1
|
Eberlein C, Williamson SC, Hopcroft L, Ros S, Moss JI, Kerr J, van Weerden WM, de Bruin EC, Dunn S, Willis B, Ross SJ, Rooney C, Barry ST. Capivasertib combines with docetaxel to enhance anti-tumour activity through inhibition of AKT-mediated survival mechanisms in prostate cancer. Br J Cancer 2024; 130:1377-1387. [PMID: 38396173 PMCID: PMC11014923 DOI: 10.1038/s41416-024-02614-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND/OBJECTIVE To explore the anti-tumour activity of combining AKT inhibition and docetaxel in PTEN protein null and WT prostate tumours. METHODS Mechanisms associated with docetaxel capivasertib treatment activity in prostate cancer were examined using a panel of in vivo tumour models and cell lines. RESULTS Combining docetaxel and capivasertib had increased activity in PTEN null and WT prostate tumour models in vivo. In vitro short-term docetaxel treatment caused cell cycle arrest in the majority of cells. However, a sub-population of docetaxel-persister cells did not undergo G2/M arrest but upregulated phosphorylation of PI3K/AKT pathway effectors GSK3β, p70S6K, 4E-BP1, but to a lesser extent AKT. In vivo acute docetaxel treatment induced p70S6K and 4E-BP1 phosphorylation. Treating PTEN null and WT docetaxel-persister cells with capivasertib reduced PI3K/AKT pathway activation and cell cycle progression. In vitro and in vivo it reduced proliferation and increased apoptosis or DNA damage though effects were more marked in PTEN null cells. Docetaxel-persister cells were partly reliant on GSK3β as a GSK3β inhibitor AZD2858 reversed capivasertib-induced apoptosis and DNA damage. CONCLUSION Capivasertib can enhance anti-tumour effects of docetaxel by targeting residual docetaxel-persister cells, independent of PTEN status, to induce apoptosis and DNA damage in part through GSK3β.
Collapse
Affiliation(s)
- Cath Eberlein
- Bioscience, Early Oncology, AstraZeneca, Alderley Park, UK
| | | | | | - Susana Ros
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | | | - James Kerr
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | - Wytske M van Weerden
- Department of Experimental Urology, Josephine Nefkens Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Shanade Dunn
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | - Brandon Willis
- Bioscience, Early Oncology, AstraZeneca, Boston, MA, USA
| | - Sarah J Ross
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | | | - Simon T Barry
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK.
| |
Collapse
|
2
|
Ruiz de Porras V, Bernat-Peguera A, Alcon C, Laguia F, Fernández-Saorin M, Jiménez N, Senan-Salinas A, Solé-Blanch C, Feu A, Marín-Aguilera M, Pardo JC, Ochoa-de-Olza M, Montero J, Mellado B, Font A. Dual inhibition of MEK and PI3Kβ/δ-a potential therapeutic strategy in PTEN-wild-type docetaxel-resistant metastatic prostate cancer. Front Pharmacol 2024; 15:1331648. [PMID: 38318136 PMCID: PMC10838968 DOI: 10.3389/fphar.2024.1331648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Background: Docetaxel remains the standard treatment for metastatic castration-resistant prostate cancer (mCRPC). However, resistance frequently emerges as a result of hyperactivation of the PI3K/AKT and the MEK/ERK pathways. Therefore, the inhibition of these pathways presents a potential therapeutic approach. In this study, we evaluated the efficacy of simultaneous inhibition of the PI3K/AKT and MEK/ERK pathways in docetaxel-resistant mCRPC, both in vitro and in vivo. Methods: Docetaxel-sensitive and docetaxel-resistant mCRPC cells were treated with selumetinib (MEK1/2 inhibitor), AZD8186 (PI3Kβ/δ inhibitor) and capivasertib (pan-AKT inhibitor) alone and in combination. Efficacy and toxicity of selumetinib+AZD8186 were tested in docetaxel-resistant xenograft mice. CRISPR-Cas9 generated a PTEN-knockdown docetaxel-resistant cell model. Changes in phosphorylation of AKT, ERK and downstream targets were analyzed by Western blot. Antiapoptotic adaptations after treatments were detected by dynamic BH3 profiling. Results: PI3K/AKT and MEK/ERK pathways were hyperactivated in PTEN-wild-type (wt) docetaxel-resistant cells. Selumetinib+AZD8186 decreased cell proliferation and increased apoptosis in PTEN-wt docetaxel-resistant cells. This observation was further confirmed in vivo, where docetaxel-resistant xenograft mice treated with selumetinib+AZD8186 exhibited reduced tumor growth without additional toxicity. Conclusion: Our findings on the activity of selumetinib+AZD8186 in PTEN-wt cells and in docetaxel-resistant xenograft mice provide an excellent rationale for a novel therapeutic strategy for PTEN-wt mCRPC patients resistant to docetaxel, in whom, unlike PTEN-loss patients, a clinical benefit of treatment with single-agent PI3K and AKT inhibitors has not been demonstrated. A phase I-II trial of this promising combination is warranted.
Collapse
Affiliation(s)
- Vicenç Ruiz de Porras
- CARE Program, Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona, Spain
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Badalona, Barcelona, Spain
- GRET and Toxicology Unit, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Adrià Bernat-Peguera
- CARE Program, Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona, Spain
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Badalona, Barcelona, Spain
| | - Clara Alcon
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Fernando Laguia
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Maria Fernández-Saorin
- CARE Program, Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona, Spain
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Badalona, Barcelona, Spain
| | - Natalia Jiménez
- Translational Genomics and Targeted Therapeutics in Solid Tumors Lab, Fundació de Recerca Clínic Barcelona–Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - Ana Senan-Salinas
- CARE Program, Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona, Spain
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Badalona, Barcelona, Spain
| | - Carme Solé-Blanch
- CARE Program, Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona, Spain
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Badalona, Barcelona, Spain
| | - Andrea Feu
- Department of Pathology, Germans Trias i Pujol University Hospital, Badalona, Barcelona, Spain
| | - Mercedes Marín-Aguilera
- Translational Genomics and Targeted Therapeutics in Solid Tumors Lab, Fundació de Recerca Clínic Barcelona–Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - Juan Carlos Pardo
- CARE Program, Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona, Spain
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Badalona, Barcelona, Spain
- Medical Oncology Department, Catalan Institute of Oncology, Badalona, Barcelona, Spain
| | - Maria Ochoa-de-Olza
- CARE Program, Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona, Spain
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Badalona, Barcelona, Spain
- Medical Oncology Department, Catalan Institute of Oncology, Badalona, Barcelona, Spain
| | - Joan Montero
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Begoña Mellado
- Translational Genomics and Targeted Therapeutics in Solid Tumors Lab, Fundació de Recerca Clínic Barcelona–Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Medical Oncology Department, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Albert Font
- CARE Program, Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona, Spain
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Badalona, Barcelona, Spain
- Medical Oncology Department, Catalan Institute of Oncology, Badalona, Barcelona, Spain
| |
Collapse
|
3
|
Suh KJ, Ryu MH, Zang DY, Bae WK, Lee HS, Oh HJ, Kang M, Kim JW, Kim BJ, Mortimer PGS, Kim HJ, Lee KW. AZD8186 in Combination With Paclitaxel in Patients With Advanced Gastric Cancer: Results From a Phase Ib/II Study (KCSG ST18-20). Oncologist 2023; 28:e823-e834. [PMID: 37036671 PMCID: PMC10485284 DOI: 10.1093/oncolo/oyad059] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/10/2023] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND Loss of PTEN function leads to increased PI3Kβ signaling. AZD8186, a selective PI3Kβ/δ inhibitor, has shown anti-tumor activity in PTEN-deficient preclinical models. Although the combination of AZD8186 and paclitaxel was well tolerated, limited clinical efficacy was observed in advanced gastric cancer with PTEN loss. METHODS In the phase Ib dose-escalation, subjects with advanced solid tumors received oral AZD8186 (60 mg or 120 mg; twice daily (BID); 5 days on/2 days off) plus intravenous paclitaxel (70 mg/m2 or 80 mg/m2; days 1, 8, and 15) every 4 weeks. In the phase II part, MRGC patients with PTEN loss or PTEN/PIK3CB gene abnormality were enrolled and received recommended phase II dose (RP2D) of AZD8186 plus paclitaxel. Primary endpoints were to determine maximum tolerated dose (MTD) and RP2D in phase Ib and 4-month progression-free survival (PFS) rate in phase II. RESULTS In phase Ib, both MTD and RP2D were determined at paclitaxel 80 mg/m2 and AZD8186 120 mg BID. In phase II, 18 patients were enrolled [PTEN loss (n = 18) and PIK3CB mutation (n = 1)]. The 4-month PFS rate was 18.8% (3 of 16 evaluable patients) and further enrollment stopped due to futility. CONCLUSION Although the combination of AZD8186 and paclitaxel was well tolerated, limited clinical efficacy was observed.ClinicalTrials.gov Identifier: NCT04001569.
