1
|
Zhang W, Jadidi M, Razian SA, Holzapfel GA, Kamenskiy A, Nordsletten DA. A viscoelastic constitutive framework for aging muscular and elastic arteries. Acta Biomater 2024; 188:223-241. [PMID: 39303831 DOI: 10.1016/j.actbio.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
The evolution of arterial biomechanics and microstructure with age and disease plays a critical role in understanding the health and function of the cardiovascular system. Accurately capturing these adaptative processes and their effects on the mechanical environment is critical for predicting arterial responses. This challenge is exacerbated by the significant differences between elastic and muscular arteries, which have different structural organizations and functional demands. In this study, we aim to shed light to these adaptive processes by comparing the viscoelastic mechanics of autologous thoracic aortas (TA) and femoropopliteal arteries (FPA) in different age groups. We have extended our fractional viscoelastic framework, originally developed for FPA, to both types of arteries. To evaluate this framework, we analyzed experimental mechanical data from TA and FPA specimens from 21 individuals aged 13 to 73 years. Each specimen was subjected to a multi-ratio biaxial mechanical extension and relaxation test complemented by bidirectional histology to quantify the structural density and microstructural orientations. Our new constitutive model accurately captured the mechanical responses and microstructural differences of the tissues and closely matched the experimentally measured densities. It was found that the viscoelastic properties of collagen and smooth muscle cells (SMCs) in both the FPA and TA remained consistent with age, but the viscoelasticity of the SMCs in the FPA was twice that of the TA. Additionally, changes in collagen nonlinearity with age were similar in both TA and FPA. This model provides valuable insights into arterial mechanophysiology and the effects of pathological conditions on vascular biomechanics. STATEMENT OF SIGNIFICANCE: Developing durable treatments for arterial diseases necessitates a deeper understanding of how mechanical properties evolve with age in response to mechanical environments. In this work, we developed a generalized viscoelastic constitutive model for both elastic and muscular arteries and analyzed both the thoracic aorta (TA) and the femoropopliteal artery (FPA) from 21 donors aged 13 to 73. The derived parameters correlate well with histology, allowing further examination of how viscoelasticity evolves with age. Correlation between the TA and FPA of the same donors suggest that the viscoelasticity of the FPA may be influenced by the TA, necessitating more detailed analysis. In summary, our new model proves to be a valuable tool for studying arterial mechanophysiology and exploring pathological impacts.
Collapse
Affiliation(s)
- Will Zhang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Majid Jadidi
- Department of Biomechanics, University of Nebraska at Omaha, NE, USA.
| | | | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Austria; Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Alexey Kamenskiy
- Department of Biomechanics, University of Nebraska at Omaha, NE, USA.
| | - David A Nordsletten
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Division of Biomedical Engineering and Imaging Sciences, Department of Biomedical Engineering, King's College London, UK.
| |
Collapse
|
2
|
Donmazov S, Piskin S, Gölcez T, Kul D, Arnaz A, Pekkan K. Mechanical characterization and torsional buckling of pediatric cardiovascular materials. Biomech Model Mechanobiol 2024; 23:845-860. [PMID: 38361084 PMCID: PMC11101351 DOI: 10.1007/s10237-023-01809-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/22/2023] [Indexed: 02/17/2024]
Abstract
In complex cardiovascular surgical reconstructions, conduit materials that avoid possible large-scale structural deformations should be considered. A fundamental mode of mechanical complication is torsional buckling which occurs at the anastomosis site due to the mechanical instability, leading surgical conduit/patch surface deformation. The objective of this study is to investigate the torsional buckling behavior of commonly used materials and to develop a practical method for estimating the critical buckling rotation angle under physiological intramural vessel pressures. For this task, mechanical tests of four clinically approved materials, expanded polytetrafluoroethylene (ePTFE), Dacron, porcine and bovine pericardia, commonly used in pediatric cardiovascular surgeries, are conducted (n = 6). Torsional buckling initiation tests with n = 4 for the baseline case (L = 7.5 cm) and n = 3 for the validation of ePTFE (L = 15 cm) and Dacron (L = 15 cm and L = 25 cm) for each are also conducted at low venous pressures. A practical predictive formulation for the buckling potential is proposed using experimental observations and available theory. The relationship between the critical buckling rotation angle and the lumen pressure is determined by balancing the circumferential component of the compressive principal stress with the shear stress generated by the modified critical buckling torque, where the modified critical buckling torque depends linearly on the lumen pressure. While the proposed technique successfully predicted the critical rotation angle values lying within two standard deviations of the mean in the baseline case for all four materials at all lumen pressures, it could reliably predict the critical buckling rotation angles for ePTFE and Dacron samples of length 15 cm with maximum relative errors of 31% and 38%, respectively, in the validation phase. However, the validation of the performance of the technique demonstrated lower accuracy for Dacron samples of length 25 cm at higher pressure levels of 12 mmHg and 15 mmHg. Applicable to all surgical materials, this formulation enables surgeons to assess the torsional buckling potential of vascular conduits noninvasively. Bovine pericardium has been found to exhibit the highest stability, while Dacron (the lowest) and porcine pericardium have been identified as the least stable with the (unitless) torsional buckling resistance constants, 43,800, 12,300 and 14,000, respectively. There was no significant difference between ePTFE and Dacron, and between porcine and bovine pericardia. However, both porcine and bovine pericardia were found to be statistically different from ePTFE and Dacron individually (p < 0.0001). ePTFE exhibited highly nonlinear behavior across the entire strain range [0, 0.1] (or 10% elongation). The significant differences among the surgical materials reported here require special care in conduit construction and anastomosis design.
Collapse
Affiliation(s)
- Samir Donmazov
- Department of Mathematics, University of Kentucky, Kentucky, 40506, USA
| | - Senol Piskin
- Department of Mechanical Engineering, Istinye University, Istanbul, 34010, Turkey
| | - Tansu Gölcez
- Department of Bio-Medical Science and Engineering, Koc University, Istanbul, Turkey
| | - Demet Kul
- Department of Cellular and Molecular Medicine, Koc University, Istanbul, Turkey
| | - Ahmet Arnaz
- Department of Cardiovascular Surgery, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Kerem Pekkan
- Department of Mechanical Engineering, Koc University, Sariyer, Istanbul, Turkey.
| |
Collapse
|
3
|
Zhang W, Jadidi M, Razian SA, Holzapfel GA, Kamenskiy A, Nordsletten DA. A viscoelastic constitutive model for human femoropopliteal arteries. Acta Biomater 2023; 170:68-85. [PMID: 37699504 PMCID: PMC10802972 DOI: 10.1016/j.actbio.2023.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/14/2023]
Abstract
High failure rates present challenges for surgical and interventional therapies for peripheral artery disease of the femoropopliteal artery (FPA). The FPA's demanding biomechanical environment necessitates complex interactions with repair devices and materials. While a comprehensive understanding of the FPA's mechanical characteristics could improve medical treatments, the viscoelastic properties of these muscular arteries remain poorly understood, and the constitutive model describing their time-dependent behavior is absent. We introduce a new viscoelastic constitutive model for the human FPA grounded in its microstructural composition. The model is capable of detailing the contributions of each intramural component to the overall viscoelastic response. Our model was developed utilizing fractional viscoelasticity and tested using biaxial experimental data with hysteresis and relaxation collected from 10 healthy human subjects aged 57 to 65 and further optimized for high throughput and automation. The model accurately described the experimental data, capturing significant nonlinearity and hysteresis that were particularly pronounced circumferentially, and tracked the contribution of passive smooth muscle cells to viscoelasticity that was twice that of the collagen fibers. The high-throughput parameter estimation procedure we developed included a specialized objective function and modifications to enhance convergence for the common exponential-type fiber laws, facilitating computational implementation. Our new model delineates the time-dependent behavior of human FPAs, which will improve the fidelity of computational simulations investigating device-artery interactions and contribute to their greater physical accuracy. Moreover, it serves as a useful tool to investigate the contribution of arterial constituents to overall tissue viscoelasticity, thereby expanding our knowledge of arterial mechanophysiology. STATEMENT OF SIGNIFICANCE: The demanding biomechanical environment of the femoropopliteal artery (FPA) necessitates complex interactions with repair devices and materials, but the viscoelastic properties of these muscular arteries remain poorly understood with the constitutive model describing their time-dependent behavior being absent. We hereby introduce the first viscoelastic constitutive model for the human FPA grounded in its microstructures. This model was tested using biaxial mechanical data collected from 10 healthy human subjects between the ages of 57 to 65. It can detail the contributions of each intramural component to the overall viscoelastic response, showing that the contribution of passive smooth muscle cells to viscoelasticity is twice that of collagen fibers. The usefulness of this model as tool to better understand arterial mechanophysiology was demonstrated.
Collapse
Affiliation(s)
- Will Zhang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Majid Jadidi
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, USA.
| | | | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz Univerisity of Technology, Graz, Austria; Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Alexey Kamenskiy
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, USA.
| | - David A Nordsletten
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Division of Biomedical Engineering and Imaging Sciences, Department of Biomedical Engineering, King's College London, London, UK.
| |
Collapse
|
4
|
Xu R, Li T, Li Z, Kong W, Wang T, Zhang X, Luo J, Li W, Jiao L. Knowledge fields and emerging trends about extracellular matrix in carotid artery disease from 1990 to 2021: analysis of the scientific literature. Eur J Med Res 2023; 28:284. [PMID: 37587506 PMCID: PMC10428572 DOI: 10.1186/s40001-023-01259-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 08/01/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Stroke is a heavy burden in modern society, and carotid artery disease is a major cause. The role of the extracellular matrix (ECM) in the development and progression of carotid artery disease has become a popular research focus. However, there is no published bibliometric analysis to derive the main publication features and trends in this scientific area. We aim to conduct a bibliometric analysis to reveal current status of ECM in carotid artery disease and to predict future hot spots. METHODS We searched and downloaded articles from the Web of Science Core Collection with "Carotid" and "Extracellular Matrix" as subject words from 1990 to 2021. The complete bibliographic data were analyzed by Bibliometrics, BICOMB, gCLUTO and CiteSpace softwares. RESULTS Since 1990, the United States has been the leader in the number of publications in the field of ECM in carotid artery disease, followed by China, Japan and Germany. Among institutions, Institut National De La Sante Et De La Recherche Medicale Inserm, University of Washington Seattle and Harvard University are in the top 3. "Arteriosclerosis Thrombosis and Vascular Biology" is the most popular journal and "Circulation" is the most cited journal. "Clowes AW", "Hedin Ulf" and "Nilsson Jan" are the top three authors of published articles. Finally, we investigated the frontiers through the strongest citation bursts, conducted keyword biclustering analysis, and discovered five clusters of research hotspots. Our research provided a comprehensive analysis of the fundamental data, knowledge organization, and dynamic evolution of research about ECM in carotid artery disease. CONCLUSIONS The field of ECM in carotid artery disease has received increasing attention. We summarized the history of the field and predicted five future hotspots through bibliometric analysis. This study provided a reference for researchers in this fields, and the methodology can be extended to other fields.
Collapse
Affiliation(s)
- Ran Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Tianhua Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Zhiqing Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Tao Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Xiao Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Jichang Luo
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Wenjing Li
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- China International Neuroscience Institute (China-INI), Beijing, China.
