DOI: 10.1016/j.nbd.2017.02.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/29/2017] [Accepted: 02/20/2017] [Indexed: 12/29/2022] Open
|
17
|
Kirkcaldie MTK, Dwyer ST. The third wave: Intermediate filaments in the maturing nervous system. Mol Cell Neurosci 2017; 84:68-76. [PMID: 28554564 DOI: 10.1016/j.mcn.2017.05.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/10/2017] [Accepted: 05/25/2017] [Indexed: 01/16/2023] Open
Abstract
Intermediate filaments are critical for the extreme structural specialisations of neurons, providing integrity in dynamic environments and efficient communication along axons a metre or more in length. As neurons mature, an initial expression of nestin and vimentin gives way to the neurofilament triplet proteins and α-internexin, substituted by peripherin in axons outside the CNS, which physically consolidate axons as they elongate and find their targets. Once connection is established, these proteins are transported, assembled, stabilised and modified, structurally transforming axons and dendrites as they acquire their full function. The interaction between these neurons and myelinating glial cells optimises the structure of axons for peak functional efficiency, a property retained across their lifespan. This finely calibrated structural regulation allows the nervous system to maintain timing precision and efficient control across large distances throughout somatic growth and, in maturity, as a plasticity mechanism allowing functional adaptation.
Collapse
Affiliation(s)
- Matthew T K Kirkcaldie
- School of Medicine, Wicking Dementia Research and Education Centre, Faculty of Health, University of Tasmania, Australia.
| | - Samuel T Dwyer
- School of Medicine, Wicking Dementia Research and Education Centre, Faculty of Health, University of Tasmania, Australia
| |
Collapse
|
18
|
Yuan A, Rao MV, Veeranna, Nixon RA. Neurofilaments and Neurofilament Proteins in Health and Disease. Cold Spring Harb Perspect Biol 2017; 9:9/4/a018309. [PMID: 28373358 DOI: 10.1101/cshperspect.a018309] [Citation(s) in RCA: 436] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SUMMARYNeurofilaments (NFs) are unique among tissue-specific classes of intermediate filaments (IFs) in being heteropolymers composed of four subunits (NF-L [neurofilament light]; NF-M [neurofilament middle]; NF-H [neurofilament heavy]; and α-internexin or peripherin), each having different domain structures and functions. Here, we review how NFs provide structural support for the highly asymmetric geometries of neurons and, especially, for the marked radial expansion of myelinated axons crucial for effective nerve conduction velocity. NFs in axons extensively cross-bridge and interconnect with other non-IF components of the cytoskeleton, including microtubules, actin filaments, and other fibrous cytoskeletal elements, to establish a regionally specialized network that undergoes exceptionally slow local turnover and serves as a docking platform to organize other organelles and proteins. We also discuss how a small pool of oligomeric and short filamentous precursors in the slow phase of axonal transport maintains this network. A complex pattern of phosphorylation and dephosphorylation events on each subunit modulates filament assembly, turnover, and organization within the axonal cytoskeleton. Multiple factors, and especially turnover rate, determine the size of the network, which can vary substantially along the axon. NF gene mutations cause several neuroaxonal disorders characterized by disrupted subunit assembly and NF aggregation. Additional NF alterations are associated with varied neuropsychiatric disorders. New evidence that subunits of NFs exist within postsynaptic terminal boutons and influence neurotransmission suggests how NF proteins might contribute to normal synaptic function and neuropsychiatric disease states.
Collapse
Affiliation(s)
- Aidong Yuan
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York 10962.,Department of Psychiatry, New York University School of Medicine, New York, New York 10016
| | - Mala V Rao
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York 10962.,Department of Psychiatry, New York University School of Medicine, New York, New York 10016
| | - Veeranna
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York 10962.,Department of Psychiatry, New York University School of Medicine, New York, New York 10016
| | - Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York 10962.,Department of Psychiatry, New York University School of Medicine, New York, New York 10016.,Cell Biology, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
19
|
Hoffman A, Taleski G, Sontag E. The protein serine/threonine phosphatases PP2A, PP1 and calcineurin: A triple threat in the regulation of the neuronal cytoskeleton. Mol Cell Neurosci 2017; 84:119-131. [PMID: 28126489 DOI: 10.1016/j.mcn.2017.01.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/16/2017] [Accepted: 01/21/2017] [Indexed: 01/08/2023] Open
Abstract
The microtubule, F-actin and neurofilament networks play a critical role in neuronal cell morphogenesis, polarity and synaptic plasticity. Significantly, the assembly/disassembly and stability of these cytoskeletal networks is crucially modulated by protein phosphorylation and dephosphorylation events. Herein, we aim to more closely examine the role played by three major neuronal Ser/Thr protein phosphatases, PP2A, PP1 and calcineurin, in the homeostasis of the neuronal cytoskeleton. There is strong evidence that these enzymes interact with and dephosphorylate a variety of cytoskeletal proteins, resulting in major regulation of neuronal cytoskeletal dynamics. Conversely, we also discuss how multi-protein cytoskeletal scaffolds can also influence the regulation of these phosphatases, with important implications for neuronal signalling and homeostasis. Not surprisingly, deregulation of these cytoskeletal scaffolds and phosphatase dysfunction are associated with many neurological diseases.
Collapse
Affiliation(s)
- Alexander Hoffman
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, and Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Goce Taleski
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, and Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Estelle Sontag
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, and Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
20
|
Xin H, Wang F, Li Y, Lu QE, Cheung WL, Zhang Y, Zhang ZG, Chopp M. Secondary Release of Exosomes From Astrocytes Contributes to the Increase in Neural Plasticity and Improvement of Functional Recovery After Stroke in Rats Treated With Exosomes Harvested From MicroRNA 133b-Overexpressing Multipotent Mesenchymal Stromal Cells. Cell Transplant 2016; 26:243-257. [PMID: 27677799 DOI: 10.3727/096368916x693031] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We previously demonstrated that multipotent mesenchymal stromal cells (MSCs) that overexpress microRNA 133b (miR-133b) significantly improve functional recovery in rats subjected to middle cerebral artery occlusion (MCAO) compared with naive MSCs and that exosomes generated from naive MSCs mediate the therapeutic benefits of MSC therapy for stroke. Here we investigated whether exosomes isolated from miR-133b-overexpressing MSCs (Ex-miR-133b+) exert amplified therapeutic effects. Rats subjected to 2 h of MCAO were intra-arterially injected with Ex-miR-133b+, exosomes from MSCs infected by blank vector (Ex-Con), or phosphate-buffered saline (PBS) and were sacrificed 28 days after MCAO. Compared with the PBS treatment, both exosome treatment groups exhibited significant improvement of functional recovery. Ex-miR-133b+ treatment significantly increased functional improvement and neurite remodeling/brain plasticity in the ischemic boundary area compared with the Ex-Con treatment. Treatment with Ex-miR-133b+ also significantly increased brain exosome content compared with Ex-Con treatment. To elucidate mechanisms underlying the enhanced therapeutic effects of Ex-miR-133b+, astrocytes cultured under oxygen- and glucose-deprived (OGD) conditions were incubated with exosomes harvested from naive MSCs (Ex-Naive), miR-133b downregulated MSCs (Ex-miR-133b-), and Ex-miR-133b+. Compared with the Ex-Naive treatment, Ex-miR-133b+ significantly increased exosomes released by OGD astrocytes, whereas Ex-miR-133b- significantly decreased the release. Also, exosomes harvested from OGD astrocytes treated with Ex-miR-133b+ significantly increased neurite branching and elongation of cultured cortical embryonic rat neurons compared with the exosomes from OGD astrocytes subjected to Ex-Con. Our data suggest that exosomes harvested from miR-133b-overexpressing MSCs improve neural plasticity and functional recovery after stroke with a contribution from a stimulated secondary release of neurite-promoting exosomes from astrocytes.
