1
|
Suzuki T, Conant A, Jung Y, Bax R, Antonissen A, Chen W, Yu G, Ioffe YJ, Wang C, Unternaehrer JJ. A Stem-like Patient-Derived Ovarian Cancer Model of Platinum Resistance Reveals Dissociation of Stemness and Resistance. Int J Mol Sci 2024; 25:3843. [PMID: 38612653 PMCID: PMC11011340 DOI: 10.3390/ijms25073843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
To understand chemoresistance in the context of cancer stem cells (CSC), a cisplatin resistance model was developed using a high-grade serous ovarian cancer patient-derived, cisplatin-sensitive sample, PDX4. As a molecular subtype-specific stem-like cell line, PDX4 was selected for its representative features, including its histopathological and BRCA2 mutation status, and exposed to cisplatin in vitro. In the cisplatin-resistant cells, transcriptomics were carried out, and cell morphology, protein expression, and functional status were characterized. Additionally, potential signaling pathways involved in cisplatin resistance were explored. Our findings reveal the presence of distinct molecular signatures and phenotypic changes in cisplatin-resistant PDX4 compared to their sensitive counterparts. Surprisingly, we observed that chemoresistance was not inherently linked with increased stemness. In fact, although resistant cells expressed a combination of EMT and stemness markers, functional assays revealed that they were less proliferative, migratory, and clonogenic-features indicative of an underlying complex mechanism for cell survival. Furthermore, DNA damage tolerance and cellular stress management pathways were enriched. This novel, syngeneic model provides a valuable platform for investigating the underlying mechanisms of cisplatin resistance in a clinically relevant context, contributing to the development of targeted therapies tailored to combat resistance in stem-like ovarian cancer.
Collapse
Affiliation(s)
- Tise Suzuki
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA
| | - Ashlyn Conant
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA
| | - Yeonkyu Jung
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA
- Department of Biology, California State University San Bernardino, San Bernardino, CA 92407, USA
| | - Ryan Bax
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA
| | - Ashley Antonissen
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA
- Department of Biology, California State University San Bernardino, San Bernardino, CA 92407, USA
| | - Wanqiu Chen
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA
- Center for Genomics, Loma Linda University, Loma Linda, CA 92354, USA
| | - Gary Yu
- Department of Population and Family Health, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Yevgeniya J Ioffe
- Division of Gynecologic Oncology, Department of Gynecology and Obstetrics, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Charles Wang
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA
- Center for Genomics, Loma Linda University, Loma Linda, CA 92354, USA
| | - Juli J Unternaehrer
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA
- Division of Gynecologic Oncology, Department of Gynecology and Obstetrics, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| |
Collapse
|
2
|
Jun HR, Kang HJ, Ju SH, Kim JE, Jeon SY, Ku B, Lee JJ, Kim M, Kim MJ, Choi JJ, Noh JJ, Kim HS, Lee JW, Lee JK, Lee DW. High-throughput organo-on-pillar (high-TOP) array system for three-dimensional ex vivo drug testing. Biomaterials 2023; 296:122087. [PMID: 36924663 DOI: 10.1016/j.biomaterials.2023.122087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/05/2023] [Indexed: 03/09/2023]
Abstract
The development of organoid culture technologies has triggered industrial interest in ex vivo drug test-guided clinical response prediction for precision cancer therapy. The three-dimensional culture encapsulated with basement membrane (BM) components is extremely important in establishing ex vivo organoids and drug sensitivity tests because the BM components confer essential structures resembling tumor histopathology. Although numerous studies have demonstrated three-dimensional culture-based drug screening methods, establishing a large-scale drug-screening platform with matrix-encapsulated tumor cells is challenging because the arrangement of microspots of a matrix-cell droplet onto each well of a microwell plate is inconsistent and difficult to standardize. In addition, relatively low scales and lack of reproducibility discourage the application of three-dimensional organoid-based drug screening data for precision treatment or drug discovery. To overcome these limitations, we manufactured an automated organospotter-integrated high-throughput organo-on-pillar (high-TOP) drug-screening platform. Our system is compatible with various extracellular matrices, including BM extract, Matrigel, collagen, and hydrogel. In addition, it can be readily utilized for high-content analyses by simply exchanging the bottom plates without disrupting the domes. Our system demonstrated considerable robustness, consistency, reproducibility, and biological relevancy in three-dimensional drug sensitivity analyses using Matrigel-encapsulated ovarian cancer cell lines. We also demonstrated proof-of-concept cases representing the clinical feasibility of high-TOP-assisted ex vivo drug tests linked to clinical chemo-response in ovarian cancer patients. In conclusion, our platform provides an automated and standardized method for ex vivo drug-sensitivity-guided clinical response prediction, suggesting effective chemotherapy regimens for patients with cancer.
Collapse
Affiliation(s)
- Hye Ryeong Jun
- Central R & D Center, Medical & Bio Decision (MBD) Co., Ltd. Suwon, South Korea
| | - Hyun Ju Kang
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, South Korea
| | - Sung Hun Ju
- Central R & D Center, Medical & Bio Decision (MBD) Co., Ltd. Suwon, South Korea
| | - Jung Eun Kim
- Central R & D Center, Medical & Bio Decision (MBD) Co., Ltd. Suwon, South Korea
| | - Sang Youl Jeon
- Central R & D Center, Medical & Bio Decision (MBD) Co., Ltd. Suwon, South Korea
| | - Bosung Ku
- Central R & D Center, Medical & Bio Decision (MBD) Co., Ltd. Suwon, South Korea
| | - Jae Jun Lee
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, South Korea
| | - Minsung Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Min Jeong Kim
- Department of Obstetrics and Gynecology, Gynecologic Cancer Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jung-Joo Choi
- Department of Obstetrics and Gynecology, Gynecologic Cancer Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Joseph J Noh
- Department of Obstetrics and Gynecology, Gynecologic Cancer Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hyun-Soo Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jeong-Won Lee
- Department of Obstetrics and Gynecology, Gynecologic Cancer Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - Jin-Ku Lee
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, South Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea; Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, South Korea.
| | - Dong Woo Lee
- Department of Biomedical Engineering, Gachon University, Seongnam, South Korea.
| |
Collapse
|
3
|
Zhao L, Huang L, Zhang J, Fan J, He F, Zhao X, Wang H, Liu Q, Shi D, Ni N, Wagstaff W, Pakvasa M, Fu K, Tucker AB, Chen C, Reid RR, Haydon RC, Luu HH, Shen L, Qi H, He TC. The inhibition of BRAF activity sensitizes chemoresistant human ovarian cancer cells to paclitaxel-induced cytotoxicity and tumor growth inhibition. Am J Transl Res 2020; 12:8084-8098. [PMID: 33437383 PMCID: PMC7791515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/13/2020] [Indexed: 06/12/2023]
Abstract
Ovarian cancer is one of the most common cancers in women and the second most common cause of gynecologic cancer death in women worldwide. While ovarian cancer is highly heterogeneous in histological subtypes and molecular genetic makeup, epithelial ovarian cancer is the most common subtype. The clinical outcomes of ovarian cancer largely depend on early detection and access to appropriate surgery and systemic therapy. While combination therapy with platinum-based drugs and paclitaxel (PTX) remains the first-line systemic therapy for ovarian cancer, many patients experience recurrence and die of progressive chemoresistance. Thus, there is an unmet clinical need to overcome recurrent disease due to resistance to chemotherapies of ovarian cancer. Here, we investigated whether BRAF inhibitors (BRAFi) could sensitize PTX-resistant ovarian cancer cells to PTX, and thus would overcome the resistance to chemotherapies. We found that BRAF and several members of the RAS/MAPK pathways were upregulated upon PTX treatment in ovarian cancer cells, and that BRAF expression was significantly elevated in the PTX-resistant ovarian cancer cells. While the BRAFi vemurafenib (VEM) alone did not cause any significant cytotoxicity in PTX-resistant ovarian cancer cells, VEM significantly enhanced PTX-induced growth inhibition and apoptosis in a dose-dependent manner. Furthermore, VEM and PTX were shown to synergistically inhibit tumor growth and cell proliferation of PTX-resistant human ovarian cancer cells in vivo. Collectively, these findings strongly suggest that BRAFi may be exploited as synergistic sensitizers of paclitaxel in treating chemoresistant ovarian cancer.
Collapse
Affiliation(s)
- Ling Zhao
- Departments of Obstetrics and Gynecology, and Nephrology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
| | - Linjuan Huang
- Departments of Obstetrics and Gynecology, and Nephrology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
| | - Jing Zhang
- Departments of Obstetrics and Gynecology, and Nephrology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and The School of Laboratory Diagnostic Medicine, Chongqing Medical UniversityChongqing, China
| | - Fang He
- Departments of Obstetrics and Gynecology, and Nephrology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and The School of Laboratory Diagnostic Medicine, Chongqing Medical UniversityChongqing, China
| | - Xia Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao UniversityQingdao 266061, China
| | - Hao Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and The School of Laboratory Diagnostic Medicine, Chongqing Medical UniversityChongqing, China
| | - Qing Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of Spine Surgery, Second Xiangya Hospital, Central South UniversityChangsha 410011, China
| | - Deyao Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of Orthopaedic Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, China
| | - Na Ni
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and The School of Laboratory Diagnostic Medicine, Chongqing Medical UniversityChongqing, China
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
| | - Mikhail Pakvasa
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
| | - Kai Fu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of Neurosurgery, The Affiliated Zhongnan Hospital of Wuhan UniversityWuhan 430072, China
| | - Andrew B Tucker
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
| | - Russell R Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of Surgery Section of Plastic Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Rex C Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
| | - Hue H Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
| | - Le Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Hongbo Qi
- Departments of Obstetrics and Gynecology, and Nephrology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
| |
Collapse
|
4
|
Wen W, Han ES, Dellinger TH, Lu LX, Wu J, Jove R, Yim JH. Synergistic Anti-Tumor Activity by Targeting Multiple Signaling Pathways in Ovarian Cancer. Cancers (Basel) 2020; 12:E2586. [PMID: 32927828 PMCID: PMC7564386 DOI: 10.3390/cancers12092586] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/29/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
More effective therapy is needed to improve the survival of patients with advanced and recurrent ovarian cancer. Preclinical and early clinical studies with single molecular targeted agents have shown limited antitumor activity in ovarian cancer, likely due to compensation by alternative growth/survival pathways. An emerging strategy in overcoming resistance is to combine inhibitors targeting multiple pathways. In this study, we used a novel strategy of combining several FDA-approved targeted drugs, including sunitinib, dasatinib, and everolimus, in human ovarian cancers. Combination of the tyrosine kinase inhibitor sunitinib with the SRC inhibitor dasatinib showed synergistic anti-tumor activity in human ovarian cancer cells. The increased activity was associated with inhibition of the STAT3, SRC, and MAPK signaling pathways, but not AKT signaling. To inhibit the PI3K/AKT/mTOR pathway, we added the mTOR inhibitor everolimus, which further increased anti-tumor activity in cells. Combined treatment with sunitinib, dasatinib, and everolimus also resulted in greater inhibition of human ovarian tumor growth in mice. Furthermore, the triple combination also synergistically increased the anti-tumor activity of paclitaxel, both in vitro and in vivo. Taken together, our results demonstrate that simultaneous inhibition of several signaling pathways results in better anti-tumor activity compared to inhibiting any of these signaling pathways alone.
Collapse
Affiliation(s)
- Wei Wen
- Department of Surgery, City of Hope National Med Center, Duarte, CA 91010, USA; (E.S.H.); (T.H.D.); (L.X.L.)
- Department of Molecular Medicine, City of Hope National Med Center, Duarte, CA 91010, USA;
| | - Ernest S. Han
- Department of Surgery, City of Hope National Med Center, Duarte, CA 91010, USA; (E.S.H.); (T.H.D.); (L.X.L.)
| | - Thanh H. Dellinger
- Department of Surgery, City of Hope National Med Center, Duarte, CA 91010, USA; (E.S.H.); (T.H.D.); (L.X.L.)
| | - Leander X. Lu
- Department of Surgery, City of Hope National Med Center, Duarte, CA 91010, USA; (E.S.H.); (T.H.D.); (L.X.L.)
| | - Jun Wu
- Department of Comparative Medicine, City of Hope National Med Center, Duarte, CA 91010, USA;
| | - Richard Jove
- Department of Molecular Medicine, City of Hope National Med Center, Duarte, CA 91010, USA;
| | - John H. Yim
- Department of Surgery, City of Hope National Med Center, Duarte, CA 91010, USA; (E.S.H.); (T.H.D.); (L.X.L.)
| |
Collapse
|
5
|
Jiang W, Xu Z, Yu L, Che J, Zhang J, Yang J. MicroRNA-144-3p suppressed TGF-β1-induced lung cancer cell invasion and adhesion by regulating the Src-Akt-Erk pathway. Cell Biol Int 2020; 44:51-61. [PMID: 31038242 DOI: 10.1002/cbin.11158] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/28/2019] [Indexed: 01/24/2023]
Abstract
Lung cancer remains a leading cause to cancer-related death worldwide. The anti-cancer ability of microRNA-144-3p has been reported in many cancer types. This study focused on the mechanisms underlying miR-144-3p in inhibiting lung cancer. The expression levels of miR-144-3p and steroid receptor coactivator (Src) in different lung cancer cell lines and those in bronchial epithelial cells (16HBE) were compared. miR-144-3p mimic and siSrc were transfected into A549 cells. Under the conditions of transforming growth factor-β1 (TGF-β1). Small interfering transfection or TGF-β1 treatment, cell invasive and adhesive abilities were analyzed by Transwell and cell adhesion assays. miR-144-3p inhibitor and siSrc were co-transfected into A549 cells and the changes in cell invasion and adhesion were detected. The activation of Src-protein kinase B-extracellular-regulated protein kinases (Src-Akt-Erk) pathway was determined using Western blot. The downregulated miR-144-3p and upregulated Src were generally detected in lung cancer cell lines and were the most significant genes in A549 cells. Both miR-144-3p overexpression and Src inhibition could obviously inhibit the invasion and adhesion abilities of A549 cells in the presence or absence of the effects of TGF-β1. The inhibition of Src could block the promotive effects of miR-144-3p inhibitor and TGF-β1 on cell invasion and adhesion. Furthermore, we found that miR-144-3p could negatively regulate the phosphorylation levels of Akt and Erk. Our data indicated the essential role of Src in the mechanisms underlying TGF-β1-induced cell invasion and adhesion of lung cancer, and that miR-144-3p could effectively suppress TGF-β1-induced aggressive lung cancer cells by regulating Src expression.