- Department of Interventional Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Vahdatinia F, Hooshyarfard A, Jamshidi S, Shojaei S, Patel K, Moeinifard E, Haddadi R, Farhadian M, Gholami L, Tayebi L. 3D-Printed Soft Membrane for Periodontal Guided Tissue Regeneration. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1364. [PMID: 36836994 PMCID: PMC9967512 DOI: 10.3390/ma16041364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVES The current study aimed to perform an in vivo examination using a critical-size periodontal canine model to investigate the capability of a 3D-printed soft membrane for guided tissue regeneration (GTR). This membrane is made of a specific composition of gelatin, elastin, and sodium hyaluronate that was fine-tuned and fully characterized in vitro in our previous study. The value of this composition is its potential to be employed as a suitable replacement for collagen, which is the main component of conventional GTR membranes, to overcome the cost issue with collagen. METHODS Critical-size dehiscence defects were surgically created on the buccal surface of the roots of canine bilateral mandibular teeth. GTR treatment was performed with the 3D-printed membrane and two commercially available collagen membranes (Botiss Jason® and Smartbrane-Regedent membranes) and a group without any membrane placement was considered as the control group. The defects were submerged with tension-free closure of the gingival flaps. Histologic and histometric analyses were employed to assess the periodontal healing over an 8-week experimental period. RESULTS Histometric evaluations confirmed higher levels of new bone formation in the 3D-printed membrane group. Moreover, in all defects treated with the membranes, the formation of periodontal tissues, bone, periodontal ligaments, and cementum was observed after 8 weeks, while in the control group, only connective tissue was found in the defect sites. There was no clinical sign of inflammation or recession of gingiva in any of the groups. SIGNIFICANCE The 3D-printed gelatin/elastin/sodium hyaluronate membrane can be safe and effective for use in GTR for periodontal tissue regeneration therapies, with better or comparable results to the commercial collagen membranes.
Collapse
Affiliation(s)
- Farshid Vahdatinia
- Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan 6517838636, Iran
| | - Amirarsalan Hooshyarfard
- Department of Periodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran 1946853314, Iran
| | - Shokoofeh Jamshidi
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Dental Research Center, Hamadan University of Medical Sciences, Hamadan 6517838636, Iran
| | - Setareh Shojaei
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Hamadan University of Medical Sciences, Hamadan 6517838636, Iran
| | - Kishan Patel
- School of Dentistry, Marquette University, Milwaukee, WI 53233, USA
| | | | - Rasool Haddadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan 6517838636, Iran
| | - Maryam Farhadian
- Department of Biostatistics, School of Public Health, Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan 6517838636, Iran
| | - Leila Gholami
- Dental Research Center, Hamadan University of Medical Sciences, Hamadan 6517838636, Iran
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, WI 53233, USA
| |
Collapse
|
6
|
Shokri A, Ramezani K, Jamalpour MR, Mohammadi C, Vahdatinia F, Irani AD, Sharifi E, Haddadi R, Jamshidi S, Amirabad LM, Tajik S, Yadegari A, Tayebi L. In vivo efficacy of 3D-printed elastin-gelatin-hyaluronic acid scaffolds for regeneration of nasal septal cartilage defects. J Biomed Mater Res B Appl Biomater 2022; 110:614-624. [PMID: 34549884 PMCID: PMC9365017 DOI: 10.1002/jbm.b.34940] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 07/29/2021] [Accepted: 09/09/2021] [Indexed: 12/17/2022]
Abstract
Nasal septal cartilage perforations occur due to the different pathologies. Limited healing ability of cartilage results in remaining defects and further complications. This study sought to assess the efficacy of elastin-gelatin-hyaluronic acid (EGH) scaffolds for regeneration of nasal septal cartilage defects in rabbits. Defects (4 × 7 mm) were created in the nasal septal cartilage of 24 New Zealand rabbits. They were randomly divided into four groups: Group 1 was the control group with no further intervention, Group 2 received EGH scaffolds implanted in the defects, Group 3 received EGH scaffolds seeded with autologous auricular chondrocytes implanted in the defects, and Group 4 received EGH scaffolds seeded with homologous auricular chondrocytes implanted in the defects. After a 4-month healing period, computed tomography (CT) and magnetic resonance imaging (MRI) scans were obtained from the nasal septal cartilage, followed by histological evaluations of new tissue formation. Maximum regeneration occurred in Group 2, according to CT, and Group 3, according to both T1 and T2 images with 7.68 ± 1.36, 5.44 ± 2.41, and 8.72 ± 3.02 mm2 defect area respectively after healing. The difference in the defect size was statistically significant after healing between the experimental groups. Group 3 showed significantly greater regeneration according to CT scans and T1 and T2 images. The neocartilage formed over the underlying old cartilage with no distinct margin in histological evaluation. The EGH scaffolds have the capability of regeneration of nasal cartilage defects and are able to integrate with the existing cartilage; yet, they present the best results when pre-seeded with autologous chondrocytes.
Collapse
Affiliation(s)
- Abbas Shokri
- Department of Oral and Maxillofacial Radiology, Dental Implants Research Center, Faculty of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Kousar Ramezani
- Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Reza Jamalpour
- Department of Oral and Maxillofacial Radiology, Dental Implants Research Center, Faculty of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Chiman Mohammadi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Farshid Vahdatinia
- Dental Implant Research Center, Dental School, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amin Doosti Irani
- Department of Epidemiology, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasool Haddadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shokoofeh Jamshidi
- Dental Research Center, Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Sanaz Tajik
- Marquette University, School of Dentistry, Milwaukee, Wisconsin, USA
| | - Amir Yadegari
- Marquette University, School of Dentistry, Milwaukee, Wisconsin, USA
| | - Lobat Tayebi
- Marquette University, School of Dentistry, Milwaukee, Wisconsin, USA
| |
Collapse
|
7
|
Han HC. Effects of material non-symmetry on the mechanical behavior of arterial wall. J Mech Behav Biomed Mater 2022; 129:105157. [DOI: 10.1016/j.jmbbm.2022.105157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/17/2022] [Accepted: 02/27/2022] [Indexed: 12/21/2022]
|
8
|
Li M, Wang ZW, Fang LJ, Cheng SQ, Wang X, Liu NF. Correlation analysis of coronary artery tortuosity and calcification score. BMC Surg 2022; 22:66. [PMID: 35197040 PMCID: PMC8867736 DOI: 10.1186/s12893-022-01470-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/31/2021] [Indexed: 12/03/2022] Open
Abstract
Background Coronary artery tortuosity (CAT) is regarded as a variation of vascular anatomy, and its relationship with coronary artery calcification (CAC) score is still not well clarified. Studying the correlation between coronary artery calcification scores and CAT to determine specific prevention and intervention populations seems to have more meaningful. Methods The study is a cross-sectional retrospective study, including 1280 patients. CAT is defined as the presence of at least three consecutive curvatures of more than 45°measured during systole or diastole of a major epicardial coronary artery. Multivariable regression analysis was used to adjust the clinical parameters directly affecting CAT. Results Of these individuals, 445 (35%) were evaluated having CAT, of which females are higher than males (59.1% vs. 40.9%). Moderate CAC score (101–400) (odds ratio (OR) 1.49, 95% confidence interval [95%CI] 1.05–2.10, P = 0.025) revealed significantly associated with CAT on univariable analysis. However, multivariable analysis after adjusting for confounding factors only indicated that CAT was positively correlated with female (OR 1.68, 95%CI 1.30–2.17, P < 0.001), hypertension (OR 1.35, 95% CI 1.04–1.75, P = 0.024), and age (OR 1.02, 95% CI 1.01–1.03, P = 0.001), while was negatively associated with body mass index (BMI) 24–27.9(OR 0.76, 95% CI 0.58–1.00, P = 0.044), and BMI > 28 (OR 0.46, 95% CI 0.31–0.68, P < 0.001). Further analysis stratified by gender showed that compared with non-CAT, CAT was significantly linked with moderate CAC score (OR 1.79, 95% CI 1.00–3.20, P = 0.048), hypertension (OR 1.54, 95% CI 1.07–2.22, P = 0.021), and high-density lipoprotein (HDL) (OR 1.86, 95% CI 1.07–3.24, P = 0.028), while was negatively related to BMI > 28 (OR 0.51, 95% CI 0.31–0.84, P = 0.008) in female patients. Conclusions CAT is more likely to be found in females, connected with hypertension, age, and BMI. No significant correlation is found between the presence of tortuosity and calcium score or diameter stenosis on multivariable analysis. Whereas the CAT is associated with moderate CAC score in correlation analysis when women are selected as the main group. Supplementary Information The online version contains supplementary material available at 10.1186/s12893-022-01470-w.
Collapse
Affiliation(s)
- Min Li
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Zhen-Wei Wang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Li-Juan Fang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Shou-Quan Cheng
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Xin Wang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Nai-Feng Liu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
9
|
Characterizing the Mechanical Performance of a Bare-Metal Stent with an Auxetic Cell Geometry. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This study develops and characterizes the distinctive mechanical features of a stainless-steel metal stent with a tailored structure. A high-precision femtosecond laser was used to micromachine a stent with re-entrant hexagonal (auxetic) cell geometry. We then characterized its mechanical behavior under various mechanical loadings using in vitro experiments and through finite element analysis. The stent properties, such as the higher capability of the stent to bear upon bending, exceptional advantage at elevated levels of twisting angles, and proper buckling, all ensured a preserved opening to maintain the blood flow. The outcomes of this preliminary study present a potential design for a stent with improved physiologically relevant mechanical conditions such as longitudinal contraction, radial strength, and migration of the stent.
Collapse
|
10
|
Molnár AÁ, Nádasy GL, Dörnyei G, Patai BB, Delfavero J, Fülöp GÁ, Kirkpatrick AC, Ungvári Z, Merkely B. The aging venous system: from varicosities to vascular cognitive impairment. GeroScience 2021; 43:2761-2784. [PMID: 34762274 PMCID: PMC8602591 DOI: 10.1007/s11357-021-00475-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/12/2021] [Indexed: 10/25/2022] Open
Abstract
Aging-induced pathological alterations of the circulatory system play a critical role in morbidity and mortality of older adults. While the importance of cellular and molecular mechanisms of arterial aging for increased cardiovascular risk in older adults is increasingly appreciated, aging processes of veins are much less studied and understood than those of arteries. In this review, age-related cellular and morphological alterations in the venous system are presented. Similarities and dissimilarities between arterial and venous aging are highlighted, and shared molecular mechanisms of arterial and venous aging are considered. The pathogenesis of venous diseases affecting older adults, including varicose veins, chronic venous insufficiency, and deep vein thrombosis, is discussed, and the potential contribution of venous pathologies to the onset of vascular cognitive impairment and neurodegenerative diseases is emphasized. It is our hope that a greater appreciation of the cellular and molecular processes of vascular aging will stimulate further investigation into strategies aimed at preventing or retarding age-related venous pathologies.
Collapse
Affiliation(s)
- Andrea Ágnes Molnár
- Heart and Vascular Center, Semmelweis University, Városmajor Street 68, 1121, Budapest, Hungary.
| | | | - Gabriella Dörnyei
- Department of Morphology and Physiology, Health Sciences Faculty, Semmelweis University, Budapest, Hungary
| | | | - Jordan Delfavero
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center On Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Gábor Áron Fülöp
- Heart and Vascular Center, Semmelweis University, Városmajor Street 68, 1121, Budapest, Hungary
| | - Angelia C Kirkpatrick
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Veterans Affairs Medical Center, 921 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - Zoltán Ungvári
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center On Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Városmajor Street 68, 1121, Budapest, Hungary
| |
Collapse
|
11
|
Seddighi Y, Han HC. Buckling of Arteries With Noncircular Cross Sections: Theory and Finite Element Simulations. Front Physiol 2021; 12:712636. [PMID: 34483964 PMCID: PMC8414815 DOI: 10.3389/fphys.2021.712636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/01/2021] [Indexed: 11/17/2022] Open
Abstract
The stability of blood vessels is essential for maintaining the normal arterial function, and loss of stability may result in blood vessel tortuosity. The previous theoretical models of artery buckling were developed for circular vessel models, but arteries often demonstrate geometric variations such as elliptic and eccentric cross-sections. The objective of this study was to establish the theoretical foundation for noncircular blood vessel bent (i.e., lateral) buckling and simulate the buckling behavior of arteries with elliptic and eccentric cross-sections using finite element analysis. A generalized buckling equation for noncircular vessels was derived and finite element analysis was conducted to simulate the artery buckling behavior under lumen pressure and axial tension. The arterial wall was modeled as a thick-walled cylinder with hyper-elastic anisotropic and homogeneous material. The results demonstrated that oval or eccentric cross-section increases the critical buckling pressure of arteries and having both ovalness and eccentricity would further enhance the effect. We conclude that variations of the cross-sectional shape affect the critical pressure of arteries. These results improve the understanding of the mechanical stability of arteries.