Collapse
|
21
|
Vickers J, Kirkcaldie M, Phipps A, King A. Alterations in neurofilaments and the transformation of the cytoskeleton in axons may provide insight into the aberrant neuronal changes of Alzheimer’s disease. Brain Res Bull 2016; 126:324-333. [DOI: 10.1016/j.brainresbull.2016.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 01/09/2023]
|
22
|
Yuan A, Nixon RA. Specialized roles of neurofilament proteins in synapses: Relevance to neuropsychiatric disorders. Brain Res Bull 2016; 126:334-346. [PMID: 27609296 PMCID: PMC5079776 DOI: 10.1016/j.brainresbull.2016.09.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/02/2016] [Accepted: 09/03/2016] [Indexed: 01/05/2023]
Abstract
Neurofilaments are uniquely complex among classes of intermediate filaments in being composed of four subunits (NFL, NFM, NFH and alpha-internexin in the CNS) that differ in structure, regulation, and function. Although neurofilaments have been traditionally viewed as axonal structural components, recent evidence has revealed that distinctive assemblies of neurofilament subunits are integral components of synapses, especially at postsynaptic sites. Within the synaptic compartment, the individual subunits differentially modulate neurotransmission and behavior through interactions with specific neurotransmitter receptors. These newly uncovered functions suggest that alterations of neurofilament proteins not only underlie axonopathy in various neurological disorders but also may play vital roles in cognition and neuropsychiatric diseases. Here, we review evidence that synaptic neurofilament proteins are a sizable population in the CNS and we advance the concept that changes in the levels or post-translational modification of individual NF subunits contribute to synaptic and behavioral dysfunction in certain neuropsychiatric conditions.
Collapse
Affiliation(s)
- Aidong Yuan
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, 10962, United States; Departments of Psychiatry, New York University School of Medicine, New York, NY, 10016, United States.
| | - Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, 10962, United States; Departments of Psychiatry, New York University School of Medicine, New York, NY, 10016, United States; Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, United States.
| |
Collapse
|
23
|
Binukumar BK, Shukla V, Amin ND, Bhaskar M, Skuntz S, Steiner J, Winkler D, Pelech SL, Pant HC. Analysis of the Inhibitory Elements in the p5 Peptide Fragment of the CDK5 Activator, p35, CDKR1 Protein. J Alzheimers Dis 2016; 48:1009-17. [PMID: 26444778 PMCID: PMC4927891 DOI: 10.3233/jad-150412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Besides the hallmark pathology of amyloid plaques and neurofibrillary tangles, it is well documented that cyclin-dependent kinase 5 (CDK5), a critical neuronal protein kinase in nervous system development, function, and survival, when deregulated and hyperactivated induces Alzheimer's disease (AD) and amyotrophic lateral sclerosis and Parkinson's disease-like phenotypes in mice. In a recent study, we demonstrated that p5, a small, truncated fragment of 24 amino acid residues derived from the CDK5 activator protein 35 (NCK5A, p35), selectively inhibited deregulated CDK5 hyperactivity and ameliorated AD phenotypes in model mice. In this study, we identified the most inhibitory elements in the p5 peptide fragment. Each amino acid residue in p5 was systematically replaced with its homologous residues that may still be able to functionally substitute. The effects of these p5 peptide analogs were studied on the phosphotransferase activities of CDK5/p35, CDK5/p25, ERK1, and GSK3β. The mimetic p5 peptide (A/V substitution at the C-terminus of the peptide) in the sequence, KNAFYERALSIINLMTSKMVQINV (p5-MT) was the most effective inhibitor of CDK5 kinase activity of 79 tested mimetic peptides including the original p5 peptide, KEAFWDRCLSVINLMSSKMLQINA (p5-WT). Replacement of the residues in C-terminus end of the peptide affected CDK5 phosphotransferase activity most significantly. These peptides were strong inhibitors of CDK5, but not the related proline-directed kinases, ERK1 and GSK3β.
Collapse
Affiliation(s)
- B K Binukumar
- National Institute of Neurological Disorders and Strokes, National Institutes of Health, Bethesda, MD, USA
| | - Varsha Shukla
- National Institute of Neurological Disorders and Strokes, National Institutes of Health, Bethesda, MD, USA
| | - Niranjana D Amin
- National Institute of Neurological Disorders and Strokes, National Institutes of Health, Bethesda, MD, USA
| | - Manju Bhaskar
- National Institute of Neurological Disorders and Strokes, National Institutes of Health, Bethesda, MD, USA
| | - Suzanne Skuntz
- National Institute of Neurological Disorders and Strokes, National Institutes of Health, Bethesda, MD, USA
| | - Joseph Steiner
- National Institute of Neurological Disorders and Strokes, National Institutes of Health, Bethesda, MD, USA
| | - Dirk Winkler
- Kinexus Bioinformatics Corporation, and Division of Neurology, Department of Medicine, University of British Columbia, BC, Canada
| | - Steven L Pelech
- Kinexus Bioinformatics Corporation, and Division of Neurology, Department of Medicine, University of British Columbia, BC, Canada
| | - Harish C Pant
- National Institute of Neurological Disorders and Strokes, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
24
|
Trapp BD, Ransohoff RM, Fisher E, Rudick RA. Neurodegeneration in Multiple Sclerosis: Relationship to Neurological Disability. Neuroscientist 2016. [DOI: 10.1177/107385849900500107] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the CNS. Most MS patients follow a relapsing-remitting course (RR-MS) for 8 to 15 years that transforms into a secondary progressive disease course (SP-MS). In this review, we discuss current data that describe MS as a neurodegenerative disease in which axonal loss is the major cause of irreversible neurological disability in MS patients. Neurological deficits in MS patients have two pathogeneses: acute inflammatory demyelination and axonal degeneration. Disability caused by inflammatory demyelination clinically dominates the early stages of RR-MS and is reversible. Axonal transection occurs at sites of inflammation and begins at disease onset but is clinically silent in RR-MS because the CNS compensates for neuronal loss. Once a threshold of axon loss is ex ceeded, MS patients enter an irreversible secondary progressive stage. In SP-MS, axonal degeneration is caused by chronic demyelination and may be irreversibly progressive. This view of MS provides a concep tional framework that explains conversion of RR-MS to SP-MS and provides a rationale for early aggressive anti-inflammatory and neuroprotective therapies. NEUROSCIENTIST 5:48-57, 1999
Collapse
Affiliation(s)
- Bruce D. Trapp
- Departments of Neurosciences, The Cleveland Clinic Foundation
Cleveland, Ohio
| | - Richard M. Ransohoff
- Departments of Neurosciences, Lerner Research Institute
and the Mellen Center for Multiple Sclerosis Treatment and Research (RMR,
RAR) The Cleveland Clinic Foundation Cleveland, Ohio
| | - Elizabeth Fisher
- Biomedical Engineering, The Cleveland Clinic Foundation
Cleveland, Ohio
| | - Richard A. Rudick
- Departments of Neurosciences, Lerner Research Institute
and the Mellen Center for Multiple Sclerosis Treatment and Research (RMR,
RAR) The Cleveland Clinic Foundation Cleveland, Ohio
| |
Collapse
|
25
|