Collapse
Affiliation(s)
- Wensheng Jiang
- Department of Cardiothoracic Surgery, Yantaishan Hospital of Yantai City, No. 91 Jiefang Road, Yantai, Shandong Province, 264000, China
| | - Zhiying Xu
- Department of Nuclear Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding East Road, Zhifu District, Yantai, Shandong Province, 264000, China
| | - Lili Yu
- Department of Breast Surgery, Yantaishan Hospital of Yantai City, No. 91 Jiefang Road, Yantai, Shandong Province, 264000, China
| | - Jianpeng Che
- Department of Cardiothoracic Surgery, Yantaishan Hospital of Yantai City, No. 91 Jiefang Road, Yantai, Shandong Province, 264000, China
| | - Jie Zhang
- Department of Cardiothoracic Surgery, Yantaishan Hospital of Yantai City, No. 91 Jiefang Road, Yantai, Shandong Province, 264000, China
| | - Jun Yang
- Department of Cardiothoracic Surgery, Yantaishan Hospital of Yantai City, No. 91 Jiefang Road, Yantai, Shandong Province, 264000, China
| |
Collapse
|
6
|
Das S, Bhattacharya B, Das B, Sinha B, Jamatia T, Paul K. Etiologic Role of Kinases in the Progression of Human Cancers and Its Targeting Strategies. Indian J Surg Oncol 2019; 12:34-45. [PMID: 33994726 DOI: 10.1007/s13193-019-00972-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 08/07/2019] [Indexed: 11/30/2022] Open
Abstract
Cancer is one of the dominant causes of death worldwide while lifelong prognosis is still inauspicious. The maturation of the cancer is seen as a process of transformation of a healthy cell into a tumor-sensitive cell, which is held entirely at the cellular, molecular, and genetic levels of the organism. Tyrosine kinases can play a major, etiologic role in the inception of malignancy and devote to the uncontrolled proliferation of cancerous cells and the progression of a tumor as well as the development of metastatic disease. Angiogenesis and oncogene activation are the major event in cell proliferation. The growth of a tumor and metastasis are fully depending on angiogenesis and lymphangiogenesis triggered by chemical signals from tumor cells in a phase of rapid growth. Tyrosine kinase inhibitors are compounds that inhibit tyrosine kinases and effective in targeting angiogenesis and blocking the signaling pathways of oncogenes. Small molecule tyrosine kinase inhibitors like afatinib, erlotinib, crizotinib, gefitinib, and cetuximab are shown to a selective cut off tactic toward the constitutive activation of an oncogene in tumor cells, and thus contemplated as promising therapeutic approaches for the diagnosis of cancer and malignancies.
Collapse
Affiliation(s)
- Sanjoy Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Bireswar Bhattacharya
- Regional Institute of Pharmaceutical Science and Technology, Agartala, Tripura 799005 India
| | - Biplajit Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Bibek Sinha
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Taison Jamatia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Kishan Paul
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| |
Collapse
|
7
|
Wen W, Han ES, Dellinger TH, Wu J, Guo Y, Buettner R, Horne DA, Jove R, Yim JH. Increasing Antitumor Activity of JAK Inhibitor by Simultaneous Blocking Multiple Survival Signaling Pathways in Human Ovarian Cancer. Transl Oncol 2019; 12:1015-1025. [PMID: 31141756 PMCID: PMC6542771 DOI: 10.1016/j.tranon.2019.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 12/26/2022] Open
Abstract
Many signaling pathways, including the JAK/STAT3 pathway, are aberrantly activated and associated with ovarian cancer growth and progression. However, inhibition of STAT3 pathway alone was not sufficient to effectively block human ovarian cancer cell survival in vitro, which could be due to the activation and compensation of multiple survival pathways. In this study, we investigated a strategy that can enhance antitumor activity of JAK/STAT3 inhibitor by combining with inhibitors targeting other growth and survival pathways. We found that the in vitro activity of JAKi was remarkably increased when additional survival pathway was blocked. Blocking SRC pathway with SRC inhibitor (SRCi) increased the efficacy of JAKi more effectively than blocking AKT or MAPK pathway. The increased activity of JAKi in combination with SRCi is synergistic and associated with attenuation of p-STAT3, p-SRC, p-AKT and p-MAPK and increased inhibition of p-AKT. Simultaneous blockade of multiple survival pathways by combining JAKi with both AKT inhibitor (AKTi) and MEK inhibitor (MEKi) also resulted in a synergistic inhibition of cell survival. Furthermore, the combined treatment of JAKi and SRCi led to an increased apoptosis and greater inhibition of tumor growth and ascites formation. Taken together, our results demonstrate that the antitumor efficacy of JAKi is improved most effectively when combined with SRCi, providing a potential combination strategy for the treatment of advanced ovarian cancer.
Collapse
Affiliation(s)
- Wei Wen
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, 1500 East Duarte Rd., Duarte, CA 91010; Department of Surgery, Beckman Research Institute, City of Hope Comprehensive Cancer Center, 1500 East Duarte Rd., Duarte, CA 91010.
| | - Ernest S Han
- Department of Surgery, Beckman Research Institute, City of Hope Comprehensive Cancer Center, 1500 East Duarte Rd., Duarte, CA 91010
| | - Thanh H Dellinger
- Department of Surgery, Beckman Research Institute, City of Hope Comprehensive Cancer Center, 1500 East Duarte Rd., Duarte, CA 91010
| | - Jun Wu
- Department of Comparative Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, 1500 East Duarte Rd., Duarte, CA 91010
| | - Yuming Guo
- Department of Comparative Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, 1500 East Duarte Rd., Duarte, CA 91010
| | - Ralf Buettner
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, 1500 East Duarte Rd., Duarte, CA 91010
| | - David A Horne
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, 1500 East Duarte Rd., Duarte, CA 91010
| | - Richard Jove
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, 1500 East Duarte Rd., Duarte, CA 91010
| | - John H Yim
- Department of Surgery, Beckman Research Institute, City of Hope Comprehensive Cancer Center, 1500 East Duarte Rd., Duarte, CA 91010.
| |
Collapse
|
8
|
A Cell-Autonomous Oncosuppressive Role of Human RNASET2 Affecting ECM-Mediated Oncogenic Signaling. Cancers (Basel) 2019; 11:cancers11020255. [PMID: 30813308 PMCID: PMC6406318 DOI: 10.3390/cancers11020255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 02/05/2023] Open
Abstract
RNASET2 is an extracellular ribonuclease endowed with a marked antitumorigenic role in several carcinomas, independent from its catalytic activity. Besides its antitumorigenic role by the recruitment to the tumor mass of immune cells from the monocyte/macrophage lineage, RNASET2 is induced by cellular stress and involved in actin cytoskeleton remodeling affecting cell interactions with the extracellular matrix (ECM). Here, we aimed to investigate the effects of RNASET2 expression modulation on cell phenotype and behavior in epithelial ovarian cancer (EOC) cellular models. In silico analysis on two publicly available datasets of gene expression from EOC patients (n = 392) indicated that increased RNASET2 transcript levels are associated with longer overall survival. In EOC biopsies (n = 101), analyzed by immunohistochemistry, RNASET2 was found heterogeneously expressed among tumors with different clinical⁻pathological characteristics and, in some cases, its expression localized to tumor-associated ECM. By characterizing in vitro two models of EOC cells in which RNASET2 was silenced or overexpressed, we report that RNASET2 expression negatively affects growth capability by conferring a peculiar cell phenotype upon the interaction of EOC cells with the ECM, resulting in decreased src activation. Altogether, these data suggest that drugs targeting activated src might represent a therapeutic approach for RNASET2-expressing EOCs.
Collapse
|
9
|
FTY720 enhances the anti-tumor activity of carboplatin and tamoxifen in a patient-derived xenograft model of ovarian cancer. Cancer Lett 2018; 436:75-86. [PMID: 30120964 DOI: 10.1016/j.canlet.2018.08.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 12/25/2022]
Abstract
Ovarian cancer is the fifth leading cause of cancer-related deaths among women in the United States. Although most patients respond to frontline therapy, virtually all patients relapse with chemoresistant disease. This study addresses the hypothesis that carboplatin or tamoxifen + FTY720, a sphingosine analogue, will minimize or circumvent drug-resistance in ovarian cancer cells and tumor models. In vitro data demonstrate that FTY720 sensitized two drug-resistant (A2780. cp20, HeyA8. MDR) and two high-grade serous ovarian cancer cell lines (COV362, CAOV3) to carboplatin, a standard of care for patients with ovarian cancer, and to the selective estrogen receptor modulator tamoxifen. FTY720 + tamoxifen was synergistic in vitro, and combinations of FTY720 + carboplatin or + tamoxifen were more effective than each single agent in a patient-derived xenograft model of ovarian carcinoma. FTY720 + tamoxifen arrested tumor growth. FTY720 + carboplatin induced tumor regressions, with tumor volumes reduced by ∼86% compared to initial tumor volumes. Anti-tumor efficacy was concomitant with increases in intracellular proapoptotic lipid ceramide. The data suggest that FTY720 + tamoxifen or carboplatin may be effective in treating ovarian tumors.
Collapse
|
10
|
McGivern N, El-Helali A, Mullan P, McNeish IA, Paul Harkin D, Kennedy RD, McCabe N. Activation of MAPK signalling results in resistance to saracatinib (AZD0530) in ovarian cancer. Oncotarget 2018; 9:4722-4736. [PMID: 29435137 PMCID: PMC5797008 DOI: 10.18632/oncotarget.23524] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/01/2017] [Indexed: 02/06/2023] Open
Abstract
SRC tyrosine kinase is frequently overexpressed and activated in late-stage, poor prognosis ovarian tumours, and preclinical studies have supported the use of targeted SRC inhibitors in the treatment of this disease. The SAPPROC trial investigated the addition of the SRC inhibitor saracatinib (AZD0530) to weekly paclitaxel for the treatment of platinum resistant ovarian cancer; however, this drug combination did not provide any benefit to progression free survival (PFS) of women with platinum resistant disease. In this study we aimed to identify mechanisms of resistance to SRC inhibitors in ovarian cancer cells. Using two complementary strategies; a targeted tumour suppressor gene siRNA screen, and a phospho-receptor tyrosine kinase array, we demonstrate that activation of MAPK signalling, via a reduction in NF1 (neurofibromin) expression or overexpression of HER2 and the insulin receptor, can drive resistance to AZD0530. Knockdown of NF1 in two ovarian cancer cell lines resulted in resistance to AZD0530, and was accompanied with activated MEK and ERK signalling. We also show that silencing of HER2 and the insulin receptor can partially resensitize AZD0530 resistant cells, which was associated with decreased phosphorylation of MEK and ERK. Furthermore, we demonstrate a synergistic effect of combining SRC and MEK inhibitors in both AZD0530 sensitive and resistant cells, and that MEK inhibition is sufficient to completely resensitize AZD0530 resistant cells. This work provides a preclinical rationale for the combination of SRC and MEK inhibitors in the treatment of ovarian cancer, and also highlights the need for biomarker driven patient selection for clinical trials.
