1
|
Wu X, Mi T, Jin L, Ren C, Wang J, Zhang Z, Liu J, Wang Z, Guo P, He D. Tumoral EIF4EBP1 regulates the crosstalk between tumor-associated macrophages and tumor cells in MRTK. Eur J Pharmacol 2024; 978:176787. [PMID: 38944176 DOI: 10.1016/j.ejphar.2024.176787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Malignant renal rhabdoid tumor (MRTK) is an aggressive and rare malignancy primarily affecting infants and young children. The intricate interactions within the Tumor Microenvironment (TME) are crucial in shaping MRTK's progression. This study elucidates the significance of tumor-associated macrophages(TAMs) within this milieu and their interplay with eukaryotic translation initiation factor 4E-binding protein 1 (EIF4EBP1) in tumor cells, collectively contributing to MRTK's malignant advancement. Through comprehensive analysis of clinical samples and the TARGET database, EIF4EBP1 emerges as a central macrophage-associated gene with robust prognostic implications. Elevated EIF4EBP1 expression correlates with poor prognosis and heightened infiltration of TAMs. Functional validation demonstrates that EIF4EBP1 knockdown in G401 cells significantly attenuates self-proliferation, migration, and invasion. Moreover, EIF4EBP1 regulates macrophage recruitment and M2 polarization through the ERK/P38 MAPK-MIF axis. Notably, M2 macrophages reciprocally foster the malignant behavior of MRTK tumor cells. This study unveils the pivotal role of EIF4EBP1 in propelling MRTK's malignant progression, unraveling a complex regulatory network involving EIF4EBP1 and TAMs. These findings underscore EIF4EBP1 as a promising biomarker and highlight its therapeutic potential in MRTK management.
Collapse
Affiliation(s)
- Xin Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing 400014, China; Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunan, 650000, China
| | - Tao Mi
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing 400014, China
| | - Liming Jin
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing 400014, China
| | - Chunnian Ren
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing 400014, China
| | - Jinkui Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing 400014, China
| | - Zhaoxia Zhang
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing 400014, China
| | - Jiayan Liu
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing 400014, China
| | - Zhaoyin Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing 400014, China
| | - Peng Guo
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing 400014, China; Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Dawei He
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing 400014, China.
| |
Collapse
|
2
|
Cheng C, Zhang Z, Wang J, Wang C, Liu T, Yang C, Wang G, Huang H, Li Y. CircPGM5 regulates Foxo3a phosphorylation via MiR-21-5p/MAPK10 axis to inhibit bladder cancer progression. Cell Signal 2024; 121:111297. [PMID: 39004326 DOI: 10.1016/j.cellsig.2024.111297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/08/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Bladder cancer (BC) is one of the most prevalent malignant tumors worldwide, and the incidence is especially higher in males. Extensive evidence has demonstrated the pivotal role of circular RNAs (circRNAs) in BC progression. However, the exact regulatory mechanism of circRNAs in BC remains incompletely elucidated and warrants further exploration. This study screened a novel circRNA-circPGM5 from thousands of circRNAs by high-throughput sequencing. We found that circPGM5, originating from the PGM5 gene, was significantly lower expressed in BC tissues. Quantitative real-time PCR (qRT-PCR) verified that circPGM5 showed relatively low expression in 50 pairs of BC tissues and EJ and T24 cells. Notably, circPGM5 expression was correlated with stage, grade, and lymphatic metastasis of BC. Through RNA-FISH assay, we confirmed that circPGM5 predominantly localized in the cytoplasm. Functionally, overexpression of circPGM5 inhibited the proliferation, migration, and invasion of BC cells in vitro. Remarkably, circPGM5 demonstrated markedly significant tumor growth and metastasis suppression in vivo. Mechanistically, we discovered that circPGM5 upregulated the mitogen-activated protein kinase 10 (MAPK10) expression by influencing the oncogenic miR-21-5p activity through miR-21-5p absorption. This modulation of MAPK10 impacted the phosphorylation of the tumor suppressor Foxo3a in BC. In conclusion, our findings uncovered the tumor-suppressing role of circPGM5 in BC via the miR-21-5p/MAPK10/Foxo3a axis.
Collapse
Affiliation(s)
- Chao Cheng
- Department of Urology, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, 519000, Guangdong, PR China; Department of Urology, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China; Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215008, PR China
| | - Ze Zhang
- Department of Urology, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Jiawei Wang
- Department of Urology, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Chong Wang
- Department of Urology, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Tiantian Liu
- Department of Urology, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Chenglin Yang
- Department of Urology, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Guowei Wang
- Department of Urology, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Houbao Huang
- Department of Urology, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Yawei Li
- Department of Urology, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, 519000, Guangdong, PR China.
| |
Collapse
|
3
|
Gu Q, Qi A, Wang N, Zhou Z, Zhou X. Macrophage dynamics in prostate cancer: Molecular to therapeutic insights. Biomed Pharmacother 2024; 177:117002. [PMID: 38960836 DOI: 10.1016/j.biopha.2024.117002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 07/05/2024] Open
Abstract
This review provides an in-depth examination of the role that tumor-associated macrophages (TAMs) play in the progression of prostate cancer (PCa), with a particular focus on the factors influencing the polarization of M1 and M2 macrophages and the implications of targeting these cells for cancer progression. The development and prognosis of PCa are significantly influenced by the behavior of macrophages within the tumor microenvironment. M1 macrophages typically exhibit anti-tumor properties by secreting pro-inflammatory cytokines such as interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α), thereby enhancing the immune response. Conversely, M2 macrophages contribute to tumor cell migration and invasion through the production of factors like arginase-1 (Arg1) and interleukin-10 (IL-10). This review not only explores the diverse factors that affect macrophage polarization but also delves into the potential therapeutic strategies targeting macrophage polarization, including the critical roles of non-coding RNA and exosomes in regulating this process. The polarization state of macrophages is highlighted as a key determinant in PCa progression, offering a novel perspective for clinical treatment. Future research should concentrate on gaining a deeper understanding of the molecular mechanisms underlying macrophage polarization and on developing effective targeted therapeutic strategies. The exploration of the potential of combination therapies to improve treatment efficacy is also emphasized. By emphasizing the importance of macrophages as a therapeutic target in PCa, this review aims to provide valuable insights and research directions for clinicians and researchers.
Collapse
Affiliation(s)
- Qiannan Gu
- China Pharmaceutical University, School of Basic Medicine and Clinical Pharmacy, Nanjing, Jiangsu 210009, China
| | - Anning Qi
- Medical Laboratory, Liuhe People's Hospital of Jiangsu Province, Nanjing, Jiangsu 211500, China
| | - Ne Wang
- Jiangning Hospital Tiandi New City Branch, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 211198, China
| | - Zhenxian Zhou
- Nanjing Second People's Hospital, Jiangsu Province 211103, China
| | - Xiaohui Zhou
- China Pharmaceutical University, School of Basic Medicine and Clinical Pharmacy, Nanjing, Jiangsu 210009, China; Jiangning Outpatient Department of China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
4
|
Jiang Y, Chen Y, Fu J, Zhao R, Xu J, Liu Y. Bone morphogenetic protein 4 alleviates pulmonary fibrosis by regulating macrophages. Int Immunopharmacol 2024; 139:112530. [PMID: 39053231 DOI: 10.1016/j.intimp.2024.112530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/27/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024]
Abstract
Fibrosis is a pathological change mainly characterized by an increase of fibrous connective tissue and decrease of parenchymal cells. Its continuous progress may lead to the destruction of organ structure and function decline. An excess of alternatively activated M2 macrophages have been considered crucial candidates in the progression of fibrosis. Bone morphogenetic proteins (BMPs), a group of multifunctional growth factors, are essential for organ development and pathophysiological process, however, the roles that BMPs play in innate immune homeostasis in the development of fibrosis and the downstream signals have not been fully explored. In the current study, we firstly found that the expression of BMP4 was significantly down-regulated in human and mouse fibrosis samples. Then we investigated the effects of BMP4 on macrophage polarization in IL-4 environment and related molecular mechanisms, and found that BMP4 caused a decrease in polarized response towards M2, reflected in the expression of the markers Fizz1, Ym1 and Arg1, together with an inhibition in Stat6 phosphorylation. This relied on the Smad1/5/8 signaling, which had a crosstalk with Stat6. Moreover, the in vivo study showed that BMP4 treatment can reduce collagen deposition and delay the development of experimental pulmonary fibrosis in mice by inhibiting M2 macrophages through adoptive transfer experiment. These findings revealed a novel role of BMP4 in regulating macrophages, offering potential strategies for treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Yiyang Jiang
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Yingyi Chen
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Jingfei Fu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Rui Zhao
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China.
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China.
| |
Collapse
|
5
|
Sun Z, Ke P, Shen Y, Ma K, Wang B, Lin D, Wang Y. MXRA7 is involved in monocyte-to-macrophage differentiation. Mol Immunol 2024; 171:12-21. [PMID: 38735126 DOI: 10.1016/j.molimm.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/02/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024]
Abstract
Macrophages are critical in mediating immune and inflammatory responses, while monocyte-to-macrophage differentiation is one of the main macrophage resources that involves various matrix proteins. Matrix remodeling associated 7 (MXRA7) was recently discovered to affect a variety of physiological and pathological processes related to matrix biology. In the present study, we investigated the role of MXRA7 in monocyte-to-macrophage differentiation in vitro. We found that knockdown of MXRA7 inhibited the proliferation of THP-1 human monocytic cells. Knockdown of MXRA7 increased the adhesion ability of THP-1 cells through upregulation the expression of adhesion molecules VCAM-1 and ICAM1. Knockdown of MXRA7 alone could promoted the differentiation of THP-1 cells to macrophages. Furthermore, the MXRA7-knockdown THP-1 cells produced a more significant upregulation pattern with M1-type cytokines (TNF-α, IL-1β and IL-6) than with those M2-type molecules (TGF-β1 and IL-1RA) upon PMA stimulation, indicating that knockdown of MXRA7 facilitated THP-1 cells differentiation toward M1 macrophages. RNA sequencing analysis revealed the potential biological roles of MXRA7 in cell adhesion, macrophage and monocyte differentiation. Moreover, MXRA7 knockdown promoted the expression of NF-κB p52/p100, while PMA stimulation could increase the expression of NF-κB p52/p100 and activating MAPK signaling pathways in MXRA7 knockdown cells. In conclusion, MXRA7 affected the differentiation of THP-1 cells toward macrophages possibly through NF-κB signaling pathways.
Collapse
Affiliation(s)
- Zhenjiang Sun
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215006, China
| | - Peng Ke
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215006, China
| | - Ying Shen
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215006, China
| | - Kunpeng Ma
- MOH Key Lab of Thrombosis and Hemostasis, Collaborative Innovation Center of Hematology-Thrombosis and Hemostasis Group, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou 215007, China
| | - Benfang Wang
- MOH Key Lab of Thrombosis and Hemostasis, Collaborative Innovation Center of Hematology-Thrombosis and Hemostasis Group, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou 215007, China
| | - Dandan Lin
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215006, China.
| | - Yiqiang Wang
- MOH Key Lab of Thrombosis and Hemostasis, Collaborative Innovation Center of Hematology-Thrombosis and Hemostasis Group, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou 215007, China; Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China.
| |
Collapse
|
6
|
Minvielle Moncla LH, Briend M, Sokhna Sylla M, Mathieu S, Rufiange A, Bossé Y, Mathieu P. Mendelian randomization reveals interactions of the blood proteome and immunome in mitral valve prolapse. COMMUNICATIONS MEDICINE 2024; 4:108. [PMID: 38844506 PMCID: PMC11156961 DOI: 10.1038/s43856-024-00530-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Mitral valve prolapse (MVP) is a common heart disorder characterized by an excessive production of proteoglycans and extracellular matrix in mitral valve leaflets. Large-scale genome-wide association study (GWAS) underlined that MVP is heritable. The molecular underpinnings of the disease remain largely unknown. METHODS We interrogated cross-modality data totaling more than 500,000 subjects including GWAS, 4809 molecules of the blood proteome, and genome-wide expression of mitral valves to identify candidate drivers of MVP. Data were investigated through Mendelian randomization, network analysis, ligand-receptor inference and digital cell quantification. RESULTS In this study, Mendelian randomization identify that 33 blood proteins, enriched in networks for immunity, are associated with the risk of MVP. MVP- associated blood proteins are enriched in ligands for which their cognate receptors are differentially expressed in mitral valve leaflets during MVP and enriched in cardiac endothelial cells and macrophages. MVP-associated blood proteins are involved in the renewal-polarization of macrophages and regulation of adaptive immune response. Cytokine activity profiling and digital cell quantification show in MVP a shift toward cytokine signature promoting M2 macrophage polarization. Assessment of druggability identify CSF1R, CX3CR1, CCR6, IL33, MMP8, ENPEP and angiotensin receptors as actionable targets in MVP. CONCLUSIONS Hence, integrative analysis identifies networks of candidate molecules and cells involved in immune control and remodeling of the extracellular matrix, which drive the risk of MVP.
Collapse
Affiliation(s)
| | - Mewen Briend
- Genomic Medicine Laboratory, Quebec Heart and Lung Institute, Laval University, Quebec City, QC, Canada
| | - Mame Sokhna Sylla
- Genomic Medicine Laboratory, Quebec Heart and Lung Institute, Laval University, Quebec City, QC, Canada
| | - Samuel Mathieu
- Genomic Medicine Laboratory, Quebec Heart and Lung Institute, Laval University, Quebec City, QC, Canada
| | - Anne Rufiange
- Genomic Medicine Laboratory, Quebec Heart and Lung Institute, Laval University, Quebec City, QC, Canada
| | - Yohan Bossé
- Department of Molecular Medicine, Laval University, Quebec City, QC, Canada
| | - Patrick Mathieu
- Genomic Medicine Laboratory, Quebec Heart and Lung Institute, Laval University, Quebec City, QC, Canada.