Kirkcaldie MTK, Collins JM. The axon as a physical structure in health and acute trauma. J Chem Neuroanat 2016; 76:9-18. [PMID: 27233660 DOI: 10.1016/j.jchemneu.2016.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 05/22/2016] [Accepted: 05/22/2016] [Indexed: 10/21/2022]
Abstract
The physical structure of neurons - dendrites converging on the soma, with an axon conveying activity to distant locations - is uniquely tied to their function. To perform their role, axons need to maintain structural precision in the soft, gelatinous environment of the central nervous system and the dynamic, flexible paths of nerves in the periphery. This requires close mechanical coupling between axons and the surrounding tissue, as well as an elastic, robust axoplasm resistant to pinching and flattening, and capable of sustaining transport despite physical distortion. These mechanical properties arise primarily from the properties of the internal cytoskeleton, coupled to the axonal membrane and the extracellular matrix. In particular, the two large constituents of the internal cytoskeleton, microtubules and neurofilaments, are braced against each other and flexibly interlinked by specialised proteins. Recent evidence suggests that the primary function of neurofilament sidearms is to structure the axoplasm into a linearly organised, elastic gel. This provides support and structure to the contents of axons in peripheral nerves subject to bending, protecting the relatively brittle microtubule bundles and maintaining them as transport conduits. Furthermore, a substantial proportion of axons are myelinated, and this thick jacket of membrane wrappings alters the form, function and internal composition of the axons to which it is applied. Together these structures determine the physical properties and integrity of neural tissue, both under conditions of normal movement, and in response to physical trauma. The effects of traumatic injury are directly dependent on the physical properties of neural tissue, especially axons, and because of axons' extreme structural specialisation, post-traumatic effects are usually characterised by particular modes of axonal damage. The physical realities of axons in neural tissue are integral to both normal function and their response to injury, and require specific consideration in evaluating research models of neurotrauma.
Collapse
Affiliation(s)
- Matthew T K Kirkcaldie
- School of Medicine, University of Tasmania, Australia; Wicking Dementia Research and Education Centre, Faculty of Health, University of Tasmania, Australia.
| | - Jessica M Collins
- Wicking Dementia Research and Education Centre, Faculty of Health, University of Tasmania, Australia
| |
Collapse
|
26
|
Boumil E, Vohnoutka R, Lee S, Shea TB. Early expression of the high molecular weight neurofilament subunit attenuates axonal neurite outgrowth. Neurosci Lett 2015. [DOI: 10.1016/j.neulet.2015.07.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
27
|
Burianová J, Ouda L, Syka J. The influence of aging on the number of neurons and levels of non-phosporylated neurofilament proteins in the central auditory system of rats. Front Aging Neurosci 2015; 7:27. [PMID: 25852543 PMCID: PMC4366680 DOI: 10.3389/fnagi.2015.00027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 02/23/2015] [Indexed: 12/11/2022] Open
Abstract
In the present study, an unbiased stereological method was used to determine the number of all neurons in Nissl stained sections of the inferior colliculus (IC), medial geniculate body (MGB), and auditory cortex (AC) in rats (strains Long Evans and Fischer 344) and their changes with aging. In addition, using the optical fractionator and western blot technique, we also evaluated the number of SMI-32-immunoreactive (-ir) neurons and levels of non-phosphorylated neurofilament proteins in the IC, MGB, AC, and visual cortex of young and old rats of the two strains. The SMI-32 positive neuronal population comprises about 10% of all neurons in the rat IC, MGB, and AC and represents a prevalent population of large neurons with highly myelinated and projecting processes. In both Long Evans and Fischer 344 rats, the total number of neurons in the IC was roughly similar to that in the AC. With aging, we found a rather mild and statistically non-significant decline in the total number of neurons in all three analyzed auditory regions in both rat strains. In contrast to this, the absolute number of SMI-32-ir neurons in both Long Evans and Fischer 344 rats significantly decreased with aging in all the examined structures. The western blot technique also revealed a significant age-related decline in the levels of non-phosphorylated neurofilaments in the auditory brain structures, 30–35%. Our results demonstrate that presbycusis in rats is not likely to be primarily associated with changes in the total number of neurons. On the other hand, the pronounced age-related decline in the number of neurons containing non-phosphorylated neurofilaments as well as their protein levels in the central auditory system may contribute to age-related deterioration of hearing function.
Collapse
Affiliation(s)
- Jana Burianová
- Department of Auditory Neuroscience, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague Czech Republic
| | - Ladislav Ouda
- Department of Auditory Neuroscience, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague Czech Republic
| | - Josef Syka
- Department of Auditory Neuroscience, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague Czech Republic
| |
Collapse
|
28
|
McLean NA, Popescu BF, Gordon T, Zochodne DW, Verge VMK. Delayed nerve stimulation promotes axon-protective neurofilament phosphorylation, accelerates immune cell clearance and enhances remyelination in vivo in focally demyelinated nerves. PLoS One 2014; 9:e110174. [PMID: 25310564 PMCID: PMC4195712 DOI: 10.1371/journal.pone.0110174] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/17/2014] [Indexed: 01/19/2023] Open
Abstract
Rapid and efficient axon remyelination aids in restoring strong electrochemical communication with end organs and in preventing axonal degeneration often observed in demyelinating neuropathies. The signals from axons that can trigger more effective remyelination in vivo are still being elucidated. Here we report the remarkable effect of delayed brief electrical nerve stimulation (ES; 1 hour @ 20 Hz 5 days post-demyelination) on ensuing reparative events in a focally demyelinated adult rat peripheral nerve. ES impacted many parameters underlying successful remyelination. It effected increased neurofilament expression and phosphorylation, both implicated in axon protection. ES increased expression of myelin basic protein (MBP) and promoted node of Ranvier re-organization, both of which coincided with the early reappearance of remyelinated axons, effects not observed at the same time points in non-stimulated demyelinated nerves. The improved ES-associated remyelination was accompanied by enhanced clearance of ED-1 positive macrophages and attenuation of glial fibrillary acidic protein expression in accompanying Schwann cells, suggesting a more rapid clearance of myelin debris and return of Schwann cells to a nonreactive myelinating state. These benefits of ES correlated with increased levels of brain derived neurotrophic factor (BDNF) in the acute demyelination zone, a key molecule in the initiation of the myelination program. In conclusion, the tremendous impact of delayed brief nerve stimulation on enhancement of the innate capacity of a focally demyelinated nerve to successfully remyelinate identifies manipulation of this axis as a novel therapeutic target for demyelinating pathologies.