Collapse
Affiliation(s)
- Koung Jin Suh
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Gyeonggi-do, Republic of Korea
| | - Min-Hee Ryu
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dae Young Zang
- Division of Hematology-Oncology, Department of Internal Medicine, Hallym University Medical Center, Hallym University College of Medicine, Anyang, Gyeonggi-do, Republic of Korea
| | - Woo Kyun Bae
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyeon Jeong Oh
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Gyeonggi-do, Republic of Korea
| | - Minsu Kang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Gyeonggi-do, Republic of Korea
| | - Ji-Won Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Gyeonggi-do, Republic of Korea
| | - Bum Jun Kim
- Division of Hematology-Oncology, Department of Internal Medicine, Hallym University Medical Center, Hallym University College of Medicine, Anyang, Gyeonggi-do, Republic of Korea
| | | | | | - Keun-Wook Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Gyeonggi-do, Republic of Korea
| |
Collapse
|
4
|
Lang JD, Nguyen TVV, Levin MK, Blas PE, Williams HL, Rodriguez ESR, Briones N, Mueller C, Selleck W, Moore S, Zismann VL, Hendricks WPD, Espina V, O'Shaughnessy J. Pilot clinical trial and phenotypic analysis in chemotherapy-pretreated, metastatic triple-negative breast cancer patients treated with oral TAK-228 and TAK-117 (PIKTOR) to increase DNA damage repair deficiency followed by cisplatin and nab paclitaxel. Biomark Res 2023; 11:73. [PMID: 37491309 PMCID: PMC10369813 DOI: 10.1186/s40364-023-00511-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/04/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND A subset of triple-negative breast cancers (TNBCs) have homologous recombination deficiency with upregulation of compensatory DNA repair pathways. PIKTOR, a combination of TAK-228 (TORC1/2 inhibitor) and TAK-117 (PI3Kα inhibitor), is hypothesized to increase genomic instability and increase DNA damage repair (DDR) deficiency, leading to increased sensitivity to DNA-damaging chemotherapy and to immune checkpoint blockade inhibitors. METHODS 10 metastatic TNBC patients received 4 mg TAK-228 and 200 mg TAK-117 (PIKTOR) orally each day for 3 days followed by 4 days off, weekly, until disease progression (PD), followed by intravenous cisplatin 75 mg/m2 plus nab paclitaxel 220 mg/m2 every 3 weeks for up to 6 cycles. Patients received subsequent treatment with pembrolizumab and/or chemotherapy. Primary endpoints were objective response rate with cisplatin/nab paclitaxel and safety. Biopsies of a metastatic lesion were collected prior to and at PD on PIKTOR. Whole exome and RNA-sequencing and reverse phase protein arrays (RPPA) were used to phenotype tumors pre- and post-PIKTOR for alterations in DDR, proliferation, and immune response. RESULTS With cisplatin/nab paclitaxel (cis/nab pac) therapy post PIKTOR, 3 patients had clinical benefit (1 partial response (PR) and 2 stable disease (SD) ≥ 6 months) and continued to have durable benefit in progression-free survival with pembrolizumab post-cis/nab pac for 1.2, 2, and 3.6 years. Their post-PIKTOR metastatic tissue displayed decreased mismatch repair (MMR), increased tumor mutation burden, and significantly lower levels of 53BP1, DAG Lipase β, GCN2, AKT Ser473, and PKCzeta Thr410/403 compared to pre-PIKTOR tumor tissue. CONCLUSIONS Priming patients' chemotherapy-pretreated metastatic TNBC with PIKTOR led to very prolonged response/disease control with subsequent cis/nab pac, followed by pembrolizumab, in 3 of 10 treated patients. Our multi-omics approach revealed a higher number of genomic alterations, reductions in MMR, and alterations in immune and stress response pathways post-PIKTOR in patients who had durable responses. TRIAL REGISTRATION This clinical trial was registered on June 21, 2017, at ClinicalTrials.gov using identifier NCT03193853.
Collapse
Affiliation(s)
- Jessica D Lang
- The Translational Genomics Research Institute (TGen), Integrated Cancer Genomics Division, Phoenix, AZ, 85004, USA
- Department of Pathology and Laboratory Medicine, Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Tuong Vi V Nguyen
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 22030, USA
| | - Maren K Levin
- Baylor Scott & White Research Institute, Dallas, TX, 75246, USA
| | - Page E Blas
- Baylor Scott & White Research Institute, Dallas, TX, 75246, USA
| | | | | | - Natalia Briones
- The Translational Genomics Research Institute (TGen), Integrated Cancer Genomics Division, Phoenix, AZ, 85004, USA
| | - Claudius Mueller
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 22030, USA
| | - William Selleck
- The Translational Genomics Research Institute (TGen), Integrated Cancer Genomics Division, Phoenix, AZ, 85004, USA
| | - Sarah Moore
- The Translational Genomics Research Institute (TGen), Integrated Cancer Genomics Division, Phoenix, AZ, 85004, USA
| | - Victoria L Zismann
- The Translational Genomics Research Institute (TGen), Integrated Cancer Genomics Division, Phoenix, AZ, 85004, USA
| | - William P D Hendricks
- The Translational Genomics Research Institute (TGen), Integrated Cancer Genomics Division, Phoenix, AZ, 85004, USA
| | - Virginia Espina
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 22030, USA
| | - Joyce O'Shaughnessy
- Baylor University Medical Center, Texas Oncology, 3410 Worth Street, Suite 400, Dallas, TX, 75246, USA.
| |
Collapse
|
5
|
Zhou Y, Li T, Jia M, Dai R, Wang R. The Molecular Biology of Prostate Cancer Stem Cells: From the Past to the Future. Int J Mol Sci 2023; 24:ijms24087482. [PMID: 37108647 PMCID: PMC10140972 DOI: 10.3390/ijms24087482] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Prostate cancer (PCa) continues to rank as the second leading cause of cancer-related mortality in western countries, despite the golden treatment using androgen deprivation therapy (ADT) or anti-androgen therapy. With decades of research, scientists have gradually realized that the existence of prostate cancer stem cells (PCSCs) successfully explains tumor recurrence, metastasis and therapeutic failure of PCa. Theoretically, eradication of this small population may improve the efficacy of current therapeutic approaches and prolong PCa survival. However, several characteristics of PCSCs make their diminishment extremely challenging: inherent resistance to anti-androgen and chemotherapy treatment, over-activation of the survival pathway, adaptation to tumor micro-environments, escape from immune attack and being easier to metastasize. For this end, a better understanding of PCSC biology at the molecular level will definitely inspire us to develop PCSC targeted approaches. In this review, we comprehensively summarize signaling pathways responsible for homeostatic regulation of PCSCs and discuss how to eliminate these fractional cells in clinical practice. Overall, this study deeply pinpoints PCSC biology at the molecular level and provides us some research perspectives.
Collapse
Affiliation(s)
- Yong Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Tian Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Man Jia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Rongyang Dai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Ronghao Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
6
|
Yu M, Chen J, Xu Z, Yang B, He Q, Luo P, Yan H, Yang X. Development and safety of PI3K inhibitors in cancer. Arch Toxicol 2023; 97:635-650. [PMID: 36773078 PMCID: PMC9968701 DOI: 10.1007/s00204-023-03440-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/09/2023] [Indexed: 02/12/2023]
Abstract
The phosphatidylinositol 3-kinase (PI3K) signalling pathway regulates cell survival, proliferation, migration, metabolism and other vital cellular life processes. In addition, activation of the PI3K signalling pathway is important for cancer development. As a result, a variety of PI3K inhibitors have been clinically developed to treat malignancies. Although several PI3K inhibitors have received approval from the Food and Drug Administration (FDA) for significant antitumour activity, frequent and severe adverse effects have greatly limited their clinical application. These toxicities are mostly on-target and immune-mediated; nevertheless, the underlying mechanisms are still unclear. Current management usually involves intervention through symptomatic treatment, with discontinuation if toxicity persists. Therefore, it is necessary to comprehensively understand these adverse events and ensure the clinical safety application of PI3K inhibitors by establishing the most effective management guidelines, appropriate intermittent dosing regimens and new combination administration. Here, the focus is on the development of PI3K inhibitors in cancer therapy, with particular emphasis on isoform-specific PI3K inhibitors. The most common adverse effects of PI3K inhibitors are also covered, as well as potential mechanisms and management approaches.
Collapse
Affiliation(s)
- Miaomiao Yu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Jiajia Chen
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Hangzhou, 310058, Zhejiang, People's Republic of China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310018, Zhejiang, People's Republic of China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Hangzhou, 310058, Zhejiang, People's Republic of China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Hangzhou, 310058, Zhejiang, People's Republic of China.
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Hangzhou, 310058, Zhejiang, People's Republic of China.
| |
Collapse
|
7
|
Yuan Y, Long H, Zhou Z, Fu Y, Jiang B. PI3K-AKT-Targeting Breast Cancer Treatments: Natural Products and Synthetic Compounds. Biomolecules 2023; 13:biom13010093. [PMID: 36671478 PMCID: PMC9856042 DOI: 10.3390/biom13010093] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/16/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
Breast cancer is the most commonly diagnosed cancer in women. The high incidence of breast cancer, which is continuing to rise, makes treatment a significant challenge. The PI3K-AKT pathway and its downstream targets influence various cellular processes. In recent years, mounting evidence has shown that natural products and synthetic drugs targeting PI3K-AKT signaling have the potential to treat breast cancer. In this review, we discuss the role of the PI3K-AKT signaling pathway in the occurrence and development of breast cancer and highlight PI3K-AKT-targeting natural products and drugs in clinical trials for the treatment of breast cancer.
Collapse
Affiliation(s)
- Yeqin Yuan
- Medical Research Center, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China
| | - Huizhi Long
- School of Pharmacy, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Ziwei Zhou
- School of Pharmacy, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yuting Fu
- Medical Research Center, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China
| | - Binyuan Jiang
- Medical Research Center, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China
- Department of Clinical Laboratory, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China
- Correspondence:
| |
Collapse
|
8
|
Xu W, Berning P, Erdmann T, Grau M, Bettazová N, Zapukhlyak M, Frontzek F, Kosnopfel C, Lenz P, Grondine M, Willis B, Lynch JT, Klener P, Hailfinger S, Barry ST, Lenz G. mTOR inhibition amplifies the anti-lymphoma effect of PI3Kβ/δ blockage in diffuse large B-cell lymphoma. Leukemia 2023; 37:178-189. [PMID: 36352190 PMCID: PMC9883168 DOI: 10.1038/s41375-022-01749-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/10/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is an aggressive disease that exhibits constitutive activation of phosphoinositide 3-kinase (PI3K) driven by chronic B-cell receptor signaling or PTEN deficiency. Since pan-PI3K inhibitors cause severe side effects, we investigated the anti-lymphoma efficacy of the specific PI3Kβ/δ inhibitor AZD8186. We identified a subset of DLBCL models within activated B-cell-like (ABC) and germinal center B-cell-like (GCB) DLBCL that were sensitive to AZD8186 treatment. On the molecular level, PI3Kβ/δ inhibition decreased the pro-survival NF-κB and AP-1 activity or led to downregulation of the oncogenic transcription factor MYC. In AZD8186-resistant models, we detected a feedback activation of the PI3K/AKT/mTOR pathway following PI3Kβ/δ inhibition, which limited AZD8186 efficacy. The combined treatment with AZD8186 and the mTOR inhibitor AZD2014 overcame resistance to PI3Kβ/δ inhibition and completely prevented outgrowth of lymphoma cells in vivo in cell line- and patient-derived xenograft mouse models. Collectively, our study reveals that subsets of DLBCLs are addicted to PI3Kβ/δ signaling and thus identifies a previously unappreciated role of the PI3Kβ isoform in DLBCL survival. Furthermore, our data demonstrate that combined targeting of PI3Kβ/δ and mTOR is effective in all major DLBCL subtypes supporting the evaluation of this strategy in a clinical trial setting.