Collapse
Affiliation(s)
- Yasamin Seddighi
- Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Hai-Chao Han
- Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
12
|
Rafati M, Zali A, Ghorbanpour A, Sehhati M. Analysis of sequential ultrasound frames for the measurement of hemodynamic stresses, critical bent buckling pressure, and critical buckling torque of human common carotid atherosclerosis. Clin Biomech (Bristol, Avon) 2021; 87:105401. [PMID: 34098148 DOI: 10.1016/j.clinbiomech.2021.105401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 04/01/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Structural properties of the arterial wall are important diagnostic parameters. The current study aimed at investigating the hemodynamic properties and intima-media thickness changes of the common carotid artery in human subjects with atherosclerosis in order to determine the relationships between these indices. METHODS This study presented methods to detect instantaneous changes in the lumen diameter, intima media thickness, longitudinal movement and acceleration, and velocity of the left side of common carotid artery. These parameters were measured in 155 male patients, categorized into control (n = 42), mild (n = 39), moderate (n = 37), and severe (n = 37) carotid stenosis groups by B-mode and Doppler ultrasonography. Extracted parameters were used to estimate the biomechanical properties of arteries, including radial strain, arterial stiffness index, Young's elastic modulus, circumferential stress, shear stress, axial stress, critical bent buckling pressure, and critical buckling torque. FINDINGS All biomechanical parameters of common carotid artery were significantly different in patients with mild, moderate, and severe stenosis, compared to the control group (P < 0.05). Moreover, the current results showed a significant correlation between intima media thickness and non-intima media thickness-based biomechanical indices including circumferential strain, stiffness index, and shear stress in different stenosis groups (P < 0.05). INTERPRETATION We concluded that the conventional and new indicators such as axial stress, critical bent buckling pressure, critical buckling torque could be useful for evaluating atherosclerosis development and also, may provide more information for physicians and interventional radiologists in designing strategies for decreasing risk in interventional treatment such as stent replacement and differentiation of vulnerable plaques.
Collapse
Affiliation(s)
- Mehravar Rafati
- Department of Medical Physics and Radiology, Faculty of Paramedicine, University of Medical Sciences, Kashan, Iran
| | - Atieh Zali
- Department of Medical Physics and Radiology, Faculty of Paramedicine, University of Medical Sciences, Kashan, Iran
| | - Ali Ghorbanpour
- Department of Mechanical Engineering, Faculty of Engineering, University of Kashan, Kashan, Iran.
| | - Mohammadreza Sehhati
- Medical Image and Signal Processing Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
13
|
Ellis SG. Coronary Tortuosity and Long-Term Post-Stent Risk: What Is the Connection? JACC Cardiovasc Interv 2021; 14:1019-1020. [PMID: 33640390 DOI: 10.1016/j.jcin.2021.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 10/22/2022]
|
14
|
Anderson JL, Niedert EE, Patnaik SS, Tang R, Holloway RL, Osteguin V, Finol EA, Goergen CJ. Animal Model Dependent Response to Pentagalloyl Glucose in Murine Abdominal Aortic Injury. J Clin Med 2021; 10:E219. [PMID: 33435461 PMCID: PMC7827576 DOI: 10.3390/jcm10020219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022] Open
Abstract
Abdominal aortic aneurysms (AAAs) are a local dilation of the aorta and are associated with significant mortality due to rupture and treatment complications. There is a need for less invasive treatments to prevent aneurysm growth and rupture. In this study, we used two experimental murine models to evaluate the potential of pentagalloyl glucose (PGG), which is a polyphenolic tannin that binds to and crosslinks elastin and collagen, to preserve aortic compliance. Animals underwent surgical aortic injury and received 0.3% PGG or saline treatment on the adventitial surface of the infrarenal aorta. Seventeen mice underwent topical elastase injury, and 14 mice underwent topical calcium chloride injury. We collected high-frequency ultrasound images before surgery and at 3-4 timepoints after. There was no difference in the in vivo effective maximum diameter due to PGG treatment for either model. However, the CaCl2 model had significantly higher Green-Lagrange circumferential cyclic strain in PGG-treated animals (p < 0.05). While ex vivo pressure-inflation testing showed no difference between groups in either model, histology revealed reduced calcium deposits in the PGG treatment group with the CaCl2 model. These findings highlight the continued need for improved understanding of PGG's effects on the extracellular matrix and suggest that PGG may reduce arterial calcium accumulation.
Collapse
Affiliation(s)
- Jennifer L. Anderson
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA; (J.L.A.); (E.E.N.); (R.T.); (R.L.H.)
| | - Elizabeth E. Niedert
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA; (J.L.A.); (E.E.N.); (R.T.); (R.L.H.)
| | - Sourav S. Patnaik
- Department of Mechanical Engineering, University of Texas, San Antonio, TX 78249, USA; (S.S.P.); (V.O.); (E.A.F.)
| | - Renxiang Tang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA; (J.L.A.); (E.E.N.); (R.T.); (R.L.H.)
| | - Riley L. Holloway
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA; (J.L.A.); (E.E.N.); (R.T.); (R.L.H.)
| | - Vangelina Osteguin
- Department of Mechanical Engineering, University of Texas, San Antonio, TX 78249, USA; (S.S.P.); (V.O.); (E.A.F.)
| | - Ender A. Finol
- Department of Mechanical Engineering, University of Texas, San Antonio, TX 78249, USA; (S.S.P.); (V.O.); (E.A.F.)
| | - Craig J. Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA; (J.L.A.); (E.E.N.); (R.T.); (R.L.H.)
| |
Collapse
|
15
|
Moreno J, Escobedo D, Calhoun C, Le Saux CJ, Han HC. Arterial Wall Stiffening in Caveolin-1 Deficiency-Induced Pulmonary Artery Hypertension in Mice. EXPERIMENTAL MECHANICS 2021; 6:217-228. [PMID: 33776068 PMCID: PMC7993546 DOI: 10.1007/s11340-020-00666-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 09/08/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Pulmonary artery hypertension (PAH) is a complex disorder that can lead to right heart failure. The generation of caveolin-1 deficient mice (CAV-1-/-) has provided an alternative genetic model to study the mechanisms of pulmonary hypertension. However, the vascular adaptations in these mice have not been characterized. OBJECTIVE To determine the histological and functional changes in the pulmonary and carotid arteries in CAV-1-/- induced PAH. METHODS Pulmonary and carotid arteries of young (4-6 months old) and mature (9-12 months old) CAV-1-/- mice were tested and compared to normal wild type mice. RESULTS Artery stiffness increases in CAV-1-/- mice, especially the circumferential stiffness of the pulmonary arteries. Increases in stiffness were quantified by a decrease in circumferential stretch and transition strain, increases in elastic moduli, and an increase in total strain energy at physiologic strains. Changes in mechanical properties for the pulmonary artery correlated with increased collagen content while carotid artery mechanical properties correlated with decreased elastin content. CONCLUSIONS We demonstrated that an increase in artery stiffness is associated with CAV-1 deficiency-induced pulmonary hypertension. These results improve our understanding of artery remodeling in PAH.
Collapse
Affiliation(s)
- J. Moreno
- Department of Mechanical Engineering, University of Texas at San Antonio
- Biomedical Engineering Program, UTSA-UTHSCSA
| | - D. Escobedo
- Department of Medicine/Cardiology, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - C. Calhoun
- Department of Medicine/Cardiology, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - C. Jourdan Le Saux
- Department of Medicine/Cardiology, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - H. C. Han
- Department of Mechanical Engineering, University of Texas at San Antonio
- Biomedical Engineering Program, UTSA-UTHSCSA
| |
Collapse
|
16
|
Weiss D, Cavinato C, Gray A, Ramachandra AB, Avril S, Humphrey JD, Latorre M. Mechanics-driven mechanobiological mechanisms of arterial tortuosity. SCIENCE ADVANCES 2020; 6:6/49/eabd3574. [PMID: 33277255 PMCID: PMC7821897 DOI: 10.1126/sciadv.abd3574] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/22/2020] [Indexed: 05/04/2023]
Abstract
Arterial tortuosity manifests in many conditions, including hypertension, genetic mutations predisposing to thoracic aortopathy, and vascular aging. Despite evidence that tortuosity disrupts efficient blood flow and that it may be an important clinical biomarker, underlying mechanisms remain poorly understood but are widely appreciated to be largely biomechanical. Many previous studies suggested that tortuosity may arise via an elastic structural buckling instability, but the novel experimental-computational approach used here suggests that tortuosity arises from mechanosensitive, cell-mediated responses to local aberrations in the microstructural integrity of the arterial wall. In particular, computations informed by multimodality imaging show that aberrations in elastic fiber integrity, collagen alignment, and collagen turnover can lead to a progressive loss of structural stability that entrenches during the development of tortuosity. Interpreted in this way, microstructural defects or irregularities of the arterial wall initiate the condition and hypertension is a confounding factor.
Collapse
Affiliation(s)
- Dar Weiss
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Cristina Cavinato
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Authia Gray
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | | | - Stephane Avril
- Mines Saint-Etienne, Centre CIS, INSERM, U 1059 Sainbiose University of Lyon, Univ Jean Monnet, Saint-Etienne, France
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| | - Marcos Latorre
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
17
|
Abstract
Vascular tortuosity may impede blood flow, occlude the lumen, and ultimately lead to ischemia or even infarction. Mechanical loads like blood pressure, axial force, and also torsion are key factors participating in this complex mechanobiological process. The available studies on arterial torsion instability followed computational or experimental approaches, yet single available theoretical study had modeled the artery as isotropic linear elastic. This paper aim is to validate a theoretical model of arterial torsion instability against experimental data. The artery is modeled as a single-layered, nonlinear, hyperelastic, anisotropic solid, with parameters calibrated from experiment. Linear bifurcation analysis is then performed to predict experimentally measured stability margins. Uncertainties in geometrical parameters and in measured mechanical response were considered. Also, the type of rate (incremental) boundary conditions (RBCs) impact on the results was examined (e.g., dead load, fluid pressure). The predicted critical torque and twist angle followed the experimentally measured trends. The closest prediction errors in the critical torque and twist rate were 22% and 67%, respectively. Using the different RBCs incurred differences of up to 50% difference within the model predictions. The present results suggest that the model may require further improvements. However, it offers an approach that can be used to predict allowable twist levels in surgical procedures (like anastomosis and grafting) and in the design of stents for arteries subjected to high torsion levels (like the femoropopliteal arteries). It may also be instructive in understanding biomechanical processes like arterial tortuosity, kinking, and coiling.