- Department of Surgery, Laval University, Quebec City, QC, Canada.
| |
Collapse
|
7
|
Wang M, Zhong L, Zhang H, Wan P, Chu X, Shao X, Chen S, Zhou Z, Yu L, Liu B. p200CUX1-regulated BMP8B inhibits the progression of acute myeloid leukemia via the MAPK signaling pathway. Med Oncol 2024; 41:166. [PMID: 38819709 DOI: 10.1007/s12032-024-02398-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/25/2024] [Indexed: 06/01/2024]
Abstract
The full-length p200CUX1 protein encoded by the homology frame CUT-like protein (CUX1) plays an important role in tumors as a pro-oncogene or oncogene. However, its role and mechanism in acute myeloid leukemia remain unknown. p200CUX1 regulates several pathways, including the MAPK signaling pathway. Our data showed that p200CUX1 is lowly expressed in THP1 and U937 AML cell lines. Lentiviral overexpression of p200CUX1 reduced proliferation and promoted apoptosis and G0/G1 phase blockade, correlating with MAPK pathway suppression. Additionally, p200CUX1 regulated the expression of bone morphogenetic protein 8B (BMP8B), which is overexpressed in AML. Overexpression of p200CUX1 downregulated BMP8B expression and inhibited the MAPK pathway. Furthermore, BMP8B knockdown inhibited AML cell proliferation, enhanced apoptosis and the sensitivity of ATRA-induced cell differentiation, and blocked G0/G1 transition. Our findings demonstrate the pivotal function of the p200CUX1-BMP8B-MAPK axis in maintaining the viability of AML cells. Consequently, targeting p200CUX1 could represent a viable strategy in AML therapy.
Collapse
Affiliation(s)
- Meng Wang
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Liang Zhong
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Hongyan Zhang
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Peng Wan
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Xuan Chu
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Xin Shao
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Shuyu Chen
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Ziwei Zhou
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Lihua Yu
- Clinical Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China.
| | - Beizhong Liu
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China.
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
8
|
Huang Y, Dai F, Chen L, Li Z, Liu H, Cheng Y. BMP4 in Human Endometrial Stromal Cells Can Affect Decidualization by Regulating FOXO1 Expression. Endocrinology 2024; 165:bqae049. [PMID: 38679470 DOI: 10.1210/endocr/bqae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
CONTEXT Recurrent spontaneous abortion (RSA) is defined as the loss of 2 or more consecutive intrauterine pregnancies with the same sexual partner in the first trimester. Despite its significance, the etiology and underlying mechanisms of RSA remain elusive. Defective decidualization is proposed as one of the potential causes of RSA, with abnormal decidualization leading to disturbances in trophoblast invasion function. OBJECTIVE To assess the role of bone morphogenetic protein 4 (BMP4) in decidualization and RSA. METHODS Decidual samples were collected from both RSA patients and healthy controls to assess BMP4 expression. In vitro cell experiments utilized the hESC cell line to investigate the impact of BMP4 on decidualization and associated aging, as well as its role in the maternal-fetal interface communication. Subsequently, a spontaneous abortion mouse model was established to evaluate embryo resorption rates and BMP4 expression levels. RESULTS Our study identified a significant downregulation of BMP4 expression in the decidua of RSA patients compared to the normal control group. In vitro, BMP4 knockdown resulted in inadequate decidualization and inhibited associated aging processes. Mechanistically, BMP4 was implicated in the regulation of FOXO1 expression, thereby influencing decidualization and aging. Furthermore, loss of BMP4 hindered trophoblast migration and invasion via FOXO1 modulation. Additionally, BMP4 downregulation was observed in RSA mice. CONCLUSION Our findings highlighted the downregulation of BMP4 in both RSA patients and mice. BMP4 in human endometrial stromal cells was shown to modulate decidualization by regulating FOXO1 expression. Loss of BMP4 may contribute to the pathogenesis of RSA, suggesting potential avenues for abortion prevention strategies.
Collapse
Affiliation(s)
- Yanjie Huang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Liping Chen
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Zhidian Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| |
Collapse
|
9
|
Tang L, Xu H, Wu T, Wu W, Lu Y, Gu J, Wang X, Zhou M, Chen Q, Sun X, Cai H. Advances in tumor microenvironment and underlying molecular mechanisms of bladder cancer: a systematic review. Discov Oncol 2024; 15:111. [PMID: 38602556 PMCID: PMC11009183 DOI: 10.1007/s12672-024-00902-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/21/2024] [Indexed: 04/12/2024] Open
Abstract
Bladder cancer is one of the most frequent malignant tumors of the urinary system. The prevalence of bladder cancer among men and women is roughly 5:2, and both its incidence and death have been rising steadily over the past few years. At the moment, metastasis and recurrence of advanced bladder cancer-which are believed to be connected to the malfunction of multigene and multilevel cell signaling network-remain the leading causes of bladder cancer-related death. The therapeutic treatment of bladder cancer will be greatly aided by the elucidation of these mechanisms. New concepts for the treatment of bladder cancer have been made possible by the advancement of research technologies and a number of new treatment options, including immunotherapy and targeted therapy. In this paper, we will extensively review the development of the tumor microenvironment and the possible molecular mechanisms of bladder cancer.
Collapse
Affiliation(s)
- Liu Tang
- Department of Nursing, Jiangsu Cancer Hospital and The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Haifei Xu
- Department of Urology, Nantong Tumor Hospital and Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Tong Wu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China
| | - Wenhao Wu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China
| | - Yuhao Lu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China
| | - Jijia Gu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China
| | - Xiaoling Wang
- Department of Urology, Nantong Tumor Hospital and Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Mei Zhou
- Department of Nursing, Jiangsu Cancer Hospital and The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China.
| | - Qiuyang Chen
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China.
| | - Xuan Sun
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China.
| | - Hongzhou Cai
- Department of Urology, Jiangsu Cancer Hospital and The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China.
| |
Collapse
|
10
|
He S, Lu M, Zhang L, Wang Z. RSK4 promotes the macrophage recruitment and M2 polarization in esophageal squamous cell carcinoma. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166996. [PMID: 38142759 DOI: 10.1016/j.bbadis.2023.166996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/01/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
High infiltration of tumor-associated macrophages (TAMs) participates in host immunity and tumor progression in patients with esophageal squamous cell carcinoma (ESCC). Ribosomal s6 kinase 4 (RSK4) has been shown to be aberrantly overexpressed in ESCC. The role of RSK4 in cytokine secretion and its impact on macrophage recruitment and M2 polarization remains unclear. Therefore, a thorough understanding of RSK4 is needed to expand our knowledge of its therapeutic potential. Herein, RSK4 expression in human ESCC tissues and a xenograft mouse model was positively correlated with high infiltration of M0 and M2 macrophages which is positively associated with unfavorable overall survival outcomes and treatment resistance in patients with ESCC. In vitro experiments revealed that RSK4 derived from ESCC cells promoted macrophage recruitment and M2 polarization by enhancingsoluble intercellular adhesion molecule-1 (sICAM-1) secretion via direct and indirect STAT3 phosphorylation. Furthermore, RSK4-induced macrophages enhanced tumor proliferation, migration, and invasion by secreting C-C motif chemokine ligand 22 (CCL22). We further showed that patients with elevated CD68 and CD206 expression had unfavorable overall survival. Collectively, these results demonstrate that RSK4 promotes the macrophage recruitment and M2 polarization by regulating the STAT3/ICAM-1 axis in ESCC, influencing tumor progression primarily in a CCL22-dependent manner. These data also offer valuable insights for developing novel agents for the treatment of ESCC.
Collapse
Affiliation(s)
- Shuai He
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China; Department of Pathology, Baotou Medical college, Baotou, Inner Mongolia Autonomous Region, China
| | - Ming Lu
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Liang Zhang
- Department of Pathology, The First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhe Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
11
|
Bao X, Li Q, Chen D, Dai X, Liu C, Tian W, Zhang H, Jin Y, Wang Y, Cheng J, Lai C, Ye C, Xin S, Li X, Su G, Ding Y, Xiong Y, Xie J, Tano V, Wang Y, Fu W, Deng S, Fang W, Sheng J, Ruan J, Zhao P. A multiomics analysis-assisted deep learning model identifies a macrophage-oriented module as a potential therapeutic target in colorectal cancer. Cell Rep Med 2024; 5:101399. [PMID: 38307032 PMCID: PMC10897549 DOI: 10.1016/j.xcrm.2024.101399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 02/04/2024]
Abstract
Colorectal cancer (CRC) is a common malignancy involving multiple cellular components. The CRC tumor microenvironment (TME) has been characterized well at single-cell resolution. However, a spatial interaction map of the CRC TME is still elusive. Here, we integrate multiomics analyses and establish a spatial interaction map to improve the prognosis, prediction, and therapeutic development for CRC. We construct a CRC immune module (CCIM) that comprises FOLR2+ macrophages, exhausted CD8+ T cells, tolerant CD8+ T cells, exhausted CD4+ T cells, and regulatory T cells. Multiplex immunohistochemistry is performed to depict the CCIM. Based on this, we utilize advanced deep learning technology to establish a spatial interaction map and predict chemotherapy response. CCIM-Net is constructed, which demonstrates good predictive performance for chemotherapy response in both the training and testing cohorts. Lastly, targeting FOLR2+ macrophage therapeutics is used to disrupt the immunosuppressive CCIM and enhance the chemotherapy response in vivo.
Collapse
Affiliation(s)
- Xuanwen Bao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China.
| | - Qiong Li
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Dong Chen
- Department of Colorectal Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Xiaomeng Dai
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Chuan Liu
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Weihong Tian
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Hangyu Zhang
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Yuzhi Jin
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Yin Wang
- College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Jinlin Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Chunyu Lai
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Chanqi Ye
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Shan Xin
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Xin Li
- Department of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ge Su
- College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Yongfeng Ding
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Yangyang Xiong
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Jindong Xie
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Vincent Tano
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 637551, Republic of Singapore
| | - Yanfang Wang
- Ludwig-Maximilians-Universität München (LMU), 80539 Munich, Germany
| | - Wenguang Fu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Shuiguang Deng
- College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Weijia Fang
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Jianpeng Sheng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China.
| | - Jian Ruan
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China; Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Peng Zhao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China.
| |
Collapse
|
12
|
Song Z, Gui S, Xiao S, Rao X, Cong N, Deng H, Yu Z, Zeng T. A novel anoikis-related gene signature identifies LYPD1 as a novel therapy target for bladder cancer. Sci Rep 2024; 14:3198. [PMID: 38332160 PMCID: PMC10853254 DOI: 10.1038/s41598-024-53272-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
Bladder cancer (BLCA) is a malignant tumor associated with unfavorable outcomes. Studies suggest that anoikis plays a crucial role in tumor progression and cancer cell metastasis. However, its specific role in bladder cancer remains poorly understood. Our objective was to identify anoikis-related genes (ARGs) and subsequently construct a risk model to assess their potential for predicting the prognosis of bladder cancer.The transcriptome data and clinical data of BLCA patients were sourced from The Cancer Genome Atlas and GEO database. We then performed the differential expression analysis to screen differentially expressed ARGs. Subsequently, we conducted non-negative matrix factorization (NMF) clustering analysis to establish molecular subtypes based on the differentially expressed ARGs. The CIBERSORT algorithm was used to estimate the quantification of different cell infiltration in BLCA tumor microenviroment. A prognostic risk model containing 7 ARGs was established using Lasso-Cox regression analysis. The nomogram was built for predicting the survival probability of BLCA patients. To determine the drug sensitivity of each sample from the high- and low-risk groups, the R package "pRRophetic" was performed. Finally, the role of LYPD1 was explored in BLCA cell lines.We identified 90 differential expression ARGs and NMF clustering categorizated the BLCA patientss into two distinct groups (cluster A and B). Patients in cluster A had a better prognosis than those in cluster B. Then, we established a ARGs risk model including CALR, FASN, FOSL1, JUN, LYPD1, MST1R, and SATB1, which was validated in the train and test set. The results suggested overall survival rate was much higher in low risk group than high risk group. The cox regression analysis, ROC curve analysis, and nomogram collectively demonstrated that the risk model served as an independent prognostic factor. The high risk group had a higher level TME scores compared to the low risk group. Furthermore, LYPD1 was low expression in BLCA cells and overexpression of LYPD1 inhibits the prolifearation, migration and invasion.In the current study, we have identified differential expression ARGs and constructed a risk model with the promise for guiding prognostic predictions and provided a therapeutic target for patients with BLCA.
Collapse
Affiliation(s)
- Zhen Song
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China
- Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Shikai Gui
- Nanchang University, Nanchang, 330000, Jiangxi Province, China
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Shuaiyun Xiao
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China
- Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Xuepeng Rao
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China
- Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Na Cong
- Ganzhou Medical Emergency Center, Ganzhou, 341000, Jiangxi Province, China
| | - Huanhuan Deng
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Zhaojun Yu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China
- Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Tao Zeng
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China.
- Nanchang University, Nanchang, 330000, Jiangxi Province, China.
| |
Collapse
|
13
|
Li G, Pu P, Pan M, Weng X, Qiu S, Li Y, Abbas SJ, Zou L, Liu K, Wang Z, Shao Z, Jiang L, Wu W, Liu Y, Shao R, Liu F, Liu Y. Topological reorganization and functional alteration of distinct genomic components in gallbladder cancer. Front Med 2024; 18:109-127. [PMID: 37721643 DOI: 10.1007/s11684-023-1008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 05/05/2023] [Indexed: 09/19/2023]
Abstract
Altered three-dimensional architecture of chromatin influences various genomic regulators and subsequent gene expression in human cancer. However, knowledge of the topological rearrangement of genomic hierarchical layers in cancer is largely limited. Here, by taking advantage of in situ Hi-C, RNA-sequencing, and chromatin immunoprecipitation sequencing (ChIP-seq), we investigated structural reorganization and functional changes in chromosomal compartments, topologically associated domains (TADs), and CCCTC binding factor (CTCF)-mediated loops in gallbladder cancer (GBC) tissues and cell lines. We observed that the chromosomal compartment A/B switch was correlated with CTCF binding levels and gene expression changes. Increased inter-TAD interactions with weaker TAD boundaries were identified in cancer cell lines relative to normal controls. Furthermore, the chromatin short loops and cancer unique loops associated with chromatin remodeling and epithelial-mesenchymal transition activation were enriched in cancer compared with their control counterparts. Cancer-specific enhancer-promoter loops, which contain multiple transcription factor binding motifs, acted as a central element to regulate aberrant gene expression. Depletion of individual enhancers in each loop anchor that connects with promoters led to the inhibition of their corresponding gene expressions. Collectively, our data offer the landscape of hierarchical layers of cancer genome and functional alterations that contribute to the development of GBC.
