1
|
Liu Z, Yuan Y, Wang N, Yu P, Teng Y. Drug combinations of camptothecin derivatives promote the antitumor properties. Eur J Med Chem 2024; 279:116872. [PMID: 39298971 DOI: 10.1016/j.ejmech.2024.116872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Camptothecin (CPT) derivatives are widely used as small molecule chemotherapeutic agents and have demonstrated efficacy in the treatment of diverse solid tumors. A variety of derivatives have been developed to resolve the drawbacks of poor water solubility, high toxicity and rapid hydrolysis in vivo. However, the obstacles, such as acquired resistance and toxicity, still exist. The utilization of rational drug combinations has the potential to enhance the efficacy and mitigate the toxicity of CPT derivatives. This paper provides an overview of CPT derivatives in combination with other drugs, with a particular focus on cell cycle inhibitors, DNA synthesis inhibitors, anti-metastatic drugs and immunotherapy agents. Concurrently, the mechanisms of antitumor activity of combinations of different classes of drugs and CPT derivatives are elucidated. While the various combination strategies have yielded more favorable therapeutic outcomes, the efficacy and toxicity of the drug combinations are influenced by the inherent properties of the drugs involved. Moreover, a summary of the drug conjugates of CPT derivatives was provided, accompanied by an analysis of the structural activity relationship (SAR). This paves the way for the subsequent developments in drug combinations and delivery modes.
Collapse
Affiliation(s)
- Zhen Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.
| | - Yajie Yuan
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Ning Wang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yuou Teng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.
| |
Collapse
|
2
|
Theocharopoulos C, Ziogas IA, Douligeris CC, Efstathiou A, Kolorizos E, Ziogas DC, Kontis E. Antibody-drug conjugates for hepato-pancreato-biliary malignancies: "Magic bullets" to the rescue? Cancer Treat Rev 2024; 129:102806. [PMID: 39094332 DOI: 10.1016/j.ctrv.2024.102806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/17/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Hepato-Pancreato-Biliary (HPB) malignancies constitute a highly aggressive group of cancers that have a dismal prognosis. Patients not amenable to curative intent surgical resection are managed with systemic chemotherapy which, however, confers little survival benefit. Antibody-Drug Conjugates (ADCs) are tripartite compounds that merge the intricate selectivity and specificity of monoclonal antibodies with the cytodestructive potency of attached supertoxic payloads. In view of the unmet need for drugs that will enhance the survival rates of HPB cancer patients, the assessment of ADCs for treating HPB malignancies has become the focus of extensive clinical and preclinical investigation, showing encouraging preliminary results. In the current review, we offer a comprehensive overview of the growing body of evidence on ADC approaches tested for HPB malignancies. Starting from a concise discussion of the functional principles of ADCs, we summarize here all available data from preclinical and clinical studies evaluating ADCs in HPB cancers.
Collapse
Affiliation(s)
| | - Ioannis A Ziogas
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | | | | | | | - Dimitrios C Ziogas
- First Department of Internal Medicine, Laikon General Hospital, School of Medicine, National Kapodistrian University of Athens, Athens 11527, Greece
| | - Elissaios Kontis
- Department of Surgery, Metaxa Cancer Hospital, Piraeus 18537, Greece
| |
Collapse
|
3
|
Xie L, Kong Q, Ai M, He A, Yao B, Zhang L, Zhang K, Zhu C, Li Y, Xia L, Tian R, Xu R. Spatial Proteomic Profiling of Colorectal Cancer Revealed Its Tumor Microenvironment Heterogeneity. J Proteome Res 2024; 23:3342-3352. [PMID: 39026393 DOI: 10.1021/acs.jproteome.3c00719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Colorectal cancer is a predominant malignancy with a second mortality worldwide. Despite its prevalence, therapeutic options remain constrained and surgical operation is still the most useful therapy. In this regard, a comprehensive spatially resolved quantitative proteome atlas was constructed to explore the functional proteomic landscape of colorectal cancer. This strategy integrates histopathological analysis, laser capture microdissection, and proteomics. Spatial proteome profiling of 200 tissue section samples facilitated by the fully integrated sample preparation technology SISPROT enabled the identification of more than 4000 proteins on the Orbitrap Exploris 240 from 2 mm2 × 10 μm tissue sections. Compared with normal adjacent tissues, we identified a spectrum of cancer-associated proteins and dysregulated pathways across various regions of colorectal cancer including ascending colon, transverse colon, descending colon, sigmoid colon, and rectum. Additionally, we conducted proteomic analysis on tumoral epithelial cells and paracancerous epithelium from early to advanced stages in hallmark rectum cancer and sigmoid colon cancer. Bioinformatics analysis revealed functional proteins and cell-type signatures associated with different regions of colorectal tumors, suggesting potential clinical implications. Overall, this study provides a comprehensive spatially resolved functional proteome landscape of colorectal cancer, serving as a valuable resource for exploring potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Lifen Xie
- Department of Oncology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), 1017 Dongmen North Road, Shenzhen 518020, China
- The First Affiliated Hospital, Jinan University, 613 Huangpu Avenue West Road, Guangzhou 510632, China
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Qian Kong
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Meiling Ai
- Department of Oncology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), 1017 Dongmen North Road, Shenzhen 518020, China
- The First Affiliated Hospital, Jinan University, 613 Huangpu Avenue West Road, Guangzhou 510632, China
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - An He
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Bin Yao
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Luobin Zhang
- Department of Oncology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), 1017 Dongmen North Road, Shenzhen 518020, China
| | - Keren Zhang
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Chaowei Zhu
- Department of Gastrointestinal Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), 1017 Dongmen North Road, Shenzhen 518020, China
| | - Yangqiu Li
- Department of Hematology, First Affiliated Hospital, Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, 613 Huangpu Avenue West Road, Guangzhou 510632, China
| | - Ligang Xia
- Department of Gastrointestinal Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), 1017 Dongmen North Road, Shenzhen 518020, China
| | - Ruijun Tian
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Ruilian Xu
- Department of Oncology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), 1017 Dongmen North Road, Shenzhen 518020, China
| |
Collapse
|
4
|
Zeng H, Ning W, Liu X, Luo W, Xia N. Unlocking the potential of bispecific ADCs for targeted cancer therapy. Front Med 2024; 18:597-621. [PMID: 39039315 DOI: 10.1007/s11684-024-1072-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/08/2024] [Indexed: 07/24/2024]
Abstract
Antibody-drug conjugates (ADCs) are biologically targeted drugs composed of antibodies and cytotoxic drugs connected by linkers. These innovative compounds enable precise drug delivery to tumor cells, minimizing harm to normal tissues and offering excellent prospects for cancer treatment. However, monoclonal antibody-based ADCs still present challenges, especially in terms of balancing efficacy and safety. Bispecific antibodies are alternatives to monoclonal antibodies and exhibit superior internalization and selectivity, producing ADCs with increased safety and therapeutic efficacy. In this review, we present available evidence and future prospects regarding the use of bispecific ADCs for cancer treatment, including a comprehensive overview of bispecific ADCs that are currently in clinical trials. We offer insights into the future development of bispecific ADCs to provide novel strategies for cancer treatment.
Collapse
Affiliation(s)
- Hongye Zeng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China
| | - Wenjing Ning
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China
| | - Xue Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China.
| | - Wenxin Luo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China.
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
5
|
Zhang B, Wang M, Sun L, Liu J, Yin L, Xia M, Zhang L, Liu X, Cheng Y. Recent Advances in Targeted Cancer Therapy: Are PDCs the Next Generation of ADCs? J Med Chem 2024; 67:11469-11487. [PMID: 38980167 DOI: 10.1021/acs.jmedchem.4c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Antibody-drug conjugates (ADCs) comprise antibodies, cytotoxic payloads, and linkers, which can integrate the advantages of antibodies and small molecule drugs to achieve targeted cancer treatment. However, ADCs also have some shortcomings, such as non-negligible drug resistance, a low therapeutic index, and payload-related toxicity. Many studies have focused on changing the composition of ADCs, and some have even further extended the concept and types of targeted conjugated drugs by replacing the targeted antibodies in ADCs with peptides, revolutionarily introducing peptide-drug conjugates (PDCs). This Perspective summarizes the current research status of ADCs and PDCs and highlights the structural innovations of ADC components. In particular, PDCs are regarded as the next generation of potential targeted drugs after ADCs, and the current challenges of PDCs are analyzed. Our aim is to offer fresh insights for the efficient design and expedited development of innovative targeted conjugated drugs.
Collapse
Affiliation(s)
- Baochen Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, P.R. China
| | - Mo Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, P.R. China
| | - Li Sun
- School of Chemical Technology, Shijiazhuang University, Shijiazhuang 050035, P.R. China
| | - Jiawei Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, P.R. China
| | - Libinghan Yin
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, P.R. China
| | - Mingjing Xia
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, P.R. China
| | - Ling Zhang
- School of Chemical Technology, Shijiazhuang University, Shijiazhuang 050035, P.R. China
| | - Xifu Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, P.R. China
| | - Yu Cheng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, P.R. China
| |
Collapse
|
6
|
Ye M, Lu F, Gu D, Xue B, Xu L, Hu C, Chen J, Yu P, Zheng H, Gao Y, Wang J, Tang Q. Hypoxia exosome derived CEACAM5 promotes tumor-associated macrophages M2 polarization to accelerate pancreatic neuroendocrine tumors metastasis via MMP9. FASEB J 2024; 38:e23762. [PMID: 38923643 DOI: 10.1096/fj.202302489rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 06/02/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Exosomes play significant roles in the communications between tumor cells and tumor microenvironment. However, the specific mechanisms by which exosomes modulate tumor development under hypoxia in pancreatic neuroendocrine tumors (pNETs) are not well understood. This study aims to investigate these mechanisms and made several important discoveries. We found that hypoxic exosomes derived from pNETs cells can activate tumor-associated macrophages (TAM) to the M2 phenotype, in turn, the M2-polarized TAM, facilitate the migration and invasion of pNETs cells. Further investigation revealed that CEACAM5, a protein highly expressed in hypoxic pNETs cells, is enriched in hypoxic pNETs cell-derived exosomes. Hypoxic exosomal CEACAM5 was observed to induce M2 polarization of TAM through activation of the MAPK signaling pathway. Coculturing pNETs cells with TAM or treated with hypoxic exosomes enhanced the metastatic capacity of pNETs cells. In conclusion, these findings suggest that pNETs cells generate CEACAM5-rich exosomes in a hypoxic microenvironment, which in turn polarize TAM promote malignant invasion of pNETs cells. Targeting exosomal CEACAM5 could potentially serve as a diagnostic and therapeutic strategy for pNETs.
Collapse
Affiliation(s)
- Mujie Ye
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, Nanjing, China
| | - Feiyu Lu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, Nanjing, China
| | - Danyang Gu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, Nanjing, China
| | - Bingyan Xue
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, Nanjing, China
| | - Lin Xu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, Nanjing, China
| | - Chuanhua Hu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, Nanjing, China
| | - Jinhao Chen
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, Nanjing, China
| | - Ping Yu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, Nanjing, China
| | - Hongxia Zheng
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, Nanjing, China
| | - Yue Gao
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, Nanjing, China
| | - Jianhua Wang
- Department of Gastroenterology, Yancheng No.1 People's Hospital, Affiliated Hospital of Medical School, Nanjing University, Yancheng, China
| | - Qiyun Tang
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Zhu XY, Li QX, Kong Y, Huang KK, Wang G, Wang YJ, Lu J, Hua GQ, Wu YL, Ying TL. A novel human single-domain antibody-drug conjugate targeting CEACAM5 exhibits potent in vitro and in vivo antitumor activity. Acta Pharmacol Sin 2024; 45:609-618. [PMID: 38030799 PMCID: PMC10834580 DOI: 10.1038/s41401-023-01200-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
Leveraging the specificity of antibody to deliver cytotoxic agent into tumor, antibody-drug conjugates (ADCs) have become one of the hotspots in the development of anticancer therapies. Although significant progress has been achieved, there remain challenges to overcome, including limited penetration into solid tumors and potential immunogenicity. Fully human single-domain antibodies (UdAbs), with their small size and human nature, represent a promising approach for addressing these challenges. Carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) is a glycosylated cell surface protein that rarely expressed in normal adult tissues but overexpressed in diverse cancers, taking part in tumorigenesis, progression, and metastasis. In this study, we investigated the therapeutic potential of UdADC targeting CEACAM5. We performed biopanning in our library and obtained an antibody candidate B9, which bound potently and specifically to CEACAM5 protein (KD = 4.84 nM) and possessed excellent biophysical properties (low aggregation tendency, high homogeneity, and thermal stability). The conjugation of B9 with a potent cytotoxic agent, monomethyl auristatin E (MMAE), exhibited superior antitumor efficacy against CEACAM5-expressing human gastric cancer cell line MKN-45, human pancreatic carcinoma cell line BxPC-3 and human colorectal cancer cell line LS174T with IC50 values of 38.14, 25.60, and 101.4 nM, respectively. In BxPC-3 and MKN-45 xenograft mice, administration of UdADC B9-MMAE (5 mg/kg, i.v.) every 2 days for 4 times markedly inhibited the tumor growth without significant change in body weight. This study may have significant implications for the design of next-generation ADCs.