Collapse
Affiliation(s)
- Nir Emuna
- Faculty of Aerospace Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - David Durban
- Faculty of Aerospace Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
18
|
Fazaeli S, Mirahmadi F, Everts V, Smit TH, Koolstra JH, Ghazanfari S. Alteration of structural and mechanical properties of the temporomandibular joint disc following elastase digestion. J Biomed Mater Res B Appl Biomater 2020; 108:3228-3240. [PMID: 32478918 PMCID: PMC7586824 DOI: 10.1002/jbm.b.34660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 04/05/2020] [Accepted: 05/19/2020] [Indexed: 11/09/2022]
Abstract
The temporomandibular joint disc is a fibrocartilaginous structure, composed of collagen fibers, elastin fibers, and proteoglycans. Despite the crucial role of elastin fibers in load‐bearing properties of connective tissues, its contribution in temporomandibular joint disc biomechanics has been disregarded. This study attempts to characterize the structural–functional contribution of elastin in the temporomandibular joint disc. Using elastase, we selectively perturbed the elastin fiber network in porcine temporomandibular joint discs and investigated the structural, compositional, and mechanical regional changes through: (a) analysis of collagen and elastin fibers by immunolabeling and transmission electron microscopy; (b) quantitative analysis of collagen tortuosity, cell shape, and disc volume; (c) biochemical quantification of collagen, glycosaminoglycan and elastin content; and (d) cyclic compression test. Following elastase treatment, microscopic examination revealed fragmentation of elastin fibers across the temporomandibular joint disc, with a more pronounced effect in the intermediate regions. Also, biochemical analyses of the intermediate regions showed significant depletion of elastin (50%), and substantial decrease in collagen (20%) and glycosaminoglycan (49%) content, likely due to non‐specific activity of elastase. Degradation of elastin fibers affected the homeostatic configuration of the disc, reflected in its significant volume enlargement accompanied by remarkable reduction of collagen tortuosity and cell elongation. Mechanically, elastase treatment nearly doubled the maximal energy dissipation across the intermediate regions while the instantaneous modulus was not significantly affected. We conclude that elastin fibers contribute to the restoration and maintenance of the disc resting shape and actively interact with collagen fibers to provide mechanical resilience to the temporomandibular joint disc.
Collapse
Affiliation(s)
- Sepanta Fazaeli
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Fereshteh Mirahmadi
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Vincent Everts
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Theodoor H Smit
- Department of Medical Biology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Jan H Koolstra
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Samaneh Ghazanfari
- Aachen-Maastricht Institute for Biobased Materials, Faculty of Science and Engineering, Maastricht University, Geleen, The Netherlands.,Department of Biohybrid & Medical Textiles (Biotex), RWTH Aachen University, Aachen, Germany
| |
Collapse
|
19
|
|
20
|
Sharzehee M, Fatemifar F, Han HC. Computational simulations of the helical buckling behavior of blood vessels. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2019; 35:e3277. [PMID: 31680465 PMCID: PMC7286361 DOI: 10.1002/cnm.3277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 08/27/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
Tortuous vessels are often observed in vivo and could hinder or even disrupt blood flow to distal organs. Besides genetic and biological factors, the in vivo mechanical loading seems to play a role in the formation of tortuous vessels, but the mechanism for formation of helical vessel shape remains unclear. Accordingly, the aim of this study was to investigate the biomechanical loads that trigger the occurrence of helical buckling in blood vessels using finite element analysis. Porcine carotid arteries were modeled as thick-walled cylindrical tubes using generalized Fung and Holzapfel-Gasser-Ogden constitutive models. Physiological loadings, including axial tension, lumen pressure, and axial torque, were applied. Simulations of various geometric dimensions, different constitutive models and at various levels of axial stretch ratios, lumen pressures, and twist angles were performed to identify the mechanical factors that determine the helical stability. Our results demonstrated that axial torsion can cause wringing (twist buckling) that leads to kinking or helical coiling and even looping and winding. The specific buckling patterns depend on the combination of lumen pressure, axial torque, axial tension, and the dimensions of the vessels. This study elucidates the mechanism of how blood vessels buckle under various mechanical loads and how complex mechanical loads yield helical buckling.
Collapse
Affiliation(s)
- Mohammadali Sharzehee
- Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Fatemeh Fatemifar
- Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Hai-Chao Han
- Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX, USA
- Biomedical Engineering Program, UTSA-UTHSCSA, San Antonio, TX
| |
Collapse
|
21
|
Chen AM, Karani KB, Taylor JM, Zhang B, Furthmiller A, De Vela G, Leach JL, Vadivelu S, Abruzzo TA. Cervicocerebral quantitative arterial tortuosity: a biomarker of arteriopathy in children with intracranial aneurysms. J Neurosurg Pediatr 2019; 24:389-396. [PMID: 31349231 DOI: 10.3171/2019.5.peds1982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/21/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Although intracranial arterial aneurysms (IAAs) of childhood are usually idiopathic, it is possible that underlying arteriopathy escapes detection when using conventional diagnostic tools. Quantitative arterial tortuosity (QAT) has been studied as a biomarker of arteriopathy. The authors analyzed cervicocerebral QAT in children with idiopathic IAAs to assess the possibility of arteriopathy. METHODS Cases were identified by text-string searches of imaging reports spanning the period January 1993 through June 2017. QAT of cervicocerebral arterial segments was measured from cross-sectional studies using image-processing software. Other imaging and clinical data were confirmed by retrospective electronic record review. Children with idiopathic IAAs and positive case controls, with congenital arteriopathy differentiated according to aneurysm status (with and without an aneurysm), were compared to each other and to healthy controls without vascular risk factors. RESULTS Cervicocerebral QAT was measured in 314 children: 24 with idiopathic IAAs, 163 with congenital arteriopathy (including 14 arteriopathic IAAs), and 127 healthy controls. QAT of all vertebrobasilar segments was larger in children with IAAs (idiopathic and arteriopathic forms) (p < 0.05). In children with congenital arteriopathy without an aneurysm, QAT was decreased for the distal cervical vertebral arteries and increased for the supraspinal vertebral artery relative to healthy children. QAT of specific cervicocerebral segments correlated with IAA size and rupture status. CONCLUSIONS Cervicocerebral QAT is a biomarker of arteriopathy in children with IAA, even in the absence of other disease markers. Additional findings suggest a correlation of cervicocerebral QAT with IAA size and rupture status and with the presence of IAA in children with congenital arteriopathy.
Collapse
Affiliation(s)
- Alan M Chen
- 1Radiology Associates of Tallahassee, Tallahassee, Florida
| | | | - J Michael Taylor
- Divisions of3Neurology
- 6University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Bin Zhang
- 4Biostatistics and Epidemiology, and
- 6University of Cincinnati College of Medicine, Cincinnati, Ohio
| | | | | | - James L Leach
- 2Department of Radiology and
- 6University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Sudhakar Vadivelu
- 2Department of Radiology and
- 5Neurosurgery, Cincinnati Children's Hospital Medical Center
- 6University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Todd A Abruzzo
- 7Department of Radiology, Phoenix Children's Medical Group
- 8Mayo Clinic College of Medicine; and
- 9University of Arizona, College of Medicine, Phoenix, Arizona
| |
Collapse
|
22
|
Fulop GA, Tarantini S, Yabluchanskiy A, Molnar A, Prodan CI, Kiss T, Csipo T, Lipecz A, Balasubramanian P, Farkas E, Toth P, Sorond F, Csiszar A, Ungvari Z. Role of age-related alterations of the cerebral venous circulation in the pathogenesis of vascular cognitive impairment. Am J Physiol Heart Circ Physiol 2019; 316:H1124-H1140. [PMID: 30848677 PMCID: PMC6580383 DOI: 10.1152/ajpheart.00776.2018] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/31/2019] [Accepted: 02/18/2019] [Indexed: 02/07/2023]
Abstract
There has been an increasing appreciation of the role of vascular contributions to cognitive impairment and dementia (VCID) associated with old age. Strong preclinical and translational evidence links age-related dysfunction and structural alterations of the cerebral arteries, arterioles, and capillaries to the pathogenesis of many types of dementia in the elderly, including Alzheimer's disease. The low-pressure, low-velocity, and large-volume venous circulation of the brain also plays critical roles in the maintenance of homeostasis in the central nervous system. Despite its physiological importance, the role of age-related alterations of the brain venous circulation in the pathogenesis of vascular cognitive impairment and dementia is much less understood. This overview discusses the role of cerebral veins in the pathogenesis of VCID. Pathophysiological consequences of age-related dysregulation of the cerebral venous circulation are explored, including blood-brain barrier disruption, neuroinflammation, exacerbation of neurodegeneration, development of cerebral microhemorrhages of venous origin, altered production of cerebrospinal fluid, impaired function of the glymphatics system, dysregulation of cerebral blood flow, and ischemic neuronal dysfunction and damage. Understanding the age-related functional and phenotypic alterations of the cerebral venous circulation is critical for developing new preventive, diagnostic, and therapeutic approaches to preserve brain health in older individuals.
Collapse
Affiliation(s)
- Gabor A Fulop
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Heart and Vascular Center, Semmelweis University , Budapest , Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Andrea Molnar
- Heart and Vascular Center, Semmelweis University , Budapest , Hungary
| | - Calin I Prodan
- Veterans Affairs Medical Center , Oklahoma City, Oklahoma
- Department of Neurology, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Vascular Cognitive Impairment Program, Department of Medical Physics and Informatics, University of Szeged , Szeged , Hungary
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Agnes Lipecz
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Eszter Farkas
- Vascular Cognitive Impairment Program, Department of Medical Physics and Informatics, University of Szeged , Szeged , Hungary
| | - Peter Toth
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Cerebrovascular Laboratory, Department of Neurosurgery and Szentagothai Research Center, University of Pecs Medical School , Pecs , Hungary
| | - Farzaneh Sorond
- Department of Neurology, Northwestern University , Chicago, Illinois
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Vascular Cognitive Impairment Program, Department of Medical Physics and Informatics, University of Szeged , Szeged , Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Vascular Cognitive Impairment Program, Department of Medical Physics and Informatics, University of Szeged , Szeged , Hungary
- Semmelweis University, Department of Pulmonology , Budapest , Hungary
| |
Collapse
|
23
|
Cameron SJ, Russell HM, Owens AP. Antithrombotic therapy in abdominal aortic aneurysm: beneficial or detrimental? Blood 2018; 132:2619-2628. [PMID: 30228233 PMCID: PMC6302498 DOI: 10.1182/blood-2017-08-743237] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 09/10/2018] [Indexed: 12/13/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a degenerative vascular pathology resulting in significant morbidity and mortality in older adults due to rupture and sudden death. Despite 150 000 new cases and nearly 15 000 deaths annually, the only approved treatment of AAA is surgical or endovascular intervention when the risk for aortic rupture is increased. The goal of the scientific community is to develop novel pharmaceutical treatment strategies to reduce the need for surgical intervention. Because most clinically relevant AAAs contain a complex structure of fibrin, inflammatory cells, platelets, and red blood cells in the aneurysmal sac known as an intraluminal thrombus (ILT), antithrombotic therapies have emerged as potential pharmaceutical agents for the treatment of AAA progression. However, the efficacy of these treatments has not been shown, and the effects of shrinking the ILT may be as detrimental as they are beneficial. This review discusses the prospect of anticoagulant and antiplatelet (termed collectively as antithrombotic) therapies in AAA. Herein, we discuss the role of the coagulation cascade and platelet activation in human and animal models of AAA, the composition of ILT in AAA, a possible role of the ILT in aneurysm stabilization, and the implications of antithrombotic drugs in AAA treatment.
