1
|
Solleiro Pons M, Bernert L, Hume E, Hughes L, Williams ZJ, Burnley M, Ansdell P. No sex differences in oxygen uptake or extraction kinetics in the moderate or heavy exercise intensity domains. J Appl Physiol (1985) 2024; 136:472-481. [PMID: 38205552 PMCID: PMC11213575 DOI: 10.1152/japplphysiol.00429.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/12/2024] Open
Abstract
The integrative response to exercise differs between sexes, with oxidative energy contribution purported as a potential mechanism. The present study investigated whether this difference was evident in the kinetics of oxygen uptake (V̇o2) and extraction (HHb + Mb) during exercise. Sixteen adults (8 males, 8 females, age: 27 ± 5 yr) completed three experimental visits. Incremental exercise testing was performed to obtain lactate threshold and V̇o2peak. Subsequent visits involved three 6-min cycling bouts at 80% of lactate threshold and one 30-min bout at a work rate of 30% between the lactate threshold and power at V̇o2peak. Pulmonary gas exchange and near-infrared spectroscopy of the vastus lateralis were used to continuously sample V̇o2 and HHb + Mb, respectively. The phase II V̇o2 kinetics were quantified using monoexponential curves during moderate and heavy exercise. Slow component amplitudes were also quantified for the heavy-intensity domain. Relative V̇o2peak values were not different between sexes (P = 0.111). Males achieved ∼30% greater power outputs (P = 0.002). In the moderate- and heavy-intensity domains, the relative amplitude of the phase II transition was not different between sexes for V̇o2 (∼24 and ∼40% V̇o2peak, P ≥ 0.179) and HHb + Mb (∼20 and ∼32% ischemia, P ≥ 0.193). Similarly, there were no sex differences in the time constants for V̇o2 (∼28 s, P ≥ 0.385) or HHb + Mb (∼10 s, P ≥ 0.274). In the heavy-intensity domain, neither V̇o2 (P ≥ 0.686) or HHb + Mb (P ≥ 0.432) slow component amplitudes were different between sexes. The oxidative response to moderate- and heavy-intensity exercises did not differ between males and females, suggesting similar dynamic responses of oxidative metabolism during intensity-matched exercise.NEW & NOTEWORTHY This study demonstrated no sex differences in the oxidative response to moderate- and heavy-intensity cycling exercise. The change in oxygen uptake and deoxyhemoglobin were modeled with monoexponential curve fitting, which revealed no differences in the rate of oxidative energy provision between sexes. This provides insight into previously reported sex differences in the integrative response to exercise.
Collapse
Affiliation(s)
- Maria Solleiro Pons
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Lina Bernert
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
- Institute of Sport and Exercise Sciences, University of Münster, Münster, Germany
| | - Emily Hume
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Luke Hughes
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Zander J Williams
- Department of Respiratory Medicine, Royal Brompton Hospital, London, United Kingdom
| | - Mark Burnley
- School of Sport, Health and Exercise Sciences, Loughborough University, Loughborough, United Kingdom
| | - Paul Ansdell
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
2
|
Kang J, Ratamess NA, Faigenbaum AD, Bush JA, Finnerty C, DiFiore M, Garcia A, Beller N. Time-of-Day Effects of Exercise on Cardiorespiratory Responses and Endurance Performance-A Systematic Review and Meta-Analysis. J Strength Cond Res 2023; 37:2080-2090. [PMID: 37026733 DOI: 10.1519/jsc.0000000000004497] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
ABSTRACT Kang, J, Ratamess, NA, Faigenbaum, AD, Bush, JA, Finnerty, C, DiFiore, M, Garcia, A, and Beller, N. Time-of-day effects of exercise on cardiorespiratory responses and endurance performance-A systematic review and meta-analysis. J Strength Cond Res 37(10): 2080-2090, 2023-The time-of-day effect of exercise on human function remains largely equivocal. Hence, this study aimed to further analyze the existing evidence concerning diurnal variations in cardiorespiratory responses and endurance performance using a meta-analytic approach. Literature search was conducted through databases, including PubMed, CINAHL, and Google Scholar. Article selection was made based on inclusion criteria concerning subjects' characteristics, exercise protocols, times of testing, and targeted dependent variables. Results on oxygen uptake (V̇ o2 ), heart rate (HR), respiratory exchange ratio, and endurance performance in the morning (AM) and late afternoon or evening (PM) were extracted from the chosen studies. Meta-analysis was conducted with the random-effects model. Thirty-one original research studies that met the inclusion criteria were selected. Meta-analysis revealed higher resting V̇ o2 (Hedges' g = -0.574; p = 0.040) and resting HR (Hedges' g = -1.058; p = 0.002) in PM than in AM. During exercise, although V̇ o2 remained indifferent between AM and PM, HR was higher in PM at submaximal (Hedges' g = -0.199; p = 0.046) and maximal (Hedges' g = -0.298; p = 0.001) levels. Endurance performance as measured by time-to-exhaustion or the total work accomplished was higher in PM than in AM (Hedges' g = -0.654; p = 0.001). Diurnal variations in V̇ o2 appear less detectable during aerobic exercise. The finding that exercising HR and endurance performance were greater in PM than in AM emphasizes the need to consider the effect of circadian rhythm when evaluating athletic performance or using HR as a criterion to assess fitness or monitor training.
Collapse
Affiliation(s)
- Jie Kang
- Human Performance Laboratory, The College of New Jersey, Ewing, New Jersey
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Love LK, Hodgson MD, Keir DA, Kowalchuk JM. The effect of increasing work rate amplitudes from a common metabolic baseline on the kinetic response of V̇o 2p, blood flow, and muscle deoxygenation. J Appl Physiol (1985) 2023; 135:584-600. [PMID: 37439241 DOI: 10.1152/japplphysiol.00566.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023] Open
Abstract
A step-transition in external work rate (WR) increases pulmonary O2 uptake (V̇o2p) in a monoexponential fashion. Although the rate of this increase, quantified by the time constant (τ), has frequently been shown to be similar between multiple different WR amplitudes (ΔWR), the adjustment of O2 delivery to the muscle (via blood flow; BF), a potential regulator of V̇o2p kinetics, has not been extensively studied. To investigate the role of BF on V̇o2p kinetics, 10 participants performed step-transitions on a knee-extension ergometer from a common baseline WR (3 W) to: 24, 33, 45, 54, and 66 W. Each transition lasted 8 min and was repeated four to six times. Volume turbinometry and mass spectrometry, Doppler ultrasound, and near-infrared spectroscopy were used to measure V̇o2p, BF, and muscle deoxygenation (deoxy[Hb + Mb]), respectively. Similar transitions were ensemble-averaged, and phase II V̇o2p, BF, and deoxy[Hb + Mb] were fit with a monoexponential nonlinear least squares regression equation. With increasing ΔWR, τV̇o2p became larger at the higher ΔWRs (P < 0.05), while τBF did not change significantly, and the mean response time (MRT) of deoxy[Hb + Mb] became smaller. These findings that V̇o2p kinetics become slower with increasing ΔWR, while BF kinetics are not influenced by ΔWR, suggest that O2 delivery could not limit V̇o2p in this situation. However, the speeding of deoxy[Hb + Mb] kinetics with increasing ΔWR does imply that the O2 delivery-to-O2 utilization of the microvasculature decreases at higher ΔWRs. This suggests that the contribution of O2 delivery and O2 extraction to V̇O2 in the muscle changes with increasing ΔWR.NEW & NOTEWORTHY A step increase in work rate produces a monoexponential increase in V̇o2p and blood flow to a new steady-state. We found that step transitions from a common metabolic baseline to increasing work rate amplitudes produced a slowing of V̇o2p kinetics, no change in blood flow kinetics, and a speeding of muscle deoxygenation kinetics. As work rate amplitude increased, the ratio of blood flow to V̇o2p became smaller, while the amplitude of muscle deoxygenation became greater. The gain in vascular conductance became smaller, while kinetics tended to become slower at higher work rate amplitudes.
Collapse
Affiliation(s)
- Lorenzo K Love
- Canadian Centre for Activity and Aging, The University of Western Ontario, London, Ontario, Canada
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada
- Department of Kinesiology and Physical Education, Redeemer University, Ancaster, Ontario, Canada
| | - Michael D Hodgson
- Canadian Centre for Activity and Aging, The University of Western Ontario, London, Ontario, Canada
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada
| | - Daniel A Keir
- Canadian Centre for Activity and Aging, The University of Western Ontario, London, Ontario, Canada
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada
- Toronto General Research Institute, Toronto General Hospital, Toronto, Ontario, Canada
| | - John M Kowalchuk
- Canadian Centre for Activity and Aging, The University of Western Ontario, London, Ontario, Canada
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada
- Department of Kinesiology and Physical Education, Redeemer University, Ancaster, Ontario, Canada
| |
Collapse
|
4
|
Reuveny R, Luboshitz J, Wilkerson D, Bar-Dayan A, DiMenna FJ, Jones AM, Segel MJ. Oxygen Uptake Kinetics during Exercise Reveal Central and Peripheral Limitation in Patients with Ilio-Femoral Venous Obstruction. J Vasc Surg Venous Lymphat Disord 2021; 10:697-704.e4. [PMID: 34958976 DOI: 10.1016/j.jvsv.2021.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/01/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Pulmonary oxygen uptake (V̇O2) kinetics measured during initiation of exercise mirror energetic transition during daily activity. The aim of this study was to elucidate the pathophysiological mechanisms of exercise limitation of patients with chronic ilio-femoral vein obstruction after deep vein thrombosis by measuring V̇O2 kinetics compared to patients with peripheral arterial disease (PAD) and healthy individuals. METHODS Eleven patients with ilio-femoral vein obstruction (7 man, age 20-65 yrs.), seven patients with PAD (all men, age 44-60 yrs.) and eight healthy participants (5 men, age 28-58 yrs.) were studied. Participants performed upper and lower-limb symptom-limited cardiopulmonary exercise tests on cycle ergometers; and four repeat lower-limb tests at a constant work-rate (WR) corresponding to 90% of the gas exchange threshold for determining V̇O2 kinetics. RESULTS Phase I V̇O2 amplitude in the constant WR tests (% increase over resting V̇O2), representing the initial surge in cardiac output caused by the emptying of leg veins, was 59±19% in the ilio-femoral vein obstruction group, 73±22% in peripheral arterial disease and 85±26% in healthy participants (p=0.055 for ilio-femoral vein obstruction vs. healthy). Phase II V̇O2 kinetics, which largely reflect the kinetics of O2 consumption in the exercising muscles, were slower in ilio-femoral vein obstruction (tau = 42±6 s), and PAD (tau = 49±19 s), compared to healthy participants (23±4 s; p<0.01) CONCLUSIONS: Slow phase II V̇O2 kinetics reflect a slow onset of muscular aerobic metabolism in both ilio-femoral vein obstruction and PAD. Low amplitude phase I of V̇O2 kinetics observed in ilio-femoral vein obstruction suggests a damped cardio-dynamic phase, consistent with reduced venous return from the obstructed veins. These abnormalities of V̇O2 kinetics may contribute to exercise intolerance in ilio-femoral vein obstruction and PAD.