Collapse
Affiliation(s)
- Wendan Xu
- Department of Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Philipp Berning
- Department of Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Tabea Erdmann
- Department of Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Michael Grau
- Department of Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Nardjas Bettazová
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Myroslav Zapukhlyak
- Department of Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Fabian Frontzek
- Department of Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Corinna Kosnopfel
- Department of Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Peter Lenz
- Department of Physics, University of Marburg, Marburg, Germany
- LOEWE Center for Synthetic Microbiology, Marburg, Germany
| | | | - Brandon Willis
- Bioscience, Early Oncology, AstraZeneca, Boston, MA, USA
| | - James T Lynch
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | - Pavel Klener
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Department of Internal Medicine - Department of Hematology, University General Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Stephan Hailfinger
- Department of Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Simon T Barry
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | - Georg Lenz
- Department of Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany.
| |
Collapse
|
9
|
Talwelkar SS, Mäyränpää MI, Schüler J, Linnavirta N, Hemmes A, Adinolfi S, Kankainen M, Sommergruber W, Levonen AL, Räsänen J, Knuuttila A, Verschuren EW, Wennerberg K. PI3Kβ inhibition enhances ALK-inhibitor sensitivity in ALK-rearranged lung cancer. Mol Oncol 2022; 17:747-764. [PMID: 36423211 PMCID: PMC10158778 DOI: 10.1002/1878-0261.13342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/13/2022] [Accepted: 10/28/2022] [Indexed: 11/25/2022] Open
Abstract
Treatment with anaplastic lymphoma kinase (ALK) inhibitors significantly improves outcome for non-small-cell lung cancer (NSCLC) patients with ALK-rearranged tumors. However, clinical resistance typically develops over time and, in the majority of cases, resistance mechanisms are ALK-independent. We generated tumor cell cultures from multiple regions of an ALK-rearranged clinical tumor specimen and deployed functional drug screens to identify modulators of ALK-inhibitor response. This identified a role for PI3Kβ and EGFR inhibition in sensitizing the response regulating resistance to ALK inhibition. Inhibition of ALK elicited activation of EGFR, and subsequent MAPK and PI3K-AKT pathway reactivation. Sensitivity to ALK targeting was enhanced by inhibition or knockdown of PI3Kβ. In ALK-rearranged primary cultures, the combined inhibition of ALK and PI3Kβ prevented the EGFR-mediated ALK-inhibitor resistance, and selectively targeted the cancer cells. The combinatorial effect was seen also in the background of TP53 mutations and in epithelial-to-mesenchymal transformed cells. In conclusion, combinatorial ALK- and PI3Kβ-inhibitor treatment carries promise as a treatment for ALK-rearranged NSCLC.
Collapse
Affiliation(s)
- Sarang S Talwelkar
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Finland.,Institute of Biomedicine and MediCity Research Laboratories, University of Turku, Finland
| | - Mikko I Mäyränpää
- Department of Pathology, Helsinki University Hospital and University of Helsinki, Finland
| | - Julia Schüler
- Charles River Research Services, Germany GmbH, Freiburg im Breisgau, Germany
| | - Nora Linnavirta
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Finland
| | - Annabrita Hemmes
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Finland
| | - Simone Adinolfi
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Matti Kankainen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Finland
| | - Wolfgang Sommergruber
- Cancer Cell Signalling, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria.,Department of Biotechnology, University of Applied Sciences, Vienna, Austria
| | - Anna-Liisa Levonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jari Räsänen
- Department of Thoracic Surgery, Heart and Lung Center, Helsinki University Hospital, Finland
| | - Aija Knuuttila
- Department of Pulmonary Medicine, Heart and Lung Center and Cancer Center, Helsinki University Hospital, Finland
| | - Emmy W Verschuren
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Finland.,iCAN Digital Precision Cancer Medicine Flagship, Finland.,Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Finland
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Finland.,Biotech Research & Innovation Centre (BRIC) and Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Denmark
| |
Collapse
|
10
|
Dunn S, Eberlein C, Yu J, Gris-Oliver A, Ong SH, Yelland U, Cureton N, Staniszewska A, McEwen R, Fox M, Pilling J, Hopcroft P, Coker EA, Jaaks P, Garnett MJ, Isherwood B, Serra V, Davies BR, Barry ST, Lynch JT, Yusa K. AKT-mTORC1 reactivation is the dominant resistance driver for PI3Kβ/AKT inhibitors in PTEN-null breast cancer and can be overcome by combining with Mcl-1 inhibitors. Oncogene 2022; 41:5046-5060. [PMID: 36241868 PMCID: PMC9652152 DOI: 10.1038/s41388-022-02482-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/12/2022] [Accepted: 09/21/2022] [Indexed: 11/08/2022]
Abstract
The PI3K pathway is commonly activated in breast cancer, with PI3K-AKT pathway inhibitors used clinically. However, mechanisms that limit or enhance the therapeutic effects of PI3K-AKT inhibitors are poorly understood at a genome-wide level. Parallel CRISPR screens in 3 PTEN-null breast cancer cell lines identified genes mediating resistance to capivasertib (AKT inhibitor) and AZD8186 (PI3Kβ inhibitor). The dominant mechanism causing resistance is reactivated PI3K-AKT-mTOR signalling, but not other canonical signalling pathways. Deletion of TSC1/2 conferred resistance to PI3Kβi and AKTi through mTORC1. However, deletion of PIK3R2 and INPPL1 drove specific PI3Kβi resistance through AKT. Conversely deletion of PIK3CA, ERBB2, ERBB3 increased PI3Kβi sensitivity while modulation of RRAGC, LAMTOR1, LAMTOR4 increased AKTi sensitivity. Significantly, we found that Mcl-1 loss enhanced response through rapid apoptosis induction with AKTi and PI3Kβi in both sensitive and drug resistant TSC1/2 null cells. The combination effect was BAK but not BAX dependent. The Mcl-1i + PI3Kβ/AKTi combination was effective across a panel of breast cancer cell lines with PIK3CA and PTEN mutations, and delivered increased anti-tumor benefit in vivo. This study demonstrates that different resistance drivers to PI3Kβi and AKTi converge to reactivate PI3K-AKT or mTOR signalling and combined inhibition of Mcl-1 and PI3K-AKT has potential as a treatment strategy for PI3Kβi/AKTi sensitive and resistant breast tumours.
Collapse
Affiliation(s)
- Shanade Dunn
- Wellcome Sanger Institute, Cambridge, UK
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | - Cath Eberlein
- Bioscience, Early Oncology, AstraZeneca, Alderley Park, UK
| | - Jason Yu
- Wellcome Sanger Institute, Cambridge, UK
- Molecular Biology of Metabolism Lab, The Francis Crick Institute, London, UK
| | | | | | - Urs Yelland
- Bioscience, Early Oncology, AstraZeneca, Alderley Park, UK
| | | | | | - Robert McEwen
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | - Millie Fox
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | | | | | | | | | | | | | - Violeta Serra
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | | - Simon T Barry
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK.
| | - James T Lynch
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | - Kosuke Yusa
- Wellcome Sanger Institute, Cambridge, UK.
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
11
|
Lackner M, Neef SK, Winter S, Beer-Hammer S, Nürnberg B, Schwab M, Hofmann U, Haag M. Untargeted stable isotope-resolved metabolomics to assess the effect of PI3Kβ inhibition on metabolic pathway activities in a PTEN null breast cancer cell line. Front Mol Biosci 2022; 9:1004602. [PMID: 36310598 PMCID: PMC9614656 DOI: 10.3389/fmolb.2022.1004602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
The combination of high-resolution LC-MS untargeted metabolomics with stable isotope-resolved tracing is a promising approach for the global exploration of metabolic pathway activities. In our established workflow we combine targeted isotopologue feature extraction with the non-targeted X13CMS routine. Metabolites, detected by X13CMS as differentially labeled between two biological conditions are subsequently integrated into the original targeted library. This strategy enables monitoring of changes in known pathways as well as the discovery of hitherto unknown metabolic alterations. Here, we demonstrate this workflow in a PTEN (phosphatase and tensin homolog) null breast cancer cell line (MDA-MB-468) exploring metabolic pathway activities in the absence and presence of the selective PI3Kβ inhibitor AZD8186. Cells were fed with [U-13C] glucose and treated for 1, 3, 6, and 24 h with 0.5 µM AZD8186 or vehicle, extracted by an optimized sample preparation protocol and analyzed by LC-QTOF-MS. Untargeted differential tracing of labels revealed 286 isotope-enriched features that were significantly altered between control and treatment conditions, of which 19 features could be attributed to known compounds from targeted pathways. Other 11 features were unambiguously identified based on data-dependent MS/MS spectra and reference substances. Notably, only a minority of the significantly altered features (11 and 16, respectively) were identified when preprocessing of the same data set (treatment vs. control in 24 h unlabeled samples) was performed with tools commonly used for label-free (i.e. w/o isotopic tracer) non-targeted metabolomics experiments (Profinder´s batch recursive feature extraction and XCMS). The structurally identified metabolites were integrated into the existing targeted isotopologue feature extraction workflow to enable natural abundance correction, evaluation of assay performance and assessment of drug-induced changes in pathway activities. Label incorporation was highly reproducible for the majority of isotopologues in technical replicates with a RSD below 10%. Furthermore, inter-day repeatability of a second label experiment showed strong correlation (Pearson R2 > 0.99) between tracer incorporation on different days. Finally, we could identify prominent pathway activity alterations upon PI3Kβ inhibition. Besides pathways in central metabolism, known to be changed our workflow revealed additional pathways, like pyrimidine metabolism or hexosamine pathway. All pathways identified represent key metabolic processes associated with cancer metabolism and therapy.