Collapse
Affiliation(s)
- Scott J Cameron
- Department of Medicine (Cardiology) and
- Department of Surgery (Cardiac Surgery), University of Rochester School of Medicine, Rochester, NY; and
| | - Hannah M Russell
- Division of Cardiovascular Health and Disease and
- Pathobiology and Molecular Medicine, Department of Internal Medicine, The University of Cincinnati College of Medicine, Cincinnati, OH
| | - A Phillip Owens
- Division of Cardiovascular Health and Disease and
- Pathobiology and Molecular Medicine, Department of Internal Medicine, The University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
24
|
Hassan AK, Abd–El Rahman H, Hassan SG, Ahmed TA, Youssef AAA. Validity of tortuosity severity index in chest pain patients with abnormal exercise test and normal coronary angiography. Egypt Heart J 2018; 70:381-387. [PMID: 30591760 PMCID: PMC6303525 DOI: 10.1016/j.ehj.2018.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 07/14/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Coronary tortuosity (CT) had different definitions and scores in literature with unclear pathophysiological impact. OBJECTIVES To study degree of CT and it's relation to ischemic changes in patients with angina but normal coronary angiography (CA). METHODS We conducted a prospective study at University hospitals between May 2016 and January 2017. We included 200 consecutive patients who underwent CA due to chest pain assumed to be of cardiac origin, and their CA was normal (no diameter stenosis >30%, nor myocardial bridging). Patients were prospectively divided into 2 groups based on the presence (n = 113) or absence (n = 87) of ischemic changes during stress study and compared for clinical, echocardiographic and CA characteristics. A newly proposed Tortuosity Severity Index (TSI) was developed into significant (mild/moderate CT with more than 4 curvatures in total, or severe/extreme CT with any number of curvatures) or not significant TSI (mild CT with curvatures less than or equal to 4 curvatures in total). RESULTS Patients with ischemic changes had the highest rate of CT (76.5 vs 18%, p = 0.004) compared to those without. CT mostly affects the left anterior descending (LAD) coronary artery in mid and distal segments. Females, elderly, and hypertensives with left ventricular hypertrophy were strongly related to CT. Multivariate logistic regression analysis identified CT with significant TSI as the only predictor of ischemic changes in these patients (OR = 6.2, CI = 2.5-15.3, P = <0.001). CONCLUSIONS Coronary tortuosity is a strong predictor of anginal pain among patients with normal CA, despite positive stress study. This finding is more pronounced among elderly, hypertensive female patients.
Collapse
Affiliation(s)
- Ayman K.M. Hassan
- Department of Cardiology, Faculty of Medicine, Assiut University, Egypt
| | | | | | | | | |
Collapse
|
25
|
Abstract
The stability of the arteries under in vivo pressure and axial tension loads is essential to normal arterial function, and lumen collapse due to buckling can hinder the blood flow. The objective of this study was to develop the lumen buckling equation for nonlinear anisotropic thick-walled arteries to determine the effect of axial tension. The theoretical equation was developed using exponential Fung strain function, and the effects of axial tension and residual stress on the critical buckling pressure were illustrated for porcine coronary arteries. The buckling behavior was also simulated using finite-element analysis. Our results demonstrated that lumen collapse of arteries could occur when the transmural pressure is negative and exceeded a critical value. This value depends upon the axial stretch ratio and material properties of the arterial wall. Axial tensions show a biphasic effect on the critical buckling pressure. The lumen aspect ratio of arteries increases nonlinearly with increasing external pressure beyond the critical value as the lumen collapses. These results enhance our understanding of artery lumen collapse behavior.
Collapse
|
26
|
Khosravani-Rudpishi M, Akhavan-Khaleghi N, Hosseinsabet A. Two-dimensional speckle-tracking echocardiographic evaluation of the longitudinal deformation of the left ventricular myocardium in patients with severe coronary artery tortuosity. JOURNAL OF CLINICAL ULTRASOUND : JCU 2018; 46:467-474. [PMID: 29683198 DOI: 10.1002/jcu.22597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/15/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
PURPOSE Coronary artery tortuosity (CAT) is an anatomical condition in which epicardial coronary arteries have abnormal curves or spiral courses. Although correlated with higher rates of positive stress test, its effects on the myocardial function remain to be clearly defined. METHODS We included in this cross-sectional study and evaluated with 2D speckle-tracking echocardiography 40 consecutive patients admitted to our hospital for selective coronary angiography which showed severe CAT without significant epicardial coronary artery stenosis, and 40 consecutive subjects matched for age, hypertension, and diabetes in whom selective coronary angiography showed neither CAT nor significant epicardial coronary artery stenosis. RESULTS Systolic strain, strain rate, and early and late diastolic strain rates were not significantly different between the 2 groups, even after adjustment for potential confounding variables. CONCLUSION The 2D speckle-tracking echocardiography-derived indices of longitudinal deformation of the left ventricular myocardium were not significantly different between the patients with severe CAT and controls.
Collapse
Affiliation(s)
| | | | - Ali Hosseinsabet
- Cardiology Department, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, I.R., Iran
| |
Collapse
|
27
|
Sharzehee M, Khalafvand SS, Han HC. Fluid-structure interaction modeling of aneurysmal arteries under steady-state and pulsatile blood flow: a stability analysis. Comput Methods Biomech Biomed Engin 2018; 21:219-231. [PMID: 29446991 PMCID: PMC5879495 DOI: 10.1080/10255842.2018.1439478] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tortuous aneurysmal arteries are often associated with a higher risk of
rupture but the mechanism remains unclear. The goal of this study was to analyze
the buckling and post-buckling behaviors of aneurysmal arteries under pulsatile
flow. To accomplish this goal, we analyzed the buckling behavior of model
carotid and abdominal aorta with aneurysms by utilizing fluid-structure
interaction (FSI) method with realistic waveforms boundary conditions. FSI
simulations were done under steady-state and pulsatile flow for normal (1.5) and
reduced (1.3) axial stretch ratios to investigate the influence of aneurysm,
pulsatile lumen pressure and axial tension on stability. Our results indicated
that aneurysmal artery buckled at the critical buckling pressure and its
deflection nonlinearly increased with increasing lumen pressure. Buckling
elevates the peak stress (up to 118%). The maximum aneurysm wall stress
at pulsatile FSI flow was (29%) higher than under static pressure at the
peak lumen pressure of 130 mmHg. Buckling results show an increase in lumen
shear stress at the inner side of the maximum deflection. Vortex flow was
dramatically enlarged with increasing lumen pressure and artery diameter.
Aneurysmal arteries are more susceptible than normal arteries to mechanical
instability which causes high stresses in the aneurysm wall that could lead to
aneurysm rupture.
Collapse
Affiliation(s)
- Mohammadali Sharzehee
- a Department of Mechanical Engineering , The University of Texas at San Antonio , San Antonio , TX , USA
| | | | - Hai-Chao Han
- a Department of Mechanical Engineering , The University of Texas at San Antonio , San Antonio , TX , USA
| |
Collapse
|
28
|
Kim BJ, Lee SH, Kwun BD, Kang HG, Hong KS, Kang DW, Kim JS, Kwon SU. Intracranial Aneurysm Is Associated with High Intracranial Artery Tortuosity. World Neurosurg 2018; 112:e876-e880. [PMID: 29425982 DOI: 10.1016/j.wneu.2018.01.196] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND Although intracranial aneurysms (IAs) are focal bulges of arterial walls, an uncharacterized predisposing factor that affects cerebral arteries may increase tortuosity of intracranial arteries in patients with IAs. METHODS Subjects who underwent routine health examinations and magnetic resonance angiography at a university hospital health promotion center were enrolled. Age- and sex-matched control subjects were selected from among individuals who did not have IAs. Tortuosity of right and left middle cerebral arteries and basilar artery (BA) was measured. Distant factor [(arc/chord ratio × 100) - 100] was used to estimate tortuosity. Vascular risk factors and intracranial arterial tortuosities were compared between subjects with IAs and control subjects. Independent factors associated with intracranial artery tortuosity were also investigated. RESULTS Of 18,954 (1.9%) subjects, 367 exhibited IAs. The prevalence of hypertension (P = 0.01) and current smoking (P = 0.01) were higher in subjects with IAs than in control subjects. The BA tortuosity was greater in subjects with IAs compared with control subjects (9.0 ± 8.1 vs. 5.5 ± 7.2; P < 0.001). In addition to hypertension, smoking, and absence of coronary artery disease, BA tortuosity (P < 0.001) was independently associated with presence of IAs. The presence of IA (P < 0.001) and absence of coronary artery disease (P = 0.002) were independently associated with high BA tortuosity. CONCLUSIONS Patients with IAs exhibit a more tortuous BA. A predisposing factor weakening the cerebrovasculature in patients with IAs may exist and may manifest as high tortuosity of intracranial arteries.
Collapse
Affiliation(s)
- Bum Joon Kim
- Department of Neurology, Kyung Hee University Hospital, Seoul, Korea
| | - Sung Ho Lee
- Department of Neurosurgery, Kyung Hee University Hospital, Seoul, Korea
| | - Byung Duk Kwun
- Department of Neurosurgery, Kyung Hee University Hospital, Seoul, Korea
| | - Hyun Goo Kang
- Department of Neurology, Chosun University, Gwang-ju, Korea
| | - Keun-Sik Hong
- Department of Neurology, Ilsan Paik Hospital, Inje University, Ilsan, Korea
| | - Dong-Wha Kang
- Department of Neurology, Asan Medical Center, University of Ulsan, Seoul, Korea
| | - Jong S Kim
- Department of Neurology, Asan Medical Center, University of Ulsan, Seoul, Korea
| | - Sun U Kwon
- Department of Neurology, Asan Medical Center, University of Ulsan, Seoul, Korea.
| |
Collapse
|
29
|
Haemodynamic Recovery Properties of the Torsioned Testicular Artery Lumen. Sci Rep 2017; 7:15570. [PMID: 29138449 PMCID: PMC5686114 DOI: 10.1038/s41598-017-15680-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/31/2017] [Indexed: 11/08/2022] Open
Abstract
Testicular artery torsion (twisting) is one such severe vascular condition that leads spermatic cord injury. In this study, we investigate the recovery response of a torsioned ram testicular artery in an isolated organ-culture flow loop with clinically relevant twisting modes (90°, 180°, 270° and 360° angles). Quantitative optical coherence tomography technique was employed to track changes in the lumen diameter, wall thickness and the three-dimensional shape of the vessel in the physiological pressure range (10-50 mmHg). As a control, pressure-flow characteristics of the untwisted arteries were studied when subjected to augmented blood flow conditions with physiological flow rates up to 36 ml/min. Both twist and C-shaped buckling modes were observed. Acute increase in pressure levels opened the narrowed lumen of the twisted arteries noninvasively at all twist angles (at ∼22 mmHg and ∼35 mmHg for 360°-twisted vessels during static and dynamic flow experiments, respectively). The association between the twist-opening flow rate and the vessel diameter was greatly influenced by the initial twist angle. The biomechanical characteristics of the normal (untwisted) and torsioned testicular arteries supported the utilization of blood flow augmentation as an effective therapeutic approach to modulate the vessel lumen and recover organ reperfusion.
Collapse
|
30
|
Arterial wall remodeling under sustained axial twisting in rats. J Biomech 2017; 60:124-133. [PMID: 28693818 DOI: 10.1016/j.jbiomech.2017.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 06/13/2017] [Accepted: 06/14/2017] [Indexed: 01/03/2023]
Abstract
Blood vessels often experience torsion along their axes and it is essential to understand their biological responses and wall remodeling under torsion. To this end, a rat model was developed to investigate the arterial wall remodeling under sustained axial twisting in vivo. Rat carotid arteries were twisted at 180° along the longitudinal axis through a surgical procedure and maintained for different durations up to 4weeks. The wall remodeling in these twisted arteries was examined using histology, immunohistochemistry and fluorescent microscopy. Our data showed that arteries remodeled under twisting in a time-dependent manner during the 4weeks post-surgery. Cell proliferation, MMP-2 and MMP-9 expressions, medial wall thickness and lumen diameter increased while collagen to elastin ratio decreased. The size and number of internal elastic lamina fenestrae increased with elongated shapes, while the endothelial cells elongated and aligned towards the blood flow direction gradually. These results demonstrated that sustained axial twisting results in artery remodeling in vivo. The rat carotid artery twisting model is an effective in vivo model for studying arterial wall remodeling under long-term torsion. These results enrich our understanding of vascular biology and arterial wall remodeling under mechanical stresses.