Collapse
Affiliation(s)
- Guoqiang Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease, Shanghai, 200082, China
| | - Peng Pu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease, Shanghai, 200082, China
| | - Mengqiao Pan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200127, China
| | - Xiaoling Weng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200127, China
| | - Shimei Qiu
- Department of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200082, China
| | - Yiming Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease, Shanghai, 200082, China
| | - Sk Jahir Abbas
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200127, China
| | - Lu Zou
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease, Shanghai, 200082, China
| | - Ke Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease, Shanghai, 200082, China
| | - Zheng Wang
- Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Ziyu Shao
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200082, China
| | - Lin Jiang
- Shanghai Key Laboratory of Biliary Tract Disease, Shanghai, 200082, China
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200082, China
| | - Wenguang Wu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease, Shanghai, 200082, China
| | - Yun Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200127, China.
- Shanghai Key Laboratory of Biliary Tract Disease, Shanghai, 200082, China.
| | - Rong Shao
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Fatao Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200127, China.
- Shanghai Key Laboratory of Biliary Tract Disease, Shanghai, 200082, China.
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200127, China.
- Shanghai Key Laboratory of Biliary Tract Disease, Shanghai, 200082, China.
| |
Collapse
|
14
|
Zhou W, Yan K, Xi Q. BMP signaling in cancer stemness and differentiation. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:37. [PMID: 38049682 PMCID: PMC10695912 DOI: 10.1186/s13619-023-00181-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/06/2023] [Indexed: 12/06/2023]
Abstract
The BMP (Bone morphogenetic protein) signaling pathway plays a central role in metazoan biology, intricately shaping embryonic development, maintaining tissue homeostasis, and influencing disease progression. In the context of cancer, BMP signaling exhibits context-dependent dynamics, spanning from tumor suppression to promotion. Cancer stem cells (CSCs), a modest subset of neoplastic cells with stem-like attributes, exert substantial influence by steering tumor growth, orchestrating therapy resistance, and contributing to relapse. A comprehensive grasp of the intricate interplay between CSCs and their microenvironment is pivotal for effective therapeutic strategies. Among the web of signaling pathways orchestrating cellular dynamics within CSCs, BMP signaling emerges as a vital conductor, overseeing CSC self-renewal, differentiation dynamics, and the intricate symphony within the tumor microenvironment. Moreover, BMP signaling's influence in cancer extends beyond CSCs, intricately regulating cellular migration, invasion, and metastasis. This multifaceted role underscores the imperative of comprehending BMP signaling's contributions to cancer, serving as the foundation for crafting precise therapies to navigate multifaceted challenges posed not only by CSCs but also by various dimensions of cancer progression. This article succinctly encapsulates the diverse roles of the BMP signaling pathway across different cancers, spanning glioblastoma multiforme (GBM), diffuse intrinsic pontine glioma (DIPG), colorectal cancer, acute myeloid leukemia (AML), lung cancer, prostate cancer, and osteosarcoma. It underscores the necessity of unraveling underlying mechanisms and molecular interactions. By delving into the intricate tapestry of BMP signaling's engagement in cancers, researchers pave the way for meticulously tailored therapies, adroitly leveraging its dualistic aspects-whether as a suppressor or promoter-to effectively counter the relentless march of tumor progression.
Collapse
Affiliation(s)
- Wei Zhou
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Kun Yan
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qiaoran Xi
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Joint Graduate Program of Peking-Tsinghua-NIBS, Tsinghua University, Beijing, China.
| |
Collapse
|
15
|
Yang Q, Liang Y, Shi Y, Shang J, Huang X. The ALKBH5/SOX4 axis promotes liver cancer stem cell properties via activating the SHH signaling pathway. J Cancer Res Clin Oncol 2023; 149:15499-15510. [PMID: 37646828 DOI: 10.1007/s00432-023-05309-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
Hepatocellular carcinoma (HCC), featured with high prevalence and poor prognosis, is the major cause of cancer-related deaths worldwide. As a subgroup of liver cancer cells capable of differentiation, tumorigenesis and self-renewal, liver cancer stem cells (LCSCs) serve as one of the reasons leading to HCC progression and therapeutic resistance. Therefore, in-depth exploration of novel molecular biomarkers related to LSCSs is of great necessity. In our study, we found that human AlkB homolog H5 (ALKBH5) expression was enriched in LCSCs, which could foster proliferation, invasion and migration of the HCC cells. Mechanically, ALKBH5 positively mediated the expression of SOX4 via demethylation, and SOX4 promoted SHH expression at the transcriptional level to activate sonic hedgehog (SHH) signaling pathway. Furthermore, exosomes derived from CD133+ HCC cells could transmit ALKBH5 into THP-1 cells, which might be associated with M2 polarization of macrophages. In summary, the ALKBH5/SOX4 axis plays a significant role in exacerbating LCSC properties via activating SHH signaling pathway, and ALKBH5 could be a critical effector related to macrophage M2 polarization. These findings might provide a promising new biomarker for HCC diagnosis and treatment.
Collapse
Affiliation(s)
- Qinyan Yang
- Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuxin Liang
- Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Shi
- Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jin Shang
- Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Xiaolun Huang
- Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
16
|
Xin S, Li R, Su J, Cao Q, Wang H, Wei Z, Li G, Qin W, Zhang Z, Wang C, Zhang C, Zhang J. A novel model based on disulfidptosis-related genes to predict prognosis and therapy of bladder urothelial carcinoma. J Cancer Res Clin Oncol 2023; 149:13925-13942. [PMID: 37541976 DOI: 10.1007/s00432-023-05235-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
PURPOSE Disulfidptosis is a novel type of cell death induced by disulphide stress that depends on the accumulation of cystine disulphide, causing cytotoxicity and triggering cell death. However, the direct prognostic effect and regulatory mechanism of disulfidptosis-related genes in bladder urothelial carcinoma (BLCA) remain unclear. METHODS To explore the role of 10 disulfidptosis-related genes, the multiomic data of 10 genes were comprehensively analysed. Next, based on seven disulfidptosis-related differentially expressed genes, a novel disulfidptosis-related gene score was developed to help predict the prognosis of BLCA. Immunohistochemistry, EDU, Real-time PCR and western blot were used to verify the model. RESULTS Significant functional differences were found between the high- and low-risk score groups, and samples with a higher risk score were more malignant. Furthermore, the tumour exclusion and Tumour Immune Dysfunction and Exclusion scores of the high-risk score group were higher than those of the low-risk score group. The risk score was positively correlated with the expression of immune checkpoints. Drug sensitivity analyses revealed that the low-risk score group had a higher sensitivity to cisplatin, doxorubicin, docetaxel and gemcitabine than the high-risk score group. Moreover, the expression of the TM4SF1 was positively correlated with the malignancy degree of BLCA, and the proliferation ability of BLCA cells was reduced after knockdown TM4SF1. CONCLUSION The present study results suggest that disulfidptosis-related genes influence the prognosis of BLCA through their involvement in immune cell infiltration. Thus, these findings indicate the role of disulfidptosis in BLCA and its potential regulatory mechanisms.
Collapse
Affiliation(s)
- Shiyong Xin
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Road, Luo-Long District, Luoyang, 471000, China.
| | - Ruixin Li
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Road, Luo-Long District, Luoyang, 471000, China
| | - Junjie Su
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Road, Luo-Long District, Luoyang, 471000, China
| | - Qiong Cao
- Department of Pathology, The Third Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471003, China
| | - Haojie Wang
- Department of Central Laboratory, Luoyang Central Hospital, Zhengzhou University, Luoyang, 471003, China
| | - Zhihao Wei
- Department of Pathology, The Yiluo Hospital of Luoyang, The Teaching Hospital of Henan University of Science and Technology, Luoyang, 471023, China
| | - Guanyu Li
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Road, Luo-Long District, Luoyang, 471000, China
| | - Wang Qin
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Road, Luo-Long District, Luoyang, 471000, China
| | - Zheng Zhang
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Road, Luo-Long District, Luoyang, 471000, China
| | - Chengliang Wang
- Department of Urology, Shangcheng County People's Hospital, Xinyang, 465300, China
| | - Chengdong Zhang
- Department of Urology, Xinxiang First People's Hospital, Xinxiang, 453000, China
| | - Jianguo Zhang
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Road, Luo-Long District, Luoyang, 471000, China
| |
Collapse
|
17
|
Ren C, Wang Q, Xu Z, Pan Y, Li Y, Liu X. Development and validation of a disulfidptosis and M2 TAM-related classifier for bladder cancer to explore tumor subtypes, immune landscape and drug treatment. J Cancer Res Clin Oncol 2023; 149:15805-15818. [PMID: 37668798 DOI: 10.1007/s00432-023-05352-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Disulfidptosis, as a new mode of programmed cell death, is closely associated with tumorigenesis. Meanwhile, M2 tumor-associated macrophage (TAM) plays an important role in tumor progression. Here, we propose to combine these two perspectives to detect novel disulfidptosis and M2 TAM-related biomarkers in bladder cancer (BCa) to identify various tumor subtypes, construct prognostic features, reveal immune and somatic mutational landscapes, and screen for drugs in BCa. METHODS We used weighted gene co-expression network analysis (WGCNA) to mine M2 TAM-related genes. Consensus unsupervised clustering was performed to identify potential tumor subtypes. The least absolute shrinkage and selection operator (LASSO) regression and multivariate Cox regression analyses were utilized to build the risk model. We then explored the immune cell, immune function, immune checkpoint expression patterns and somatic mutational landscape in clusters and risk groups. In addition, we performed sensitivity analysis for anti-cancer drugs. RESULTS We identified 3057 M2 TAM-related genes and intersected them with disulfidptosis-related genes to obtain 95 disulfidptosis and M2 TAM-related genes (DMRGs). In terms of tumor subtypes, two molecular clusters were identified. Cluster 1 showed stronger immunogenicity and higher tumor mutational burden (TMB). We also predicted 50 drugs with high sensitivity in cluster 1. On the basis of risk grouping, the high-risk group had poor overall survival in the training, test, and validation groups. Ten screened anti-cancer drugs were more sensitive in the high-risk group. A nomogram predicting survival of BCa patients was also established. CONCLUSION By combining two hotspot perspectives, disulfidptosis and M2 TAM, we provide a valuable risk score signature for establishing individualized treatment regimens and drug choices. The risk score may serve as an independent risk factor for BCa patients.
Collapse
Affiliation(s)
- Congzhe Ren
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qihua Wang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhunan Xu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang Pan
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuezheng Li
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoqiang Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
18
|
Liu X, Li D, Gao W, Zhao W, Jin L, Chen P, Liu H, Zhao Y, Dong G. Identification of the shared gene signature and biological mechanism between type 2 diabetes and colorectal cancer. Front Genet 2023; 14:1202849. [PMID: 37876593 PMCID: PMC10593476 DOI: 10.3389/fgene.2023.1202849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/21/2023] [Indexed: 10/26/2023] Open
Abstract
Background: The correlation of type 2 diabetes mellitus (T2DM) with colorectal cancer (CRC) has garnered considerable attention in the scientific community. Despite this, the molecular mechanisms underlying the interaction between these two diseases are yet to be elucidated. Hence, the present investigation aims to explore the shared gene signatures, immune profiles, and drug sensitivity patterns that exist between CRC and T2DM. Methods: RNA sequences and characteristics of patients with CRC and T2DM were retrieved from The Cancer Genome Atlas and Gene Expression Omnibus databases. These were investigated using weighted gene co-expression network analysis (WGCNA) to determine the co-expression networks linked to the conditions. Genes shared between CRC and T2DM were analyzed by univariate regression, followed by risk prognosis assessment using the LASSO regression model. Various parameters were assessed through different software such as the ESTIMATE, CIBERSORT, AND SSGSEA utilized for tumor immune infiltration assessment in the high- and low-risk groups. Additionally, pRRophetic was utilized to assess the sensitivity to chemotherapeutic agents in both groups. This was followed by diagnostic modeling using logistic modeling and clinical prediction modeling using the nomogram. Results: WGCNA recognized four and five modules that displayed a high correlation with T2DM and CRC, respectively. In total, 868 genes were shared between CRC and T2DM, with 14 key shared genes being identified in the follow-up analysis. The overall survival (OS) of patients in the low-risk group was better than that of patients in the high-risk group. In contrast, the high-risk group exhibited higher expression levels of immune checkpoints The Cox regression analyses established that the risk-score model possessed independent prognostic value in predicting OS. To facilitate the prediction of OS and cause-specific survival, the nomogram was established utilizing the Cox regression model. Conclusion: The T2DM + CRC risk-score model enabled independent prediction of OS in individuals with CRC. Moreover, these findings revealed novel genes that hold promise as therapeutic targets or biomarkers in clinical settings.