Collapse
Affiliation(s)
- Ronen Reuveny
- Pulmonary Institute, Sheba Medical Center, Tel-HaShomer, Ramat Gan, Israel; Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel; Physical Therapy Department, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel.
| | - Jacob Luboshitz
- Israeli National Hemophilia Center, Sheba Medical Center, Tel-HaShomer, Ramat Gan, Israel
| | - Daryl Wilkerson
- Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Avner Bar-Dayan
- Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel; Vascular Surgery Department, Sheba Medical Center, Tel-HaShomer, Ramat Gan, Israel
| | - Fred J DiMenna
- Division of Endocrinology, Diabetes and Bone, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrew M Jones
- Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Michael J Segel
- Pulmonary Institute, Sheba Medical Center, Tel-HaShomer, Ramat Gan, Israel; Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Park JM, Josan S, Hurd RE, Graham J, Havel PJ, Bendahan D, Mayer D, Chung Y, Spielman DM, Jue T. Hyperpolarized NMR study of the impact of pyruvate dehydrogenase kinase inhibition on the pyruvate dehydrogenase and TCA flux in type 2 diabetic rat muscle. Pflugers Arch 2021; 473:1761-1773. [PMID: 34415396 DOI: 10.1007/s00424-021-02613-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 01/06/2023]
Abstract
The role of pyruvate dehydrogenase in mediating lipid-induced insulin resistance stands as a central question in the pathogenesis of type 2 diabetes mellitus. Many researchers have invoked the Randle hypothesis to explain the reduced glucose disposal in skeletal muscle by envisioning an elevated acetyl CoA pool arising from increased oxidation of fatty acids. Over the years, in vivo NMR studies have challenged that monolithic view. The advent of the dissolution dynamic nuclear polarization NMR technique and a unique type 2 diabetic rat model provides an opportunity to clarify. Dynamic nuclear polarization enhances dramatically the NMR signal sensitivity and allows the measurement of metabolic kinetics in vivo. Diabetic muscle has much lower pyruvate dehydrogenase activity than control muscle, as evidenced in the conversion of [1-13C]lactate and [2-13C]pyruvate to HCO3- and acetyl carnitine. The pyruvate dehydrogenase kinase inhibitor, dichloroacetate, restores rapidly the diabetic pyruvate dehydrogenase activity to control level. However, diabetic muscle has a much larger dynamic change in pyruvate dehydrogenase flux than control. The dichloroacetate-induced surge in pyruvate dehydrogenase activity produces a differential amount of acetyl carnitine but does not affect the tricarboxylic acid flux. Further studies can now proceed with the dynamic nuclear polarization approach and a unique rat model to interrogate closely the biochemical mechanism interfacing oxidative metabolism with insulin resistance and metabolic inflexibility.
Collapse
Affiliation(s)
- Jae Mo Park
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.,Department of Radiology, Stanford University, 1201 Welch Rd., Stanford, CA, 94305, USA
| | - Sonal Josan
- Department of Radiology, Stanford University, 1201 Welch Rd., Stanford, CA, 94305, USA.,Neuroscience Program, SRI International, 333 Ravenswood Ave., Menlo Park, CA, 94025, USA
| | - Ralph E Hurd
- Department of Radiology, Stanford University, 1201 Welch Rd., Stanford, CA, 94305, USA.,Applied Science Laboratory, GE Healthcare, 333 Ravenswood Ave., Menlo Park, CA, 94025, USA
| | - James Graham
- Department of Molecular Biosciences, University of California Davis, 3426 Meyer Hall, Davis, CA, 95616, USA
| | - Peter J Havel
- Department of Molecular Biosciences, University of California Davis, 3426 Meyer Hall, Davis, CA, 95616, USA
| | - David Bendahan
- CNRS, Aix-Marseille University, CRMBM, 13385, Marseille, France
| | - Dirk Mayer
- Neuroscience Program, SRI International, 333 Ravenswood Ave., Menlo Park, CA, 94025, USA.,Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, 22 S. Green St., Baltimore, MD, 21201, USA
| | - Youngran Chung
- Department of Biochemistry and Molecular Medicine, University of California-Davis, 4323 Tupper Hall, Davis, CA, 95616, USA
| | - Daniel M Spielman
- Department of Radiology, Stanford University, 1201 Welch Rd., Stanford, CA, 94305, USA
| | - Thomas Jue
- Department of Biochemistry and Molecular Medicine, University of California-Davis, 4323 Tupper Hall, Davis, CA, 95616, USA.
| |
Collapse
|
6
|
Inglis EC, Iannetta D, Murias JM. Association between [Formula: see text]O 2 kinetics and [Formula: see text]O 2max in groups differing in fitness status. Eur J Appl Physiol 2021; 121:1921-1931. [PMID: 33730210 DOI: 10.1007/s00421-021-04623-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/05/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE This study evaluated (i) the relationship between oxygen uptake ([Formula: see text]O2) kinetics and maximal [Formula: see text]O2 ([Formula: see text]O2max) within groups differing in fitness status, and (ii) the adjustment of [Formula: see text]O2 kinetics compared to that of central [cardiac output (Q̇), heart rate (HR)] and peripheral (deoxyhemoglobin over [Formula: see text]O2 ratio ([HHb]/[Formula: see text]O2)] O2 delivery, during step-transitions to moderate-intensity exercise. METHODS Thirty-six young healthy male participants (18 untrained; 18 trained) performed a ramp-incremental test to exhaustion and 3 step-transitions to moderate-intensity exercise. Q̇ and HR kinetics were measured in 18 participants (9 untrained; 9 trained). RESULTS No significant correlation between τ̇[Formula: see text]O2 and [Formula: see text]O2max was found in trained participants (r = 0.29; p > 0.05) whereas a significant negative correlation was found in untrained (r = - 0.58; p < 0.05) and all participants (r = - 0.82; p < 0.05). τQ̇ (18.8 ± 5.5 s) and τHR (20.1 ± 6.2 s) were significantly greater than τ[Formula: see text]O2 (13.9 ± 2.7 s) for trained (p < 0.05). No differences were found between τQ̇ (22.8 ± 8.45 s), τHR (21.2 ± 8.3 s) and τ[Formula: see text]O2 (28.9 ± 5.7 s) for untrained (p > 0.05). τQ̇ demonstrated a significant strong positive correlation with τHR in trained (r = 0.76; p < 0.05) but not untrained (r = 0.61; p > 0.05). A significant overshoot in the [HHb]/[Formula: see text]O2 ratio was found in the untrained groups (p < 0.05) but not in the trained groups (p > 0.05) CONCLUSION: The results indicated that when comparing participants of different fitness status (i) there is a point at which greater V̇O2max values are not accompanied by faster [Formula: see text]O2 kinetics; (ii) central delivery of O2 does not seem to limit the kinetics of [Formula: see text]O2; and (iii) O2 delivery within the active tissues might contribute to the slower [Formula: see text]O2 kinetics response in untrained participants.
Collapse
Affiliation(s)
- Erin Calaine Inglis
- Faculty of Kinesiology, University of Calgary, KNB 434, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Danilo Iannetta
- Faculty of Kinesiology, University of Calgary, KNB 434, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Juan M Murias
- Faculty of Kinesiology, University of Calgary, KNB 434, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
7
|
Schaumberg MA, Stanley J, Jenkins DG, Hume EA, Janse de Jonge XAK, Emmerton LM, Skinner TL. Oral Contraceptive Use Influences On-Kinetic Adaptations to Sprint Interval Training in Recreationally-Active Women. Front Physiol 2020; 11:629. [PMID: 32595523 PMCID: PMC7303366 DOI: 10.3389/fphys.2020.00629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/18/2020] [Indexed: 11/15/2022] Open
Abstract
INTRODUCTION Oral contraceptive (OC) use influences peak exercise responses to training, however, the influence of OC on central and peripheral adaptations to exercise training are unknown. This study investigated the influence of OC use on changes in time-to-fatigue, pulmonary oxygen uptake, cardiac output, and heart rate on-kinetics, as well as tissue saturation index to 4 weeks of sprint interval training in recreationally active women. METHODS Women taking an oral contraceptive (OC; n = 25) or experiencing natural menstrual cycles (MC; n = 22) completed an incremental exercise test to volitional exhaustion followed by a square-wave step-transition protocol to moderate (90% of power output at ventilatory threshold) and high intensity (Δ50% of power output at ventilatory threshold) exercise on two separate occasions. Time-to-fatigue, pulmonary oxygen uptake on-kinetics, cardiac output, and heart rate on-kinetics, and tissue saturation index responses were assessed prior to, and following 12 sessions of sprint interval training (10 min × 1 min efforts at 100-120% PPO in a 1:2 work:rest ratio) completed over 4 weeks. RESULTS Time-to-fatigue increased in both groups following training (p < 0.001), with no difference between groups. All cardiovascular on-kinetic parameters improved to the same extent following training in both groups. Greater improvements in pulmonary oxygen up-take kinetics were seen at both intensities in the MC group (p < 0.05 from pre-training) but were blunted in the OC group (p > 0.05 from pre-training). In contrast, changes in tissue saturation index were greater in the OC group at both intensities (p < 0.05); with the MC group showing no changes at either intensity. DISCUSSION Oral contraceptive use may reduce central adaptations to sprint interval training in women without influencing improvements in exercise performance - potentially due to greater peripheral adaptation. This may be due to the influence of exogenous oestradiol and progestogen on cardiovascular function and skeletal muscle blood flow. Further investigation into female-specific influences on training adaptation and exercise performance is warranted.
Collapse
Affiliation(s)
- Mia Annalies Schaumberg
- School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- Sunshine Coast Health Institute, Birtinya, QLD, Australia
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jamie Stanley
- South Australian Sports Institute, Kidman Park, SA, Australia
- Australian Cycling Team, Gepps Cross, SA, Australia
- Allied Health and Human Performance, University of South Australia, Adelaide, SA, Australia
| | - David G. Jenkins
- School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Emily A. Hume
- School of Clinical Medicine, The University of Queensland, Brisbane, QLD, Australia
| | | | - Lynne M. Emmerton
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA, Australia
| | - Tina L. Skinner
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
8
|
Clark CCT, Draper SB. A detailed comparison of oxygen uptake kinetics at a range of exercise intensities. MOTRIZ: REVISTA DE EDUCACAO FISICA 2019. [DOI: 10.1590/s1980-6574201900010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
9
|
Hamasaki A, Arima S, Hirakoba K. Changes in pulmonary oxygen uptake and muscle deoxygenation kinetics during cycling exercise in older women performing walking training for 12 weeks. Eur J Appl Physiol 2018; 118:2179-2188. [PMID: 30046886 DOI: 10.1007/s00421-018-3946-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 07/17/2018] [Indexed: 11/25/2022]
Abstract
PURPOSE This study examined the hypothesis that walking training (WT) could accelerate the slowed time constant (τ) of phase II in pulmonary oxygen uptake ([Formula: see text]O2) on-kinetics in older women. Also, we aimed to demonstrate that O2 delivery and O2 utilization were better matched at the site of gas exchange in exercising muscles when τ[Formula: see text]O2 was shortened. METHODS 20 recreationally active older women underwent WT sessions of approximately 60 min, 3-4 times a week for 12 weeks. We assessed [Formula: see text]O2, heart rate (HR) and deoxygenated-hemoglobin concentration ([HHb]) kinetics during a constant-load exercise test before training (0 week-Pre), and at 6 and 12 weeks (6 weeks-Mid, 12 weeks-Post) throughout the training period. RESULTS Maximal oxygen uptake ([Formula: see text]O2max) was unchanged throughout the training program. τHR tended to decline at Mid (58.6 ± 22.0 s), and was significantly shorter at Post (51.7 ± 21.7 s, p = 0.01) compared to Pre (67.1 ± 23.8 s). τ[Formula: see text]O2 significantly decreased from 38.9 ± 8.6 s for Pre, to 31.5 ± 7.9 s for Mid (p = 0.02), and 32.3 ± 10.5 s for Post (p = 0.03). The normalized [HHb] to [Formula: see text]O2 ratio (Δ[HHb]/Δ[Formula: see text]O2) at Pre (1.32 ± 0.93) gradually approached the perfectly matched value (= 1.0) at Mid (1.15 ± 0.61) and Post (1.07 ± 0.52). CONCLUSIONS The restoration to baseline (≒ 30 s) of the slower τ[Formula: see text]O2 due to WT, which may reflect better matching of O2 delivery and O2 utilization at the site of gas exchange, suggests that a longer period of WT could be a useful tool for improving exercise tolerance in older individuals.
Collapse
Affiliation(s)
- Akiko Hamasaki
- Katsuura Orthopaedics Clinic, 485-252 Tona, Katsuura, Chiba, 299-5225, Japan.
| | - Saburo Arima
- Katsuura Orthopaedics Clinic, 485-252 Tona, Katsuura, Chiba, 299-5225, Japan
| | - Kohji Hirakoba
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, Japan
| |
Collapse
|
10
|
Abstract
Oxygen uptake ([Formula: see text]o2) measured at the mouth, which is equal to the cardiac output (CO) times the arterial-venous oxygen content difference [C(a-v)O2], increases more than 10- to 20-fold in normal subjects during exercise. To achieve this substantial increase in oxygen uptake [[Formula: see text]o2 = CO × C(a-v)O2] both CO and the arterial-venous difference must simultaneously increase. Although this occurs in normal subjects, patients with heart failure cannot achieve significant increases in cardiac output and must rely primarily on changes in the arterial-venous difference to increase [Formula: see text]o2 during exercise. Inadequate oxygen delivery to the tissue during exercise in heart failure results in tissue anaerobiosis, lactic acid accumulation, and reduction in exercise tolerance. H+ is an important regulatory and feedback mechanism to facilitate additional oxygen delivery to the tissue (Bohr effect) and further aerobic production of ATP when tissue anaerobic metabolism increases the production of lactate (anaerobic threshold). This H+ production in the muscle capillary promotes the continued unloading of oxygen (oxyhemoglobin desaturation) while maintaining the muscle capillary Po2 (Fick principle) at a sufficient level to facilitate aerobic metabolism and overcome the diffusion barriers from capillary to mitochondria ("critical capillary Po2," 15-20 mm Hg). This mechanism is especially important during exercise in heart failure where cardiac output increase is severely constrained. Several compensatory mechanisms facilitate peripheral oxygen delivery during exercise in both normal persons and patients with heart failure.