Collapse
Affiliation(s)
- Marcel Lackner
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Sylvia K. Neef
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Stefan Winter
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Sandra Beer-Hammer
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute for Experimental and Clinical Pharmacology and Pharmacogenomics, Interfaculty Center for Pharmacogenomics and Drug Research (ICePhA), University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180), Image-Guided and Functionally Instructed Tumor Therapies, University of Tübingen, Tübingen, Germany
| | - Bernd Nürnberg
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute for Experimental and Clinical Pharmacology and Pharmacogenomics, Interfaculty Center for Pharmacogenomics and Drug Research (ICePhA), University of Tübingen, Tübingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180), Image-Guided and Functionally Instructed Tumor Therapies, University of Tübingen, Tübingen, Germany
- Departments of Clinical Pharmacology and of Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Mathias Haag
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
- *Correspondence: Mathias Haag,
| |
Collapse
|
12
|
Choudhury AD. PTEN-PI3K pathway alterations in advanced prostate cancer and clinical implications. Prostate 2022; 82 Suppl 1:S60-S72. [PMID: 35657152 DOI: 10.1002/pros.24372] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/21/2022] [Accepted: 05/03/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Despite significant advances in molecular characterization and therapeutic targeting of advanced prostate cancer, it remains the second most common cause of cancer death in men in the United States. The PI3K (Phosphatidylinositol 3-kinase)/AKT (AKT serine/threonine kinase)/mTOR (mammalian target of rapamycin) signaling pathway is commonly altered in prostate cancer, most frequently through loss of the PTEN (Phosphatase and Tensin Homolog) tumor suppressor, and is critical for cancer cell proliferation, migration, and survival. METHODS This study summarizes signaling through the PTEN/PI3K pathway, alterations in pathway components commonly seen in advanced prostate cancer, and results of clinical trials of pathway inhibitors reported to date with a focus on more recently reported studies. It also reviews rationale for combination approaches currently under study, including with taxanes, immune checkpoint inhibitors and poly (ADP-ribose) polymerase inhibitors, and discusses future directions in biomarker testing and therapeutic targeting of this pathway. RESULTS Clinical trials studying pharmacologic inhibitors of PI3K, AKT or mTOR kinases have demonstrated modest activity of specific agents, with several trials of pathway inhibitors currently in progress. A key challenge is the importance of PI3K/AKT/mTOR signaling in noncancerous tissues, leading to predictable but often severe toxicities at therapeutic doses. RESULTS Further advances in selective pharmacologic inhibition of the PI3K/AKT/mTOR pathway in tumors, development of rational combinations, and appropriate biomarker selection to identify the appropriate tumor- and patient-specific vulnerabilities will be required to optimize clinical benefit from therapeutic targeting of this pathway.
Collapse
Affiliation(s)
- Atish D Choudhury
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Choudhury AD, Higano CS, de Bono JS, Cook N, Rathkopf DE, Wisinski KB, Martin-Liberal J, Linch M, Heath EI, Baird RD, García-Carbacho J, Quintela-Fandino M, Barry ST, de Bruin EC, Colebrook S, Hawkins G, Klinowska T, Maroj B, Moorthy G, Mortimer PG, Moschetta M, Nikolaou M, Sainsbury L, Shapiro GI, Siu LL, Hansen AR. A Phase I Study Investigating AZD8186, a Potent and Selective Inhibitor of PI3Kβ/δ, in Patients with Advanced Solid Tumors. Clin Cancer Res 2022; 28:2257-2269. [PMID: 35247924 PMCID: PMC9662946 DOI: 10.1158/1078-0432.ccr-21-3087] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/21/2021] [Accepted: 03/01/2022] [Indexed: 01/13/2023]
Abstract
PURPOSE To characterize safety and tolerability of the selective PI3Kβ inhibitor AZD8186, identify a recommended phase II dose (RP2D), and assess preliminary efficacy in combination with abiraterone acetate or vistusertib. PATIENTS AND METHODS This phase I open-label study included patients with advanced solid tumors, particularly prostate cancer, triple-negative breast cancer, and squamous non-small cell lung cancer. The study comprised four arms: (i) AZD8186 monotherapy dose finding; (ii) monotherapy dose expansion; (iii) AZD8186/abiraterone acetate (with prednisone); and (iv) AZD8186/vistusertib. The primary endpoints were safety, tolerability, and identification of the RP2D of AZD8186 monotherapy and in combination. Secondary endpoints included pharmacokinetics (PK), pharmacodynamics, and tumor and prostate-specific antigen (PSA) responses. RESULTS In total, 161 patients were enrolled. AZD8186 was well tolerated across all study arms, the most common adverse events being gastrointestinal symptoms. In the monotherapy dose-finding arm, four patients experienced dose-limiting toxicities (mainly rash). AZD8186 doses of 60-mg twice daily [BID; 5 days on, 2 days off (5:2)] and 120-mg BID (continuous and 5:2 dosing) were taken into subsequent arms. The PKs of AZD8186 were dose proportional, without interactions with abiraterone acetate or vistusertib, and target inhibition was observed in plasma and tumor tissue. Monotherapy and combination therapy showed preliminary evidence of limited antitumor activity by imaging and, in prostate cancer, PSA reduction. CONCLUSIONS AZD8186 monotherapy had an acceptable safety and tolerability profile, and combination with abiraterone acetate/prednisone or vistusertib was also tolerated. There was preliminary evidence of antitumor activity, meriting further exploration of AZD8186 in subsequent studies in PI3Kβ pathway-dependent cancers.
Collapse
Affiliation(s)
- Atish D. Choudhury
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Celestia S. Higano
- Department of Medical Oncology, University of Washington and Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Johann S. de Bono
- Drug Development Unit, The Institute of Cancer Research and Royal Marsden, London, United Kingdom
| | - Natalie Cook
- The Christie NHS Foundation Trust and The University of Manchester, Manchester, United Kingdom
| | - Dana E. Rathkopf
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, New York
| | - Kari B. Wisinski
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, Wisconsin
| | - Juan Martin-Liberal
- Medical Oncology Department, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital, Barcelona, Spain
| | - Mark Linch
- University College London (UCL) Cancer Institute and UCL Hospital, London, United Kingdom
| | - Elisabeth I. Heath
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | | | - Javier García-Carbacho
- Department of Medical Oncology (Hospital Clinic Barcelona)/Translational Genomics and Targeted Therapies in Solid Tumors (IDIBAPS), Barcelona, Spain
| | | | | | | | | | | | | | - Brijesh Maroj
- Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Ganesh Moorthy
- Clinical Pharmacology & Quantitative Pharmacology (CPQP), Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Boston, Massachusetts
| | | | | | | | - Liz Sainsbury
- Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Geoffrey I. Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Lillian L. Siu
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Aaron R. Hansen
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Corresponding Author: Aaron R. Hansen, Princess Margaret Cancer Center, 700 University Avenue, Suite 7-623, Toronto, ON M5G 1×6, Canada. E-mail:
| |
Collapse
|
14
|
Xu Z, Chu M. Advances in Immunosuppressive Agents Based on Signal Pathway. Front Pharmacol 2022; 13:917162. [PMID: 35694243 PMCID: PMC9178660 DOI: 10.3389/fphar.2022.917162] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/02/2022] [Indexed: 12/13/2022] Open
Abstract
Immune abnormality involves in various diseases, such as infection, allergic diseases, autoimmune diseases, as well as transplantation. Several signal pathways have been demonstrated to play a central role in the immune response, including JAK/STAT, NF-κB, PI3K/AKT-mTOR, MAPK, and Keap1/Nrf2/ARE pathway, in which multiple targets have been used to develop immunosuppressive agents. In recent years, varieties of immunosuppressive agents have been approved for clinical use, such as the JAK inhibitor tofacitinib and the mTOR inhibitor everolimus, which have shown good therapeutic effects. Additionally, many immunosuppressive agents are still in clinical trials or preclinical studies. In this review, we classified the immunosuppressive agents according to the immunopharmacological mechanisms, and summarized the phase of immunosuppressive agents.
Collapse
Affiliation(s)
- Zhiqing Xu
- Department of Immunology, National Health Commission (NHC) Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University, Beijing, China
- Department of Pharmacology, Jilin University, Changchun, China
| | - Ming Chu
- Department of Immunology, National Health Commission (NHC) Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
15
|
QSAR analysis on a large and diverse set of potent phosphoinositide 3-kinase gamma (PI3Kγ) inhibitors using MLR and ANN methods. Sci Rep 2022; 12:6090. [PMID: 35414065 PMCID: PMC9005662 DOI: 10.1038/s41598-022-09843-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 03/10/2022] [Indexed: 11/30/2022] Open
Abstract
Phosphorylation of PI3Kγ as a member of lipid kinases-enzymes, plays a crucial role in regulating immune cells through the generation of intracellular signals. Deregulation of this pathway is involved in several tumors. In this research, diverse sets of potent and selective isoform-specific PI3Kγ inhibitors whose drug-likeness was confirmed based on Lipinski’s rule of five were used in the modeling process. Genetic algorithm (GA)-based multivariate analysis was employed on the half-maximal inhibitory concentration (IC50) of them. In this way, multiple linear regression (MLR) and artificial neural network (ANN) algorithm, were used to QSAR models construction on 245 compounds with a wide range of pIC50 (5.23–9.32). The stability and robustness of the models have been evaluated by external and internal validation methods (R2 0.623–0.642, RMSE 0.464–0.473, F 40.114, Q2LOO 0.600, and R2y-random 0.011). External verification using a wide variety of structures out of the training and test sets show that ANN is superior to MLR. The descriptors entered into the model are in good agreement with the X-ray structures of target-ligand complexes; so the model is interpretable. Finally, Williams plot-based analysis was applied to simultaneously compare the inhibitory activity and structural similarity of training, test and validation sets.