Collapse
Affiliation(s)
- Xiao-Yi Zhu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Engineering Research Center for Synthetic Immunology, Shanghai, 200032, China
| | - Quan-Xiao Li
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Engineering Research Center for Synthetic Immunology, Shanghai, 200032, China
| | - Yu Kong
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Engineering Research Center for Synthetic Immunology, Shanghai, 200032, China
| | - Ke-Ke Huang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Engineering Research Center for Synthetic Immunology, Shanghai, 200032, China
| | - Gang Wang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yun-Ji Wang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jun Lu
- Auckland Bioengineering Institute, University of Auckland, Auckland, 1010, New Zealand
| | - Guo-Qiang Hua
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yan-Ling Wu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Engineering Research Center for Synthetic Immunology, Shanghai, 200032, China.
| | - Tian-Lei Ying
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Engineering Research Center for Synthetic Immunology, Shanghai, 200032, China.
| |
Collapse
|
8
|
Liu X, Cheng Y, Mu Y, Zhang Z, Tian D, Liu Y, Hu X, Wen T. Diverse drug delivery systems for the enhancement of cancer immunotherapy: an overview. Front Immunol 2024; 15:1328145. [PMID: 38298192 PMCID: PMC10828056 DOI: 10.3389/fimmu.2024.1328145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/03/2024] [Indexed: 02/02/2024] Open
Abstract
Despite the clear benefits demonstrated by immunotherapy, there is still an inevitable off-target effect resulting in serious adverse immune reactions. In recent years, the research and development of Drug Delivery System (DDS) has received increased prominence. In decades of development, DDS has demonstrated the ability to deliver drugs in a precisely targeted manner to mitigate side effects and has the advantages of flexible control of drug release, improved pharmacokinetics, and drug distribution. Therefore, we consider that combining cancer immunotherapy with DDS can enhance the anti-tumor ability. In this paper, we provide an overview of the latest drug delivery strategies in cancer immunotherapy and briefly introduce the characteristics of DDS based on nano-carriers (liposomes, polymer nano-micelles, mesoporous silica, extracellular vesicles, etc.) and coupling technology (ADCs, PDCs and targeted protein degradation). Our aim is to show readers a variety of drug delivery platforms under different immune mechanisms, and analyze their advantages and limitations, to provide more superior and accurate targeting strategies for cancer immunotherapy.
Collapse
Affiliation(s)
- Xu Liu
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yang Cheng
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yao Mu
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | | | - Dan Tian
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yunpeng Liu
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Clinical Cancer Treatment and Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xuejun Hu
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ti Wen
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Clinical Cancer Treatment and Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
9
|
Wittwer NL, Brown MP, Liapis V, Staudacher AH. Antibody drug conjugates: hitting the mark in pancreatic cancer? J Exp Clin Cancer Res 2023; 42:280. [PMID: 37880707 PMCID: PMC10598980 DOI: 10.1186/s13046-023-02868-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
Pancreatic cancer is one of the most common causes of cancer-related death, and the 5-year survival rate has only improved marginally over the last decade. Late detection of the disease means that in most cases the disease has advanced locally and/or metastasized, and curative surgery is not possible. Chemotherapy is still the first-line treatment however, this has only had a modest impact in improving survival, with associated toxicities. Therefore, there is an urgent need for targeted approaches to better treat pancreatic cancer, while minimizing treatment-induced side-effects. Antibody drug conjugates (ADCs) are one treatment option that could fill this gap. Here, a monoclonal antibody is used to deliver extremely potent drugs directly to the tumor site to improve on-target killing while reducing off-target toxicity. In this paper, we review the current literature for ADC targets that have been examined in vivo for treating pancreatic cancer, summarize current and on-going clinical trials using ADCs to treat pancreatic cancer and discuss potential strategies to improve their therapeutic window.
Collapse
Affiliation(s)
- Nicole L Wittwer
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology, University of South Australia, Adelaide, SA, 5000, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia.
| | - Michael P Brown
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology, University of South Australia, Adelaide, SA, 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Vasilios Liapis
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology, University of South Australia, Adelaide, SA, 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Alexander H Staudacher
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology, University of South Australia, Adelaide, SA, 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| |
Collapse
|
10
|
Van Emmenis L, Ku SY, Gayvert K, Branch JR, Brady NJ, Basu S, Russell M, Cyrta J, Vosoughi A, Sailer V, Alnajar H, Dardenne E, Koumis E, Puca L, Robinson BD, Feldkamp MD, Winkis A, Majewski N, Rupnow B, Gottardis MM, Elemento O, Rubin MA, Beltran H, Rickman DS. The Identification of CELSR3 and Other Potential Cell Surface Targets in Neuroendocrine Prostate Cancer. CANCER RESEARCH COMMUNICATIONS 2023; 3:1447-1459. [PMID: 37546702 PMCID: PMC10401480 DOI: 10.1158/2767-9764.crc-22-0491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/18/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023]
Abstract
Although recent efforts have led to the development of highly effective androgen receptor (AR)-directed therapies for the treatment of advanced prostate cancer, a significant subset of patients will progress with resistant disease including AR-negative tumors that display neuroendocrine features [neuroendocrine prostate cancer (NEPC)]. On the basis of RNA sequencing (RNA-seq) data from a clinical cohort of tissue from benign prostate, locally advanced prostate cancer, metastatic castration-resistant prostate cancer and NEPC, we developed a multi-step bioinformatics pipeline to identify NEPC-specific, overexpressed gene transcripts that encode cell surface proteins. This included the identification of known NEPC surface protein CEACAM5 as well as other potentially targetable proteins (e.g., HMMR and CESLR3). We further showed that cadherin EGF LAG seven-pass G-type receptor 3 (CELSR3) knockdown results in reduced NEPC tumor cell proliferation and migration in vitro. We provide in vivo data including laser capture microdissection followed by RNA-seq data supporting a causal role of CELSR3 in the development and/or maintenance of the phenotype associated with NEPC. Finally, we provide initial data that suggests CELSR3 is a target for T-cell redirection therapeutics. Further work is now needed to fully evaluate the utility of targeting CELSR3 with T-cell redirection or other similar therapeutics as a potential new strategy for patients with NEPC. Significance The development of effective treatment for patients with NEPC remains an unmet clinical need. We have identified specific surface proteins, including CELSR3, that may serve as novel biomarkers or therapeutic targets for NEPC.
Collapse
Affiliation(s)
- Lucie Van Emmenis
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Sheng-Yu Ku
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kaitlyn Gayvert
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York
- Caryl and Israel Englander Institute for Precision Medicine, New York-Presbyterian Hospital, New York, New York
| | | | - Nicholas J. Brady
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Subhasree Basu
- Janssen Research & Development, Spring House, Pennsylvania
| | | | - Joanna Cyrta
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
- Caryl and Israel Englander Institute for Precision Medicine, New York-Presbyterian Hospital, New York, New York
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Aram Vosoughi
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Verena Sailer
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Hussein Alnajar
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Etienne Dardenne
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Elena Koumis
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Loredana Puca
- Caryl and Israel Englander Institute for Precision Medicine, New York-Presbyterian Hospital, New York, New York
| | - Brian D. Robinson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | | | | | | | - Brent Rupnow
- Janssen Research & Development, Spring House, Pennsylvania
| | | | - Olivier Elemento
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York
- Caryl and Israel Englander Institute for Precision Medicine, New York-Presbyterian Hospital, New York, New York
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Mark A. Rubin
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
- Caryl and Israel Englander Institute for Precision Medicine, New York-Presbyterian Hospital, New York, New York
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York
- Bern Center for Precision Medicine, University of Bern, Bern, Switzerland
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Caryl and Israel Englander Institute for Precision Medicine, New York-Presbyterian Hospital, New York, New York
| | - David S. Rickman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| |
Collapse
|
11
|
Payload diversification: a key step in the development of antibody-drug conjugates. J Hematol Oncol 2023; 16:3. [PMID: 36650546 PMCID: PMC9847035 DOI: 10.1186/s13045-022-01397-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/30/2022] [Indexed: 01/18/2023] Open
Abstract
Antibody-drug conjugates (ADCs) is a fast moving class of targeted biotherapeutics that currently combines the selectivity of monoclonal antibodies with the potency of a payload consisting of cytotoxic agents. For many years microtubule targeting and DNA-intercalating agents were at the forefront of ADC development. The recent approval and clinical success of trastuzumab deruxtecan (Enhertu®) and sacituzumab govitecan (Trodelvy®), two topoisomerase 1 inhibitor-based ADCs, has shown the potential of conjugating unconventional payloads with differentiated mechanisms of action. Among future developments in the ADC field, payload diversification is expected to play a key role as illustrated by a growing number of preclinical and clinical stage unconventional payload-conjugated ADCs. This review presents a comprehensive overview of validated, forgotten and newly developed payloads with different mechanisms of action.
Collapse
|
12
|
SN-38 Sensitizes BRCA-Proficient Ovarian Cancers to PARP Inhibitors through Inhibiting Homologous Recombination Repair. DISEASE MARKERS 2022; 2022:7243146. [PMID: 36267463 PMCID: PMC9578876 DOI: 10.1155/2022/7243146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/16/2022] [Indexed: 11/20/2022]
Abstract
As a multifunctional protein posttranslational modification enzyme in eukaryotic cells, Poly-ADP-ribose polymerase (PARP) acts as a DNA damage sensor, which helps to repair DNA damage through recruiting repair proteins to the DNA break sites. PARP inhibitors offer a significant clinical benefit for ovarian cancer with BRCA1/2 mutations. However, the majority of ovarian cancer patients harbor wild-type (WT) BRCA1/2 status, which narrows its clinical application. Here, we identified a small compound, SN-38, a CPT analog, which sensitizes BRCA-proficient ovarian cancer cells to PARP inhibitor treatment by inhibiting homologous recombination (HR) repair. SN-38 treatment greatly enhanced PARP inhibitor olaparib induced DNA double-strand breaks (DSBs) and DNA replication stress. Meanwhile, the combination of SN-38 and olaparib synergistically induced apoptosis in ovarian cancer. Furthermore, combination administration of SN-38 and olaparib induced synergistic antitumor efficacy in an ovarian cancer xenograft model in vivo. Therefore, our study provides a novel therapeutic strategy to optimize PARP inhibitor therapy for patients with BRCA-proficient ovarian cancer.
Collapse
|
13
|
The cell-line-derived subcutaneous tumor model in preclinical cancer research. Nat Protoc 2022; 17:2108-2128. [PMID: 35859135 DOI: 10.1038/s41596-022-00709-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 03/31/2022] [Indexed: 01/09/2023]
Abstract
Tumor-bearing experimental animals are essential for preclinical cancer drug development. A broad range of tumor models is available, with the simplest and most widely used involving a tumor of mouse or human origin growing beneath the skin of a mouse: the subcutaneous tumor model. Here, we outline the different types of in vivo tumor model, including some of their advantages and disadvantages and how they fit into the drug-development process. We then describe in more detail the subcutaneous tumor model and key steps needed to establish it in the laboratory, namely: choosing the mouse strain and tumor cells; cell culture, preparation and injection of tumor cells; determining tumor volume; mouse welfare; and an appropriate experimental end point. The protocol leads to subcutaneous tumor growth usually within 1-3 weeks of cell injection and is suitable for those with experience in tissue culture and mouse experimentation.
Collapse
|
14
|
Menon S, Parakh S, Scott AM, Gan HK. Antibody-drug conjugates: beyond current approvals and potential future strategies. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:252-277. [PMID: 36046842 PMCID: PMC9400743 DOI: 10.37349/etat.2022.00082] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/07/2022] [Indexed: 11/19/2022] Open
Abstract
The recent approvals for antibody-drug conjugates (ADCs) in multiple malignancies in recent years have fuelled the ongoing development of this class of drugs. These novel agents combine the benefits of high specific targeting of oncogenic cell surface antigens with the additional cell kill from high potency cytotoxic payloads, thus achieving wider therapeutic windows. This review will summarise the clinical activity of ADCs in tumour types not covered elsewhere in this issue, such as gastrointestinal (GI) and genitourinary (GU) cancers and glioblastoma (GBM). In addition to the ongoing clinical testing of existing ADCs, there is substantial preclinical and early phase testing of newer ADCs or ADC incorporating strategies. This review will provide selected insights into such future development, focusing on the development of novel ADCs against new antigen targets in the tumour microenvironment (TME) and combination of ADCs with immuno-oncology (IO) agents.
Collapse
Affiliation(s)
- Siddharth Menon
- Olivia Newton-John Cancer Centre at Austin Health, Olivia Newton-John Cancer Wellness & Research Centre, Heidelberg Victoria 3084, Australia;College of Science, Health and Engineering, La Trobe University, Melbourne Victoria 3086, Australia
| | - Sagun Parakh
- Olivia Newton-John Cancer Centre at Austin Health, Olivia Newton-John Cancer Wellness & Research Centre, Heidelberg Victoria 3084, Australia;College of Science, Health and Engineering, La Trobe University, Melbourne Victoria 3086, Australia
| | - Andrew M. Scott
- Olivia Newton-John Cancer Centre at Austin Health, Olivia Newton-John Cancer Wellness & Research Centre, Heidelberg Victoria 3084, Australia;College of Science, Health and Engineering, La Trobe University, Melbourne Victoria 3086, Australia
| | - Hui K. Gan
- Olivia Newton-John Cancer Centre at Austin Health, Olivia Newton-John Cancer Wellness & Research Centre, Heidelberg Victoria 3084, Australia;College of Science, Health and Engineering, La Trobe University, Melbourne Victoria 3086, Australia
| |
Collapse
|
15
|
Mohamed Amar IA, Huvelle S, Douez E, Letast S, Henrion S, Viaud-Massuard MC, Aubrey N, Allard-Vannier E, Joubert N, Denevault-Sabourin C. Dual intra- and extracellular release of monomethyl auristatin E from a neutrophil elastase-sensitive antibody-drug conjugate. Eur J Med Chem 2022; 229:114063. [PMID: 34974337 DOI: 10.1016/j.ejmech.2021.114063] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/13/2021] [Accepted: 12/18/2021] [Indexed: 11/04/2022]
Abstract
Antibody-drug conjugates (ADCs) are targeted therapies, mainly used in oncology, consisting in a three-component molecular architecture combining a highly potent drug conjugated via a linker onto a monoclonal antibody (mAb), designed for the selective delivery of the drug to the tumor site. The linker is a key component, defining the ADC stability and mechanism of action, and particularly the drug release strategy. In this study, we have developed and synthesized a cleavable linker, which possesses an Asn-Pro-Val (NPV) sequence sensitive to the human neutrophil elastase (HNE), overexpressed in the tumor microenvironment. This linker permitted the site-specific conjugation of the cell-permeable drug, monomethyl auristatin E (MMAE), onto trastuzumab, using a disulfide re-bridging technology. The resulting ADC was then evaluated in vitro. This conjugate demonstrated retained antigen (Ag) binding affinity and exhibited high subnanomolar potency against Ag-positive tumor cells after internalization, suggesting an intracellular mechanism of linker cleavage. While no internalization and cytotoxic activity of this ADC was observed on Ag-negative cells in classical conditions, the supplementation of exogenous HNE permitted to restore a nanomolar activity on these cells, suggesting an extracellular mechanism of drug release in these conditions. This in vitro proof of concept tends to prove that the NPV sequence could allow a dual intra- and extracellular mechanism of drug release. This work represents a first step in the design of original ADCs with a new dual intra- and extracellular drug delivery system and opens the way to further experimentations to evaluate their full potential in vivo.