Collapse
Affiliation(s)
- Nikki A. McLean
- CMSNRC (Cameco MS Neuroscience Research Center) and Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Bogdan F. Popescu
- CMSNRC (Cameco MS Neuroscience Research Center) and Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Tessa Gordon
- Department of Surgery, Division of Plastic Reconstructive Surgery, University of Toronto, Toronto, ON, Canada
| | - Douglas W. Zochodne
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, AB, Canada
| | - Valerie M. K. Verge
- CMSNRC (Cameco MS Neuroscience Research Center) and Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK, Canada
- * E-mail:
| |
Collapse
|
29
|
Lee S, Shea TB. The high molecular weight neurofilament subunit plays an essential role in axonal outgrowth and stabilization. Biol Open 2014; 3:974-81. [PMID: 25260918 PMCID: PMC4197446 DOI: 10.1242/bio.20149779] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Neurofilaments (NFs) are thought to provide structural support to mature axons via crosslinking of cytoskeletal elements mediated by the C-terminal region of the high molecular weight NF subunit (NF-H). Herein, we inhibited NF-H expression in differentiating mouse NB2a/d1 cells with shRNA directed against murine NF-H without affecting other NF subunits, microtubules or actin. shRNA-mediated NF-H knockdown not only in compromised of late-stage axonal neurite stabilization but also compromised early stages of axonal neurite elongation. Expression of exogenous rat NF-H was able to compensate for knockdown of endogenous NF-H and restored the development and stabilization of axonal neurites. This rescue was prevented by simultaneous treatment with shRNA that inhibited both rat and murine NF-H, or by expression of exogenous rat NF-H lacking the C-terminal sidearm during knockdown of endogenous NF-H. Demonstration of a role for NF-H in the early stages of axonal elaboration suggests that axonal stabilization is not delayed until synaptogenesis, but rather that the developing axon undergoes sequential NF-H-mediated stabilization along its length in a proximal–distal manner, which supports continued pathfinding in distal, unstabilized regions.
Collapse
Affiliation(s)
- Sangmook Lee
- Center for Cellular Neurobiology and Neurodegeneration Research, Department of Biological Sciences, University of Massachusetts at Lowell, Lowell, MA 01854, USA
| | - Thomas B Shea
- Center for Cellular Neurobiology and Neurodegeneration Research, Department of Biological Sciences, University of Massachusetts at Lowell, Lowell, MA 01854, USA
| |
Collapse
|
30
|
Lee S, Pant HC, Shea TB. Divergent and convergent roles for kinases and phosphatases in neurofilament dynamics. J Cell Sci 2014; 127:4064-77. [PMID: 25015294 DOI: 10.1242/jcs.153346] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
C-terminal neurofilament phosphorylation mediates cation-dependent self-association leading to neurofilament incorporation into the stationary axonal cytoskeleton. Multiple kinases phosphorylate the C-terminal domains of the heavy neurofilament subunit (NF-H), including cyclin-dependent protein kinase 5 (CDK5), mitogen-activated protein kinases (MAPKs), casein kinase 1 and 2 (CK1 and CK2) and glycogen synthase kinase 3β (GSK3β). The respective contributions of these kinases have been confounded because they phosphorylate multiple substrates in addition to neurofilaments and display extensive interaction. Herein, differentiated NB2a/d1 cells were transfected with constructs expressing GFP-tagged NF-H, isolated NF-H sidearms and NF-H lacking the distal-most 187 amino acids. Cultures were treated with roscovitine, PD98059, Li(+), D4476, tetrabromobenzotriazole and calyculin, which are active against CDK5, MKK1 (also known as MAP2K1), GSK3β, CK1, CK2 and protein phosphatase 1 (PP1), respectively. Sequential phosphorylation by CDK5 and GSK3β mediated the neurofilament-neurofilament associations. The MAPK pathway (i.e. MKK1 to ERK1/2) was found to downregulate GSK3β, and CK1 activated PP1, both of which promoted axonal transport and restricted neurofilament-neurofilament associations to axonal neurites. The MAPK pathway and CDK5, but not CK1 and GSK3β, inhibited neurofilament proteolysis. These findings indicate that phosphorylation of neurofilaments by the proline-directed MAPK pathway and CDK5 counterbalance the impact of phosphorylation of neurofilaments by the non-proline-directed CK1 and GSK3β.
Collapse
Affiliation(s)
- Sangmook Lee
- Center for Cellular Neurobiology and Neurodegeneration Research, Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Harish C Pant
- Cytoskeletal Protein Regulation Section, NIH, NINDS, Bethesda, MD 20892, USA
| | - Thomas B Shea
- Center for Cellular Neurobiology and Neurodegeneration Research, Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| |
Collapse
|
31
|
Signaling mechanisms and disrupted cytoskeleton in the diphenyl ditelluride neurotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:458601. [PMID: 25050142 PMCID: PMC4090446 DOI: 10.1155/2014/458601] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 02/26/2014] [Indexed: 01/14/2023]
Abstract
Evidence from our group supports that diphenyl ditelluride (PhTe)2 neurotoxicity depends on modulation of signaling pathways initiated at the plasma membrane. The (PhTe)2-evoked signal is transduced downstream of voltage-dependent Ca2+ channels (VDCC), N-methyl-D-aspartate receptors (NMDA), or metabotropic glutamate receptors activation via different kinase pathways (protein kinase A, phospholipase C/protein kinase C, mitogen-activated protein kinases (MAPKs), and Akt signaling pathway). Among the most relevant cues of misregulated signaling mechanisms evoked by (PhTe)2 is the cytoskeleton of neural cells. The in vivo and in vitro exposure to (PhTe)2 induce hyperphosphorylation/hypophosphorylation of neuronal and glial intermediate filament (IF) proteins (neurofilaments and glial fibrillary acidic protein, resp.) in different brain structures of young rats. Phosphorylation of IFs at specific sites modulates their association/disassociation and interferes with important physiological roles, such as axonal transport. Disrupted cytoskeleton is a crucial marker of neurodegeneration and is associated with reactive astrogliosis and apoptotic cell death. This review focuses the current knowledge and important results on the mechanisms of (PhTe)2 neurotoxicity with special emphasis on the cytoskeletal proteins and their differential regulation by kinases/phosphatases and Ca2+-mediated mechanisms in developmental rat brain. We propose that the disrupted cytoskeletal homeostasis could support brain damage provoked by this neurotoxicant.
Collapse
|
32
|
|
33
|
Kyeong IG, Eum WS, Choi SY, Kang JH. Oxidative modification of neurofilament-L and neuronal cell death induced by the catechol neurotoxin, tetrahydropapaveroline. Toxicol Lett 2012; 217:59-66. [PMID: 23228886 DOI: 10.1016/j.toxlet.2012.11.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 11/29/2012] [Accepted: 11/29/2012] [Indexed: 11/20/2022]
Abstract
Tetrahydropapaveroline (THP), which is an endogenous neurotoxin, has been suspected to be associated with dopaminergic neurotoxicity of l-DOPA. In this study, we examined oxidative modification of neurofilament-L (NF-L) and neuronal cell death induced by THP. When disassembled NF-L was incubated with THP, protein aggregation was increased in a time- and THP dose-dependent manner. The formation of carbonyl compounds and dityrosine were observed in the THP-mediated NF-L aggregates. Radical scavengers reduced THP-mediated NF-L modification. These results suggest that the modification of NF-L by THP may be due to oxidative damage resulting from the generation of reactive oxygen species (ROS). When THP exposed NF-L was subjected to amino acid analysis, glutamate, proline and lysine residues were found to be particularly sensitive. We also investigated the effects of copper ions on THP-mediated NF-L modification. At a low concentration of THP, copper ions enhanced the modification of NF-L. Treatment of C6 astrocyte cells with THP led to a concentration-dependent reduction in cell viability. When these cells were treated with 100μM THP, the levels of ROS increased 3.5-fold compared with control cells. Furthermore, treatment of cells with THP increased NF-L aggregate formation, suggesting the involvement of NF-L modification in THP-induced cell damage.