Collapse
|
16
|
Giridharan M, Rupani V, Banerjee S. Signaling Pathways and Targeted Therapies for Stem Cells in Prostate Cancer. ACS Pharmacol Transl Sci 2022; 5:193-206. [PMID: 35434534 PMCID: PMC9003388 DOI: 10.1021/acsptsci.2c00019] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Indexed: 12/30/2022]
Abstract
Prostate cancer (PCa) is one of the most frequently occurring cancers among men, and the current statistics show that it is the second leading cause of cancer-related deaths among men. Over the years, research in PCa treatment and therapies has made many advances. Despite these efforts, the standardized therapies such as radiation, chemotherapy, hormonal therapy and surgery are not considered completely effective in treating advanced and metastatic PCa. In most situations, fast-dividing tumor cells are targeted, leaving behind relatively slowly dividing, chemoresistant cells known as cancer stem cells. Therefore, following the seemingly successful treatments, the lingering quiescent cancer stem cells are able to renew themselves, undergo differentiation into mature tumor cells, and sufficiently reinitiate the disease, leading to cancer relapse. Thus, prostate cancer stem cells (PCSCs) have been reported to play a vital role in controlling the dynamics of tumorigenesis, progression, and resistance to therapies in PCa. However, the complete knowledge on the mechanisms regulating the stemness of PCSCs is still unclear. Thus, studying the stemness of PCSCs will allow for the development of more effective cancer therapies due to the durable response, resulting in a reduction in recurrences of cancer. In this Review, we will specifically describe the molecular mechanisms responsible for regulating the stemness of PCSCs. Furthermore, current developments in stem cell-specific therapeutic approaches along with future prospects will also be discussed.
Collapse
Affiliation(s)
- Madhuvanthi Giridharan
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore-632104, Tamil Nadu, India
| | - Vasu Rupani
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore-632104, Tamil Nadu, India
| | - Satarupa Banerjee
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore-632104, Tamil Nadu, India
| |
Collapse
|
17
|
Ruiz de Porras V, Font A, Aytes A. Chemotherapy in metastatic castration-resistant prostate cancer: Current scenario and future perspectives. Cancer Lett 2021; 523:162-169. [PMID: 34517086 DOI: 10.1016/j.canlet.2021.08.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/03/2021] [Accepted: 08/25/2021] [Indexed: 01/04/2023]
Abstract
Taxanes - docetaxel and cabazitaxel - are the most active chemotherapy drugs currently used for the treatment of metastatic castration-resistant prostate cancer (mCRPC). However, despite a good initial response and survival benefit, nearly all patients eventually develop resistance, which is an important barrier to long-term survival. Resistance to taxanes is also associated with cross-resistance to androgen receptor signaling inhibitors (ARSIs). Unfortunately, other than platinum-based treatments, which have demonstrated some benefit in a subset of patients with Aggressive Variant Prostate Cancer (AVPC), few therapeutic options are available to patients progressing to taxanes. Hence, more research is required to determine whether platinum-based chemotherapy will confer a survival benefit in mCRPC, and the identification of predictive biomarkers and the clinical evaluation of platinum compounds in molecularly selected patients is an urgent but unmet clinical need. The present review focuses on the current status of chemotherapy treatments in mCRPC, interactions with androgen deprivation therapy (ADT) and novel ARSIs, and the main mechanisms of resistance. We will examine the impact of platinum-based treatments in mCRPC and summarize the known predictive biomarkers of platinum response. Finally, future approaches and avenues will be discussed.
Collapse
Affiliation(s)
- Vicenç Ruiz de Porras
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain; Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (BARGO), Badalona, Spain.
| | - Albert Font
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (BARGO), Badalona, Spain; Department of Medical Oncology, Catalan Institute of Oncology, Badalona, Spain
| | - Alvaro Aytes
- Program of Molecular Mechanisms and Experimental Therapeutics in Oncology (ONCOBELL), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, Gran Via de L'Hospitalet, Barcelona, Spain; Program Against Cancer Therapeutics Resistance (ProCURE), Catalan Institute of Oncology, Gran Via de L'Hospitalet, Barcelona, Spain.
| |
Collapse
|
18
|
Tarantelli C, Argnani L, Zinzani PL, Bertoni F. PI3Kδ Inhibitors as Immunomodulatory Agents for the Treatment of Lymphoma Patients. Cancers (Basel) 2021; 13:5535. [PMID: 34771694 PMCID: PMC8582887 DOI: 10.3390/cancers13215535] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/23/2021] [Accepted: 10/29/2021] [Indexed: 12/20/2022] Open
Abstract
The development of small molecules able to block specific or multiple isoforms of phosphoinositide 3-kinases (PI3K) has already been an active field of research for many years in the cancer field. PI3Kδ inhibitors are among the targeted agents most extensively studied for the treatment of lymphoma patients and PI3Kδ inhibitors are already approved by regulatory agencies. More recently, it became clear that the anti-tumor activity of PI3K inhibitors might not be due only to a direct effect on the cancer cells but it can also be mediated via inhibition of the kinases in non-neoplastic cells present in the tumor microenvironment. T-cells represent an important component of the tumor microenvironment and they comprise different subpopulations that can have both anti- and pro-tumor effects. In this review article, we discuss the effects that PI3Kδ inhibitors exert on the immune system with a particular focus on the T-cell compartment.
Collapse
Affiliation(s)
- Chiara Tarantelli
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland;
| | - Lisa Argnani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (L.A.); (P.L.Z.)
- Istituto di Ematologia “Seràgnoli”, Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università degli Studi di Bologna, 40138 Bologna, Italy
| | - Pier Luigi Zinzani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (L.A.); (P.L.Z.)
- Istituto di Ematologia “Seràgnoli”, Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università degli Studi di Bologna, 40138 Bologna, Italy
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland;
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
| |
Collapse
|
19
|
Zaki MM, Mashouf LA, Woodward E, Langat P, Gupta S, Dunn IF, Wen PY, Nahed BV, Bi WL. Genomic landscape of gliosarcoma: distinguishing features and targetable alterations. Sci Rep 2021; 11:18009. [PMID: 34504233 PMCID: PMC8429571 DOI: 10.1038/s41598-021-97454-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 07/19/2021] [Indexed: 12/20/2022] Open
Abstract
Gliosarcoma is an aggressive brain tumor with histologic features of glioblastoma (GBM) and soft tissue sarcoma. Despite its poor prognosis, its rarity has precluded analysis of its underlying biology. We used a multi-center database to characterize the genomic landscape of gliosarcoma. Sequencing data was obtained from 35 gliosarcoma patients from Genomics Evidence Neoplasia Information Exchange (GENIE) 5.0, a database curated by the American Association of Cancer Research (AACR). We analyzed genomic alterations in gliosarcomas and compared them to GBM (n = 1,449) and soft tissue sarcoma (n = 1,042). 30 samples were included (37% female, median age 59 [IQR: 49–64]). Nineteen common genes were identified in gliosarcoma, defined as those altered in > 5% of samples, including TERT Promoter (92%), PTEN (66%), and TP53 (60%). Of the 19 common genes in gliosarcoma, 6 were also common in both GBM and soft tissue sarcoma, 4 in GBM alone, 0 in soft tissue sarcoma alone, and 9 were more distinct to gliosarcoma. Of these, BRAF harbored an OncoKB level 1 designation, indicating its status as a predictive biomarker of response to an FDA-approved drug in certain cancers. EGFR, CDKN2A, NF1, and PTEN harbored level 4 designations in solid tumors, indicating biological evidence of these biomarkers predicting a drug-response. Gliosarcoma contains molecular features that overlap GBM and soft tissue sarcoma, as well as its own distinct genomic signatures. This may play a role in disease classification and inclusion criteria for clinical trials. Gliosarcoma mutations with potential therapeutic indications include BRAF, EGFR, CDKN2A, NF1, and PTEN.
Collapse
Affiliation(s)
- Mark M Zaki
- Center for Skull Base and Pituitary Surgery, Department of Neurosurgery, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA, 02115, USA.,Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Leila A Mashouf
- Center for Skull Base and Pituitary Surgery, Department of Neurosurgery, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Eleanor Woodward
- Center for Skull Base and Pituitary Surgery, Department of Neurosurgery, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Pinky Langat
- Center for Skull Base and Pituitary Surgery, Department of Neurosurgery, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Saksham Gupta
- Center for Skull Base and Pituitary Surgery, Department of Neurosurgery, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Ian F Dunn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Patrick Y Wen
- Center for NeuroOncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Brian V Nahed
- Center for NeuroOncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Wenya Linda Bi
- Center for Skull Base and Pituitary Surgery, Department of Neurosurgery, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA, 02115, USA.
| |
Collapse
|
20
|
Mao N, Zhang Z, Lee YS, Choi D, Rivera AA, Li D, Lee C, Haywood S, Chen X, Chang Q, Xu G, Chen HA, de Stanchina E, Sawyers C, Rosen N, Hsieh AC, Chen Y, Carver BS. Defining the therapeutic selective dependencies for distinct subtypes of PI3K pathway-altered prostate cancers. Nat Commun 2021; 12:5053. [PMID: 34417459 PMCID: PMC8379232 DOI: 10.1038/s41467-021-25341-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 08/05/2021] [Indexed: 12/30/2022] Open
Abstract
Previous studies have suggested that PTEN loss is associated with p110β signaling dependency, leading to the clinical development of p110β-selective inhibitors. Here we use a panel pre-clinical models to reveal that PI3K isoform dependency is not governed by loss of PTEN and is impacted by feedback inhibition and concurrent PIK3CA/PIK3CB alterations. Furthermore, while pan-PI3K inhibition in PTEN-deficient tumors is efficacious, upregulation of Insulin Like Growth Factor 1 Receptor (IGF1R) promotes resistance. Importantly, we show that this resistance can be overcome through targeting AKT and we find that AKT inhibitors are superior to pan-PI3K inhibition in the context of PTEN loss. However, in the presence of wild-type PTEN and PIK3CA-activating mutations, p110α-dependent signaling is dominant and selectively inhibiting p110α is therapeutically superior to AKT inhibition. These discoveries reveal a more nuanced understanding of PI3K isoform dependency and unveil novel strategies to selectively target PI3K signaling nodes in a context-specific manner. Understanding the mechanisms driving PI3K isoform dependency in prostate cancer can help the design of future clinical trials. Here, the authors show that gain-of-function mutations in PIK3CA or PIK3CB can confer PI3K p110 isoform dependency and that the direct inhibition of AKT may be superior to PI3K inhibition in PTEN-deficient prostate cancers.