Collapse
Affiliation(s)
- Niamh McGivern
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Northern Ireland, UK
| | - Aya El-Helali
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Northern Ireland, UK
| | - Paul Mullan
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Northern Ireland, UK
| | - Iain A. McNeish
- Institute of Cancer Sciences, University of Glasgow, Scotland, UK
| | - D. Paul Harkin
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Northern Ireland, UK
- Almac Diagnostics, 19 Seagoe Industrial Estate, Craigavon, Northern Ireland, UK
| | - Richard D. Kennedy
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Northern Ireland, UK
- Almac Diagnostics, 19 Seagoe Industrial Estate, Craigavon, Northern Ireland, UK
| | - Nuala McCabe
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Northern Ireland, UK
- Almac Diagnostics, 19 Seagoe Industrial Estate, Craigavon, Northern Ireland, UK
| |
Collapse
|
11
|
Byun MR, Choi JW. Phosphorylation of caspase-9 at Thr125 directs paclitaxel resistance in ovarian cancer. Oncotarget 2018; 9:1041-1047. [PMID: 29416675 PMCID: PMC5787417 DOI: 10.18632/oncotarget.23133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/17/2017] [Indexed: 01/15/2023] Open
Abstract
Although paclitaxel is routinely prescribed for the treatment of epithelial ovarian cancer (EOC), paclitaxel resistance is common in EOC and correlates with short survival of patients. A previous pharmacogenomic study revealed the importance of cyclin-dependent kinase 1 (CDK1) activity in a response on paclitaxel. However, a subsequent research showed that the expression level of CDK1 failed to show significant correlation with delayed apoptosis and patient survival. Rather, the expression and phosphorylation of capase-9, the downstream target molecule of CDK1, appeared to determine drug resistance. Our results suggest that treatment with the CDK1 inhibitor alsterpaullone reduces phosphorylation of caspase-9. Its phosphorylation level was dependent on CDK1 activity and it directs paclitaxel resistance. This observation was reproducible in xenografted tumors. Thus, the regulation of caspase-9 may be a novel therapeutic strategy to reverse paclitaxel-induced resistance in ovarian cancer cells.
Collapse
Affiliation(s)
- Mi Ran Byun
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jin Woo Choi
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
12
|
Lu Y, Yang Y, Liu Y, Hao Y, Zhang Y, Hu Y, Jiang L, Gong Y, Wu K, Liu Y. Upregulation of PAG1/Cbp contributes to adipose-derived mesenchymal stem cells promoted tumor progression and chemoresistance in breast cancer. Biochem Biophys Res Commun 2017; 494:719-727. [PMID: 29079189 DOI: 10.1016/j.bbrc.2017.10.118] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 10/23/2017] [Indexed: 01/02/2023]
Abstract
C-terminal Src kinase (Csk)-binding protein (Cbp) is a ubiquitously expressed transmembrane adaptor protein which regulating Src family kinase (SFK) activities. Although SFKs are well known for their involvement in breast cancer, the function of Cbp in breast carcinogenesis upon the adipose-tumor microenvironment has not been investigated. Here, we reported that adipose-derived mesenchymal stem cells (ASCs) induced increased expression of Cbp accompanied by enhanced cell proliferation and chemotherapy resistance in breast cancer cell MCF-7/ADR. Depletion of Cbp in breast cancer cell by RNA interference led to remarkable inhibition of cell proliferation, invasion as well as synergy with adriamycin hydrochloride to suppress the tumor growth. Furthermore, silencing of Cbp concomitantly inhibited the expression of phosphoryl of Src, AKT and mTOR signals. Our study highlights the underlying mechanism of cross interaction between ASCs and breast cancer cells, and indicates that PAG1/Cbp in breast cancer cell may modulate tumor progression and acquired chemoresistance in the ASCs-associated breast cancer microenvironment through Src and AKT/mTOR pathways.
Collapse
Affiliation(s)
- Yunshu Lu
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yipeng Yang
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yan Liu
- Department of Pharmacy, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yajuan Hao
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yijian Zhang
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yunping Hu
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Lin Jiang
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yurong Gong
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Kejin Wu
- Breast Surgery, Obstetrics and Gynaecology Hospital of Fudan University, Shanghai 200011, China.
| | - Yingbin Liu
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
13
|
Raj GV, Sareddy GR, Ma S, Lee TK, Viswanadhapalli S, Li R, Liu X, Murakami S, Chen CC, Lee WR, Mann M, Krishnan SR, Manandhar B, Gonugunta VK, Strand D, Tekmal RR, Ahn JM, Vadlamudi RK. Estrogen receptor coregulator binding modulators (ERXs) effectively target estrogen receptor positive human breast cancers. eLife 2017; 6. [PMID: 28786813 PMCID: PMC5548489 DOI: 10.7554/elife.26857] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/05/2017] [Indexed: 12/22/2022] Open
Abstract
The majority of human breast cancer is estrogen receptor alpha (ER) positive. While anti-estrogens/aromatase inhibitors are initially effective, resistance to these drugs commonly develops. Therapy-resistant tumors often retain ER signaling, via interaction with critical oncogenic coregulator proteins. To address these mechanisms of resistance, we have developed a novel ER coregulator binding modulator, ERX-11. ERX-11 interacts directly with ER and blocks the interaction between a subset of coregulators with both native and mutant forms of ER. ERX-11 effectively blocks ER-mediated oncogenic signaling and has potent anti-proliferative activity against therapy-sensitive and therapy-resistant human breast cancer cells. ERX-11 is orally bioavailable, with no overt signs of toxicity and potent activity in both murine xenograft and patient-derived breast tumor explant models. This first-in-class agent, with its novel mechanism of action of disrupting critical protein-protein interactions, overcomes the limitations of current therapies and may be clinically translatable for patients with therapy-sensitive and therapy-resistant breast cancers. DOI:http://dx.doi.org/10.7554/eLife.26857.001 Around 70% of breast cancers in women need one or both of the female hormones (estrogen and progesterone) to grow. To treat these 'hormone-dependent' cancers, patients receive drugs that either block the production of estrogen or directly target a receptor protein that senses estrogen in the cancer cells. Unfortunately, many breast cancers develop resistance to these drugs. This resistance is often caused by genetic mutations that alter the estrogen receptor; for example, the receptor may develop the ability to interact with other proteins in the cell known as coregulators to promote tumor growth. Developing new drugs that prevent estrogen receptors from interacting with coregulators may provide more options for treating hormone-dependent breast cancers. Here, Raj et al. developed a new small molecule named ERX-11 that is able to inhibit the growth of human breast cancer cells that are sensitive to existing drugs as well as cells that have become drug-resistant. For the experiments, hormone-dependent breast cancer cells from humans were transplanted into mice. This procedure usually causes the mice to develop tumors, but giving the mice ERX-11 by mouth stopped estrogen receptors from interacting with coregulators and blocked the growth of tumors. Furthermore, ERX-11 does not appear to have any toxic effects on the mice, indicating that it may also be safe for humans. The findings of Raj et al. suggest that ERX-11 is a promising new drug candidate for treating some breast cancers. The next steps are to examine the effects of ERX-11 on mice and other animals in more detail before deciding whether this molecule is suitable for clinical trials. In the longer term, molecules similar to ERX-11 could also be developed into drugs to treat other types of cancer that are also caused by abnormal interactions of coregulator proteins. DOI:http://dx.doi.org/10.7554/eLife.26857.002
Collapse
Affiliation(s)
- Ganesh V Raj
- Departments of Urology and Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, United States
| | - Gangadhara Reddy Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, United States.,CDP program, University of Texas Health Cancer Center, San Antonio, United States
| | - Shihong Ma
- Departments of Urology and Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, United States
| | - Tae-Kyung Lee
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, United States
| | - Suryavathi Viswanadhapalli
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, United States
| | - Rui Li
- Departments of Urology and Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, United States
| | - Xihui Liu
- Departments of Urology and Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, United States
| | - Shino Murakami
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, United States.,Laboratory of Signaling and Gene Regulation, Cecil H and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, University of Texas Southwestern Medical Center, Dallas, United States
| | - Chien-Cheng Chen
- Departments of Urology and Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, United States
| | - Wan-Ru Lee
- Departments of Urology and Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, United States
| | - Monica Mann
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, United States
| | - Samaya Rajeshwari Krishnan
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, United States
| | - Bikash Manandhar
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, United States
| | - Vijay K Gonugunta
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, United States
| | - Douglas Strand
- Departments of Urology and Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, United States
| | - Rajeshwar Rao Tekmal
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, United States.,CDP program, University of Texas Health Cancer Center, San Antonio, United States
| | - Jung-Mo Ahn
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, United States
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, United States.,CDP program, University of Texas Health Cancer Center, San Antonio, United States
| |
Collapse
|
14
|
Thibault B, Jean-Claude B. Dasatinib + Gefitinib, a non platinum-based combination with enhanced growth inhibitory, anti-migratory and anti-invasive potency against human ovarian cancer cells. J Ovarian Res 2017; 10:31. [PMID: 28446239 PMCID: PMC5405511 DOI: 10.1186/s13048-017-0319-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/21/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ovarian cancer is the leading cause of death for gynecological cancers and the 6th cause of women cancer death in developed countries. The late stage detection, the peritoneal dissemination and the acquisition of resistance against carboplatin are the main reasons to explain this poor prognosis and strengthen the need of alternative treatments to improve the management of ovarian cancer and/or to sensitize tumors to platinum salts. Epidermal growth factor receptor (EGFR), hepatocyte growth factor receptor (Met) and cellular Src kinase (c-Src) are crucial kinases implied in ovarian tumor growth, survival, invasion and resistance to carboplatin. Their expression is increased in advanced ovarian cancers and is correlated with poor prognosis. Despite a clear potential in inhibiting these proteins in ovarian cancer, as a single agent or in combination with a carboplatin treatment, we need to target kinases in tandem because of their capacity to trigger compensatory pathways that synergize to promote drug resistance. METHODS Here we target EGFR, c-Src and Met individually or in combination with carboplatin, using Gefitinib, Dasatinib and Crizotinib respectively, in a panel of carboplatin-sensitive (OVCAR-3, IGROV-1 and A2780) and carboplatin-resistant cells (SKOV-3 and EFO-21). We studied the ability of the most potent combination to induce apoptosis, regulate migration, invasion and to modulate the activation of proliferation and survival proteins. RESULTS Crizotinib, Dasatinib and Gefitinib, alone or in combination with carboplatin, showed a cell-specific cytotoxic synergy in ovarian cancer cells. The Dasatinib plus Gefitinib combination was synergistic in OVCAR-3, SKOV-3 and, in IGROV-1 cells (high concentrations). This combination was unable to induce apoptosis but suppressed cell migration, invasion and the activation of EGFR, Erk, c-Src and Akt compared to single treatments. CONCLUSIONS Combining carboplatin with kinase inhibitors lead to synergistic interactions in a cell-specific manner. Unlike platinum-based combinations, mixing Dasatinib with Gefitinib led to cytotoxic activity, inhibition of cell migration and invasion. Thus, the Dasatinib + Gefitinib combination presents anti-tumour properties that are superior to those of platinum-based combinations, indicating that it may well represent a promising new treatment modality to be tested in the clinic.
Collapse
Affiliation(s)
- Benoît Thibault
- Research Institute - McGill University Health Center (MUHC), 1001 Décarie Blvd, Block E, Montreal, QC, H4A 3J1, Canada.,Present Address: INSERM - Cancer Research Center of Toulouse (CRCT), 2 avenue Hubert Curien, Toulouse, France
| | - Bertrand Jean-Claude
- Research Institute - McGill University Health Center (MUHC), 1001 Décarie Blvd, Block E, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
15
|
Rashed MH, Kanlikilicer P, Rodriguez-Aguayo C, Pichler M, Bayraktar R, Bayraktar E, Ivan C, Filant J, Silva A, Aslan B, Denizli M, Mitra R, Ozpolat B, Calin GA, Sood AK, Abd-Ellah MF, Helal GK, Berestein GL. Exosomal miR-940 maintains SRC-mediated oncogenic activity in cancer cells: a possible role for exosomal disposal of tumor suppressor miRNAs. Oncotarget 2017; 8:20145-20164. [PMID: 28423620 PMCID: PMC5386751 DOI: 10.18632/oncotarget.15525] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 01/03/2017] [Indexed: 12/21/2022] Open
Abstract
Exosomes have emerged as important mediators of diverse biological functions including tumor suppression, tumor progression, invasion, immune escape and cell-to-cell communication, through the release of molecules such as mRNAs, miRNAs, and proteins. Here, we identified differentially expressed exosomal miRNAs between normal epithelial ovarian cell line and both resistant and sensitive ovarian cancer (OC) cell lines. We found miR-940 as abundant in exosomes from SKOV3-IP1, HeyA8, and HeyA8-MDR cells. The high expression of miR-940 is associated with better survival in patients with ovarian serous cystadenocarcinoma. Ectopic expression of miR-940 inhibited proliferation, colony formation, invasion, and migration and triggered G0/G1 cell cycle arrest and apoptosis in OC cells. Overexpression of miR-940 also inhibited tumor cell growth in vivo. We showed that proto-oncogene tyrosine-protein kinase (SRC) is directly targeted by miR-940 and that miR-940 inhibited SRC expression at mRNA and protein levels. Following this inhibition, the expression of proteins downstream of SRC, such as FAK, paxillin and Akt was also reduced. Collectively, our results suggest that OC cells secrete the tumor-suppressive miR-940 into the extracellular environment via exosomes, to maintain their invasiveness and tumorigenic phenotype.