Collapse
Affiliation(s)
- Inn Goo Kyeong
- Department of Genetic Engineering, Cheongju University, Cheongju 360-764, South Korea
| | | | | | | |
Collapse
|
34
|
Abstract
Iron is critical in multiple aspects of CNS development, but its role in neurodevelopment--the ability of iron deficiency to alter normal development--is difficult to dissociate from the effects of anemia. We developed a novel dietary restriction model in the rat that allows us to study the effects of iron deficiency in the absence of severe anemia. Using a combination of auditory brainstem response analyses (ABR) and electron microscopy, we identified an unexpected impact of nonanemic iron deficiency on axonal diameter and neurofilament regulation in the auditory nerve. These changes are associated with altered ABR latency during development. In contrast to models of severe iron deficiency with anemia, we did not find consistent or prolonged defects in myelination. Our data demonstrate that iron deficiency in the absence of anemia disrupts normal development of the auditory nerve and results in altered conduction velocity.
Collapse
|
35
|
Gallego BI, Salazar JJ, de Hoz R, Rojas B, Ramírez AI, Salinas-Navarro M, Ortín-Martínez A, Valiente-Soriano FJ, Avilés-Trigueros M, Villegas-Perez MP, Vidal-Sanz M, Triviño A, Ramírez JM. IOP induces upregulation of GFAP and MHC-II and microglia reactivity in mice retina contralateral to experimental glaucoma. J Neuroinflammation 2012; 9:92. [PMID: 22583833 PMCID: PMC3410794 DOI: 10.1186/1742-2094-9-92] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 05/14/2012] [Indexed: 02/06/2023] Open
Abstract
Background Ocular hypertension is a major risk factor for glaucoma, a neurodegenerative disease characterized by an irreversible decrease in ganglion cells and their axons. Macroglial and microglial cells appear to play an important role in the pathogenic mechanisms of the disease. Here, we study the effects of laser-induced ocular hypertension (OHT) in the macroglia, microglia and retinal ganglion cells (RGCs) of eyes with OHT (OHT-eyes) and contralateral eyes two weeks after lasering. Methods Two groups of adult Swiss mice were used: age-matched control (naïve, n = 9); and lasered (n = 9). In the lasered animals, both OHT-eyes and contralateral eyes were analyzed. Retinal whole-mounts were immunostained with antibodies against glial fibrillary acid protein (GFAP), neurofilament of 200kD (NF-200), ionized calcium binding adaptor molecule (Iba-1) and major histocompatibility complex class II molecule (MHC-II). The GFAP-labeled retinal area (GFAP-RA), the intensity of GFAP immunoreaction (GFAP-IR), and the number of astrocytes and NF-200 + RGCs were quantified. Results In comparison with naïve: i) astrocytes were more robust in contralateral eyes. In OHT-eyes, the astrocyte population was not homogeneous, given that astrocytes displaying only primary processes coexisted with astrocytes in which primary and secondary processes could be recognized, the former having less intense GFAP-IR (P < 0.001); ii) GFAP-RA was increased in contralateral (P <0.05) and decreased in OHT-eyes (P <0.001); iii) the mean intensity of GFAP-IR was higher in OHT-eyes (P < 0.01), and the percentage of the retinal area occupied by GFAP+ cells with higher intensity levels was increased in contralateral (P = 0.05) and in OHT-eyes (P < 0.01); iv) both in contralateral and in OHT-eyes, GFAP was upregulated in Müller cells and microglia was activated; v) MHC-II was upregulated on macroglia and microglia. In microglia, it was similarly expressed in contralateral and OHT-eyes. By contrast, in macroglia, MHC-II upregulation was observed mainly in astrocytes in contralateral eyes and in Müller cells in OHT-eyes; vi) NF-200+RGCs (degenerated cells) appeared in OHT-eyes with a trend for the GFAP-RA to decrease and for the NF-200+RGC number to increase from the center to the periphery (r = −0.45). Conclusion The use of the contralateral eye as an internal control in experimental induction of unilateral IOP should be reconsidered. The gliotic behavior in contralateral eyes could be related to the immune response. The absence of NF-200+RGCs (sign of RGC degeneration) leads us to postulate that the MHC-II upregulation in contralateral eyes could favor neuroprotection.
Collapse
Affiliation(s)
- Beatriz I Gallego
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sunil N, Lee S, Shea TB. Interference with kinesin-based anterograde neurofilament axonal transport increases neurofilament-neurofilament bundling. Cytoskeleton (Hoboken) 2012; 69:371-9. [PMID: 22434685 DOI: 10.1002/cm.21030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 03/15/2012] [Indexed: 12/28/2022]
Abstract
Neurofilaments (NFs) associate with each other and with other cytoskeletal elements to form a lattice that supports the mature axon. Phosphorylation contributes to formation of this stationary population of NFs by fostering cation-dependent interactions among NF sidearms. Association of NFs with the stationary phase indirectly competes with NF axonal transport by withdrawing NFs from kinesin-dependent motility along microtubules. We therefore hypothesized that inhibition of anterograde NF transport may increase incorporation into the stationary phase. To test this hypothesis, we treated differentiated NB2a/d1 cells expressing GFP-tagged NF subunits with monastrol, a specific inhibitor of kinesin-5. Monastrol significantly inhibited anterograde axonal transport of NF-H but not NF-M, and increased the incorporation of newly-transported NF subunits into axonal NF bundles. These findings support the notion that NF transport and bundling exert opposing forces on axonal NF dynamics, and that inhibition of anterograde transport of NFs can increase their incorporation into the stationary phase.
Collapse
Affiliation(s)
- Neethu Sunil
- Center for Cellular Neurobiology and Neurodegeneration Research, Department of Biological Sciences, University of Massachusetts Lowell, Lowell, Massachusetts 01854, USA
| | | | | |
Collapse
|
37
|
Neurofilament Phosphorylation during Development and Disease: Which Came First, the Phosphorylation or the Accumulation? JOURNAL OF AMINO ACIDS 2012; 2012:382107. [PMID: 22570767 PMCID: PMC3337605 DOI: 10.1155/2012/382107] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 01/31/2012] [Indexed: 11/17/2022]
Abstract
Posttranslational modification of proteins is a ubiquitous cellular mechanism for regulating protein function. Some of the most heavily modified neuronal proteins are cytoskeletal proteins of long myelinated axons referred to as neurofilaments (NFs). NFs are type IV intermediate filaments (IFs) that can be composed of four subunits, neurofilament heavy (NF-H), neurofilament medium (NF-M), neurofilament light (NF-L), and α-internexin. Within wild type axons, NFs are responsible for mediating radial growth, a process that determines axonal diameter. NFs are phosphorylated on highly conserved lysine-serine-proline (KSP) repeats located along the C-termini of both NF-M and NF-H within myelinated axonal regions. Phosphorylation is thought to regulate aspects of NF transport and function. However, a key pathological hallmark of several neurodegenerative diseases is ectopic accumulation and phosphorylation of NFs. The goal of this review is to provide an overview of the posttranslational modifications that occur in both normal and diseased axons. We review evidence that challenges the role of KSP phosphorylation as essential for radial growth and suggests an alternative role for NF phosphorylation in myelinated axons. Furthermore, we demonstrate that regulation of NF phosphorylation dynamics may be essential to avoiding NF accumulations.
