1
|
Zhao P, Qiao C, Wang J, Zhou Y, Zhang C. Histone lactylation facilitates hepatocellular carcinoma progression by upregulating endothelial cell-specific molecule 1 expression. Mol Carcinog 2024; 63:2078-2089. [PMID: 39016629 DOI: 10.1002/mc.23794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024]
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor. Histone lactylation, a novel epigenetic modification, plays a crucial role in various cancers. However, the functional role and underlying mechanism of histone lactylation in HCC progression have not yet been investigated. Histone lactylation levels in HCC tissues and cells were assessed using a densitometric kit and western blot analysis. The role of histone lactylation in cell malignant phenotypes was determined through functional assays in vitro, and a xenograft tumor model was established to verify the function of histone lactylation in vivo. ChIP assay was performed to explore the interaction between histone lactylation and endothelial cell-specific molecule 1 (ESM1). Additionally, gain-and-loss-of-function assays were conducted to investigate the regulatory role of ESM1 in HCC pathogenesis. Histone lactylation levels were increased in HCC tissues and cells, and H3K9 lactylation (H3K9la) and H3K56 lactylation (H3K56la) were identified as the histone modification sites. We observed that H3K9la and H3K56la caused abnormal histone lactylation and were associated with poor prognosis. Functionally, histone lactylation was found to promote HCC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) process in vitro. However, histone lactylation inhibition with 2-deoxy-d-glucose (2-DG) reduced the malignant phenotypes of HCC cells. In vivo, 2-DG treatment reduced tumor growth and metastasis in the HCC mouse model. Mechanistically, it was revealed that histone lactylation activated ESM1 transcription in HCC cells. ESM1 was expressed at a high level in HCC and exerted a carcinogenic role. Histone lactylation facilitates cell malignant phenotypes, tumor growth, and metastasis by upregulating ESM1 expression in HCC, which reveals the downstream molecular mechanism of histone lactylation and might provide a novel therapeutic target for HCC therapy.
Collapse
Affiliation(s)
- Peng Zhao
- Department of General Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Chunzhong Qiao
- Department of General Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Jiawei Wang
- Department of General Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Ye Zhou
- Department of Postanesthesia Care Unit, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Changhe Zhang
- Department of General Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| |
Collapse
|
2
|
Rhee H, Park YN, Choi JY. Advances in Understanding Hepatocellular Carcinoma Vasculature: Implications for Diagnosis, Prognostication, and Treatment. Korean J Radiol 2024; 25:887-901. [PMID: 39344546 PMCID: PMC11444852 DOI: 10.3348/kjr.2024.0307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 10/01/2024] Open
Abstract
Hepatocellular carcinoma (HCC) progresses through multiple stages of hepatocarcinogenesis, with each stage characterized by specific changes in vascular supply, drainage, and microvascular structure. These vascular changes significantly influence the imaging findings of HCC, enabling non-invasive diagnosis. Vascular changes in HCC are closely related to aggressive histological characteristics and treatment responses. Venous drainage from the tumor toward the portal vein in the surrounding liver facilitates vascular invasion, and the unique microvascular pattern of vessels that encapsulate the tumor cluster (known as a VETC pattern) promotes vascular invasion and metastasis. Systemic treatments for HCC, which are increasingly being used, primarily target angiogenesis and immune checkpoint pathways, which are closely intertwined. By understanding the complex relationship between histopathological vascular changes in hepatocarcinogenesis and their implications for imaging findings, radiologists can enhance the accuracy of imaging diagnosis and improve the prediction of prognosis and treatment response. This, in turn, will ultimately lead to better patient care.
Collapse
Affiliation(s)
- Hyungjin Rhee
- Department of Radiology, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute for Innovation in Digital Healthcare, Yonsei University, Seoul, Republic of Korea
| | - Young Nyun Park
- Department of Pathology, Graduate School of Medical Science, Brain Korea 21 Project, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin-Young Choi
- Department of Radiology, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Qi J, Li J, Zhu X, Zhao S. Endothelial cell specific molecule 1 promotes epithelial-mesenchymal transition of cervical cancer via the E-box binding homeobox 1. PLoS One 2024; 19:e0304597. [PMID: 38954708 PMCID: PMC11218952 DOI: 10.1371/journal.pone.0304597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/14/2024] [Indexed: 07/04/2024] Open
Abstract
OBJECTIVE To investigate the mechanism of endothelial cell specific molecule 1 (ESM1) promoting cervical cancer cell proliferation and EMT characteristics through zinc finger E-box binding homeobox 1 (ZEB1)/EMT pathway. METHODS The correlation between ESM1 expression and prognosis of cervical cancer patients was analyzed by bioinformatics. SiHa, HeLa cell lines and corresponding control cell lines with stable ESM1 expression were obtained. Cell proliferation ability was detected by CCK-8 assay. The invasion and migration ability of Hela and SiHa cells were detected by Transwell assay and scratch closure assay. Expressions of EMT-related markers E-cadherin and Vimentin were detected by real-time PCR. The ability of silenced ESM1 to tumor formation in vivo was detected by tumor formation in nude mice. The effects of aloe-emodin on inhibit ESM1 expression and its inhibitory effect on cervical cancer cells in vitro and in vivo were analyzed by the same method. RESULTS ESM1 was highly expressed in cervical cancer, and the high expression of ESM1 was associated with poor prognosis of cervical cancer patients. CCK-8 results showed that the proliferation, invasion and migration of Hela and SiHa cells were significantly reduced after siRNA interfered with ESM1 expression. Overexpression of ESM1 promoted the proliferation and migration of cervical cancer cells. Mechanism studies have shown that the oncogenic effect of ESM1 is realized through the ZEB1/PI3K/AKT pathway. High throughput drug screening found that aloe-emodin can target ESM1. Inhibitory effect of aloe emodin on ESM1/ZEB1/EMT signaling pathway and cervical cancer cells. CONCLUSION The silencing of ESM1 expression may inhibit the proliferation, invasion, metastasis and epithelial-mesenchymal transformation of cervical cancer cells by inhibiting ZEB1/PI3K/AKT. Aloe-emodin is a potential treatment for cervical cancer, which can play an anti-tumor role by inhibiting ESM1/ZEB1.
Collapse
Affiliation(s)
- Jie Qi
- Department of Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Department of Gynecology, Hebei General Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Jie Li
- Department of Gynecology, Hebei General Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Xiaoyan Zhu
- Department of Gynecologic Oncology, Jilin Cancer Hospital, Chaoyang District, Changchun, Jilin, People’s Republic of China
| | - Sufen Zhao
- Department of Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| |
Collapse
|
4
|
Yang Z, Li X, Zhou L, Luo Y, Zhan N, Ye Y, Liu Z, Zhang X, Qiu T, Lin L, Peng L, Hu Y, Pan C, Sun M, Zhang Y. Ferroptosis-related lncRNAs: Distinguishing heterogeneity of the tumour microenvironment and predicting immunotherapy response in bladder cancer. Heliyon 2024; 10:e32018. [PMID: 38867969 PMCID: PMC11168393 DOI: 10.1016/j.heliyon.2024.e32018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024] Open
Abstract
Ferroptosis, a cell death pathway dependent on iron, has been shown in research to play a role in the development, advancement, and outlook of tumours through ferroptosis-related lncRNAs (FRLRs). However, the value of the FRLRs in bladder cancer (BLCA) has not been thoroughly investigated. This research project involved developing a predictive model using ten specific FRLRs (AC099850.4, AL731567.1, AL133415.1, AC021321.1, SPAG5-AS1, HMGA2-AS1, RBMS3-AS3, AC006160.1, AL583785.1, and AL662844.4) through univariate COX and LASSO regression techniques. The validation of this signature as a standalone predictor was confirmed in a group of 65 patients from the urology bladder tumour database at the First Affiliated Hospital of Wenzhou Medical University in Wenzhou, China. Patients were categorized based on their median risk score into either a low-risk group or a high-risk group. Enrichment analysis identified possible molecular mechanisms that could explain the variations in clinical outcomes observed in high-risk and low-risk groups. Moreover, we explored the correlation between FLPS and immunotherapy-related indicators. The ability of FLPS to forecast the effectiveness of immunotherapy was validated by the elevated levels of immune checkpoint genes (PD-L1, CTLA4, and PD-1) in the group at high risk. We also screened the crucial FRLR (HMGA2-AS1) through congruent expression and prognostic conditions and established a ceRNA network, indicating that HMGA2-AS1 may affect epithelial-mesenchymal transition by modulating the Wnt signalling pathway through the ceRNA mechanism. We identified the top five mRNAs (NFIB, NEGR1, JAZF1, JCAD, and ESM1) based on random forest algorithm and analysed the relationship between HMGA2-AS1, the top five mRNAs, and immunotherapy, and their interactions with drug sensitivities. Our results suggest that patients with BLCA have a greater sensitivity to four drugs (dasatinib, pazopanib, erismodegib and olaparib). Our study provides new insights into the TME, key signalling pathways, genome, and potential therapeutic targets of BLCA, with future guidance for immunotherapy and targeted precision drugs.
Collapse
Affiliation(s)
- Zhan Yang
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiaoqi Li
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Lijun Zhou
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yaxian Luo
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Ning Zhan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Yifan Ye
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhichao Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Xiaoting Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Tao Qiu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Lining Lin
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Lianjie Peng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Yiming Hu
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Chaoran Pan
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Mouyuan Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Yan Zhang
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| |
Collapse
|
5
|
Cheng J, Li X, Wang L, Chen F, Li Y, Zuo G, Pei M, Zhang H, Yu L, Liu C, Wang J, Han Q, Cai P, Li X. Evaluation and Prognostication of Gd-EOB-DTPA MRI and CT in Patients With Macrotrabecular-Massive Hepatocellular Carcinoma. J Magn Reson Imaging 2024; 59:2071-2081. [PMID: 37840197 DOI: 10.1002/jmri.29052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Macrotrabecular-massive hepatocellular carcinoma (MTM-HCC) is highly aggressive. Comparing the diagnosis ability of CT and gadoxetate disodium (Gd-EOB-DTPA) MRI for MTM-HCC are lacking. PURPOSE To compare the performance of Gd-EOB-DTPA MRI and CT for differentiating MTM-HCC from non-MTM-HCC, and determine the prognostic indicator. STUDY TYPE Retrospective. SUBJECTS Post-surgery HCC patients, divided into the training (N = 272) and external validation (N = 44) cohorts. FIELD STRENGTH/SEQUENCE 3.0 T, T1-weighted imaging, in-opp phase, and T1-weighted volumetric interpolated breath-hold examination/liver acquisition with volume acceleration; enhanced CT. ASSESSMENT Three radiologists evaluated clinical characteristics (sex, age, liver disease, liver function, blood routine, alpha-fetoprotein [AFP] and prothrombin time international normalization ratio [PT-INR]) and imaging features (tumor length, intratumor fat, hemorrhage, arterial phase peritumoral enhancement, intratumor necrosis or ischemia, capsule, and peritumoral hepatobiliary phase [HBP] hypointensity). Compared the performance of CT and MRI for diagnosing MTM-HCC. Follow-up occurred every 3-6 months, and nomogram demonstrated the probability of MTM-HCC. STATISTICAL TESTS Fisher test, t-test or Wilcoxon rank-sum test, area under the curve (AUC), 95% confidence interval (CI), multivariable logistic regression, Kaplan-Meier curve, and Cox proportional hazards. Significance level: P < 0.05. RESULTS Gd-EOB-DTPA MRI (AUC: 0.793; 95% CI, 0.740-0.839) outperformed CT (AUC: 0.747; 95% CI, 0.691-0.797) in the training cohort. The nomogram, incorporating AFP, PT-INR, and MRI features (non-intratumor fat, incomplete capsule, intratumor necrosis or ischemia, and peritumoral HBP hypointensity) demonstrated powerful performance for diagnosing MTM-HCC with an AUC of 0.826 (95% CI, 0.631-1.000) in the external validation cohort. Median follow-up was 347 days (interquartile range [IQR], 606 days) for the training cohort and 222 days (IQR, 441 days) for external validation cohort. Intratumor necrosis or ischemia was an independent indicator for poor prognosis. DATA CONCLUSION Gd-EOB-DTPA MRI might assist in preoperative diagnosis of MTM-HCC, and intratumor necrosis or ischemia was associated with poor prognosis. EVIDENCE LEVEL 4 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Jie Cheng
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- 7T Magnetic Resonance Imaging Translational Medical Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaofeng Li
- Department of Radiology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Limei Wang
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- 7T Magnetic Resonance Imaging Translational Medical Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Fengxi Chen
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- 7T Magnetic Resonance Imaging Translational Medical Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yiman Li
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- 7T Magnetic Resonance Imaging Translational Medical Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Guojiao Zuo
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- 7T Magnetic Resonance Imaging Translational Medical Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Mi Pei
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- 7T Magnetic Resonance Imaging Translational Medical Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Huarong Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Linze Yu
- School of Medical Imaging, North Sichuan Medical College, Nanchong, China
| | - Chen Liu
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- 7T Magnetic Resonance Imaging Translational Medical Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jian Wang
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- 7T Magnetic Resonance Imaging Translational Medical Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qi Han
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- 7T Magnetic Resonance Imaging Translational Medical Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ping Cai
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- 7T Magnetic Resonance Imaging Translational Medical Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaoming Li
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- 7T Magnetic Resonance Imaging Translational Medical Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
6
|
Zhao X, Li X, Miao Z. Identification and validation of regulatory T cell-associated gene signatures to predict colon adenocarcinoma prognosis. Int Immunopharmacol 2024; 132:112034. [PMID: 38588631 DOI: 10.1016/j.intimp.2024.112034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/17/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Colon adenocarcinoma (COAD) is a common cause of cancer-related death. Due to the difficulty in early diagnosis and drug resistance, conventional treatments are difficult to be effective. Some studies have found that the functional recovery of T cells in the tumor microenvironment, especially regulatory T cells (Tregs), plays an important role in the progression of cancer. This study used the TCGA data set, clinical information and RNA-seq data of COAD patients to construct a Tregs-related risk score (TRS) through methods such as WGCNA, single-factor Cox, multi-factor Cox and random survival forest (RSF). Moreover, we also used the TCGA test set and internal validation set to verify the predictive ability of TRS, and used functional enrichment analysis and somatic mutation analysis to mine genes related to TRS, such as like thrombin/trypsin receptor 2 (F2RL2), inhibin subunit beta B (INHBB) and melanoma antigen family A12 (MAGEA12). Moreover, this study confirmed the expression of these prognostic genes using scRNA-seq data. We also performed qPCR analysis of various genes in normal and cancerous colon cancer cell lines to verify that these genes indeed play a role in CODA patients. We also constructed a mouse CODA model to study and evaluate the impact of key genes such as MAGEA12 on tumor growth in mice. This study explores the important role of Treg cells in the prognosis of COAD and discovers some potential biomarkers for the occurrence and development of COAD, which provides some new ideas for the treatment of COAD.
Collapse
Affiliation(s)
- Xiaomeng Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| | - Xuanwen Li
- Department of Nutritional, Tianjin Beichen Hospital of Chinese Medicine, Tianjin, PR China
| | - Zhi Miao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China.
| |
Collapse
|
7
|
Li YK, Gao AB, Zeng T, Liu D, Zhang QF, Ran XM, Tang ZZ, Li Y, Liu J, Zhang T, Shi GQ, Zhou WC, Zou WD, Peng J, Zhang J, Li H, Zou J. ANGPTL4 accelerates ovarian serous cystadenocarcinoma carcinogenesis and angiogenesis in the tumor microenvironment by activating the JAK2/STAT3 pathway and interacting with ESM1. J Transl Med 2024; 22:46. [PMID: 38212795 PMCID: PMC10785435 DOI: 10.1186/s12967-023-04819-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/21/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Ovarian cancer (OC) is a malignant neoplasm that displays increased vascularization. Angiopoietin-like 4 (ANGPTL4) is a secreted glycoprotein that functions as a regulator of cell metabolism and angiogenesis and plays a critical role in tumorigenesis. However, the precise role of ANGPTL4 in the OC microenvironment, particularly its involvement in angiogenesis, has not been fully elucidated. METHODS The expression of ANGPTL4 was confirmed by bioinformatics and IHC in OC. The potential molecular mechanism of ANGPTL4 was measured by RNA-sequence. We used a series of molecular biological experiments to measure the ANGPTL4-JAK2-STAT3 and ANGPTL4-ESM1 axis in OC progression, including MTT, EdU, wound healing, transwell, xenograft model, oil red O staining, chick chorioallantoic membrane assay and zebrafish model. Moreover, the molecular mechanisms were confirmed by Western blot, Co-IP and molecular docking. RESULTS Our study demonstrates a significant upregulation of ANGPTL4 in OC specimens and its strong association with unfavorable prognosis. RNA-seq analysis affirms that ANGPTL4 facilitates OC development by driving JAK2-STAT3 signaling pathway activation. The interaction between ANGPTL4 and ESM1 promotes ANGPTL4 binding to lipoprotein lipase (LPL), thereby resulting in reprogrammed lipid metabolism and the promotion of OC cell proliferation, migration, and invasion. In the OC microenvironment, ESM1 may interfere with the binding of ANGPTL4 to integrin and vascular-endothelial cadherin (VE-Cad), which leads to stabilization of vascular integrity and ultimately promotes angiogenesis. CONCLUSION Our findings underscore that ANGPTL4 promotes OC development via JAK signaling and induces angiogenesis in the tumor microenvironment through its interaction with ESM1.