Collapse
Affiliation(s)
- Xianqiang Liu
- Medical School of Chinese PLA, Beijing, China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Dingchang Li
- Medical School of Chinese PLA, Beijing, China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wenxing Gao
- Medical School of Chinese PLA, Beijing, China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wen Zhao
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Lujia Jin
- Medical School of Chinese PLA, Beijing, China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Peng Chen
- Medical School of Chinese PLA, Beijing, China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hao Liu
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Yingjie Zhao
- Medical School of Chinese PLA, Beijing, China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Guanglong Dong
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
19
|
Zhou B, Jiang X, Zhou X, Tan W, Luo H, Lei S, Yang Y. GelMA-based bioactive hydrogel scaffolds with multiple bone defect repair functions: therapeutic strategies and recent advances. Biomater Res 2023; 27:86. [PMID: 37715230 PMCID: PMC10504735 DOI: 10.1186/s40824-023-00422-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/22/2023] [Indexed: 09/17/2023] Open
Abstract
Currently, the clinical treatment of critical bone defects attributed to various causes remains a great challenge, and repairing these defects with synthetic bone substitutes is the most common strategy. In general, tissue engineering materials that mimic the structural, mechanical and biological properties of natural bone have been extensively applied to fill bone defects and promote in situ bone regeneration. Hydrogels with extracellular matrix (ECM)-like properties are common tissue engineering materials, among which methacrylate-based gelatin (GelMA) hydrogels are widely used because of their tunable mechanical properties, excellent photocrosslinking capability and good biocompatibility. Owing to their lack of osteogenic activity, however, GelMA hydrogels are combined with other types of materials with osteogenic activities to improve the osteogenic capability of the current composites. There are three main aspects to consider when enhancing the bone regenerative performance of composite materials: osteoconductivity, vascularization and osteoinduction. Bioceramics, bioglass, biomimetic scaffolds, inorganic ions, bionic periosteum, growth factors and two-dimensional (2D) nanomaterials have been applied in various combinations to achieve enhanced osteogenic and bone regeneration activities. Three-dimensional (3D)-bioprinted scaffolds are a popular research topic in bone tissue engineering (BTE), and printed and customized scaffolds are suitable for restoring large irregular bone defects due to their shape and structural tunability, enhanced mechanical properties, and good biocompatibility. Herein, the recent progress in research on GelMA-based composite hydrogel scaffolds as multifunctional platforms for restoring critical bone defects in plastic or orthopedic clinics is systematically reviewed and summarized. These strategies pave the way for the design of biomimetic bone substitutes for effective bone reconstruction with good biosafety. This review provides novel insights into the development and current trends of research on GelMA-based hydrogels as effective bone tissue engineering (BTE) scaffolds for correcting bone defects, and these contents are summarized and emphasized from various perspectives (osteoconductivity, vascularization, osteoinduction and 3D-bioprinting). In addition, advantages and deficiencies of GelMA-based bone substitutes used for bone regeneration are put forward, and corresponding improvement measures are presented prior to their clinical application in near future (created with BioRender.com).
Collapse
Affiliation(s)
- Bixia Zhou
- Department of Plastic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Xulei Jiang
- Department of Plastic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Xinxin Zhou
- Department of Plastic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Wuyuan Tan
- Department of Plastic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Hang Luo
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, PR China
| | - Shaorong Lei
- Department of Plastic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, PR China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, PR China.
| | - Ying Yang
- Department of Plastic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, PR China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, PR China.
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, PR China.
| |
Collapse
|
20
|
Nie Z, Guo N, Peng Y, Gao Y, Cao H, Zhang S. Duality of the SVIL expression in bladder cancer and its correlation with immune infiltration. Sci Rep 2023; 13:14595. [PMID: 37670039 PMCID: PMC10480233 DOI: 10.1038/s41598-023-41759-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/31/2023] [Indexed: 09/07/2023] Open
Abstract
SVIL is a member of the villin/gelsolin superfamily and is responsible for encoding supervillin. It has been reported to be closely related to the occurrence and development of various tumors. However, the mechanism of SVIL in bladder cancer has not been reported yet. In this research, we evaluated the relationship between SVIL expression and bladder cancer in public dataset and examined the expression of SVIL in bladder cancer cell lines, tissue microarrays and patients in our cohort. Our work determined that the expression of SVIL in bladder cancer tissue was significantly lower than that in normal tissue. However, in bladder cancer tissues, the high expression of SVIL is significantly associated with poor prognosis. This kind of duality is very novel and has great research value. The expression level of SVIL can well predict the survival time of bladder cancer patients, and is an independent risk factor of bladder cancer patients. The expression of SVIL is also closely related to the immune tumor microenvironment of bladder cancer. Our research provides a basis for personalized therapeutic targets for bladder cancer.
Collapse
Affiliation(s)
- Zhenyu Nie
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan, China
| | - Na Guo
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan, China
| | - Yanling Peng
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan, China
| | - Yuanhui Gao
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan, China
| | - Hui Cao
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan, China
| | - Shufang Zhang
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan, China.
| |
Collapse
|
21
|
Xu J, Shi Q, Wang B, Ji T, Guo W, Ren T, Tang X. The role of tumor immune microenvironment in chordoma: promising immunotherapy strategies. Front Immunol 2023; 14:1257254. [PMID: 37720221 PMCID: PMC10502727 DOI: 10.3389/fimmu.2023.1257254] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Chordoma is a rare malignant bone tumor with limited therapeutic options, which is resistant to conventional chemotherapy and radiotherapy, and targeted therapy is also shown with little efficacy. The long-standing delay in researching its mechanisms of occurrence and development has resulted in the dilemma of no effective treatment targets and no available drugs in clinical practice. In recent years, the role of the tumor immune microenvironment in driving tumor growth has become a hot and challenging topic in the field of cancer research. Immunotherapy has shown promising results in the treatment of various tumors. However, the study of the immune microenvironment of chordoma is still in its infancy. In this review, we aim to present a comprehensive reveal of previous exploration on the chordoma immune microenvironment and propose promising immunotherapy strategies for chordoma based on these characteristics.
Collapse
Affiliation(s)
- Jiuhui Xu
- Department of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Qianyu Shi
- Department of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Boyang Wang
- Department of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Tao Ji
- Department of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Wei Guo
- Department of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Tingting Ren
- Department of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Xiaodong Tang
- Department of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
22
|
Li W, Wang Z, Jiang Z, Yan Y, Yao X, Pan Z, Chen L, Wang F, Wang M, Qin Z. MiR-3960 inhibits bladder cancer progression via targeting of DEXI. Biochem Biophys Res Commun 2023; 668:8-18. [PMID: 37230046 DOI: 10.1016/j.bbrc.2023.05.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
PURPOSE MicroRNAs (miRNAs) are dominant cargo in exosomes and act as master regulators of cell function, inhibiting mRNA translation and affecting gene silencing. Some aspects of tissue-specific miRNA transport in bladder cancer (BC) and its role in cancer progression are not fully understood. MATERIALS AND METHODS A microarray was used to identify miRNAs in mouse bladder carcinoma cell line MB49 exosomes. Real-time reverse transcription polymerase chain reaction was used to examine the expression of miRNAs in BC and healthy donor serum. Western blotting and immunohistochemical staining were used to examine the expression of dexamethasone-induced protein (DEXI) in patients with BC. CRISPR-Cas 9 was used to knock out Dexi in MB49, and flow cytometry was performed to test cell proliferation ability and apoptosis under chemotherapy. Human BC organoid culture, miR-3960 transfection, and 293T-exosome-loaded miR-3960 delivery were used to analyze the effect of miR-3960 on BC progression. RESULTS The results showed that miR-3960 levels in BC tissue were positively correlated with patient survival time. Dexi was a major target of miR-3960. Dexi knockout inhibited MB49 cell proliferation and promoted cisplatin- and gemcitabine-induced apoptosis. Transfection of miR-3960 mimic inhibited DEXI expression and organoid growth. In parallel, 293T-exosome-loaded miR-3960 delivery and Dexi knockout significantly inhibited subcutaneous growth of MB49 cells in vivo. CONCLUSION Our results demonstrate the potential role of miR-3960-mediated inhibition of DEXI as a therapeutic strategy against BC.
Collapse
Affiliation(s)
- Wenqing Li
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China; Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Zihao Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| | - Ziming Jiang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| | - Yan Yan
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| | - Xiaohan Yao
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| | - Zhenzhen Pan
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| | - Lin Chen
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| | - Fei Wang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| | - Ming Wang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| | - Zhihai Qin
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China; Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
23
|
Chan TC, Pan CT, Hsieh HY, Vejvisithsakul PP, Wei RJ, Yeh BW, Wu WJ, Chen LR, Shiao MS, Li CF, Shiue YL. The autocrine glycosylated-GREM1 interacts with TGFB1 to suppress TGFβ/BMP/SMAD-mediated EMT partially by inhibiting MYL9 transactivation in urinary carcinoma. Cell Oncol (Dordr) 2023; 46:933-951. [PMID: 36920729 DOI: 10.1007/s13402-023-00788-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
PURPOSE Urothelial carcinoma (UC) is a common disease in developed counties. This study aimed to identify autocrine roles and signaling pathways of gremlin 1, DAN family BMP antagonist (GREM1), which inhibits tumor growth and epithelial-mesenchymal transition (EMT) in UC. METHODS Systematic in vitro and in vivo studies using genetic engineering, different urinary bladder urothelial carcinoma (UBUC)-derived cell lines, and mouse models were performed, respectively. Further, primary upper tract urothelial carcinoma (UTUC) and UBUC specimens were evaluated by immunohistochemistry. RESULTS GREM1 protein levels conferred better disease-specific and metastasis-free survival rates and played an independent prognostic factor in UTUC and UBUC. Hypermethylation is the primary cause of low GREM1 levels. In different UBUC-derived cell lines, the autocrine/secreted and glycosylated GREM1 interacted with transforming growth factor beta 1 (TGFB1) and inhibited TGFβ/BMP/SMAD signaling and myosin light chain 9 (MYL9) transactivation, subsequently cell proliferation and epithelial-mesenchymal transition (EMT). Secreted and glycosylated GREM1 also suppressed tumor growth, metastasis, and MYL9 levels in the mouse model. Instead, cytosolic GREM1 promoted cell proliferation and EMT by activating the tumor necrosis factor (TNF)/AKT/nuclear factor kappa B (NFκB) axis. CONCLUSIONS Clinical associations, animal models, and in vitro indications provided solid evidence to show that the epithelial autocrine GREM1 is a novel tumor suppressor in UCs. The glycosylated-GREM1 hampered cell proliferation, migration, invasion, and in vitro angiogenesis through interaction with TGFB1 to inactivate TGFβ/BMP/SMAD-mediated EMT in an autocrine manner.
Collapse
Affiliation(s)
- Ti-Chun Chan
- Department of Medical Research, Chi-Mei Medical Center, Tainan, 71004, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 71004, Taiwan
| | - Cheng-Tang Pan
- Institute of Precision Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- Institute of Advanced Semiconductor Packaging and Testing, College of Semiconductor and Advanced Technology Research, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Hsin-Yu Hsieh
- Institute of Precision Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- Institute of Biomedical Sciences, College of Medicine, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Pichpisith Pierre Vejvisithsakul
- Institute of Biomedical Sciences, College of Medicine, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Ren-Jie Wei
- Department of Pathology, Kaohsiung Armed Forces General Hospital, Kaohsiung, 80284, Taiwan
- Institute of Medical Science and Technology, School of Medicine, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, 83102, Taiwan
| | - Bi-Wen Yeh
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
| | - Wen-Jeng Wu
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Lih-Ren Chen
- Division of Physiology, Livestock Research Institute, Tainan, 71246, Taiwan
| | - Meng-Shin Shiao
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Chien-Feng Li
- Department of Medical Research, Chi-Mei Medical Center, Tainan, 71004, Taiwan.
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 71004, Taiwan.
- Institute of Precision Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
| | - Yow-Ling Shiue
- Institute of Precision Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
- Institute of Biomedical Sciences, College of Medicine, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
| |
Collapse
|
24
|
Patwardhan MV, Mahendran R. The Bladder Tumor Microenvironment Components That Modulate the Tumor and Impact Therapy. Int J Mol Sci 2023; 24:12311. [PMID: 37569686 PMCID: PMC10419109 DOI: 10.3390/ijms241512311] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
The tumor microenvironment (TME) is complex and involves many different cell types that seemingly work together in helping cancer cells evade immune monitoring and survive therapy. The advent of single-cell sequencing has greatly increased our knowledge of the cell types present in the tumor microenvironment and their role in the developing cancer. This, coupled with clinical data showing that cancer development and the response to therapy may be influenced by drugs that indirectly influence the tumor environment, highlights the need to better understand how the cells present in the TME work together. This review looks at the different cell types (cancer cells, cancer stem cells, endothelial cells, pericytes, adipose cells, cancer-associated fibroblasts, and neuronal cells) in the bladder tumor microenvironment. Their impact on immune activation and on shaping the microenvironment are discussed as well as the effects of hypertensive drugs and anesthetics on bladder cancer.
Collapse
Affiliation(s)
| | - Ratha Mahendran
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| |
Collapse
|
25
|
Han X, Yan T, Wang L, He B, Yu H. Knockdown of PTEN promotes colon cancer progression and induces M2 macrophage polarization in the colon cancer cell environment. INDIAN J PATHOL MICR 2023; 66:478-487. [PMID: 37530327 DOI: 10.4103/ijpm.ijpm_786_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Objective This article aims to study the effect of phosphate and tension homolog deleted on chromosome ten (PTEN) knockdown on colon cancer progression and macrophage polarization in the cancer environment. Materials and Methods and Results The expression of PTEN in colon cancer tissues and colon cancer cells was significantly lower than in precancerous tissues or CCD-18Co cells, and the decrease was most evident in SW620 cells. The expressions of phosphate (p)-p38, c-Jun N-terminal kinase (JNK), activator protein 1 (AP-1), B-cell lymphoma-2 (Bcl-2) protein in colon cancer tissues and cells were significantly higher than in precancerous tissues or CCD-18Co cells (P-values < 0.05). Bcl-2-associated X (Bax) and Caspase-3 expressions in colon cancer tissues and cells were significantly lower than in precancerous tissues or CCD-18Co cells (P-values < 0.05). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) was applied to measure cell viability. Transwell evaluated the cell migration and invasion ability. Si-PTEN improved the proliferation, migration, and invasion of SW620 cells (P-values < 0.05). The expression levels of arginase-1 (Arg-1), CD163, CD206 in colon cancer tissues were significantly higher than in precancerous tissues (P-values < 0.05). The cell cycle, the number of M1 and M2 double-positive cells were assessed by flow cytometry. Si-PTEN reduced the expression of tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), and inducible nitric oxide synthase (iNOS), which upregulated the expression of Arg-1, CD206, CD163, p-p38, JNK, and AP-1 (P-values < 0.05). Conclusion Si-PTEN promoted colon cancer progression and induced the polarization of M2 tumor-associated macrophages in the colon cancer cell environment.