Collapse
|
31
|
Garcia JR, Sanyal A, Fatemifar F, Mottahedi M, Han HC. Twist buckling of veins under torsional loading. J Biomech 2017; 58:123-130. [PMID: 28526174 DOI: 10.1016/j.jbiomech.2017.04.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/31/2017] [Accepted: 04/24/2017] [Indexed: 10/19/2022]
Abstract
Veins are often subjected to torsion and twisted veins can hinder and disrupt normal blood flow but their mechanical behavior under torsion is poorly understood. The objective of this study was to investigate the twist deformation and buckling behavior of veins under torsion. Twist buckling tests were performed on porcine internal jugular veins (IJVs) and human great saphenous veins (GSVs) at various axial stretch ratio and lumen pressure conditions to determine their critical buckling torques and critical buckling twist angles. The mechanical behavior under torsion was characterized using a two-fiber strain energy density function and the buckling behavior was then simulated using finite element analysis. Our results demonstrated that twist buckling occurred in all veins under excessive torque characterized by a sudden kink formation. The critical buckling torque increased significantly with increasing lumen pressure for both porcine IJV and human GSV. But lumen pressure and axial stretch had little effect on the critical twist angle. The human GSVs are stiffer than the porcine IJVs. Finite element simulations captured the buckling behavior for individual veins under simultaneous extension, inflation, and torsion with strong correlation between predicted critical buckling torques and experimental data (R2=0.96). We conclude that veins can buckle under torsion loading and the lumen pressure significantly affects the critical buckling torque. These results improve our understanding of vein twist behavior and help identify key factors associated in the formation of twisted veins.
Collapse
Affiliation(s)
- Justin R Garcia
- Department of Mechanical Engineering, University of Texas at San Antonio, USA; Biomedical Engineering Program, UTSA-UTHSCSA, USA
| | - Arnav Sanyal
- Department of Mechanical Engineering, University of Texas at San Antonio, USA
| | - Fatemeh Fatemifar
- Department of Mechanical Engineering, University of Texas at San Antonio, USA
| | - Mohammad Mottahedi
- Department of Mechanical Engineering, University of Texas at San Antonio, USA
| | - Hai-Chao Han
- Department of Mechanical Engineering, University of Texas at San Antonio, USA; Biomedical Engineering Program, UTSA-UTHSCSA, USA; Institute of Mechanobiology & Medical Engineering, Shanghai Jiaotong University, China.
| |
Collapse
|
32
|
Noble C, Smulders N, Green NH, Lewis R, Carré MJ, Franklin SE, MacNeil S, Taylor ZA. Creating a model of diseased artery damage and failure from healthy porcine aorta. J Mech Behav Biomed Mater 2016; 60:378-393. [DOI: 10.1016/j.jmbbm.2016.02.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/05/2016] [Accepted: 02/10/2016] [Indexed: 01/24/2023]
|
33
|
Kim JS, Kim YJ, Ahn SH, Kim BJ. Location of cerebral atherosclerosis: Why is there a difference between East and West? Int J Stroke 2016; 13:35-46. [PMID: 27145795 DOI: 10.1177/1747493016647736] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Intracranial atherosclerosis is more prevalent in Asian patients, whereas extracranial atherosclerosis is more common in individuals from western countries. The reasons for this discrepancy remain unknown. We reviewed the relevant literature and discussed the currently available information. Although the study population, diagnostic modality, and risk factor definitions differ between studies, hypercholesterolemia is more correlated with extracranial atherosclerosis than intracranial atherosclerosis. The difference in hypercholesterolemia prevalence is one of the main reasons for racial differences. Intracranial arteries contain higher antioxidant level than extracranial arteries and may be more vulnerable to risk factors for antioxidant depletion (e.g., metabolic syndrome and diabetes mellitus). Intracranial arteries may be vulnerable to factors associated with hemodynamic stress (e.g., advanced, salt-retaining hypertension and arterial tortuosity) because of a smaller diameter, thinner media and adventitia, and fewer elastic medial fibers than extracranial arteries. Additionally, non-atherosclerotic arterial diseases (e.g., moyamoya disease) that commonly occur in the intracranial arteries of East Asians may contaminate the reports of intracranial atherosclerosis cases. Genes, including RNF 213 or those associated with high salt sensitivity, may also explain racial differences in atherosclerotic location. To understand racial differences, further well-designed studies on various risk and genetic factors should be performed in patients with cerebral atherosclerosis. Additionally, improvements in diagnostic accuracy via advancements in imaging technologies and increased genetic data will aid in the differentiation of atherosclerosis from non-atherosclerotic intracranial diseases.
Collapse
Affiliation(s)
- Jong S Kim
- Department of Neurology, Asan Medical Center, University of Ulsan, Seoul, South Korea
| | - Yeon-Jung Kim
- Department of Neurology, Asan Medical Center, University of Ulsan, Seoul, South Korea
| | - Sung-Ho Ahn
- Department of Neurology, Asan Medical Center, University of Ulsan, Seoul, South Korea
| | - Bum J Kim
- Department of Neurology, Asan Medical Center, University of Ulsan, Seoul, South Korea
| |
Collapse
|
34
|
Tau pathology-dependent remodelling of cerebral arteries precedes Alzheimer's disease-related microvascular cerebral amyloid angiopathy. Acta Neuropathol 2016; 131:737-52. [PMID: 26988843 PMCID: PMC4835519 DOI: 10.1007/s00401-016-1560-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 03/05/2016] [Accepted: 03/06/2016] [Indexed: 01/18/2023]
Abstract
Alzheimer’s disease (AD) is characterised by pathologic cerebrovascular remodelling. Whether this occurs already before disease onset, as may be indicated by early Braak tau-related cerebral hypoperfusion and blood–brain barrier (BBB) impairment found in previous studies, remains unknown. Therefore, we systematically quantified Braak tau stage- and cerebral amyloid angiopathy (CAA)-dependent alterations in the alpha-smooth muscle actin (α-SMA), collagen, and elastin content of leptomeningeal arterioles, small arteries, and medium-sized arteries surrounding the gyrus frontalis medialis (GFM) and hippocampus (HIPP), including the sulci, of 17 clinically and pathologically diagnosed AD subjects (Braak stage IV–VI) and 28 non-demented control subjects (Braak stage I–IV). GFM and HIPP paraffin sections were stained for general collagen and elastin with the Verhoeff–van Gieson stain; α-SMA and CAA/amyloid β (Aβ) were detected using immunohistochemistry. Significant arterial elastin degradation was observed from Braak stage III onward and correlated with Braak tau pathology (ρ = 0.909, 95 % CI 0.370 to 0.990, p < 0.05). This was accompanied by an increase in neutrophil elastase expression by α-SMA-positive cells in the vessel wall. Small and medium-sized arteries exhibited significant CAA-independent α-SMA loss starting between Braak stage I and II–III, along with accumulation of phosphorylated paired helical filament (PHF) tau in the perivascular space of intraparenchymal vessels. α-SMA remained at the decreased level throughout the later Braak stages. In contrast, arterioles exhibited significant α-SMA loss only at Braak stage V and VI/in AD subjects, which was CAA-dependent/correlated with CAA burden (ρ = −0.422, 95 % CI −0.557 to −0.265, p < 0.0001). Collagen content was only significantly changed in small arteries. Our data indicate that vessel wall remodelling of leptomeningeal arteries is an early-onset, Braak tau pathology-dependent process unrelated to CAA and AD, which potentially may contribute to downstream CAA-dependent microvascular pathology in AD.
Collapse
|
35
|
Artery buckling analysis using a two-layered wall model with collagen dispersion. J Mech Behav Biomed Mater 2016; 60:515-524. [PMID: 27031686 DOI: 10.1016/j.jmbbm.2016.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/24/2016] [Accepted: 03/09/2016] [Indexed: 01/23/2023]
Abstract
Artery buckling has been proposed as a possible cause for artery tortuosity associated with various vascular diseases. Since microstructure of arterial wall changes with aging and diseases, it is essential to establish the relationship between microscopic wall structure and artery buckling behavior. The objective of this study was to developed arterial buckling equations to incorporate the two-layered wall structure with dispersed collagen fiber distribution. Seven porcine carotid arteries were tested for buckling to determine their critical buckling pressures at different axial stretch ratios. The mechanical properties of these intact arteries and their intima-media layer were determined via pressurized inflation test. Collagen alignment was measured from histological sections and modeled by a modified von-Mises distribution. Buckling equations were developed accordingly using microstructure-motivated strain energy function. Our results demonstrated that collagen fibers disperse around two mean orientations symmetrically to the circumferential direction (39.02°±3.04°) in the adventitia layer; while aligning closely in the circumferential direction (2.06°±3.88°) in the media layer. The microstructure based two-layered model with collagen fiber dispersion described the buckling behavior of arteries well with the model predicted critical pressures match well with the experimental measurement. Parametric studies showed that with increasing fiber dispersion parameter, the predicted critical buckling pressure increases. These results validate the microstructure-based model equations for artery buckling and set a base for further studies to predict the stability of arteries due to microstructural changes associated with vascular diseases and aging.
Collapse
|
36
|
Kamenskiy A, Seas A, Bowen G, Deegan P, Desyatova A, Bohlim N, Poulson W, MacTaggart J. In situ longitudinal pre-stretch in the human femoropopliteal artery. Acta Biomater 2016; 32:231-237. [PMID: 26766633 DOI: 10.1016/j.actbio.2016.01.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 12/21/2015] [Accepted: 01/04/2016] [Indexed: 11/30/2022]
Abstract
In situ longitudinal (axial) pre-stretch (LPS) plays a fundamental role in the mechanics of the femoropopliteal artery (FPA). It conserves energy during pulsation and prevents buckling of the artery during limb movement. We investigated how LPS is affected by demographics and risk factors, and how these patient characteristics associate with the structural and physiologic features of the FPA. LPS was measured in n=148 fresh human FPAs (14-80 years old). Mechanical properties were characterized with biaxial extension and histopathological characteristics were quantified with Verhoeff-Van Gieson Staining. Constitutive modeling was used to calculate physiological stresses and stretches which were then analyzed in the context of demographics, risk factors and structural characteristics. Age had the strongest negative effect (r=-0.812, p<0.01) on LPS and could alone explain 66% of LPS variability. Male gender, higher body mass index, hypertension, diabetes, coronary artery disease, dyslipidemia and tobacco use had negative effects on LPS, but only the effect of tobacco was not associated with aging. FPAs with less pre-stretch had thicker medial layers, but thinner intramural elastic fibers with less dense and more fragmented external elastic laminae. Elastin degradation was associated with decreased physiological tethering force and longitudinal stress, while circumferential stress remained constant. FPA wall pathology was negatively associated with LPS (r=-0.553, p<0.01), but the effect was due primarily to aging. LPS in the FPA may serve as an energy reserve for adaptive remodeling. Reduction of LPS due to degradation and fragmentation of intramural longitudinal elastin during aging can be accelerated in tobacco users. STATEMENT OF SIGNIFICANCE This work studies in situ longitudinal pre-stretch (LPS) in the human femoropopliteal artery. LPS has a fundamental role in arterial mechanics, but is rather poorly studied due to lack of direct in vivo measurement method. We have investigated LPS in the n=148 human femoropopliteal arteries in the context of subject demographics and risk factors, and structural and physiologic characteristics of the artery. Our results demonstrate that LPS reduces with age due to degradation and fragmentation of intramural elastin. LPS may serve as an energy reserve for adaptive remodeling, and reduction of LPS can be accelerated in tobacco users.