Collapse
Affiliation(s)
- Yu-Kun Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - An-Bo Gao
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
- Clinical Research Institute, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Tian Zeng
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Dan Liu
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Qun-Feng Zhang
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiao-Min Ran
- Department of Gynecologic Oncology, School of Medicine, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya, Central South University, Changsha, Hunan, China
| | - Zhen-Zi Tang
- Department of Gynecologic Oncology, School of Medicine, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya, Central South University, Changsha, Hunan, China
| | - Yan Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Jue Liu
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ting Zhang
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Gang-Qing Shi
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wen-Chao Zhou
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wen-da Zou
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Juan Peng
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Juan Zhang
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China.
| | - Hui Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China.
| | - Juan Zou
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China.
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
8
|
Choi JH, Thung SN. Advances in Histological and Molecular Classification of Hepatocellular Carcinoma. Biomedicines 2023; 11:2582. [PMID: 37761023 PMCID: PMC10526317 DOI: 10.3390/biomedicines11092582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a primary liver cancer characterized by hepatocellular differentiation. HCC is molecularly heterogeneous with a wide spectrum of histopathology. The prognosis of patients with HCC is generally poor, especially in those with advanced stages. HCC remains a diagnostic challenge for pathologists because of its morphological and phenotypic diversity. However, recent advances have enhanced our understanding of the molecular genetics and histological subtypes of HCC. Accurate diagnosis of HCC is important for patient management and prognosis. This review provides an update on HCC pathology, focusing on molecular genetics, histological subtypes, and diagnostic approaches.
Collapse
Affiliation(s)
- Joon Hyuk Choi
- Department of Pathology, Yeungnam University College of Medicine, Daegu 42415, Republic of Korea
| | - Swan N. Thung
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA;
| |
Collapse
|
9
|
Kadi D, Yamamoto MF, Lerner EC, Jiang H, Fowler KJ, Bashir MR. Imaging prognostication and tumor biology in hepatocellular carcinoma. JOURNAL OF LIVER CANCER 2023; 23:284-299. [PMID: 37710379 PMCID: PMC10565542 DOI: 10.17998/jlc.2023.08.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy, and represents a significant global health burden with rising incidence rates, despite a more thorough understanding of the etiology and biology of HCC, as well as advancements in diagnosis and treatment modalities. According to emerging evidence, imaging features related to tumor aggressiveness can offer relevant prognostic information, hence validation of imaging prognostic features may allow for better noninvasive outcomes prediction and inform the selection of tailored therapies, ultimately improving survival outcomes for patients with HCC.
Collapse
Affiliation(s)
- Diana Kadi
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Marilyn F. Yamamoto
- Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Emily C. Lerner
- Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Hanyu Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Kathryn J. Fowler
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Mustafa R. Bashir
- Department of Radiology, Duke University, Durham, NC, USA
- Division of Hepatology, Department of Medicine, Duke University, Durham, NC, USA
- Center for Advanced Magnetic Resonance Development, Duke University, Durham, NC, USA
| |
Collapse
|
10
|
Adzibolosu N, Alvero AB, Ali-Fehmi R, Gogoi R, Corey L, Tedja R, Chehade H, Gogoi V, Morris R, Anderson M, Vitko J, Lam C, Craig DB, Draghici S, Rutherford T, Mor G. Immunological modifications following chemotherapy are associated with delayed recurrence of ovarian cancer. Front Immunol 2023; 14:1204148. [PMID: 37435088 PMCID: PMC10331425 DOI: 10.3389/fimmu.2023.1204148] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/12/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction Ovarian cancer recurs in most High Grade Serous Ovarian Cancer (HGSOC) patients, including initial responders, after standard of care. To improve patient survival, we need to identify and understand the factors contributing to early or late recurrence and therapeutically target these mechanisms. We hypothesized that in HGSOC, the response to chemotherapy is associated with a specific gene expression signature determined by the tumor microenvironment. In this study, we sought to determine the differences in gene expression and the tumor immune microenvironment between patients who show early recurrence (within 6 months) compared to those who show late recurrence following chemotherapy. Methods Paired tumor samples were obtained before and after Carboplatin and Taxol chemotherapy from 24 patients with HGSOC. Bioinformatic transcriptomic analysis was performed on the tumor samples to determine the gene expression signature associated with differences in recurrence pattern. Gene Ontology and Pathway analysis was performed using AdvaitaBio's iPathwayGuide software. Tumor immune cell fractions were imputed using CIBERSORTx. Results were compared between late recurrence and early recurrence patients, and between paired pre-chemotherapy and post-chemotherapy samples. Results There was no statistically significant difference between early recurrence or late recurrence ovarian tumors pre-chemotherapy. However, chemotherapy induced significant immunological changes in tumors from late recurrence patients but had no impact on tumors from early recurrence patients. The key immunological change induced by chemotherapy in late recurrence patients was the reversal of pro-tumor immune signature. Discussion We report for the first time, the association between immunological modifications in response to chemotherapy and the time of recurrence. Our findings provide novel opportunities to ultimately improve ovarian cancer patient survival.
Collapse
Affiliation(s)
- Nicholas Adzibolosu
- C. S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Ayesha B. Alvero
- C. S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
| | - Rouba Ali-Fehmi
- C. S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
| | - Radhika Gogoi
- C. S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
| | - Logan Corey
- C. S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
| | - Roslyn Tedja
- C. S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
| | - Hussein Chehade
- C. S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Center of Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Vir Gogoi
- C. S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Robert Morris
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
| | - Matthew Anderson
- Department of Obstetrics and Gynecology, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Julie Vitko
- Department of Pathology and Cell Biology, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Clarissa Lam
- Department of Gynecologic Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Douglas B. Craig
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, United States
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Sorin Draghici
- C. S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, United States
- Advaita Corporation, Ann Arbor, MI, United States
- Division of Information and Intelligent Systems, Directorate for Computer and Information Science and Engineering, National Science Foundation, Alexandria, VA, United States
| | - Thomas Rutherford
- Department of Obstetrics and Gynecology, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Gil Mor
- C. S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
11
|
Bosi C, Rimini M, Casadei-Gardini A. Understanding the causes of recurrent HCC after liver resection and radiofrequency ablation. Expert Rev Anticancer Ther 2023; 23:503-515. [PMID: 37060290 DOI: 10.1080/14737140.2023.2203387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
INTRODUCTION Surgical resection and radiofrequency ablation are preferred options for early-stage disease, with 5-year recurrence rates as high as 70% when patients are treated according to guidelines. With increasing availability of therapeutic options, including but not limited to, immune-checkpoint inhibitors (ICI), tyrosine kinase inhibitors, antiangiogenics, and adoptive cell therapies, understanding the causes of recurrence and identifying its predictors should be priorities in the hepatocellular carcinoma (HCC) research agenda. AREAS COVERED Current knowledge of HCC predictors of recurrence is reviewed, and recent insights about its underlying mechanisms are presented. In addition, results from recent clinical trials investigating treatment combinations are critically appraised. EXPERT OPINION HCC recurrence is either due to progressive growth of microscopic residual disease, or to de novo cancer development in the context of a diseased liver, each occurring in an early (<2years) vs. late (≥2 years) fashion. Collectively, morphological, proteomic, and transcriptomic data suggest vascular invasion and angiogenesis as key drivers of HCC recurrence. Agents aimed at blocking either of these two hallmarks should be prioritized at the moment of early-stage HCC clinical trial design. Emerging results from clinical trials testing ICI in early-stage HCC underscore the importance of defining the best treatment sequence and the most appropriate combination strategies. Lastly, as different responses to systemic therapies are increasingly defined according to the HCC etiology, patient enrolment into clinical trials should take into account the biological characteristics of their inherent disease.
Collapse
Affiliation(s)
- Carlo Bosi
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
- Vita-Salute San Raffaele University School of Medicine, Milan, 20132, Italy
| | - Margherita Rimini
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
- Vita-Salute San Raffaele University School of Medicine, Milan, 20132, Italy
| | - Andrea Casadei-Gardini
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
- Vita-Salute San Raffaele University School of Medicine, Milan, 20132, Italy
| |
Collapse
|
12
|
Yang L, Dong Z, Li S, Chen T. ESM1 promotes angiogenesis in colorectal cancer by activating PI3K/Akt/mTOR pathway, thus accelerating tumor progression. Aging (Albany NY) 2023; 15:2920-2936. [PMID: 37100467 DOI: 10.18632/aging.204559] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 01/23/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND This study aimed to explore the influence of endothelial cell-specific molecule 1 (ESM1) expression on colorectal cancer (CRC) cells and preliminarily analyze its possible mechanism, so as to lay a foundation for research about potential biological targets of CRC. METHODS First, CRC cells were transfected with ESM1-negative control (NC), ESM1-mimic and ESM1-inhibitor and randomly assigned to ESM1-NC group, ESM1-mimic group and ESM1-inhibitor group, respectively. Then the cells were harvested at 48 h after transfection for subsequent experiments. RESULTS The results manifested that after up-regulation of ESM1, the distance of CRC SW480 and SW620 cell lines migrating to the scratch center rose notably, and the number of migrating cells, basement membrane-penetrating cells, colonies formed and angiogenesis was increased overtly, indicating that ESM1 overexpression can promote tumor angiogenesis in CRC and accelerate tumor progression. Combined with results of bioinformatics analysis, the molecular mechanism by which ESM1 promoted tumor angiogenesis in CRC and accelerated tumor progression was explored through suppressing the protein expression of phosphatidylinositol 3-kinase (PI3K). Western blotting revealed that after intervention with PI3K inhibitor, the protein expressions of phosphorylated PI3K (p-PI3K), phosphorylated protein kinase B (p-Akt) and phosphorylated mammalian target of rapamycin (p-mTOR) were decreased evidently, and the protein expressions of matrix metalloproteinase-2 (MMP-2), MMP-3, MMP-9, Cyclin D1, Cyclin A2, VEGF, COX-2 and HIF-1α subsequently declined. CONCLUSION ESM1 may promote angiogenesis in CRC by activating the PI3K/Akt/mTOR pathway, thus accelerating tumor progression.
Collapse
Affiliation(s)
- Liqun Yang
- General Surgery, Tangshan Fengnan District Hospital, Fengnan, Tangshan 063300, China
| | - Zhigang Dong
- General Surgery, Tangshan Fengnan District Hospital, Fengnan, Tangshan 063300, China
| | - Shuyu Li
- Two Divisions of The Cardiovascular Duct, Affiliated Hospital of North China University of Science and Technology, Lubei, Tangshan 063300, China
| | - Tieliang Chen
- General Surgery, Tangshan Union Hospital, Lunan, Tangshan 063300, China
| |
Collapse
|
13
|
Mulé S, Serhal A, Pregliasco AG, Nguyen J, Vendrami CL, Reizine E, Yang GY, Calderaro J, Amaddeo G, Luciani A, Miller FH. MRI features associated with HCC histologic subtypes: a western American and European bicenter study. Eur Radiol 2023; 33:1342-1352. [PMID: 35999375 DOI: 10.1007/s00330-022-09085-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/04/2022] [Accepted: 08/04/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVES To evaluate if preoperative MRI can predict the most frequent HCC subtypes in North American and European patients treated with surgical resection. METHODS A total of 119 HCCs in 97 patients were included in the North American group and 191 HCCs in 176 patients were included in the European group. Lesion subtyping was based on morphologic features and immuno-histopathological analysis. Two radiologists reviewed preoperative MRI and evaluated the presence of imaging features including LI-RADS major and ancillary features to identify clinical, biologic, and imaging features associated with the main HCC subtypes. RESULTS Sixty-four percent of HCCs were conventional. The most frequent subtypes were macrotrabecular-massive (MTM-15%) and steatohepatitic (13%). Necrosis (OR = 3.32; 95% CI: 1.39, 7.89; p = .0064) and observation size (OR = 1.011; 95% CI: 1.0022, 1.019; p = .014) were independent predictors of MTM-HCC. Fat in mass (OR = 15.07; 95% CI: 6.57, 34.57; p < .0001), tumor size (OR = 0.97; 95% CI: 0.96, 0.99; p = .0037), and absence of chronic HCV infection (OR = 0.24; 95% CI: 0.084, 0.67; p = .0068) were independent predictors of steatohepatitic HCC. Independent predictors of conventional HCCs were viral C hepatitis (OR = 3.20; 95% CI: 1.62, 6.34; p = .0008), absence of fat (OR = 0.25; 95% CI: 0.12, 0.52; p = .0002), absence of tumor in vein (OR = 0.34; 95% CI: 0.13, 0.84; p = .020), and higher tumor-to-liver ADC ratio (OR = 1.96; 95% CI: 1.14, 3.35; p = .014) CONCLUSION: MRI is useful in predicting the most frequent HCC subtypes even in cohorts with different distributions of liver disease etiologies and tumor subtypes which might have future treatment and management implications. KEY POINTS • Representation of both liver disease etiologies and HCC subtypes differed between the North American and European cohorts of patients. • Retrospective two-center study showed that liver MRI is useful in predicting the most frequent HCC subtypes.
Collapse
Affiliation(s)
- Sébastien Mulé
- Medical Imaging Department, AP-HP, Henri Mondor University Hospital, 51 Avenue du Maréchal de Lattre de Tassigny, 94010, Créteil, France. .,Faculté de Médecine, Université Paris Est Créteil, Créteil, France.
| | - Ali Serhal
- Department of Radiology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| | - Athena Galletto Pregliasco
- Medical Imaging Department, AP-HP, Henri Mondor University Hospital, 51 Avenue du Maréchal de Lattre de Tassigny, 94010, Créteil, France
| | - Jessica Nguyen
- Department of Pathology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Camila Lopes Vendrami
- Department of Radiology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Edouard Reizine
- Medical Imaging Department, AP-HP, Henri Mondor University Hospital, 51 Avenue du Maréchal de Lattre de Tassigny, 94010, Créteil, France
| | - Guang-Yu Yang
- Department of Pathology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Julien Calderaro
- Faculté de Médecine, Université Paris Est Créteil, Créteil, France.,Pathology Department, AP-HP, Henri Mondor University Hospital, Créteil, France
| | - Giuliana Amaddeo
- Faculté de Médecine, Université Paris Est Créteil, Créteil, France.,Hepatology Department, AP-HP, Henri Mondor University Hospital, Créteil, France
| | - Alain Luciani
- Medical Imaging Department, AP-HP, Henri Mondor University Hospital, 51 Avenue du Maréchal de Lattre de Tassigny, 94010, Créteil, France.,Faculté de Médecine, Université Paris Est Créteil, Créteil, France
| | - Frank H Miller
- Department of Radiology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| |
Collapse
|
14
|
Cha H, Choi JY, Park YN, Han K, Jang M, Kim MJ, Park MS, Rhee H. Comparison of imaging findings of macrotrabecular-massive hepatocellular carcinoma using CT and gadoxetic acid-enhanced MRI. Eur Radiol 2023; 33:1364-1377. [PMID: 35999373 DOI: 10.1007/s00330-022-09105-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 06/17/2022] [Accepted: 08/09/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVES To investigate the imaging findings of macrotrabecular-massive hepatocellular carcinoma (MTM-HCC) on CT and MRI, and examine their diagnostic performance and prognostic significance. METHODS We retrospectively enrolled 220 consecutive patients who underwent hepatic resection between June 2009 and December 2013 for single treatment-naïve HCC, who have preoperative CT and gadoxetic acid-enhanced MRI. Independent reviews of histopathology and imaging were performed by two reviewers. Previously reported imaging findings, LI-RADS category, and CT attenuation of MTM-HCC were investigated. The diagnostic performance of the MTM-HCC diagnostic criteria was compared across imaging modalities. RESULTS MTM-HCC was associated with ≥ 50% arterial phase hypovascular component, intratumoral artery, arterial phase peritumoral enhancement, and non-smooth tumor margin on CT and MRI (p < .05). Arterial phase hypovascular components were less commonly observed on MRI subtraction images than on CT or MRI, while non-rim arterial phase hyperenhancement and LR-5 were more commonly observed on MRI subtraction images than on MRI (p < .05). MTM-HCC showed lower tumor attenuation in the CT arterial phase (p = .01). Rhee's criteria, defined as ≥ 50% hypovascular component and ≥ 2 ancillary findings (intratumoral artery, arterial phase peritumoral enhancement, and non-smooth tumor margin), showed similar diagnostic performance for MRI (sensitivity, 41%; specificity, 97%) and CT (sensitivity, 31%; specificity, 94%). Rhee's criteria on CT were independent prognostic factors for overall survival. CONCLUSION The MRI diagnostic criteria for MTM-HCC are applicable on CT, showing similar diagnostic performance and prognostic significance. For MTM-HCC, arterial phase subtraction images can aid in the HCC diagnosis by depicting subtle arterial hypervascularity. KEY POINTS • MTM-HCC on CT demonstrated previously described MRI findings, including arterial phase hypovascular component, intratumoral artery, arterial phase peritumoral enhancement, and necrosis. • The MRI diagnostic criteria for MTM-HCC were also applicable to CT, showing comparable diagnostic performance and prognostic significance. • On arterial phase subtraction imaging, MTM-HCC more frequently demonstrated non-rim enhancement and LR-5 and less frequently LR-M than MRI arterial phase, which may aid in the diagnosis of HCC.