Collapse
Affiliation(s)
- Mohammed H Rashed
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Pinar Kanlikilicer
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Martin Pichler
- Division of Clinical Oncology, Department of Medicine, Medical University of Graz, Graz, Austria
| | - Recep Bayraktar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Emine Bayraktar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Justyna Filant
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andreia Silva
- Instituto de Investigação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Institute of Biomedical Engineering, Universidade do Porto, Porto, Portugal
| | - Burcu Aslan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Merve Denizli
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rahul Mitra
- Department of Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George A. Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anil K. Sood
- Department of Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mohamed F. Abd-Ellah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Gouda K. Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Gabriel Lopez Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
16
|
Xiao J, Xu M, Hou T, Huang Y, Yang C, Li J. Dasatinib enhances antitumor activity of paclitaxel in ovarian cancer through Src signaling. Mol Med Rep 2015; 12:3249-3256. [PMID: 25975261 PMCID: PMC4526065 DOI: 10.3892/mmr.2015.3784] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 02/17/2015] [Indexed: 12/31/2022] Open
Abstract
Src family tyrosine kinase (SFK) activation is associated with ovarian cancer progression. Therefore, SFKs are targets for the development of potential treatments of ovarian cancer. Dasatinib is a tyrosine kinase inhibitor that targets SFK activity, and is used for the treatment of B cell and Abelson lymphomas. At the present time, the potential effect of dasatinib on ovarian cancer is not clear. The aim of the present study was to investigate the antitumor activity of dasatinib, alone and in combination with paclitaxel, in ovarian cancer in vitro and in vivo. In the present study, the expression of Src and phospho‑Src-Y416 (p‑Src) was measured in six ovarian cancer cell lines using western blotting and immunohistochemistry. In addition, cell viability and apoptosis were measured using an MTT assay and annexin V‑fluorescein isothiocyanate staining. An ovarian cancer murine xenograft model was established, in order to evaluate the antitumor effect of dasatinib alone and in combination with paclitaxel in ovarian cancer. High levels of p‑Src protein expression were observed in all cell lines, as compared with healthy cells, which indicated activation of the Src signaling pathway. p‑Src expression increased in ovarian cancer cells following paclitaxel treatment. Dasatinib treatment demonstrated anti‑ovarian cancer properties, by downregulating p‑Src expression and by inducing cancer cell apoptosis. Combined treatment with dasatinib and paclitaxel markedly inhibited proliferation and promoted apoptosis of ovarian cancer cells, compared with control cells. Combined dasatinib and paclitaxel treatment exhibited antitumor activities in vivo and in vitro (combination indices, 0.25‑0.93 and 0.31‑0.75; and tumor growth inhibitory rates, 76.7% and 58.5%, in A2780 and HO8910 cell lines, respectively), compared with paclitaxel treatment alone. Dasatinib monotherapy demonstrated anti‑ovarian cancer activities. The effects of dasatinib and paclitaxel treatments on ovarian cancer cells appeared to be mediated by the Src pathway.
Collapse
Affiliation(s)
- Juan Xiao
- Department of Gynecology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Manman Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Teng Hou
- Department of Gynecology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Yongwen Huang
- Department of Gynecology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Chenlu Yang
- Department of Gynecology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Jundong Li
- Department of Gynecology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
17
|
Dasatinib (BMS-35482) interacts synergistically with docetaxel, gemcitabine, topotecan, and doxorubicin in ovarian cancer cells with high SRC pathway activation and protein expression. Int J Gynecol Cancer 2014; 24:218-25. [PMID: 24407585 DOI: 10.1097/igc.0000000000000056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
PURPOSE This study aimed to explore the activity of dasatinib in combination with docetaxel, gemcitabine, topotecan, and doxorubicin in ovarian cancer cells. METHODS Cells with previously determined SRC pathway and protein expression (SRC pathway/SRC protein IGROV1, both high; SKOV3, both low) were treated with dasatinib in combination with the cytotoxic agents. SRC and paxillin protein expression were determined pretreatment and posttreatment. Dose-response curves were constructed, and the combination index (CI) for drug interaction was calculated. RESULTS In the IGROV1 cells, dasatinib alone reduced phospho-SRC/total SRC 71% and p-paxillin/t-paxillin ratios 77%. Phospho-SRC (3%-33%; P = 0.002 to 0.04) and p-paxicillin (6%-19%; P = 0.01 to 0.05) levels were significantly reduced with dasatinib in combination with each cytotoxic agent. The combination of dasatinib and docetaxel, gemcitabine, or topotecan had a synergistic antiproliferative effect (CI, 0.49-0.68), whereas dasatinib combined with doxorubicin had an additive effect (CI, 1.08).In SKOV3 cells, dasatinib resulted in less pronounced reductions of phospho-SRC/total SRC (49%) and p-paxillin/t-paxillin (62%). Phospho-SRC (18%; P < 0.001) and p-paxillin levels (18%; P = 0.001; 9%; P = 0.007) were significantly decreased when dasatinib was combined with docetaxel and topotecan (p-paxillin only). Furthermore, dasatinib combined with the cytotoxics in the SKOV3 cells produced an antagonistic interaction on the proliferation of these cells (CI, 1.49-2.27). CONCLUSIONS Dasatinib in combination with relapse chemotherapeutic agents seems to interact in a synergistic or additive manner in cells with high SRC pathway activation and protein expression. Further evaluation of dasatinib in combination with chemotherapy in ovarian cancer animal models and exploration of the use of biomarkers to direct therapy are warranted.
Collapse
|
18
|
Delle Monache S, Sanità P, Calgani A, Schenone S, Botta L, Angelucci A. Src inhibition potentiates antitumoral effect of paclitaxel by blocking tumor-induced angiogenesis. Exp Cell Res 2014; 328:20-31. [PMID: 25128812 DOI: 10.1016/j.yexcr.2014.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 07/31/2014] [Accepted: 08/02/2014] [Indexed: 12/25/2022]
Abstract
The protein kinase Src is frequently over-activated in advanced cancers where it modulates the signaling transduction cascade of several growth factors. The feasibility of combination treatment of Src inhibitors with chemotherapy is currently under investigation. We evaluated the anti-tumoral effect of paclitaxel (PTX) in combination with S13, a tyrosine kinase inhibitor with a prevalent specificity for Src, in a hormone-insensible prostate cancer (PCa) cell model. In vivo, combination treatment with PTX and S13 reduced dramatically PCa tumor growth with a relevant difference in the density of new blood vessels with respect to control and single treatments. This reduction was determined by a concomitant impairment of endothelial cell migration and of VEGF release by cancer cells. In fact, S13, when used alone, was sufficient to reduce tubule formation in vivo, and to inhibit VEGFR2 activation and FAK expression in endothelial cells. In addition, the combination treatment determined a significant reduction in ROS production and HIF-1 stabilization in PCa cells respect to single treatments with S13 or PTX. In conclusion, Src-inhibition could be an effective therapeutic strategy aimed at supporting the anti-angiogenic action of PTX in aggressive PCa.
Collapse
Affiliation(s)
- Simona Delle Monache
- Dipartimento di Scienze Cliniche Applicate e Biotecnologiche, University of L׳Aquila, via Vetoio Coppito, 67100 L׳Aquila, Italy.
| | - Patrizia Sanità
- Dipartimento di Scienze Cliniche Applicate e Biotecnologiche, University of L׳Aquila, via Vetoio Coppito, 67100 L׳Aquila, Italy
| | - Alessia Calgani
- Dipartimento di Scienze Cliniche Applicate e Biotecnologiche, University of L׳Aquila, via Vetoio Coppito, 67100 L׳Aquila, Italy
| | - Silvia Schenone
- Dipartimento di Farmacia, University of Genova, viale Benedetto XV, 3, 16132 Genova, Italy
| | - Lorenzo Botta
- Dipartimento di Biotecnologie, Chimica e Farmacia, University of via A. Moro, snc, 53100, Siena, Italy
| | - Adriano Angelucci
- Dipartimento di Scienze Cliniche Applicate e Biotecnologiche, University of L׳Aquila, via Vetoio Coppito, 67100 L׳Aquila, Italy
| |
Collapse
|
19
|
Janczar S, Graham JS, Paige AJW, Gabra H. Targeting locoregional peritoneal dissemination in ovarian cancer. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/17474108.4.2.133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Klempner SJ, Myers AP, Mills GB, Westin SN. Clinical investigation of receptor and non-receptor tyrosine kinase inhibitors for the treatment of epithelial ovarian cancer. Expert Opin Pharmacother 2013; 14:2171-82. [PMID: 23937415 PMCID: PMC4103698 DOI: 10.1517/14656566.2013.826650] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Epithelial ovarian cancer (EOC) is the second most common gynecologic malignancy and the leading cause of death from gynecologic cancer in the USA. EOC is an exquisitely chemo-sensitive disease with response rates of over 75% in the upfront setting. Despite this, due to high rates of recurrence and development of chemo-resistance, the overall survival of EOC remains about 25%. Thus, there is a great need for new therapeutic approaches to render more durable responses. Based on preclinical and early phase clinical studies, key targeted pathways include targets that drive angiogenesis and chemo-resistance. Receptor tyrosine kinases and non-receptor tyrosine kinases play important roles in these processes and several small molecule tyrosine kinase inhibitors (TKIs) are in clinical development. AREAS COVERED This review summarizes clinical rationale, mechanisms of action and clinical data for the TKIs under evaluation in the Phase III setting for EOC. EXPERT OPINION Despite reasonable preclinical activity, small molecule TKIs are unlikely to improve patient survival as single agent therapies in an unselected EOC population. Incorporation of tissue evaluation during ongoing clinical trials is required to identify molecularly defined groups that respond to single agents and direct rational combination strategies based on mechanisms of resistance to improve outcomes in EOC.
Collapse
Affiliation(s)
- Samuel J. Klempner
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215
| | - Andrea P. Myers
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215
- Department of Gynecologic Oncology, Dana Farber Cancer Institute, Boston, MA, 02215
| | - Gordon B. Mills
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston TX, 77030
| | - Shannon N. Westin
- Departments of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| |
Collapse
|
21
|
El-Kenawi AE, El-Remessy AB. Angiogenesis inhibitors in cancer therapy: mechanistic perspective on classification and treatment rationales. Br J Pharmacol 2013; 170:712-29. [PMID: 23962094 PMCID: PMC3799588 DOI: 10.1111/bph.12344] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/25/2013] [Accepted: 07/30/2013] [Indexed: 12/17/2022] Open
Abstract
Angiogenesis, a process of new blood vessel formation, is a prerequisite for tumour growth to supply the proliferating tumour with oxygen and nutrients. The angiogenic process may contribute to tumour progression, invasion and metastasis, and is generally accepted as an indicator of tumour prognosis. Therefore, targeting tumour angiogenesis has become of high clinical relevance. The current review aimed to highlight mechanistic details of anti-angiogenic therapies and how they relate to classification and treatment rationales. Angiogenesis inhibitors are classified into either direct inhibitors that target endothelial cells in the growing vasculature or indirect inhibitors that prevent the expression or block the activity of angiogenesis inducers. The latter class extends to include targeted therapy against oncogenes, conventional chemotherapeutic agents and drugs targeting other cells of the tumour micro-environment. Angiogenesis inhibitors may be used as either monotherapy or in combination with other anticancer drugs. In this context, many preclinical and clinical studies revealed higher therapeutic effectiveness of the combined treatments compared with individual treatments. The proper understanding of synergistic treatment modalities of angiogenesis inhibitors as well as their wide range of cellular targets could provide effective tools for future therapies of many types of cancer.
Collapse
Affiliation(s)
- Asmaa E El-Kenawi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura UniversityMansoura, Egypt
| | - Azza B El-Remessy
- Center for Pharmacy and Experimental Therapeutics, University of GeorgiaAugusta, GA, USA
- Department of Pharmacology and Toxicology, Georgia Regents UniversityAugusta, GA, USA
- Charlie Norwood VA Medical CenterAugusta, GA, USA
| |
Collapse
|
22
|
Liu H, Xiao F, Serebriiskii IG, O’Brien SW, Maglaty MA, Astsaturov I, Litwin S, Martin LP, Proia DA, Golemis EA, Connolly DC. Network analysis identifies an HSP90-central hub susceptible in ovarian cancer. Clin Cancer Res 2013; 19:5053-67. [PMID: 23900136 PMCID: PMC3778161 DOI: 10.1158/1078-0432.ccr-13-1115] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE Epithelial ovarian cancer (EOC) is usually detected at an advanced stage and is frequently lethal. Although many patients respond to initial surgery and standard chemotherapy consisting of a platinum-based agent and a taxane, most experience recurrence and eventually treatment-resistant disease. Although there have been numerous efforts to apply protein-targeted agents in EOC, these studies have so far documented little efficacy. Our goal was to identify broadly susceptible signaling proteins or pathways in EOC. EXPERIMENTAL DESIGN As a new approach, we conducted data-mining meta-analyses integrating results from multiple siRNA screens to identify gene targets that showed significant inhibition of cell growth. On the basis of this meta-analysis, we established that many genes with such activity were clients of the protein chaperone HSP90. We therefore assessed ganetespib, a clinically promising second-generation small-molecule HSP90 inhibitor, for activity against EOC, both as a single agent and in combination with cytotoxic and targeted therapeutic agents. RESULTS Ganetespib significantly reduced cell growth, induced cell-cycle arrest and apoptosis in vitro, inhibited growth of orthotopic xenografts and spontaneous ovarian tumors in transgenic mice in vivo, and inhibited expression and activation of numerous proteins linked to EOC progression. Importantly, paclitaxel significantly potentiated ganetespib activity in cultured cells and tumors. Moreover, combined treatment of cells with ganetespib and siRNAs or small molecules inhibiting genes identified in the meta-analysis in several cases resulted in enhanced activity. CONCLUSION These results strongly support investigation of ganetespib, a single-targeted agent with effects on numerous proteins and pathways, in augmenting standard EOC therapies.