Collapse
Affiliation(s)
| | - Steve Huvelle
- EA 7501 GICC, Team IMT, University of Tours, F-37032, Tours, France
| | - Emmanuel Douez
- EA 6295 NMNS, University of Tours, F-37200, Tours, France
| | - Stéphanie Letast
- EA 7501 GICC, Team IMT, University of Tours, F-37032, Tours, France
| | - Sylvain Henrion
- EA 7501 GICC, Team IMT, University of Tours, F-37032, Tours, France
| | | | - Nicolas Aubrey
- UMR 1282 ISP, Team BioMAP, University of Tours-INRAE, F-37200, Tours, France
| | | | - Nicolas Joubert
- EA 7501 GICC, Team IMT, University of Tours, F-37032, Tours, France.
| | | |
Collapse
|
16
|
Ashman N, Bargh JD, Spring DR. Non-internalising antibody–drug conjugates. Chem Soc Rev 2022; 51:9182-9202. [DOI: 10.1039/d2cs00446a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This review introduces non-internalising Antibody–Drug Conjugates (ADCs), highlighting the linker chemistry that enables extracellular payload release.
Collapse
Affiliation(s)
- Nicola Ashman
- Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road, Cambridge, CB2 1EW, UK
| | - Jonathan D. Bargh
- Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - David R. Spring
- Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road, Cambridge, CB2 1EW, UK
| |
Collapse
|
17
|
YILDIZ TUĞBAAKMAN, KÖSE EMEK, ELLIOTT SAMANTHAL. MATHEMATICAL MODELING OF PANCREATIC CANCER TREATMENT WITH CANCER STEM CELLS. J BIOL SYST 2021. [DOI: 10.1142/s0218339021500182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Of all cancers, pancreatic cancer has a significantly low rate of survival, mostly due to lack of early screening. Thus, once detected, pancreatic cancer is usually in later stages, reducing the likelihood of full recovery. The most common treatment strategy is chemotherapy, although several immunotherapeutic drugs show promising results in extending the patient’s lifespan. In this paper, we provide a validated mathematical model for the pancreatic cancer after fitting the parameter values, such as tumor growth rate, inverse carrying capacity, activation and decay rate of pancreatic stellate cells, with the use of the experimental data presented by Cioffi et al. cioffi2015inhibition For treatments with the chemotherapeutic drugs, Abraxane and Gemcitabine, and the immunotherapeutic drug, Anti-CD47, we modified the model accurately and compared the simulation results with the experimental data not only to model pancreatic cancer treatment correctly but also to move forward with other drug trials. Then, we include the cancer stem cells, which are known to initiate tumors and cause a relapse post-chemotherapy, per cancer stem cell hypothesis so that cancer progression can be assessed based on this phenomenon. In addition, we investigate optimal drug protocols. We find out that the most effective treatment is dual therapy due to extending survival time when compared to other drugs. Moreover, this study reveals that drug dose is more effectual than frequency of drug injection on account of different treatment scheduling with the same dose over a week. The model could be a starting point to investigate pancreatic cancer progression based on cancer stem cell hypothesis and shed light on novel drug discoveries.
Collapse
Affiliation(s)
- TUĞBA AKMAN YILDIZ
- Department of Computer Engineering, University of Turkish Aeronautical Association, 06790 Ankara, Turkey
| | - EMEK KÖSE
- Department of Mathematics and Computer Science, St. Mary’s College of Maryland, St. Mary’s City, MD 20619, USA
| | - SAMANTHA L. ELLIOTT
- Department of Biology, St. Mary’s College of Maryland, St. Mary’s City, MD 20619, USA
| |
Collapse
|
18
|
Singh D, Dheer D, Samykutty A, Shankar R. Antibody drug conjugates in gastrointestinal cancer: From lab to clinical development. J Control Release 2021; 340:1-34. [PMID: 34673122 DOI: 10.1016/j.jconrel.2021.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022]
Abstract
The antibody-drug conjugates (ADCs) are one the fastest growing biotherapeutics in oncology and are still in their infancy in gastrointestinal (GI) cancer for clinical applications to improve patient survival. The ADC based approach is developed with tumor specific antigen, antibody carrying cytotoxic agents to precisely target and deliver chemotherapeutics at the tumor site. To date, 11 ADCs have been approved by US-FDA, and more than 80 are in the clinical development phase for different oncological indications. However, The ADCs based therapies in GI cancers are still far from having high-efficient clinical outcomes. The limited success of these ADCs and lessons learned from the past are now being used to develop a newer generation of ADC against GI cancers. In this review, we did a comprehensive assessment of the key components of ADCs, including tumor marker, antibody, cytotoxic payload, and linkage strategy, with a focus on technical improvement and some future trends in the pipeline for clinical translation. The various preclinical and clinical ADCs used in gastrointestinal malignancies, their target, composition and bioconjugation, along with preclinical and clinical outcomes, are discussed. The emphasis is also given to new generation ADCs employing novel mAb, payload, linker, and bioconjugation methods are also included.
Collapse
Affiliation(s)
- Davinder Singh
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Divya Dheer
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Abhilash Samykutty
- Stephenson Comprehensive Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA.
| | - Ravi Shankar
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
19
|
Cao L, Huang C, Cui Zhou D, Hu Y, Lih TM, Savage SR, Krug K, Clark DJ, Schnaubelt M, Chen L, da Veiga Leprevost F, Eguez RV, Yang W, Pan J, Wen B, Dou Y, Jiang W, Liao Y, Shi Z, Terekhanova NV, Cao S, Lu RJH, Li Y, Liu R, Zhu H, Ronning P, Wu Y, Wyczalkowski MA, Easwaran H, Danilova L, Mer AS, Yoo S, Wang JM, Liu W, Haibe-Kains B, Thiagarajan M, Jewell SD, Hostetter G, Newton CJ, Li QK, Roehrl MH, Fenyö D, Wang P, Nesvizhskii AI, Mani DR, Omenn GS, Boja ES, Mesri M, Robles AI, Rodriguez H, Bathe OF, Chan DW, Hruban RH, Ding L, Zhang B, Zhang H. Proteogenomic characterization of pancreatic ductal adenocarcinoma. Cell 2021; 184:5031-5052.e26. [PMID: 34534465 PMCID: PMC8654574 DOI: 10.1016/j.cell.2021.08.023] [Citation(s) in RCA: 241] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/19/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with poor patient survival. Toward understanding the underlying molecular alterations that drive PDAC oncogenesis, we conducted comprehensive proteogenomic analysis of 140 pancreatic cancers, 67 normal adjacent tissues, and 9 normal pancreatic ductal tissues. Proteomic, phosphoproteomic, and glycoproteomic analyses were used to characterize proteins and their modifications. In addition, whole-genome sequencing, whole-exome sequencing, methylation, RNA sequencing (RNA-seq), and microRNA sequencing (miRNA-seq) were performed on the same tissues to facilitate an integrated proteogenomic analysis and determine the impact of genomic alterations on protein expression, signaling pathways, and post-translational modifications. To ensure robust downstream analyses, tumor neoplastic cellularity was assessed via multiple orthogonal strategies using molecular features and verified via pathological estimation of tumor cellularity based on histological review. This integrated proteogenomic characterization of PDAC will serve as a valuable resource for the community, paving the way for early detection and identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Liwei Cao
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Chen Huang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniel Cui Zhou
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Yingwei Hu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - T Mamie Lih
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Sara R Savage
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Karsten Krug
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - David J Clark
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Michael Schnaubelt
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Lijun Chen
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | | | | | - Weiming Yang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Jianbo Pan
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Bo Wen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yongchao Dou
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wen Jiang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuxing Liao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhiao Shi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nadezhda V Terekhanova
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Song Cao
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Rita Jui-Hsien Lu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Yize Li
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Ruiyang Liu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Houxiang Zhu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Peter Ronning
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Yige Wu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Matthew A Wyczalkowski
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Hariharan Easwaran
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Ludmila Danilova
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Arvind Singh Mer
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Seungyeul Yoo
- Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| | - Joshua M Wang
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Wenke Liu
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Mathangi Thiagarajan
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Scott D Jewell
- Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | | | | | - Qing Kay Li
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Michael H Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - David Fenyö
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Pei Wang
- Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| | | | - D R Mani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Gilbert S Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily S Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Oliver F Bathe
- Departments of Surgery and Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Daniel W Chan
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Ralph H Hruban
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA; The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA.
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA.
| |
Collapse
|
20
|
Zhu R, Lin W, Tang L, Hu Y. Identification of hub genes associated with adult acute myeloid leukemia progression through weighted gene co-expression network analysis. Aging (Albany NY) 2021; 13:5686-5697. [PMID: 33592582 PMCID: PMC7950274 DOI: 10.18632/aging.202493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/18/2020] [Indexed: 11/25/2022]
Abstract
Acute myeloid leukemia (AML) is a malignancy of hematopoietic stem cells. Although many candidate genes such as CEBPA, FLT3, IDH1, and IDH2 have been associated with AML initiation and prognosis, the molecular mechanisms underlying this disease remain unclear. In this study, we used a systemic co-expression analysis method, namely weighted gene co-expression network analysis (WGCNA), to identify new candidate genes associated with adult AML progression and prognosis. We identified around 5,138 differentially expressed genes (DEGs) between AML samples (from The Cancer Genome Atlas database) and normal control samples (from the Genotype-Tissue Expression database). WGCNA identified nine co-expression modules with significant differences based on the DEGs. Among modules, the turquoise and blue ones were the most relevant to AML (P-value: turquoise 0, blue 4.64E-77). GO term and KEGG pathway analyses revealed that pathways that are commonly dysregulated in AML were all enriched in the blue and turquoise modules. A total of 15 hub genes were identified to be crucial for AML progression. PIVOT analysis revealed non-coding RNAs, transcriptional factors, and drugs associated with the hub genes. Finally, survival analysis revealed that one of the hub genes, CEACAM5, was significantly associated with AML prognosis and could serve as a potential target for AML treatment.
Collapse
Affiliation(s)
- Ruiqi Zhu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenyi Lin
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liang Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
21
|
DeLucia DC, Cardillo TM, Ang L, Labrecque MP, Zhang A, Hopkins JE, De Sarkar N, Coleman I, da Costa RMG, Corey E, True LD, Haffner MC, Schweizer MT, Morrissey C, Nelson PS, Lee JK. Regulation of CEACAM5 and Therapeutic Efficacy of an Anti-CEACAM5-SN38 Antibody-drug Conjugate in Neuroendocrine Prostate Cancer. Clin Cancer Res 2020; 27:759-774. [PMID: 33199493 DOI: 10.1158/1078-0432.ccr-20-3396] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/30/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Neuroendocrine prostate cancer (NEPC) is an aggressive form of castration-resistant prostate cancer (CRPC) for which effective therapies are lacking. We previously identified carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) as a promising NEPC cell surface antigen. Here we investigated the scope of CEACAM5 expression in end-stage prostate cancer, the basis for CEACAM5 enrichment in NEPC, and the therapeutic potential of the CEACAM5 antibody-drug conjugate labetuzumab govitecan in prostate cancer. EXPERIMENTAL DESIGN The expression of CEACAM5 and other clinically relevant antigens was characterized by multiplex immunofluorescence of a tissue microarray comprising metastatic tumors from 34 lethal metastatic CRPC (mCRPC) cases. A genetically defined neuroendocrine transdifferentiation assay of prostate cancer was developed to evaluate mechanisms of CEACAM5 regulation in NEPC. The specificity and efficacy of labetuzumab govitecan was determined in CEACAM5+ prostate cancer cell lines and patient-derived xenografts models. RESULTS CEACAM5 expression was enriched in NEPC compared with other mCRPC subtypes and minimally overlapped with prostate-specific membrane antigen, prostate stem cell antigen, and trophoblast cell surface antigen 2 expression. We focused on a correlation between the expression of the pioneer transcription factor ASCL1 and CEACAM5 to determine that ASCL1 can drive neuroendocrine reprogramming of prostate cancer which is associated with increased chromatin accessibility of the CEACAM5 core promoter and CEACAM5 expression. Labetuzumab govitecan induced DNA damage in CEACAM5+ prostate cancer cell lines and marked antitumor responses in CEACAM5+ CRPC xenograft models including chemotherapy-resistant NEPC. CONCLUSIONS Our findings provide insights into the scope and regulation of CEACAM5 expression in prostate cancer and strong support for clinical studies of labetuzumab govitecan for NEPC.