Collapse
Affiliation(s)
- Hyunho Cha
- Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Jin-Young Choi
- Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Young Nyun Park
- Department of Pathology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyunghwa Han
- Department of Radiology, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Mi Jang
- Department of Pathology, National Health Insurance Service Ilsan Hospital, Goyang, South Korea
| | - Myeong-Jin Kim
- Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Mi-Suk Park
- Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Hyungjin Rhee
- Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-gu, Seoul, 03722, South Korea.
| |
Collapse
|
15
|
Yang L, Wang M, Zhu Y, Zhang J, Pan J, Zhao Y, Sun K, Chen F. Corona enhancement combined with microvascular invasion for prognosis prediction of macrotrabecular-massive hepatocellular carcinoma subtype. Front Oncol 2023; 13:1138848. [PMID: 36890813 PMCID: PMC9986746 DOI: 10.3389/fonc.2023.1138848] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/01/2023] [Indexed: 02/22/2023] Open
Abstract
Objectives The macrotrabecular-massive (MTM) subtype of hepatocellular carcinoma (HCC) is aggressive and associated with an unfavorable prognosis. This study aimed to characterize MTM-HCC features based on contrast-enhanced MRI and to evaluate the prognosis of imaging characteristics combined with pathology for predicting early recurrence and overall survival after surgery. Methods This retrospective study included 123 patients with HCC that underwent preoperative contrast-enhanced MRI and surgery, between July 2020 and October 2021. Multivariable logistic regression was performed to investigate factors associated with MTM-HCC. Predictors of early recurrence were determined with a Cox proportional hazards model and validated in a separate retrospective cohort. Results The primary cohort included 53 patients with MTM-HCC (median age 59 years; 46 male and 7 females; median BMI 23.5 kg/m2) and 70 subjects with non-MTM HCC (median age 61.5 years; 55 male and 15 females; median BMI 22.6 kg/m2) (All P>0.05). The multivariate analysis identified corona enhancement (odds ratio [OR]=2.52, 95% CI: 1.02-6.24; P=0.045) as an independent predictor of the MTM-HCC subtype. The multiple Cox regression analysis identified corona enhancement (hazard ratio [HR]=2.56, 95% CI: 1.08-6.08; P=0.033) and MVI (HR=2.45, 95% CI: 1.40-4.30; P=0.002) as independent predictors of early recurrence (area under the curve=0.790, P<0.001). The prognostic significance of these markers was confirmed by comparing results in the validation cohort to those from the primary cohort. Corona enhancement combined with MVI was significantly associated with poor outcomes after surgery. Conclusions A nomogram for predicting early recurrence based on corona enhancement and MVI could be used to characterize patients with MTM-HCC and predict their prognosis for early recurrence and overall survival after surgery.
Collapse
Affiliation(s)
- Lili Yang
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Meng Wang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanyan Zhu
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiahui Zhang
- Department of Radiology, Third People's Hospital of Hangzhou, Hangzhou, Zhejiang, China
| | - Junhan Pan
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanci Zhao
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ke Sun
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Feng Chen
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
16
|
He C, Zhang W, Zhao Y, Li J, Wang Y, Yao W, Wang N, Ding W, Wei X, Yang R, Jiang X. Preoperative prediction model for macrotrabecular-massive hepatocellular carcinoma based on contrast-enhanced CT and clinical characteristics: a retrospective study. Front Oncol 2023; 13:1124069. [PMID: 37197418 PMCID: PMC10183567 DOI: 10.3389/fonc.2023.1124069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/18/2023] [Indexed: 05/19/2023] Open
Abstract
Objective To investigate the predictive value of contrast-enhanced computed tomography (CECT) imaging features and clinical factors in identifying the macrotrabecular-massive (MTM) subtype of hepatocellular carcinoma (HCC) preoperatively. Methods This retrospective study included 101 consecutive patients with pathology-proven HCC (35 MTM subtype vs. 66 non-MTM subtype) who underwent liver surgery and preoperative CECT scans from January 2017 to November 2021. The imaging features were evaluated by two board-certified abdominal radiologists independently. The clinical characteristics and imaging findings were compared between the MTM and non-MTM subtypes. Univariate and multivariate logistic regression analyses were performed to investigate the association of clinical-radiological variables and MTM-HCCs and develop a predictive model. Subgroup analysis was also performed in BCLC 0-A stage patients. Receiver operating characteristic (ROC) curves analysis was used to determine the optimal cutoff values and the area under the curve (AUC) was employed to evaluate predictive performance. Results Intratumor hypoenhancement (odds ratio [OR] = 2.724; 95% confidence interval [CI]: 1.033, 7.467; p = .045), tumors without enhancing capsules (OR = 3.274; 95% CI: 1.209, 9.755; p = .03), high serum alpha-fetoprotein (AFP) (≥ 228 ng/mL, OR = 4.101; 95% CI: 1.523, 11.722; p = .006) and high hemoglobin (≥ 130.5 g/L; OR = 3.943; 95% CI: 1.466, 11.710; p = .009) were independent predictors for MTM-HCCs. The clinical-radiologic (CR) model showed the best predictive performance, achieving an AUC of 0.793, sensitivity of 62.9% and specificity of 81.8%. The CR model also effectively identify MTM-HCCs in early-stage (BCLC 0-A stage) patients. Conclusion Combining CECT imaging features and clinical characteristics is an effective method for preoperatively identifying MTM-HCCs, even in early-stage patients. The CR model has high predictive performance and could potentially help guide decision-making regarding aggressive therapies in MTM-HCC patients.
Collapse
Affiliation(s)
- Chutong He
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Wanli Zhang
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yue Zhao
- Department of Radiology, Central People’s Hospital of Zhanjiang, Zhanjiang, Guangdong, China
| | - Jiamin Li
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Ye Wang
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Wang Yao
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Nianhua Wang
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Wenshuang Ding
- Department of Pathology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Xinhua Wei
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Ruimeng Yang
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- *Correspondence: Ruimeng Yang, ; Xinqing Jiang,
| | - Xinqing Jiang
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- *Correspondence: Ruimeng Yang, ; Xinqing Jiang,
| |
Collapse
|
17
|
Zheng X, Higdon L, Gaudet A, Shah M, Balistieri A, Li C, Nadai P, Palaniappan L, Yang X, Santo B, Ginley B, Wang XX, Myakala K, Nallagatla P, Levi M, Sarder P, Rosenberg A, Maltzman JS, de Freitas Caires N, Bhalla V. Endothelial Cell-Specific Molecule-1 Inhibits Albuminuria in Diabetic Mice. KIDNEY360 2022; 3:2059-2076. [PMID: 36591362 PMCID: PMC9802554 DOI: 10.34067/kid.0001712022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/19/2022] [Indexed: 01/13/2023]
Abstract
Background Diabetic kidney disease (DKD) is the most common cause of kidney failure in the world, and novel predictive biomarkers and molecular mechanisms of disease are needed. Endothelial cell-specific molecule-1 (Esm-1) is a secreted proteoglycan that attenuates inflammation. We previously identified that a glomerular deficiency of Esm-1 associates with more pronounced albuminuria and glomerular inflammation in DKD-susceptible relative to DKD-resistant mice, but its contribution to DKD remains unexplored. Methods Using hydrodynamic tail-vein injection, we overexpress Esm-1 in DKD-susceptible DBA/2 mice and delete Esm-1 in DKD-resistant C57BL/6 mice to study the contribution of Esm-1 to DKD. We analyze clinical indices of DKD, leukocyte infiltration, podocytopenia, and extracellular matrix production. We also study transcriptomic changes to assess potential mechanisms of Esm-1 in glomeruli. Results In DKD-susceptible mice, Esm-1 inversely correlates with albuminuria and glomerular leukocyte infiltration. We show that overexpression of Esm-1 reduces albuminuria and diabetes-induced podocyte injury, independent of changes in leukocyte infiltration. Using a complementary approach, we find that constitutive deletion of Esm-1 in DKD-resistant mice modestly increases the degree of diabetes-induced albuminuria versus wild-type controls. By glomerular RNAseq, we identify that Esm-1 attenuates expression of kidney disease-promoting and interferon (IFN)-related genes, including Ackr2 and Cxcl11. Conclusions We demonstrate that, in DKD-susceptible mice, Esm-1 protects against diabetes-induced albuminuria and podocytopathy, possibly through select IFN signaling. Companion studies in patients with diabetes suggest a role of Esm-1 in human DKD.
Collapse
Affiliation(s)
- Xiaoyi Zheng
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Lauren Higdon
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California
- Veterans Affairs Palo Alto Heath Care System, Palo Alto, California
| | - Alexandre Gaudet
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1019-UMR9017-Center for Infection & Immunity of Lille, Pasteur Institute of Lille, University of Lille, Lille, France
| | - Manav Shah
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Angela Balistieri
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Catherine Li
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Patricia Nadai
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1019-UMR9017-Center for Infection & Immunity of Lille, Pasteur Institute of Lille, University of Lille, Lille, France
| | - Latha Palaniappan
- Division of Primary Care and Population Health, Stanford University School of Medicine, Stanford, California
| | - Xiaoping Yang
- Division of Kidney-Urologic Pathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Briana Santo
- Department of Pathology and Anatomical Sciences, University at Buffalo–The State University of New York, Buffalo, New York
| | - Brandon Ginley
- Department of Pathology and Anatomical Sciences, University at Buffalo–The State University of New York, Buffalo, New York
| | - Xiaoxin X. Wang
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC
| | - Komuraiah Myakala
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC
| | | | - Moshe Levi
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC
| | - Pinaki Sarder
- Department of Pathology and Anatomical Sciences, University at Buffalo–The State University of New York, Buffalo, New York
| | - Avi Rosenberg
- Division of Kidney-Urologic Pathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jonathan S. Maltzman
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California
- Veterans Affairs Palo Alto Heath Care System, Palo Alto, California
| | - Nathalie de Freitas Caires
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1019-UMR9017-Center for Infection & Immunity of Lille, Pasteur Institute of Lille, University of Lille, Lille, France
- Biothelis, Lille, France
| | - Vivek Bhalla
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
18
|
Bilal Masokano I, Pei Y, Chen J, Liu W, Xie S, Liu H, Feng D, He Q, Li W. Development and validation of MRI-based model for the preoperative prediction of macrotrabecular hepatocellular carcinoma subtype. Insights Imaging 2022; 13:201. [PMID: 36544029 PMCID: PMC9772375 DOI: 10.1186/s13244-022-01333-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/20/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Macrotrabecular hepatocellular carcinoma (MTHCC) has a poor prognosis and is difficult to diagnose preoperatively. The purpose is to build and validate MRI-based models to predict the MTHCC subtype. METHODS Two hundred eight patients with confirmed HCC were enrolled. Three models (model 1: clinicoradiologic model; model 2: fusion radiomics signature; model 3: combined model 1 and model 2) were built based on their clinical data and MR images to predict MTHCC in training and validation cohorts. The performance of the models was assessed using the area under the curve (AUC). The clinical utility of the models was estimated by decision curve analysis (DCA). A nomogram was constructed, and its calibration was evaluated. RESULTS Model 1 is easier to build than models 2 and 3, with a good AUC of 0.773 (95% CI 0.696-0.838) and 0.801 (95% CI 0.681-0.891) in predicting MTHCC in training and validation cohorts, respectively. It performed slightly superior to model 2 in both training (AUC 0.747; 95% CI 0.689-0.806; p = 0.548) and validation (AUC 0.718; 95% CI 0.618-0.810; p = 0.089) cohorts and was similar to model 3 in the validation (AUC 0.866; 95% CI 0.801-0.928; p = 0.321) but inferior in the training (AUC 0.889; 95% CI 0.851-0.926; p = 0.001) cohorts. The DCA of model 1 had a higher net benefit than the treat-all and treat-none strategy at a threshold probability of 10%. The calibration curves of model 1 closely aligned with the true MTHCC rates in the training (p = 0.355) and validation sets (p = 0.364). CONCLUSION The clinicoradiologic model has a good performance in diagnosing MTHCC, and it is simpler and easier to implement, making it a valuable tool for pretherapeutic decision-making in patients.
Collapse
Affiliation(s)
- Ismail Bilal Masokano
- grid.216417.70000 0001 0379 7164Department of Radiology, Xiangya Hospital, Central South University, No. 168 Xiangya Road, Kaifu District, Changsha, 410008 Hunan China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China ,grid.216417.70000 0001 0379 7164Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, 410013 Hunan China
| | - Yigang Pei
- grid.216417.70000 0001 0379 7164Department of Radiology, Xiangya Hospital, Central South University, No. 168 Xiangya Road, Kaifu District, Changsha, 410008 Hunan China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Juan Chen
- grid.216417.70000 0001 0379 7164Department of Radiology, Xiangya Hospital, Central South University, No. 168 Xiangya Road, Kaifu District, Changsha, 410008 Hunan China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Wenguang Liu
- grid.216417.70000 0001 0379 7164Department of Radiology, Xiangya Hospital, Central South University, No. 168 Xiangya Road, Kaifu District, Changsha, 410008 Hunan China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Simin Xie
- grid.216417.70000 0001 0379 7164Department of Radiology, Xiangya Hospital, Central South University, No. 168 Xiangya Road, Kaifu District, Changsha, 410008 Hunan China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Huaping Liu
- grid.216417.70000 0001 0379 7164Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, 410013 Hunan China
| | - Deyun Feng
- grid.216417.70000 0001 0379 7164Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Qiongqiong He
- grid.216417.70000 0001 0379 7164Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Wenzheng Li
- grid.216417.70000 0001 0379 7164Department of Radiology, Xiangya Hospital, Central South University, No. 168 Xiangya Road, Kaifu District, Changsha, 410008 Hunan China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| |
Collapse
|
19
|
Lu J, Liu Q, Zhu L, Liu Y, Zhu X, Peng S, Chen M, Li P. Endothelial cell-specific molecule 1 drives cervical cancer progression. Cell Death Dis 2022; 13:1043. [PMID: 36522312 PMCID: PMC9755307 DOI: 10.1038/s41419-022-05501-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
The expression, biological functions and underlying molecular mechanisms of endothelial cell-specific molecule 1 (ESM1) in human cervical cancer remain unclear. Bioinformatics analysis revealed that ESM1 expression was significantly elevated in human cervical cancer tissues, correlating with patients' poor prognosis. Moreover, ESM1 mRNA and protein upregulation was detected in local cervical cancer tissues and various cervical cancer cells. In established and primary cervical cancer cells, ESM1 shRNA or CRISPR/Cas9-induced ESM1 KO hindered cell proliferation, cell cycle progression, in vitro cell migration and invasion, and induced significant apoptosis. Whereas ESM1 overexpression by a lentiviral construct accelerated proliferation and migration of cervical cancer cells. Further bioinformatics studies and RNA sequencing data discovered that ESM1-assocaited differentially expressed genes (DEGs) were enriched in PI3K-Akt and epithelial-mesenchymal transition (EMT) cascades. Indeed, PI3K-Akt cascade and expression of EMT-promoting proteins were decreased after ESM1 silencing in cervical cancer cells, but increased following ESM1 overexpression. Further studies demonstrated that SYT13 (synaptotagmin 13) could be a primary target gene of ESM1. SYT13 silencing potently inhibited ESM1-overexpression-induced PI3K-Akt cascade activation and cervical cancer cell migration/invasion. In vivo, ESM1 knockout hindered SiHa cervical cancer xenograft growth in mice. In ESM1-knockout xenografts tissues, PI3K-Akt inhibition, EMT-promoting proteins downregulation and apoptosis activation were detected. In conclusion, overexpressed ESM1 is important for cervical cancer growth in vitro and in vivo, possibly by promoting PI3K-Akt activation and EMT progression. ESM1 represents as a promising diagnostic marker and potential therapeutic target of cervical cancer.