Collapse
|
11
|
Light-emitting diode therapy (photobiomodulation) effects on oxygen uptake and cardiac output dynamics during moderate exercise transitions: a randomized, crossover, double-blind, and placebo-controlled study. Lasers Med Sci 2018. [PMID: 29516305 DOI: 10.1007/s10103-018-2473-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Light-emitting diodes (LEDs) might have a beneficial impact on cytochrome-c oxidase enzyme activity. Thus, it was hypothesized that photobiomodulation by light-emitting diode therapy (LEDT) could influence aerobic metabolism dynamics. Possible LEDT-mediated aerobic improvements were investigated mainly by a precise characterization of the pulmonary O2 uptake dynamics during moderate exercise transitions. Eight healthy young adults were enrolled in this randomized, double-blind, placebo-controlled, crossover study. A multi-diode array of LEDs was used for muscular pre-conditioning 30 min and 6 h before exercise testing. Pulmonary O2 uptake, carbon dioxide output, cardiac output, heart rate, stroke volume, and total arteriovenous oxygen difference dynamics were evaluated by frequency domain analysis. Comparisons revealed no statistical (p > 0.05) differences between LEDT and placebo, suggesting no significant changes in aerobic system dynamics. These results challenge earlier publications that reported changes in pulmonary O2 uptake during incremental exercise until exhaustion after LEDT. Perhaps, increments in peak pulmonary O2 uptake after LEDT may be a consequence of higher exercise tolerance caused by non-aerobic-related factors as opposed to an improved aerobic response.
Collapse
|
12
|
Poitras VJ, Hudson RW, Tschakovsky ME. Exercise intolerance in Type 2 diabetes: is there a cardiovascular contribution? J Appl Physiol (1985) 2018; 124:1117-1139. [PMID: 29420147 DOI: 10.1152/japplphysiol.00070.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Physical activity is critically important for Type 2 diabetes management, yet adherence levels are poor. This might be partly due to disproportionate exercise intolerance. Submaximal exercise tolerance is highly sensitive to muscle oxygenation; impairments in exercising muscle oxygen delivery may contribute to exercise intolerance in Type 2 diabetes since there is considerable evidence for the existence of both cardiac and peripheral vascular dysfunction. While uncompromised cardiac output during submaximal exercise is consistently observed in Type 2 diabetes, it remains to be determined whether an elevated cardiac sympathetic afferent reflex could sympathetically restrain exercising muscle blood flow. Furthermore, while deficits in endothelial function are common in Type 2 diabetes and are often cited as impairing exercising muscle oxygen delivery, no direct evidence in exercise exists, and there are several other vasoregulatory mechanisms whose dysfunction could contribute. Finally, while there are findings of impaired oxygen delivery, conflicting evidence also exists. A definitive conclusion that Type 2 diabetes compromises exercising muscle oxygen delivery remains premature. We review these potentially dysfunctional mechanisms in terms of how they could impair oxygen delivery in exercise, evaluate the current literature on whether an oxygen delivery deficit is actually manifest, and correspondingly identify key directions for future research.
Collapse
Affiliation(s)
- Veronica J Poitras
- School of Kinesiology and Health Studies, Queen's University , Kingston, Ontario , Canada.,Department of Physiology, Queen's University , Kingston, Ontario , Canada.,Children's Hospital of Eastern Ontario, Research Institute , Ottawa, Ontario , Canada
| | - Robert W Hudson
- Department of Medicine, Division of Endocrinology, Queen's University , Kingston, Ontario , Canada
| | - Michael E Tschakovsky
- School of Kinesiology and Health Studies, Queen's University , Kingston, Ontario , Canada
| |
Collapse
|
13
|
Beltrame T, Hughson RL. Linear and non-linear contributions to oxygen transport and utilization during moderate random exercise in humans. Exp Physiol 2017; 102:563-577. [PMID: 28240387 DOI: 10.1113/ep086145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/23/2017] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? The pulmonary oxygen uptake (pV̇O2) data used to study the muscle aerobic system dynamics during moderate-exercise transitions is classically described as a mono-exponential function controlled by a complex interaction of the oxygen delivery-utilization balance. This elevated complexity complicates the acquisition of relevant information regarding aerobic system dynamics based on pV̇O2 data during a varying exercise stimulus. What is the main finding and its importance? The elevated complexity of pV̇O2 dynamics is a consequence of a multiple-order interaction between muscle oxygen uptake and circulatory distortion. Our findings challenge the use of a first-order function to study the influences of the oxygen delivery-utilization balance over the pV̇O2 dynamics. The assumption of aerobic system linearity implies that the pulmonary oxygen uptake (pV̇O2) dynamics during exercise transitions present a first-order characteristic. The main objective of this study was to test the linearity of the oxygen delivery-utilization balance during random moderate exercise. The cardiac output (Q̇) and deoxygenated haemoglobin concentration ([HHb]) were measured to infer the central and local O2 availability, respectively. Thirteen healthy men performed two consecutive pseudorandom binary sequence cycling exercises followed by an incremental protocol. The system input and the outputs pV̇O2, [HHb] and Q̇ were submitted to frequency-domain analysis. The linearity of the variables was tested by computing the ability of the response at a specific frequency to predict the response at another frequency. The predictability levels were assessed by the coefficient of determination. In a first-order system, a participant who presents faster dynamics at a specific frequency should also present faster dynamics at any other frequency. All experimentally obtained variables (pV̇O2, [HHb] and Q̇) presented a certainly degree of non-linearity. The local O2 availability, evaluated by the ratio pV̇O2/[HHb], presented the most irregular behaviour. The overall [HHb] kinetics were faster than pV̇O2 and Q̇ kinetics. In conclusion, the oxygen delivery-utilization balance behaved as a non-linear phenomenon. Therefore, the elevated complexity of the pulmonary oxygen uptake dynamics is governed by a complex multiple-order interaction between the oxygen delivery and utilization systems.
Collapse
Affiliation(s)
- T Beltrame
- Faculty of Applied Health Sciences, University of Waterloo, Waterloo, Ontario, Canada.,Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasília, Distrito Federal, Brazil
| | - R L Hughson
- Faculty of Applied Health Sciences, University of Waterloo, Waterloo, Ontario, Canada.,Schlegel-University of Waterloo Research Institute for Aging, Waterloo, Ontario, Canada
| |
Collapse
|
14
|
Hirai DM, Jones JH, Zelt JT, da Silva ML, Bentley RF, Edgett BA, Gurd BJ, Tschakovsky ME, O'Donnell DE, Neder JA. Oral N-acetylcysteine and exercise tolerance in mild chronic obstructive pulmonary disease. J Appl Physiol (1985) 2017; 122:1351-1361. [PMID: 28255088 DOI: 10.1152/japplphysiol.00990.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 01/25/2023] Open
Abstract
Heightened oxidative stress is implicated in the progressive impairment of skeletal muscle vascular and mitochondrial function in chronic obstructive pulmonary disease (COPD). Whether accumulation of reactive oxygen species contributes to exercise intolerance in the early stages of COPD is unknown. The purpose of the present study was to determine the effects of oral antioxidant treatment with N-acetylcysteine (NAC) on respiratory, cardiovascular, and locomotor muscle function and exercise tolerance in patients with mild COPD. Thirteen patients [forced expiratory volume in 1 s (FEV1)-to-forced vital capacity ratio < lower limit of normal (LLN) and FEV1 ≥ LLN) were enrolled in a double-blind, randomized crossover study to receive NAC (1,800 mg/day) or placebo for 4 days. Severe-intensity constant-load exercise tests were performed with noninvasive measurements of central hemodynamics (stroke volume, heart rate, and cardiac output via impedance cardiography), arterial blood pressure, pulmonary ventilation and gas exchange, quadriceps muscle oxygenation (near-infrared spectroscopy), and estimated capillary blood flow. Nine patients completed the study with no major adverse clinical effects. Although NAC elevated plasma glutathione by ~27% compared with placebo (P < 0.05), there were no differences in exercise tolerance (placebo: 325 ± 47 s, NAC: 336 ± 51 s), central hemodynamics, arterial blood pressure, pulmonary ventilation or gas exchange, locomotor muscle oxygenation, or capillary blood flow from rest to exercise between conditions (P > 0.05 for all). In conclusion, modulation of plasma redox status with oral NAC treatment was not translated into beneficial effects on central or peripheral components of the oxygen transport pathway, thereby failing to improve exercise tolerance in nonhypoxemic patients with mild COPD.NEW & NOTEWORTHY Acute antioxidant treatment with N-acetylcysteine (NAC) elevated plasma glutathione but did not modulate central or peripheral components of the O2 transport pathway, thereby failing to improve exercise tolerance in patients with mild chronic obstructive pulmonary disease (COPD).
Collapse
Affiliation(s)
- Daniel M Hirai
- Laboratory of Clinical Exercise Physiology, Division of Respirology, Department of Medicine, Queen's University, Kingston, Ontario, Canada; .,Pulmonary Function and Clinical Exercise Physiology Unit, Respiratory Division, Department of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Joshua H Jones
- Laboratory of Clinical Exercise Physiology, Division of Respirology, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Joel T Zelt
- Laboratory of Clinical Exercise Physiology, Division of Respirology, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Marianne L da Silva
- Laboratory of Clinical Exercise Physiology, Division of Respirology, Department of Medicine, Queen's University, Kingston, Ontario, Canada.,Division of Physical Therapy, University of Brasilia, Brasilia, Brazil
| | - Robert F Bentley
- Human Vascular Control Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Brittany A Edgett
- Queen's Muscle Physiology Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada; and
| | - Brendon J Gurd
- Queen's Muscle Physiology Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada; and
| | - Michael E Tschakovsky
- Human Vascular Control Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Denis E O'Donnell
- Respiratory Investigation Unit, Division of Respirology, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - J Alberto Neder
- Laboratory of Clinical Exercise Physiology, Division of Respirology, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
15
|
McLay KM, Murias JM, Paterson DH. Similar pattern of change in V̇o 2 kinetics, vascular function, and tissue oxygen provision following an endurance training stimulus in older and young adults. Am J Physiol Regul Integr Comp Physiol 2017; 312:R467-R476. [PMID: 28122720 DOI: 10.1152/ajpregu.00399.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to examine the time course of changes in the oxygen uptake (V̇o2) kinetics response subsequent to short-term exercise training (i.e., 24, 48, 72, and 120 h posttraining) and examine the relationship with the time course of changes in microvascular [deoxygenated hemoglobin concentration ([HHb])-to-V̇o2 ratio ([HHb])/V̇o2)] and macrovascular [flow-mediated dilation (FMD)] O2 delivery to the active tissues/limbs. Seven healthy older [OA; 74 ± 6 (SD) yr] and young men (YA; 25 ± 3 yr) completed three endurance cycling exercise training sessions at 70% V̇o2peak Moderate-intensity exercise on-transient V̇o2 (measured breath by breath) and [HHb] (measured by near-infrared spectroscopy) were modeled with a monoexponential and normalized (0-100% of response), and the [HHb])/V̇o2 was calculated. Ultrasound-derived FMD of the popliteal artery was assessed after 5 min of cuff occlusion. %FMD was calculated as the greatest percent change in diameter from baseline. Time constant of V̇o2 (τV̇o2) was significantly reduced in both OA (~18%) and YA (~23%) at 24 h (P < 0.001) posttraining and remained decreased at 48 h before returning toward pretraining (PRE) values. Both groups showed a significant decrease in the [HHb])/V̇o2 at 24, 48, and 72 h (P = 0.001, 0.01, and 0.03, respectively) posttraining before returning toward PRE values at 120 h. %FMD followed a similar time course to that of changes in the [HHb])/V̇o2, being significantly greater in both OA (by ~64%) and YA (by ~26%) at 24 h (P < 0.001), remaining increased at 48 and 72 h (P = 0.02 and 0.03, respectively), and returning toward PRE values at 120 h. These data suggest the rate of adjustment of V̇o2 may be constrained by O2 availability in the active tissues.