Collapse
Affiliation(s)
- Hanqing Liu
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Fang Xiao
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Ilya G. Serebriiskii
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Shane W. O’Brien
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Marisa A. Maglaty
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Igor Astsaturov
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Samuel Litwin
- Biostatistics Facility, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Lainie P. Martin
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | - Erica A. Golemis
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Denise C. Connolly
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
23
|
Lee SW, Yoo J, Lee SH, Kim D, Kim YM, Kim YT. Simultaneous suppression of Src and signal transducer and activator of transcription 3 inhibits the growth of epithelial ovarian cancer cells. Eur J Obstet Gynecol Reprod Biol 2013; 169:75-9. [PMID: 23427943 DOI: 10.1016/j.ejogrb.2013.01.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 12/29/2012] [Accepted: 01/24/2013] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The reciprocal regulation of c-Src and STAT3 activation seems to be associated with the poor response to c-Src inhibitors of ovarian cancer. This study aims to investigate inhibition of cell proliferation and enhancement of the cytotoxic effect of chemotherapeutic agents via simultaneous suppression of c-Src and STAT3 in ovarian cancer cell lines. STUDY DESIGN Specific siRNAs targeting c-Src and STAT3 were produced and transfected into an SKOV3 ovarian cancer cell line. We confirmed the downregulation of c-Src and STAT3 mRNAs by reverse transcriptase polymerase chain reaction. MTT assay was used to assess cytotoxicity following cisplatin administration. Protein expression level was evaluated by Western blot. RESULTS Cell growth was significantly inhibited by c-Src or STAT3 siRNA. Cytotoxicity was not increased in cisplatin-treated SKOV3 by c-Src siRNA only or STAT3 siRNA only, but cell viability was decreased significantly in cisplatin-treated cells after simultaneous transfection with c-Src and STAT3 siRNAs. Specifically, the viability was significantly decreased from 30% to 55% within the IC50 concentration following simultaneous transfection with c-Src and STAT3 siRNAs, particularly after 72 h. Src and survivin protein expression level was significantly decreased at 72 h after transfection of c-Src and STAT3 siRNAs. CONCLUSIONS This study has demonstrated the principle that the simultaneous suppression of c-Src and STAT3 inhibits the growth of epithelial ovarian cancer cells and seems to enhance the cytotoxicity of chemotherapeutic agents in ovarian cancer.
Collapse
Affiliation(s)
- Shin-Wha Lee
- Department of Obstetrics and Gynecology, University of Ulsan, Asan Medical Center, Seoul 138-736, Republic of Korea
| | | | | | | | | | | |
Collapse
|
24
|
Huang YW, Chen C, Xu MM, Li JD, Xiao J, Zhu XF. Expression of c-Src and phospho-Src in epithelial ovarian carcinoma. Mol Cell Biochem 2013; 376:73-9. [DOI: 10.1007/s11010-012-1550-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/14/2012] [Indexed: 01/31/2023]
|
25
|
Schilder RJ, Brady WE, Lankes HA, Fiorica JV, Shahin MS, Zhou XC, Mannel RS, Pathak HB, Hu W, Alpaugh RK, Sood AK, Godwin AK. Phase II evaluation of dasatinib in the treatment of recurrent or persistent epithelial ovarian or primary peritoneal carcinoma: a Gynecologic Oncology Group study. Gynecol Oncol 2012; 127:70-4. [PMID: 22710075 PMCID: PMC3748717 DOI: 10.1016/j.ygyno.2012.06.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 05/31/2012] [Accepted: 06/05/2012] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Preclinical data suggest an important role for the sarcoma proto-oncogene tyrosine kinase (SRC) in the oncogenesis of epithelial ovarian cancer (EOC) or primary peritoneal carcinoma (PPC). The Gynecologic Oncology Group (GOG) conducted a Phase II trial to evaluate the efficacy and safety of dasatinib, an oral SRC-family inhibitor in EOC/PPC, and explored biomarkers for possible association with clinical outcome. METHODS Eligible women had measurable, recurrent or persistent EOC/PPC and had received one or two prior regimens which must have contained a platinum and a taxane. Patients were treated with 100mg orally daily of dasatinib continuously until progression of disease or adverse effects prevented further treatment. Primary endpoints were progression-free survival (PFS)≥6months and response rate. Serial plasma samples were assayed for multiple biomarkers. Circulating free DNA was quantified as were circulating tumor and endothelial cells. RESULTS Thirty-five (35) patients were enrolled in a two-stage sequential design. Of the 34 eligible and evaluable patients, 20.6% (90% confidence interval: 10.1%, 35.2%) had a PFS≥6months; there were no objective responses. Grade 3-4 toxicities were gastrointestinal (mostly nausea and emesis; n=4), pulmonary (dyspnea and/or pleural effusion; n=4) and pain (n=5), and infrequent instances of anemia, malaise, insomnia, rash, and central nervous system hemorrhage. Lack of clinical activity limited any correlation of biomarkers with outcome. CONCLUSION Dasatinib has minimal activity as a single-agent in patients with recurrent EOC/PPC.
Collapse
Affiliation(s)
- Russell J Schilder
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Secord AA, Teoh DK, Barry WT, Yu M, Broadwater G, Havrilesky LJ, Lee PS, Berchuck A, Lancaster J, Wenham RM. A phase I trial of dasatinib, an SRC-family kinase inhibitor, in combination with paclitaxel and carboplatin in patients with advanced or recurrent ovarian cancer. Clin Cancer Res 2012; 18:5489-98. [PMID: 22837181 DOI: 10.1158/1078-0432.ccr-12-0507] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE We conducted a phase I study of dasatinib, an oral SRC-family tyrosine kinase inhibitor, in combination with paclitaxel and carboplatin in the treatment of advanced and recurrent epithelial ovarian cancer. EXPERIMENTAL DESIGN The primary objective was to determine the maximum tolerated dose (MTD). Secondary objectives included defining toxicity, response rate (RR), pharmacokinetics, and pharmacodynamics. Using a "3+3" design, cohorts of three to six patients received paclitaxel (175 mg/m(2)) and carboplatin (AUC 6) every 3 weeks with escalating doses of dasatinib (100, 120, and 150 mg daily), followed by an eight-patient expansion cohort. RESULTS Twenty patients were enrolled between June 2007 and December 2009. The median age was 61 years (range: 42-82) with a median of 2 prior regimens (range: 0-6), and 71% had platinum-sensitive disease. There were three to six patients in each cohort, and eight in the expansion cohort. Pharmacokinetics were observed over the first two cycles of therapy. One DLT was observed in the 100 mg dasatinib cohort (grade 3 myalgia). Other toxicities in all cycles included neutropenia (95% grade 3-4; 91% in the 150 mg dosing cohort), thrombocytopenia (35% grade 3-4), and fatigue (10% grade 3). The RR was 40% [three complete responses, (15%); five partial responses, (25%)],10 patients (50%) had stable disease, and two were not evaluable. The PFS(6-month) actuarial estimate was 86%. The median PFS and OS were 7.8 and 16.2 months, respectively. CONCLUSIONS Due to the high incidence of myelosuppression with subsequent cycles, the recommended phase II dose of dasatinib is 150 mg daily in combination with paclitaxel and carboplatin. The combination was safe with evidence of clinical activity.
Collapse
Affiliation(s)
- Angeles Alvarez Secord
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kaye S, Aamdal S, Jones R, Freyer G, Pujade-Lauraine E, de Vries EGE, Barriuso J, Sandhu S, Tan DSW, Hartog V, Kuenen B, Ruijter R, Kristensen GB, Nyakas M, Barrett S, Burke W, Pietersma D, Stuart M, Emeribe U, Boven E. Phase I study of saracatinib (AZD0530) in combination with paclitaxel and/or carboplatin in patients with solid tumours. Br J Cancer 2012; 106:1728-34. [PMID: 22531637 PMCID: PMC3364128 DOI: 10.1038/bjc.2012.158] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: As a prelude to combination studies aimed at resistance reversal, this dose-escalation/dose-expansion study investigated the selective Src kinase inhibitor saracatinib (AZD0530) in combination with carboplatin and/or paclitaxel. Methods: Patients with advanced solid tumours received saracatinib once-daily oral tablets in combination with either carboplatin AUC 5 every 3 weeks (q3w), paclitaxel 175 mg m−2 q3w, paclitaxel 80 mg m−2 every 1 week (q1w), or carboplatin AUC 5 plus paclitaxel 175 mg m−2 q3w. The primary endpoint was safety/tolerability. Results: A total of 116 patients received saracatinib 125 (N=20), 175 (N=44), 225 (N=40), 250 (N=9), or 300 mg (N=3). There were no clear dose-related trends within each chemotherapy regimen group in number or severity of adverse events (AEs). However, combining all groups, the occurrence of grade ⩾3 asthenic AEs (all causality) was dose-related (125 mg, 10% 175 mg, 20% ⩾225 mg, 33%), and grade ⩾3 neutropenia occurred more commonly at doses ⩾225 mg. There was no evidence that saracatinib affected exposure to carboplatin or paclitaxel, or vice versa. Objective responses were seen in 5 out of 44 patients (11%) receiving carboplatin plus paclitaxel q3w, and 5 out of 24 (21%) receiving paclitaxel q1w. Conclusion: Saracatinib doses up to 175 mg with paclitaxel with/without carboplatin showed acceptable toxicity in most patients, and are suitable for further trials.
Collapse
Affiliation(s)
- S Kaye
- Drug Development Unit, Royal Marsden Hospital, Downs Road, Sutton, Surrey SM2 5PT, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Canese R, Pisanu ME, Mezzanzanica D, Ricci A, Paris L, Bagnoli M, Valeri B, Spada M, Venditti M, Cesolini A, Rodomonte A, Giannini M, Canevari S, Podo F, Iorio E. Characterisation of in vivo ovarian cancer models by quantitative 1H magnetic resonance spectroscopy and diffusion-weighted imaging. NMR IN BIOMEDICINE 2012; 25:632-642. [PMID: 22020805 DOI: 10.1002/nbm.1779] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 06/30/2011] [Accepted: 07/11/2011] [Indexed: 05/31/2023]
Abstract
Magnetic resonance imaging (MRI) and spectroscopy (MRS) offer powerful approaches for detecting physiological and metabolic alterations in malignancies and help investigate underlying molecular mechanisms. Research on epithelial ovarian carcinoma (EOC), the gynaecological malignancy with the highest death rate characterised by frequent relapse and onset of drug resistance, could benefit from application of these molecular imaging approaches. In this study, MRI/MRS were used to characterise solid tumour models obtained by subcutaneous (s.c.) or intraperitoneal (i.p.) implantation of human SKOV3.ip cells in severe combined immunodeficiency (SCID) mice. In vivo MRI/MRS, ex vivo magic-angle-spinning (MAS), and in vitro (1)H-NMR measurements were carried out at 4.7 T, 9.4 T, and 9.4/16.5 T, respectively. MRI evaluation was performed by T1-, T2-, and diffusion-weighted (DW) multislice spin-echo imaging. The in vivo (1)H spectra of all tumour models showed a prominent resonance of total choline-containing metabolites (tCho). Quantitative in vivo MRS of both i.p. and s.c. SKOV3.ip xenografts showed that the mean tCho content was in the 2.9-4.5 mM range, with a mean PCho/tCho ratio of 0.99 ± 0.01 [23 examinations, 14-34 days post injection (dpi)], in good agreement with ex vivo and in vitro analyses. Myo-inositol ranged between 11.7 and 17.0 mM, with a trend towards higher values in i.p. xenografts at 14-16 dpi. The average apparent diffusion coefficient (ADC) values of SKOV3.ip xenografts [1.64 ± 0.11 (n = 9, i.p.) and 1.58 ± 0.03 x10(-3) mm(2)/s (n = 7, s.c.)] were in agreement with values reported for tumours from patients with EOC, while the mean vascular signal fraction (VSF) was lower (≤ 4%), probably due to the more rapid growth of preclinical models. Both s.c. and i.p. xenografts are valuable preclinical models for monitoring biochemical and physiopathological changes associated with in vivo EOC tumour growth and response to therapy, which may serve as the basis for further clinical development of noninvasive MR approaches.