Collapse
Affiliation(s)
- Jingjing Lu
- grid.452273.50000 0004 4914 577XDepartment of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Qin Liu
- grid.452273.50000 0004 4914 577XDepartment of Gynaecology and Obstetrics, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Lixia Zhu
- grid.452273.50000 0004 4914 577XDepartment of Gynaecology and Obstetrics, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Yuanyuan Liu
- grid.452273.50000 0004 4914 577XClinical Research and Lab Center, Affiliated Kunshan Hospital of Jiangsu University, 215300 Kunshan, China
| | - Xiaoren Zhu
- grid.452273.50000 0004 4914 577XDepartment of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Shiqing Peng
- grid.452273.50000 0004 4914 577XDepartment of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Minbin Chen
- grid.452273.50000 0004 4914 577XDepartment of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Ping Li
- grid.452273.50000 0004 4914 577XDepartment of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| |
Collapse
|
20
|
Feng Z, Li H, Liu Q, Duan J, Zhou W, Yu X, Chen Q, Liu Z, Wang W, Rong P. CT Radiomics to Predict Macrotrabecular-Massive Subtype and Immune Status in Hepatocellular Carcinoma. Radiology 2022; 307:e221291. [PMID: 36511807 DOI: 10.1148/radiol.221291] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Macrotrabecular-massive (MTM) subtype of hepatocellular carcinoma (HCC) is an aggressive variant associated with angiogenesis and immunosuppressive tumor microenvironment, which is expected to be noninvasively identified using radiomics approaches. Purpose To construct a CT radiomics model to predict the MTM subtype and to investigate the underlying immune infiltration patterns. Materials and Methods This study included five retrospective data sets and one prospective data set from three academic medical centers between January 2015 and December 2021. The preoperative liver contrast-enhanced CT studies of 365 adult patients with resected HCC were evaluated. The Third Xiangya Hospital of Central South University provided the training set and internal test set, while Yueyang Central Hospital and Hunan Cancer Hospital provided the external test sets. Radiomic features were extracted and used to develop a radiomics model with machine learning in the training set, and the performance was verified in the two test sets. The outcomes cohort, including 58 adult patients with advanced HCC undergoing transarterial chemoembolization and antiangiogenic therapy, was used to evaluate the predictive value of the radiomics model for progression-free survival (PFS). Bulk RNA sequencing of tumors from 41 patients in The Cancer Genome Atlas (TCGA) and single-cell RNA sequencing from seven prospectively enrolled participants were used to investigate the radiomics-related immune infiltration patterns. Area under the receiver operating characteristics curve of the radiomics model was calculated, and Cox proportional regression was performed to identify predictors of PFS. Results Among 365 patients (mean age, 55 years ± 10 [SD]; 319 men) used for radiomics modeling, 122 (33%) were confirmed to have the MTM subtype. The radiomics model included 11 radiomic features and showed good performance for predicting the MTM subtype, with AUCs of 0.84, 0.80, and 0.74 in the training set, internal test set, and external test set, respectively. A low radiomics model score relative to the median value in the outcomes cohort was independently associated with PFS (hazard ratio, 0.4; 95% CI: 0.2, 0.8; P = .01). The radiomics model was associated with dysregulated humoral immunity involving B-cell infiltration and immunoglobulin synthesis. Conclusion Accurate prediction of the macrotrabecular-massive subtype in patients with hepatocellular carcinoma was achieved using a CT radiomics model, which was also associated with defective humoral immunity. Published under a CC BY 4.0 license. Supplemental material is available for this article. See also the editorial by Yoon and Kim in this issue.
Collapse
Affiliation(s)
- Zhichao Feng
- From the Departments of Radiology (Z.F., H.L., J.D., W.W., P.R.), Pathology (Q.C.), and Infectious Disease (Z.L.), The Third Xiangya Hospital of Central South University, No. 138 Tongzipo Rd, Changsha 410013, China; Department of Medical Imaging, Yueyang Central Hospital, Yueyang, China (Q.L., W.Z.); and Department of Diagnostic Radiology, Hunan Cancer Hospital, Changsha, China (X.Y.)
| | - Huiling Li
- From the Departments of Radiology (Z.F., H.L., J.D., W.W., P.R.), Pathology (Q.C.), and Infectious Disease (Z.L.), The Third Xiangya Hospital of Central South University, No. 138 Tongzipo Rd, Changsha 410013, China; Department of Medical Imaging, Yueyang Central Hospital, Yueyang, China (Q.L., W.Z.); and Department of Diagnostic Radiology, Hunan Cancer Hospital, Changsha, China (X.Y.)
| | - Qianyun Liu
- From the Departments of Radiology (Z.F., H.L., J.D., W.W., P.R.), Pathology (Q.C.), and Infectious Disease (Z.L.), The Third Xiangya Hospital of Central South University, No. 138 Tongzipo Rd, Changsha 410013, China; Department of Medical Imaging, Yueyang Central Hospital, Yueyang, China (Q.L., W.Z.); and Department of Diagnostic Radiology, Hunan Cancer Hospital, Changsha, China (X.Y.)
| | - Junhong Duan
- From the Departments of Radiology (Z.F., H.L., J.D., W.W., P.R.), Pathology (Q.C.), and Infectious Disease (Z.L.), The Third Xiangya Hospital of Central South University, No. 138 Tongzipo Rd, Changsha 410013, China; Department of Medical Imaging, Yueyang Central Hospital, Yueyang, China (Q.L., W.Z.); and Department of Diagnostic Radiology, Hunan Cancer Hospital, Changsha, China (X.Y.)
| | - Wenming Zhou
- From the Departments of Radiology (Z.F., H.L., J.D., W.W., P.R.), Pathology (Q.C.), and Infectious Disease (Z.L.), The Third Xiangya Hospital of Central South University, No. 138 Tongzipo Rd, Changsha 410013, China; Department of Medical Imaging, Yueyang Central Hospital, Yueyang, China (Q.L., W.Z.); and Department of Diagnostic Radiology, Hunan Cancer Hospital, Changsha, China (X.Y.)
| | - Xiaoping Yu
- From the Departments of Radiology (Z.F., H.L., J.D., W.W., P.R.), Pathology (Q.C.), and Infectious Disease (Z.L.), The Third Xiangya Hospital of Central South University, No. 138 Tongzipo Rd, Changsha 410013, China; Department of Medical Imaging, Yueyang Central Hospital, Yueyang, China (Q.L., W.Z.); and Department of Diagnostic Radiology, Hunan Cancer Hospital, Changsha, China (X.Y.)
| | - Qian Chen
- From the Departments of Radiology (Z.F., H.L., J.D., W.W., P.R.), Pathology (Q.C.), and Infectious Disease (Z.L.), The Third Xiangya Hospital of Central South University, No. 138 Tongzipo Rd, Changsha 410013, China; Department of Medical Imaging, Yueyang Central Hospital, Yueyang, China (Q.L., W.Z.); and Department of Diagnostic Radiology, Hunan Cancer Hospital, Changsha, China (X.Y.)
| | - Zhenguo Liu
- From the Departments of Radiology (Z.F., H.L., J.D., W.W., P.R.), Pathology (Q.C.), and Infectious Disease (Z.L.), The Third Xiangya Hospital of Central South University, No. 138 Tongzipo Rd, Changsha 410013, China; Department of Medical Imaging, Yueyang Central Hospital, Yueyang, China (Q.L., W.Z.); and Department of Diagnostic Radiology, Hunan Cancer Hospital, Changsha, China (X.Y.)
| | - Wei Wang
- From the Departments of Radiology (Z.F., H.L., J.D., W.W., P.R.), Pathology (Q.C.), and Infectious Disease (Z.L.), The Third Xiangya Hospital of Central South University, No. 138 Tongzipo Rd, Changsha 410013, China; Department of Medical Imaging, Yueyang Central Hospital, Yueyang, China (Q.L., W.Z.); and Department of Diagnostic Radiology, Hunan Cancer Hospital, Changsha, China (X.Y.)
| | - Pengfei Rong
- From the Departments of Radiology (Z.F., H.L., J.D., W.W., P.R.), Pathology (Q.C.), and Infectious Disease (Z.L.), The Third Xiangya Hospital of Central South University, No. 138 Tongzipo Rd, Changsha 410013, China; Department of Medical Imaging, Yueyang Central Hospital, Yueyang, China (Q.L., W.Z.); and Department of Diagnostic Radiology, Hunan Cancer Hospital, Changsha, China (X.Y.)
| |
Collapse
|
21
|
Imaging and histological features of tumor biopsy sample predict aggressive intrasegmental recurrence of hepatocellular carcinoma after radiofrequency ablation. Sci Rep 2022; 12:18712. [PMID: 36333426 PMCID: PMC9636258 DOI: 10.1038/s41598-022-23315-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Aggressive intrasegmental recurrence (AIR) is a form of local recurrence associated with a dismal prognosis and defined by multiple nodules or by an infiltrative mass with a tumor thrombus, occurring in the treated segment, after radiofrequency ablation (RFA) for hepatocellular carcinoma (HCC). We aimed to identify radiological and/or histological characteristics of tumor biopsy predictive of AIR. We retrospectively analyzed patients treated by No-Touch multi-bipolar RFA (mbpRFA) for a first HCC with a systematic per-procedural tumor biopsy positive for diagnosis of HCC. The first recurrence was classified as non-aggressive local recurrence, AIR or intrahepatic distant recurrence. 212 patients were included (168 men; mean age 67.1 years; mean tumor size 28.6 mm, 181 cirrhosis). AIR occurred in 21/212 patients (10%) and was associated with a higher risk of death (57% in patients with AIR vs 30% without AIR, p = 0.0001). Non-smooth tumor margins, observed in 21% of the patients and macro-trabecular massive histological subtype, observed in 12% of the patients were independently related to a higher risk of AIR (HR: 3.7[1.57;9.06], p = 0.002 and HR:3.8[2.47;10], p = 0.005 respectively). Non smooth margins at imaging and macro-trabecular massive histological subtype are associated with AIR and could be considered as aggressive features useful to stratify therapeutic strategy.
Collapse
|
22
|
Chung A, Nasralla D, Quaglia A. Understanding the Immunoenvironment of Primary Liver Cancer: A Histopathology Perspective. J Hepatocell Carcinoma 2022; 9:1149-1169. [PMID: 36349146 PMCID: PMC9637345 DOI: 10.2147/jhc.s382310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022] Open
Abstract
One of the most common cancers worldwide, primary liver cancer remains a major cause of cancer-related mortality. Hepatocellular carcinoma and cholangiocarcinoma represent the majority of primary liver cancer cases. Despite advances in the development of novel anti-cancer therapies that exploit targets within the immune system, survival rates from liver cancer remain poor. Furthermore, responses to immunotherapies, such as immune checkpoint inhibitors, have revealed limited and variable responses amongst patients with hepatocellular carcinoma, although combination immunotherapies have shown recent breakthroughs in clinical trials. This has shifted the focus towards improving our understanding of the underlying immune and molecular characteristics of liver tumours that may influence their response to immune-modulating treatments. In this review, we outline the complex interactions that occur in the tumour microenvironment of hepatocellular carcinoma and cholangiocarcinoma, respectively, from a histopathological perspective. We explore the potential role of a classification system based on immune-specific characteristics within each cancer type, the importance of understanding inter- and intra-tumoural heterogeneity and consider the future role of histopathology and novel technologies within this field.
Collapse
Affiliation(s)
- Annabelle Chung
- Department of Cellular Pathology, Royal Free Hospital, London, UK
| | - David Nasralla
- Department of Hepato-Pancreato-Biliary Surgery, Royal Free Hospital, London, UK
| | - Alberto Quaglia
- Department of Cellular Pathology, Royal Free Hospital, London, UK
| |
Collapse
|
23
|
Akiba J, Nakayama M, Sadashima E, Kusano H, Kondo R, Mihara Y, Naito Y, Mizuochi S, Yano Y, Kinjo Y, Tsutsui K, Kondo K, Sakai H, Hisaka T, Nakashima O, Yano H. Prognostic impact of vessels encapsulating tumor clusters and macrotrabecular patterns in hepatocellular carcinoma. Pathol Res Pract 2022; 238:154084. [PMID: 36087415 DOI: 10.1016/j.prp.2022.154084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/11/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) shows a high mortality rate. A macrotrabecular (MT) pattern and vessels encapsulating tumor clusters (VETC) pattern have been reported as aggressive histological patterns in HCC. However, their cut-off values have been contentious. METHOD Nine hundred eighty-five cases of previously diagnosed HCC were enrolled. The percentage areas of the MT and/or VETC pattern with ≥ 5% at every 10% increment were assessed. Clinicopathological analysis including patients' prognosis was conducted. RESULT One hundred fifty-eight and eighty-four cases were accompanied by 5-49% and ≥ 50% MT components, respectively. Two hundred six and twenty-nine cases had 5-49% and ≥ 50% VETC components, respectively. Cases with these histological patterns in common had aggressive characteristics and worse prognosis compared to cases with none of these patterns. The presence of 5-49% VETC pattern was independent worse prognostic factor in overall survival (P = 0.046). HCCs with the MT pattern and the VETC pattern were significantly accompanied by the VETC pattern and the MT pattern (P < 0.001), respectively. CONCLUSION As even 5% of the MT pattern and/or VETC pattern affected the prognosis of patients with HCC, the amount of these pattern should be described in pathological reports. This information could be useful in expecting patients' prognosis and providing proper post-operative treatments.
Collapse
Affiliation(s)
- Jun Akiba
- Department of Diagnostic Pathology, Kurume University Hospital, Asahi-machi 67, Kurume 830-0011, Japan.
| | - Masamichi Nakayama
- Department of Pathology, Kurume University School of Medicine, Asahi-machi 67, Kurume 830-0011, Japan.
| | - Eiji Sadashima
- Life Science Research Institute, Saga-ken Medical Centre Koseikan, Kase-machi, Oaza, Nakahara 400, Saga 840-8571, Japan.
| | - Hironori Kusano
- Department of Pathology, Kurume University School of Medicine, Asahi-machi 67, Kurume 830-0011, Japan.
| | - Reiichiro Kondo
- Department of Pathology, Kurume University School of Medicine, Asahi-machi 67, Kurume 830-0011, Japan.
| | - Yutaro Mihara
- Department of Pathology, Kurume University School of Medicine, Asahi-machi 67, Kurume 830-0011, Japan.
| | - Yoshiki Naito
- Department of Clinical Laboratory Medicine, Kurume University Hospital, Asahi-machi 67, Kurume 830-0011, Japan.
| | - Shinji Mizuochi
- Department of Pathology, Kurume University School of Medicine, Asahi-machi 67, Kurume 830-0011, Japan.
| | - Yuta Yano
- Department of Pathology, Kurume University School of Medicine, Asahi-machi 67, Kurume 830-0011, Japan.
| | - Yoshinao Kinjo
- Department of Pathology, Kurume University School of Medicine, Asahi-machi 67, Kurume 830-0011, Japan.
| | - Kana Tsutsui
- Department of Pathology, Kurume University School of Medicine, Asahi-machi 67, Kurume 830-0011, Japan.
| | - Keiichi Kondo
- Department of Pathology, Kurume University School of Medicine, Asahi-machi 67, Kurume 830-0011, Japan.
| | - Hisamune Sakai
- Department of Surgery, Kurume University School of Medicine, Asahi-machi 67, Kurume 830-0011, Japan.
| | - Toru Hisaka
- Department of Surgery, Kurume University School of Medicine, Asahi-machi 67, Kurume 830-0011, Japan.
| | - Osamu Nakashima
- Department of Clinical Laboratory Medicine, Kurume University Hospital, Asahi-machi 67, Kurume 830-0011, Japan.
| | - Hirohisa Yano
- Department of Pathology, Kurume University School of Medicine, Asahi-machi 67, Kurume 830-0011, Japan.
| |
Collapse
|
24
|
He Y, Lin L, Ou Y, Hu X, Xu C, Wang C. Endothelial cell-specific molecule 1 (ESM1) promoted by transcription factor SPI1 acts as an oncogene to modulate the malignant phenotype of endometrial cancer. Open Med (Wars) 2022; 17:1376-1389. [PMID: 36117773 PMCID: PMC9420884 DOI: 10.1515/med-2022-0529] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 12/02/2022] Open
Abstract
We aimed to study the function and mechanism of endothelial cell-specific molecule 1 (ESM1) in endometrial cancer (EC). The binding relationship between SPI1 and ESM1 was predicted by bioinformatics analysis and verified by the dual-luciferase reporter assay. The expressions and effects of SPI1 and ESM1 were determined using quantitative real-time PCR, immunohistochemistry, Western blot, and functional experiments. ESM1 was highly expressed in EC and was associated with the poor prognosis of patients. ESM1 silencing suppressed the viability, proliferation, invasion, and angiogenesis of EC cells, down-regulated expressions of PCNA, N-cadherin, Vimentin, VEGFR-1, VEGFR2, and EGFR, but upregulated E-cadherin level, while ESM1 overexpression did oppositely. Moreover, SPI1 bound to ESM1. Overexpressed SPI1 promoted the expression of ESM1 and induced malignant phenotype (viability, proliferation, and invasion), which were countervailed by ESM1 silencing. Collectively, ESM1 induced by SPI1 promotes the malignant phenotype of EC.