Collapse
Affiliation(s)
- Diana C DeLucia
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | - Lisa Ang
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Mark P Labrecque
- Department of Urology, University of Washington School of Medicine, Seattle, Washington
| | - Ailin Zhang
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - James E Hopkins
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Navonil De Sarkar
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Ilsa Coleman
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Rui M Gil da Costa
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Eva Corey
- Department of Urology, University of Washington School of Medicine, Seattle, Washington
| | - Lawrence D True
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington
| | - Michael C Haffner
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington
| | - Michael T Schweizer
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Colm Morrissey
- Department of Urology, University of Washington School of Medicine, Seattle, Washington
| | - Peter S Nelson
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Urology, University of Washington School of Medicine, Seattle, Washington.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington.,Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - John K Lee
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington. .,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington.,Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
22
|
Zhang X, Han X, Zuo P, Zhang X, Xu H. CEACAM5 stimulates the progression of non-small-cell lung cancer by promoting cell proliferation and migration. J Int Med Res 2020; 48:300060520959478. [PMID: 32993395 PMCID: PMC7536504 DOI: 10.1177/0300060520959478] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Objective To detect the expression of CEA-related cell adhesion molecule 5 (CEACAM5) in
non-small-cell lung cancer (NSCLC) and explore its function in the
progression and development of NSCLC. Methods qRT-PCR and immunohistochemistry were performed to detect CEACAM5 expression
in human NSCLC tissues and cell lines. The correlation between CEACAM5
expression and the clinicopathological features of patients with NSCLC was
also investigated. MTT, colony formation, wound healing, and immunoblot
assays were performed to detect the functions of CEACAM5 in NSCLC cells
in vitro, and immunoblotting was used to detect the
effects of CEACAM5 on p38–Smad2/3 signaling. Results CEACAM5 expression was elevated in human NSCLC tissues and cells. We further
found that CEACAM expression was correlated with clinicopathological
features including T division, lymph invasion, and histological grade in
patients with NSCLC. The in vitro assays confirmed that
CEACAM5 depletion inhibited the proliferation and migration of NSCLC cells
by activating p38–Smad2/3 signaling. We verified the involvement of CEACAM5
in the suppression of NSCLC tumor growth in mice. Conclusion CEACAM5 stimulated the progression of NSCLC by promoting cell proliferation
and migration in vitro and in vivo.
CEACAM5 may serve as a potential therapeutic target for the treatment of
NSCLC.
Collapse
Affiliation(s)
- Xinwen Zhang
- Department of General Practice, Linyi Central Hospital, Linyi, China
| | - Xingbao Han
- Department of Urology, Linyi Central Hospital, Linyi, China
| | - Pengli Zuo
- Central Laboratory, Linyi Central Hospital, Linyi, China
| | - Xiuying Zhang
- Department of Clinical Lab, Linyi Central Hospital, Linyi, China
| | - Hongbang Xu
- Department of Respiratory Medicine, Linyi Central Hospital, Linyi, China
| |
Collapse
|
23
|
Nsingwane Z, Candy G, Devar J, Omoshoro-Jones J, Smith M, Nweke E. Immunotherapeutic strategies in pancreatic ductal adenocarcinoma (PDAC): current perspectives and future prospects. Mol Biol Rep 2020; 47:6269-6280. [PMID: 32661873 DOI: 10.1007/s11033-020-05648-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/08/2020] [Indexed: 01/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the deadliest human malignancies with a dismal prognosis. During PDAC progression, the immune response is affected as cancer cells evade detection and elimination. Recently, there have been advances in the treatment of PDAC using immunotherapy, although a lot more work is yet to be done. In this review, we discuss these advances, challenges and potentials. We focus on existing and potential immune targets for PDAC, drugs used to target them, and some clinical trials conducted so far with them. Finally, novel targets in the tumour microenvironment such as stromal cells and other potential future areas to explore including bacterial therapy and the use of neoantigens in immunotherapy are highlighted.
Collapse
Affiliation(s)
- Zanele Nsingwane
- Department of Surgery, Faculty of Health Sciences, University of Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa.
| | - Geoffrey Candy
- Department of Surgery, Faculty of Health Sciences, University of Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - John Devar
- Department of Surgery, Faculty of Health Sciences, University of Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Jones Omoshoro-Jones
- Department of Surgery, Faculty of Health Sciences, University of Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Martin Smith
- Department of Surgery, Faculty of Health Sciences, University of Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Ekene Nweke
- Department of Surgery, Faculty of Health Sciences, University of Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| |
Collapse
|
24
|
Goldenberg DM, Sharkey RM. Sacituzumab govitecan, a novel, third-generation, antibody-drug conjugate (ADC) for cancer therapy. Expert Opin Biol Ther 2020; 20:871-885. [PMID: 32301634 DOI: 10.1080/14712598.2020.1757067] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION We describe a new, third-generation of antibody-drug conjugates (ADCs) having a high drug payload against topoisomerase I, important for DNA function, and targeting selective tumor antigens, predominantly TROP-2. AREAS COVERED The historical development of ADCs is reviewed before presenting the current line of improved, third-generation ADCs targeting topoisomerase I, thus affecting DNA and causing double-stranded DNA breaks. Emphasis is given to explaining why sacituzumab govitecan represents a paradigm change in ADCs by achieving a high therapeutic index due to its novel target, TROP-2, an internalizing antigen/antibody, proprietary linker chemistry, and high drug payload, resulting in a high tumor concentration of the drug given in repeated doses with acceptable tolerability, particularly evidencing a lower percentage of 'late' diarrhea than its prodrug, irinotecan. PubMed was used for the primary search conducted. EXPERT OPINION The properties and clinical results of third-generation ADCs, based on sacituzumab govitecan, are discussed, including prospects for future applications, particularly combination therapies with PARP inhibitors and immune checkpoint inhibitors. Since one topoisomerase I ADC has just received regulatory approval for HER2+ breast cancer, and sacituzumab govitecan is under FDA review for accelerated approval in the therapy of triple-negative breast cancer, the prospects for these novel ADCs are discussed.
Collapse
Affiliation(s)
| | - Robert M Sharkey
- Center for Molecular Medicine and Immunology , Mendham, New Jersey, USA
| |
Collapse
|
25
|
Anti-carcinoembryonic antigen-related cell adhesion molecule antibody for fluorescence visualization of primary colon cancer and metastases in patient-derived orthotopic xenograft mouse models. Oncotarget 2020; 11:429-439. [PMID: 32064046 PMCID: PMC6996915 DOI: 10.18632/oncotarget.27446] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/04/2020] [Indexed: 01/30/2023] Open
Abstract
Background: Monoclonal antibody (mAb) 6G5j is a novel anti-CEACAM monoclonal antibody. Our aim was to investigate mAb 6G5j binding characteristics and to validate fluorescence targeting of colorectal tumors and metastases in patient derived orthotopic xenograft (PDOX) models with fluorescently labeled 6G5j. Materials/Methods: The MAb 6G5j binding profile was analyzed with ELISA, Western blot and immunohistochemistry. MAb 6G5j was conjugated to near-infrared dye IR800CW (LI-COR). Western blotting was performed with various colon cancer cell lysates to determine CEACAM expression. Nude mice received orthotopic implantation of patient-derived primary colon cancer and patient-derived colon cancer metastases. Mice were administered varying doses of 6G5j-IR800CW via tail vein injection and imaged 24 and 48 hours later. Results: MAb 6G5j bound to human CEACAM1, 3, 5, 6 and 8. Western blotting demonstrated varied expression of CEACAMs in 15 of 16 colon cancer lysates. Dose and time-response imaging demonstrated optimal imaging 48 hours after administration of 50 μg 6G5j-IR800CW (Tumor-to-liver ratio (TLR) 3.17, SEM ± 0.45). Primary cancers and multiple metastases were fluorescently visualized. Conclusions: Anti-CEACAM antibody 6G5j binds multiple CEACAMs which may lead to improved detection of tumor margins for tumors and metastases that have variable expression of CEA and other CEACAMs. 6G5j mAb may be useful for colon cancer detection for pre-surgical diagnosis and fluorescence-guided surgery.
Collapse
|
26
|
Fantini M, David JM, Annunziata CM, Morelli MP, Arlen PM, Tsang KY. The Monoclonal Antibody NEO-201 Enhances Natural Killer Cell Cytotoxicity Against Tumor Cells Through Blockade of the Inhibitory CEACAM5/CEACAM1 Immune Checkpoint Pathway. Cancer Biother Radiopharm 2020; 35:190-198. [PMID: 31928422 DOI: 10.1089/cbr.2019.3141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background: Natural killer (NK) cells are essential to innate immunity and participate in cancer immune surveillance. Heterophilic interactions between carcinoembryonic antigen (CEA) on tumor cells and carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) on NK cells inhibit NK cell cytotoxicity against tumor cells. NEO-201 is a humanized IgG1 monoclonal antibody that recognizes members of CEACAM family, expressed specifically on a variety of human carcinoma cell lines and tumor tissues. This investigation was designed to determine whether the binding of NEO-201 with CEACAM5 on tumor cells can block the CEACAM5/CEACAM1 interaction to restore antitumor cytotoxicity of NK cells. Materials and Methods: In vitro functional assays, using various human tumor cell lines as target cells and NK-92 cells as effectors, were conducted to assess the ability of NEO-201 to block the interaction between CEACAM5 on tumor cells and CEACAM1 on NK cells to enhance the in vitro killing of tumor cells by NK-92. NK-92 cells were used as a model of direct NK killing of tumor cells because they lack antibody-dependent cellular cytotoxicity activity. Results: Expression profiling revealed that various human carcinoma cell lines expressed different levels of CEACAM5+ and NEO-201+ cells. Addition of NEO-201 significantly enhanced NK-92 cell cytotoxicity against highly CEACAM5+/NEO-201+ expressing tumor cells, suggesting that its activity is correlated with the level of CEACAM5+/NEO-201+ expression. Conclusions: These findings demonstrate that NEO-201 can block the interaction between CEACAM5 on tumor cells and CEACAM1 on NK cells to reverse CEACAM1-dependent inhibition of NK cytotoxicity.
Collapse
Affiliation(s)
| | | | - Christina M Annunziata
- Women's Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Maria Pia Morelli
- Women's Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | | |
Collapse
|
27
|
Zhou YY, Chen LP, Zhang Y, Hu SK, Dong ZJ, Wu M, Chen QX, Zhuang ZZ, Du XJ. Integrated transcriptomic analysis reveals hub genes involved in diagnosis and prognosis of pancreatic cancer. Mol Med 2019; 25:47. [PMID: 31706267 PMCID: PMC6842480 DOI: 10.1186/s10020-019-0113-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 09/20/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The hunt for the molecular markers with specificity and sensitivity has been a hot area for the tumor treatment. Due to the poor diagnosis and prognosis of pancreatic cancer (PC), the excision rate is often low, which makes it more urgent to find the ideal tumor markers. METHODS Robust Rank Aggreg (RRA) methods was firstly applied to identify the differentially expressed genes (DEGs) between PC tissues and normal tissues from GSE28735, GSE15471, GSE16515, and GSE101448. Among these DEGs, the highly correlated genes were clustered using WGCNA analysis. The co-expression networks and molecular complex detection (MCODE) Cytoscape app were then performed to find the sub-clusters and confirm 35 candidate genes. For these genes, least absolute shrinkage and selection operator (lasso) regression model was applied and validated to build a diagnostic risk score model. Cox proportional hazard regression analysis was used and validated to build a prognostic model. RESULTS Based on integrated transcriptomic analysis, we identified a 19 gene module (SYCN, PNLIPRP1, CAP2, GNMT, MAT1A, ABAT, GPT2, ADHFE1, PHGDH, PSAT1, ERP27, PDIA2, MT1H, COMP, COL5A2, FN1, COL1A2, FAP and POSTN) as a specific predictive signature for the diagnosis of PC. Based on the two consideration, accuracy and feasibility, we simplified the diagnostic risk model as a four-gene model: 0.3034*log2(MAT1A)-0.1526*log2(MT1H) + 0.4645*log2(FN1) -0.2244*log2(FAP), log2(gene count). Besides, a four-hub gene module was also identified as prognostic model = - 1.400*log2(CEL) + 1.321*log2(CPA1) + 0.454*log2(POSTN) + 1.011*log2(PM20D1), log2(gene count). CONCLUSION Integrated transcriptomic analysis identifies two four-hub gene modules as specific predictive signatures for the diagnosis and prognosis of PC, which may bring new sight for the clinical practice of PC.
Collapse
Affiliation(s)
- Yang-Yang Zhou
- Department of Rheumatology and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province China
| | - Li-Ping Chen
- Department of Rheumatology and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province China
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Yi Zhang
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Sun-Kuan Hu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province China
| | - Zhao-Jun Dong
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Ming Wu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province China
| | - Qiu-Xiang Chen
- Department of Ultrasound, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province China
| | - Zhi-Zhi Zhuang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province China
| | - Xiao-Jing Du
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province China
| |
Collapse
|
28
|
Fenn KM, Kalinsky K. Sacituzumab govitecan: antibody-drug conjugate in triple-negative breast cancer and other solid tumors. Drugs Today (Barc) 2019; 55:575-585. [PMID: 31584574 DOI: 10.1358/dot.2019.55.9.3039669] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Patients with metastatic triple-negative breast cancer (mTNBC) that has progressed on first-line therapy have a poor prognosis with limited therapeutic options. Sacituzumab govitecan (SG) is a novel antibody-drug conjugate (ADC) that has shown promising efficacy in mTNBC. SG is comprised of SN-38, the active metabolite of irinotecan, conjugated via a hydrolyzable linker to the humanized RS7 antibody targeting trophoblast cell surface antigen 2 (Trop-2), a glycoprotein that is expressed at high levels in many epithelial solid tumors. It has received breakthrough therapy status by the U.S. Food and Drug Administration (FDA) for the treatment of patients with pretreated mTNBC. In this review, we summarize available data regarding the pharmacology, pharmacokinetics, safety and efficacy of SG and describe ongoing and future clinical studies investigating this agent.