Collapse
Affiliation(s)
- Rossella Canese
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kalachand R, Hennessy BT, Markman M. Molecular targeted therapy in ovarian cancer: what is on the horizon? Drugs 2012; 71:947-67. [PMID: 21668036 DOI: 10.2165/11591740-000000000-00000] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Over the past two decades, empirical optimization of cytotoxic chemotherapy combinations and surgical debulking procedures have improved outcomes and survival in epithelial ovarian cancer. Yet, this disease remains the fifth leading cause of cancer-related deaths in the US, as cure rates seem to have reached a plateau at approximately 20% with conventional chemotherapy. Novel high-throughput genomic and proteomic analyses have improved the molecular understanding of ovarian carcinogenesis, thereby providing a vast array of new potential drug targets with complex signalling interactions. In order to yield the most significant impact on disease outcome, it is necessary to carefully select, and subsequently target, the driving molecular pathway(s) within a tumour or tumour subtype, which are most likely to correspond to high-frequency mutations and genomic aberrations. The identification of biomarkers predictive of response to targeted therapy is essential to avoid poor responses to potentially useful drugs in unselected trial populations. With some promising, albeit early, phase III data on the angiogenesis inhibitor bevacizumab, exciting new opportunities lie ahead with the ultimate goal of personalizing therapies to individual tumour profiles.
Collapse
Affiliation(s)
- Roshni Kalachand
- Department of Medical Oncology, Beaumont Hospital, Dublin, Ireland.
| | | | | |
Collapse
|
30
|
Gillet JP, Wang J, Calcagno AM, Green LJ, Varma S, Elstrand MB, Trope CG, Ambudkar SV, Davidson B, Gottesman MM. Clinical relevance of multidrug resistance gene expression in ovarian serous carcinoma effusions. Mol Pharm 2011; 8:2080-8. [PMID: 21761824 PMCID: PMC3224865 DOI: 10.1021/mp200240a] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The presence of tumor cells in effusions within serosal cavities is a clinical manifestation of advanced-stage cancer and is generally associated with poor survival. Identifying molecular targets may help to design efficient treatments to eradicate these aggressive cancer cells and improve patient survival. Using a state-of-the-art TaqMan-based qRT-PCR assay, we investigated the multidrug resistance (MDR) transcriptome of 32 unpaired ovarian serous carcinoma effusion samples obtained at diagnosis or at disease recurrence following chemotherapy. MDR genes were selected a priori based on an extensive curation of the literature published during the last three decades. We found three gene signatures with a statistically significant correlation with overall survival (OS), response to treatment [complete response (CR) vs other], and progression free survival (PFS). The median log-rank p-values for the signatures were 0.023, 0.034, and 0.008, respectively. No correlation was found with residual tumor status after cytoreductive surgery, treatment (with or without chemotherapy) and stage defined according to the International Federation of Gynecology and Obstetrics. Further analyses demonstrated that gene expression alone can effectively predict the survival outcome of women with ovarian serous carcinoma (OS, log-rank p = 0.0000; and PFS, log-rank p = 0.002). Interestingly, the signature for overall survival is the same in patients at first presentation and those who had chemotherapy and relapsed. This pilot study highlights two new gene signatures that may help in optimizing the treatment for ovarian carcinoma patients with effusions.
Collapse
Affiliation(s)
- Jean-Pierre Gillet
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH
| | - Junbai Wang
- Division of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Anna Maria Calcagno
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH
| | - Lisa J. Green
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH
| | - Sudhir Varma
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, Office of Science Management and Operations, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD
| | - Mari Bunkholt Elstrand
- Department of Gynecologic Oncology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Claes G. Trope
- Department of Gynecologic Oncology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
- The Medical Faculty, University of Oslo, N-0316 Oslo, Norway
| | - Suresh V. Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH
| | - Ben Davidson
- Division of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
- The Medical Faculty, University of Oslo, N-0316 Oslo, Norway
| | - Michael M. Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH
| |
Collapse
|
31
|
Inhibition of cell growth and up-regulation of MAD2 in human oesophageal squamous cell carcinoma after treatment with the Src/Abl inhibitor dasatinib. Clin Sci (Lond) 2011; 122:13-24. [PMID: 21751967 DOI: 10.1042/cs20110230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aberrant expression and/or activity of the non-receptor protein tyrosine kinase SFK (Src family kinase) members are commonly observed in progressive stages of human tumours. The aim of the present study was to investigate whether Src is a potential drug target for treating oesophageal squamous cell carcinoma. Compared with the human immortalized oesophageal epithelial cell line SHEE, oesophageal squamous cell carcinoma cells have increased tyrosine phosphorylation activities. We have explored the therapeutic potential of dasatinib, a small-molecule inhibitor that targets multiple cytosolic and membrane-bound tyrosine kinases, for the treatment of oesophageal squamous cell carcinoma. We examined that the effects of dasatinib on proliferation, invasion, apoptosis, spindle checkpoint, cell-cycle arrest and kinase activity in vitro using three human oesophageal carcinoma cell lines KYSE30, KYSE180 and EC109. In nude mouse models, dasatinib treatment effectively inhibited the expression of activated Src, resulting in the inhibition of tumour growth. Multiple drug effect isobologram analysis was used to study interactions with the chemotherapeutic drug docetaxel. As expected, the three oesophageal carcinoma cell lines were highly sensitive to dasatinib, but SHEE cells were not sensitive to this drug. Concentration-dependent anti-proliferative effects of dasatinib were observed in the three oesophageal carcinoma cell lines. Dasatinib significantly inhibited oesophageal carcinoma cell invasion and up-regulation of MAD2 (mitotic arrest-deficient 2), as well as inducing cell apoptosis and cell-cycle arrest. Additive and synergistic interactions were observed for the combination of dasatinib and docetaxel. Therefore it was concluded that dasatinib blocks the G1/S transition and inhibits cell growth. These results provided a clear biological rationale to test dasatinib as a single agent or in combination with chemotherapy in oesophageal squamous cell carcinoma. Moreover, we have shown in vitro and in vivo that dasatinib might have therapeutic benefit for patients with oesophageal squamous cell carcinoma who are not eligible for surgery.
Collapse
|
32
|
Abstract
Src-family Kinases (SFKs) participate in the regulation of proliferation, differentiation, apoptosis, autophagy, adhesion, migration, invasion and angiogenesis in normal and cancer cells. Abnormal expression of SFKs has been documented in cancers that arise in breast, colon, ovary, melanocyte, gastric mucosa, head and neck, pancreas, lung, and brain. Targeting SFKs in cancer cells has been shown to be a promising therapeutic strategy in solid tumors, particularly in ovarian, colon and breast cancers. Paclitaxel is one of most widely used chemotherapeutic agents for the management of ovarian, breast, lung and head/neck cancers. As a microtubule-stabilizing agent, paclitaxel possesses both mitosis-dependent and mitosis-independent activities against cancer cells. A variety of mechanisms such as deregulation of P-glycoprotein, alteration of tubulin isotypes, alteration of microtubule-regulatory proteins, deregulation of apoptotic signaling pathways, mutation of tubulins and overexpression of copper transporters have been implicated in the development of primary or secondary resistance to paclitaxel. By affecting cancer cell survival, proliferation, autophagy, microtubule stability, motility, and/or angiogenesis, SFKs interact with mechanisms that regulate paclitaxel sensitivity. Inhibition of SFKs can potentiate the anti-tumor activity of paclitaxel by enhancing apoptosis, autophagy and microtubule stability. Based on pre-clinical observations, administration of SFK inhibitors in combination with paclitaxel could improve treatment for ovarian, breast, lung and head/neck cancers. Identification and validation of predictive biomarkers could also permit personalization of the therapy.
Collapse
Affiliation(s)
- Xiao-Feng Le
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, USA.
| | | |
Collapse
|
33
|
Le XF, Mao W, He G, Claret FX, Xia W, Ahmed AA, Hung MC, Siddik ZH, Bast RC. The role of p27(Kip1) in dasatinib-enhanced paclitaxel cytotoxicity in human ovarian cancer cells. J Natl Cancer Inst 2011; 103:1403-22. [PMID: 21813412 DOI: 10.1093/jnci/djr280] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Less than 50% of ovarian cancers respond to paclitaxel. Effective strategies are needed to enhance paclitaxel sensitivity. METHODS A library of silencing RNAs (siRNAs) was used to identify kinases that regulate paclitaxel sensitivity in human ovarian cancer SKOv3 cells. The effect of dasatinib, an inhibitor of Src and Abl kinases, on paclitaxel sensitivity was measured in ovarian cancer cells and HEY xenografts. The roles of p27(Kip1), Bcl-2, and Cdk1 in apoptosis induced by dasatinib and paclitaxel were assessed using a terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay, siRNA knockdown of gene expression, transfection with Bcl-2 and Cdk1 expression vectors, and flow cytometry. All statistical tests were two-sided. RESULTS Src family and Abl kinases were identified as modulators of paclitaxel sensitivity in SKOv3 cells. The siRNA knockdown of Src, Fyn, or Abl1 enhanced paclitaxel-mediated growth inhibition in ovarian cancer cells compared with a control siRNA. HEY cells treated with dasatinib plus paclitaxel formed fewer colonies than did cells treated with either agent alone. Treatment of HEY xenograft-bearing mice with dasatinib plus paclitaxel inhibited tumor growth more than treatment with either agent alone (average tumor volume per mouse, dasatinib + paclitaxel vs paclitaxel: 0.28 vs. 0.81 cm3, difference = 0.53 cm3, 95% confidence interval [CI] = 0.44 to 0.62 cm3, P = .014); dasatinib + paclitaxel vs. dasatinib: 0.28 vs. 0.55 cm3, difference = 0.27 cm3, 95% CI = 0.21 to 0.33 cm3, P = .035). Combined treatment induced more TUNEL-positive apoptotic cells than did either agent alone. The siRNA knockdown of p27(Kip1) decreased dasatinib- and paclitaxel-induced apoptosis compared with a negative control siRNA (sub-G1 fraction, control siRNA vs. p27(Kip1) siRNA: 42.5% vs. 20.1%, difference = 22.4%, 95% CI = 20.1% to 24.7%, P = .017). Studies with forced expression and siRNA knockdown of Bcl-2 and Cdk1 suggest that dasatinib-mediated induction of p27(Kip1) enhanced paclitaxel-induced apoptosis by negatively regulating Bcl-2 and Cdk1 expression. CONCLUSION Inhibition of Src family and Abl kinases with either siRNAs or dasatinib enhances paclitaxel sensitivity of ovarian cancer cells through p27(Kip1)-mediated suppression of Bcl-2 and Cdk1 expression.
Collapse
Affiliation(s)
- Xiao-Feng Le
- Department of Experimental Therapeutics, the University of Texas M. D. Anderson Cancer Center, Unit 354, Rm Y6.5343, 1515 Holcombe Blvd, Houston, TX, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zecchini S, Bombardelli L, Decio A, Bianchi M, Mazzarol G, Sanguineti F, Aletti G, Maddaluno L, Berezin V, Bock E, Casadio C, Viale G, Colombo N, Giavazzi R, Cavallaro U. The adhesion molecule NCAM promotes ovarian cancer progression via FGFR signalling. EMBO Mol Med 2011; 3:480-94. [PMID: 21739604 PMCID: PMC3377089 DOI: 10.1002/emmm.201100152] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 05/04/2011] [Accepted: 05/25/2011] [Indexed: 12/16/2022] Open
Abstract
Epithelial ovarian carcinoma (EOC) is an aggressive neoplasm, which mainly disseminates to organs of the peritoneal cavity, an event mediated by molecular mechanisms that remain elusive. Here, we investigated the expression and functional role of neural cell adhesion molecule (NCAM), a cell surface glycoprotein involved in brain development and plasticity, in EOC. NCAM is absent from normal ovarian epithelium but becomes highly expressed in a subset of human EOC, in which NCAM expression is associated with high tumour grade, suggesting a causal role in cancer aggressiveness. We demonstrate that NCAM stimulates EOC cell migration and invasion in vitro and promotes metastatic dissemination in mice. This pro-malignant function of NCAM is mediated by its interaction with fibroblast growth factor receptor (FGFR). Indeed, not only FGFR signalling is required for NCAM-induced EOC cell motility, but targeting the NCAM/FGFR interplay with a monoclonal antibody abolishes the metastatic dissemination of EOC in mice. Our results point to NCAM-mediated stimulation of FGFR as a novel mechanism underlying EOC malignancy and indicate that this interplay may represent a valuable therapeutic target.
Collapse
Affiliation(s)
- Silvia Zecchini
- IFOM - The FIRC Institute of Molecular Oncology, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hiscox S, Nicholson RI. Src kinase: a therapeutic opportunity in endocrine-responsive and resistant breast cancer. Expert Rev Endocrinol Metab 2011; 6:423-435. [PMID: 30754115 DOI: 10.1586/eem.11.29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The intracellular kinase, Src, interacts with a diverse array of signaling elements, including the estrogen receptor to regulate breast cancer progression. Recent evidence has also implicated Src in mediating the response of breast cancer to endocrine agents and in the acquisition of antihormone resistance, a significant limiting factor to the clinical effectiveness of systemic endocrine therapy. A number of pharmacological inhibitors of Src kinase have been developed that are effective at suppressing breast cancer growth and invasion in vitro and inhibiting disease spread in vivo. Significantly, there appears to be added benefit when these agents are given in combination with anti-estrogens in endocrine-sensitive and -resistant models. These new findings suggest that Src inhibitors might have therapeutic value in breast cancer patients to improve endocrine response and circumvent resistance.