Collapse
Affiliation(s)
- Yu He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Bengbu Medical College , Bengbu City , Anhui Province, 233004 , China
| | - Lu Lin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Bengbu Medical College , Bengbu City , Anhui Province, 233004 , China
| | - Yurong Ou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Bengbu Medical College , Bengbu City , Anhui Province, 233004 , China
| | - Xiaowen Hu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Bengbu Medical College , Bengbu City , Anhui Province, 233004 , China
| | - Chi Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Bengbu Medical College , Bengbu City , Anhui Province, 233004 , China
| | - Caizhi Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Bengbu Medical College , No. 287, Changhuai Road , Bengbu City , Anhui Province, 233004 , China
| |
Collapse
|
25
|
Shan Y, Yu X, Yang Y, Sun J, Wu S, Mao S, Lu C. Nomogram for the Preoperative Prediction of the Macrotrabecular-Massive Subtype of Hepatocellular Carcinoma. J Hepatocell Carcinoma 2022; 9:717-728. [PMID: 35974953 PMCID: PMC9375985 DOI: 10.2147/jhc.s373960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/25/2022] [Indexed: 12/12/2022] Open
Abstract
Background The macrotrabecular-massive subtype of hepatocellular carcinoma (MTM-HCC) is an aggressive histological type and results in poor prognosis. We developed a nomogram model based on laboratory results to predict the presence of MTM-HCC. Methods A total of 357 HCC patients who underwent radical surgery between January 2015 and December 2020 at Ningbo Medical Center Lihuili Hospital were grouped according to histological type. After propensity score matching (PSM), 267 patients were divided into MTM-HCC (n = 76) and non-MTM-HCC (n = 191) groups. A LASSO regression analysis model was used to select predictive factors. Finally, a nomogram for predicting the presence of MTM-HCC was established. Decision curve analysis (DCA) was conducted to determine the clinical usefulness of the nomogram model by quantifying the net benefits along with the increase in threshold probabilities. Results The 1-, 3-, and 5-year disease-free survival (DFS) and overall survival (OS) rates for MTM-HCC were 60.0%, 36.0%, 32.4% and 92.1%, 68.7%, 52.2%, respectively. Survival analysis indicated that the probabilities of achieving DFS and OS were significantly worse in the MTM-HCC group than in the non-MTM-HCC group (P < 0.05). The nomogram model that included AST levels, PT and AFP levels achieved a better C-index of 0.723 (95% CI: 0.659-0.787). DCA revealed that the nomogram model could lead to net benefits and exhibited a wider range of threshold probabilities in the prediction of MTM-HCC. Conclusion The nomogram model included AST, PT and AFP could achieve an optimal performance in the preoperative prediction of MTM-HCC.
Collapse
Affiliation(s)
- Yuying Shan
- Department of Hepatopancreatobiliary Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, 315041, People's Republic of China
| | - Xi Yu
- Department of Hepatopancreatobiliary Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, 315041, People's Republic of China
| | - Yong Yang
- Department of Hepatopancreatobiliary Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, 315041, People's Republic of China
| | - Jiannan Sun
- Department of Hepatopancreatobiliary Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, 315041, People's Republic of China
| | - Shengdong Wu
- Department of Hepatopancreatobiliary Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, 315041, People's Republic of China
| | - Shuqi Mao
- Department of Hepatopancreatobiliary Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, 315041, People's Republic of China
| | - Caide Lu
- Department of Hepatopancreatobiliary Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, 315041, People's Republic of China
| |
Collapse
|
26
|
Loy LM, Low HM, Choi JY, Rhee H, Wong CF, Tan CH. Variant Hepatocellular Carcinoma Subtypes According to the 2019 WHO Classification: An Imaging-Focused Review. AJR Am J Roentgenol 2022; 219:212-223. [PMID: 35170359 DOI: 10.2214/ajr.21.26982] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The 2019 5th edition of the WHO classification of digestive system tumors estimates that up to 35% of hepatocellular carcinomas (HCCs) can be classified as one of eight subtypes defined by molecular characteristics: steatohepatitic, clear cell, macrotrabecular-massive, scirrhous, chromophobe, fibrolamellar, neutrophil-rich, and lymphocyte-rich HCCs. Due to their distinct cellular and architectural characteristics, these subtypes may not display arterial phase hyperenhancement and washout appearance, which are the classic MRI features of HCC, creating challenges in noninvasively diagnosing such lesions as HCC. Moreover, certain subtypes with atypical imaging features have a worse prognosis than other HCCs. A range of distinguishing imaging features may help raise suspicion that a liver lesion represents one of these HCC subtypes. In this review, we describe the MRI features that have been reported in association with various HCC subtypes according to the 2019 WHO classification, with attention given to the current understanding of these subtypes' pathologic and molecular bases and relevance to clinical practice. Imaging findings that differentiate the subtypes from benign liver lesions and non-HCC malignancies are highlighted. Familiarity with these sub-types and their imaging features may allow the radiologist to suggest their presence, though histologic analysis remains needed to establish the diagnosis.
Collapse
Affiliation(s)
- Liang Meng Loy
- Department of Diagnostic Radiology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Hsien Min Low
- Department of Diagnostic Radiology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Jin-Young Choi
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyungjin Rhee
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chin Fong Wong
- Department of Pathology, Tan Tock Seng Hospital, Singapore, Singapore
| | - Cher Heng Tan
- Department of Diagnostic Radiology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
27
|
Sessa A, Mulé S, Brustia R, Regnault H, Galletto Pregliasco A, Rhaiem R, Leroy V, Sommacale D, Luciani A, Calderaro J, Amaddeo G. Macrotrabecular-Massive Hepatocellular Carcinoma: Light and Shadow in Current Knowledge. J Hepatocell Carcinoma 2022; 9:661-670. [PMID: 35923611 PMCID: PMC9342198 DOI: 10.2147/jhc.s364703] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/22/2022] [Indexed: 12/11/2022] Open
Abstract
The subject of this narrative review is macrotrabecular-massive hepatocellular carcinoma (MTM‐HCC). Despite their rarity, these tumours are of general interest because of their epidemiological and clinical features and for representing a distinct model of the interaction between the angiogenetic system and neoplastic cells. The MTM‐HCC subtype is associated with various adverse biological and pathological parameters (the Alfa-foetoprotein (AFP) serum level, tumour size, vascular invasion, and satellite nodules) and is a key determinant of patient prognosis, with a strong and independent predictive value for early and overall tumour recurrence. Gene expression profiling has demonstrated that angiogenesis activation is a hallmark feature of MTM-HCC, with overexpression of both angiopoietin 2 (ANGPT2) and vascular endothelial growth factor A (VEGFA).
Collapse
Affiliation(s)
- Anna Sessa
- Hepatology Department, APHP, Henri Mondor University Hospital, Créteil, France
- Université Paris-Est Créteil, Faculté de Médecine, Créteil, France
- Inserm, U955, Team 18, Créteil, France
- Correspondence: Giuliana Amaddeo; Anna Sessa, Hepatology Department, APHP, Henri Mondor University Hospital, 1 rue Gustave Eiffel, Créteil, 94000, France, Tel +33 149812353, Email ;
| | - Sébastien Mulé
- Université Paris-Est Créteil, Faculté de Médecine, Créteil, France
- Inserm, U955, Team 18, Créteil, France
- Medical Imaging Department, AP-HP, Henri Mondor University Hospital, Créteil, France
| | - Raffaele Brustia
- Université Paris-Est Créteil, Faculté de Médecine, Créteil, France
- Inserm, U955, Team 18, Créteil, France
- Department of Digestive and Hepato-Pancreato-Biliary Surgery, AP-HP, Henri Mondor University Hospital, Créteil, France
| | - Hélène Regnault
- Hepatology Department, APHP, Henri Mondor University Hospital, Créteil, France
- Inserm, U955, Team 18, Créteil, France
| | | | - Rami Rhaiem
- Department of Hepato-Biliary Pancreatic and Digestive Oncological Surgery, Robert Debré University Hospital, Reims, France
- Reims Champagne-Ardenne University, Reims, France
| | - Vincent Leroy
- Hepatology Department, APHP, Henri Mondor University Hospital, Créteil, France
- Université Paris-Est Créteil, Faculté de Médecine, Créteil, France
- Inserm, U955, Team 18, Créteil, France
| | - Daniele Sommacale
- Université Paris-Est Créteil, Faculté de Médecine, Créteil, France
- Inserm, U955, Team 18, Créteil, France
- Department of Digestive and Hepato-Pancreato-Biliary Surgery, AP-HP, Henri Mondor University Hospital, Créteil, France
| | - Alain Luciani
- Université Paris-Est Créteil, Faculté de Médecine, Créteil, France
- Inserm, U955, Team 18, Créteil, France
- Medical Imaging Department, AP-HP, Henri Mondor University Hospital, Créteil, France
| | - Julien Calderaro
- Université Paris-Est Créteil, Faculté de Médecine, Créteil, France
- Inserm, U955, Team 18, Créteil, France
- Department of Pathology, APHP, Henri Mondor University Hospital, Créteil, France
| | - Giuliana Amaddeo
- Hepatology Department, APHP, Henri Mondor University Hospital, Créteil, France
- Université Paris-Est Créteil, Faculté de Médecine, Créteil, France
- Inserm, U955, Team 18, Créteil, France
- Correspondence: Giuliana Amaddeo; Anna Sessa, Hepatology Department, APHP, Henri Mondor University Hospital, 1 rue Gustave Eiffel, Créteil, 94000, France, Tel +33 149812353, Email ;
| |
Collapse
|
28
|
Liu L, Zhu H, Wang P, Wu S. Construction of a Six-Gene Prognostic Risk Model Related to Hypoxia and Angiogenesis for Cervical Cancer. Front Genet 2022; 13:923263. [PMID: 35769999 PMCID: PMC9234147 DOI: 10.3389/fgene.2022.923263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/25/2022] [Indexed: 12/24/2022] Open
Abstract
Background: The prognosis of cervical cancer (CC) is poor and not accurately reflected by the primary tumor node metastasis staging system. Our study aimed to develop a novel survival-prediction model. Methods: Hallmarks of CC were quantified using single-sample gene set enrichment analysis and univariate Cox proportional hazards analysis. We linked gene expression, hypoxia, and angiogenesis using weighted gene co-expression network analysis (WGCNA). Univariate and multivariate Cox regression was combined with the random forest algorithm to construct a prognostic model. We further evaluated the survival predictive power of the gene signature using Kaplan-Meier analysis and receiver operating characteristic (ROC) curves. Results: Hypoxia and angiogenesis were the leading risk factors contributing to poor overall survival (OS) of patients with CC. We identified 109 candidate genes using WGCNA and univariate Cox regression. Our established prognostic model contained six genes (MOCSI, PPP1R14A, ESM1, DES, ITGA5, and SERPINF1). Kaplan-Meier analysis indicated that high-risk patients had worse OS (hazard ratio = 4.63, p < 0.001). Our model had high predictive power according to the ROC curve. The C-index indicated that the risk score was a better predictor of survival than other clinicopathological variables. Additionally, univariate and multivariate Cox regressions indicated that the risk score was the only independent risk factor for poor OS. The risk score was also an independent predictor in the validation set (GSE52903). Bivariate survival prediction suggested that patients exhibited poor prognosis if they had high z-scores for hypoxia or angiogenesis and high risk scores. Conclusions: We established a six-gene survival prediction model associated with hypoxia and angiogenesis. This novel model accurately predicts survival and also provides potential therapeutic targets.
Collapse
Affiliation(s)
- Lili Liu
- TCM Gynecology Department, Foshan Fosun Chancheng Hospital, Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Foshan, China
| | - Hongcang Zhu
- Foshan Retirement Center for Retired Cadres, Guangdong Military Region of the PLA, Foshan, China
| | - Pei Wang
- Foshan Clinical Medical School, Guangzhou University of Chinese Medicine, Foshan, China
| | - Suzhen Wu
- TCM Gynecology Department, Foshan Fosun Chancheng Hospital, Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Foshan, China
- *Correspondence: Suzhen Wu,
| |
Collapse
|
29
|
Li X, Yao Q, Liu C, Wang J, Zhang H, Li S, Cai P. Macrotrabecular-Massive Hepatocellular Carcinoma: What Should We Know? J Hepatocell Carcinoma 2022; 9:379-387. [PMID: 35547829 PMCID: PMC9084381 DOI: 10.2147/jhc.s364742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/23/2022] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma is one of the most common malignancies globally. Recently, a newly identified histological subtype, designated as "macrotrabecular-massive hepatocellular carcinoma" (MTM-HCC), has been associated with an aggressive phenotype and has received extensive attention. MTM-HCC was a strong independent prognostic predictor of early and overall recurrence because it is closely related to tumor molecular subclass, gene mutation, carcinogenesis pathways, and immunohistochemical markers. In addition, preoperative imaging examination can potentially provide an essential clue for diagnosing MTM-HCC, intratumor necrosis or ischemia is an independent predictor for MTM-HCC on Gd-EOB-DTPA enhanced MRI or CT. Early diagnosis and appropriate treatment of MTM-HCC could prove beneficial for preventing early recurrence and could improve outcomes.
Collapse
Affiliation(s)
- Xiaoming Li
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, People’s Republic of China
- Department of Radiology, The First People’s Hospital of Zunyi, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Qiandong Yao
- Department of Radiology, Sichuan Science City Hospital, Mianyang, People’s Republic of China
| | - Chen Liu
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, People’s Republic of China
| | - Jian Wang
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, People’s Republic of China
| | - Huarong Zhang
- Institute of Pathology and Southwest Cancer Center, Third Military Medical University (Army Military Medical University), Chongqing, People’s Republic of China
| | - Shiguang Li
- Department of Radiology, The First People’s Hospital of Zunyi, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- The Second People's Hospital of Guiyang (Jinyang Hospital), Guiyang, People's Republic of China
| | - Ping Cai
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, People’s Republic of China
| |
Collapse
|
30
|
Kurebayashi Y, Matsuda K, Ueno A, Tsujikawa H, Yamazaki K, Masugi Y, Kwa WT, Effendi K, Hasegawa Y, Yagi H, Abe Y, Kitago M, Ojima H, Sakamoto M. Immunovascular classification of HCC reflects reciprocal interaction between immune and angiogenic tumor microenvironments. Hepatology 2022; 75:1139-1153. [PMID: 34657298 DOI: 10.1002/hep.32201] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/27/2021] [Accepted: 10/13/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Immune cells and tumor vessels constitute important elements in tumor tissue; however, their detailed relationship in human tumors, including HCC, is still largely unknown. Consequently, we expanded our previous study on the immune microenvironment of HCC and analyzed the relationship among the immune microenvironment, inflammatory/angiostatic factor expression, angiogenic factor expression, and tumor vessel findings, including vessels encapsulating tumor clusters (VETC) and macrotrabecular-massive (MTM) patterns. APPROACH AND RESULTS We classified HCC into four distinct immunovascular subtypes (immune-high/angiostatic [IH/AS], immune-mid/angio-mid [IM/AM], immune-low/angiogenic [IL/AG], and immune-low/angio-low [IL/AL]). IH/AS, IM/AM, and IL/AG subtypes were associated with decreasing lymphocytic infiltration and increasing angiogenic factor expression and VETC/MTM positivity, reflecting their reciprocal interaction in the tumor microenvironment of HCC. IL/AG subtype was further characterized by CTNNB1 mutation and activation of Wnt/β-catenin pathway. IL/AL subtype was not associated with increased lymphocyte infiltration or angiogenic factor expression. Prognostically, IH/AS subtype and VETC/MTM positivity were independently significant in two independent cohorts. Increased angiogenic factor expression was not necessarily associated with VETC/MTM positivity and poor prognosis, especially when inflammatory/angiostatic milieu coexisted around tumor vessels. These results may provide insights on the therapeutic effects of immunotherapy, antiangiogenic therapies, and their combinations. The potential of evaluating the immunovascular microenvironment in predicting the clinical effect of these therapies in nonresectable HCC needs to be analyzed in the future study. CONCLUSIONS HCC can be classified into four distinct immunovascular subtypes (IH/AS, IM/AM, IL/AG, and IL/AL) that reflect the reciprocal interaction between the antitumor immune microenvironment and tumor angiogenesis. In addition to its clinicopathological significance, immunovascular classification may also provide pathological insights on the therapeutic effect of immunotherapy, antiangiogenic therapy, and their combination.