Collapse
Affiliation(s)
- Xu Han
- General Surgery Department, The Fourth Hospital of Changsha, Changsha City, Hunan Province, China
| | - Ting Yan
- General Surgery Department, The Fourth Hospital of Changsha, Changsha City, Hunan Province, China
| | - Lina Wang
- Department of General Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Bin He
- General Surgery Department, The Fourth Hospital of Changsha, Changsha City, Hunan Province, China
| | - Huaxu Yu
- General Surgery Department, The Fourth Hospital of Changsha, Changsha City, Hunan Province, China
| |
Collapse
|
26
|
Ma B, Wang X, Ren H, Li Y, Zhang H, Yang M, Li J. High glucose promotes the progression of colorectal cancer by activating the BMP4 signaling and inhibited by glucagon-like peptide-1 receptor agonist. BMC Cancer 2023; 23:594. [PMID: 37370018 PMCID: PMC10304216 DOI: 10.1186/s12885-023-11077-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The detailed molecular mechanism between type 2 diabetes mellitus (T2DM) and colorectal cancer (CRC) is still uncertain. Bone morphogenetic protein 4 (BMP4) dysregulation is implicated in T2DM and CRC, respectively. This study aims to investigate whether BMP4 can mediate the interaction of CRC with T2DM. METHODS We firstly explored the expression of BMP4 in The Cancer Genome Altas (TCGA) databases and CRC patients with or without DM from the Shanghai Tenth People's Hospital. The diabetic model of CRC cell lines in vitro and the mice model in vivo were developed to explore the BMP4 expression during CRC with or without diabetes. Further inhibition of BMP4 to observe its effects on CRC. Also, glucagon-like peptide-1 receptor agonist (GLP-1RA) was used to verify the underlying mechanism of hypoglycemic drugs on CRC via BMP4. RESULTS BMP4 expression was upregulated in CRC patients, and significantly higher in CRC patients with diabetes (P < 0.05). High glucose-induced insulin resistance (IR)-CRC cells and diabetic mice with metastasis model of CRC had increased BMP4 expression, activated BMP4-Smad1/5/8 pathway, and improved proliferative and metastatic ability mediated by epithelial-mesenchymal transition (EMT). And, treated CRC cells with exogenously BMP inhibitor-Noggin or transfected with lentivirus (sh-BMP4) could block the upregulated metastatic ability of CRC cells induced by IR. Meanwhile, GLP-1R was downregulated by high glucose-induced IR while unregulated by BMP4 inhibitor noggin, and treated GLP-1RA could suppress the proliferation of CRC cells induced by IR through downregulated BMP4. CONCLUSIONS BMP4 increased by high glucose promoted the EMT of CRC. The mechanism of the BMP4/Smad pathway was related to the susceptible metastasis of high glucose-induced IR-CRC. The commonly used hypoglycemic drug, GLP-1RA, inhibited the growth and promoted the apoptosis of CRC through the downregulation of BMP4. The result of our study suggested that BMP4 might serve as a therapeutic target in CRC patients with diabetes.
Collapse
Affiliation(s)
- Bingwei Ma
- Colorectal Cancer Central, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, China
| | - Xingchun Wang
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University, 301 Middle Yanchang Road, Shanghai, 200072, China
- Thyroid Research Center of Shanghai, Shanghai Tenth People's Hospital, 301 Middle Yanchang Road, Shanghai, 200072, China
| | - Hui Ren
- School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yingying Li
- School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Haijiao Zhang
- Department of Gastrointestinal Surgery, Huadong Hospital affiliated with Fudan University, 221 West Yanan Road, Shanghai, 200040, China
| | - Muqing Yang
- Department of General Surgery, Tenth People's Hospital of Tongji University, 301 Middle Yanchang Road, Shanghai, 200072, China
| | - Jiyu Li
- Geriatric Cancer Center, Huadong Hospital Affiliated to Fudan University, 221 West Yanan Road, Shanghai, 200040, China.
| |
Collapse
|
27
|
Wen J, Yin P, Su Y, Gao F, Wu Y, Zhang W, Chi P, Chen J, Zhang X. Knockdown of HMGB1 inhibits the crosstalk between oral squamous cell carcinoma cells and tumor-associated macrophages. Int Immunopharmacol 2023; 119:110259. [PMID: 37141670 DOI: 10.1016/j.intimp.2023.110259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/30/2023] [Accepted: 04/28/2023] [Indexed: 05/06/2023]
Abstract
Tumor-associated macrophages (TAMs), the major component of the tumor microenvironment (TME), play distinctly different roles in different tumors. High mobility group box 1 (HMGB1), a nonhistone protein in the nucleus, can perform functions during inflammation and cancers. However, the role of HMGB1 in the crosstalk between oral squamous cell carcinoma (OSCC) cells and TAMs remains unclear. Here, we established a coculture system of TAMs and OSCC cells to explore the bidirectional effect and potential mechanism of HMGB1 in OSCC cell-TAM interactions. Our results showed that HMGB1 was significantly upregulated in OSCC tissues and positively associated with tumor progression, immune cell infiltration and macrophage polarization. Then, knocking down HMGB1 in OSCC cells inhibited the recruitment and polarization of cocultured TAMs. Moreover, the knockdown of HMGB1 in macrophages not only suppressed polarization, but also inhibited cocultured OSCC cell proliferation, migration and invasion in vitro and in vivo. Mechanistically, macrophages secreted higher levels of HMGB1 than OSCC cells, and dampening endogenous HMGB1 reduced HMGB1 secretion. Both OSCC cell-generated and macrophage-endogenous HMGB1 may regulate TAM polarization by promoting receptor TLR4 expression and NF-κB/p65 activation and enhancing IL-10/TGF-β expression. HMGB1 in OSCC cells may regulate macrophage recruitment via IL-6/STAT3. In addition, TAM-derived HMGB1 may affect aggressive phenotypes of cocultured OSCC cells by regulating the immunosuppressive microenvironment through the IL-6/STAT3/PD-L1 and IL-6/NF-κB/MMP-9 pathways. In conclusion, HMGB1 may regulate the crosstalk between OSCC cells and TAMs, including modulating macrophage polarization and attraction, enhancing cytokine secretion, and remodeling and creating an immunosuppressive TME to further affect OSCC progression.
Collapse
Affiliation(s)
- Jinlin Wen
- Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Panpan Yin
- Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Ying Su
- Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Feng Gao
- Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Yanlin Wu
- Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Wenbin Zhang
- Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Peng Chi
- Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Jiahui Chen
- Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Xinyan Zhang
- Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
28
|
Zhu F, Zhang Q, Feng J, Zhang X, Li T, Liu S, Chen Y, Li X, Wu Q, Xue Y, Alitongbieke G, Pan Y. β-Glucan produced by Lentinus edodes suppresses breast cancer progression via the inhibition of macrophage M2 polarization by integrating autophagy and inflammatory signals. Immun Inflamm Dis 2023; 11:e876. [PMID: 37249285 PMCID: PMC10214582 DOI: 10.1002/iid3.876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/29/2023] [Accepted: 05/07/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND β-Glucan from Lentinus edodes (LNT), an edible mushroom, possesses strong anticancer activity. However, the therapeutic effects of LNT during the occurrence and progression of breast cancer and their underlying molecular mechanisms have not been elucidated. METHODS Mouse mammary tumor virus-polyoma middle tumor-antigen (MMTV-PyMT) transgenic mice were used as a breast cancer mouse model. Hematoxylin and eosin, immunohistochemical, and immunofluorescence staining were performed for histopathological analysis. Moreover, we developed an inflammatory cell model using tumor necrosis factor-α (TNF-α). Macrophage polarization was assessed using western blot analysis and immunofluorescence. RESULTS Orphan nuclear receptor 77 (Nur77) and sequestosome-1 (p62) were highly expressed and positively correlated with each other in breast cancer tissues. LNT significantly inhibited tumor growth, ameliorated inflammatory cell infiltration, and induced tumor cell apoptosis in PyMT transgenic mice. Moreover, LNT attenuated the ability of tumors to metastasize to lung tissue. Mechanistically, LNT treatment restrained macrophage polarization from M1 to M2 phenotype and promoted autophagic cell death by inhibiting Nur77 expression, AKT/mTOR signaling, and inflammatory signals in breast tumor cells. However, LNT did not exhibit a direct pro-autophagic effect on tumor cell death, except for its inhibitory effect on Nur77 expression. LNT-mediated autophagic tumor cell death depends on M1 macrophage polarization. In in vitro experiments, LNT inhibited the upregulation of p62, autophagy activation, and inflammatory signaling pathways in Nur77 cells. CONCLUSION LNT inhibited macrophage M2 polarization and subsequently blocked the AKT/mTOR and inflammatory signaling axes in breast cancer cells, thereby promoting autophagic tumor cell death. Thus, LNT may be a promising therapeutic strategy for breast cancer.
Collapse
Affiliation(s)
- Fukai Zhu
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| | - Qianru Zhang
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| | - Jiexin Feng
- Breast Surgery DepartmentZhangzhou Hospital of Fujian Medical UniversityZhangzhouFujianPeople's Republic of China
| | - Xiuru Zhang
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| | - Tingting Li
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| | - Shuwen Liu
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| | - Yanling Chen
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| | - Xiumin Li
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| | - Qici Wu
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| | - Yu Xue
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| | - Gulimiran Alitongbieke
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| | - Yutian Pan
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| |
Collapse
|
29
|
Deng C, Deng G, Chu H, Chen S, Chen X, Li X, He Y, Sun C, Zhang C. Construction of a hypoxia-immune-related prognostic panel based on integrated single-cell and bulk RNA sequencing analyses in gastric cancer. Front Immunol 2023; 14:1140328. [PMID: 37180146 PMCID: PMC10169567 DOI: 10.3389/fimmu.2023.1140328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023] Open
Abstract
Introduction Gastric cancer (GC) is the fifth most common tumor, contributing to the third-highest number of cancer-related deaths. Hypoxia is a major feature of the tumor microenvironment. This study aimed to explore the influence of hypoxia in GC and establish a hypoxia-related prognostic panel. Methods The GC scRNA-seq data and bulk RNA-seq data were downloaded from the GEO and TCGA databases, respectively. AddModuleScore() and AUCell() were used to calculate module scores and fractions of enrichment for hypoxia-related gene expression in single cells. Least absolute shrinkage and selection operator cox (LASSO-COX) regression analysis was utilized to build a prognostic panel, and hub RNAs were validated by qPCR. The CIBERSORT algorithm was adopted to evaluate immune infiltration. The finding of immune infiltration was validated by a dual immunohistochemistry staining. The TIDE score, TIS score and ESTIMATE were used to evaluate the immunotherapy predictive efficacy. Results Hypoxia-related scores were the highest in fibroblasts, and 166 differentially expressed genes were identified. Five hypoxia-related genes were incorporated into the hypoxia-related prognostic panel. 4 hypoxia-related genes (including POSTN, BMP4, MXRA5 and LBH) were significantly upregulated in clinical GC samples compared with the normal group, while APOD expression decreased in GC samples. Similar results were found between cancer-associated fibroblasts (CAFs) and normal fibroblasts (NFs). A high hypoxia score was associated with advanced grade, TNM stage, N stage, and poorer prognosis. Decreased antitumor immune cells and increased cancer-promoting immune cells were found in patients with high hypoxia scores. Dual immunohistochemistry staining showed high expression of CD8 and ACTA2 in gastric cancer tissue. In addition, the high hypoxia score group possessed higher TIDE scores, indicating poor immunotherapy benefit. A high hypoxia score was also firmly related to sensitivity to chemotherapeutic drugs. Discussion This hypoxia-related prognostic panel may be effective in predicting the clinical prognosis, immune infiltrations, immunotherapy, and chemotherapy in GC.
Collapse
Affiliation(s)
- Cuncan Deng
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Guofei Deng
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hongwu Chu
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Songyao Chen
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiancong Chen
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xing Li
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yulong He
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Chunhui Sun
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Changhua Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
30
|
Jin X, Wang Q, Luo F, Pan J, Lu T, Zhao Y, Zhang X, Xiang E, Zhou C, Huang B, Lu G, Chen P, Shao Y. Single-cell transcriptomic analysis of tumor heterogeneity and intercellular networks in human urothelial carcinoma. Chin Med J (Engl) 2023; 136:690-706. [PMID: 36939254 PMCID: PMC10129232 DOI: 10.1097/cm9.0000000000002573] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Indexed: 03/21/2023] Open
Abstract
BACKGROUND Heterogeneity of tumor cells and the tumor microenvironment (TME) is significantly associated with clinical outcomes and treatment responses in patients with urothelial carcinoma (UC). Comprehensive profiling of the cellular diversity and interactions between malignant cells and TME may clarify the mechanisms underlying UC progression and guide the development of novel therapies. This study aimed to extend our understanding of intra-tumoral heterogeneity and the immunosuppressive TME in UC and provide basic support for the development of novel UC therapies. METHODS Seven patients with UC were included who underwent curative surgery at our hospital between July 2020 and October 2020. We performed single-cell RNA sequencing (scRNA-seq) analysis in seven tumors with six matched adjacent normal tissues and integrated the results with two public scRNA-seq datasets. The functional properties and intercellular interactions between single cells were characterized, and the results were validated using multiplex immunofluorescence staining, flow cytometry, and bulk transcriptomic datasets. All statistical analyses were performed using the R package with two-sided tests. Wilcoxon-rank test, log-rank test, one-way analysis of variance test, and Pearson correlation analysis were used properly. RESULTS Unsupervised t-distributed stochastic neighbor embedding clustering analysis identified ten main cellular subclusters in urothelial tissues. Of them, seven urothelial subtypes were noted, and malignant urothelial cells were characterized with enhanced cellular proliferation and reduced immunogenicity. CD8 + T cell subclusters exhibited enhanced cellular cytotoxicity activities along with increased exhaustion signature in UC tissues, and the recruitment of CD4 + T regulatory cells was also increased in tumor tissues. Regarding myeloid cells, coordinated reprogramming of infiltrated neutrophils, M2-type polarized macrophages, and LAMP3 + dendritic cells contribute to immunosuppressive TME in UC tissues. Tumor tissues demonstrated enhanced angiogenesis mediated by KDR + endothelial cells and RGS5 + /ACTA2 + pericytes. Through deconvolution analysis, we identified multiple cellular subtypes may influence the programmed death-ligand 1 (PD-L1) immunotherapy response in patients with UC. CONCLUSION Our scRNA-seq analysis clarified intra-tumoral heterogeneity and delineated the pro-tumoral and immunosuppressive microenvironment in UC tissues, which may provide novel therapeutic targets.