Collapse
Affiliation(s)
- Alexey Kamenskiy
- Dept of Surgery, University of Nebraska Medical Center, Omaha, NE, United States.
| | - Andreas Seas
- Dept of Chemical Engineering, University of Maryland, Baltimore County, MD, United States
| | - Grant Bowen
- Dept of Surgery, University of Nebraska Medical Center, Omaha, NE, United States
| | - Paul Deegan
- Dept of Surgery, University of Nebraska Medical Center, Omaha, NE, United States
| | - Anastasia Desyatova
- Dept of Surgery, University of Nebraska Medical Center, Omaha, NE, United States; Dept of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Nick Bohlim
- Dept of Surgery, University of Nebraska Medical Center, Omaha, NE, United States
| | - William Poulson
- Dept of Surgery, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jason MacTaggart
- Dept of Surgery, University of Nebraska Medical Center, Omaha, NE, United States.
| |
Collapse
|
37
|
Buckling Reduces eNOS Production and Stimulates Extracellular Matrix Remodeling in Arteries in Organ Culture. Ann Biomed Eng 2016; 44:2840-50. [PMID: 26913855 DOI: 10.1007/s10439-016-1571-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 02/17/2016] [Indexed: 12/26/2022]
Abstract
Artery buckling alters the fluid shear stress and wall stress in the artery but its temporal effect on vascular wall remodeling is poorly understood. The purpose of this study was to investigate the early effect of artery buckling on endothelial nitric oxide synthase (eNOS) expression and extracellular matrix remodeling. Bilateral porcine carotid arteries were maintained in an ex vivo organ culture system with and without buckling while under the same physiological pressure and flow rate for 3-7 days. Matrix metalloproteinase-2 (MMP-2), MMP-9, fibronectin, elastin, collagen I, III and IV, tissue inhibitor of metalloproteinase-2 (TIMP-2), and eNOS were determined using Western blotting and immunohistochemistry. Our results showed that MMP-2 expression level was significantly higher in buckled arteries than in the controls and higher at the inner curve than at the outer curve of buckled arteries, while collagen IV content showed an opposite trend, suggesting that artery buckling increased MMP-2 expression and collagen IV degradation in a site-specific fashion. However, no differences for MMP-9, fibronectin, elastin, collagen I, III, and TIMP-2 were observed among the outer and inner curve sides of buckled arteries and straight controls. Additionally, eNOS expression was significantly decreased in buckled arteries. These results suggest that artery buckling triggers uneven wall remodeling that could lead to development of tortuous arteries.
Collapse
|
38
|
Xiao Y, Hayman D, Khalafvand SS, Lindsey ML, Han HC. Artery buckling stimulates cell proliferation and NF-κB signaling. Am J Physiol Heart Circ Physiol 2015; 307:H542-51. [PMID: 24929858 DOI: 10.1152/ajpheart.00079.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Tortuous carotid arteries are often seen in aged populations and are associated with atherosclerosis, but the underlying mechanisms to explain this preference are unclear. Artery buckling has been suggested as one potential mechanism for the development of tortuous arteries. The objective of this study, accordingly, was to determine the effect of buckling on cell proliferation and associated NF-κB activation in arteries. We developed a technique to generate buckling in porcine carotid arteries using long artery segments in organ culture without changing the pressure, flow rate, and axial stretch ratio. Using this technique, we examined the effect of buckling on arterial wall remodeling in 4-day organ culture under normal and hypertensive pressures. Cell proliferation, NF-κB p65, IκB-α, ERK1/2, and caspase-3 were detected using immunohistochemistry staining and immunoblot analysis. Our results showed that cell proliferation was elevated 5.8-fold in the buckling group under hypertensive pressure (n = 7, P < 0.01) with higher levels of NF-κB nuclear translocation and IκB-α degradation (P < 0.05 for both). Greater numbers of proliferating cells were observed on the inner curve side of the buckled arteries compared with the outer curve side (P < 0.01). NF-κB colocalized with proliferative nuclei. Computational simulations using a fluid-structure interaction model showed reduced wall stress on the inner side of buckled arteries and elevated wall stress on the outer side. We conclude that arterial buckling promotes site-specific wall remodeling with increased cell proliferation and NF-κB activation. These findings shed light on the biomechanical and molecular mechanisms of the pathogenesis of atherosclerosis in tortuous arteries.
Collapse
|
39
|
Vandiver RM. Buckling instability in arteries. J Theor Biol 2015; 371:1-8. [DOI: 10.1016/j.jtbi.2015.01.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 01/27/2015] [Accepted: 01/28/2015] [Indexed: 11/29/2022]
|
40
|
Munger KA, Downey TM, Haberer B, Pohlson K, Marshall LL, Utecht RE. A novel photochemical cross-linking technology to improve luminal gain, vessel compliance, and buckling post-angioplasty in porcine arteries. J Biomed Mater Res B Appl Biomater 2015; 104:375-84. [PMID: 25823876 DOI: 10.1002/jbm.b.33373] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 11/25/2014] [Accepted: 01/09/2015] [Indexed: 01/18/2023]
Abstract
UNLABELLED Development of substituted 1,8-naphthalimides for photochemical cross-linking of biomolecules is the focus of this research. This study describes limited cross-linking of collagen in the artery wall to control recoil and buckling in arteries following balloon angioplasty. Isolated porcine arteries were overstretched (25%) with balloon angioplasty (BA) +/- light-activated naphthalimide treatment (NVS). Lumen size and recoil were measured as retention of stretch after angioplasty. Cross-sectional compliance and distensibility coefficients were measured as slope of cross-sectional area versus increasing hydrostatic pressure. Buckling was measured, with 30% axial pre-stretch and 200 mmHg, as deviation from the center line. Electron microscopy evaluation of collagen fibers was conducted. RESULTS Uninjured arteries have low compliance and low levels of buckling, whereas the BA-injured arteries demonstrated much greater compliance and buckling behavior. Treatment of the injured artery with NVS reduced buckling and demonstrated compliance midway between the two groups while retaining the increased luminal diameter imparted by angioplasty compared to untreated vessels. In summary, limited collagen cross-linking with NVS treatment resulted in lumen retention, as well as improved compliance without the accompanying rigidity and stiffness of conventional stent therapy or current cross-linking materials. This treatment shows great promise for dilation, repair and strengthening of arteries damaged by injury or vascular disease.
Collapse
Affiliation(s)
- Karen A Munger
- Avera Research Institute, Applied Research, Sioux Falls, South Dakota, 57017
| | | | | | | | | | | |
Collapse
|
41
|
Saeid Khalafvand S, Han HC. Stability of carotid artery under steady-state and pulsatile blood flow: a fluid-structure interaction study. J Biomech Eng 2015; 137:061007. [PMID: 25761257 DOI: 10.1115/1.4030011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Indexed: 11/08/2022]
Abstract
It has been shown that arteries may buckle into tortuous shapes under lumen pressure, which in turn could alter blood flow. However, the mechanisms of artery instability under pulsatile flow have not been fully understood. The objective of this study was to simulate the buckling and post-buckling behaviors of the carotid artery under pulsatile flow using a fully coupled fluid-structure interaction (FSI) method. The artery wall was modeled as a nonlinear material with a two-fiber strain-energy function. FSI simulations were performed under steady-state flow and pulsatile flow conditions with a prescribed flow velocity profile at the inlet and different pressures at the outlet to determine the critical buckling pressure. Simulations were performed for normal (160 ml/min) and high (350 ml/min) flow rates and normal (1.5) and reduced (1.3) axial stretch ratios to determine the effects of flow rate and axial tension on stability. The results showed that an artery buckled when the lumen pressure exceeded a critical value. The critical mean buckling pressure at pulsatile flow was 17-23% smaller than at steady-state flow. For both steady-state and pulsatile flow, the high flow rate had very little effect (<5%) on the critical buckling pressure. The fluid and wall stresses were drastically altered at the location with maximum deflection. The maximum lumen shear stress occurred at the inner side of the bend and maximum tensile wall stresses occurred at the outer side. These findings improve our understanding of artery instability in vivo.
Collapse
|
42
|
Luetkemeyer CM, James RH, Devarakonda ST, Le VP, Liu Q, Han HC, Wagenseil JE. Critical buckling pressure in mouse carotid arteries with altered elastic fibers. J Mech Behav Biomed Mater 2015; 46:69-82. [PMID: 25771258 DOI: 10.1016/j.jmbbm.2015.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/05/2015] [Accepted: 02/18/2015] [Indexed: 01/01/2023]
Abstract
Arteries can buckle axially under applied critical buckling pressure due to a mechanical instability. Buckling can cause arterial tortuosity leading to flow irregularities and stroke. Genetic mutations in elastic fiber proteins are associated with arterial tortuosity in humans and mice, and may be the result of alterations in critical buckling pressure. Hence, the objective of this study is to investigate how genetic defects in elastic fibers affect buckling pressure. We use mouse models of human disease with reduced amounts of elastin (Eln+/-) and with defects in elastic fiber assembly due to the absence of fibulin-5 (Fbln5-/-). We find that Eln+/- arteries have reduced buckling pressure compared to their wild-type controls. Fbln5-/- arteries have similar buckling pressure to wild-type at low axial stretch, but increased buckling pressure at high stretch. We fit material parameters to mechanical test data for Eln+/-, Fbln5-/- and wild-type arteries using Fung and four-fiber strain energy functions. Fitted parameters are used to predict theoretical buckling pressure based on equilibrium of an inflated, buckled, thick-walled cylinder. In general, the theoretical predictions underestimate the buckling pressure at low axial stretch and overestimate the buckling pressure at high stretch. The theoretical predictions with both models replicate the increased buckling pressure at high stretch for Fbln5-/- arteries, but the four-fiber model predictions best match the experimental trends in buckling pressure changes with axial stretch. This study provides experimental and theoretical methods for further investigating the influence of genetic mutations in elastic fibers on buckling behavior and the development of arterial tortuosity.
Collapse
Affiliation(s)
- Callan M Luetkemeyer
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO, United States
| | - Rhys H James
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO, United States
| | - Siva Teja Devarakonda
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO, United States
| | - Victoria P Le
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO, United States
| | - Qin Liu
- Department of Mechanical and Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, United States
| | - Hai-Chao Han
- Department of Mechanical and Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, United States
| | - Jessica E Wagenseil
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, United States.
| |
Collapse
|
43
|
Abstract
Background Tortuous arteries are often seen in patients with hypertension and atherosclerosis. While the mechanical stress in atherosclerotic plaque under lumen pressure has been studied extensively, the mechanical stability of atherosclerotic arteries and subsequent effect on the plaque stress remain unknown. To this end, we investigated the buckling and post-buckling behavior of model stenotic coronary arteries with symmetric and asymmetric plaque. Methods Buckling analysis for a model coronary artery with symmetric and asymmetric plaque was conducted using finite element analysis based on the dimensions and nonlinear anisotropic materials properties reported in the literature. Results Artery with asymmetric plaque had lower critical buckling pressure compared to the artery with symmetric plaque and control artery. Buckling increased the peak stress in the plaque and led to the development of a high stress concentration in artery with asymmetric plaque. Stiffer calcified tissue and severe stenosis increased the critical buckling pressure of the artery with asymmetric plaque. Conclusions Arteries with atherosclerotic plaques are prone to mechanical buckling which leads to a high stress concentration in the plaques that can possibly make the plaques prone to rupture.