Collapse
Affiliation(s)
- Stephen Hiscox
- a Breast Cancer (Molecular Pharmacology) Group, Welsh School of Pharmacy, Redwood Building, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
- b
| | - Robert I Nicholson
- a Breast Cancer (Molecular Pharmacology) Group, Welsh School of Pharmacy, Redwood Building, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| |
Collapse
|
36
|
Moreno-Smith M, Lu C, Shahzad MMK, Pena GNA, Allen JK, Stone RL, Mangala LS, Han HD, Kim HS, Farley D, Berestein GL, Cole SW, Lutgendorf SK, Sood AK. Dopamine blocks stress-mediated ovarian carcinoma growth. Clin Cancer Res 2011; 17:3649-59. [PMID: 21531818 DOI: 10.1158/1078-0432.ccr-10-2441] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE Increased adrenergic activity in response to chronic stress is known to promote tumor growth by stimulating the tumor microenvironment. The focus of the current study was to determine whether dopamine, an inhibitory catecholamine, could block the effects of chronic stress on tumor growth. EXPERIMENTAL DESIGN Expression of dopamine receptors (DR1-DR5) was analyzed by reverse transcriptase-PCR and by Western blotting. In vitro effects of dopamine on cell viability, apoptosis, and migration were examined. For in vivo therapy, murine and human DR2-siRNAs were incorporated into chitosan nanoparticles (CH-NP). RESULTS In this model of chronic stress, tumoral norepinephrine levels remained elevated whereas dopamine levels were significantly decreased compared with nonstressed animals. Daily restraint stress resulted in significantly increased tumor growth in both immunodeficient (SKOV3ip1 and HeyA8) and immunocompetent (ID8) ovarian cancer models. This increase was completely blocked with daily dopamine treatment. Dopamine treatment also blocked the stress-induced increase in angiogenesis. Endothelial and ovarian cancer cells expressed all dopamine receptors except for the lack of DR3 expression in ovarian cancer cells. DR2 was responsible for the inhibitory effects of dopamine on tumor growth and microvessel density as well as the stimulatory effect on apoptosis, as the DR2 antagonist eticlopride reversed these effects. Dopamine significantly inhibited cell viability and stimulated apoptosis in vitro. Moreover, dopamine reduced cyclic AMP levels and inhibited norepinephrine and vascular permeability factor/VEGF-induced Src kinase activation. CONCLUSIONS Dopamine depletion under chronic stress conditions creates a permissive microenvironment for tumor growth that can be reversed by dopamine replacement.
Collapse
Affiliation(s)
- Myrthala Moreno-Smith
- Departments of Gynecologic Oncology, Cancer Biology, and Experimental Therapeutics, and Center for RNA Interference and Non-coding RNA, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kim HS, Han HD, Armaiz-Pena GN, Stone RL, Nam EJ, Lee JW, Shahzad MMK, Nick AM, Lee SJ, Roh JW, Nishimura M, Mangala LS, Bottsford-Miller J, Gallick GE, Lopez-Berestein G, Sood AK. Functional roles of Src and Fgr in ovarian carcinoma. Clin Cancer Res 2011; 17:1713-21. [PMID: 21300758 PMCID: PMC3077122 DOI: 10.1158/1078-0432.ccr-10-2081] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Src is an attractive target because it is overexpressed in a number of malignancies, including ovarian cancer. However, the effect of Src silencing on other Src family kinases (SFKs) is not known. We hypothesized that other SFK members could compensate for the lack of Src activity. EXPERIMENTAL DESIGN Cell viability after either Src or Fgr silencing was examined in ovarian cancer cell lines by MTT assay. Expression of SFKs after Src silencing in ovarian cancer cells was examined by real-time reverse transcriptase (RT)-PCR. Therapeutic effect of in vivo Src and/or Fgr silencing was examined using siRNA incorporated into chitosan nanoparticles (siRNA/CH-NP). Microvessel density, cell proliferation, and apoptosis markers were determined by immunohistochemical staining in ovarian tumor tissues. RESULTS Src silencing enhanced cytotoxicity of docetaxel in both SKOV3ip1 and HeyA8 cells. In addition, Src silencing using siRNA/CH-NP in combination with docetaxel resulted in significant inhibition of tumor growth compared with control siRNA/CH-NP (81.8% reduction in SKOV3ip1, P = 0.017; 84.3% reduction in HeyA8, P < 0.005). These effects were mediated by decreased tumor cell proliferation and angiogenesis, and increased tumor cell apoptosis. Next, we assessed the effects of Src silencing on other SFK members in ovarian cancer cell lines. Src silencing resulted in significantly increased Fgr levels. Dual Src and Fgr silencing in vitro resulted in increased apoptosis that was mediated by increased caspase and AKT activity. In addition, dual silencing of Src and Fgr in vivo using siRNA/CH-NP resulted in the greatest reduction in tumor growth compared with silencing of either Src or Fgr alone in the HeyA8 model (68.8%, P < 0.05). CONCLUSIONS This study demonstrates that, in addition to Src, Fgr plays a biologically significant role in ovarian cancer growth and might represent an important target.
Collapse
Affiliation(s)
- Hye-Sun Kim
- Department of Gynecologic Oncology, U.T. M.D. Anderson Cancer Center, 1155 Herman Pressler, Unit 1362, Houston, TX 77030
- Department of Pathology, Cheil General Hospital and Women’s Healthcare Center, Kwandong University College of Medicine, Seoul, Korea 100-380
| | - Hee Dong Han
- Department of Gynecologic Oncology, U.T. M.D. Anderson Cancer Center, 1155 Herman Pressler, Unit 1362, Houston, TX 77030
- Center for RNA Interference and Non-coding RNA, The University of Texas M.D. Anderson Cancer Center
| | - Guillermo N. Armaiz-Pena
- Department of Gynecologic Oncology, U.T. M.D. Anderson Cancer Center, 1155 Herman Pressler, Unit 1362, Houston, TX 77030
| | - Rebecca L. Stone
- Department of Gynecologic Oncology, U.T. M.D. Anderson Cancer Center, 1155 Herman Pressler, Unit 1362, Houston, TX 77030
| | - Eun Ji Nam
- Department of Gynecologic Oncology, U.T. M.D. Anderson Cancer Center, 1155 Herman Pressler, Unit 1362, Houston, TX 77030
- Women’s Cancer Clinic, Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Korea 120-752
| | - Jeong-Won Lee
- Department of Gynecologic Oncology, U.T. M.D. Anderson Cancer Center, 1155 Herman Pressler, Unit 1362, Houston, TX 77030
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea 135-710
| | - Mian M. K. Shahzad
- Department of Gynecologic Oncology, U.T. M.D. Anderson Cancer Center, 1155 Herman Pressler, Unit 1362, Houston, TX 77030
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology and UW Carbone Cancer Center, University of Wisconsin, Madison, WI 53792
| | - Alpa M. Nick
- Department of Gynecologic Oncology, U.T. M.D. Anderson Cancer Center, 1155 Herman Pressler, Unit 1362, Houston, TX 77030
| | - Sun Joo Lee
- Department of Gynecologic Oncology, U.T. M.D. Anderson Cancer Center, 1155 Herman Pressler, Unit 1362, Houston, TX 77030
- Department of Obstetrics and Gynecology, Konkuk University Hospital, Konkuk University School of Medicine, Seoul, Korea
| | - Ju-Won Roh
- Department of Gynecologic Oncology, U.T. M.D. Anderson Cancer Center, 1155 Herman Pressler, Unit 1362, Houston, TX 77030
- Department of Obstetrics & Gynecology, Dongguk University IIsan Hospital, Goyang, South Korea
| | - Masato Nishimura
- Department of Gynecologic Oncology, U.T. M.D. Anderson Cancer Center, 1155 Herman Pressler, Unit 1362, Houston, TX 77030
| | - Lingegowda S. Mangala
- Department of Gynecologic Oncology, U.T. M.D. Anderson Cancer Center, 1155 Herman Pressler, Unit 1362, Houston, TX 77030
- University of Space Research Association, NASA Johnson Space Center, Department of Radiation Biophysics, Houston, TX 77058
| | - Justin Bottsford-Miller
- Department of Gynecologic Oncology, U.T. M.D. Anderson Cancer Center, 1155 Herman Pressler, Unit 1362, Houston, TX 77030
| | - Gary E. Gallick
- Genitourinary Medical Oncology, U.T. M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 0018-4, Houston, TX 77030
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, U.T. M.D. Anderson Cancer Center, 1155 Herman Pressler, Unit 1362, Houston, TX 77030
- Department of Cancer Biology, U.T. M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 173, Houston, TX 77030
- Center for RNA Interference and Non-coding RNA, The University of Texas M.D. Anderson Cancer Center
| | - Anil K. Sood
- Department of Gynecologic Oncology, U.T. M.D. Anderson Cancer Center, 1155 Herman Pressler, Unit 1362, Houston, TX 77030
- Department of Cancer Biology, U.T. M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 173, Houston, TX 77030
- Center for RNA Interference and Non-coding RNA, The University of Texas M.D. Anderson Cancer Center
| |
Collapse
|
38
|
Chakravarty D, Roy SS, Babu CR, Dandamudi R, Curiel TJ, Vivas-Mejia P, Lopez-Berestein G, Sood AK, Vadlamudi RK. Therapeutic targeting of PELP1 prevents ovarian cancer growth and metastasis. Clin Cancer Res 2011; 17:2250-9. [PMID: 21421858 DOI: 10.1158/1078-0432.ccr-10-2718] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE Ovarian cancer remains a major threat to women's health, partly due to difficulty in early diagnosis and development of metastases. A critical need exists to identify novel targets that curb the progression and metastasis of ovarian cancer. In this study, we examined whether the nuclear receptor coregulator PELP1 (proline-, glutamic acid-, leucine-rich protein-1) contributes to progression and metastatic potential of ovarian cancer cells and determined whether blocking of the PELP1 signaling axis had a therapeutic effect. EXPERIMENTAL DESIGN Ovarian cancer cells stably expressing PELP1-shRNA (short hairpin RNA) were established. Fluorescent microscopy, Boyden chamber, invasion assays, wound healing, and zymography assays were performed to examine the role of PELP1 in metastasis. Expression analysis of the model cells was conducted using tumor metastasis microarray to identify PELP1 Target genes. Therapeutic potential of PELP1-siRNA in vivo was determined using a nanoliposomal formulation of PELP1-siRNA-DOPC (1,2-dioleoyl-sn-glycero-3-phosphatidylcholine) administered systemically in a xenograft model. RESULTS PELP1 knockdown caused cytoskeletal defects and significantly affected the migratory potential of ovarian cancer cells. Microarray analysis revealed that PELP1 affected the expression of selective genes involved in metastasis including Myc, MTA1, MMP2, and MMP9. Zymography analysis confirmed that PELP1 knockdown caused a decrease in the activation of matrix metalloproteases (MMP) 2 and MMP9. Compared with control siRNA-DOPC-treated mice, animals injected with PELP1-siRNA-DOPC had 54% fewer metastatic tumor nodules, exhibited a 51% reduction in tumor growth and an 84% reduction in ascites volume. CONCLUSION The results suggest that PELP1 signaling axis is a potential druggable target and liposomal PELP1-siRNA-DOPC could be used as a novel drug to prevent or treat ovarian metastasis.
Collapse
Affiliation(s)
- Dimple Chakravarty
- Department of Obstetrics and Gynecology, CTRC, The UT Health Science Center, San Antonio, Texas 78229, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Teoh D, Ayeni TA, Rubatt JM, Adams DJ, Grace L, Starr MD, Barry WT, Berchuck A, Murphy SK, Secord AA. Dasatinib (BMS-35482) has synergistic activity with paclitaxel and carboplatin in ovarian cancer cells. Gynecol Oncol 2011; 121:187-92. [PMID: 21208651 DOI: 10.1016/j.ygyno.2010.11.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Revised: 11/08/2010] [Accepted: 11/10/2010] [Indexed: 11/17/2022]
Abstract
PURPOSE To explore the activity of dasatinib alone and in combination with paclitaxel and carboplatin in ovarian cancer cells and to determine if dasatinib activity can be predicted based on evaluation of the SRC pathway. EXPERIMENTAL DESIGN Microarray analysis was performed for IGROV1, OVCAR3, A2780 and SKOV3 ovarian cancer cells and the status of the genomic SRC signature pathway was determined. Cells were treated with carboplatin, paclitaxel and dasatinib individually and in combination. Pre- and post-treatment phospho-SRC (pSRC) and SRC protein expression was determined. Dose-response curves were constructed, and drug interaction was assessed by the Combination Index (CI) method. RESULTS SRC protein expression levels reflected the SRC pathway genomic signature in the cell lines with the lowest (SKOV3) and highest (IGROV1) pathway expression, but not in those with intermediate expression (OVCAR3, A2780). Dasatinib treatment caused loss of pSRC in all cell lines, with 50% growth inhibition for IGROV1 at 70 nM, OVCAR3 at 34 nM, A2780 at 4.1 μM and SKOV3 at 530 nM. Dasatinib combined with cytotoxics yielded a synergistic effect (CI=0.46 to 0.79) in all cell lines except SKOV3. CONCLUSION Dasatinib in combination with standard chemotherapeutic agents appears to interact in a synergistic manner in some ovarian cancer cell lines. Further research is needed to evaluate tumor cell characteristics which predict response to dasatinib.