Collapse
Affiliation(s)
- Xingwei Jin
- Department of Urinary Cancer Multi-Disciplinary Treatment Clinic, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qizhang Wang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Fangxiu Luo
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Junwei Pan
- Department of Urinary Cancer Multi-Disciplinary Treatment Clinic, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tingwei Lu
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yang Zhao
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiang Zhang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Enfei Xiang
- Department of Central Laboratory, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chenghua Zhou
- Department of Central Laboratory, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Baoxing Huang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guoliang Lu
- Department of Urinary Cancer Multi-Disciplinary Treatment Clinic, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Peizhan Chen
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuan Shao
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
31
|
Wang S, Xu G, Li M, Zheng J, Wang Y, Feng X, Luo J, Wang S, Liu H, Duan W, Zhang H, Huang D, Zhao F, Nie Y, Yang J. M1 macrophage predicted efficacy of neoadjuvant camrelizumab combined with chemotherapy vs chemotherapy alone for locally advanced ESCC: A pilot study. Front Oncol 2023; 13:1139990. [PMID: 36969032 PMCID: PMC10038194 DOI: 10.3389/fonc.2023.1139990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/20/2023] [Indexed: 03/12/2023] Open
Abstract
Introduction The efficacy and safety of immunotherapy have been widely recognized in gastrointestinal-related cancers. However, the efficacy of neoadjuvant camrelizumab for locally advanced esophageal squamous cell carcinoma (ESCC) has not been firmly established. This study compared the efficacy of camrelizumab in combination with neoadjuvant DCF (docetaxel, cisplatin and fluorouracil), with DCF alone for ESCC, and exploring biomarkers related to immune infiltration of the ESCC immunotherapy response. Methods We enrolled and randomly assigned patients with stage II-IVa ESCC to two study treatments: camrelizumab combined with docetaxel, cisplatin and fluorouracil (DCF) regimen and DCF regimen alone. The tissue for multiplex immunofluorescence (mIF) was obtained before and after neoadjuvant therapy. The Response Evaluation Criteria in Solid Tumors RECIST Version 1.1 (RECIST 1.1) and Tumor Regression Grade (TRG) was used to evaluate efficacy. Results A total of 30 patients were enrolled in the study. Following neoadjuvant camrelizumab, the objective response rate (ORR) and the disease control rate (DCR) were 46.7% (7/15) and 95.7% (14/15), respectively. No patients reported complete remission, while ORR and DCR in the chemotherapy group were 26.7% (4/15) and 86.7% (13/15), respectively. R0 resection after neoadjuvant treatment was achieved in 3 out of 15 patients in the combined group and in all patients (15/15) in the chemotherapy group. In the combined group, M1-type tumor-associated macrophages and CD56dim NK cells were more abundant in responders than in non-responders (p < 0.05). A higher M1/M2 ratio was observed in responders (p < 0.05). With respect to the NGS, among the copy number amplified genes, the 11q13 amplicon (CCND1/FGF19/FGF4/FGF3) showed the highest frequency (47%, 7/15). Conclusions Neoadjuvant camrelizumab combined with chemotherapy improved ORR in locally advanced ESCC. M1-type tumor-associated macrophages and CD56dim NK cells might be utilized to predict camrelizumab efficacy.
Collapse
Affiliation(s)
- Shu Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xi-jing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
- Department of Digestive Surgery, Xi Jing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Guanghui Xu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xi-jing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
- Department of Digestive Surgery, Xi Jing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Mengbin Li
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xi-jing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
- Department of Digestive Surgery, Xi Jing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Jiyang Zheng
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xi-jing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
- Department of Digestive Surgery, Xi Jing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Yuhao Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xi-jing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
- Department of Digestive Surgery, Xi Jing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Xiangying Feng
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xi-jing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
- Department of Digestive Surgery, Xi Jing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Jialin Luo
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xi-jing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
- Department of Digestive Surgery, Xi Jing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Shibo Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xi-jing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Huan Liu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xi-jing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Weiming Duan
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Hushan Zhang
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Depei Huang
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Feilong Zhao
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xi-jing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Jianjun Yang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xi-jing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
- Department of Digestive Surgery, Xi Jing Hospital, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
32
|
Single-cell discovery of the scene and potential immunotherapeutic target in hypopharyngeal tumor environment. Cancer Gene Ther 2023; 30:462-471. [PMID: 36460803 PMCID: PMC10014576 DOI: 10.1038/s41417-022-00567-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/02/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
Abstract
Hypopharyngeal carcinoma is a cancer with the worst prognosis. We constructed the first single-cell transcriptome map for hypopharyngeal carcinoma and explored its underlying mechanisms. We systematically studied single-cell transcriptome data of 17,599 cells from hypopharyngeal carcinoma and paracancerous tissues. We identified categories of cells by dimensionality reduction and performed further subgroup analysis. Focusing on the potential mechanism in the cellular communication of hypopharyngeal carcinoma, we predicted ligand-receptor interactions and verified them via immunohistochemical and cellular experiments. In total, seven cell types were identified, including epithelial and myeloid cells. Subsequently, subgroup analysis showed significant tumor heterogeneity. Based on the pathological type of squamous cell carcinoma, we focused on intercellular communication between epithelial cells and various cells. We predicted the crosstalk and inferred the regulatory effect of cellular active ligands on the surface receptor of epithelial cells. From the top potential pairs, we focused on the BMPR2 receptor for further research, as it showed significantly higher expression in epithelial cancer tissue than in adjacent tissue. Further bioinformatics analysis, immunohistochemical staining, and cell experiments also confirmed its cancer-promoting effects. Overall, the single-cell perspective revealed complex crosstalk in hypopharyngeal cancer, in which BMPR2 promotes its proliferation and migration, providing a rationale for further study and treatment of this carcinoma.
Collapse
|
33
|
Guo X, Li Y, Wan B, Lv Y, Wang X, Liu G, Wang P. ETV1 inhibition depressed M2 polarization of tumor-associated macrophage and cell process in gastrointestinal stromal tumor via down-regulating PDE3A. J Clin Biochem Nutr 2023; 72:139-146. [PMID: 36936869 PMCID: PMC10017324 DOI: 10.3164/jcbn.22-47] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/13/2022] [Indexed: 01/15/2023] Open
Abstract
M2-type polarization of tumor associated-macrophage (TAM) is involved in the malignancy of gastrointestinal stromal tumor (GIST) progression. ETS variant 1 (ETV1) has been previously validated to regulate GIST pathogenesis. Our study intended to explore the role and mechanism of ETV1 in mediating the M2-polarization of TAM in GIST progression. First, we analyzed the correlation between ETV1 expression and M2-polarization in GIST tissues. IL-4 was used to treat THP-1-derived TAM cells and IL-4-stimulated TAM were co-cultured with GIST-T1 cells to mimic the GIST microenvironment. A loss-of-function assay was performed to explore the role of ETV1. Results showed that ETV1 elevation was positively correlated with M2-polarization. IL-4-induced TAM promoted ETV1 expression, silencing ETV1 inhibited proliferation, invasion and KIT activation in IL-4-treated GIST cells, while cell apoptosis was enhanced. Besides, co-culture of ETV1-silenced GIST cells significantly depressed M2-polarization in TAM, presented as decreased levels of CD206, Agr-1 and cytokines, as well as the proportion of CD206-positive TAM. PDE3A was positively correlated with ETV1 and M2-polarization. Overexpressing PDE3A reversed the inhibitory effects of ETV1 silencing. Generally, ETV1 inhibition depressed M2-polarization of TAM in GIST and its promotion on pathological aggravation via down-regulating PDE3A. This evidence may provide a new target for GIST regulation.
Collapse
Affiliation(s)
- Xueyan Guo
- Department of Gastroenterology, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi 710068, China
| | - Yulong Li
- Department of Gastroenterology, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi 710068, China
| | - Bingbing Wan
- Department of Gastroenterology, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi 710068, China
| | - Yifei Lv
- Department of Gastroenterology, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi 710068, China
| | - Xue Wang
- Department of Gastroenterology, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi 710068, China
| | - Guisheng Liu
- Department of Gastroenterology, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi 710068, China
| | - Ping Wang
- Department of Gastroenterology, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi 710068, China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
34
|
Sonnemann HM, Pazdrak B, Antunes DA, Roszik J, Lizée G. Vestigial-like 1 (VGLL1): An ancient co-transcriptional activator linking wing, placenta, and tumor development. Biochim Biophys Acta Rev Cancer 2023; 1878:188892. [PMID: 37004960 DOI: 10.1016/j.bbcan.2023.188892] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Vestigial-like 1 (VGLL1) is a recently discovered driver of proliferation and invasion that is expressed in many aggressive human malignancies and is strongly associated with poor prognosis. The VGLL1 gene encodes for a co-transcriptional activator that shows intriguing structural similarity to key activators in the hippo pathway, providing important clues to its functional role. VGLL1 binds to TEADs in an analogous fashion to YAP1 but appears to activate a distinct set of downstream gene targets. In mammals, VGLL1 expression is found almost exclusively in placental trophoblasts, cells that share many hallmarks of cancer. Due to its role as a driver of tumor progression, VGLL1 has become a target of interest for potential anticancer therapies. In this review, we discuss VGLL1 from an evolutionary perspective, contrast its role in placental and tumor development, summarize the current knowledge of how signaling pathways can modulate VGLL1 function, and discuss potential approaches for targeting VGLL1 therapeutically.
Collapse
|
35
|
Zhang W, Liu X, Wang J, Wang X, Zhang Y. Immunogenic Cell Death Associated Molecular Patterns and the Dual Role of IL17RA in Interstitial Cystitis/Bladder Pain Syndrome. Biomolecules 2023; 13:biom13030421. [PMID: 36979355 PMCID: PMC10046465 DOI: 10.3390/biom13030421] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
The unclear etiology and pathogenesis of interstitial cystitis/bladder pain syndrome (IC/BPS) are responsible for the lack of effective treatment and the poor patient prognosis. Various studies show that chronic inflammation and immune responses are important factors contributing to the pathogenesis of IC/BPS. The process of immunogenic cell death (ICD) involves both the immune response and inflammatory process, and the involvement of ICD in IC/BPS pathogenesis has not been explored. Two IC/BPS transcriptome datasets collected from the Gene Expression Omnibus (GEO) database were used to identify distinct ICD-associated molecular patterns (IAMPs). IAMPs and IC/BPS subtypes were found to be related. The inflammatory immune microenvironments (IIME) in different IAMPs were studied. The potential mechanism by which the interleukin 17 receptor A (IL17RA) influences IC/BPS was examined using in vitro assays. The expression of ICD-related genes (IRGs) was upregulated in IC/BPS bladders, compared with normal bladders. Disease prediction models, based on differentially expressed IRGs, could accurately predict IC/BPS. The IC/BPS patients had two distinct IAMPs, each with its own subtype and clinical features and association with remodeling IIME. IL17RA, a well-established IC/BPS bladder biomarker, mediates both the inflammatory insult and the protective responses. In summary, the current study identified different IAMPs in IC/BPS, which may be involved in the pathogenesis of IC/BPS by remodeling the IIME. The chronic inflammatory process in IC/BPS may be prolonged by IL17RA, which could mediate both pro- and anti-inflammatory responses. The IL17RA-associated pathway may play a significant role in the development of IC/BPS and can be used as a therapeutic target.
Collapse
|
36
|
Zou Z, Lin H, Li M, Lin B. Tumor-associated macrophage polarization in the inflammatory tumor microenvironment. Front Oncol 2023; 13:1103149. [PMID: 36816959 PMCID: PMC9934926 DOI: 10.3389/fonc.2023.1103149] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
The chronic inflammation of tumor continues to recruit TAMs (tumor-associated macrophages) to the TME (tumor microenvironment) and promote polarization. Pro-inflammatory signals polarize macrophages to the M1 phenotype to enhance inflammation against pathogens. Tumor inflammatory development changes the pro-inflammatory response to an anti-inflammatory response, resulting in the alteration of macrophages from M1 to M2 to promote tumor progression. Additionally, hypoxia activates HIF (hypoxia-inducible factors) in the TME, which reprograms macrophages to the M2 phenotype to support tumor development. Here, we discuss the factors that drive phenotypic changes in TAMs in the inflammatory TME, which will help in the development of cancer immunotherapy of macrophages.
Collapse
Affiliation(s)
- Zijuan Zou
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, Hainan, China
| | - Hongfen Lin
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, Hainan, China
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, Hainan, China,Institution of Tumor, Hainan Medical College, Haikou, Hainan, China,*Correspondence: Mengsen Li, ; Bo Lin,
| | - Bo Lin
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, Hainan, China,*Correspondence: Mengsen Li, ; Bo Lin,
| |
Collapse
|
37
|
Wang X, Yuwen TJ, Zhong Y, Li ZG, Wang XY. A new method for predicting the prognosis of colorectal cancer patients through a combination of multiple tumor-associated macrophage markers at the invasive front. Heliyon 2023; 9:e13211. [PMID: 36798759 PMCID: PMC9925966 DOI: 10.1016/j.heliyon.2023.e13211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/30/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are closely related to tumorigenesis and metastasis of multiple cancer types. The infiltration of TAMs is used for predicting the prognosis of cancers, including colorectal cancer (CRC). However, the density and prognostic significance of M1 and M2 TAM phenotypes in the intratumor versus the invasive front (IF) are largely unknown in CRC. In this study, CD68 was selected as a general marker of TAMs, CD11c, NOS2 and CXCL10 as markers for M1 phenotype and CD163, CD206, CD115 as markers for M2 phenotype. Firstly, immunohistochemistry staining and double-labeling immunofluorescence staining showed that M1 molecular markers (NOS2, CXCL10, CD11c) were lowly expressed at both IF and intratumor, while M2 molecular markers (CD163, CD206, CD115) were highly expressed mainly at IF. Moreover, we also demonstrated that three M1 molecular markers including NOS2, CXCL10 and CD11c were correlated to each other. Meanwhile, three M2 molecular markers including CD163, CD206, and CD115 were also correlated to each other. Patients with low expression of three M1 molecular markers (NOS2/CXCL10/CD11c) exhibited low overall survival (OS) rate, whereas patients with high expression of three M2 molecular markers (CD163/CD206/CD115) exhibited low OS rate. We also observed that the prognostic value of treble markers combination (NOS2/CXCL10/CD11c or CD163/CD206/CD115) was superior to that of single marker. Together, our results reveal the combination of treble TAMs markers (NOS2/CXCL10/CD11c or CD163/CD206/CD115) could better evaluate the prognosis of CRC patients, which might be used as a more comprehensive method for predicting the prognosis of CRC patients.