Collapse
Affiliation(s)
| | - Kosuke Matsuda
- Department of PathologyKeio University School of MedicineTokyoJapan
| | - Akihisa Ueno
- Department of PathologyKeio University School of MedicineTokyoJapan.,Division of Diagnostic PathologyKeio University HospitalTokyoJapan
| | - Hanako Tsujikawa
- Department of PathologyKeio University School of MedicineTokyoJapan.,Division of Diagnostic PathologyKeio University HospitalTokyoJapan
| | - Ken Yamazaki
- Department of PathologyKeio University School of MedicineTokyoJapan
| | - Yohei Masugi
- Department of PathologyKeio University School of MedicineTokyoJapan.,Division of Diagnostic PathologyKeio University HospitalTokyoJapan
| | - Wit Thun Kwa
- Department of PathologyKeio University School of MedicineTokyoJapan
| | - Kathryn Effendi
- Department of PathologyKeio University School of MedicineTokyoJapan
| | - Yasushi Hasegawa
- Department of SurgeryKeio University School of MedicineTokyoJapan
| | - Hiroshi Yagi
- Department of SurgeryKeio University School of MedicineTokyoJapan
| | - Yuta Abe
- Department of SurgeryKeio University School of MedicineTokyoJapan
| | - Minoru Kitago
- Department of SurgeryKeio University School of MedicineTokyoJapan
| | - Hidenori Ojima
- Department of PathologyKeio University School of MedicineTokyoJapan
| | - Michiie Sakamoto
- Department of PathologyKeio University School of MedicineTokyoJapan
| |
Collapse
|
31
|
Molecular features of primary hepatic undifferentiated carcinoma. Mod Pathol 2022; 35:680-687. [PMID: 34949765 DOI: 10.1038/s41379-021-00970-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 11/09/2022]
Abstract
The clinicopathological and molecular characteristics of primary hepatic undifferentiated carcinoma are poorly defined. It is speculated that primary hepatic undifferentiated carcinoma develops in the setting of preceding primary hepatic carcinoma. We investigated 14 primary hepatic undifferentiated carcinomas through targeted next-generation sequencing and immunohistochemistry. A panel of genes commonly mutated in primary liver carcinomas were examined. We found a similar clinical context as primary hepatic carcinoma, including a high prevalence of chronic viral hepatitis (86%), cirrhosis (57%), and elevated alpha-fetoprotein (29%). Tumors had sheet-like and poorly cohesive growth patterns. Rhabdoid cytomorphology was observed in four samples. Notably, the most common genetic mutations in primary hepatic undifferentiated carcinoma were in the promoter of TERT (n = 8, 57%) and TP53 (n = 8, 57%), which are common in hepatocellular carcinoma. The mutation rate of TP53 was elevated compared with hepatocellular carcinoma. No other typical genetic features of intrahepatic cholangiocarcinoma were identified, such as an IDH1/IDH2 mutation, FGFR2 fusions, or aberrant BAP1 expression. Furthermore, novel switch/sucrose nonfermenting complex inactivation was found, including SMARCA4/SMARCA2 (n = 1) and PBRM1 deficiency (n = 2). The three tumors demonstrated poorly cohesive histology, including rhabdoid features. High PD-L1 expression (57%) was observed in a majority of the tumors. Primary hepatic undifferentiated carcinoma shares clinical and genetic features with hepatocellular carcinoma but harbors progressive molecular characteristics that may initiate tumor dedifferentation. High PD-L1 expression in primary hepatic undifferentiated carcinoma may be a useful biomarker for potential immunotherapeutic strategies.
Collapse
|
32
|
Seehofer D, Petrowsky H, Schneeberger S, Vibert E, Ricke J, Sapisochin G, Nault JC, Berg T. Patient Selection for Downstaging of Hepatocellular Carcinoma Prior to Liver Transplantation—Adjusting the Odds? Transpl Int 2022; 35:10333. [PMID: 35529597 PMCID: PMC9069348 DOI: 10.3389/ti.2022.10333] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/22/2022] [Indexed: 11/30/2022]
Abstract
Background and Aims: Morphometric features such as the Milan criteria serve as standard criteria for liver transplantation (LT) in patients with hepatocellular carcinoma (HCC). Since it has been recognized that these criteria are too restrictive and do not adequately display the tumor biology, additional selection parameters are emerging. Methods: Concise review of the current literature on patient selection for downstaging and LT for HCC outside the Milan criteria. Results: The major task in patients outside the Milan criteria is the need for higher granularity with patient selection, since the benefit through LT is not uniform. The recent literature clearly shows that beneath tumor size and number, additional selection parameters are useful in the process of patient selection for and during downstaging. For initial patient selection, the alpha fetoprotein (AFP) level adds additional information to the size and number of HCC nodules concerning the chance of successful downstaging and LT. This effect is quantifiable using newer selection tools like the WE (West-Eastern) downstaging criteria or the Metroticket 2.0 criteria. Also an initial PET-scan and/or tumor biopsy can be helpful, especially in the high risk group of patients outside the University of California San Francisco (UCSF) criteria. After this entry selection, the clinical course during downstaging procedures concerning the tumor and the AFP response is of paramount importance and serves as an additional final selection tool. Conclusion: Selection criteria for liver transplantation in HCC patients are becoming more and more sophisticated, but are still imperfect. The implementation of molecular knowledge will hopefully support a more specific risk prediction for HCC patients in the future, but do not provide a profound basis for clinical decision-making at present.
Collapse
Affiliation(s)
- Daniel Seehofer
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital, Leipzig, Germany
- *Correspondence: Daniel Seehofer,
| | - Henrik Petrowsky
- Swiss HPB and Transplantation Center, Department of Surgery and Transplantation, University Hospital Zürich, Zurich, Switzerland
| | - Stefan Schneeberger
- Department of Visceral, Transplantation and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Eric Vibert
- Centre Hépato-Biliaire, Hôpital Paul Brousse, Villejuif, France
| | - Jens Ricke
- Department of Radiology, LMU Munich, Munich, Germany
| | - Gonzalo Sapisochin
- Ajmera Transplant Program and HPB Surgical Oncology, Department of Surgery, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
| | - Jean-Charles Nault
- Service d’Hépatologie, Hôpital Avicenne, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Université Paris Nord, Paris, France
- INSERM UMR 1138 Functional Genomics of Solid Tumors Laboratory, Paris, France
| | - Thomas Berg
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| |
Collapse
|
33
|
Woo HY, Rhee H, Yoo JE, Kim SH, Choi GH, Kim DY, Woo HG, Lee HS, Park YN. Lung and lymph node metastases from hepatocellular carcinoma: Comparison of pathological aspects. Liver Int 2022; 42:199-209. [PMID: 34490997 DOI: 10.1111/liv.15051] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/30/2021] [Accepted: 08/27/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Extrahepatic metastasis from hepatocellular carcinoma (HCC) is a catastrophic event, yet organ-specific pathological characteristics of metastatic HCC remain unclear. We aimed to characterize the pathological aspects of HCC metastases to various organs. METHODS We collected intrahepatic HCC (cohort 1, n = 322) and extrahepatic metastatic HCC (cohort 2, n = 130) samples. Clinicopathological evaluation and immunostaining for K19, CD34, αSMA, fibroblast-associated protein (FAP), CAIX, VEGF, PD-L1, CD3, CD8, Foxp3, CD163 and epithelial-mesenchymal transition (EMT)-related markers were performed. RESULTS Independent factors for extrahepatic metastasis included BCLC stage B-C, microvascular invasion (MVI), vessels encapsulating tumour clusters (VETC)-HCC, K19 and FAP expression, and CD163+ macrophage infiltration (cohort 1, P < .05 for all). Lung metastases (n = 63) had the highest proportion of VETC-HCC and macrotrabecular-massive (MTM)-HCC. Lymph node metastases (n = 19) showed significantly high rates of EMT-high features, K19 expression, fibrous tumour stroma with αSMA and FAP expression, high immune cell infiltration, PD-L1 expression (combined positive score), CD3+, CD8+, Foxp3+ T cell and CD163+ macrophage infiltration (adjusted P < .05 for all). In both cohorts, EMT-high HCCs showed higher rates of K19 expression, fibrous tumour stroma, high immune cell infiltration, PD-L1 expression and CD3+ T cell infiltration, whereas EMT-low HCCs were more frequent among VETC-HCCs (P < .05 for all). Overall phenotypic features were not significantly different between paired primary-metastatic HCCs (n = 32). CONCLUSIONS Metastatic HCCs to various organs showed different pathological features. VETC and MTM subtypes were related to lung metastasis, whereas K19 expression, EMT-high features with fibrous tumour stroma and high immune cell infiltration were related to lymph node metastasis.
Collapse
Affiliation(s)
- Ha Young Woo
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Pathology, National Cancer Center, Goyang, Republic of Korea
| | - Hyungjin Rhee
- Department of Radiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jeong Eun Yoo
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Gi Hong Choi
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Do Young Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Goo Woo
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Nyun Park
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea.,Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
34
|
Huang YG, Wang Y, Zhu RJ, Tang K, Tang XB, Su XM. EMS1/DLL4-Notch Signaling Axis Augments Cell Cycle-Mediated Tumorigenesis and Progress in Human Adrenocortical Carcinoma. Front Oncol 2021; 11:771579. [PMID: 34858850 PMCID: PMC8631517 DOI: 10.3389/fonc.2021.771579] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/22/2021] [Indexed: 11/24/2022] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare malignant neoplasm that is prone to local invasion and metastasis. Meanwhile, overexpressed endothelial cell-specific molecule 1 (ESM1) is closely related to tumorigenesis of multitudinous tumors. However, the prognosis value and biological function of ESM1 in ACC remains undefined. In the current essay, the assessment in human ACC samples and multiple public cancer databases suggested that ESM1 was significantly overexpressed in ACC patients. The abnormal expression of ESM1 was evidently correlated with dismal overall survival (OS) in ACC patients. Then, the gene-set enrichment analysis (GSEA) was applied to unravel that ESM1 was mostly involved in cell cycle and Notch4 signaling pathway. Furthermore, in vitro experiment, RNA interference of ESM1 was carried out to state that ESM1 augments CDK1 and p21-mediated G2/M-phase transition of mitosis, cell proliferation via DLL4-Notch signaling pathway in human ACC cell line, SW13 cells. Additionally, two possible or available therapeutic strategies, including immunotherapy and chemotherapy, have been further explored. Immune infiltration analysis highlighted that no significant difference was found in ACC patients between EMS1high and EMS1low group for immune checkpoint-related genes. In addition, the overexpression of ESM1 might trigger the accumulation of tumor mutation burden (TMB) during the cell cycle of DNA replication in ACC. The gene-drug interaction network then indicated that ESM1 inhibitors, such as cisplatin, might serve as potential drugs for the therapy of ACC. Collectively, the results asserted that ESM1 and related regulators might act as underlying prognostic biomarkers or novel therapeutic targets for ACC.
Collapse
Affiliation(s)
- Yu-Gang Huang
- Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Ya Wang
- Department of Immunology, Nankai University School of Medicine, Tianjin, China
| | - Rui-Juan Zhu
- Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Kai Tang
- Department of Pediatric, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xian-Bin Tang
- Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiao-Min Su
- Department of Immunology, Nankai University School of Medicine, Tianjin, China
| |
Collapse
|
35
|
Cannella R, Dioguardi Burgio M, Beaufrère A, Trapani L, Paradis V, Hobeika C, Cauchy F, Bouattour M, Vilgrain V, Sartoris R, Ronot M. Imaging features of histological subtypes of hepatocellular carcinoma: Implication for LI-RADS. JHEP REPORTS : INNOVATION IN HEPATOLOGY 2021; 3:100380. [PMID: 34825155 PMCID: PMC8603197 DOI: 10.1016/j.jhepr.2021.100380] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 02/08/2023]
Abstract
Background & Aims The histopathological subtypes of hepatocellular carcinoma (HCC) are associated with distinct clinical features and prognoses. This study aims to report Liver Imaging Reporting and Data System (LI-RADS)-defined imaging features of different HCC subtypes in a cohort of resected tumours and to assess the influence of HCC subtypes on computed tomography (CT)/magnetic resonance imaging (MRI) LI-RADS categorisation in the subgroup of high-risk patients. Methods This retrospective institutional review board-approved study included patients with resected HCCs and available histopathological classification. Three radiologists independently reviewed preoperative CT and MRI exams. The readers evaluated the presence of imaging features according to LI-RADS v2018 definitions and provided a LI-RADS category in patients at high risk of HCC. Differences in LI-RADS features and categorisations were assessed for not otherwise specified (NOS-HCC), steatohepatitic (SH-HCC), and macrotrabecular-massive (MTM-HCC) types of HCCs. Results Two hundred and seventy-seven patients (median age 64.0 years, 215 [77.6%] men) were analysed, which involved 295 HCCs. There were 197 (66.7%) NOS-HCCs, 62 (21.0%) SH-HCCs, 23 (7.8%) MTM-HCCs, and 13 (4.5%) other rare subtypes. The following features were more frequent in MTM-HCC: elevated α-foetoprotein serum levels (p <0.001), tumour-in-vein (p <0.001 on CT, p ≤0.052 on MRI), presence of at least 1 LR-M feature (p ≤0.010 on CT), infiltrative appearance (p ≤0.032 on CT), necrosis or severe ischaemia (p ≤0.038 on CT), and larger size (p ≤0.006 on CT, p ≤0.011 on MRI). SH-HCC was associated with fat in mass (p <0.001 on CT, p ≤0.002 on MRI). The distribution of the LI-RADS major features and categories in high-risk patients did not significantly differ among the 3 main HCC subtypes. Conclusions The distribution of LI-RADS major features and categories is not different among the HCC subtypes. Nevertheless, careful analysis of tumour-in-vein, LR-M, and ancillary features as well as clinico-biological data can provide information for the non-invasive diagnosis of HCC subtypes. Lay summary In high-risk patients, the overall distribution of LI-RADS major features and categories is not different among the histological subtypes of hepatocellular carcinoma, but tumour-in-vein, presence of LR-M features, and ancillary features can provide information for the non-invasive diagnosis of hepatocellular carcinoma subtypes. The distribution of the major features and categories of LI-RADS is not different among the HCC histological subtypes. MTM-HCC was associated with TIV, ≥1 LR-M feature, infiltrative appearance, necrosis or severe ischaemia, and larger size. Steatohepatitis-related HCC was associated with fat in mass on CT and on MRI.
Collapse
Key Words
- ALT, alanine transaminase
- APHE, arterial phase hyperenhancement
- AST, aspartate aminotransferase
- CT, computed tomography
- Computed tomography
- HBP, hepatobiliary phase
- HCC, hepatocellular carcinoma
- Hepatocellular carcinoma
- Histopathological subtypes
- LI-RADS
- LI-RADS, Liver Imaging Reporting and Data System
- MRI, magnetic resonance imaging
- MTM-HCC, macrotrabecular-massive hepatocellular carcinoma
- Magnetic resonance imaging
- NOS-HCC, not otherwise specified hepatocellular carcinoma
- OS, overall survival
- RFS, recurrence-free survival
- SH-HCC, steatohepatitic hepatocellular carcinoma
- TIV, tumour-in-vein
- US, ultrasound
Collapse
Affiliation(s)
- Roberto Cannella
- Department of Radiology, Hôpital Beaujon, Clichy, France.,Section of Radiology-BiND, University Hospital 'Paolo Giaccone', Palermo, Italy.,Department of Health Promotion Sciences Maternal and Infant Care, Internal Medicine and Medical Specialties, PROMISE, University of Palermo, Palermo, Italy
| | - Marco Dioguardi Burgio
- Department of Radiology, Hôpital Beaujon, Clichy, France.,Université de Paris, INSERM U1149 'centre de recherche sur l'inflammation', CRI, Paris, France
| | | | - Loïc Trapani
- Department of Pathology, Hôpital Beaujon, Clichy, France
| | | | - Christian Hobeika
- Department of HPB Surgery and Liver Transplantation, Hôpital Beaujon, Clichy, France
| | - Francois Cauchy
- Department of HPB Surgery and Liver Transplantation, Hôpital Beaujon, Clichy, France
| | | | - Valérie Vilgrain
- Department of Radiology, Hôpital Beaujon, Clichy, France.,Université de Paris, INSERM U1149 'centre de recherche sur l'inflammation', CRI, Paris, France
| | - Riccardo Sartoris
- Department of Radiology, Hôpital Beaujon, Clichy, France.,Université de Paris, INSERM U1149 'centre de recherche sur l'inflammation', CRI, Paris, France
| | - Maxime Ronot
- Department of Radiology, Hôpital Beaujon, Clichy, France.,Université de Paris, INSERM U1149 'centre de recherche sur l'inflammation', CRI, Paris, France
| |
Collapse
|
36
|
Klein C, Zeng Q, Arbaretaz F, Devêvre E, Calderaro J, Lomenie N, Maiuri MC. Artificial Intelligence for solid tumor diagnosis in digital pathology. Br J Pharmacol 2021; 178:4291-4315. [PMID: 34302297 DOI: 10.1111/bph.15633] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 11/30/2022] Open
Abstract
Tumor diagnosis relies on the visual examination of histological slides by pathologists through a microscope eyepiece. Digital pathology, the digitalization of histological slides at high magnification with slides scanners, has raised the opportunity to extract quantitative information thanks to image analysis. In the last decade, medical image analysis has made exceptional progress due to the development of artificial intelligence (AI) algorithms. AI has been successfully used in the field of medical imaging and more recently in digital pathology. The feasibility and usefulness of AI assisted pathology tasks have been demonstrated in the very last years and we can expect those developments to be applied on routine histopathology in the future. In this review, we will describe and illustrate this technique and present the most recent applications in the field of tumor histopathology.