Collapse
Affiliation(s)
- Deanna Teoh
- Division of Gynecologic Oncology, Duke Comprehensive Cancer Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Cytotoxic therapy and surgery have improved outcomes for patients with gynecologic malignancies over the last twenty years, but women's cancers still account for over ten percent of cancer related deaths annually. Insights into the pathogenesis of cancer have led to the development of drugs that target molecular pathways essential to tumor survival including angiogenesis, DNA repair, and apoptosis. This review outlines several of the promising new biologically targeted drugs currently being tested to treat gynecologic malignancies.
Collapse
Affiliation(s)
- Amy R. Carroll
- Department of Gynecologic Oncology, M.D. Anderson Cancer Center, Houston, TX 77030
| | - Robert L. Coleman
- Department of Gynecologic Oncology, M.D. Anderson Cancer Center, Houston, TX 77030
- Center for RNAi and Non-Coding RNA, M.D. Anderson Cancer Center, Houston, TX, 77030
| | - Anil K. Sood
- Department of Gynecologic Oncology, M.D. Anderson Cancer Center, Houston, TX 77030
- Department of Cancer Biology, M.D. Anderson Cancer Center, Houston, TX 77030
- Center for RNAi and Non-Coding RNA, M.D. Anderson Cancer Center, Houston, TX, 77030
| |
Collapse
|
41
|
Saad AF, Hu W, Sood AK. Microenvironment and pathogenesis of epithelial ovarian cancer. HORMONES & CANCER 2010; 1:277-90. [PMID: 21761359 PMCID: PMC3199131 DOI: 10.1007/s12672-010-0054-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Multiple genetic alterations play a role in the pathogenesis of ovarian cancer. Although many key proteins and pathways involved in ovarian carcinogenesis and metastasis have been discovered, knowledge of the early steps leading to malignancy remains poorly understood. This poor understanding stems from lack of data from early-stage cancers and absence of a well-established premalignant state universal to all ovarian cancer subtypes. Existing evidence suggests that ovarian cancers develop either through a stepwise mutation process (low-grade pathway), through genetic instability resulting in hastened metastasis (high-grade pathway), or more recently through what has been described as the "'fimbrial-ovarian' serous neoplasia theory." In this latter model, ovarian serous cancers evolve from premalignant lesions in the distal fallopian tube called tubal intraepithelial carcinoma. In this manuscript, we review key genetic and molecular changes that occur in cancer cell progression and suggest a model of ovarian cancer pathogenesis involving both tumor cell mutations and microenvironmental factors.
Collapse
Affiliation(s)
- Antonio F. Saad
- Department of Obstetrics and Gynecology, U.T.M.B. Galveston Branch, 301 University Blvd, Galveston, TX 77555, USA
| | - Wei Hu
- Department of Gynecologic Oncology, U.T.M.D. Anderson Cancer Center, 1155 Herman Pressler, Unit 1362, Houston, TX 77030, USA
| | - Anil K. Sood
- Department of Gynecologic Oncology, U.T.M.D. Anderson Cancer Center, 1155 Herman Pressler, Unit 1362, Houston, TX 77030, USA. Department of Cancer Biology, U.T.M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 173, Houston, TX 77030, USA. Center for RNA Interference and Non-Coding RNA, 1515 Holcombe Boulevard, Houston, TX 77030, USA. Departments of Gynecologic Oncology and Cancer Biology, The University of Texas M.D. Anderson Cancer Center, 1155 Herman Pressler, Unit 1362, Houston, TX 77030, USA
| |
Collapse
|
42
|
Targeted trials in ovarian cancer. Gynecol Oncol 2010; 119:151-6. [DOI: 10.1016/j.ygyno.2010.05.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 05/03/2010] [Accepted: 05/08/2010] [Indexed: 12/27/2022]
|
43
|
Prediction and testing of biological networks underlying intestinal cancer. PLoS One 2010; 5. [PMID: 20824133 PMCID: PMC2931697 DOI: 10.1371/journal.pone.0012497] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Accepted: 07/26/2010] [Indexed: 11/19/2022] Open
Abstract
Colorectal cancer progresses through an accumulation of somatic mutations, some of which reside in so-called "driver" genes that provide a growth advantage to the tumor. To identify points of intersection between driver gene pathways, we implemented a network analysis framework using protein interactions to predict likely connections--both precedented and novel--between key driver genes in cancer. We applied the framework to find significant connections between two genes, Apc and Cdkn1a (p21), known to be synergistic in tumorigenesis in mouse models. We then assessed the functional coherence of the resulting Apc-Cdkn1a network by engineering in vivo single node perturbations of the network: mouse models mutated individually at Apc (Apc(1638N+/-)) or Cdkn1a (Cdkn1a(-/-)), followed by measurements of protein and gene expression changes in intestinal epithelial tissue. We hypothesized that if the predicted network is biologically coherent (functional), then the predicted nodes should associate more specifically with dysregulated genes and proteins than stochastically selected genes and proteins. The predicted Apc-Cdkn1a network was significantly perturbed at the mRNA-level by both single gene knockouts, and the predictions were also strongly supported based on physical proximity and mRNA coexpression of proteomic targets. These results support the functional coherence of the proposed Apc-Cdkn1a network and also demonstrate how network-based predictions can be statistically tested using high-throughput biological data.
Collapse
|
44
|
Lieu C, Kopetz S. The SRC family of protein tyrosine kinases: a new and promising target for colorectal cancer therapy. Clin Colorectal Cancer 2010; 9:89-94. [PMID: 20378502 DOI: 10.3816/ccc.2010.n.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Aberrant activation of the Src family of tyrosine kinases has been implicated in the development and progression of colorectal cancer (CRC). As a result, Src inhibitors are now being studied as possible therapeutic agents to treat metastatic disease. In this review, we discuss the effects of aberrant Src activation in CRC, Src as a target of single-agent drug therapy, and Src as a target of combination therapy with epidermal growth factor receptor inhibition and cytotoxic chemotherapy. The greatest potential for clinically relevant benefit most likely lies in combination regimens. Further evaluation with biomarkers will continue to define the molecular phenotype of patients with CRC who will benefit the most from Src-based therapy.
Collapse
Affiliation(s)
- Christopher Lieu
- Department of Gastrointestinal Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
45
|
Lorusso D, Pietragalla A, Mainenti S, Di Legge A, Amadio G, Scambia G. Emerging drugs for ovarian cancer. Expert Opin Emerg Drugs 2010; 15:635-52. [PMID: 20604741 DOI: 10.1517/14728214.2010.502888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Ovarian cancer has the highest mortality of all female reproductive tract cancers, which reflects both the absence of proven ovarian cancer screening tests and the development of drug-resistant cancer cell. Apart from varying the dosages, schedules, mode of delivery and combinations of existing drugs, efforts must continue to identify signaling pathways in tumor cells sufficiently different from normal cells that can be a target for maximizing tumor kill and minimizing toxicity. AREAS COVERED IN THIS REVIEW Some of the most important cellular pathways are analyzed and discussed and the most interesting clinical trials, both closed and ongoing, described. WHAT THE READER WILL GAIN The reader will gain a panoramic vision of all the most active drugs in clinical investigations in ovarian cancer. The reader will also better understand what the unresolved problems of molecular research are and how complicated the process 'from the bench to the bedside' is. TAKE HOME MESSAGE It is only with a strong commitment, cooperation and collaboration from the international ovarian cancer community that significant improvement in patient outcomes can be attained beyond the marginal gains achieved so far.
Collapse
Affiliation(s)
- Domenica Lorusso
- Catholic University of the Sacred Heart, Department of Gynecologic Oncology, Largo Agostino Gemelli 8, IT-00168 Rome.
| | | | | | | | | | | |
Collapse
|
46
|
Menges CW, Chen Y, Mossman BT, Chernoff J, Yeung AT, Testa JR. A Phosphotyrosine Proteomic Screen Identifies Multiple Tyrosine Kinase Signaling Pathways Aberrantly Activated in Malignant Mesothelioma. Genes Cancer 2010; 1:493-505. [PMID: 20672017 DOI: 10.1177/1947601910375273] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Malignant mesothelioma (MM) is a highly aggressive cancer that is refractory to all current chemotherapeutic regimens. Therefore, uncovering new rational therapeutic targets is imperative in the field. Tyrosine kinase signaling pathways are aberrantly activated in many human cancers and are currently being targeted for chemotherapeutic intervention. Thus, we sought to identify tyrosine kinases hyperactivated in MM. An unbiased phosphotyrosine proteomic screen was employed to identify tyrosine kinases activated in human MM cell lines. From this screen, we have identified novel signaling molecules, such as JAK1, STAT1, cortactin (CTTN), FER, p130Cas (BCAR1), SRC and FYN as tyrosine phosphorylated in human MM cell lines. Additionally, STAT1 and SRC family kinases (SFK) were confirmed to be active in primary MM specimens. We also confirmed that known signal transduction pathways previously implicated in MM, such as EGFR and MET signaling axes, are co-activated in the majority of human MM specimens and cell lines tested. EGFR, MET, and SFK appear to be co-activated in a significant proportion of MM cell lines, and dual inhibition of these kinases was demonstrated to be more efficacious for inhibiting MM cell viability and downstream effector signaling than inhibition of a single tyrosine kinase. Consequently, these data suggest that TKI mono-therapy may not represent an efficacious strategy for the treatment of MM, due to multiple tyrosine kinases potentially signaling redundantly to cellular pathways involved in tumor cell survival and proliferation.
Collapse
Affiliation(s)
- Craig W Menges
- Cancer Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | | | | | | | | | | |
Collapse
|
47
|
Han LY, Kipps E, Kaye SB. Current treatment and clinical trials in ovarian cancer. Expert Opin Investig Drugs 2010; 19:521-34. [DOI: 10.1517/13543781003647966] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
48
|
Abstract
PURPOSE OF REVIEW Clinically and on a molecular level, ovarian cancer is a unique and complex disease. The explosion in potential molecular targets over the last decade has led to the arrival of many novel therapies into oncology. In the present article, we review the most promising of these agents in ovarian cancer. RECENT FINDINGS Targeted therapies, such as epidermal growth factor receptor inhibitors, that have worked well in other cancers have shown only moderate success in ovarian cancer, whereas other treatment approaches have yielded surprisingly positive outcomes. An example is anti-vascular endothelial growth factor and proapoptotic strategies, which are effective in both primary and relapsed ovarian cancer. Use of poly (ADP-ribose)-polymerase inhibitors has shown that targeting one form of DNA repair profoundly affects cell survival in those with a hereditary failure to mend DNA damage using another mechanism. This can be extrapolated to patients with sporadic ovarian cancers, with or without the 'BRCAness' phenotype. SUMMARY Using targeted agents in ovarian cancer, we are discovering not only how these novel therapies work but are also unveiling the complex 'wiring' of the disease itself, and the interconnections between what were previously believed to be distinct molecular pathways. The addition of targeted agents to our therapeutic armoury is likely to significantly and positively impact on patient survival.
Collapse
|
49
|
Antivascular therapy for epithelial ovarian cancer. JOURNAL OF ONCOLOGY 2009; 2010:372547. [PMID: 20072701 PMCID: PMC2804796 DOI: 10.1155/2010/372547] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 09/28/2009] [Indexed: 12/19/2022]
Abstract
Ovarian cancer is the fifth largest cancer killer in women. Improved understanding of the molecular pathways implicated in the pathogenesis of ovarian cancer has led to the investigation of novel targeted therapies. Ovarian cancer is characterized by an imbalance between pro- and antiangiogenic factors in favor of angiogenesis activation. Various antivascular strategies are currently under investigation in ovarian cancer. They can schematically be divided into antiangiogenic and vascular-disrupting therapies. This paper provides a comprehensive review of these new treatments targeting the tumor vasculature in this disease. Promising activities have been detected in phase II trials, and results of phase III clinical trials are awaited eagerly.
Collapse
|
50
|
Abstract
Despite improvements in surgical and diagnostic techniques, the outcome for women with advanced epithelial ovarian cancer remains poor. Recent developments in the understanding of cancer biology have led to an explosion in clinical trials using targeted agents. In women with epithelial ovarian cancer, antiangiogenic agents have led the field. There are, however, other novel targets and agents undergoing evaluation. This review focuses on some of these newer approaches to targeted therapy highlighting the importance of trial design and incorporation of biomarkers as we move forward into the era of personalized medicine.
Collapse
|