Collapse
Affiliation(s)
- Xia Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China,Key Laboratory of Molecular Tumor Pathology of Guangdong Province, Guangzhou, Guangdong, 510515, China
| | - Tian-jiao Yuwen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China,Key Laboratory of Molecular Tumor Pathology of Guangdong Province, Guangzhou, Guangdong, 510515, China
| | - Yan Zhong
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China,Key Laboratory of Molecular Tumor Pathology of Guangdong Province, Guangzhou, Guangdong, 510515, China,Department of Pathology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, 518100, China
| | - Zu-Guo Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China,Key Laboratory of Molecular Tumor Pathology of Guangdong Province, Guangzhou, Guangdong, 510515, China,Department of Pathology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, 518100, China,Corresponding author. Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Xiao-Yan Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China,Key Laboratory of Molecular Tumor Pathology of Guangdong Province, Guangzhou, Guangdong, 510515, China,Corresponding author. Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
38
|
Shen W, Liu S, Wei X, Wang Y, Yang L. Infiltrating circulating monocytes provide an important source of BMP4 at the early stage of spinal cord injury. Dis Model Mech 2023; 16:286061. [PMID: 36518009 PMCID: PMC9884123 DOI: 10.1242/dmm.049856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Bone morphogenetic protein (BMP)4 plays a critical role in regulating neuronal and glial activity in the course of spinal cord injury (SCI). The underlying cause and cellular source of BMP4 accumulation at the injured spinal cord remain unclear. Here, we observed that plasma BMP4 levels are statistically higher in SCI patients than in healthy donors. When comparing rats in the sham group (T9 laminectomy without SCI) with rats in the SCI group, we found a persistent decline in BBB scores, together with necrosis and mononuclear cell accumulation at the contusion site. Moreover, during 2 weeks after SCI both plasma and cerebrospinal fluid levels of BMP4 displayed notable elevation, and a positive correlation. Importantly, percentages of circulating BMP4-positive (BMP4+) monocytes and infiltrating MDMs were higher in the SCI group than in the sham group. Finally, in the SCI+clodronate liposome group, depletion of monocytes effectively attenuated the accumulation of both BMP4+ MDMs and BMP4 in the injured spinal cord. Our results indicated that, following SCI, infiltrating MDMs provide an important source of BMP4 in the injured spinal cord and, therefore, might serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Weiyun Shen
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha 41000, Hunan Province, China,Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha 41000, Hunan Province, China
| | - Shuxin Liu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha 41000, Hunan Province, China,Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha 41000, Hunan Province, China
| | - Xiaojing Wei
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha 41000, Hunan Province, China,Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha 41000, Hunan Province, China
| | - Yaping Wang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha 41000, Hunan Province, China,Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha 41000, Hunan Province, China,Department of Pain Management, The Second Xiangya Hospital, Central South University, Changsha 41000, China,Authors for correspondence (; )
| | - Lin Yang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha 41000, Hunan Province, China,Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha 41000, Hunan Province, China,Authors for correspondence (; )
| |
Collapse
|
39
|
Zhang X, Bai W, Hu L, Ha H, Du Y, Xiong W, Wang H, Shang P. The pleiotropic mode and molecular mechanism of macrophages in promoting tumor progression and metastasis. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:91-104. [PMID: 36071369 DOI: 10.1007/s12094-022-02932-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/22/2022] [Indexed: 01/07/2023]
Abstract
Macrophages are the most abundant immune cells in primary and metastatic tumor tissues. Studies have shown that macrophages mainly exhibit a tumor-promoting phenotype and play a key role in tumor progression and metastasis. Therefore, many macrophage-targeted drugs have entered clinical trials. However, compared to preclinical studies, some clinical trial results showed that macrophage-targeted therapy did not achieve the desired effect. This may be because most of what we know about macrophages comes from in vitro experiments and animal models, while macrophages in the more complex human microenvironment are still poorly understood. With the development of technologies such as single-cell RNA sequencing, we have gained a new understanding of the origin, classification and functional mechanism of tumor-associated macrophages. Therefore, this study reviewed the recent progress of macrophages in promoting tumor progression and metastasis, aiming to provide some help for the formulation of optimal strategies for macrophage-targeted therapy.
Collapse
Affiliation(s)
- Xingxing Zhang
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Wenxiu Bai
- Ultrasonic Special Examination Department, Tai An TSCM Hospital, Taian, 271000, Shandong, China
| | - Lisha Hu
- Ultrasonic Special Examination Department, Tai An TSCM Hospital, Taian, 271000, Shandong, China
| | - Hualan Ha
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Yuelin Du
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Wei Xiong
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Hongbo Wang
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Panfeng Shang
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
40
|
Zhang Y, Dai F, Yang D, Zheng Y, Zhu R, Wu M, Deng Z, Wang Z, Tan W, Li Z, Li B, Gao L, Cheng Y. Deletion of Insulin-like growth factor II mRNA-binding protein 3 participates in the pathogenesis of recurrent spontaneous abortion by inhibiting IL-10 secretion and inducing M1 polarization. Int Immunopharmacol 2023; 114:109473. [PMID: 36463698 DOI: 10.1016/j.intimp.2022.109473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/28/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022]
Abstract
Insulin-like growth factor II mRNA-binding protein 3 (IGF2BP3) has been proved to affect trophoblast function and embryonic development, but its role and potential mechanism in recurrent spontaneous abortion (RSA) are not clear. RSA is a complex reproductive disease, causing physical and mental damage to patients. In recent years, many studies have found that immune microenvironment is vital to maintain successful pregnancy in the maternal fetal interface. Therefore, this study aims to explore the role of IGF2BP3 in affecting macrophage polarization and its possible mechanism. In this article, we found that IGF2BP3 expression was decreased in placental villous samples of human and RSA mouse model, and knockdown of IGF2BP3 in HTR8/SVneo cells promotes M1 Mφ polarization. Combining with RNA sequencing analysis, we found that IGF2BP3 may regulate the Mφ polarization by affecting the expression of trophoblast cytokines, especially IL-10 secretion. Further mechanistic studies showed that knockdown of IGF2BP3 decreased expression of IL-10 by activating NF-κB pathway. Moreover, we found that M2 Mφ promote trophoblast invasion not IGF2BP3 dependent. Our study reveals the interaction between trophoblast cells and macrophages at the maternal-fetal interface of RSA patients, and will provide theoretical guidance for its diagnosis and treatment of RSA patients.
Collapse
Affiliation(s)
- Yuwei Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yajing Zheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Ronghui Zhu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Mali Wu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zhimin Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zitao Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Wei Tan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zhidian Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Bingshu Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Ling Gao
- Department of Endocrinology, Renmin Hospital of Wuhan University, 430060, China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| |
Collapse
|
41
|
Miao Y, Wang S, Zhang B, Liu L. Carbon dot-based nanomaterials: a promising future nano-platform for targeting tumor-associated macrophages. Front Immunol 2023; 14:1133238. [PMID: 37205099 PMCID: PMC10186348 DOI: 10.3389/fimmu.2023.1133238] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/05/2023] [Indexed: 05/21/2023] Open
Abstract
The tumor microenvironment (TME) is the internal environment that tumors depend on for survival and development. Tumor-associated macrophages (TAMs), as an important part of the tumor microenvironment, which plays a crucial role in the occurrence, development, invasion and metastasis of various malignant tumors and has immunosuppressant ability. With the development of immunotherapy, eradicating cancer cells by activating the innate immune system has yielded encouraging results, however only a minority of patients show a lasting response. Therefore, in vivo imaging of dynamic TAMs is crucial in patient-tailored immunotherapy to identify patients who will benefit from immunotherapy, monitor efficacy after treatment, and identify alternative strategies for non-responders. Meanwhile, developing nanomedicines based on TAMs-related antitumor mechanisms to effectively inhibit tumor growth is expected to become a promising research field. Carbon dots (CDs), as an emerging member of the carbon material family, exhibit unexpected superiority in fluorescence imaging/sensing, such as near infrared imaging, photostability, biocompatibility and low toxicity. Their characteristics naturally integrate therapy and diagnosis, and when CDs are combined with targeted chemical/genetic/photodynamic/photothermal therapeutic moieties, they are good candidates for targeting TAMs. We concentrate our discussion on the current learn of TAMs and describe recent examples of macrophage modulation based on carbon dot-associated nanoparticles, emphasizing the advantages of their multifunctional platform and their potential for TAMs theranostics.
Collapse
Affiliation(s)
| | | | | | - Lin Liu
- *Correspondence: Butian Zhang, ; Lin Liu,
| |
Collapse
|
42
|
Huang J, Liu W, Song S, Li JC, Gan K, Shen C, Holzbeierlein J, Li B. The iron-modulating hormone hepcidin is upregulated and associated with poor survival outcomes in renal clear cell carcinoma. Front Pharmacol 2022; 13:1080055. [PMID: 36532749 PMCID: PMC9757070 DOI: 10.3389/fphar.2022.1080055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/16/2022] [Indexed: 08/30/2023] Open
Abstract
Background: Reliable biomarkers are rare for renal cell carcinoma (RCC) treatment selection. We aimed to discover novel biomarkers for precision medicine. The iron-regulating hormone hepcidin (HAMP) was reportedly increased in RCC patient sera and tissues. However, its potential implication as a prognostic biomarker remains exclusive. Methods: Multiple RNA-seq and cDNA microarray datasets were utilized to analyze gene expression profiles. Hepcidin protein expression was assessed using an ELISA assay in cell culture models. Comparisons of gene expression profiles and patient survival outcomes were conducted using the R package bioinformatics software. Results: Five (HAMP, HBS, ISCA2, STEAP2, and STEAP3) out of 71 iron-modulating genes exhibited consistent changes along with tumor stage, lymph node invasion, distal metastasis, tumor cell grade, progression-free interval, overall survival, and disease-specific survival. Of which HAMP upregulation exerted as a superior factor (AUC = 0.911) over the other four genes in distinguishing ccRCC tissue from normal renal tissue. HAMP upregulation was tightly associated with its promoter hypomethylation and immune checkpoint factors (PDCD1, LAG3, TIGIT, and CTLA4). Interleukin-34 (IL34) treatment strongly enhanced hepcidin expression in renal cancer Caki-1 cells. Patients with higher levels of HAMP expression experienced worse survival outcomes. Conclusion: These data suggest that HAMP upregulation is a potent prognostic factor of poor survival outcomes and a novel immunotherapeutic biomarker for ccRCC patients.
Collapse
Affiliation(s)
- Jian Huang
- Pathological Diagnosis and Research Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wang Liu
- Department of Urology, The University of Kansas Medical Center, Kansas, KS, United States
| | - Shiqi Song
- Pathological Diagnosis and Research Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jean C. Li
- Department of Urology, The University of Kansas Medical Center, Kansas, KS, United States
| | - Kaimei Gan
- Pathological Diagnosis and Research Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chunxiao Shen
- Pathological Diagnosis and Research Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jeffrey Holzbeierlein
- Department of Urology, The University of Kansas Medical Center, Kansas, KS, United States
| | - Benyi Li
- Department of Urology, The University of Kansas Medical Center, Kansas, KS, United States
| |
Collapse
|
43
|
Li Y, Hu J, Wang M, Yuan Y, Zhou F, Zhao H, Qiu T, Liang L. Exosomal circPABPC1 promotes colorectal cancer liver metastases by regulating HMGA2 in the nucleus and BMP4/ADAM19 in the cytoplasm. Cell Death Discov 2022; 8:335. [PMID: 35871166 PMCID: PMC9308786 DOI: 10.1038/s41420-022-01124-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/30/2022] [Accepted: 07/07/2022] [Indexed: 11/15/2022] Open
Abstract
Liver metastasis is the leading cause of death in colorectal carcinoma (CRC). However, little is known about the mechanisms of transferring effector messages between the primary tumor and the site of metastasis. Exosomes provide a novel transfer message method, and exosomal circular RNAs (circRNAs) play critical regulatory roles in cancer biology. In this study, the results showed that the expression of circPABPC1 was aberrantly upregulated in CRC tissues and exosomes. Exosomal circPABPC1 was considered an oncogene by functional experimental analysis in vitro and in vivo. Mechanistically, circPABPC1 recruited KDM4C to the HMGA2 promoter, reduced its H3K9me3 modification and initiated the transcription process in the nucleus. Moreover, cytoplasmic circPABPC1 promoted CRC progression by protecting ADAM19 and BMP4 from miR-874-/miR-1292-mediated degradation. Our findings indicated that exosomal circPABPC1 is an essential regulator in CRC liver metastasis progression by promoting HMGA2 and BMP4/ADAM19 expression. CircPABPC1 is expected to be a novel biomarker and antimetastatic therapeutic target in CRC.
Collapse
|
44
|
Integrated Analysis of the Role of Enolase 2 in Clear Cell Renal Cell Carcinoma. DISEASE MARKERS 2022; 2022:6539203. [DOI: 10.1155/2022/6539203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/13/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022]
Abstract
Enolase 2 (ENO2) has increasingly been documented in multiple cancers in recent years. However, the role of ENO2 in clear cell renal carcinoma (ccRCC) has not been fully explored. In the present study, open-access data were downloaded from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and the Human Protein Atlas (HPA) databases. All statistical analyses were performed in R and GraphPad Prism 8 softwares. Results showed that ENO2 was overexpressed in ccRCC tissues and cell lines and correlated with worse clinical features and prognosis. In vitro experiments indicated that the inhibition of ENO2 could hamper the malignant behaviors of ccRCC cells. Gene Set Enrichment Analysis showed that epithelial-mesenchymal transition, KRAS signaling, inflammatory response, angiogenesis, hypoxia, and WNT/β-catenin pathways were upregulated in the ENO2 high-expression group; whereas adipogenesis, DNA repair, and androgen response pathways were downregulated. Immune infiltration analysis indicated that patients with high ENO2 levels might have higher M2 macrophages and lower γβ T cells in the tumor microenvironment, which may account to some extent for the worse prognosis of ENO2. Moreover, it was found that patients with low and high ENO2 expression might be more sensitive to PD-1 therapy and CTLA-4 therapy, respectively. In addition, patients with high ENO2 expression showed lower sensitivity to common chemotherapy drugs for ccRCC, including axitinib, cisplatin, gemcitabine, pazopanib, sunitinib, and temsirolimus. Overall, these results suggest that ENO2 is a potential prognosis biomarker of ccRCC and could affect the malignant biological behavior of cancer cells, highlighting its value as a potential therapeutic target.