Collapse
|
38
|
Kyeong IG, Kang JH. Protective Effects of Carnosine and Anserine on Oxidative Modification of Neurofilament-L Induced by Catechol Neurotoxin, Tetrahydropapaveroline. B KOREAN CHEM SOC 2012. [DOI: 10.5012/bkcs.2012.33.2.731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Cantuti-Castelvetri L, Zhu H, Givogri MI, Chidavaenzi RL, Lopez-Rosas A, Bongarzone ER. Psychosine induces the dephosphorylation of neurofilaments by deregulation of PP1 and PP2A phosphatases. Neurobiol Dis 2012; 46:325-35. [PMID: 22326830 DOI: 10.1016/j.nbd.2012.01.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 01/16/2012] [Accepted: 01/26/2012] [Indexed: 11/25/2022] Open
Abstract
Patients with Krabbe disease, a genetic demyelinating syndrome caused by deficiency of galactosyl-ceramidase and the resulting accumulation of galactosyl-sphingolipids, develop signs of a dying-back axonopathy compounded by a deficiency of large-caliber axons. Here, we show that axonal caliber in Twitcher mice, an animal model for Krabbe disease, is impaired in peripheral axons and is accompanied by a progressive reduction in the abundance and phosphorylation of the three neurofilament (NF) subunits. These changes correlate with an increase in the density of NFs per cross-sectional area in numerous mutant peripheral axons and abnormal increases in the activity of two serine/threonine phosphatases (PP1 and PP2A) in mutant tissue. Similarly, acutely isolated mutant cortical neurons show abnormal phosphorylation of NFs. Psychosine, the neurotoxin accumulated in Krabbe disease, was sufficient to induce abnormal dephosphorylation of NF subunits in a normal motor neuron cell line as well as in acutely isolated normal cortical neurons. This in vitro effect was mediated by PP1 and PP2A, which specifically dephosphorylated NFs. These results demonstrate that the reduced caliber observed in some axons in Krabbe disease involves abnormal dephosphorylation of NFs. We propose that a psychosine-driven pathogenic mechanism through deregulated phosphotransferase activities may be involved in this process.
Collapse
|
40
|
Shea TB, Lee S. Neurofilament phosphorylation regulates axonal transport by an indirect mechanism: a merging of opposing hypotheses. Cytoskeleton (Hoboken) 2011; 68:589-95. [PMID: 21990272 DOI: 10.1002/cm.20535] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 09/22/2011] [Indexed: 01/22/2023]
Abstract
Neurofilaments (NFs) are among the most abundant constituents of the axonal cytoskeleton. NFs consist of four subunits, termed NF-H, NF-M and NF-L, corresponding to heavy, medium and light in reference to their molecular mass and α-internexin. Phosphorylation of the C-terminal "sidearms" of NF-H and NF-M regulates the ability of NFs to form a cytoskeletal lattice that supports the mature axon. C-terminal phosphorylation events have classically been considered to regulate NF axonal transport. By contrast, studies demonstrating that NF axonal transport was not accelerated following sidearm deletion provided evidence that phosphorylation does not regulate NF transport. Herein, we demonstrate how comparison of transport and distribution of differentially phosphorylated NFs along axons identify common ground between these hypotheses and may resolve this controversy.
Collapse
Affiliation(s)
- Thomas B Shea
- Department of Biological Sciences, Center for Cellular Neurobiology and Neurodegeneration Research, University of Massachusetts-Lowell, Lowell, Massachusetts 01854, USA.
| | | |
Collapse
|
41
|
Hokkanen S, Feldmann HM, Ding H, Jung CKE, Bojarski L, Renner-Müller I, Schüller U, Kretzschmar H, Wolf E, Herms J. Lack of Pur-alpha alters postnatal brain development and causes megalencephaly. Hum Mol Genet 2011; 21:473-84. [PMID: 22010047 DOI: 10.1093/hmg/ddr476] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Pur-alpha (Purα) plays an important role in a variety of cellular processes including transcriptional regulation, cell proliferation and oncogenic transformation. To better understand the role of Purα in the developing and mature brain, we generated Purα-deficient mice, which we were able to raise to the age of six months. Purα(-/-) mice were born with no obvious pathological condition. We obtained convincing evidence that lack of Purα prolongs the postnatal proliferation of neuronal precursor cells both in the hippocampus and in the cerebellum, however, without affecting the overall number of postmitotic neurons. Independent of these findings, we observed alterations in the expression and distribution of the dendritic protein MAP2, the translation of which has been proposed previously to be Purα-dependent. At the age of 2 weeks, Purα(-/-) mice generated a continuous tremor which persisted throughout lifetime. Finally, adult Purα(-/-) mice displayed a megalencephaly and histopathological findings including axonal swellings and hyperphosphorylation of neurofilaments. Our studies underline the importance of Purα in the proliferation of neuronal precursor cells during postnatal brain development and suggest a role for Purα in the regulation of the expression and cellular distribution of dendritic and axonal proteins. Since recent studies implicate a link between Purα and the fragile X tremor/ataxia syndrome, our Purα(-/-) mouse model will provide new opportunities for understanding the mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Suvi Hokkanen
- Center of Neuropathology and Prion Research, Ludwig-Maximilians-Universität and German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lee S, Sunil N, Tejada JM, Shea TB. Differential roles of kinesin and dynein in translocation of neurofilaments into axonal neurites. J Cell Sci 2011; 124:1022-31. [PMID: 21363889 DOI: 10.1242/jcs.079046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Neurofilament (NF) subunits translocate within axons as short NFs, non-filamentous punctate structures ('puncta') and diffuse material that might comprise individual subunits and/or oligomers. Transport of NFs into and along axons is mediated by the microtubule (MT) motor proteins kinesin and dynein. Despite being characterized as a retrograde motor, dynein nevertheless participates in anterograde NF transport through associating with long MTs or the actin cortex through its cargo domain; relatively shorter MTs associated with the motor domain are then propelled in an anterograde direction, along with any linked NFs. Here, we show that inhibition of dynein function, through dynamitin overexpression or intracellular delivery of anti-dynein antibody, selectively reduced delivery of GFP-tagged short NFs into the axonal hillock, with a corresponding increase in the delivery of puncta, suggesting that dynein selectively delivered short NFs into axonal neurites. Nocodazole-mediated depletion of short MTs had the same effect. By contrast, intracellular delivery of anti-kinesin antibody inhibited anterograde transport of short NFs and puncta to an equal extent. These findings suggest that anterograde axonal transport of linear NFs is more dependent upon association with translocating MTs (which are themselves translocated by dynein) than is transport of NF puncta or oligomers.