Collapse
Affiliation(s)
- K M Fenn
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - K Kalinsky
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA.
| |
Collapse
|
29
|
Goldenberg DM, Sharkey RM. Antibody-drug conjugates targeting TROP-2 and incorporating SN-38: A case study of anti-TROP-2 sacituzumab govitecan. MAbs 2019; 11:987-995. [PMID: 31208270 DOI: 10.1080/19420862.2019.1632115] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Antibody-drug conjugates (ADCs) that exploit the active metabolite SN-38, which is derived from the popular anticancer drug, irinotecan (a camptothecin that inhibits the nuclear topoisomerase I enzyme, inducing double-stranded DNA breaks during the mitotic S-phase of affected cells), represent a substantial advance in the ADC field. SN-38 has been conjugated to a humanized antibody against trophoblast cell surface antigen 2 (TROP-2), which is involved in cancer signaling pathways and has increased expression by many cancer cell types, yielding the ADC sacituzumab govitecan. By conjugating a higher number of SN-38 molecules to the immunoglobulin (drug-to-antibody ratio = 7-8:1), and giving higher (10 mg/kg) and repeated therapy cycles (Days 1 and 8 of 21-day cycles), enhanced drug uptake by the targeted cancer cells is achieved. Based on a unique conjugation method, the lactone ring of the SN-38 molecule is stabilized and the molecule is protected from glucuronidation, a process that contributes to the untoward late diarrhea experienced with irinotecan. Finally, while the ADC is internalized, the use of a moderately stable linker permits release of SN-38 in an acidic environment of the tumor cell and its microenvironment, contributing to a bystander effect on neighboring cancer cells. Here, we discuss the development of sacituzumab govitecan and clinical results obtained using it for the management of patients with advanced, refractive breast, lung, and urinary bladder cancers. Sacituzumab govitecan, which is undergoing accelerated approval review by the US Food and Drug Administration while also being studied in Phase 3 clinical studies, was granted Breakthrough Therapy status from the FDA for advanced, refractory, metastatic triple-negative breast cancer patients.
Collapse
Affiliation(s)
- David M Goldenberg
- a Clinical Research, Center for Molecular Medicine and Immunology , Mendham , NJ , USA
| | - Robert M Sharkey
- a Clinical Research, Center for Molecular Medicine and Immunology , Mendham , NJ , USA
| |
Collapse
|
30
|
Wang Y, Fan S, Xiao D, Xie F, Li W, Zhong W, Zhou X. Novel Silyl Ether-Based Acid-Cleavable Antibody-MMAE Conjugates with Appropriate Stability and Efficacy. Cancers (Basel) 2019; 11:cancers11070957. [PMID: 31288450 PMCID: PMC6678733 DOI: 10.3390/cancers11070957] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/29/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023] Open
Abstract
Antibody-drug conjugate (ADC) is a novel efficient drug delivery system that has been successfully used in clinical practice, and it has become a research hotspot in the anti-tumor drug field. Acid-cleavable linkers were first used in clinical ADCs, but their structural variety (e.g., hydrazone and carbonate) is still limited, and their stability is usually insufficient. Designing novel acid-cleavable linkers for the conjugation of the popular cytotoxin monomethyl auristatin E (MMAE) has always been a significant topic. In this paper, we generate a novel, silyl ether-based acid-cleavable antibody-MMAE conjugate, which skillfully achieves efficient combination of amino-conjugated MMAE with the acid-triggered silyl ether group by introducing p-hydroxybenzyl alcohol (PHB). The stability, acid-dependence cleavage, effective mechanism, efficacy and safety of the resulting ADC were systematically studied; the results show that it exhibits a significant improvement in stability, while maintaining appropriate efficacy and controlled therapeutic toxicity. This strategy is expected to expand a new type of acid-cleavable linkers for the development of ADCs with highly potent payloads.
Collapse
Affiliation(s)
- Yanming Wang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Shiyong Fan
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Dian Xiao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Fei Xie
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Wei Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Wu Zhong
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Xinbo Zhou
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| |
Collapse
|
31
|
Dong W, Shi J, Yuan T, Qi B, Yu J, Dai J, He L. Antibody-drug conjugates of 7-ethyl-10-hydroxycamptothecin: Sacituzumab govitecan and labetuzumab govitecan. Eur J Med Chem 2019; 167:583-593. [DOI: 10.1016/j.ejmech.2019.02.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 12/27/2022]
|
32
|
Leal AD, Krishnamurthy A, Head L, Messersmith WA. Antibody drug conjugates under investigation in phase I and phase II clinical trials for gastrointestinal cancer. Expert Opin Investig Drugs 2018; 27:901-916. [PMID: 30359534 DOI: 10.1080/13543784.2018.1541085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Antibody drug conjugates (ADCs) represent a developing class of anticancer therapeutics which are designed to selectively deliver a cytotoxic payload to tumors, while limiting systemic toxicity to healthy tissues. There are several ADCs which are currently in various stages of clinical development for the treatment of gastrointestinal malignancies. AREAS COVERED We discuss the biologic rationale and review the clinical experience with ADCs in the treatment of gastrointestinal malignancies, summarizing the pre-clinical and phase I/II clinical trial data that have been completed or are ongoing. EXPERT OPINION While there have been significant advances in the development of ADCs since they were first introduced, several challenges remain. These challenges include (i) the selection of an ideal antigen target which is tumor specific and internalized upon binding, (ii) selection of an antibody which has high affinity for its antigen target and low immunogenicity, (iii) selection of a potent payload which is cytotoxic at sub-nanomolar concentrations, and (iv) optimal design of a linker to confer ADC stability with limited off-site toxicity. Efforts are ongoing to address these issues and innovate the ADC technology to improve the safety and efficacy of these agents.
Collapse
Affiliation(s)
- Alexis D Leal
- a Division of Medical Oncology , University of Colorado , Aurora , CO , USA
| | | | - Lia Head
- b Department of Internal Medicine , University of Colorado , Aurora , CO , USA
| | | |
Collapse
|
33
|
Staudacher AH, Li Y, Liapis V, Hou JJC, Chin D, Dolezal O, Adams TE, van Berkel PH, Brown MP. APOMAB Antibody–Drug Conjugates Targeting Dead Tumor Cells are Effective In Vivo. Mol Cancer Ther 2018; 18:335-345. [DOI: 10.1158/1535-7163.mct-18-0842] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/05/2018] [Accepted: 11/05/2018] [Indexed: 11/16/2022]
|
34
|
Du Z, Li L, Sun W, Wang X, Zhang Y, Chen Z, Yuan M, Quan Z, Liu N, Hao Y, Li T, Wang J, Luo C, Wu X. HepaCAM inhibits the malignant behavior of castration-resistant prostate cancer cells by downregulating Notch signaling and PF-3084014 (a γ-secretase inhibitor) partly reverses the resistance of refractory prostate cancer to docetaxel and enzalutamide in vitro. Int J Oncol 2018; 53:99-112. [PMID: 29658567 PMCID: PMC5958706 DOI: 10.3892/ijo.2018.4370] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/04/2018] [Indexed: 01/25/2023] Open
Abstract
Castration-resistant prostate cancer (CRPC) continues to be a major challenge in the treatment of prostate cancer (PCa). The expression of hepatocyte cell adhesion molecule (HepaCAM), a novel tumor suppressor, is frequently downregulated or lost in PCa. Overactivated Notch signaling is involved in the development and progression of PCa, including CRPC. In this study, we found that the activities of Notch signaling were elevated, while HepaCAM expression was decreased in CRPC tissues compared with matched primary prostate cancer (PPC) tissues. In addition, HepaCAM negativity was found to be associated with a worse progression-free survival (PFS). Furthermore, the overexpression of HepaCAM induced by transfection with a HepaCAM overexpression vector (Ad-HepaCAM) exerted antitumor effects by decreasing the proliferation, and suppressing the invasion and migration of bicalutamide-resistant (Bica-R) cells and enzalutamide-resistant (Enza-R) cells. Importantly, we found that the antitumor effects of HepaCAM on the resistant cells were associated with the downregulation of Notch signaling. Moreover, we revealed that PF-3084014 (a γ-secretase inhibitor) re-sensitized Enza-R cells to enzalutamide, and sequential dual-resistant (E+D-R) cells to docetaxel. Additionally, the findings of this study demonstrated that the use of PF-3084014 alone exerted potent antitumor effect on the resistant cells in vitro. On the whole, this study indicates that HepaCAM potentially represents a therapeutic target and PF-3084014 may prove to a promising agent for use in the treatment of refractory PCa.
Collapse
Affiliation(s)
- Zhongbo Du
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Luo Li
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wei Sun
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiao Wang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yao Zhang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zhixiong Chen
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Mengjuan Yuan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zhen Quan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Nanjing Liu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yanni Hao
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ting Li
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jinhua Wang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Chunli Luo
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiaohou Wu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
35
|
Staudacher AH, Brown MP. Antibody drug conjugates and bystander killing: is antigen-dependent internalisation required? Br J Cancer 2017; 117:1736-1742. [PMID: 29065110 PMCID: PMC5729478 DOI: 10.1038/bjc.2017.367] [Citation(s) in RCA: 296] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/15/2017] [Accepted: 08/24/2017] [Indexed: 12/14/2022] Open
Abstract
Antibody drug conjugates (ADCs) employ the exquisite specificity of tumour-specific monoclonal antibodies (mAb) for the targeted delivery of highly potent cytotoxic drugs to the tumour site. The chemistry of the linker, which connects the drug to the mAb, determines how and when the drug is released from the mAb. This, as well as the chemistry of the drug, can dictate whether the drug can diffuse into surrounding cells, resulting in 'bystander killing'. Initially, any bystander killing mechanism of action of an ADC was understood to involve an essential sequence of steps beginning with surface antigen targeting, internalisation, intracellular linker cleavage, drug release, and diffusion of drug away from the targeted cell. However, recent studies indicate that, depending on the linker and drug combination, this mechanism may not be essential and ADCs can be cleaved extracellularly or via other mechanisms. In this minireview, we will examine the role of bystander killing by ADCs and explore the emerging evidence of how this can occur independently of internalisation.
Collapse
Affiliation(s)
- Alexander H Staudacher
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
- School of Medicine, University of Adelaide, Adelaide, SA 5000, Australia
| | - Michael P Brown
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
- School of Medicine, University of Adelaide, Adelaide, SA 5000, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| |
Collapse
|
36
|
Cardillo TM, Govindan SV, Zalath MB, Rossi DL, Wang Y, Chang CH, Goldenberg DM. IMMU-140, a Novel SN-38 Antibody-Drug Conjugate Targeting HLA-DR, Mediates Dual Cytotoxic Effects in Hematologic Cancers and Malignant Melanoma. Mol Cancer Ther 2017; 17:150-160. [PMID: 29133623 DOI: 10.1158/1535-7163.mct-17-0354] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/13/2017] [Accepted: 10/24/2017] [Indexed: 11/16/2022]
Abstract
HLA-DR is a member of the MHC class II antigen family expressed on hematologic and solid tumors. Antibodies directed against HLA-DR have demonstrated some clinical success, but toxicities limited development. IMMU-140 is an anti-HLA-DR antibody-drug conjugate composed of the active metabolite of irinotecan, SN-38, conjugated to a humanized anti-HLA-DR IgG4 antibody (IMMU-114); the IgG4 naked antibody is devoid of immune functions. Our aim was to determine if SN-38, the metabolite of a drug not commonly used in hematopoietic cancers, would be effective and safe when targeted to HLA-DR-expressing tumors. IMMU-140 had dual-therapeutic mechanisms, as evidenced by its retention of nonoverlapping anti-HLA-DR nonclassical apoptotic signaling and classical apoptosis mediated by its SN-38 payload. In seven human disease models [acute lymphocytic leukemia (ALL), chronic lymphocytic leukemia (CLL), multiple myeloma (MM), acute myeloid leukemia (AML), diffuse large B-cell lymphoma (DLBCL), Hodgkin lymphoma (HL), and melanoma], IMMU-140 provided significant therapeutic efficacy compared with controls, in vitro, in 3D spheroid models, and in vivo Except for MM and HL, IMMU-140 imparted significantly improved antitumor effects compared with parental IMMU-114. Even in intractable AML and ALL, where IMMU-114 only had modest antitumor effects, IMMU-140 therapy mediated >80% improvement in survival. Therapy was well tolerated, as demonstrated by no marked loss in body weight. Combined with doxorubicin, IMMU-140 produced significantly greater antitumor effects in HL than with monotherapy and without any added toxicity. The dual-therapeutic action of IMMU-140 resulted in promising therapeutic activity in a range of hematopoietic tumors and melanoma, and therefore warrants clinical development. Mol Cancer Ther; 17(1); 150-60. ©2017 AACR.