Collapse
Affiliation(s)
- Kaitlin M McLay
- Canadian Centre for Activity and Aging, London, Ontario, Canada.,School of Kinesiology, The University of Western Ontario, London, Ontario, Canada; and
| | - Juan M Murias
- School of Kinesiology, The University of Western Ontario, London, Ontario, Canada; and .,Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Donald H Paterson
- Canadian Centre for Activity and Aging, London, Ontario, Canada.,School of Kinesiology, The University of Western Ontario, London, Ontario, Canada; and
| |
Collapse
|
16
|
Nyberg SK, Berg OK, Helgerud J, Wang E. Blood flow regulation and oxygen uptake during high-intensity forearm exercise. J Appl Physiol (1985) 2017; 122:907-917. [PMID: 28057820 DOI: 10.1152/japplphysiol.00983.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/20/2016] [Accepted: 01/03/2017] [Indexed: 12/29/2022] Open
Abstract
The vascular strain is very high during heavy handgrip exercise, but the intensity and kinetics to reach peak blood flow, and peak oxygen uptake, are uncertain. We included 9 young (25 ± 2 yr) healthy males to evaluate blood flow and oxygen uptake responses during continuous dynamic handgrip exercise with increasing intensity. Blood flow was measured using Doppler-ultrasound, and venous blood was drawn from a deep forearm vein to determine arteriovenous oxygen difference (a-vO2diff) during 6-min bouts of 60, 80, and 100% of maximal work rate (WRmax), respectively. Blood flow and oxygen uptake increased (P < 0.05) from 60%WRmax [557 ± 177(SD) ml/min; 56.0 ± 21.6 ml/min] to 80%WRmax (679 ± 190 ml/min; 70.6 ± 24.8 ml/min), but no change was seen from 80%WRmax to 100%WRmax Blood velocity (49.5 ± 11.5 to 58.1 ± 11.6 cm/s) and brachial diameter (0.49 ± 0.05 to 0.50 ± 0.06 cm) showed concomitant increases (P < 0.05) with blood flow from 60% to 80%WRmax, whereas no differences were observed in a-vO2diff Shear rate also increased (P < 0.05) from 60% (822 ± 196 s-1) to 80% (951 ± 234 s-1) of WRmax The mean response time (MRT) was slower (P < 0.05) for blood flow (60%WRmax 50 ± 22 s; 80%WRmax 51 ± 20 s; 100%WRmax 51 ± 23 s) than a-vO2diff (60%WRmax 29 ± 9 s; 80%WRmax 29 ± 5 s; 100%WRmax 20 ± 5 s), but not different from oxygen uptake (60%WRmax 44 ± 25 s; 80%WRmax 43 ± 14 s; 100%WRmax 41 ± 32 s). No differences were observed in MRT for blood flow or oxygen uptake with increased exercise intensity. In conclusion, when approaching maximal intensity, oxygen uptake appeared to reach a critical level at ~80% of WRmax and be regulated by blood flow. This implies that high, but not maximal, exercise intensity may be an optimal stimulus for shear stress-induced small muscle mass training adaptations.NEW & NOTEWORTHY This study evaluated blood flow regulation and oxygen uptake during small muscle mass forearm exercise with high to maximal intensity. Despite utilizing only a fraction of cardiac output, blood flow reached a plateau at 80% of maximal work rate and regulated peak oxygen uptake. Furthermore, the results revealed that muscle contractions dictated bulk oxygen delivery and yielded three times higher peak blood flow in the relaxation phase compared with mean values.
Collapse
Affiliation(s)
- S K Nyberg
- Department of Circulation and Medical Imaging, Faculty of Medicine, the Norwegian University of Science and Technology, Trondheim, Norway
| | - O K Berg
- Faculty of Health and Social Sciences, Molde University College, Molde, Norway
| | - J Helgerud
- Department of Circulation and Medical Imaging, Faculty of Medicine, the Norwegian University of Science and Technology, Trondheim, Norway.,Hokksund Medical Rehabilitation Centre, Hokksund, Norway.,Department of Sports and Outdoor Life Studies, Telemark University College, Bø, Norway
| | - E Wang
- Department of Circulation and Medical Imaging, Faculty of Medicine, the Norwegian University of Science and Technology, Trondheim, Norway; .,Department of Medicine, University of Utah, Salt Lake City, Utah; and.,Department of Research and Development, St. Olav's University Hospital, Trondheim, Norway
| |
Collapse
|
17
|
Yano T, Afroundeh R, Shirakawa K, Lian CS, Shibata K, Xiao Z, Yunoki T. Oscillation in tissue oxygen index during recovery from exercise. Physiol Res 2016; 65:259-69. [PMID: 26447517 DOI: 10.33549/physiolres.933044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
It was hypothesized that an oscillation of tissue oxygen index (TOI) determined by near-infrared spectroscopy during recovery from exercise occurs due to feedback control of adenosine triphosphate and that frequency of the oscillation is affected by blood pH. In order to examine these hypotheses, we aimed 1) to determine whether there is an oscillation of TOI during recovery from exercise and 2) to determine the effect of blood pH on frequency of the oscillation of TOI. Three exercises were performed with exercise intensities of 30 % and 70 % peak oxygen uptake (V(.)o(2)peak) for 12 min and with exercise intensity of 70 % V(.)o(2)peak for 30 s. TOI during recovery from the exercise was analyzed by fast Fourier transform in order to obtain power spectra density (PSD). There was a significant difference in the frequency at which maximal PSD of TOI appeared (Fmax) between the exercises with 70 % V(.)o(2)peak for 12 min (0.0039+/-0 Hz) and for 30 s (0.0061+/-0.0028 Hz). However, there was no significant difference in Fmax between the exercises with 30 % (0.0043+/-0.0013 Hz) and with 70 % V(.)o(2)peak for 12 min despite differences in blood pH and blood lactate from the warmed fingertips. It is concluded that there was an oscillation in TOI during recovery from the three exercises. It was not clearly shown that there was an effect of blood pH on Fmax.
Collapse
Affiliation(s)
- T Yano
- Department of Human Developmental Sciences, Faculty of Education, Hokkaido University, Kita-ku, Japan.
| | | | | | | | | | | | | |
Collapse
|
18
|
MAIONE D, CICERO AFG, BACCHELLI S, COSENTINO ER, DEGLI ESPOSTI D, MANNERS DN, RINALDI ER, ROSTICCI M, SENALDI R, AMBROSIONI E, BORGHI C. The VO2-on Kinetics in Constant Load Exercise Sub-Anaerobic Threshold Reflects Endothelial Function and Dysfunction in Muscle Microcirculation. Physiol Res 2015; 64:807-19. [DOI: 10.33549/physiolres.932833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
To propose a test to evaluate endothelial function, based on VO2 on-transition kinetics in sub-anaerobic threshold (AT) constant load exercise, we tested healthy subjects and patients with ischemic-hypertensive cardiopathy by two cardiopulmonary tests on a cycle ergometer endowed with an electric motor to overcome initial inertia: a pre-test and, after at least 24 h, one 6 min constant load exercise at 90 % AT. We measured net phase 3 VO2-on kinetics and, by phase 2 time constant (τ), valued endothelial dysfunction. We found shorter τ in repeated tests, shorter time between first and second test, by persisting endothelium-dependent arteriolar vasodilatation and/or several other mechanisms. Reducing load to 80 % and 90 % AT did not produce significant changes in τ of healthy volunteers, while in heart patients an AT load of 70 %, compared to 80 % AT, shortened τ (=4.38±1.65 s, p=0.013). In heart patients, no correlation was found between NYHA class, ejection fraction (EF), and the two variables derived from incremental cycle cardio-pulmonary exercise, as well as between EF and τ; while NYHA class groups were well correlated with τ duration (r=0.92, p=0.0001). Doxazosin and tadalafil also significantly reduced τ. In conclusion, the O2 consumption kinetics during the on-transition of constant load exercise below the anaerobic threshold are highly sensitive to endothelial function in muscular microcirculation, and constitute a marker for the evaluation of endothelial dysfunction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - C. BORGHI
- Department of Medicine and Surgery Sciences, University of Bologna, Italy
| |
Collapse
|
19
|
Hoffmann U, Moore AD, Koschate J, Drescher U. V̇O2 and HR kinetics before and after International Space Station missions. Eur J Appl Physiol 2015; 116:503-11. [PMID: 26662601 DOI: 10.1007/s00421-015-3298-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 11/11/2015] [Indexed: 11/30/2022]
Abstract
PURPOSE Heart rate (HR), pulmonary and muscle oxygen uptake ([Formula: see text]O2pulm, [Formula: see text]O2musc) kinetics after changes of work rate (WR) indicate regulatory characteristics related to aerobic metabolism. We analysed whether the kinetics of HR, [Formula: see text]O2pulm and [Formula: see text]O2musc are slowed after missions to the International Space Station (ISS). The changes of the kinetics were correlated with [Formula: see text]O2peak data. METHODS 10 astronauts [4 females, 6 males, age: 48.0 ± 3.8 years, height: 176 ± 7 cm, mass: 74.5 ± 15.9 kg (mean ± SD)] performed an incremental test to determine [Formula: see text]O2peak (before missions on L-110 days, after return on R+1/+10/+36 days), and a cardio-respiratory kinetics test (CRKT) with randomized 30-80 W WR changes to determine HR, [Formula: see text]O2pulm and [Formula: see text]O2musc kinetics by time-series analysis (L-236/-73, R+6/+21). Kinetics were summarized by maximum and related lag of cross-correlation function (CCFmax, CCFlag) of WR with the analysed parameter. RESULTS Statistically, significant changes were also found for CCFmax([Formula: see text]O2musc) between L-236 and R+6 (P = 0.010), L-236 and R+21 (P = 0.030), L-72 and R+6 (P = 0.043). Between pre-to-post mission change in [Formula: see text]O2peak and CCFmax(HR), a correlation was shown (r SP = 0.67, P = 0.017). CONCLUSION The [Formula: see text]O2musc kinetics changes indicate aerobic detraining effects which are present up to 21 days following space flight. The correlations between changes in [Formula: see text]O2peak and HR kinetics illustrate the key role of cardiovascular regulation in [Formula: see text]O2peak. The addition of CRKT to ISS flight is recommended to obtain information regarding the potential muscular and cardiovascular deconditioning. This allows a reduction in the frequency of higher intensity testing during flight.
Collapse
Affiliation(s)
- U Hoffmann
- Institute of Physiology and Anatomy, German Sport University, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany.
| | - A D Moore
- Lamar University, Beaumont, TX, 77710, USA
| | - J Koschate
- Institute of Physiology and Anatomy, German Sport University, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - U Drescher
- Institute of Physiology and Anatomy, German Sport University, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| |
Collapse
|
20
|
Park JM, Josan S, Mayer D, Hurd RE, Chung Y, Bendahan D, Spielman DM, Jue T. Hyperpolarized 13C NMR observation of lactate kinetics in skeletal muscle. ACTA ACUST UNITED AC 2015; 218:3308-18. [PMID: 26347554 DOI: 10.1242/jeb.123141] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 08/21/2015] [Indexed: 01/02/2023]
Abstract
The production of glycolytic end products, such as lactate, usually evokes a cellular shift from aerobic to anaerobic ATP generation and O2 insufficiency. In the classical view, muscle lactate must be exported to the liver for clearance. However, lactate also forms under well-oxygenated conditions, and this has led investigators to postulate lactate shuttling from non-oxidative to oxidative muscle fiber, where it can serve as a precursor. Indeed, the intracellular lactate shuttle and the glycogen shunt hypotheses expand the vision to include a dynamic mobilization and utilization of lactate during a muscle contraction cycle. Testing the tenability of these provocative ideas during a rapid contraction cycle has posed a technical challenge. The present study reports the use of hyperpolarized [1-(13)C]lactate and [2-(13)C]pyruvate in dynamic nuclear polarization (DNP) NMR experiments to measure the rapid pyruvate and lactate kinetics in rat muscle. With a 3 s temporal resolution, (13)C DNP NMR detects both [1-(13)C]lactate and [2-(13)C]pyruvate kinetics in muscle. Infusion of dichloroacetate stimulates pyruvate dehydrogenase activity and shifts the kinetics toward oxidative metabolism. Bicarbonate formation from [1-(13)C]lactate increases sharply and acetyl-l-carnitine, acetoacetate and glutamate levels also rise. Such a quick mobilization of pyruvate and lactate toward oxidative metabolism supports the postulated role of lactate in the glycogen shunt and the intracellular lactate shuttle models. The study thus introduces an innovative DNP approach to measure metabolite transients, which will help delineate the cellular and physiological role of lactate and glycolytic end products.