Collapse
Affiliation(s)
- Ninghui Mao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zeda Zhang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Young Sun Lee
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Danielle Choi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Aura Agudelo Rivera
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dan Li
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cindy Lee
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samuel Haywood
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Urology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xiaoping Chen
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Qing Chang
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Guotai Xu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hsuan-An Chen
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Charles Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Neal Rosen
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew C Hsieh
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brett S Carver
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA. .,Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA. .,Department of Urology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
21
|
Moore PR, Muir JC, Dubiez J, Leslie KW, Tomlin P, McCormick M, Janbon SL, Cornwall P, Ryberg P, Berg R. Development and Scale-Up of an Asymmetric Synthesis of AZD8186 Using the Fukuyama Modification of the Mitsunobu Reaction. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peter R. Moore
- Early Chemical Development, Pharmaceutical Sciences, R&D BioPharmaceuticals, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - James C. Muir
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Jerome Dubiez
- Early Chemical Development, Pharmaceutical Sciences, R&D BioPharmaceuticals, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Kevin W. Leslie
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Paula Tomlin
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Marc McCormick
- Early Chemical Development, Pharmaceutical Sciences, R&D BioPharmaceuticals, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Sophie L. Janbon
- Early Chemical Development, Pharmaceutical Sciences, R&D BioPharmaceuticals, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Philip Cornwall
- Early Chemical Development, Pharmaceutical Sciences, R&D BioPharmaceuticals, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Per Ryberg
- Chemical Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, 15185 Södertälje, Sweden
| | - Robert Berg
- Chemical Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, 15185 Södertälje, Sweden
| |
Collapse
|
22
|
Yu L, Wei J, Liu P. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer. Semin Cancer Biol 2021; 85:69-94. [PMID: 34175443 DOI: 10.1016/j.semcancer.2021.06.019] [Citation(s) in RCA: 198] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 02/08/2023]
Abstract
Cancer is the second leading cause of human death globally. PI3K/Akt/mTOR signaling is one of the most frequently dysregulated signaling pathways observed in cancer patients that plays crucial roles in promoting tumor initiation, progression and therapy responses. This is largely due to that PI3K/Akt/mTOR signaling is indispensable for many cellular biological processes, including cell growth, metastasis, survival, metabolism, and others. As such, small molecule inhibitors targeting major kinase components of the PI3K/Akt/mTOR signaling pathway have drawn extensive attention and been developed and evaluated in preclinical models and clinical trials. Targeting a single kinase component within this signaling usually causes growth arrest rather than apoptosis associated with toxicity-induced adverse effects in patients. Combination therapies including PI3K/Akt/mTOR inhibitors show improved patient response and clinical outcome, albeit developed resistance has been reported. In this review, we focus on revealing the mechanisms leading to the hyperactivation of PI3K/Akt/mTOR signaling in cancer and summarizing efforts for developing PI3K/Akt/mTOR inhibitors as either mono-therapy or combination therapy in different cancer settings. We hope that this review will facilitate further understanding of the regulatory mechanisms governing dysregulation of PI3K/Akt/mTOR oncogenic signaling in cancer and provide insights into possible future directions for targeted therapeutic regimen for cancer treatment, by developing new agents, drug delivery systems, or combination regimen to target the PI3K/Akt/mTOR signaling pathway. This information will also provide effective patient stratification strategy to improve the patient response and clinical outcome for cancer patients with deregulated PI3K/Akt/mTOR signaling.
Collapse
Affiliation(s)
- Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
23
|
Lu Z, Song W, Zhang Y, Wu C, Zhu M, Wang H, Li N, Zhou Y, Xu H. Combined Anti-Cancer Effects of Platycodin D and Sorafenib on Androgen-Independent and PTEN-Deficient Prostate Cancer. Front Oncol 2021; 11:648985. [PMID: 34026624 PMCID: PMC8138035 DOI: 10.3389/fonc.2021.648985] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 04/08/2021] [Indexed: 12/15/2022] Open
Abstract
Castration-resistant (androgen-independent) and PTEN-deficient prostate cancer is a challenge in clinical practice. Sorafenib has been recommended for the treatment of this type of cancer, but is associated with several adverse effects. Platycodin D (PD) is a triterpene saponin with demonstrated anti-cancer effects and a good safety profile. Previous studies have indicated that PC3 cells (PTEN -/-, AR -/-) are sensitive to PD, suggesting that it may also be a useful treatment for castration-resistance prostate cancer. We herein investigated the effects of combining PD with sorafenib to treat PTEN-deficient prostate cancer cells. Our data show that PD promotes sorafenib-induced apoptosis and cell cycle arrest in PC3 cells. Of interest, PD only promoted the anti-cancer effects of sorafenib in Akt-positive and PTEN-negative prostate cancer cells. Mechanistic studies revealed that PD promoted p-Akt ubiquitination by increasing the p-Akt level. PD also increased the protein and mRNA expression of FOXO3a, the downstream target of Akt. Meanwhile, PD promoted the activity of FOXO3a and increased the protein expression of Fasl, Bim and TRAIL. Interestingly, when FOXO3a expression was inhibited, the antitumor effects of both PD and sorafenib were individually inhibited, and the more potent effects of the combination treatment were inhibited. Thus, the combination of PD and sorafenib may exert potent anti-cancer effects specifically via FOXO3a. The use of Akt inhibitors or FOXO3a agonists, such as PD, may represent a promising approach for the treatment of androgen-independent and PTEN-deficient prostate cancer.
Collapse
Affiliation(s)
- Zongliang Lu
- Department of Clinical Nutrition, Daping Hospital, Army Medical University, Chongqing, China
| | - Wei Song
- Department of Clinical Nutrition, Daping Hospital, Army Medical University, Chongqing, China
| | - Yaowen Zhang
- Department of Clinical Nutrition, Daping Hospital, Army Medical University, Chongqing, China
| | - Changpeng Wu
- Department of Clinical Nutrition, Daping Hospital, Army Medical University, Chongqing, China
| | - Mingxing Zhu
- Department of Clinical Nutrition, Daping Hospital, Army Medical University, Chongqing, China
| | - He Wang
- Department of Clinical Nutrition, Daping Hospital, Army Medical University, Chongqing, China
| | - Na Li
- Department of Clinical Nutrition, Daping Hospital, Army Medical University, Chongqing, China
| | - Yong Zhou
- Department of Clinical Nutrition, Banan District People's Hospital of Chongqing, Chongqing, China
| | - Hongxia Xu
- Department of Clinical Nutrition, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
24
|
Herrick WG, Kilpatrick CL, Hollingshead MG, Esposito D, O'Sullivan Coyne G, Gross AM, Johnson BC, Chen AP, Widemann BC, Doroshow JH, Parchment RE, Srivastava AK. Isoform- and Phosphorylation-specific Multiplexed Quantitative Pharmacodynamics of Drugs Targeting PI3K and MAPK Signaling in Xenograft Models and Clinical Biopsies. Mol Cancer Ther 2021; 20:749-760. [PMID: 33536190 PMCID: PMC8026683 DOI: 10.1158/1535-7163.mct-20-0566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/16/2020] [Accepted: 02/01/2021] [Indexed: 11/16/2022]
Abstract
Ras/Raf/MEK/ERK (MAPK) and PI3K/AKT signaling pathways influence several cell functions involved in oncogenesis, making them attractive drug targets. We describe a novel multiplex immunoassay to quantitate isoform-specific phosphorylation of proteins in the PI3K/AKT and MAPK pathways as a tool to assess pharmacodynamic changes. Isoform-specific assays measuring total protein and site-specific phosphorylation levels of ERK1/2, MEK1/2, AKT1/2/3, and rpS6 were developed on the Luminex platform with validated antibody reagents. The multiplex assay demonstrated satisfactory analytic performance. Fit-for-purpose validation was performed with xenograft models treated with selected agents. In PC3 and HCC70 xenograft tumors, the PI3Kβ inhibitor AZD8186 suppressed phosphorylation of AKT1, AKT2, and rpS6 for 4 to 7 hours post single dose, but levels returned to baseline by 24 hours. AKT3 phosphorylation was suppressed in PC3 xenografts at all doses tested, but only at the highest dose in HCC70. The AKT inhibitor MK-2206 reduced AKT1/2/3 phosphorylation in SW620 xenograft tumors 2 to 4 hours postdose, and the MEK inhibitor selumetinib reduced MEK1/2 and ERK1/2 phosphorylation by up to 50% and >90%, respectively. Clinical utility was demonstrated by analyzing biopsies from untreated patients with plexiform neurofibromas enrolled in a clinical trial of selumetinib (NCT02407405). These biopsies showed MEK and ERK phosphorylation levels sufficient for measuring up to 90% inhibition, and low AKT and rpS6 phosphorylation. This validated multiplex immunoassay demonstrates the degree and duration of phosphorylation modulation for three distinct classes of drugs targeting the PI3K/AKT and MAPK pathways.