Collapse
Affiliation(s)
- Christophe Klein
- Centre de recherche des Cordeliers, Centre d'Imagerie, Histologie et Cytométrie (CHIC), INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Qinghe Zeng
- Centre de recherche des Cordeliers, Centre d'Imagerie, Histologie et Cytométrie (CHIC), INSERM, Sorbonne Université, Université de Paris, Paris, France.,Laboratoire d'informatique Paris Descartes (LIPADE), Université de Paris, Paris, France
| | - Floriane Arbaretaz
- Centre de recherche des Cordeliers, Centre d'Imagerie, Histologie et Cytométrie (CHIC), INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Estelle Devêvre
- Centre de recherche des Cordeliers, Centre d'Imagerie, Histologie et Cytométrie (CHIC), INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Julien Calderaro
- Département de pathologie, Hôpital Henri Mondor, Créteil, France
| | - Nicolas Lomenie
- Laboratoire d'informatique Paris Descartes (LIPADE), Université de Paris, Paris, France
| | - Maria Chiara Maiuri
- Centre de recherche des Cordeliers, Centre d'Imagerie, Histologie et Cytométrie (CHIC), INSERM, Sorbonne Université, Université de Paris, Paris, France
| |
Collapse
|
37
|
Large contribution of copy number alterations in early stage of Papillary Thyroid Carcinoma. Comput Biol Med 2021; 135:104584. [PMID: 34171638 DOI: 10.1016/j.compbiomed.2021.104584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/10/2021] [Accepted: 06/13/2021] [Indexed: 11/23/2022]
Abstract
Papillary Thyroid Carcinoma (PTC) accounts for approximately 85% of patients with thyroid cancer. Despite its indolent nature, progression to higher stages is expected in a subgroup of patients. Hence, genomic characterization of the early stages of PTC may help to identify this subgroup, leading to better clinical management. Here, we conducted a comprehensive mutational and somatic copy number alteration (SCNA) investigation on 277 stage one PTC from TCGA. SCNA analysis revealed amplification and deletion of several cancer related genes. We found amplification of 60 oncogenes (Oncs), from which 15 were recurrently observed. Deletion of 58 tumor suppressors (TSs) was also detected. MAPK, PI3K-Akt, Rap1 and Ras were the signaling pathways with large numbers of amplified Oncs. On the other hand, deleted TSs belonged mostly to cell cycle, PI3K-Akt, mTOR and cellular senescence pathways. This suggests that despite heterogeneity in SCNA events, the final results would be the activation/deactivation of a few cancer signaling pathways. Of note, despite large amounts of heterogeneity in stage one PTC, recurrent broad deletion on Chr22 was detected in 21 individuals, leading to deletion of several tumor suppressors. In parallel, the oncogenic/pathogenic mutations in the RTK-RAS and PI3k-Akt pathways were detected. However, no pathogenic mutation was identified in known tumor suppressor genes. In order to identify a potential subgroup of BRAF (V600E) positive patients, who might progress to higher stages, low frequency mutations accompanying BRAF (V600E) were also identified. In conclusion, our findings imply that SCNA have a substantial contribution to early stages of PTC. Experimental validation of the observed genomic alterations could help to stratify patients at the time of diagnosis, and to move toward precision medicine in PTC.
Collapse
|
38
|
Application of Immunohistochemistry in the Pathological Diagnosis of Liver Tumors. Int J Mol Sci 2021; 22:ijms22115780. [PMID: 34071338 PMCID: PMC8198626 DOI: 10.3390/ijms22115780] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 12/17/2022] Open
Abstract
Although radiological diagnostics have been progressing, pathological diagnosis remains the most reliable method for diagnosing liver tumors. In some cases, definite pathological diagnosis cannot be obtained by histological evaluation alone, especially when the sample is a small biopsy; in such cases, immunohistochemical staining is very useful. Immunohistochemistry is the most frequently used technique for molecular pathological diagnosis due to its broad application, ease of performance and evaluation, and reasonable cost. The results occasionally reflect specific genetic mutations. The immunohistochemical markers of hepatocellular carcinoma include those of hepatocellular differentiation—such as hepatocyte paraffin 1 and arginase-1—and those of malignant hepatocytes—such as glypican-3, heat shock protein 70, and glutamine synthetase (GS). To classify the subtypes of hepatocellular adenoma, examination of several immunohistochemical markers, such as liver fatty acid-binding protein, GS, and serum amyloid A, is indispensable. Immunohistochemical staining for GS is also important for the diagnosis of focal nodular hyperplasia. The representative immunohistochemical markers of intrahepatic cholangiocarcinoma include cytokeratin (CK) 7 and CK19. In this article, we provide an overview of the application of immunohistochemistry in the pathological diagnosis of liver tumors referring to the association with genetic alterations. Furthermore, we aimed to explain the practical points in the differential diagnosis of liver tumors by immunohistochemical staining.
Collapse
|
39
|
Feng Z, Li H, Zhao H, Jiang Y, Liu Q, Chen Q, Wang W, Rong P. Preoperative CT for Characterization of Aggressive Macrotrabecular-Massive Subtype and Vessels That Encapsulate Tumor Clusters Pattern in Hepatocellular Carcinoma. Radiology 2021; 300:219-229. [PMID: 33973839 DOI: 10.1148/radiol.2021203614] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Macrotrabecular-massive (MTM) subtype and vessels encapsulating tumor clusters (VETC) pattern of hepatocellular carcinoma (HCC) are associated with unfavorable prognosis. Purpose To estimate the potential of preoperative CT in the prediction of MTM subtype and VETC pattern. Materials and Methods Patients who underwent surgical resection or liver transplant and preoperative CT for HCC between January 2015 and June 2018 were retrospectively included in the primary cohort. CT imaging features were evaluated by two radiologists. Predictors associated with the MTM subtype or VETC pattern were determined by using logistic regression analyses and the performance was tested in a validation cohort. Prognostic factors associated with early recurrence after surgical resection were identified by using Cox regression analyses. Results The primary cohort included 170 patients (median age, 55 years; interquartile range, 48-63 years; 152 men). Serum α-fetoprotein level higher than 100 ng/mL (odds ratio [OR], 4.3; 95% CI: 2.1, 9.2; P < .001), intratumor necrosis (OR, 5.2; 95% CI: 2.5, 11.0; P < .001), and intratumor hemorrhage (OR, 5.4; 95% CI: 1.3, 23.3; P = .02) were independent predictors for MTM subtype, whereas tumor size greater than 5 cm (OR, 3.8; 95% CI: 1.7, 8.1; P = .001) and intratumor necrosis (OR, 2.1; 95% CI: 1.0, 4.4; P = .045) were independent predictors for VETC pattern. These features were used for the construction of ANH and SN scores (where A is α-fetoprotein level, N is necrosis, H is hemorrhage, and S is size), respectively, which showed comparable prediction performance in the primary and validation cohorts. Preoperative high ANH and high SN phenotype (hazard ratio, 1.9; 95% CI: 1.2, 3.0; P = .01) was independently associated with early recurrence after surgical resection. Conclusion Preoperative CT features could be used for the characterization of macrotrabecular-massive subtype and vessels that encapsulate tumor clusters pattern and were of prognostic significance for early recurrence in patients with hepatocellular carcinoma. Online supplemental material is available for this article. See also the editorial by Yoon and Kim in this issue. Published under a CC BY 4.0 license.
Collapse
Affiliation(s)
- Zhichao Feng
- From the Departments of Radiology (Z.F., H.L., H.Z., Y.J., Q.L., W.W., P.R.) and Pathology (Q.C.), The Third Xiangya Hospital of Central South University, No. 138 Tongzipo Road, Changsha 410013, China
| | - Huiling Li
- From the Departments of Radiology (Z.F., H.L., H.Z., Y.J., Q.L., W.W., P.R.) and Pathology (Q.C.), The Third Xiangya Hospital of Central South University, No. 138 Tongzipo Road, Changsha 410013, China
| | - Huafei Zhao
- From the Departments of Radiology (Z.F., H.L., H.Z., Y.J., Q.L., W.W., P.R.) and Pathology (Q.C.), The Third Xiangya Hospital of Central South University, No. 138 Tongzipo Road, Changsha 410013, China
| | - Yi Jiang
- From the Departments of Radiology (Z.F., H.L., H.Z., Y.J., Q.L., W.W., P.R.) and Pathology (Q.C.), The Third Xiangya Hospital of Central South University, No. 138 Tongzipo Road, Changsha 410013, China
| | - Qin Liu
- From the Departments of Radiology (Z.F., H.L., H.Z., Y.J., Q.L., W.W., P.R.) and Pathology (Q.C.), The Third Xiangya Hospital of Central South University, No. 138 Tongzipo Road, Changsha 410013, China
| | - Qian Chen
- From the Departments of Radiology (Z.F., H.L., H.Z., Y.J., Q.L., W.W., P.R.) and Pathology (Q.C.), The Third Xiangya Hospital of Central South University, No. 138 Tongzipo Road, Changsha 410013, China
| | - Wei Wang
- From the Departments of Radiology (Z.F., H.L., H.Z., Y.J., Q.L., W.W., P.R.) and Pathology (Q.C.), The Third Xiangya Hospital of Central South University, No. 138 Tongzipo Road, Changsha 410013, China
| | - Pengfei Rong
- From the Departments of Radiology (Z.F., H.L., H.Z., Y.J., Q.L., W.W., P.R.) and Pathology (Q.C.), The Third Xiangya Hospital of Central South University, No. 138 Tongzipo Road, Changsha 410013, China
| |
Collapse
|
40
|
Vij M, Calderaro J. Pathologic and molecular features of hepatocellular carcinoma: An update. World J Hepatol 2021; 13:393-410. [PMID: 33959223 PMCID: PMC8080551 DOI: 10.4254/wjh.v13.i4.393] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/27/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
Morphological diversity and several new distinct pathologic subtypes of hepatocellular carcinoma (HCC) are now well-recognized. Recent advances in tumor genomics and transcriptomics have identified several recurrent somatic/genetic alterations that are closely related with histomorphological subtypes and have therefore, greatly improved our understanding of HCC pathogenesis. Pathologic subtyping allows for a diagnosis which is clinically helpful and can have important implication in patient prognostication as some of these subtypes are extremely aggressive with vascular invasion, early recurrence, and worst outcomes. Several targeted treatments are now being considered in HCC, and the reporting of subtypes may be quite useful for personalized therapeutic purpose. This manuscript reviews the recently identified histomorphological subtypes and molecular alterations in HCC.
Collapse
Affiliation(s)
- Mukul Vij
- Department ofPathology, Dr Rela Institute and Medical Center, Chennai 600044, Tamil Nadu, India
| | - Julien Calderaro
- Department of Pathology, Groupe Hospitalier Henri Mondor, Creteil F-94010, France
| |
Collapse
|
41
|
Chen J, Xia C, Duan T, Cao L, Jiang H, Liu X, Zhang Z, Ye Z, Wu Z, Gao R, Shi Y, Song B. Macrotrabecular-massive hepatocellular carcinoma: imaging identification and prediction based on gadoxetic acid-enhanced magnetic resonance imaging. Eur Radiol 2021; 31:7696-7704. [PMID: 33856520 DOI: 10.1007/s00330-021-07898-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/06/2021] [Accepted: 03/16/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To identify image features of macrotrabecular-massive (MTM) hepatocellular carcinoma (HCC) and to determine its role in predicting MTM-HCC. METHODS Patients who underwent preoperative gadoxetic acid-enhanced MRI and with surgery proven HCC were retrospectively included. Imaging features were assessed according to Liver Imaging Reporting and Data System. Quantitative measurements were recorded. Clinical characteristics and imaging findings were compared between MTM-HCCs and non-MTM-HCCs. Predictive factors of MTM-HCC were screened with univariate analyses and then identified with multivariate logistic regression. A regression-based diagnostic model was constructed. ROC analyses were used to determine cutoff values, AUC, and corresponding 95% confidence interval (CI) of findings. The diagnostic performance was validated by 10-fold cross-validation. RESULTS One hundred and forty-one patients with 37 MTM-HCCs were included. Multivariate analyses identified high platelet count (≥ 163.5 × 103/ul, odds ratio = 3.20; 95% CI: 1.29, 7.96; p = 0.012), low tumor-to-liver ADC ratio (≤ 1.05, odds ratio = 3.05; 95% CI, 1.23 - 7.55; p = 0.016), and necrosis or severe ischemia (odds ratio = 11.61; 95% CI, 3.99 - 33.76, p < 0.001) as independent predictors of MTM-HCC. Necrosis or severe ischemia alone helped identify 86% MTM-HCCs with a specificity of 66%. The average AUCs were 0.81 (95% CI: 0.71, 0.90) for the regression-based diagnostic model, with a sensitivity of 57% and specificity of 92%. CONCLUSIONS Necrosis or severe ischemia was a sensitive imaging feature of MTM-HCC. Noninvasive prediction of this subtype can be achieved with good accuracy and excellent specificity when findings were combined. KEY POINTS • The macrotrabecular-massive (MTM) hepatocellular carcinoma (HCC) represents an aggressive subtype of HCC and is associated with poor prognosis. • Imaging features of necrosis or severe ischemia alone helped identify 86% MTM-HCCs with a specificity of 66%. • A regression-based diagnostic model including high platelet count (≥ 163.5 × 103/ul), low tumor-to-liver ADC ratio (≤ 1.05), and necrosis or severe ischemia can provide noninvasive assessment of MTM-HCC with good accuracy and high specificity.
Collapse
Affiliation(s)
- Jie Chen
- Department of Radiology, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, China
| | - Chunchao Xia
- Department of Radiology, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, China
| | - Ting Duan
- Department of Radiology, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, China
| | - Likun Cao
- Department of Radiology, Peking Union Medical College Hospital (Dongdan campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Hanyu Jiang
- Department of Radiology, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, China
| | - Xijiao Liu
- Department of Radiology, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, China
| | - Zhen Zhang
- Department of Radiology, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, China
| | - Zheng Ye
- Department of Radiology, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, China
| | - Zhenru Wu
- Laboratory of Pathology, West China Hospital, Sichuan University, No.88 South Keyuan Road, Chengdu, 610041, China
| | - Ronghui Gao
- Department of Radiology, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, China
| | - Yujun Shi
- Laboratory of Pathology, West China Hospital, Sichuan University, No.88 South Keyuan Road, Chengdu, 610041, China.
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, China.
| |
Collapse
|
42
|
Cui Y, Guo W, Li Y, Shi J, Ma S, Guan F. Pan-cancer analysis identifies ESM1 as a novel oncogene for esophageal cancer. Esophagus 2021; 18:326-338. [PMID: 33175267 DOI: 10.1007/s10388-020-00796-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/30/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND Recent studies highlight the crucial role of endothelial cell-specific molecule 1 (ESM1) in the development of multiple cancer types. However, its aberrant expression and prognostic value in human pan-cancer have largely not been described. METHODS AND RESULTS In this study, we used The Cancer Genome Atlas (TCGA) analysis databases to explore the expression level and prognostic significance of ESM1 in 33 types of human cancer. ESM1 was shown to be over-expressed in 12 cancer types, including BLCA, BRCA, COAD, CHOL, ESCA, HNSC, KIRC, KICH, LIHC, STAD, THCA, and UCEC. The expression of ESM1 was significantly correlated with the overall survival (OS) of patients in CESC, ESCA, KIRC, and KIRP. In addition, high ESM1 level indicated poor disease-free survival (DFS) of patients with ACC, ESCA, PRAD, LIHC, KIRP, and UCS. Through comparative analysis, we discovered that ESM1 was dramatically up-regulated in esophageal cancer (ESCA) and associated with worse patient OS and DFS. The elevation of ESM1 in ESCA was confirmed by the datasets from Cancer RNA-Seq Nexus (CRN) and Gene Expression Omnibus (GEO). Based on Gene Set Enrichment Analysis (GSEA), we analyzed the co-expressed genes of ESM1 in ESCA, and found that ESM1 was closely implicated in cell proliferation and migration and the regulation of Janus kinase (JAK) signaling pathway. Functionally, knockdown of ESM1 significantly suppressed cell proliferation and migration, and decreased the protein level of JAK1. CONCLUSIONS Taken together, our results suggest for the first time that ESM1 functions as an oncogene and may be a clinical biomarker and/or therapeutic target in ESCA.