Collapse
Affiliation(s)
- Jae Mo Park
- Radiology, Stanford University, Stanford, CA 94305, USA
| | - Sonal Josan
- Radiology, Stanford University, Stanford, CA 94305, USA Neuroscience Program, SRI International, Menlo Park, CA 94025, USA
| | - Dirk Mayer
- Neuroscience Program, SRI International, Menlo Park, CA 94025, USA Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD 21201, USA
| | | | - Youngran Chung
- Biochemistry and Molecular Medicine, University of California Davis, Davis, CA 95616, USA
| | - David Bendahan
- Centre de Resonance Magnetique Biologique et Medicale, Aix-Marseille University, Marseille 13385, France
| | | | - Thomas Jue
- Biochemistry and Molecular Medicine, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
21
|
Poitras VJ, Bentley RF, Hopkins-Rosseel DH, LaHaye SA, Tschakovsky ME. Independent effect of type 2 diabetes beyond characteristic comorbidities and medications on immediate but not continued knee extensor exercise hyperemia. J Appl Physiol (1985) 2015; 119:202-12. [PMID: 26048976 DOI: 10.1152/japplphysiol.00758.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 06/01/2015] [Indexed: 01/23/2023] Open
Abstract
We tested the hypothesis that type 2 diabetes (T2D), when present in the characteristic constellation of comorbidities (obesity, hypertension, dyslipidemia) and medications, slows the dynamic adjustment of exercising muscle perfusion and blunts the steady state relative to that of controls matched for age, body mass index, fitness, comorbidities, and non-T2D medications. Thirteen persons with T2D and 11 who served as controls performed rhythmic single-leg isometric quadriceps exercise (rest-to-6 kg and 6-to-12 kg transitions, 5 min at each intensity). Measurements included leg blood flow (LBF, femoral artery ultrasound), mean arterial pressure (MAP, finger photoplethysmography), and leg vascular conductance (LVK, calculated). Dynamics were quantified using mean response time (MRT). Measures of amplitude were also used to compare response adjustment: the change from baseline to 1) the peak initial response (greatest 1-s average in the first 10 s; ΔLBFPIR, ΔLVKPIR) and 2) the on-transient (average from curve fit at 15, 45, and 75 s; ΔLBFON, ΔLVKON). ΔLBFPIR was significantly blunted in T2D vs. control individuals (P = 0.037); this was due to a tendency for reduced ΔLVKPIR (P = 0.063). In contrast, the overall response speed was not different between groups (MRT P = 0.856, ΔLBFON P = 0.150) nor was the change from baseline to steady state (P = 0.204). ΔLBFPIR, ΔLBFON, and LBF MRT did not differ between rest-to-6 kg and 6-to-12 kg workload transitions (all P > 0.05). Despite a transient amplitude impairment at the onset of exercise, there is no robust or consistent effect of T2D on top of the comorbidities and medications typical of this population on the overall dynamic adjustment of LBF, or the steady-state levels achieved during low- or moderate-intensity exercise.
Collapse
Affiliation(s)
- Veronica J Poitras
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Robert F Bentley
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Diana H Hopkins-Rosseel
- Cardiac Rehabilitation Centre, Hotel Dieu Hospital, Kingston, Ontario, Canada; and School of Rehabilitation Therapy, Queen's University, Kingston, Ontario, Canada
| | - Stephen A LaHaye
- Cardiac Rehabilitation Centre, Hotel Dieu Hospital, Kingston, Ontario, Canada; and
| | - Michael E Tschakovsky
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada;
| |
Collapse
|
22
|
Murias JM, Edwards JA, Paterson DH. Effects of short-term training and detraining on VO2 kinetics: Faster VO2 kinetics response after one training session. Scand J Med Sci Sports 2015; 26:620-9. [PMID: 25946038 DOI: 10.1111/sms.12487] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2015] [Indexed: 11/28/2022]
Abstract
This study examined the time course of short-term training and detraining-induced changes in oxygen uptake ( V ˙ O 2 ) kinetics. Twelve men (24 ± 3 years) were assigned to either a 50% or a 70% of V ˙ O 2 m a x training intensity (n = 6 per group). V ˙ O 2 was measured breath-by-breath. Changes in deoxygenated-hemoglobin concentration (Δ[HHb]) were measured by near-infrared spectroscopy. Moderate-intensity exercise on-transient V ˙ O 2 and Δ[HHb] were modeled with a mono-exponential and normalized (0-100% of response) and the [ H H b ] / V ˙ O 2 ratio was calculated. Similar changes in time constant of V ˙ O 2 ( t V ˙ O 2 ) were observed in both groups. The combined group mean for t V ˙ O 2 decreased ∼14% (32.3 to 27.9 s, P < 0.05) after one training session with a further ∼11% decrease (27.9 to 24.8 s, P < 0.05) following two training sessions. The t V ˙ O 2 p remained unchanged throughout the remaining of training and detraining. A significant "overshoot" in the [ H H b ] / V ˙ O 2 ratio was decreased (albeit not significant) after one training session, and abolished (P < 0.05) after the second one, with no overshoot observed thereafter. Speeding of V ˙ O 2 kinetics was remarkably quick with no further changes being observed with continuous training or during detraining. Improve matching of local O2 delivery to O2 utilization is a mechanism proposed to influence this response.
Collapse
Affiliation(s)
- J M Murias
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - J A Edwards
- Canadian Centre for Activity and Aging, Ontario, London, Canada.,School of Kinesiology, University of Western Ontario, London, ON, Canada
| | - D H Paterson
- Canadian Centre for Activity and Aging, Ontario, London, Canada.,School of Kinesiology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
23
|
Williams CA, Saynor ZL, Tomlinson OW, Barker AR. Cystic fibrosis and physiological responses to exercise. Expert Rev Respir Med 2014; 8:751-62. [DOI: 10.1586/17476348.2014.966693] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
24
|
Raper JA, Love LK, Paterson DH, Peters SJ, Heigenhauser GJF, Kowalchuk JM. Effect of high-fat and high-carbohydrate diets on pulmonary O2 uptake kinetics during the transition to moderate-intensity exercise. J Appl Physiol (1985) 2014; 117:1371-9. [PMID: 25277736 DOI: 10.1152/japplphysiol.00456.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mitochondrial pyruvate dehydrogenase (PDH) regulates the delivery of carbohydrate-derived substrate to the mitochondrial tricarboxylic acid cycle and electron transport chain. PDH activity at rest and its activation during exercise is attenuated following high-fat (HFAT) compared with high-carbohydrate (HCHO) diets. Given the reliance on carbohydrate-derived substrate early in transitions to exercise, this study examined the effects of HFAT and HCHO on phase II pulmonary O2 uptake (V̇o2 p) kinetics during transitions into the moderate-intensity (MOD) exercise domain. Eight active adult men underwent dietary manipulations consisting of 6 days of HFAT (73% fat, 22% protein, 5% carbohydrate) followed immediately by 6 days of HCHO (10% fat, 10% protein, 80% carbohydrate); each dietary phase was preceded by a glycogen depletion protocol. Participants performed three MOD transitions from a 20 W cycling baseline to work rate equivalent to 80% of estimated lactate threshold on days 5 and 6 of each diet. Steady-state V̇o2 p was greater (P < 0.05), and respiratory exchange ratio and carbohydrate oxidation rates were lower (P < 0.05) during HFAT. The phase II V̇o2 p time constant (τV̇o2 p) [HFAT 40 ± 16, HCHO 32 ± 19 s (mean ± SD)] and V̇o2 p gain (HFAT 10.3 ± 0.8, HCHO 9.4 ± 0.7 ml·min(-1·)W(-1)) were greater (P < 0.05) in HFAT. The overall adjustment (effective time constant) of muscle deoxygenation (Δ[HHb]) was not different between diets (HFAT 24 ± 4 s, HCHO 23 ± 4 s), which coupled with a slower τV̇o2 p, indicates a slowed microvascular blood flow response. These results suggest that the slower V̇o2 p kinetics associated with HFAT are consistent with inhibition and slower activation of PDH, a lower rate of pyruvate production, and/or attenuated microvascular blood flow and O2 delivery.
Collapse
Affiliation(s)
- J A Raper
- Canadian Centre for Activity and Aging, The University of Western Ontario, London, Ontario, Canada; School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada
| | - L K Love
- Canadian Centre for Activity and Aging, The University of Western Ontario, London, Ontario, Canada; School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada; Department of Kinesiology, Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada
| | - D H Paterson
- Canadian Centre for Activity and Aging, The University of Western Ontario, London, Ontario, Canada; School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada
| | - S J Peters
- Department of Kinesiology, Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada
| | - G J F Heigenhauser
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada; and
| | - J M Kowalchuk
- Canadian Centre for Activity and Aging, The University of Western Ontario, London, Ontario, Canada; School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada;
| |
Collapse
|
25
|
do Nascimento PC, de Lucas RD, de Souza KM, de Aguiar RA, Denadai BS, Guglielmo LGA. The effect of prior exercise intensity on oxygen uptake kinetics during high-intensity running exercise in trained subjects. Eur J Appl Physiol 2014; 115:147-56. [PMID: 25240480 DOI: 10.1007/s00421-014-3000-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 09/15/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE The aim of this study was to compare the effects of two different kinds of prior exercise protocols [continuous exercise (CE) versus intermittent repeated sprint (IRS)] on oxygen uptake (VO2) kinetics parameters during high-intensity running. METHODS Thirteen male amateur futsal players (age 22.8 ± 6.1 years; mass 76.0 ± 10.2 kg; height 178.7 ± 6.6 cm; VO2max 58.1 ± 4.5 mL kg(-1) min(-1)) performed a maximal incremental running test for the determination of the gas exchange threshold (GET) and maximal VO2 (VO2max). On two different days, the subjects completed a 6-min bout of high-intensity running (50 % ∆) on a treadmill that was 6-min after (1) an identical bout of high-intensity exercise (from control to CE), and (2) a protocol of IRS (6 × 40 m). RESULT We found significant differences between CE and IRS for the blood lactate concentration ([La]; 6.1 versus 10.7 mmol L(-1), respectively), VO2 baseline (0.74 versus 0.93 L min(-1), respectively) and the heart rate (HR; 102 versus 124 bpm, respectively) before the onset of high-intensity exercise. However, both prior CE and prior IRS significantly increased the absolute primary VO2 amplitude (3.77 and 3.79 L min(-1), respectively, versus control 3.54 L min(-1)), reduced the amplitude of the VO2 slow component (0.26 and 0.21 L min(-1), respectively, versus control 0.50 L min(-1)), and decreased the mean response time (MRT; 28.9 and 28.0 s, respectively, versus control 36.9 s) during subsequent bouts. CONCLUSION This study showed that different protocols and intensities of prior exercise trigger similar effects on VO2 kinetics during high-intensity running.
Collapse
Affiliation(s)
- Paulo Cesar do Nascimento
- Physical Effort Laboratory, Sports Center, Federal University of Santa Catarina, Florianopolis, Brazil,
| | | | | | | | | | | |
Collapse
|
26
|
Murias JM, Spencer MD, Paterson DH. The critical role of O2 provision in the dynamic adjustment of oxidative phosphorylation. Exerc Sport Sci Rev 2014; 42:4-11. [PMID: 24188979 DOI: 10.1249/jes.0000000000000005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It has been proposed that the adjustment of oxygen uptake (V˙O2) during the exercise on-transient is controlled intracellularly in young healthy individuals and that insufficient local O2 delivery plays a rate-limiting role in aging and disease only. This review shows that adequate O2 provision to the active tissues is critical in the dynamic adjustment of oxidative phosphorylation even in young healthy individuals.