Collapse
Affiliation(s)
- Sangmook Lee
- Center for Cellular Neurobiology and Neurodegeneration Research, Department of Biological Sciences, University of Massachusetts, One University Avenue, Lowell, MA 01854, USA
| | | | | | | |
Collapse
|
43
|
Deregulation of Cytoskeletal Protein Phosphorylation and Neurodegeneration. ADVANCES IN NEUROBIOLOGY 2011. [DOI: 10.1007/978-1-4419-6787-9_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
44
|
Rudrabhatla,* P, Grant,* P, Jaffe H, Strong MJ, Pant HC. Quantitative phosphoproteomic analysis of neuronal intermediate filament proteins (NF-M/H) in Alzheimer's disease by iTRAQ. FASEB J 2010; 24:4396-407. [PMID: 20624930 PMCID: PMC2974420 DOI: 10.1096/fj.10-157859] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 06/24/2010] [Indexed: 11/11/2022]
Abstract
Aberrant hyperphosphorylation of neuronal cytoskeletal proteins is one of the major pathological hallmarks of neurodegenerative disorders such as Alzheimer disease (AD), amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD). Human NF-M/H display a large number of multiple KSP repeats in the carboxy-terminal tail domain, which are phosphorylation sites of proline-directed serine/threonine (pSer/Thr-Pro, KS/T-P) kinases. The phosphorylation sites of NF-M/H have not been characterized in AD brain. Here, we use quantitative phosphoproteomic methodology, isobaric tag for relative and absolute quantitation (iTRAQ), for the characterization of NF-M/H phosphorylation sites in AD brain. We identified 13 hyperphosphorylated sites of NF-M; 9 Lys-Ser-Pro (KSP) sites; 2 variant motifs, Glu-Ser-Pro (ESP) Ser-736 and Leu-Ser-Pro (LSP) Ser-837; and 2 non-S/T-P motifs, Ser-783 and Ser-788. All the Ser/Thr residues are phosphorylated at significantly greater abundance in AD brain compared with control brain. Ten hyperphosphorylated KSP sites have been identified on the C-terminal tail domain of NF-H, with greater abundance of phosphorylation in AD brain compared with control brain. Our data provide the direct evidence that NF-M/H are hyperphosphorylated in AD compared with control brain and suggest the role of both proline-directed and non-proline-directed protein kinases in AD. This study represents the first comprehensive iTRAQ analyses and quantification of phosphorylation sites of human NF-M and NF-H from AD brain and suggests that aberrant hyperphosphorylation of neuronal intermediate filament proteins is involved in AD.
Collapse
Affiliation(s)
| | | | - Howard Jaffe
- Protein/Peptide Sequencing Facility, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland, USA; and
| | - Michael J. Strong
- Molecular Brain Research Group, Robarts Research Institute, and Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario, Canada
| | | |
Collapse
|
45
|
Lee S, Sunil N, Shea TB. C-terminal neurofilament phosphorylation fosters neurofilament-neurofilament associations that compete with axonal transport. Cytoskeleton (Hoboken) 2010; 68:8-17. [PMID: 20862740 DOI: 10.1002/cm.20488] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 09/16/2010] [Indexed: 12/20/2022]
Abstract
Neurofilaments (NFs) associate with each other and with other cytoskeletal elements to form a lattice that supports the mature axon. Phosphorylation contributes to formation of this structure by fostering cation-dependent interactions among NF sidearms. By inducing NF bundling, phosphorylation impedes their axonal transport. To examine the impact of the known NF kinase cdk5 on these phenomena, transfected cells with constructs expressing GFP-tagged NF-H sidearms (lacking the rod domain to preclude assembly) with and without site-directed mutagenesis of 7 cdk5 consensus sites, and monitored the impact on NF transport and association with the axonal NF bundle. These mutations did not alter transport but pseudo-phosphorylated mutants displayed a greater association with axonal NF bundles. By contrast, these same mutations in full-length NF-H altered NF transport as well as bundling. Since isolated sidearms cannot assemble, they can only interact with NFs via a single sidearm-sidearm interaction, while assembled NFs can form multiple such interactions. These finding suggest that individual sidearm-sidearm interactions are dynamic and do not persist long enough to slow NF transport, and that bundle formation and maintenance depends upon both the long half-life of NF polymers and the establishment of multiple phosphorylation-dependent sidearm-mediated interactions among NFs.
Collapse
Affiliation(s)
- Sangmook Lee
- Department of Biological Sciences, Center for Cellular Neurobiology and Neurodegeneration Research, University of Massachusetts, Lowell, Massachusetts 01854, USA
| | | | | |
Collapse
|
46
|
Vavlitou N, Sargiannidou I, Markoullis K, Kyriacou K, Scherer SS, Kleopa KA. Axonal pathology precedes demyelination in a mouse model of X-linked demyelinating/type I Charcot-Marie Tooth neuropathy. J Neuropathol Exp Neurol 2010; 69:945-58. [PMID: 20720503 PMCID: PMC3034224 DOI: 10.1097/nen.0b013e3181efa658] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The X-linked demyelinating/type I Charcot-Marie-Tooth neuropathy (CMT1X) is an inherited peripheral neuropathy caused by mutations in GJB1, the gene that encodes the gap junction protein connexin32. Connexin32 is expressed by myelinating Schwann cells and forms gap junctions in noncompact myelin areas, but axonal involvement is more prominent in X-linked compared with other forms of demyelinating Charcot-Marie-Tooth disease. To clarify the cellular and molecular mechanisms of axonal pathology in CMT1X, we studied Gjb1-null mice at early stages (i.e. 2-4 months old) of the neuropathy, when there is minimal or no demyelination. The diameters of large myelinated axons were progressively reduced in Gjb1-null mice compared with those in wild-type littermates. Furthermore, neurofilaments were relatively more dephosphorylated and more densely packed starting at 2 months of age. Increased expression of β-amyloid precursor protein, a marker of axonal damage, was also detected in Gjb1-null nerves. Finally, fast axonal transport, assayed by sciatic nerve ligation experiments, was slower in distal axons of Gjb1-null versus wild-type animals with reduced accumulation of synaptic vesicle-associated proteins. These findings demonstrate that axonal abnormalities including impaired cytoskeletal organization and defects in axonal transport precede demyelination in this mouse model of CMT1X.
Collapse
Affiliation(s)
- Natalie Vavlitou
- Neuroscience Laboratory and Neurology Clinics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | | | | | | | | |
Collapse
|
47
|
Kushkuley J, Metkar S, Chan WKH, Lee S, Shea TB. Aluminum induces neurofilament aggregation by stabilizing cross-bridging of phosphorylated c-terminal sidearms. Brain Res 2010; 1322:118-23. [PMID: 20132798 DOI: 10.1016/j.brainres.2010.01.075] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 01/24/2010] [Accepted: 01/27/2010] [Indexed: 01/08/2023]
Abstract
Exposure to neurotoxin aluminum neurotoxicity is accompanied by the perikaryal accumulation of tangles of phosphorylated neurofilaments (NFs). We examined their formation and reversibility under cell-free conditions. AlCl3 induced dose-dependent formation of NF aggregates, ultimately incorporating 100% of detectable NFs. The same concentration of CaCl2 induced approximately 25% of NFs to form longitudinal dimers and did not induce aggregation. AlCl3 induced similar percentages of aggregates in the presence or absence of CaCl2, and CaCl2 could not reduce pre-formed aggregates. CaCl(2)-induced dimers and AlCl(3)-induced aggregates were prevented by prior NF dephosphorylation. While CaCl(2)-induced dimers were dissociated by phosphatase treatment, AlCl(3)-induced aggregates were only reduced by approximately 50%, suggesting that aggregates may sequester phosphorylation sites. Since phosphatases regulate NF phosphorylation within perikarya, inhibition of NF dephosphorylation by aluminum would promote perikaryal NF phosphorylation and foster precocious phospho-dependent NF-NF associations. These findings are consistent with the notion that prolonged interactions induced among phospho-NFs by the trivalent aluminum impairs axonal transport and promotes perikaryal aggregation.