Collapse
|
45
|
He F, Furones AR, Landegren N, Fuxe J, Sarhan D. Sex dimorphism in the tumor microenvironment - From bench to bedside and back. Semin Cancer Biol 2022; 86:166-179. [PMID: 35278635 DOI: 10.1016/j.semcancer.2022.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/20/2022] [Accepted: 03/06/2022] [Indexed: 01/27/2023]
Abstract
Cancer represents a significant cause of death and suffering in both the developed and developing countries. Key underlying issues in the mortality of cancer are delayed diagnosis and resistance to treatments. However, improvements in biomarkers represent one important step that can be taken for alleviating the suffering caused by malignancy. Precision-based medicine is promising for revolutionizing diagnostic and treatment strategies for cancer patients worldwide. Contemporary methods, including various omics and systems biology approaches, as well as advanced digital imaging and artificial intelligence, allow more accurate assessment of tumor characteristics at the patient level. As a result, treatment strategies can be specifically tailored and adapted for individual and/or groups of patients that carry certain tumor characteristics. This includes immunotherapy, which is based on characterization of the immunosuppressive tumor microenvironment (TME) and, more specifically, the presence and activity of immune cell subsets. Unfortunately, while it is increasingly clear that gender strongly affects immune regulation and response, there is a knowledge gap concerning differences in sex-specific immune responses and how these contribute to the immunosuppressive TME and the response to immunotherapy. In fact, sex dimorphism is poorly understood in cancer progression and is typically ignored in current clinical practice. In this review, we aim to survey the available literature and highlight the existing knowledge gap in order to encourage further studies that would contribute to understanding both gender-biased immunosuppression in the TME and the driver of tumor progression towards invasive and metastatic disease. The review highlights the need to include sex optimized/genderized medicine as a new concept in future medicine cancer diagnostics and treatments.
Collapse
Affiliation(s)
- Fei He
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institute, SE-141 86 Stockholm, Sweden; Department of Urology, First affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Andrea Rodgers Furones
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institute, SE-141 86 Stockholm, Sweden; Tumor Immunology Department, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| | - Nils Landegren
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala 751 23, Sweden; Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institutet, Stockholm 171 76, Sweden
| | - Jonas Fuxe
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institute, SE-141 86 Stockholm, Sweden
| | - Dhifaf Sarhan
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institute, SE-141 86 Stockholm, Sweden.
| |
Collapse
|
46
|
Shen C, Li Z, Zhang Y, Zhang Z, Wu Z, Da L, Yang S, Wang Z, Zhang Y, Qie Y, Zhao G, Lin Y, Huang S, Zhou M, Hu H. Identification of a dysregulated CircRNA-associated gene signature for predicting prognosis, immune landscape, and drug candidates in bladder cancer. Front Oncol 2022; 12:1018285. [PMID: 36300085 PMCID: PMC9589509 DOI: 10.3389/fonc.2022.1018285] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing evidences have demonstrated that circular RNA (circRNAs) plays a an essential regulatory role in initiation, progression and immunotherapy resistance of various cancers. However, circRNAs have rarely been studied in bladder cancer (BCa). The purpose of this research is to explore new circRNAs and their potential mechanisms in BCa. A novel ceRNA-regulated network, including 87 differentially expressed circRNAs (DE-circRNAs), 126 DE-miRNAs, and 217 DE-mRNAs was constructed to better understanding the biological processes using Cytoscape 3.7.1 based on our previously high-throughput circRNA sequencing and five GEO datasets. Subsequently, five randomly selected circRNAs (upregulated circ_0001681; downregulated circ_0000643, circ_0001798, circ_0006117 and circ_0067900) in 20 pairs of BCa and paracancerous tissues were confirmed using qRT-PCR. Functional analysis results determined that 772 GO functions and 32 KEGG pathways were enriched in the ceRNA network. Ten genes (PFKFB4, EDNRA, GSN, GAS1, PAPPA, DTL, TGFBI, PRSS8, RGS1 and TCF4) were selected for signature construction among the ceRNA network. The Human Protein Atlas (HPA) expression of these genes were consistent with the above sequencing data. Notably, the model was validated in multiple external datasets (GSE13507, GSE31684, GSE48075, IMvigor210 and GSE32894). The immune-infiltration was evaluated by 7 published algorithms (i.e., TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER, XCELL and EPIC). Next, Correlations between riskscore or risk groups and clinicopathological data, overall survival, recognized immunoregulatory cells or common chemotherapeutic agents of BCa patients were performed using wilcox rank test, chi-square test, cox regression and spearman’s correlation analysis; and, these results are significant. According to R package “GSVA” and “clusterProfiler”, the most significantly enriched HALLMARK and KEGG pathway was separately the ‘Epithelial Mesenchymal Transition’ and ‘Ecm Receptor Interaction’ in the high- vs. low-risk group. Additionally, the functional experiments in vitro also revealed that the overexpression of has_circ_0067900 significantly impaired the proliferation, migration, and invasion capacities of BCa cells. Collectively, the results of the current study provide a novel landscape of circRNA-associated ceRNA-regulated network in BCa. The ceRNA-associated gene model which was constructed presented a high predictive performance for the prognosis, immunotherapeutic responsiveness, and chemotherapeutic sensitivity of BCa. And, has_circ_0067900 was originally proposed as tumor suppressor for patients with BCa.
Collapse
Affiliation(s)
- Chong Shen
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhi Li
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yinglang Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhe Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhouliang Wu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - La Da
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shaobo Yang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zejin Wang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yu Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yunkai Qie
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Gangjian Zhao
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yuda Lin
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shiwang Huang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Mingli Zhou
- Department of Neuromuscular Diseases, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hailong Hu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- *Correspondence: Hailong Hu,
| |
Collapse
|
47
|
Pavlov VN, Urmantsev MF, Korelov YA, Bakeev MR. Significance of tumor-associated macrophages in bladder cancer development. ADVANCES IN MOLECULAR ONCOLOGY 2022. [DOI: 10.17650/2313-805x-2022-9-3-8-14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Bladder cancer is the 2nd most common urological oncological disease in the worlds. Tumors can be muscle invasive and non-muscle invasive. Recently, tumor microenvironment (TME) became a focus of investigation in malignant tumors of the bladder. According to the currently available data, TME is a specific environment crating optimal conditions for carcinogenesis in the neoplastic lesion. The main parts of TME are extracellular matrix and stroma including vasculature, stromal, and immune cells. Additionally, TME includes cytokines, chemokines, and other compounds activating signal pathways necessary for tumor cells. Tumor-associated macrophages (TAMs) are being extensively studied as representatives of TME in solid tumors of varying locations. These macrophages can be classified into 2 phenotypes: M1 (pro-inflammatory and antitumor) and M2 (anti-inflammatory and protumor). The phenotypes perform different roles, and M2 macrophages regulate the most important processes of oncogenesis (invasion, proliferation, neoangiogenesis, etc.). In the context of bladder cancer, M2 macrophages are the most significant as they are the most numerous TAMs in TME.Aim. To study the role of tumor-associated macrophages in development of bladder tumors, as well as prognostic value of these macrophages.
Collapse
Affiliation(s)
- V. N. Pavlov
- Bashkir State Medical University, Ministry of Health of Russia
| | - M. F. Urmantsev
- Bashkir State Medical University, Ministry of Health of Russia
| | - Yu. A. Korelov
- Bashkir State Medical University, Ministry of Health of Russia
| | - M. R. Bakeev
- Bashkir State Medical University, Ministry of Health of Russia
| |
Collapse
|
48
|
Establishment and Validation of a Tumor Microenvironment Prognostic Model for Predicting Bladder Cancer Survival Status Based on Integrated Bioinformatics Analyses. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4351005. [PMID: 36225190 PMCID: PMC9550453 DOI: 10.1155/2022/4351005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/13/2022] [Indexed: 11/05/2022]
Abstract
This study was designed to analyze the characteristics of bladder cancer-related genes and establish a prognostic model of bladder cancer. The model passed an independent external validation set test. Differentially expressed genes (DEGs) related to bladder cancer were obtained from the Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), and Genotype-Tissue Expression (GTEx) databases. WGCNA was used to fit the GSE188715, TCGA, and GTEx RNA-Seq data. Fusing the module genes with the high significance in tumor development extracted from WGCNA and DEGs screened from multiple databases. 709 common prognostic-related genes were obtained. The 709 genes were enriched in the Gene Ontology database. Univariate Cox and LASSO regression analyses were used to screen out 21 prognostic-related genes and further multivariate Cox regression established a bladder cancer prognostic model consisting of 8 genes. After the eight-gene prognostic model was established, the Human Protein Atlas (HPA) database, GEPIA 2, and quantitative real-time PCR (qRT-PCR) verified the differential expression of these genes. Gene Set Enrichment Analysis and immune infiltration analysis found biologically enrichment pathways and cellular immune infiltration related to this bladder cancer prognostic model. Then, we selected bladder cancer patients in the TCGA database to evaluate the predictive ability of the model on the training set and validation set. The overall survival status of the two TCGA patient groups in the training and the test sets was obtained by Kaplan–Meier survival analysis. Three-year survival rates in the training and test sets were 37.163% and 25.009% for the low-risk groups and 70.000% and 62.235% for the high-risk groups, respectively. Receiver operating characteristic curve (ROC) analysis showed that the areas under the curve (AUCs) for the training and test sets were above 0.7. In an external independent validation database GSE13507, Kaplan–Meier survival analysis showed that the three-year survival rates of the high-risk and the low-risk groups in this database were 56.719% and 76.734%, respectively. The AUCs of the ROC drawn in the external validation set were both above 0.65. Here, we constructed a prognostic model of bladder cancer based on data from the GEO, TCGA, and GTEx databases. This model has potential prognostic and clinical auxiliary diagnostic value.
Collapse
|
49
|
Pan S, Li S, Zhan Y, Chen X, Sun M, Liu X, Wu B, Li Z, Liu B. Immune status for monitoring and treatment of bladder cancer. Front Immunol 2022; 13:963877. [PMID: 36159866 PMCID: PMC9492838 DOI: 10.3389/fimmu.2022.963877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
The high recurrence rate of non-muscle invasive bladder cancer (BC) and poor prognosis of advanced BC are therapeutic challenges that need to be solved. Bacillus Calmette-Guerin (BCG) perfusion was the pioneer immunotherapy for early BC, and the discovery of immune checkpoint inhibitors has created a new chapter in the treatment of advanced BC. The benefit of immunotherapy is highly anticipated, but its effectiveness still needs to be improved. In this review, we collated and analysed the currently available information and explored the mechaisms by which the internal immune imbalance of BC leads to tumour progression. The relationship between immunity and progression and the prognosis of BC has been explored through tests using body fluids such as blood and urine. These analytical tests have attempted to identify specific immuyne cells and cytokines to predict treatment outcomes and recurrence. The diversity and proportion of immune and matrix cells in BC determine the heterogeneity and immune status of tumours. The role and classification of immune cells have also been redefined, e.g., CD4 cells having recognised cytotoxicity in BC. Type 2 immunity, including that mediated by M2 macrophages, Th2 cells, and interleukin (IL)-13, plays an important role in the recurrence and progression of BC. Pathological fibrosis, activated by type 2 immunity and cancer cells, enhances the rate of cancer progression and irreversibility. Elucidating the immune status of BC and clarifying the mechanisms of action of different cells in the tumour microenvironment is the research direction to be explored in the future.
Collapse
Affiliation(s)
- Shen Pan
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shijie Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yunhong Zhan
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaonan Chen
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ming Sun
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xuefeng Liu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bin Wu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhenhua Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bitian Liu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Bitian Liu, ;
| |
Collapse
|
50
|
Huang A, Lv B, Zhang Y, Yang J, Li J, Li C, Yu Z, Xia J. Construction of a tumor immune infiltration macrophage signature for predicting prognosis and immunotherapy response in liver cancer. Front Mol Biosci 2022; 9:983840. [PMID: 36120553 PMCID: PMC9479109 DOI: 10.3389/fmolb.2022.983840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Liver cancer is an extraordinarily heterogeneous malignant disease. The tumor microenvironment (TME) and tumor-associated macrophages (TAMs) are the major drivers of liver cancer initiation and progression. It is critical to have a better understanding of the complicated interactions between liver cancer and the immune system for the development of cancer immunotherapy. Based on the gene expression profiles of tumor immune infiltration cells (TIICs), upregulated genes in TAMs and downregulated genes in other types of immune cells were identified as macrophage-specific genes (MSG). In this study, we combined MSG, immune subtypes, and clinical information on liver cancer to develop a tumor immune infiltration macrophage signature (TIMSig). A four-gene signature (S100A9, SLC22A15, TRIM54, and PPARGC1A) was identified as the TAM-related prognostic genes for liver cancer, independent of multiple clinicopathological parameters. Survival analyses showed that patients with low TIMSig had a superior survival rate than those with high TIMSig. Additionally, clinical immunotherapy response and TIMSig was observed as highly relevant. In addition, TIMSig could predict the response to chemotherapy. Collectively, the TIMSig could be a potential tool for risk-stratification, clinical decision making, treatment planning, and oncology immunotherapeutic drug development.
Collapse
Affiliation(s)
- Anmin Huang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Bei Lv
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunjie Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Junhui Yang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Jie Li
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Chengjun Li
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Zhijie Yu
- Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Zhijie Yu, ; Jinglin Xia,
| | - Jinglin Xia
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Intervention, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Zhijie Yu, ; Jinglin Xia,
| |
Collapse
|