Collapse
Affiliation(s)
- Juan M Murias
- 1Canadian Centre for Activity and Aging; and 2School of Kinesiology, University of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|
27
|
Werneck FZ, Coelho EF, de Lima JRP, Laterza MC, Barral MM, Teixeira PDFDS, Vaisman M. Pulmonary oxygen uptake kinetics during exercise in subclinical hypothyroidism. Thyroid 2014; 24:931-8. [PMID: 24512502 PMCID: PMC4046221 DOI: 10.1089/thy.2013.0534] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Patients with subclinical hypothyroidism (SCH) have lower exercise tolerance, but the impact on oxygen uptake (VO2) kinetics is unknown. This study evaluated VO2 kinetics during and after a constant load submaximal exercise in SCH. METHODS The study included 19 women with SCH (thyrotropin (TSH)=6.87±2.88 μIU/mL, free thyroxine (fT4)=0.97±0.15 ng/dL) and 19 controls (TSH=2.29±0.86 μIU/mL, T4=0.99±0.11 ng/dL) aged between 20 and 55 years. Ergospirometry exercise testing was performed for six minutes with a constant load of 50 W, followed by six minutes of passive recovery. The VO2 kinetics was quantified by the mean response time (MRT), which is the exponential time constant and approximates the time needed to reach 63% of change in VO2 (ΔVO2). The O2 deficit-energy supplied by anaerobic metabolism at the onset of exercise-and O2 debit-extra energy demand during the recovery period-were calculated by the formula MRT×ΔVO2. Values are mean±standard deviation. RESULTS In the rest-exercise transition, patients with SCH showed slower VO2 kinetics (MRT=47±8 sec vs. 40±6 sec, p=0.004) and a higher oxygen deficit (580±102 mL vs. 477±95 mL, p=0.003) than controls respectively. In the exercise-recovery transition, patients with SCH also showed slower VO2 kinetics (MRT=54±6 sec vs. 44±6 sec, p=0.001) and a higher oxygen debit (679±105 mL vs. 572±104 mL, p=0.003). The VO2 kinetics showed a significant correlation with TSH (p<0.05). CONCLUSIONS This study demonstrates that women with SCH have the slowest VO2 kinetics in the onset and recovery of a constant-load submaximal exercise and highlights that this impairment is already manifest in the early stage of the disease.
Collapse
Affiliation(s)
- Francisco Zacaron Werneck
- Endocrine Service, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Faculty of Physical Education, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Emerson Filipino Coelho
- Endocrine Service, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Faculty of Physical Education, Federal University of Ouro Preto, Ouro Preto, Brazil
| | | | - Mateus Camaroti Laterza
- Faculty of Physical Education and Sports, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | | | | | - Mário Vaisman
- Endocrine Service, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
28
|
Kubo Y, Nishida Y. Relationships of pulmonary oxygen uptake kinetics with skeletal muscle fatigue resistance and peak oxygen uptake in healthy young adults. J Phys Ther Sci 2014; 25:1363-6. [PMID: 24396189 PMCID: PMC3881456 DOI: 10.1589/jpts.25.1363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 05/29/2013] [Indexed: 12/03/2022] Open
Abstract
[Purpose] The objective of this study was to determine the validity of pulmonary oxygen
uptake kinetics in assessment of the ability of skeletal muscles to utilize oxygen.
[Subjects] We evaluated 12 young, healthy males. [Methods] The subjects completed a series
of tests to determine their peak oxygen uptake, pulmonary oxygen uptake kinetics at the
onset of moderate-intensity treadmill exercise, and the rate of decline in
electromyographic (EMG) mean power frequency (MPF) (EMG MPFrate) during one
continuous, fatiguing, isometric muscle action of the plantar flexors until exhaustion at
approximately 60% maximum voluntary contraction. We discussed the relationships between
pulmonary oxygen uptake kinetics and EMG MPFrate reflecting the ability of
skeletal muscles to utilize oxygen and between pulmonary oxygen uptake kinetics and peak
oxygen uptake reflecting the ability to deliver oxygen to skeletal muscles. We
hypothesized that pulmonary oxygen uptake kinetics may be more highly correlated with EMG
MPFrate than peak oxygen uptake. [Results] Pulmonary oxygen uptake kinetics
(33.9 ± 5.9 s) were more significantly correlated with peak oxygen uptake (50.6 ±
5.5 mL/kg/min) than EMG MPFrate (−14.7 ± 8.7%/s). [Conclusion] Pulmonary oxygen
uptake kinetics is a noninvasive index that is mainly usable for evaluation of the ability
of cardiovascular system to deliver oxygen to skeletal muscles in healthy young adults
with slower pulmonary oxygen uptake kinetics (>20 s).
Collapse
Affiliation(s)
- Yusuke Kubo
- Rehabilitation Sciences, Seirei Christopher University, Japan ; Kobori Orthopedic Clinic, Japan
| | - Yuusuke Nishida
- Rehabilitation Sciences, Seirei Christopher University, Japan
| |
Collapse
|
29
|
Clanton TL, Hogan MC, Gladden LB. Regulation of cellular gas exchange, oxygen sensing, and metabolic control. Compr Physiol 2013; 3:1135-90. [PMID: 23897683 DOI: 10.1002/cphy.c120030] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cells must continuously monitor and couple their metabolic requirements for ATP utilization with their ability to take up O2 for mitochondrial respiration. When O2 uptake and delivery move out of homeostasis, cells have elaborate and diverse sensing and response systems to compensate. In this review, we explore the biophysics of O2 and gas diffusion in the cell, how intracellular O2 is regulated, how intracellular O2 levels are sensed and how sensing systems impact mitochondrial respiration and shifts in metabolic pathways. Particular attention is paid to how O2 affects the redox state of the cell, as well as the NO, H2S, and CO concentrations. We also explore how these agents can affect various aspects of gas exchange and activate acute signaling pathways that promote survival. Two kinds of challenges to gas exchange are also discussed in detail: when insufficient O2 is available for respiration (hypoxia) and when metabolic requirements test the limits of gas exchange (exercising skeletal muscle). This review also focuses on responses to acute hypoxia in the context of the original "unifying theory of hypoxia tolerance" as expressed by Hochachka and colleagues. It includes discourse on the regulation of mitochondrial electron transport, metabolic suppression, shifts in metabolic pathways, and recruitment of cell survival pathways preventing collapse of membrane potential and nuclear apoptosis. Regarding exercise, the issues discussed relate to the O2 sensitivity of metabolic rate, O2 kinetics in exercise, and influences of available O2 on glycolysis and lactate production.
Collapse
Affiliation(s)
- T L Clanton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA.
| | | | | |
Collapse
|
30
|
Abstract
Muscular exercise requires transitions to and from metabolic rates often exceeding an order of magnitude above resting and places prodigious demands on the oxidative machinery and O2-transport pathway. The science of kinetics seeks to characterize the dynamic profiles of the respiratory, cardiovascular, and muscular systems and their integration to resolve the essential control mechanisms of muscle energetics and oxidative function: a goal not feasible using the steady-state response. Essential features of the O2 uptake (VO2) kinetics response are highly conserved across the animal kingdom. For a given metabolic demand, fast VO2 kinetics mandates a smaller O2 deficit, less substrate-level phosphorylation and high exercise tolerance. By the same token, slow VO2 kinetics incurs a high O2 deficit, presents a greater challenge to homeostasis and presages poor exercise tolerance. Compelling evidence supports that, in healthy individuals walking, running, or cycling upright, VO2 kinetics control resides within the exercising muscle(s) and is therefore not dependent upon, or limited by, upstream O2-transport systems. However, disease, aging, and other imposed constraints may redistribute VO2 kinetics control more proximally within the O2-transport system. Greater understanding of VO2 kinetics control and, in particular, its relation to the plasticity of the O2-transport/utilization system is considered important for improving the human condition, not just in athletic populations, but crucially for patients suffering from pathologically slowed VO2 kinetics as well as the burgeoning elderly population.
Collapse
Affiliation(s)
- David C Poole
- Departments of Kinesiology, Anatomy, and Physiology, Kansas State University, Manhattan, Kansas, USA.
| | | |
Collapse
|
31
|
Abstract
The activities of daily living typically occur at metabolic rates below the maximum rate of aerobic energy production. Such activity is characteristic of the nonsteady state, where energy demands, and consequential physiological responses, are in constant flux. The dynamics of the integrated physiological processes during these activities determine the degree to which exercise can be supported through rates of O₂ utilization and CO₂ clearance appropriate for their demands and, as such, provide a physiological framework for the notion of exercise intensity. The rate at which O₂ exchange responds to meet the changing energy demands of exercise--its kinetics--is dependent on the ability of the pulmonary, circulatory, and muscle bioenergetic systems to respond appropriately. Slow response kinetics in pulmonary O₂ uptake predispose toward a greater necessity for substrate-level energy supply, processes that are limited in their capacity, challenge system homeostasis and hence contribute to exercise intolerance. This review provides a physiological systems perspective of pulmonary gas exchange kinetics: from an integrative view on the control of muscle oxygen consumption kinetics to the dissociation of cellular respiration from its pulmonary expression by the circulatory dynamics and the gas capacitance of the lungs, blood, and tissues. The intensity dependence of gas exchange kinetics is discussed in relation to constant, intermittent, and ramped work rate changes. The influence of heterogeneity in the kinetic matching of O₂ delivery to utilization is presented in reference to exercise tolerance in endurance-trained athletes, the elderly, and patients with chronic heart or lung disease.
Collapse
Affiliation(s)
- Harry B Rossiter
- Institute of Membrane and Systems Biology, University of Leeds, Leeds, United Kingdom.
| |
Collapse
|
32
|
Hortemo KH, Munkvik M, Lunde PK, Sejersted OM. Multiple causes of fatigue during shortening contractions in rat slow twitch skeletal muscle. PLoS One 2013; 8:e71700. [PMID: 23977116 PMCID: PMC3745421 DOI: 10.1371/journal.pone.0071700] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/08/2013] [Indexed: 01/18/2023] Open
Abstract
Fatigue in muscles that shorten might have other causes than fatigue during isometric contractions, since both cross-bridge cycling and energy demand are different in the two exercise modes. While isometric contractions are extensively studied, the causes of fatigue in shortening contractions are poorly mapped. Here, we investigate fatigue mechanisms during shortening contractions in slow twitch skeletal muscle in near physiological conditions. Fatigue was induced in rat soleus muscles with maintained blood supply by in situ shortening contractions at 37°C. Muscles were stimulated repeatedly (1 s on/off at 30 Hz) for 15 min against a constant load, allowing the muscle to shorten and perform work. Fatigue and subsequent recovery was examined at 20 s, 100 s and 15 min exercise. The effects of prior exercise were investigated in a second exercise bout. Fatigue developed in three distinct phases. During the first 20 s the regulatory protein Myosin Light Chain-2 (slow isoform, MLC-2s) was rapidly dephosphorylated in parallel with reduced rate of force development and reduced shortening. In the second phase there was degradation of high-energy phosphates and accumulation of lactate, and these changes were related to slowing of muscle relengthening and relaxation, culminating at 100 s exercise. Slowing of relaxation was also associated with increased leak of calcium from the SR. During the third phase of exercise there was restoration of high-energy phosphates and elimination of lactate, and the slowing of relaxation disappeared, whereas dephosphorylation of MLC-2s and reduced shortening prevailed. Prior exercise improved relaxation parameters in a subsequent exercise bout, and we propose that this effect is a result of less accumulation of lactate due to more rapid onset of oxidative metabolism. The correlation between dephosphorylation of MLC-2s and reduced shortening was confirmed in various experimental settings, and we suggest MLC-2s as an important regulator of muscle shortening.