Collapse
Affiliation(s)
- Jacob Kushkuley
- Center for Cellular Neurobiology and Neurodegeneration Research, Departments of Biological Sciences and Biochemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | | | | | | | | |
Collapse
|
48
|
Jamieson SMF, Subramaniam J, Liu JJ, Jong NN, Ip V, Connor B, McKeage MJ. Oxaliplatin-induced loss of phosphorylated heavy neurofilament subunit neuronal immunoreactivity in rat DRG tissue. Mol Pain 2009; 5:66. [PMID: 19922644 PMCID: PMC2785764 DOI: 10.1186/1744-8069-5-66] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Accepted: 11/18/2009] [Indexed: 12/19/2022] Open
Abstract
Background Oxaliplatin and related chemotherapeutic drugs cause painful chronic peripheral neuropathies in cancer patients. We investigated changes in neuronal size profiles and neurofilament immunoreactivity in L5 dorsal root ganglion (DRG) tissue of adult female Wistar rats after multiple-dose treatment with oxaliplatin, cisplatin, carboplatin or paclitaxel. Results After treatment with oxaliplatin, phosphorylated neurofilament heavy subunit (pNF-H) immunoreactivity was reduced in neuronal cell bodies, but unchanged in nerve fibres, of the L5 DRG. Morphometric analysis confirmed significant changes in the number (-75%; P < 0.0002) and size (-45%; P < 0.0001) of pNF-H-immunoreactive neurons after oxaliplatin treatment. pNF-H-immunoreactive neurons had overlapping size profiles and co-localisation with neurons displaying cell body immunoreactivity for parvalbumin, non-phospho-specific neurofilament medium subunit (NF-M) and non-phospho-specific neurofilament heavy subunit (NF-H), in control DRG. However, there were no significant changes in the numbers of neurons with immunoreactivity for parvalbumin (4.6%, P = 0.82), NF-M (-1%, P = 0.96) or NF-H (0%; P = 0.93) after oxaliplatin treatment, although the sizes of parvalbumin (-29%, P = 0.047), NF-M (-11%, P = 0.038) and NF-H (-28%; P = 0.0033) immunoreactive neurons were reduced. In an independent comparison of different chemotherapeutic agents, the number of pNF-H-immunoreactive neurons was significantly altered by oxaliplatin (-77.2%; P < 0.0001) and cisplatin (-35.2%; P = 0.03) but not by carboplatin or paclitaxel, and their mean cell body area was significantly changed by oxaliplatin (-31.1%; P = 0.008) but not by cisplatin, carboplatin or paclitaxel. Conclusion This study has demonstrated a specific pattern of loss of pNF-H immunoreactivity in rat DRG tissue that corresponds with the relative neurotoxicity of oxaliplatin, cisplatin and carboplatin. Loss of pNF-H may be mechanistically linked to oxaliplatin-induced neuronal atrophy, and serves as a readily measureable endpoint of its neurotoxicity in the rat model.
Collapse
Affiliation(s)
- Stephen M F Jamieson
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
49
|
Kushkuley J, Chan WKH, Lee S, Eyer J, Leterrier JF, Letournel F, Shea TB. Neurofilament cross-bridging competes with kinesin-dependent association of neurofilaments with microtubules. J Cell Sci 2009; 122:3579-86. [PMID: 19737816 DOI: 10.1242/jcs.051318] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The phosphorylation of neurofilaments (NFs) has long been considered to regulate their axonal transport rate and in doing so to provide stability to mature axons. Axons contain a centrally situated ;bundle' of closely opposed phospho-NFs that display a high degree of NF-NF associations and phospho-epitopes, surrounded by less phosphorylated ;individual' NFs that are often associated with kinesin and microtubules (MTs). Bundled NFs transport substantially slower than the surrounding individual NFs and might represent a resident population that stabilizes axons and undergoes replacement by individual NFs. To examine this possibility, fractions enriched in bundled NFs and individual NFs were generated from mice and NB2a/d1 cells by sedimentation of cytoskeletons over a sucrose cushion. More kinesin was recovered within individual versus bundled NF fractions. Individual but not bundled NFs aligned with purified MTs under cell-free conditions. The percentage of NFs that aligned with MTs was increased by the addition of kinesin, and inhibited by anti-kinesin antibodies. Bundles dissociated following incubation with EGTA or alkaline phosphatase, generating individual NFs that retained or were depleted of phospho-epitopes, respectively. These dissociated NFs aligned with MTs at a level identical to those originally isolated as individual NFs regardless of phosphorylation state. EGTA-mediated dissociation of bundles was prevented and reversed by excess Ca(2+), whereas individual NFs did not associate in the presence of excess Ca(2+). These findings confirm that bundling competes with NF-MT association, and provide a mechanism by which C-terminal NF phosphorylation might indirectly contribute to the observed slowing in axonal transport of phospho-NFs.
Collapse
Affiliation(s)
- Jacob Kushkuley
- Center for Cellular Neurobiology and Neurodegeneration Research, Departments of Biological Sciences and Biochemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Shahani N, Gourie-Devi M, Nalini A, Rammohan P, Shobha K, Harsha HN, Raju TR. (‐)‐Deprenyl alleviates the degenerative changes induced in the neonatal rat spinal cord by CSF from amyotrophic lateral sclerosis patients. ACTA ACUST UNITED AC 2009; 5:172-9. [PMID: 15512906 DOI: 10.1080/14660820410017037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Previous studies from our laboratory suggest the presence of toxic factor(s) in the cerebrospinal fluid (CSF) of patients with amyotrophic lateral sclerosis (ALS) which induces degenerative changes in the spinal cord neurons. The present work was carried out to investigate the role of (-)-deprenyl in attenuating these degenerative changes. CSF samples from ALS and non-ALS neurological patients were injected into the spinal subarachnoid space of 3-day-old rat pups, followed by a single dose (0.01 mg/kg body weight) of (-)-deprenyl, administered 24 h after CSF injection. After a further period of 24 h, the rats were sacrificed and the spinal cord sections were stained with antibodies against phosphorylated neurofilament (NF, SMI-31 antibody) and glial fibrillary acidic protein (GFAP). Activity of lactate dehydrogenase (LDH) was also measured. (-)-Deprenyl injection resulted in a significant (61%) decrease in the number of SMI-31 stained neuronal soma in the ventral horn of the spinal cord of ALS CSF exposed rats. This was accompanied by a reduction in the astrocytes immunoreactive for GFAP. There was also a significant (35%) decrease in the LDH activity following (-)-deprenyl treatment. These results suggest that (-)-deprenyl may confer neuroprotection against the toxic factor(s) present in ALS CSF.
Collapse
Affiliation(s)
- Neelam Shahani
- Department of Neurobiology, University of Osnabrueck, D- 49076 Osnabrueck, Germany
| | | | | | | | | | | | | |
Collapse
|