Collapse
Affiliation(s)
| | | | | | | | - Yang Wang
- Immunomedics, Inc., Morris Plains, New Jersey
| | | | | |
Collapse
|
37
|
Sharkey RM, Govindan SV, Cardillo TM, Donnell J, Xia J, Rossi EA, Chang CH, Goldenberg DM. Selective and Concentrated Accretion of SN-38 with a CEACAM5-Targeting Antibody-Drug Conjugate (ADC), Labetuzumab Govitecan (IMMU-130). Mol Cancer Ther 2017; 17:196-203. [PMID: 29079710 DOI: 10.1158/1535-7163.mct-17-0442] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/27/2017] [Accepted: 10/06/2017] [Indexed: 11/16/2022]
Abstract
Labetuzumab govitecan (IMMU-130), an antibody-drug conjugate (ADC) with an average of 7.6 SN-38/IgG, was evaluated for its potential to enhance delivery of SN-38 to human colonic tumor xenografts. Mice bearing LS174T or GW-39 human colonic tumor xenografts were injected with irinotecan or IMMU-130 (SN-38 equivalents ∼500 or ∼16 μg, respectively). Serum and homogenates of tumors, liver, and small intestine were extracted, and SN-38, SN-38G (glucuronidated SN-38), and irinotecan concentrations determined by reversed-phase HPLC. Irinotecan cleared quickly from serum, with only 1% to 2% injected dose/mL after 5 minutes; overall, approximately 20% was converted to SN-38 and SN-38G. At 1 hour with IMMU-130, 45% to 63% injected dose/mL of the SN-38 was in the serum, with >90% bound to the ADC over 3 days, and with low levels of SN-38G. Total SN-38 levels decreased more quickly than the IgG, confirming a gradual SN-38 release from the ADC. AUC analysis found that SN-38 levels were approximately 11- and 16-fold higher in LS174T and GW-39 tumors, respectively, in IMMU-130-treated animals. This delivery advantage is amplified >30-fold when normalized to SN-38 equivalents injected for each product. Levels of SN-38 and SN-38G were appreciably lower in the liver and small intestinal contents in animals given IMMU-130. On the basis of the SN-38 equivalents administered, IMMU-130 potentially delivers >300-fold more SN-38 to CEA-producing tumors compared with irinotecan, while also reducing levels of SN-38 and SN-38G in normal tissues. These observations are consistent with preclinical and clinical data showing efficacy and improved safety. Mol Cancer Ther; 17(1); 196-203. ©2017 AACR.
Collapse
Affiliation(s)
| | | | | | | | - Jing Xia
- Immunomedics, Inc, Morris Plains, New Jersey
| | | | | | | |
Collapse
|
38
|
Dotan E, Cohen SJ, Starodub AN, Lieu CH, Messersmith WA, Simpson PS, Guarino MJ, Marshall JL, Goldberg RM, Hecht JR, Wegener WA, Sharkey RM, Govindan SV, Goldenberg DM, Berlin JD. Phase I/II Trial of Labetuzumab Govitecan (Anti-CEACAM5/SN-38 Antibody-Drug Conjugate) in Patients With Refractory or Relapsing Metastatic Colorectal Cancer. J Clin Oncol 2017; 35:3338-3346. [PMID: 28817371 PMCID: PMC8259133 DOI: 10.1200/jco.2017.73.9011] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose The objectives were to evaluate dosing schedules of labetuzumab govitecan, an antibody-drug conjugate targeting carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) for tumor delivery of 7-ethyl-10-hydroxycamptothecin (SN-38), in an expanded phase II trial of patients with relapsed or refractory metastatic colorectal cancer. Patients and Methods Eligible patients with at least one prior irinotecan-containing therapy received labetuzumab govitecan once weekly at 8 and 10 mg/kg, or two times per week at 4 and 6 mg/km on weeks 1 and 2 of 3-week repeated cycles. End points were safety, response, pharmacokinetics, and immunogenicity. Results Eighty-six patients who had undergone a median of five prior therapies (range, one to 13) were each enrolled into one of the four cohorts. On the basis of Response Evaluation Criteria in Solid Tumors 1.1, 38% of these patients had a tumor as well as plasma carcinoembryonic antigen reduction from baseline after labetuzumab govitecan treatment; one patient achieved a partial response with a sustained response spanning > 2 years, whereas 42 patients had stable disease as the best overall response. Median progression-free survival and overall survival were 3.6 and 6.9 months, respectively. The major toxicities (grade ≥ 3) among all cohorts were neutropenia (16%), leukopenia (11%), anemia (9%), and diarrhea (7%). The antibody-drug conjugate's mean half-life was 16.5 hours for the four cohorts. Anti-drug/anti-antibody antibodies were not detected. The two once-weekly dose schedules, showing comparable toxicity and efficacy, were chosen for further study. Conclusion Monotherapy with labetuzumab govitecan demonstrated a manageable safety profile and therapeutic activity in heavily pretreated patients with metastatic colorectal cancer, all with prior irinotecan therapy. Further studies of labetuzumab govitecan treatment alone or in combination with other therapies in earlier settings are indicated.
Collapse
Affiliation(s)
- Efrat Dotan
- Efrat Dotan and Steven J. Cohen, Fox Chase Cancer Center, Philadelphia, PA; Alexander N. Starodub, Indiana University Health Center for Cancer Care, Goshen, IN; Christopher H. Lieu and Wells A. Messersmith, University of Colorado Cancer Center, Aurora, CO; Pamela S. Simpson and Michael J. Guarino, Helen F. Graham Cancer Center & Research Institute, Newark, DE; John L. Marshall, Ruesch Center for the Cure of GI Cancers, Georgetown University Hospital, Washington, DC; Richard M. Goldberg, The Ohio State University Comprehensive Cancer Center, Columbus, OH; J. Randolph Hecht, University of California, Los Angeles Jonsson Comprehensive Cancer Center, Los Angeles, CA; William A. Wegener, Robert M. Sharkey, Serengulam V. Govindan, and David M. Goldenberg, Immunomedics, Morris Plains, NJ; and Jordan D. Berlin, Vanderbilt-Ingram Cancer Center, Nashville, TN
| | - Steven J. Cohen
- Efrat Dotan and Steven J. Cohen, Fox Chase Cancer Center, Philadelphia, PA; Alexander N. Starodub, Indiana University Health Center for Cancer Care, Goshen, IN; Christopher H. Lieu and Wells A. Messersmith, University of Colorado Cancer Center, Aurora, CO; Pamela S. Simpson and Michael J. Guarino, Helen F. Graham Cancer Center & Research Institute, Newark, DE; John L. Marshall, Ruesch Center for the Cure of GI Cancers, Georgetown University Hospital, Washington, DC; Richard M. Goldberg, The Ohio State University Comprehensive Cancer Center, Columbus, OH; J. Randolph Hecht, University of California, Los Angeles Jonsson Comprehensive Cancer Center, Los Angeles, CA; William A. Wegener, Robert M. Sharkey, Serengulam V. Govindan, and David M. Goldenberg, Immunomedics, Morris Plains, NJ; and Jordan D. Berlin, Vanderbilt-Ingram Cancer Center, Nashville, TN
| | - Alexander N. Starodub
- Efrat Dotan and Steven J. Cohen, Fox Chase Cancer Center, Philadelphia, PA; Alexander N. Starodub, Indiana University Health Center for Cancer Care, Goshen, IN; Christopher H. Lieu and Wells A. Messersmith, University of Colorado Cancer Center, Aurora, CO; Pamela S. Simpson and Michael J. Guarino, Helen F. Graham Cancer Center & Research Institute, Newark, DE; John L. Marshall, Ruesch Center for the Cure of GI Cancers, Georgetown University Hospital, Washington, DC; Richard M. Goldberg, The Ohio State University Comprehensive Cancer Center, Columbus, OH; J. Randolph Hecht, University of California, Los Angeles Jonsson Comprehensive Cancer Center, Los Angeles, CA; William A. Wegener, Robert M. Sharkey, Serengulam V. Govindan, and David M. Goldenberg, Immunomedics, Morris Plains, NJ; and Jordan D. Berlin, Vanderbilt-Ingram Cancer Center, Nashville, TN
| | - Christopher H. Lieu
- Efrat Dotan and Steven J. Cohen, Fox Chase Cancer Center, Philadelphia, PA; Alexander N. Starodub, Indiana University Health Center for Cancer Care, Goshen, IN; Christopher H. Lieu and Wells A. Messersmith, University of Colorado Cancer Center, Aurora, CO; Pamela S. Simpson and Michael J. Guarino, Helen F. Graham Cancer Center & Research Institute, Newark, DE; John L. Marshall, Ruesch Center for the Cure of GI Cancers, Georgetown University Hospital, Washington, DC; Richard M. Goldberg, The Ohio State University Comprehensive Cancer Center, Columbus, OH; J. Randolph Hecht, University of California, Los Angeles Jonsson Comprehensive Cancer Center, Los Angeles, CA; William A. Wegener, Robert M. Sharkey, Serengulam V. Govindan, and David M. Goldenberg, Immunomedics, Morris Plains, NJ; and Jordan D. Berlin, Vanderbilt-Ingram Cancer Center, Nashville, TN
| | - Wells A. Messersmith
- Efrat Dotan and Steven J. Cohen, Fox Chase Cancer Center, Philadelphia, PA; Alexander N. Starodub, Indiana University Health Center for Cancer Care, Goshen, IN; Christopher H. Lieu and Wells A. Messersmith, University of Colorado Cancer Center, Aurora, CO; Pamela S. Simpson and Michael J. Guarino, Helen F. Graham Cancer Center & Research Institute, Newark, DE; John L. Marshall, Ruesch Center for the Cure of GI Cancers, Georgetown University Hospital, Washington, DC; Richard M. Goldberg, The Ohio State University Comprehensive Cancer Center, Columbus, OH; J. Randolph Hecht, University of California, Los Angeles Jonsson Comprehensive Cancer Center, Los Angeles, CA; William A. Wegener, Robert M. Sharkey, Serengulam V. Govindan, and David M. Goldenberg, Immunomedics, Morris Plains, NJ; and Jordan D. Berlin, Vanderbilt-Ingram Cancer Center, Nashville, TN
| | - Pamela S. Simpson
- Efrat Dotan and Steven J. Cohen, Fox Chase Cancer Center, Philadelphia, PA; Alexander N. Starodub, Indiana University Health Center for Cancer Care, Goshen, IN; Christopher H. Lieu and Wells A. Messersmith, University of Colorado Cancer Center, Aurora, CO; Pamela S. Simpson and Michael J. Guarino, Helen F. Graham Cancer Center & Research Institute, Newark, DE; John L. Marshall, Ruesch Center for the Cure of GI Cancers, Georgetown University Hospital, Washington, DC; Richard M. Goldberg, The Ohio State University Comprehensive Cancer Center, Columbus, OH; J. Randolph Hecht, University of California, Los Angeles Jonsson Comprehensive Cancer Center, Los Angeles, CA; William A. Wegener, Robert M. Sharkey, Serengulam V. Govindan, and David M. Goldenberg, Immunomedics, Morris Plains, NJ; and Jordan D. Berlin, Vanderbilt-Ingram Cancer Center, Nashville, TN
| | - Michael J. Guarino
- Efrat Dotan and Steven J. Cohen, Fox Chase Cancer Center, Philadelphia, PA; Alexander N. Starodub, Indiana University Health Center for Cancer Care, Goshen, IN; Christopher H. Lieu and Wells A. Messersmith, University of Colorado Cancer Center, Aurora, CO; Pamela S. Simpson and Michael J. Guarino, Helen F. Graham Cancer Center & Research Institute, Newark, DE; John L. Marshall, Ruesch Center for the Cure of GI Cancers, Georgetown University Hospital, Washington, DC; Richard M. Goldberg, The Ohio State University Comprehensive Cancer Center, Columbus, OH; J. Randolph Hecht, University of California, Los Angeles Jonsson Comprehensive Cancer Center, Los Angeles, CA; William A. Wegener, Robert M. Sharkey, Serengulam V. Govindan, and David M. Goldenberg, Immunomedics, Morris Plains, NJ; and Jordan D. Berlin, Vanderbilt-Ingram Cancer Center, Nashville, TN
| | - John L. Marshall
- Efrat Dotan and Steven J. Cohen, Fox Chase Cancer Center, Philadelphia, PA; Alexander N. Starodub, Indiana University Health Center for Cancer Care, Goshen, IN; Christopher H. Lieu and Wells A. Messersmith, University of Colorado Cancer Center, Aurora, CO; Pamela S. Simpson and Michael J. Guarino, Helen F. Graham Cancer Center & Research Institute, Newark, DE; John L. Marshall, Ruesch Center for the Cure of GI Cancers, Georgetown University Hospital, Washington, DC; Richard M. Goldberg, The Ohio State University Comprehensive Cancer Center, Columbus, OH; J. Randolph Hecht, University of California, Los Angeles Jonsson Comprehensive Cancer Center, Los Angeles, CA; William A. Wegener, Robert M. Sharkey, Serengulam V. Govindan, and David M. Goldenberg, Immunomedics, Morris Plains, NJ; and Jordan D. Berlin, Vanderbilt-Ingram Cancer Center, Nashville, TN
| | - Richard M. Goldberg
- Efrat Dotan and Steven J. Cohen, Fox Chase Cancer Center, Philadelphia, PA; Alexander N. Starodub, Indiana University Health Center for Cancer Care, Goshen, IN; Christopher H. Lieu and Wells A. Messersmith, University of Colorado Cancer Center, Aurora, CO; Pamela S. Simpson and Michael J. Guarino, Helen F. Graham Cancer Center & Research Institute, Newark, DE; John L. Marshall, Ruesch Center for the Cure of GI Cancers, Georgetown University Hospital, Washington, DC; Richard M. Goldberg, The Ohio State University Comprehensive Cancer Center, Columbus, OH; J. Randolph Hecht, University of California, Los Angeles Jonsson Comprehensive Cancer Center, Los Angeles, CA; William A. Wegener, Robert M. Sharkey, Serengulam V. Govindan, and David M. Goldenberg, Immunomedics, Morris Plains, NJ; and Jordan D. Berlin, Vanderbilt-Ingram Cancer Center, Nashville, TN
| | - J. Randolph Hecht