Collapse
Affiliation(s)
- Kristin Halvorsen Hortemo
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Cardiac Research Centre and Centre for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Morten Munkvik
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Cardiac Research Centre and Centre for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Per Kristian Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Cardiac Research Centre and Centre for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Ole M. Sejersted
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Cardiac Research Centre and Centre for Heart Failure Research, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
33
|
Spires J, Gladden LB, Grassi B, Goodwin ML, Saidel GM, Lai N. Distinguishing the effects of convective and diffusive O₂ delivery on VO₂ on-kinetics in skeletal muscle contracting at moderate intensity. Am J Physiol Regul Integr Comp Physiol 2013; 305:R512-21. [PMID: 23761640 DOI: 10.1152/ajpregu.00136.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
With current techniques, experimental measurements alone cannot characterize the effects of oxygen blood-tissue diffusion on muscle oxygen uptake (Vo₂) kinetics in contracting skeletal muscle. To complement experimental studies, a computational model is used to quantitatively distinguish the contributions of convective oxygen delivery, diffusion into cells, and oxygen utilization to Vo₂ kinetics. The model is validated using previously published experimental Vo₂ kinetics in response to slowed blood flow (Q) on-kinetics in canine muscle (τQ = 20 s, 46 s, and 64 s) [Goodwin ML, Hernández A, Lai N, Cabrera ME, Gladden LB. J Appl Physiol. 112:9-19, 2012]. Distinctive effects of permeability-surface area or diffusive conductance (PS) and Q on Vo₂ kinetics are investigated. Model simulations quantify the relationship between PS and Q, as well as the effects of diffusion associated with PS and Q dynamics on the mean response time of Vo₂. The model indicates that PS and Q are linearly related and that PS increases more with Q when convective delivery is limited by slower Q dynamics. Simulations predict that neither oxygen convective nor diffusive delivery are limiting Vo₂ kinetics in the isolated canine gastrocnemius preparation under normal spontaneous conditions during transitions from rest to moderate (submaximal) energy demand, although both operate close to the tipping point.
Collapse
Affiliation(s)
- Jessica Spires
- Departments of Biomedical Engineering, Case Western Reserve Univ., Cleveland, OH 44106-7207, USA
| | | | | | | | | | | |
Collapse
|
34
|
Villar R, Hughson RL. Effect of altered arterial perfusion pressure on vascular conductance and muscle blood flow dynamic response during exercise in humans. J Appl Physiol (1985) 2013; 114:620-7. [DOI: 10.1152/japplphysiol.01094.2012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Changes in vascular conductance (VC) are required to counter changes in muscle perfusion pressure (MPP) to maintain muscle blood flow (MBF) during exercise. We investigated the recruitment of VC as a function of peak VC measured in three body positions at two different work rates to test the hypothesis that adaptations in VC compensated changes in MPP at low-power output (LPO), but not at high-power output (HPO). Eleven healthy volunteers exercised at LPO and HPO (repeated plantar flexion contractions at 20–30% maximal voluntary contraction, respectively) in horizontal (HOR), 35° head-down tilt (HDT), and 45° head-up tilt (HUT). Muscle blood flow velocity and popliteal diameter were measured by ultrasound to determine MBF, and VC was estimated by dividing MBF flow by MPP. Peak VC was unaffected by body position. The rates of increase in MBF and VC were significantly faster in HUT and slower in HDT than HOR, and rates were faster in LPO than HPO. During LPO exercise, the increase in, and steady-state values of, MBF were less for HUT and HDT than HOR; the increase in VC was less in HUT than HOR and HDT. During HPO exercise, MBF in the HDT was reduced compared with HOR and HUT, even though VC reached 92% VC peak, which was greater than HOR, which was, in turn, greater than HUT. Reduced MBF during HPO HDT exercise had the functional consequence of a significant increase in muscle electromyographic index, revealing the effects of MPP on O2 delivery during exercise.
Collapse
Affiliation(s)
- Rodrigo Villar
- Faculty of Applied Health Sciences, University of Waterloo, Waterloo, Ontario, Canada; and
- Coordenação de Aperfeiçoamento de Pessoal de Nivel Superior (CAPES), Brasilia, Brazil
| | - Richard L. Hughson
- Faculty of Applied Health Sciences, University of Waterloo, Waterloo, Ontario, Canada; and
| |
Collapse
|
35
|
Tipton MJ, Milligan GS, Reilly TJ. Physiological employment standards I. Occupational fitness standards: objectively subjective? Eur J Appl Physiol 2012; 113:2435-46. [DOI: 10.1007/s00421-012-2569-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 11/30/2012] [Indexed: 10/27/2022]
|
36
|
Spires J, Gladden LB, Grassi B, Saidel GM, Lai N. Model analysis of the relationship between intracellular PO2 and energy demand in skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2012; 303:R1110-26. [PMID: 22972834 DOI: 10.1152/ajpregu.00106.2012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
On the basis of experimental studies, the intracellular O(2) (iPo(2))-work rate (WR) relationship in skeletal muscle is not unique. One study found that iPo(2) reached a plateau at 60% of maximal WR, while another found that iPo(2) decreased linearly at higher WR, inferring capillary permeability-surface area (PS) and blood-tissue O(2) gradient, respectively, as alternative dominant factors for determining O(2) diffusion changes during exercise. This relationship is affected by several factors, including O(2) delivery and oxidative and glycolytic capacities of the muscle. In this study, these factors are examined using a mechanistic, mathematical model to analyze experimental data from contracting skeletal muscle and predict the effects of muscle contraction on O(2) transport, glycogenolysis, and iPo(2). The model describes convection, O(2) diffusion, and cellular metabolism, including anaerobic glycogenolysis. Consequently, the model simulates iPo(2) in response to muscle contraction under a variety of experimental conditions. The model was validated by comparison of simulations of O(2) uptake with corresponding experimental responses of electrically stimulated canine muscle under different O(2) content, blood flow, and contraction intensities. The model allows hypothetical variation of PS, glycogenolytic capacity, and blood flow and predictions of the distinctive effects of these factors on the iPo(2)-contraction intensity relationship in canine muscle. Although PS is the main factor regulating O(2) diffusion rate, model simulations indicate that PS and O(2) gradient have essential roles, depending on the specific conditions. Furthermore, the model predicts that different convection and diffusion patterns and metabolic factors may be responsible for different iPo(2)-WR relationships in humans.
Collapse
Affiliation(s)
- Jessica Spires
- Dept. of Biomedical Engineering, Case Western Reserve Univ., 10900 Euclid Ave., Wickenden Bldg. Rm. 524, Cleveland, OH 44106-7207, USA
| | | | | | | | | |
Collapse
|
37
|
Zerbini L, Brighenti A, Pellegrini B, Bortolan L, Antonetti T, Schena F. Effects of acute hypoxia on the oxygen uptake kinetics of older adults during cycling exercise. Appl Physiol Nutr Metab 2012; 37:744-52. [DOI: 10.1139/h2012-048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pulmonary oxygen uptake, heart rate (HR), and deoxyhemoglobin (HHb) kinetics were studied in a group of older adults exercising in hypoxic conditions. Fourteen healthy older adults (aged 66 ± 6 years) performed 4 exercise sessions that consisted of (i) an incremental test to exhaustion on a cycloergometer while breathing normoxic room air (fractional inspired oxygen (FiO2) = 20.9% O2); (ii) an incremental test to exhaustion on a cycloergometer while breathing hypoxic room air (FiO2 = 15% O2); (iii) 3 repeated square wave cycling exercises at moderate intensity while breathing normoxic room air; and (iv) 3 repeated square wave cycling exercises at moderate intensity while breathing hypoxic room air. During all exercise sessions, pulmonary gas exchange was measured breath-by-breath; HHb was determined on the vastus lateralis muscle by near-infrared spectroscopy; and HR was collected beat-by-beat. The pulomary oxygen uptake kinetics became slower in hypoxia (31 ± 9 s) than in normoxia (27 ± 7 s) because of an increased mismatching between O2 delivery to O2 utilization at the level of the muscle. The HR and HHb kinetics did not change between hypoxia and normoxia,
Collapse
Affiliation(s)
- Livio Zerbini
- CeRiSM, Centre of Sport Health and Mountain Via Matteo del Ben, 5/b, University of Verona, 38068 Rovereto, Italy
- Faculty of Exercise and Sport Science, University of Verona, Italy
| | - Alfredo Brighenti
- CeRiSM, Centre of Sport Health and Mountain Via Matteo del Ben, 5/b, University of Verona, 38068 Rovereto, Italy
- Faculty of Exercise and Sport Science, University of Verona, Italy
| | - Barbara Pellegrini
- CeRiSM, Centre of Sport Health and Mountain Via Matteo del Ben, 5/b, University of Verona, 38068 Rovereto, Italy
- Faculty of Exercise and Sport Science, University of Verona, Italy
| | - Lorenzo Bortolan
- CeRiSM, Centre of Sport Health and Mountain Via Matteo del Ben, 5/b, University of Verona, 38068 Rovereto, Italy
- Faculty of Exercise and Sport Science, University of Verona, Italy
| | - Tommaso Antonetti
- CeRiSM, Centre of Sport Health and Mountain Via Matteo del Ben, 5/b, University of Verona, 38068 Rovereto, Italy
- Faculty of Exercise and Sport Science, University of Verona, Italy
| | - Federico Schena
- CeRiSM, Centre of Sport Health and Mountain Via Matteo del Ben, 5/b, University of Verona, 38068 Rovereto, Italy
- Faculty of Exercise and Sport Science, University of Verona, Italy
| |
Collapse
|
38
|
Ng LJ, Sih BL, Stuhmiller JH. An integrated exercise response and muscle fatigue model for performance decrement estimates of workloads in oxygen-limiting environments. Eur J Appl Physiol 2011; 112:1229-49. [DOI: 10.1007/s00421-011-2062-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 06/25/2011] [Indexed: 11/24/2022]
|
39
|
Millet GP, Vleck VE, Bentley DJ. Physiological requirements in triathlon. JOURNAL OF HUMAN SPORT AND EXERCISE 2011. [DOI: 10.4100/jhse.2011.62.01] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
40
|
Murias JM, Spencer MD, Kowalchuk JM, Paterson DH. Muscle deoxygenation to VO2 relationship differs in young subjects with varying τVO2. Eur J Appl Physiol 2011; 111:3107-18. [PMID: 21461928 DOI: 10.1007/s00421-011-1937-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 03/19/2011] [Indexed: 11/28/2022]
Affiliation(s)
- Juan M Murias
- Canadian Centre for Activity and Aging, The University of Western Ontario, London, ON, Canada
| | | | | | | |
Collapse
|
41
|
Pulmonary O2 uptake and muscle deoxygenation kinetics are slowed in the upper compared with lower region of the moderate-intensity exercise domain in older men. Eur J Appl Physiol 2011; 111:2139-48. [DOI: 10.1007/s00421-011-1851-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 01/20/2011] [Indexed: 10/18/2022]
|
42
|
Faisal A, Dyson KS, Hughson RL. Prolonged ischaemia impairs muscle blood flow and oxygen uptake dynamics during subsequent heavy exercise. J Physiol 2011; 588:3785-97. [PMID: 20679356 DOI: 10.1113/jphysiol.2010.188698] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Muscle oxygen uptake ( ˙VO₂,mus) dynamics at the onset of exercise can be affected by prior heavy exercise.We tested the hypothesis that elevated forearm blood flow (FBF) following prior circulatory occlusion would also be associated with accelerated ˙VO₂,mus dynamics during subsequent heavy hand-grip exercise. Ten trained young men performed 5 min of heavy hand-grip exercise at 30% MVC as a control (CON), and four additional heavy bouts after brief recovery from: (1) prior heavy exercise (Heavy A), (2) heavy exercise followed by 2 min occlusion (Heavy B), (3) 15 min occlusion (Heavy C), and (4) 5 min occlusion with 1 min of moderate exercise during occlusion (Heavy D). FBF was measured by ultrasound and arterial venous oxygen content difference was calculated from venous blood samples to estimate ˙VO₂,mus. FBF and ˙VO₂,mus dynamics were quantified from the rise time. All priming conditions elevated FBF immediately before the start of subsequent heavy bout (Heavy A: 207.4 ±92.8, B: 207.8±75.8, C: 135.8±59.2, D: 199.5±59.0 vs. CON: 57.4±16.6mlmin−1, P <0.01). Unexpectedly, prior occlusion reduced FBF and O2 extraction at the onset of subsequent heavy exercise and consequently slowed ˙VO₂,mus dynamics (Heavy C: rise time=95.9±28.9 vs. CON: 58.6±14.3 s, P <0.01). FBF and ˙VO₂,mus dynamics were faster in Heavy A, B and D compared to CON (P <0.05). Overall, there was a positive correlation between the rise times for ˙VO₂,mus and FBF (r² =0.75) indicating that ˙VO₂,mus dynamics during heavy forearm exercise are linked to O₂ delivery in trained young men. To investigate a possible mechanism for slower adaptation of ˙VO₂,mus following ischaemia, the prior occlusion condition was repeated after ingesting a high dose of ibuprofen. This resulted in restoration of the FBF and ˙VO₂,mus to control levels suggesting that a prostaglandin-mediated mechanism after occlusion retarded the adaptation of blood flow and oxygen consumption at the onset of subsequent heavy exercise.