Collapse
Affiliation(s)
- William G Herrick
- Clinical Pharmacodynamics Biomarker Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Casey L Kilpatrick
- Clinical Pharmacodynamics Biomarker Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | | | - Dominic Esposito
- Protein Expression Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | | | - Andrea M Gross
- Pediatric Oncology Branch, NCI, Bethesda, Maryland
- Center for Cancer Research, NCI, Bethesda, Maryland
| | - Barry C Johnson
- Division of Cancer Treatment and Diagnosis, NCI, Bethesda, Maryland
| | - Alice P Chen
- Division of Cancer Treatment and Diagnosis, NCI, Bethesda, Maryland
| | - Brigitte C Widemann
- Pediatric Oncology Branch, NCI, Bethesda, Maryland
- Center for Cancer Research, NCI, Bethesda, Maryland
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, NCI, Bethesda, Maryland
- Center for Cancer Research, NCI, Bethesda, Maryland
| | - Ralph E Parchment
- Clinical Pharmacodynamics Biomarker Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Apurva K Srivastava
- Clinical Pharmacodynamics Biomarker Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland.
| |
Collapse
|
25
|
Organismal roles for the PI3Kα and β isoforms: their specificity, redundancy or cooperation is context-dependent. Biochem J 2021; 478:1199-1225. [DOI: 10.1042/bcj20210004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/16/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023]
Abstract
PI3Ks are important lipid kinases that produce phosphoinositides phosphorylated in position 3 of the inositol ring. There are three classes of PI3Ks: class I PI3Ks produce PIP3 at plasma membrane level. Although D. melanogaster and C. elegans have only one form of class I PI3K, vertebrates have four class I PI3Ks called isoforms despite being encoded by four different genes. Hence, duplication of these genes coincides with the acquisition of coordinated multi-organ development. Of the class I PI3Ks, PI3Kα and PI3Kβ, encoded by PIK3CA and PIK3CB, are ubiquitously expressed. They present similar putative protein domains and share PI(4,5)P2 lipid substrate specificity. Fifteen years after publication of their first isoform-selective pharmacological inhibitors and genetically engineered mouse models (GEMMs) that mimic their complete and specific pharmacological inhibition, we review the knowledge gathered in relation to the redundant and selective roles of PI3Kα and PI3Kβ. Recent data suggest that, further to their redundancy, they cooperate for the integration of organ-specific and context-specific signal cues, to orchestrate organ development, physiology, and disease. This knowledge reinforces the importance of isoform-selective inhibitors in clinical settings.
Collapse
|
26
|
Oliveira-Pinto S, Pontes O, Baltazar F, Costa M. In vivo efficacy studies of chromene-based compounds in triple-negative breast cancer - A systematic review. Eur J Pharmacol 2020; 887:173452. [PMID: 32800808 DOI: 10.1016/j.ejphar.2020.173452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/24/2022]
Abstract
Triple-negative breast cancer (TNBC) is considered the most aggressive breast cancer subtype, shows a poor response to the currently available therapy, and has no targeted therapy. Chemotherapy, surgery and radiation are the current therapeutic options to treat patients with TNBC, however, response to these therapeutic approaches is very poor and has significant side effects. Thus, there is an urgent need to search for new anti-TNBC agents, more effective and safer than current therapy. A wide range of synthetic chromene derivatives have been explored as anticancer agents in different cancer models, with promising results, and some of them already reached the clinical setting. Especially in TNBC, most of the available studies are conducted in in vitro models, with limited results in vivo. It is important the activity of any new compound that reaches clinical studies is supported by solid pre-clinical data. Thus, in the present study, we review and analyze the studies that use chromene-based compounds using in vivo models of TNBC. The results of this systematic review can add value to ongoing chromene-based studies.
Collapse
Affiliation(s)
- Sofia Oliveira-Pinto
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Olívia Pontes
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Marta Costa
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
27
|
Zecchin D, Moore C, Michailidis F, Horswell S, Rana S, Howell M, Downward J. Combined targeting of G protein-coupled receptor and EGF receptor signaling overcomes resistance to PI3K pathway inhibitors in PTEN-null triple negative breast cancer. EMBO Mol Med 2020; 12:e11987. [PMID: 32672423 PMCID: PMC7411640 DOI: 10.15252/emmm.202011987] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) has poorer prognosis compared to other types of breast cancers due to the lack of effective therapies and markers for patient stratification. Loss of PTEN tumor suppressor gene expression is a frequent event in TNBC, resulting in over-activation of the PI 3-kinase (PI3K) pathway and sensitivity to its inhibition. However, PI3K pathway inhibitors show limited efficacy as monotherapies on these tumors. We report a whole-genome screen to identify targets whose inhibition enhanced the effects of different PI3K pathway inhibitors on PTEN-null TNBC. This identified a signaling network that relies on both the G protein-coupled receptor for thrombin (PAR1/F2R) and downstream G protein βγ subunits and also epidermal growth factor receptor (EGFR) for the activation of the PI3K isoform p110β and AKT. Compensation mechanisms involving these two branches of the pathway could bypass PI3K blockade, but combination targeting of both EGFR and PI3Kβ suppressed ribosomal protein S6 phosphorylation and exerted anti-tumor activity both in vitro and in vivo, suggesting a new potential therapeutic strategy for PTEN-null TNBC.
Collapse
Affiliation(s)
| | | | | | | | - Sareena Rana
- Oncogene BiologyFrancis Crick InstituteLondonUK
- Lung Cancer GroupInstitute of Cancer ResearchLondonUK
| | - Michael Howell
- High Throughput Screening LaboratoriesFrancis Crick InstituteLondonUK
| | - Julian Downward
- Oncogene BiologyFrancis Crick InstituteLondonUK
- Lung Cancer GroupInstitute of Cancer ResearchLondonUK
| |
Collapse
|
28
|
Foth M, Parkman G, Battistone B, McMahon M. RAC1mutation is not a predictive biomarker for PI3'-kinase-β-selective pathway-targeted therapy. Pigment Cell Melanoma Res 2020; 33:719-730. [PMID: 32406574 DOI: 10.1111/pcmr.12889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 12/25/2022]
Abstract
Mutational activation of RAC1 is detected in ~7% of cutaneous melanoma, with the most frequent mutation (RAC1C85T ) encoding for RAC1P29S . RAC1P29S is a fast-cycling GTPase that leads to accumulation of RAC1P29S -GTP, which has potentially pleiotropic regulatory functions in melanoma cell signaling and biology. However, the precise mechanism by which mutationally activated RAC1P29S propagates its pro-tumorigenic effects remains unclear. RAC1-GTP is reported to activate the beta isoform of PI3'-kinase (PIK3CB/PI3Kβ) leading to downstream activation of PI3'-lipid signaling. Hence, we employed both genetic and isoform-selective pharmacological inhibitors to test if RAC1P29S propagates its oncogenic signaling in melanoma through PI3Kβ. We observed that RAC1P29S -expressing melanoma cells were largely insensitive to inhibitors of PI3Kβ. Furthermore, RAC1P29S melanoma cell lines showed variable sensitivity to pan-class 1 (α/β/γ/δ) PI3'-kinase inhibitors, suggesting that RAC1-mutated melanoma cells may not rely on PI3'-lipid signaling for their proliferation. Lastly, we observed that RAC1P29S -expressing cell lines also showed variable sensitivity to pharmacological inhibition of the RAC1 → PAK1 signaling pathway, questioning the relevance of inhibitors of this pathway for the treatment of patients with RAC1-mutated melanoma.
Collapse
Affiliation(s)
- Mona Foth
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Gennie Parkman
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.,Department of Oncological Sciences, University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA
| | | | - Martin McMahon
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.,Department of Oncological Sciences, University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA.,Department of Dermatology, University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA
| |
Collapse
|
29
|
Mechanistic basis for PI3K inhibitor antitumor activity and adverse reactions in advanced breast cancer. Breast Cancer Res Treat 2020; 181:233-248. [PMID: 32274666 DOI: 10.1007/s10549-020-05618-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/26/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE The phosphatidylinositol 3-kinase (PI3K) pathway is involved in several physiological processes, including glucose metabolism, cell proliferation, and cell growth. Hyperactivation of this signaling pathway has been associated with tumorigenesis and resistance to treatment in various cancer types. Mutations that activate PIK3CA, encoding the PI3K isoform p110α, are common in breast cancer, particularly in the hormone receptor-positive (HR+), human epidermal growth factor receptor-2-negative (HER2-) subtype. A number of PI3K inhibitors have been developed and evaluated for potential clinical use in combinations targeting multiple signaling pathways in cancer. The purpose of this review is to provide an overview of PI3K inhibitor mechanisms of action for antitumor activity and adverse events in advanced breast cancer (ABC). METHODS Published results from phase 3 trials evaluating the efficacy and safety of PI3K inhibitors in patients with ABC and relevant literature were reviewed. RESULTS Although PI3K inhibitors have been shown to prolong progression-free survival (PFS), the therapeutic index is often unfavorable. Adverse events, such as hyperglycemia, rash, and diarrhea are frequently observed in these patients. In particular, hyperglycemia is intrinsically linked to the inhibition of PI3Kα, a key mediator of insulin signaling. Off-target effects, including mood disorders and liver toxicity, have also been associated with some PI3K inhibitors. CONCLUSION Recent clinical trial results show that specifically targeting PI3Kα can improve PFS and clinical benefit. Broad inhibition of class I PI3Ks appears to result in an unfavorable safety profile due to off-target effects, limiting the clinical utility of the early PI3K inhibitors.