- Efrat Dotan and Steven J. Cohen, Fox Chase Cancer Center, Philadelphia, PA; Alexander N. Starodub, Indiana University Health Center for Cancer Care, Goshen, IN; Christopher H. Lieu and Wells A. Messersmith, University of Colorado Cancer Center, Aurora, CO; Pamela S. Simpson and Michael J. Guarino, Helen F. Graham Cancer Center & Research Institute, Newark, DE; John L. Marshall, Ruesch Center for the Cure of GI Cancers, Georgetown University Hospital, Washington, DC; Richard M. Goldberg, The Ohio State University Comprehensive Cancer Center, Columbus, OH; J. Randolph Hecht, University of California, Los Angeles Jonsson Comprehensive Cancer Center, Los Angeles, CA; William A. Wegener, Robert M. Sharkey, Serengulam V. Govindan, and David M. Goldenberg, Immunomedics, Morris Plains, NJ; and Jordan D. Berlin, Vanderbilt-Ingram Cancer Center, Nashville, TN
| | - William A. Wegener
- Efrat Dotan and Steven J. Cohen, Fox Chase Cancer Center, Philadelphia, PA; Alexander N. Starodub, Indiana University Health Center for Cancer Care, Goshen, IN; Christopher H. Lieu and Wells A. Messersmith, University of Colorado Cancer Center, Aurora, CO; Pamela S. Simpson and Michael J. Guarino, Helen F. Graham Cancer Center & Research Institute, Newark, DE; John L. Marshall, Ruesch Center for the Cure of GI Cancers, Georgetown University Hospital, Washington, DC; Richard M. Goldberg, The Ohio State University Comprehensive Cancer Center, Columbus, OH; J. Randolph Hecht, University of California, Los Angeles Jonsson Comprehensive Cancer Center, Los Angeles, CA; William A. Wegener, Robert M. Sharkey, Serengulam V. Govindan, and David M. Goldenberg, Immunomedics, Morris Plains, NJ; and Jordan D. Berlin, Vanderbilt-Ingram Cancer Center, Nashville, TN
| | - Robert M. Sharkey
- Efrat Dotan and Steven J. Cohen, Fox Chase Cancer Center, Philadelphia, PA; Alexander N. Starodub, Indiana University Health Center for Cancer Care, Goshen, IN; Christopher H. Lieu and Wells A. Messersmith, University of Colorado Cancer Center, Aurora, CO; Pamela S. Simpson and Michael J. Guarino, Helen F. Graham Cancer Center & Research Institute, Newark, DE; John L. Marshall, Ruesch Center for the Cure of GI Cancers, Georgetown University Hospital, Washington, DC; Richard M. Goldberg, The Ohio State University Comprehensive Cancer Center, Columbus, OH; J. Randolph Hecht, University of California, Los Angeles Jonsson Comprehensive Cancer Center, Los Angeles, CA; William A. Wegener, Robert M. Sharkey, Serengulam V. Govindan, and David M. Goldenberg, Immunomedics, Morris Plains, NJ; and Jordan D. Berlin, Vanderbilt-Ingram Cancer Center, Nashville, TN
| | - Serengulam V. Govindan
- Efrat Dotan and Steven J. Cohen, Fox Chase Cancer Center, Philadelphia, PA; Alexander N. Starodub, Indiana University Health Center for Cancer Care, Goshen, IN; Christopher H. Lieu and Wells A. Messersmith, University of Colorado Cancer Center, Aurora, CO; Pamela S. Simpson and Michael J. Guarino, Helen F. Graham Cancer Center & Research Institute, Newark, DE; John L. Marshall, Ruesch Center for the Cure of GI Cancers, Georgetown University Hospital, Washington, DC; Richard M. Goldberg, The Ohio State University Comprehensive Cancer Center, Columbus, OH; J. Randolph Hecht, University of California, Los Angeles Jonsson Comprehensive Cancer Center, Los Angeles, CA; William A. Wegener, Robert M. Sharkey, Serengulam V. Govindan, and David M. Goldenberg, Immunomedics, Morris Plains, NJ; and Jordan D. Berlin, Vanderbilt-Ingram Cancer Center, Nashville, TN
| | - David M. Goldenberg
- Efrat Dotan and Steven J. Cohen, Fox Chase Cancer Center, Philadelphia, PA; Alexander N. Starodub, Indiana University Health Center for Cancer Care, Goshen, IN; Christopher H. Lieu and Wells A. Messersmith, University of Colorado Cancer Center, Aurora, CO; Pamela S. Simpson and Michael J. Guarino, Helen F. Graham Cancer Center & Research Institute, Newark, DE; John L. Marshall, Ruesch Center for the Cure of GI Cancers, Georgetown University Hospital, Washington, DC; Richard M. Goldberg, The Ohio State University Comprehensive Cancer Center, Columbus, OH; J. Randolph Hecht, University of California, Los Angeles Jonsson Comprehensive Cancer Center, Los Angeles, CA; William A. Wegener, Robert M. Sharkey, Serengulam V. Govindan, and David M. Goldenberg, Immunomedics, Morris Plains, NJ; and Jordan D. Berlin, Vanderbilt-Ingram Cancer Center, Nashville, TN
| | - Jordan D. Berlin
- Efrat Dotan and Steven J. Cohen, Fox Chase Cancer Center, Philadelphia, PA; Alexander N. Starodub, Indiana University Health Center for Cancer Care, Goshen, IN; Christopher H. Lieu and Wells A. Messersmith, University of Colorado Cancer Center, Aurora, CO; Pamela S. Simpson and Michael J. Guarino, Helen F. Graham Cancer Center & Research Institute, Newark, DE; John L. Marshall, Ruesch Center for the Cure of GI Cancers, Georgetown University Hospital, Washington, DC; Richard M. Goldberg, The Ohio State University Comprehensive Cancer Center, Columbus, OH; J. Randolph Hecht, University of California, Los Angeles Jonsson Comprehensive Cancer Center, Los Angeles, CA; William A. Wegener, Robert M. Sharkey, Serengulam V. Govindan, and David M. Goldenberg, Immunomedics, Morris Plains, NJ; and Jordan D. Berlin, Vanderbilt-Ingram Cancer Center, Nashville, TN
| |
Collapse
|
39
|
Kalim M, Chen J, Wang S, Lin C, Ullah S, Liang K, Ding Q, Chen S, Zhan J. Intracellular trafficking of new anticancer therapeutics: antibody-drug conjugates. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:2265-2276. [PMID: 28814834 PMCID: PMC5546728 DOI: 10.2147/dddt.s135571] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Antibody-drug conjugate (ADC) is a milestone in targeted cancer therapy that comprises of monoclonal antibodies chemically linked to cytotoxic drugs. Internalization of ADC takes place via clathrin-mediated endocytosis, caveolae-mediated endocytosis, and pinocytosis. Conjugation strategies, endocytosis and intracellular trafficking optimization, linkers, and drugs chemistry present a great challenge for researchers to eradicate tumor cells successfully. This inventiveness of endocytosis and intracellular trafficking has given considerable momentum recently to develop specific antibodies and ADCs to treat cancer cells. It is significantly advantageous to emphasize the endocytosis and intracellular trafficking pathways efficiently and to design potent engineered conjugates and biological entities to boost efficient therapies enormously for cancer treatment. Current studies illustrate endocytosis and intracellular trafficking of ADC, protein, and linker strategies in unloading and also concisely evaluate practically applicable ADCs.
Collapse
Affiliation(s)
- Muhammad Kalim
- Department of Biochemistry and Genetics, School of Medicine
| | - Jie Chen
- Department of Biochemistry and Genetics, School of Medicine
| | - Shenghao Wang
- Department of Biochemistry and Genetics, School of Medicine
| | - Caiyao Lin
- Department of Biochemistry and Genetics, School of Medicine
| | - Saif Ullah
- Department of Biochemistry and Genetics, School of Medicine
| | - Keying Liang
- Department of Biochemistry and Genetics, School of Medicine
| | - Qian Ding
- Department of Biochemistry and Genetics, School of Medicine
| | - Shuqing Chen
- Department of Pharmaceutical Analysis, College of Pharmaceutical Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Jinbiao Zhan
- Department of Biochemistry and Genetics, School of Medicine
| |
Collapse
|
40
|
Ocean AJ, Starodub AN, Bardia A, Vahdat LT, Isakoff SJ, Guarino M, Messersmith WA, Picozzi VJ, Mayer IA, Wegener WA, Maliakal P, Govindan SV, Sharkey RM, Goldenberg DM. Sacituzumab govitecan (IMMU-132), an anti-Trop-2-SN-38 antibody-drug conjugate for the treatment of diverse epithelial cancers: Safety and pharmacokinetics. Cancer 2017; 123:3843-3854. [DOI: 10.1002/cncr.30789] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/29/2017] [Accepted: 04/19/2017] [Indexed: 12/27/2022]
Affiliation(s)
| | | | - Aditya Bardia
- Massachusetts General Hospital Cancer Center, Harvard Medical School; Boston Massachusetts
| | | | - Steven J. Isakoff
- Massachusetts General Hospital Cancer Center, Harvard Medical School; Boston Massachusetts
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ku M, Chong G, Hawkes EA. Tumour cell surface antigen targeted therapies in B-cell lymphomas: Beyond rituximab. Blood Rev 2017; 31:23-35. [DOI: 10.1016/j.blre.2016.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/26/2016] [Accepted: 08/02/2016] [Indexed: 01/16/2023]
|
42
|
Sahlmann C, Homayounfar K, Niessner M, Dyczkowski J, Conradi L, Braulke F, Meller B, Beißbarth T, Ghadimi BM, Meller J, Goldenberg DM, Liersch T. Repeated adjuvant anti‐CEA radioimmunotherapy after resection of colorectal liver metastases: Safety, feasibility, and long‐term efficacy results of a prospective phase 2 study. Cancer 2016; 123:638-649. [DOI: 10.1002/cncr.30390] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/24/2016] [Accepted: 09/22/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Carsten‐O. Sahlmann
- Department of Nuclear MedicineUniversity Medical Center GoettingenGoettingen Germany
| | - Kia Homayounfar
- Department of General, Visceral, and Pediatric SurgeryUniversity Medical Center GoettingenGoettingen Germany
| | - Martin Niessner
- Department of General, Visceral, and Pediatric SurgeryUniversity Medical Center GoettingenGoettingen Germany
| | - Jerzy Dyczkowski
- Department of Medical StatisticsUniversity Medical Center GoettingenGoettingen Germany
| | - Lena‐Christin Conradi
- Department of General, Visceral, and Pediatric SurgeryUniversity Medical Center GoettingenGoettingen Germany
| | - Friederike Braulke
- Department of Hematology and Medical OncologyUniversity Medical Center GoettingenGoettingen Germany
| | - Birgit Meller
- Department of Nuclear MedicineUniversity Medical Center GoettingenGoettingen Germany
| | - Tim Beißbarth
- Department of Medical StatisticsUniversity Medical Center GoettingenGoettingen Germany
| | - B. Michael Ghadimi
- Department of General, Visceral, and Pediatric SurgeryUniversity Medical Center GoettingenGoettingen Germany
| | - Johannes Meller
- Department of Nuclear MedicineUniversity Medical Center GoettingenGoettingen Germany
| | - David M. Goldenberg
- Center for Molecular Medicine and ImmunologyGarden State Cancer CenterMorris Plains New Jersey
- Immunomedics, IncMorris Plains New Jersey
| | - Torsten Liersch
- Department of General, Visceral, and Pediatric SurgeryUniversity Medical Center GoettingenGoettingen Germany
| |
Collapse
|
43
|
Govindan SV, Sharkey RM, Goldenberg DM. Prospects and progress of antibody-drug conjugates in solid tumor therapies. Expert Opin Biol Ther 2016; 16:883-93. [PMID: 27045979 DOI: 10.1517/14712598.2016.1173203] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Antibody-drug conjugates (ADCs) for targeted chemotherapy have evolved in the past 2-3 decades to become a validated clinical cancer therapy modality. While considerable strides have been made in treating hematological tumors, challenges remain in the more difficult-to-treat solid cancers. AREAS COVERED The current model for a successful ADC uses a highly potent cytotoxic drug as the payload, with stringent linker requirements and limited substitutions. In solid tumor treatment, a number of ADCs have not progressed beyond Phase I clinical trials, indicating a need to optimize additional factors governing translational success. In this regard, insights from mathematical modeling provide a number of pointers relevant to target antigen and antibody selection. Together with the choice of targets, these can be expected to complement the gains made in ADC design towards the generation of better therapeutics. EXPERT OPINION While highly potent microtubule inhibitors continue to dominate the current ADC landscape, there are promising data with other drugs, linkers, and targets that suggest a more flexible model for a successful ADC is evolving. Such changes will undoubtedly lead to the consideration of new targets and constructs to overcome some of the unique natural barriers that impede the delivery of cytotoxic agents in solid tumor.
Collapse
|
44
|
Donaghy H. Effects of antibody, drug and linker on the preclinical and clinical toxicities of antibody-drug conjugates. MAbs 2016; 8:659-71. [PMID: 27045800 PMCID: PMC4966843 DOI: 10.1080/19420862.2016.1156829] [Citation(s) in RCA: 325] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/15/2016] [Accepted: 02/16/2016] [Indexed: 11/15/2022] Open
Abstract
Antibody-drug conjugates (ADCs) represent a new class of cancer therapeutics. Their design involves a tumor-specific antibody, a linker and a cytotoxic payload. They were designed to allow specific targeting of highly potent cytotoxic agents to tumor cells whilst sparing normal cells. Frequent toxicities that may be driven by any of the components of an ADC have been reported. There are currently more than 50 ADCs in active clinical development, and a further ∼20 that have been discontinued. For this review, the reported toxicities of ADCs were analysed, and the mechanisms for their effects are explored in detail. Methods to reduce toxicities, including dosing strategies and drug design, are discussed. The toxicities reported for active and discontinued drugs are important to drive the rational design and improve the therapeutic index of ADCs of the future.