Collapse
Affiliation(s)
- Azmy Faisal
- Faculty of Applied Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | | | | |
Collapse
|
43
|
Influence of training status and exercise modality on pulmonary O2 uptake kinetics in pubertal girls. Eur J Appl Physiol 2010; 111:621-31. [DOI: 10.1007/s00421-010-1681-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2010] [Indexed: 11/25/2022]
|
44
|
Speeding of VO2 kinetics in response to endurance-training in older and young women. Eur J Appl Physiol 2010; 111:235-43. [DOI: 10.1007/s00421-010-1649-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2010] [Indexed: 11/25/2022]
|
45
|
Mendonca GV, Pereira FD, Fernhall B. Oxygen uptake kinetics during exercise in adults with Down syndrome. Eur J Appl Physiol 2010; 110:575-83. [PMID: 20559651 DOI: 10.1007/s00421-010-1540-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2010] [Indexed: 10/19/2022]
Abstract
Persons with Down syndrome (DS) have diminished submaximal and peak work capacity. This study evaluated the dynamic response of oxygen uptake at onset and recovery (VO(2) kinetics) of constant-load exercise (moderate intensity 45% VO(2peak)) in adults with DS. A total of 27 healthy participants aged 18-50 years performed graded treadmill exercise to assess peak VO(2): 14 with DS (9 males and 5 females) and 13 controls without disabilities (9 males and 4 females). Subjects also performed constant-load exercise tests at 45% VO(2peak) to determine VO(2) on-transient and VO(2) off-transient responses. Peak VO(2) was lower in participants with DS as compared to controls (DS 30.2 ± 7.1; controls 46.1 ± 9.6 mL kg(-1) min(-1), P < 0.05). In contrast, at 45% VO(2peak), the time constants for the VO(2) on-transients (DS 34.6 ± 9.1; controls 37.6 ± 9.0 s) and VO(2) off-transients (DS 36.5 ± 12.3; controls 37.7 ± 7.0 s) were not significantly different between the groups. Additionally, there were no differences between on-transient and off-transient time constants in participants with DS or controls. These data demonstrate that the VO(2) kinetics at onset and recovery of moderate intensity exercise is similar between adults with DS and controls. Therefore, the submaximal exercise performance of these individuals is not affected by slowed VO(2) kinetics.
Collapse
Affiliation(s)
- Goncalo V Mendonca
- Center of Human Performance CIPER, Estrada da Costa, Cruz Quebrada, Faculty of Human Kinetics, Technical University of Lisbon, Cruz Quebrada Dafundo, 1495-688 Lisbon, Portugal.
| | | | | |
Collapse
|
46
|
Chin LMK, Heigenhauser GJF, Paterson DH, Kowalchuk JM. Pulmonary O2 uptake and leg blood flow kinetics during moderate exercise are slowed by hyperventilation-induced hypocapnic alkalosis. J Appl Physiol (1985) 2010; 108:1641-50. [PMID: 20339012 PMCID: PMC2886676 DOI: 10.1152/japplphysiol.01346.2009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 03/23/2010] [Indexed: 11/22/2022] Open
Abstract
The effect of hyperventilation-induced hypocapnic alkalosis (Hypo) on the adjustment of pulmonary O2 uptake (VO2p) and leg femoral conduit artery ("bulk") blood flow (LBF) during moderate-intensity exercise (Mod) was examined in eight young male adults. Subjects completed four to six repetitions of alternate-leg knee-extension exercise during normal breathing [Con; end-tidal partial pressure of CO2 (PetCO2) approximately 40 mmHg] and sustained hyperventilation (Hypo; PetCO2 approximately 20 mmHg). Increases in work rate were made instantaneously from baseline (3 W) to Mod (80% estimated lactate threshold). VO2p was measured breath by breath by mass spectrometry and volume turbine, and LBF (calculated from mean femoral artery blood velocity and femoral artery diameter) was measured simultaneously by Doppler ultrasound. Concentration changes of deoxy (Delta[HHb])-, oxy (Delta[O2Hb])-, and total hemoglobin-myoglobin (Delta[HbTot]) of the vastus lateralis muscle were measured continuously by near-infrared spectroscopy (NIRS). The kinetics of VO2p, LBF, and Delta[HHb] were modeled using a monoexponential equation by nonlinear regression. The time constants for the phase 2 VO2p (Hypo, 49+/-26 s; Con, 28+/-8 s) and LBF (Hypo, 46+/-16 s; Con, 23+/-6 s) were greater (P<0.05) in Hypo compared with Con. However, the mean response time for the overall Delta[HHb] response was not different between conditions (Hypo, 23+/-5 s; Con, 24+/-3 s), whereas the Delta[HHb] amplitude was greater (P<0.05) in Hypo (8.05+/-7.47 a.u.) compared with Con (6.69+/-6.31 a.u.). Combined, these results suggest that hyperventilation-induced hypocapnic alkalosis is associated with slower convective (i.e., slowed femoral artery and microvascular blood flow) and diffusive (i.e., greater fractional O2 extraction for a given DeltaVO2p) O2 delivery, which may contribute to the hyperventilation-induced slowing of VO2p (and muscle O2 utilization) kinetics.
Collapse
Affiliation(s)
- Lisa M K Chin
- Canadian Centre for Activity and Aging, School of Kinesiology, Department of Physiology and Pharmacology, Arthur and Sonia Labatt Health Sciences Bldg., Rm. 411C, The University of Western Ontario, London, ON, Canada N6A 5B9
| | | | | | | |
Collapse
|
47
|
Hernández A, Goodwin ML, Lai N, Cabrera ME, McDonald JR, Gladden LB. Contraction-by-contraction V̇o2 and computer-controlled pump perfusion as novel techniques to study skeletal muscle metabolism in situ. J Appl Physiol (1985) 2010; 108:705-12. [DOI: 10.1152/japplphysiol.00963.2009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this research was to develop new techniques to 1) rapidly sample venous O2 saturation to determine contraction-by-contraction oxygen uptake (V̇o2), and 2) precisely control the rate and pattern of blood flow adjustment from one chosen steady state to another. An indwelling inline oximeter probe connected to an Oximetrix 3 meter was used to sample venous oxygen concentration ([O2]) (via fractional saturation of Hb with O2). Data from the Oximetrix 3 were filtered, deconvolved, and processed by a moving average second by second. Computer software and a program written in-house were used to control blood flow with a peristaltic pump. The isolated canine gastrocnemius muscle complex (GS) in situ was utilized to test these techniques. A step change in metabolic rate was elicited by stimulating GS muscles via their sciatic nerves (supramaximal voltage, 8 V; 50 Hz, 0.2-ms pulse width; train duration 200 ms) at a rate of either 1 contraction/2 s, or 2 contractions/3 s. With arterial [O2] maintained constant, blood flow and calculated venous [O2] were averaged over each contraction cycle and used in the Fick equation to calculate contraction-by-contraction V̇o2. About 5–8 times more data points were obtained with this method compared with traditional manual sampling. Software-controlled pump perfusion enabled the ability to mimic spontaneous blood flow on-kinetics (τ: 14.3 s) as well as dramatically speed (τ: 2.0 s) and slow (τ: 63.3 s) on-kinetics. These new techniques significantly improve on existing methods for mechanistically altering blood flow kinetics as well as accurately measuring muscle oxygen consumption kinetics during transitions between metabolic rates.
Collapse
Affiliation(s)
| | | | - Nicola Lai
- Department of Biomedical Engineering and Center for Modeling Integrated Metabolic Systems, Case Western Reserve University, Cleveland, Ohio
| | - Marco E. Cabrera
- Department of Biomedical Engineering and Center for Modeling Integrated Metabolic Systems, Case Western Reserve University, Cleveland, Ohio
| | | | | |
Collapse
|
48
|
Murias JM, Kowalchuk JM, Paterson DH. Speeding of VO2 kinetics with endurance training in old and young men is associated with improved matching of local O2 delivery to muscle O2 utilization. J Appl Physiol (1985) 2010; 108:913-22. [PMID: 20150562 DOI: 10.1152/japplphysiol.01355.2009] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The time course and mechanisms of adjustment of pulmonary oxygen uptake (V(O(2))) kinetics (time constant tauV(O(2p))) were examined during step transitions from 20 W to moderate-intensity cycling in eight older men (O; 68 +/- 7 yr) and eight young men (Y; 23 +/- 5 yr) before training and at 3, 6, 9, and 12 wk of endurance training. V(O(2p)) was measured breath by breath with a volume turbine and a mass spectrometer. Changes in deoxygenated hemoglobin concentration (Delta[HHb]) were measured by near-infrared spectroscopy. V(O(2p)) and Delta[HHb] were modeled with a monoexponential model. Training was performed on a cycle ergometer three times per week for 45 min at approximately 70% of peak V(O(2)). Pretraining tauV(O(2p)) was greater (P < 0.05) in O (43 +/- 10 s) than Y (34 +/- 8 s). tauV(O(2p)) decreased (P < 0.05) by 3 wk of training in both O (35 +/- 9 s) and Y (22 +/- 8 s), with no further changes thereafter. The pretraining overall adjustment of Delta[HHb] was faster than tauV(O(2p)) in both O and Y, resulting in Delta[HHb]/V(O(2p)) displaying an "overshoot" during the transient relative to the subsequent steady-state level. After 3 wk of training the Delta[HHb]/V(O(2p)) overshoot was attenuated in both O and Y. With further training, this overshoot persisted in O but was eliminated after 6 wk in Y. The training-induced speeding of V(O(2p)) kinetics in O and Y at 3 wk of training was associated with an improved matching of local O(2) delivery to muscle V(O(2)) (as represented by a lower Delta[HHb]/V(O(2p))). The continued overshoot in Delta[HHb]/V(O(2p)) in O may reflect a reduced vasodilatory responsiveness that may limit muscle blood flow distribution during the on-transient of exercise.
Collapse
Affiliation(s)
- Juan M Murias
- Canadian Centre for Activity and Aging, University of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|
49
|
Nyberg M, Mortensen SP, Saltin B, Hellsten Y, Bangsbo J. Low blood flow at onset of moderate-intensity exercise does not limit muscle oxygen uptake. Am J Physiol Regul Integr Comp Physiol 2010; 298:R843-8. [PMID: 20089709 DOI: 10.1152/ajpregu.00730.2009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of low blood flow at onset of moderate-intensity exercise on the rate of rise in muscle oxygen uptake was examined. Seven male subjects performed a 3.5-min one-legged knee-extensor exercise bout (24 +/- 1 W, mean +/- SD) without (Con) and with (double blockade; DB) arterial infusion of inhibitors of nitric oxide synthase (N(G)-monomethyl-l-arginine) and cyclooxygenase (indomethacin) to inhibit the synthesis of nitric oxide and prostanoids, respectively. Leg blood flow and leg oxygen delivery throughout exercise was 25-50% lower (P < 0.05) in DB compared with Con. Leg oxygen extraction (arteriovenous O(2) difference) was higher (P < 0.05) in DB than in Con (5 s: 127 +/- 3 vs. 56 +/- 4 ml/l), and leg oxygen uptake was not different between Con and DB during exercise. The difference between leg oxygen delivery and leg oxygen uptake was smaller (P < 0.05) during exercise in DB than in Con (5 s: 59 +/- 12 vs. 262 +/- 39 ml/min). The present data demonstrate that muscle blood flow and oxygen delivery can be markedly reduced without affecting muscle oxygen uptake in the initial phase of moderate-intensity exercise, suggesting that blood flow does not limit muscle oxygen uptake at the onset of exercise. Additionally, prostanoids and/or nitric oxide appear to play important roles in elevating skeletal muscle blood flow in the initial phase of exercise.
Collapse
Affiliation(s)
- Michael Nyberg
- The Copenhagen Muscle Research Centre, Rigshospitalet, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
50
|
Perrey S. Comments on point: counterpoint: the kinetics of oxygen uptake during muscular exercise do/do not manifest time-delayed phase. On the physiological issue of td determination with empirical modeling. J Appl Physiol (1985) 2010; 107:1675. [PMID: 19899208 DOI: 10.1152/japplphysiol.00897.2009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Stephane Perrey
- Motor Efficiency and Deficiency, University of Montpellier I
| |
Collapse
|