Collapse
|
44
|
Effects of age on the physiological and mechanical characteristics of human femoropopliteal arteries. Acta Biomater 2015; 11:304-13. [PMID: 25301303 DOI: 10.1016/j.actbio.2014.09.050] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 08/23/2014] [Accepted: 09/29/2014] [Indexed: 01/07/2023]
Abstract
Surgical and interventional therapies for peripheral artery disease (PAD) are notorious for high rates of failure. Interactions between the artery and repair materials play an important role, but comprehensive data describing the physiological and mechanical characteristics of human femoropopliteal arteries are not available. Fresh femoropopliteal arteries were obtained from 70 human subjects (13-79 years old), and in situ vs. excised arterial lengths were measured. Circumferential and longitudinal opening angles were determined for proximal superficial femoral, proximal popliteal and distal popliteal arteries. Mechanical properties were assessed by multi-ratio planar biaxial extension, and experimental data were used to calculate physiological stresses and stretches, in situ axial force and anisotropy. Verhoeff-Van Gieson-stained axial and transverse arterial sections were used for histological analysis. Most specimens demonstrated nonlinear deformations and were more compliant longitudinally than circumferentially. In situ axial pre-stretch decreased 0.088 per decade of life. In situ axial force and axial stress also decreased with age, but circumferential physiological stress remained constant. Physiological circumferential stretch decreased 55-75% after 45 years of age. Histology demonstrated a thickened external elastic lamina with longitudinally oriented elastin that was denser in smaller, younger arteries. Axial elastin likely regulates axial pre-stretch to help accommodate the complex deformations required of the artery wall during locomotion. Degradation and fragmentation of elastin as a consequence of age, cyclic mechanical stress and atherosclerotic arterial disease may contribute to decreased in situ axial pre-stretch, predisposing to more severe kinking of the artery during limb flexion and loss of energy-efficient arterial function.
Collapse
|
45
|
Wang GL, Xiao Y, Voorhees A, Qi YX, Jiang ZL, Han HC. Artery Remodeling Under Axial Twist in Three Days Organ Culture. Ann Biomed Eng 2014; 43:1738-47. [PMID: 25503524 DOI: 10.1007/s10439-014-1215-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 12/04/2014] [Indexed: 11/28/2022]
Abstract
Arteries often endure axial twist due to body movement and surgical procedures, but how arteries remodel under axial twist remains unclear. The objective of this study was to investigate early stage arterial wall remodeling under axial twist. Porcine carotid arteries were twisted axially and maintained for three days in ex vivo organ culture systems while the pressure and flow remained the same as untwisted controls. Cell proliferation, internal elastic lamina (IEL) fenestrae shape and size, endothelial cell (EC) morphology and orientation, as well as the expression of matrix metalloproteinases (MMPs), MMP-2 and MMP-9, and tissue inhibitor of metalloproteinase-2 (TIMP-2) were quantified using immunohistochemistry staining and immunoblotting. Our results demonstrated that cell proliferation in both the intima and media were significantly higher in the twisted arteries compared to the controls. The cell proliferation in the intima increased from 1.33 ± 0.21% to 7.63 ± 1.89%, and in the media from 1.93 ± 0.84% to 8.27 ± 2.92% (p < 0.05). IEL fenestrae total area decreased from 26.07 ± 2.13% to 14.74 ± 0.61% and average size decreased from 169.03 ± 18.85 μm(2) to 80.14 ± 1.96 μm(2) (p < 0.01), but aspect ratio increased in the twist group from 2.39 ± 0.15 to 2.83 ± 0.29 (p < 0.05). MMP-2 expression significantly increased (p < 0.05) while MMP-9 and TIMP-2 showed no significant difference in the twist group. The ECs in the twisted arteries were significantly elongated compared to the controls after three days. The angle between the major axis of the ECs and blood flow direction under twist was 7.46 ± 2.44 degrees after 3 days organ culture, a decrease from the initial 15.58 ± 1.29 degrees. These results demonstrate that axial twist can stimulate artery remodeling. These findings complement our understanding of arterial wall remodeling under mechanical stress resulting from pressure and flow variations.
Collapse
Affiliation(s)
- Guo-Liang Wang
- Institute of Mechanobiology and Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | | | | | | | | | | |
Collapse
|
46
|
Mechanical instability of normal and aneurysmal arteries. J Biomech 2014; 47:3868-3875. [PMID: 25458146 DOI: 10.1016/j.jbiomech.2014.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/04/2014] [Accepted: 10/06/2014] [Indexed: 11/20/2022]
Abstract
Tortuous arteries associated with aneurysms have been observed in aged patients with atherosclerosis and hypertension. However, the underlying mechanism is poorly understood. The objective of this study was to determine the effect of aneurysms on arterial buckling instability and the effect of buckling on aneurysm wall stress. We investigated the mechanical buckling and post-buckling behavior of normal and aneurysmal carotid arteries and aorta's using computational simulations and experimental measurements to elucidate the interrelationship between artery buckling and aneurysms. Buckling tests were done in porcine carotid arteries with small aneurysms created using elastase treatment. Parametric studies were done for model aneurysms with orthotropic nonlinear elastic walls using finite element simulations. Our results demonstrated that arteries buckled at a critical buckling pressure and the post-buckling deflection increased nonlinearly with increasing pressure. The presence of an aneurysm can reduce the critical buckling pressure of arteries, although the effect depends on the aneurysm's dimensions. Buckled aneurysms demonstrated a higher peak wall stress compared to unbuckled aneurysms under the same lumen pressure. We conclude that aneurysmal arteries are vulnerable to mechanical buckling and mechanical buckling could lead to high stresses in the aneurysm wall. Buckling could be a possible mechanism for the development of tortuous aneurysmal arteries such as in the Loeys-Dietz syndrome.
Collapse
|
47
|
Artery buckling analysis using a four-fiber wall model. J Biomech 2014; 47:2790-6. [PMID: 24972920 DOI: 10.1016/j.jbiomech.2014.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 05/27/2014] [Accepted: 06/04/2014] [Indexed: 11/21/2022]
Abstract
Artery bent buckling has been suggested as a possible mechanism that leads to artery tortuosity, which is associated with aging, hypertension, atherosclerosis, and other pathological conditions. It is necessary to understand the relationship between microscopic wall structural changes and macroscopic artery buckling behavior. To this end, the objectives of this study were to develop arterial buckling equations using a microstructure-based 4-fiber reinforced wall model, and to simulate the effects of vessel wall microstructural changes on artery buckling. Our results showed that the critical pressure increased nonlinearly with the axial stretch ratio, and the 4-fiber model predicted higher critical buckling pressures than what the Fung model predicted. The buckling equation using the 4-fiber model captured the experimentally observed reduction of critical pressure induced by elastin degradation and collagen fiber orientation changes in the arterial wall. These results improve our understanding of arterial stability and its relationship to microscopic wall remodeling, and the model provides a useful tool for further studies.
Collapse
|
48
|
An in vivo rat model of artery buckling for studying wall remodeling. Ann Biomed Eng 2014; 42:1658-67. [PMID: 24793586 DOI: 10.1007/s10439-014-1017-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 04/19/2014] [Indexed: 10/25/2022]
Abstract
Theoretical modeling and in vitro experiments have demonstrated that arterial buckling is a possible mechanism for the development of artery tortuosity. However, there has been no report of whether artery buckling develops into tortuosity, partially due to the lack of in vivo models for long-term studies. The objective of this study was to establish an in vivo buckling model in rat carotid arteries for studying arterial wall remodeling after buckling. Rat left carotid arteries were transplanted to the right carotid arteries to generate buckling under in vivo pressure and were maintained for 1 week to examine wall remodeling and adaptation. Our results showed that a significant buckling was achieved in the carotid arterial grafts with altered wall stress. Cell proliferation and matrix metalloprotinease-2 (MMP-2) expression in the buckled arteries increased significantly compared with the controls. The tortuosity level of the grafts also slightly increased 1 week post-surgery, while there was no change in vessel dimensions, blood pressure, and blood flow velocity. The artery buckling model provides a useful tool for further study of the adaptation of arteries into tortuous shapes.
Collapse
|
49
|
Horny L, Adamek T, Kulvajtova M. Analysis of axial prestretch in the abdominal aorta with reference to post mortem interval and degree of atherosclerosis. J Mech Behav Biomed Mater 2013; 33:93-8. [PMID: 23676503 DOI: 10.1016/j.jmbbm.2013.01.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 11/14/2012] [Accepted: 01/09/2013] [Indexed: 01/04/2023]
Abstract
It is a well-known fact that the length of an artery in situ and the length of an excised artery differs. Retraction of blood vessels is usually observed. This prestretch plays an important role in arterial physiology. We have recently determined that the decrease of axial prestretch in the human abdominal aorta is so closely correlated with age that it is suitable for forensic applications (estimation of the age at time of death for cadavers of unknown identity). Since post mortem autolysis may affect the reliability of an estimate based on axial prestretch, the present study aims to detail analysis of the effect of post mortem time. The abdominal aorta is a prominent site of atherosclerotic changes (ATH), which may potentially affect longitudinal prestretch. Thus ATH was also involved in the analysis. Axial prestretch in the human abdominal aorta, post mortem interval (PMI), and the degree of ATH were documented in 365 regular autopsies. The data was first age adjusted to remove any supposed correlation with age. After the age adjustment of the sample, the correlation analysis showed no significant PMI effects on the prestretch in non-putrefied bodies. Analysis of the prestretch variance with respect to ATH suggested that ATH is not a suitable factor to explain the prestretch variability remaining after the age adjustment. It was concluded that, although atherosclerotic plaques may certainly change the biomechanics of arteries, they do not significantly affect the longitudinal prestretch in the human abdominal aorta.
Collapse
Affiliation(s)
- Lukas Horny
- Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 166 07 Prague, Czech Republic.
| | - Tomas Adamek
- Third Faculty of Medicine, Charles University in Prague, Ruska 87, 100 00 Prague, Czech Republic.
| | - Marketa Kulvajtova
- Department of Forensic Medicine, University Hospital Na Kralovskych Vinohradech, Srobarova 50, 100 34 Prague, Czech Republic.
| |
Collapse
|
50
|
Liu Q, Han HC. Mechanical buckling of arterioles in collateral development. J Theor Biol 2013; 316:42-8. [PMID: 23034307 PMCID: PMC3498525 DOI: 10.1016/j.jtbi.2012.09.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 09/19/2012] [Accepted: 09/21/2012] [Indexed: 12/25/2022]
Abstract
Collateral arterioles enlarge in both diameter and length, and develop corkscrew-like tortuous patterns during remodeling. Recent studies showed that artery buckling could lead to tortuosity. The objective of this study was to determine arteriole critical buckling pressure and buckling pattern during arteriole remodeling. Arterioles were modeled as elastic cylindrical vessels with an elastic matrix support and underwent axial and radial growth. Our results demonstrated that arteriole critical buckling pressure decreased with increasing axial growth ratio and radius growth ratio, but increased with increasing wall thickness. Arteriole buckling mode number increased (wavelength decreased) with increasing axial growth ratio, but decreased with increasing radius growth ratio and wall thickness. Our study suggests that axial growth in arterioles makes them prone to buckling and that buckling leads to tortuous collaterals. These results shed light on the mechanism of collateral arteriole tortuosity.
Collapse
Affiliation(s)
- Qin Liu
- Department of Mechanical Engineering, University of Texas at San Antonio, TX 78249, USA
| | | |
Collapse
|