Collapse
|
45
|
Singh R, Setiady YY, Ponte J, Kovtun YV, Lai KC, Hong EE, Fishkin N, Dong L, Jones GE, Coccia JA, Lanieri L, Veale K, Costoplus JA, Skaletskaya A, Gabriel R, Salomon P, Wu R, Qiu Q, Erickson HK, Lambert JM, Chari RVJ, Widdison WC. A New Triglycyl Peptide Linker for Antibody-Drug Conjugates (ADCs) with Improved Targeted Killing of Cancer Cells. Mol Cancer Ther 2016; 15:1311-20. [PMID: 27197308 DOI: 10.1158/1535-7163.mct-16-0021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/19/2016] [Indexed: 11/16/2022]
Abstract
A triglycyl peptide linker (CX) was designed for use in antibody -: drug conjugates (ADC), aiming to provide efficient release and lysosomal efflux of cytotoxic catabolites within targeted cancer cells. ADCs comprising anti-epithelial cell adhesion molecule (anti-EpCAM) and anti-EGFR antibodies with maytansinoid payloads were prepared using CX or a noncleavable SMCC linker (CX and SMCC ADCs). The in vitro cytotoxic activities of CX and SMCC ADCs were similar for several cancer cell lines; however, the CX ADC was more active (5-100-fold lower IC50) than the SMCC ADC in other cell lines, including a multidrug-resistant line. Both CX and SMCC ADCs showed comparable MTDs and pharmacokinetics in CD-1 mice. In Calu-3 tumor xenografts, antitumor efficacy was observed with the anti-EpCAM CX ADC at a 5-fold lower dose than the corresponding SMCC ADC in vivo Similarly, the anti-EGFR CX ADC showed improved antitumor activity over the respective SMCC conjugate in HSC-2 and H1975 tumor models; however, both exhibited similar activity against FaDu xenografts. Mechanistically, in contrast with the charged lysine-linked catabolite of SMCC ADC, a significant fraction of the carboxylic acid catabolite of CX ADC could be uncharged in the acidic lysosomes, and thus diffuse out readily into the cytosol. Upon release from tumor cells, CX catabolites are charged at extracellular pH and do not penetrate and kill neighboring cells, similar to the SMCC catabolite. Overall, these data suggest that CX represents a promising linker option for the development of ADCs with improved therapeutic properties. Mol Cancer Ther; 15(6); 1311-20. ©2016 AACR.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ling Dong
- ImmunoGen, Inc., Waltham, Massachusetts
| | | | | | | | | | | | | | | | | | - Rui Wu
- ImmunoGen, Inc., Waltham, Massachusetts
| | | | | | | | | | | |
Collapse
|
46
|
Yao Y, Yu L, Su X, Wang Y, Li W, Wu Y, Cheng X, Zhang H, Wei X, Chen H, Zhang R, Gou L, Chen X, Xie Y, Zhang B, Zhang Y, Yang J, Wei Y. Synthesis, characterization and targeting chemotherapy for ovarian cancer of trastuzumab-SN-38 conjugates. J Control Release 2015; 220:5-17. [PMID: 26439663 DOI: 10.1016/j.jconrel.2015.09.058] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 07/20/2015] [Accepted: 09/28/2015] [Indexed: 02/05/2023]
Abstract
Antibody-drug conjugates (ADCs), combining monoclonal antibody with high cytotoxicity chemotherapeutic drug (warhead), have been successfully applied for clinical cancer therapy. Linker technology to select and design linker connecting warhead with antibody, is critical to the success of therapeutic ADCs. In this study, three kinds of linkers were designed to connect SN-38, the bioactive metabolite of the anticancer drug irinotecan (CPT-11), which is 100-1000 times more potent than CPT-11, with the anti-HER2 antibody trastuzumab to prepare three different ADC conjugates (T-SN38 A, B and C). Meanwhile, we compared the anti-ovarian cancer effect of these three T-SN38 conjugates with trastuzumab in vitro and in vivo. Our in vitro results showed that T-SN38 A, B and C (drug-to-antibody ratio, DAR=3.7, 3.2, 3.4) were 2 to 3 times as cytotoxic as SN-38, and the IC50 for these three conjugates on SKOV-3 cell line at 72 h were 5.2 ± 0.3, 4.4 ± 0.7, and 5.1 ± 0.4 nM respectively. In our in vivo studies, T-SN38 conjugates had well targeting ability for tumor tissue and all three of them had much higher anti-ovarian cancer potency than trastuzumab. Among of them, T-SN38 B, which coupled SN-38 with trastuzumab by a carbonate bond, has the best anti-ovarian cancer potency. In conclusion, the novel HER2-targeting ADCs T-SN38 have great potential for HER2-positive ovarian cancer. Moreover, the SN-38-Linkers designed in this study can also be used to connect with other antibodies for the therapy of other cancers.
Collapse
Key Words
- 10-hydroxycamptothecin (PubChem CID: 97,226)
- 4-dimethylaminopyridine (PubChem CID:14,284)
- 7-ethyl-10-hydroxycamptothecin (PubChem CID:104,842)
- Antibody-drug conjugates (ADCs)
- Bi-function linker
- N-hydroxysuccinimide (PubChem CID:80,170)
- Ovarian cancer
- PEG4 (PubChem CID:21,896,924)
- SN-38
- Targeting chemotherapy
- Trastuzumab
- dicyclohexylcarbodiimide (PubChem CID:10,868)
- dithiothreitol (PubChem CID:19,001)
- ethyldiisopropylamine (PubChem CID:81,531)
- mercaptoacetic acid (PubChem CID:1133)
- triphosgene (PubChem CID:94,429)
Collapse
Affiliation(s)
- Yuqin Yao
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China; Research Center for Public Health and Preventive Medicine, West China School of Public Health/No.4 West China Teaching Hospital, Sichuan University, PR China; Guangdong Zhongsheng Pharmaceutical Co., Ltd., PR China
| | - Lin Yu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Xiaolan Su
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Yuxi Wang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Wenting Li
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Yangpin Wu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Xiangzheng Cheng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Hang Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Xian Wei
- Guangdong Zhongsheng Pharmaceutical Co., Ltd., PR China
| | - Hao Chen
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Rundong Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Lantu Gou
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Xiaoxin Chen
- Guangdong Zhongsheng Pharmaceutical Co., Ltd., PR China
| | - Yongmei Xie
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Bo Zhang
- Department of Gastrointestinal Surgery, West China Hostpital, Sichuan University, PR China
| | - Yonghui Zhang
- Pharmacology & Pharmaceutical Sciences School of Medicine/ Collaborative Innovation Center for Biotherapy, Tsinghua University, Beijing, PR China
| | - Jinliang Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| |
Collapse
|
47
|
Zhou J, Fan X, Chen N, Zhou F, Dong J, Nie Y, Fan D. Identification of CEACAM5 as a Biomarker for Prewarning and Prognosis in Gastric Cancer. J Histochem Cytochem 2015; 63:922-30. [PMID: 26374829 DOI: 10.1369/0022155415609098] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/04/2015] [Indexed: 12/27/2022] Open
Abstract
MGd1, a monoclonal antibody raised against gastric cancer cells, possesses a high degree of specificity for gastric cancer (GC). Here we identified that the antigen of MGd1 is CEACAM5, and used MGd1 to investigate the expression of CEACAM5 in non-GC and GC tissues (N=643), as a biomarker for prewarning and prognosis. The expression of CEACAM5 was detected by immunohistochemistry in numerous tissues; its clinicopathological correlation was statistically analyzed. CEACAM5 expression was increased progressively from normal gastric mucosa to chronic atrophic gastritis, intestinal metaplasia, dysplasia and finally to GC (p<0.05). In gastric precancerous lesions (intestinal metaplasia and dysplasia), CEACAM5-positive patients had a higher risk of developing GC as compared with CEACAM5-negative patients (OR = 12.68, p<0.001). Besides, CEACAM5 was found positively correlated with invasion depth of gastric adenocarcinoma (p<0.001). In survival analysis, CEACAM5 was demonstrated to be an independent prognostic predictor for patients with GC of clinical stage IIIA/IV (p=0.033). Our results demonstrate that CEACAM5 is a promising biomarker for GC prewarning and prognostic evaluation.
Collapse
Affiliation(s)
- Jinfeng Zhou
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China (JZ, NC, FZ, JD, YN, DF)
| | - Xing Fan
- Institute of Plastic Surgery of the Chinese PLA, Fourth Military Medical University, Xi'an, China (XF)
| | - Ning Chen
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China (JZ, NC, FZ, JD, YN, DF)
| | - Fenli Zhou
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China (JZ, NC, FZ, JD, YN, DF)
| | - Jiaqiang Dong
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China (JZ, NC, FZ, JD, YN, DF)
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China (JZ, NC, FZ, JD, YN, DF)
| | - Daiming Fan
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China (JZ, NC, FZ, JD, YN, DF)
| |
Collapse
|
48
|
Abstract
INTRODUCTION Clinical use of SN38 is limited by its poor aqueous solubility and hydrolysis of the lactone ring at pH > 6 to inactive carboxylate form. A variety of drug delivery systems have been developed to improve the solubility and stability of SN38, and reduce its toxicity. A few noteworthy formulations with some success in initial phases of clinical trials are reported. AREAS COVERED This work aims to provide a comprehensive review on the various techniques and strategies employed (physical, chemical and biological methods) to improve physicochemical properties and to deliver the drug efficiently to the cancer cells. Physical methods such as nanoparticle encapsulation, cyclodextrin complexation; chemical methods such as prodrugs, polymer-, albumin- and immunoconjugates; and enzyme activated prodrug therapy are discussed. EXPERT OPINION The challenges in SN38 drug delivery may be overcome by two ways: ensuring multiple layers of protection against degradation and slow but sustained release of therapeutically effective drug concentrations. It may also be achieved by preparing a polymer-drug conjugate and further encapsulating the conjugate in suitable carrier system; tumor-targeted SN38 delivery by using immunoconjugates, enzyme-activated prodrug therapy and antibody-directed nanoparticle delivery. However, selection of a suitable ligand for tumor targeting and use of safe and biocompatible nanoparticle systems play an important role in realizing this goal.
Collapse
Affiliation(s)
- Srinath Palakurthi
- a Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Department of Pharmaceutical Sciences , Kingsville, TX 78363, USA +1 3612210748 ; +1 3612210793 ;
| |
Collapse
|
49
|
Hamilton GS. Antibody-drug conjugates for cancer therapy: The technological and regulatory challenges of developing drug-biologic hybrids. Biologicals 2015; 43:318-32. [PMID: 26115630 DOI: 10.1016/j.biologicals.2015.05.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 04/13/2015] [Accepted: 05/14/2015] [Indexed: 10/23/2022] Open
Abstract
Antibody-drug conjugates (ADCs) are a new class of therapeutic agents that combine the targeting ability of monoclonal antibodies (mAbs) with small molecule drugs. The combination of a mAb targeting a cancer-specific antigen with a cytotoxin has tremendous promise as a new type of targeted cancer therapy. Two ADCs have been approved and many more are in clinical development, suggesting that this new class of drugs is coming to the forefront. Because of their unique nature as biologic-small drug hybrids, ADCs are challenging to develop, from both the scientific and regulatory perspectives. This review discusses both these aspects in current practice, and surveys the current state of the art of ADC drug development.
Collapse
Affiliation(s)
- Gregory S Hamilton
- Graduate Program in Biotechnology, University of Maryland, Baltimore County, United States.
| |
Collapse
|
50
|
Sharkey RM, McBride WJ, Cardillo TM, Govindan SV, Wang Y, Rossi EA, Chang CH, Goldenberg DM. Enhanced Delivery of SN-38 to Human Tumor Xenografts with an Anti-Trop-2-SN-38 Antibody Conjugate (Sacituzumab Govitecan). Clin Cancer Res 2015; 21:5131-8. [PMID: 26106073 DOI: 10.1158/1078-0432.ccr-15-0670] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/12/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE This study examined the delivery of SN-38 to Trop-2-expressing tumors and assessed the constitutive products in the serum, liver, and small intestine in nude mice bearing human tumor xenografts (Capan-1 or NCI-N87) given a single injection of irinotecan (40 mg/kg; ∼ 0.8 mg/mouse, containing ∼ 460 μg SN-38 equivalents) or sacituzumab govitecan (IMMU-132), an antibody-drug conjugate composed of a humanized anti-Trop-2 IgG coupled site specifically with an average of 7.6 molecules of SN-38. EXPERIMENTAL DESIGN At select times, tissues were extracted and concentrations of the products measured by reversed-phase high-performance liquid chromatography (HPLC). RESULTS In serum, >98% irinotecan cleared within 5 minutes; peak levels of SN-38 and SN-38G (glucuronidated SN-38) were detected in equal amounts at this time, and no longer detected after 6 to 8 hours. IMMU-132 was detected in the serum over 3 days, and at each interval, ≥ 95% of total SN-38 was bound to the antibody. Intact IMMU-132 cleared with a half-life of 14 hours, which closely reflected the in vitro rate of SN-38 released from the conjugate in mouse serum (i.e., 17.5 hours), whereas the IgG portion of the conjugate cleared with a half-life of 67.1 hours. In vitro and in vivo studies disclosed IgG-bound SN-38 was protected from glucuronidation. Area under the curve (AUC) analysis indicated that IMMU-132 delivers 20-fold to as much as 136-fold more SN-38 to tumors than irinotecan, with tumor:blood ratios favoring IMMU-132 by 20- to 40-fold. Intestinal concentrations of SN-38/SN-38G also were 9-fold lower with IMMU-132. CONCLUSIONS These studies confirm a superior SN-38 tumor delivery by IMMU-132 compared with irinotecan.
Collapse
Affiliation(s)
| | | | | | | | - Yang Wang
- Immunomedics, Inc., Morris Plains, New Jersey
| | | | | | | |
Collapse
|