Collapse
Affiliation(s)
- Yuanbo Cui
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Wenna Guo
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ya Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jijing Shi
- Central Lab of the First People's Hospital of Zhengzhou, Zhengzhou, 450001, China
| | - Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
43
|
Ziol M. [Liver tumor pathology seminar. Case 8]. Ann Pathol 2021; 41:454-457. [PMID: 33795186 DOI: 10.1016/j.annpat.2021.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Marianne Ziol
- Service d'anatomie pathologique, Hôpitaux Universitaires Paris-Seine-Saint-Denis, AP-HP, Hôpital Avicenne, 125, rue de Stalingrad, 93000 Bobigny, France; Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris, France.
| |
Collapse
|
44
|
Bello HR, Mahdi ZK, Lui SK, Nandwana SB, Harri PA, Davarpanah AH. Hepatocellular Carcinoma With Atypical Imaging Features: Review of the Morphologic Hepatocellular Carcinoma Subtypes With Radiology-Pathology Correlation. J Magn Reson Imaging 2021; 55:681-697. [PMID: 33682266 DOI: 10.1002/jmri.27553] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fastest growing cause of cancer death in the United States with the incidence rate more than doubling in 20 years. HCC is unique since a noninvasive diagnosis can be achieved with imaging alone when specific clinical criteria and imaging characteristics are met, obviating the need for tissue sampling. However, HCC is a highly heterogeneous neoplasm. Atypical HCC subtypes vary significantly in their morphology, which can be attributed to specific histologic and molecular features, and can cause deviations from the classic imaging characteristics. The different morphologic subtypes of HCC frequently present a diagnostic challenge for radiologists and pathologists since their imaging and pathologic features can overlap with those of non-HCC malignancies. Identifying an atypical subtype can have important clinical implications. Liver transplant, albeit a scarce and limited resource, is the optimal treatment for conventional HCC, potentially curing both the tumor and the underlying pre-malignant condition. Some HCC subtypes as well as mimickers are associated with unacceptably high recurrence and poor outcome after transplant, and there remains limited data on the role and prognosis of liver transplantation for treatment of rare HCC subtypes. Other subtypes tend to recur later than classic HCC, potentially requiring a different follow-up scheme. This review will discuss the appearance of different HCC subtypes in relation to their histopathologic features. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Hernan R Bello
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Zaid K Mahdi
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Shu K Lui
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sadhna B Nandwana
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Peter A Harri
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Amir H Davarpanah
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
45
|
Feng R, Li Z, Wang X, Ge G, Jia Y, Wu D, Ji Y, Wang C. Silenced lncRNA SNHG14 restrains the biological behaviors of bladder cancer cells via regulating microRNA-211-3p/ESM1 axis. Cancer Cell Int 2021; 21:67. [PMID: 33482820 PMCID: PMC7821404 DOI: 10.1186/s12935-020-01717-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 12/16/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Bladder cancer (BCa) is a malignant tumor that occurs on the mucosa of the bladder, in which dysregulated long non-coding RNAs (lncRNAs) are involved. This study investigated the effect of lncRNA small nucleolar RNA host gene 1 (SNHG14) on the biological characteristics of BCa cells from microRNA (miR)-211-3p/ESM1 signaling axis. METHODS BCa tissues and the matched normal tissues were collected to test SNHG14, miR-211-3p and ESM1 levels. SNHG14, miR-211-3p and ESM1 levels in BCa cell lines (T24, 5637, UMUC-3 and EJ) and normal bladder epithelial cells SV-HVC-1 were detected for screening the cell lines for follow-up experiments. T24 and UMUC-3 cells were transfected with different plasmids of SNHG14, miR-211-3p or ESM1 to observe the biological characteristics of BCa cells by MTT, colony formation, Transwell assays and flow cytometry. Tumor xenograft was implemented to inspect tumor growth in vivo. The targeting relationships of SNHG14, miR-211-3p and ESM1 were verified by bioinformatics software, RNA pull down assay and luciferase reporter assay. RESULTS Enhanced SNHG14, ESM1 and suppressed miR-211-3p were found in BCa tissues and cells. SNHG14 up-regulated ESM1 via competitive binding with miR-211-3p. Decreased SNHG14 or up-regulated miR-211-3p depressed cell cycle entry, colony formation, invasion, migration and proliferation abilities, and facilitated apoptosis of BCa cells. Decreased SNHG14 or up-regulated miR-211-3p reduced the tumor volume and weight of nude mice with BCa, as well as promoted apoptosis and restrained proliferation of tumor cells. miR-211-3p inhibition or ESM1 overexpression reversed the effects of down-regulation of SNHG14 on BCa, and miR-211-3p up-regulation or ESM1 downregulation reversed the effect of SNHG14 overexpression on BCa. SNHG14 targeted miR-211-3p to regulate ESM1 expression. CONCLUSION Our study highlights that silenced SNHG14 or elevated miR-211-3p represses the tumorigenic ability of BCa cells, which may be linked to ESM1 knockdown.
Collapse
Affiliation(s)
- Rui Feng
- Department of Urology, Zhenjiang Hospital of Chinese Traditional And Western Medicine, 18 Tuanshan Road, Zhenjiang, Jiangsu, 212002, China.
| | - Zhongxing Li
- Department of Urology, Zhenjiang Hospital of Chinese Traditional And Western Medicine, 18 Tuanshan Road, Zhenjiang, Jiangsu, 212002, China
| | - Xing Wang
- Department of Urology, Zhenjiang Hospital of Chinese Traditional And Western Medicine, 18 Tuanshan Road, Zhenjiang, Jiangsu, 212002, China
| | - Guangcheng Ge
- Department of Urology, Zhenjiang Hospital of Chinese Traditional And Western Medicine, 18 Tuanshan Road, Zhenjiang, Jiangsu, 212002, China
| | - Yuejun Jia
- Department of Urology, Zhenjiang Hospital of Chinese Traditional And Western Medicine, 18 Tuanshan Road, Zhenjiang, Jiangsu, 212002, China
| | - Dan Wu
- Department of Urology, Zhenjiang Hospital of Chinese Traditional And Western Medicine, 18 Tuanshan Road, Zhenjiang, Jiangsu, 212002, China
| | - Yali Ji
- Department of Urology, Zhenjiang Hospital of Chinese Traditional And Western Medicine, 18 Tuanshan Road, Zhenjiang, Jiangsu, 212002, China
| | - Chenghao Wang
- Department of Urology, Zhenjiang Hospital of Chinese Traditional And Western Medicine, 18 Tuanshan Road, Zhenjiang, Jiangsu, 212002, China
| |
Collapse
|
46
|
Kurebayashi Y, Kubota N, Sakamoto M. Immune microenvironment of hepatocellular carcinoma, intrahepatic cholangiocarcinoma and liver metastasis of colorectal adenocarcinoma: Relationship with histopathological and molecular classifications. Hepatol Res 2021; 51:5-18. [PMID: 32573056 DOI: 10.1111/hepr.13539] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/13/2020] [Accepted: 06/18/2020] [Indexed: 01/24/2023]
Abstract
Tumor tissue is composed of tumor cells and tumor stroma. Tumor stroma contains various immune cells and non-immune stromal cells, forming a complex tumor microenvironment which plays pivotal roles in regulating tumor growth. Recent successes in immunotherapies against tumors, including immune checkpoint inhibitors, have further raised interests in the immune microenvironment of liver carcinoma. The immune microenvironment of tumors is formed because of interactions among tumor cells, immune cells and non-immune stromal cells, including fibroblasts and endothelial cells. Different patterns of immune microenvironment are observed among different tumor subtypes, and their clinicopathological significance and intertumor/intratumor heterogeneity are being intensively studied. Here, we review the immune microenvironment of hepatocellular carcinoma, intrahepatic cholangiocarcinoma and liver metastasis of colorectal adenocarcinoma, focusing on its histopathological appearance, clinicopathological significance, and relationship with histological and molecular classifications. Understanding the comprehensive histopathological picture of a tumor immune microenvironment, in addition to molecular and genetic approaches, will further potentiate the effort for precision medicine in the era of tumor-targeting immunotherapy.
Collapse
Affiliation(s)
- Yutaka Kurebayashi
- Department of Pathology, Keio University School of Medicine.,Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Naoto Kubota
- Department of Pathology, Keio University School of Medicine
| | | |
Collapse
|
47
|
Rhee H, Cho ES, Nahm JH, Jang M, Chung YE, Baek SE, Lee S, Kim MJ, Park MS, Han DH, Choi JY, Park YN. Gadoxetic acid-enhanced MRI of macrotrabecular-massive hepatocellular carcinoma and its prognostic implications. J Hepatol 2021; 74:109-121. [PMID: 32818570 DOI: 10.1016/j.jhep.2020.08.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 07/30/2020] [Accepted: 08/08/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Despite the clinical and genetic significance of macrotrabecular-massive hepatocellular carcinoma (MTM-HCC), its characteristics on imaging have not been described. This study aimed to characterise MTM-HCC on gadoxetic acid-enhanced MRI and to evaluate the diagnostic accuracy and prognostic value of these imaging characteristics. METHODS We enrolled 3 independent cohorts from 2 tertiary care centres. The 3 cohorts consisted of a total of 476 patients who underwent gadoxetic acid-enhanced MRI and surgical resection for treatment-naïve single HCCs. Independent review of histopathology and MRI by 2 reviewers was performed for each cohort, and inter-reader agreement was evaluated. Based on the result of MRI review in the training cohort (cohort 1), we developed 2 diagnostic criteria for MTM-HCC and evaluated their prognostic significance. The diagnostic performance and prognostic significance were validated in 2 validation cohorts (cohorts 2 and 3). RESULTS We developed 2 diagnostic MRI criteria (MRIC) for MTM-HCC: MRIC-1, ≥20% arterial phase hypovascular component; MRIC-2, ≥50% hypovascular component and 2 or more ancillary findings (intratumoural artery, arterial phase peritumoural enhancement, and non-smooth tumour margin). MRIC-1 showed high sensitivity and negative predictive value (88% and 95% in the training cohort, and 88% and 97% in the pooled validation cohorts, respectively), whereas MRIC-2 demonstrated moderate sensitivity and high specificity (47% and 94% in the training cohort, and 46% and 96% in the pooled validation cohorts, respectively). MRIC-2 was an independent poor prognostic factor for overall survival in both training and pooled validation cohorts. CONCLUSIONS Using gadoxetic acid-enhanced MRI findings, including an arterial phase hypovascular component, we could stratify the probability of MTM-HCC and non-invasively obtain prognostic information. LAY SUMMARY Macrotrabecular-massive hepatocellular carcinoma (MTM-HCC) is a histopathologic subtype of HCC characterised by aggressive biological behaviour and poor prognosis. We developed imaging criteria based on liver MRI that could be used for the non-invasive diagnosis of MTM-HCC. HCCs showing imaging findings of MTM-HCC were associated with poor outcomes after hepatic resection.
Collapse
Affiliation(s)
- Hyungjin Rhee
- Department of Radiology, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Eun-Suk Cho
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Hae Nahm
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Mi Jang
- Department of Pathology, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Yong Eun Chung
- Department of Radiology, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Song-Ee Baek
- Department of Radiology, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sunyoung Lee
- Department of Radiology, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Myeong-Jin Kim
- Department of Radiology, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Mi-Suk Park
- Department of Radiology, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Dai Hoon Han
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jin-Young Choi
- Department of Radiology, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| | - Young Nyun Park
- Department of Pathology, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
48
|
Vyas M, Jain D. An update on subtypes of hepatocellular carcinoma: From morphology to molecular. INDIAN J PATHOL MICR 2021; 64:S112-S120. [PMID: 34135152 DOI: 10.4103/ijpm.ijpm_751_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The morphologic spectrum of hepatocellular carcinoma (HCC) is quite broad. While in about one-third of cases, the neoplasms can be categorized into meaningful subtypes based on morphology, a vast majority of these neoplasms are morphologically heterogeneous. With extensive tumor profiling, data has begun to emerge which can correlate specific morphologic features with underlying molecular signatures. A true morphologic subtype not only has reproducible H & E features, further supported by specific immunohistochemical or molecular signatures, but also has specific clinical implications and prognostic associations. Eight such morphologic subtypes are recognized by the 2019 WHO classification of tumors with a few more additional subtypes described in the literature. The goal of this review is to familiarize the reader with the morphologic subtypes and elaborate on the clinical and molecular associations of these neoplasms.
Collapse
Affiliation(s)
- Monika Vyas
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Dhanpat Jain
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
49
|
Torbenson MS. Hepatocellular carcinoma: making sense of morphological heterogeneity, growth patterns, and subtypes. Hum Pathol 2020; 112:86-101. [PMID: 33387587 DOI: 10.1016/j.humpath.2020.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinomas are not a homogenous group of tumors but have multiple layers of heterogeneity. This heterogeneity has been studied for many years with the goal to individualize care for patients and has led to the identification of numerous hepatocellular carcinoma subtypes, defined by morphology and or molecular methods. This article reviews both gross and histological levels of heterogeneity within hepatocellular carcinoma, with a focus on histological findings, reviewing how different levels of histological heterogeneity are used as building blocks to construct morphological hepatocellular carcinoma subtypes. The current best practice for defining a morphological subtype is outlined. Then, the definition for thirteen distinct hepatocellular carcinoma subtypes is reviewed. For each of these subtypes, unresolved issues regarding their definitions are highlighted, including recommendations for these problematic areas. Finally, three methods for improving the research on hepatocellular carcinoma subtypes are proposed: (1) Use a systemic, rigorous approach for defining hepatocellular carcinoma subtypes (four-point model); (2) Once definitions for a subtype are established, it should be followed in research studies, as this common denominator enhances the ability to compare results between studies; and (3) Studies of subtypes will be more effective when morphological and molecular results are used in synergistic and iterative study designs where the results of one approach are used to refine and sharpen the results of the other. These and related efforts to better understand heterogeneity within hepatocellular carcinoma are the most promising avenue for improving patient care by individualizing patient care.
Collapse
Affiliation(s)
- Michael S Torbenson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
50
|
Huo J, Wu L, Zang Y. A Prognostic Model of 15 Immune-Related Gene Pairs Associated With Tumor Mutation Burden for Hepatocellular Carcinoma. Front Mol Biosci 2020; 7:581354. [PMID: 33282911 PMCID: PMC7691640 DOI: 10.3389/fmolb.2020.581354] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/08/2020] [Indexed: 12/22/2022] Open
Abstract
Introduction Tumor mutation burden (TMB) is an emerging biomarker for immunotherapy of hepatocellular carcinoma (HCC), but its value for clinical application has not been fully revealed. Materials and Methods We used the Wilcox test to identify the differentially expressed immune-related genes (DEIRGs) in groups with high and low TMB as well as screened the immune gene pairs related to prognosis using univariate Cox regression analysis. A LASSO Cox regression prognostic model was developed by combining The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) with the International Cancer Genome Consortium (ICGC) LIRI-JP cohort, and internal (TCGA, ICGC) and external (GSE14520) validation analyses were conducted on the predictive value of the model. We also explored the relationship between the prognostic model and tumor microenvironment via the ESTIMATE algorithm and performed clinical correlation analysis by the chi-square test, revealing its underlying molecular mechanism with the help of Gene Set Enrichment Analysis (GSEA). Results The prognostic model consisting of 15 immune gene pairs showed high predictive value for short- and long-term survival of HCC in three independent cohorts. Based on univariate multivariate Cox regression analysis, the prognostic model could be used to independently predict the prognosis in each independent cohort. The immune score, stromal score, and estimated score values were lower in the high-risk group than in the low-risk group. As shown by the chi-square test, the prognostic model exhibited an obvious correlation with the tumor stage [American Joint Committee on Cancer tumor–node–metastasis (AJCC-TNM) (p < 0.001), Barcelona Clinic Liver Cancer (BCLC) (p = 0.003)], histopathological grade (p = 0.033), vascular invasion (p = 0.009), maximum tumor diameter (p = 0.013), and background of liver cirrhosis (p < 0.001). GSEA revealed that the high-risk group had an enrichment of many oncology features, including the cell cycle, mismatch repair, DNA replication, RNA degradation, etc. Conclusion Our research developed and validated a reliable prognostic model associated with TMB for HCC, which may help to further enrich the therapeutic targets of HCC.
Collapse
Affiliation(s)
- Junyu Huo
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liqun Wu
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yunjin Zang
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|