Collapse
|
30
|
Owusu-Brackett N, Zhao M, Akcakanat A, Evans KW, Yuca E, Dumbrava EI, Janku F, Meric-Bernstam F. Targeting PI3Kβ alone and in combination with chemotherapy or immunotherapy in tumors with PTEN loss. Oncotarget 2020; 11:969-981. [PMID: 32215185 PMCID: PMC7082117 DOI: 10.18632/oncotarget.27503] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/08/2020] [Indexed: 12/31/2022] Open
Abstract
Background: PTEN-deficient tumors are dependent on PI3Kβ activity, making PI3Kβ a compelling target. We evaluated the efficacy of PI3Kβ inhibitor AZD8186 on tumors with PTEN loss. Results: In vitro cell viability assay and immunoblotting demonstrated that PTEN loss was significantly correlated with AZD8186 sensitivity in triple negative breast cancer (TNBC) cell lines. Colony formation assay confirmed sensitivity of PTEN-deficient cell lines to AZD8186. AZD8186 inhibited PI3K signaling in PTEN loss TNBC cells. AZD8186 in combination with paclitaxel, eribulin had synergistic effects on growth inhibition in PTEN loss cells. AZD8186 promoted apoptosis in PTEN loss cells which was synergized by paclitaxel. In vivo, AZD8186 had limited activity as a single agent, but enhanced antitumor activity when combined with paclitaxel in MDA-MB-436 and MDA-MB-468 cell-line xenografts. AZD8186 significantly enhanced antitumor efficacy of anti-PD1 antibodies in the PTEN-deficient BP murine melanoma xenograft model, but not in the PTEN-wild-type CT26 xenograft model. Methods: In vitro, cell proliferation and colony formation assays were performed to determine cell sensitivity to AZD8186. Immunoblotting was performed to assess PTEN expression and PI3K signaling activity. FACS was performed to evaluate apoptosis. In vivo, antitumor efficacy of AZD8186 and its combinations were evaluated. Conclusions: AZD8186 has single agent efficacy in PTEN-deficient TNBC cell lines in vitro, but has limited single agent efficacy in vivo. However, AZD8186 has enhanced efficacy when combined with paclitaxel and anti-PD1 in vivo. Further study is needed to determine optimal combination therapies for PTEN-deficient solid tumors.
Collapse
Affiliation(s)
- Nicci Owusu-Brackett
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ming Zhao
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Argun Akcakanat
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kurt W. Evans
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Erkan Yuca
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ecaterina Ileana Dumbrava
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Filip Janku
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Funda Meric-Bernstam
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Breast Surgical Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
- The Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
31
|
Wu YH, Huang YF, Chen CC, Huang CY, Chou CY. Comparing PI3K/Akt Inhibitors Used in Ovarian Cancer Treatment. Front Pharmacol 2020; 11:206. [PMID: 32194423 PMCID: PMC7063971 DOI: 10.3389/fphar.2020.00206] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/14/2020] [Indexed: 11/13/2022] Open
Abstract
Epithelial ovarian carcinoma (EOC) is the most lethal gynecological malignancy. Herein, we sought to determine the efficacy of phosphoinositide 3-kinase (PI3K)/Akt inhibition using three AZD compounds in a NOD-SCID xenograft mouse model and Akt regulation in a panel of eight ovarian cancer cell lines. Elevated Akt phosphorylation on Ser473 but not on Thr308 in cancerous tissues correlated with short progression-free survival (PFS), overall survival (OS), and death. AZD8835 and AZD8186 inhibited Akt phosphorylation while AZD5363 augmented its phosphorylation on Ser473. To add, all compounds inhibited the Akt downstream effectors 4E-BP1 and p70S6 kinase. AZD8835 and AZD5363 sensitized chemoresistant ovarian cancer cells to cisplatin and paclitaxel treatment. Only AZD5363 could inhibit COL11A1 mRNA and promoter activity, which are important factors in Akt regulation and chemoresistance in ovarian cancer. By using a mouse xenograft model, AZD8835 and AZD5363, but not AZD8186, caused a significant reduction in tumor formation. AZD compounds did not change the mRNA expression of BRCA1/BRCA in ovarian cancer cells, but AZD8835 inhibited BRCA1/BRCA2 mRNA expression and p-ERK protein expression in OVCAR-8 cells with the KRAS mutation. This study highlights the importance of PI3K/Akt in ovarian tumor progression and chemoresistance and the potential application of AZD compounds, especially AZD8835 and AZD5363, as therapeutic agents for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Yi-Hui Wu
- Department of Medical Research, Chi Mei Medical Center, Liouying, Taiwan
| | - Yu-Fang Huang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Chia-Yen Huang
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Gynecologic Cancer Center, Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Cheng-Yang Chou
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
32
|
PI3K Isoform-Selective Inhibitors in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1255:165-173. [PMID: 32949399 DOI: 10.1007/978-981-15-4494-1_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PI3K inhibitors are a common area of research in finding a successful treatment of cancer. The PI3K pathway is important for cell growth, apoptosis, cell metabolism, cell survival, and a multitude of other functions. There are multiple isoforms of PI3K that can be broken down into three categories: class I, II, and III. Each isoform has at least one subunit that helps with the functionality of the isoform. Mutations found in the PI3K isoforms are commonly seen in many different types of cancer and the use of inhibitors is being tested to stop the cell survival of cancer cells. Individual PI3K inhibitors have shown some inhibition of the pathway; however, there is room for improvement. To better treat cancer, PI3K inhibitors are being combined with other pathway inhibitors. These combination therapies have shown better results with cancer treatments. Both the monotherapy and dual therapy treatments are still currently being studied and data collected to better understand cancer and other treatment options.
Collapse
|
33
|
Suehara Y, Alex D, Bowman A, Middha S, Zehir A, Chakravarty D, Wang L, Jour G, Nafa K, Hayashi T, Jungbluth AA, Frosina D, Slotkin E, Shukla N, Meyers P, Healey JH, Hameed M, Ladanyi M. Clinical Genomic Sequencing of Pediatric and Adult Osteosarcoma Reveals Distinct Molecular Subsets with Potentially Targetable Alterations. Clin Cancer Res 2019. [PMID: 31175097 DOI: 10.1158/1078‐0432.ccr‐18‐4032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE Although multimodal chemotherapy has improved outcomes for patients with osteosarcoma, the prognosis for patients who present with metastatic and/or recurrent disease remains poor. In this study, we sought to define how often clinical genomic sequencing of osteosarcoma samples could identify potentially actionable alterations.Experimental Design: We analyzed genomic data from 71 osteosarcoma samples from 66 pediatric and adult patients sequenced using MSK-IMPACT, a hybridization capture-based large panel next-generation sequencing assay. Potentially actionable genetic events were categorized according to the OncoKB precision oncology knowledge base, of which levels 1 to 3 were considered clinically actionable. RESULTS We found at least one potentially actionable alteration in 14 of 66 patients (21%), including amplification of CDK4 (n = 9, 14%: level 2B) and/or MDM2 (n = 9, 14%: level 3B), and somatic truncating mutations/deletions in BRCA2 (n = 3, 5%: level 2B) and PTCH1 (n = 1, level 3B). In addition, we observed mutually exclusive patterns of alterations suggesting distinct biological subsets defined by gains at 4q12 and 6p12-21. Specifically, potentially targetable gene amplifications at 4q12 involving KIT, KDR, and PDGFRA were identified in 13 of 66 patients (20%), which showed strong PDGFRA expression by IHC. In another largely nonoverlapping subset of 14 patients (24%) with gains at 6p12-21, VEGFA amplification was identified. CONCLUSIONS We found potentially clinically actionable alterations in approximately 21% of patients with osteosarcoma. In addition, at least 40% of patients have tumors harboring PDGFRA or VEGFA amplification, representing candidate subsets for clinical evaluation of additional therapeutic options. We propose a new genomically based algorithm for directing patients with osteosarcoma to clinical trial options.
Collapse
Affiliation(s)
- Yoshiyuki Suehara
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Deepu Alex
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anita Bowman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sumit Middha
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ahmet Zehir
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Debyani Chakravarty
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lu Wang
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee
| | - George Jour
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Khedoudja Nafa
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Takuo Hayashi
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Achim A Jungbluth
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Denise Frosina
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Emily Slotkin
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Neerav Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Paul Meyers
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John H Healey
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Meera Hameed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York. .,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
34
|
Pharmacogenomic Biomarkers in Docetaxel Treatment of Prostate Cancer: From Discovery to Implementation. Genes (Basel) 2019; 10:genes10080599. [PMID: 31398933 PMCID: PMC6723793 DOI: 10.3390/genes10080599] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer is the fifth leading cause of male cancer death worldwide. Although docetaxel chemotherapy has been used for more than fifteen years to treat metastatic castration resistant prostate cancer, the high inter-individual variability of treatment efficacy and toxicity is still not well understood. Since prostate cancer has a high heritability, inherited biomarkers of the genomic signature may be appropriate tools to guide treatment. In this review, we provide an extensive overview and discuss the current state of the art of pharmacogenomic biomarkers modulating docetaxel treatment of prostate cancer. This includes (1) research studies with a focus on germline genomic biomarkers, (2) clinical trials including a range of genetic signatures, and (3) their implementation in treatment guidelines. Based on this work, we suggest that one of the most promising approaches to improve clinical predictive capacity of pharmacogenomic biomarkers in docetaxel treatment of prostate cancer is the use of compound, multigene pharmacogenomic panels defined by specific clinical outcome measures. In conclusion, we discuss the challenges of integrating prostate cancer pharmacogenomic biomarkers into the clinic and the strategies that can be employed to allow a more comprehensive, evidence-based approach to facilitate their clinical integration. Expanding the integration of pharmacogenetic markers in prostate cancer treatment procedures will enhance precision medicine and ultimately improve patient outcomes.
Collapse
|
35
|
Suehara Y, Alex D, Bowman A, Middha S, Zehir A, Chakravarty D, Wang L, Jour G, Nafa K, Hayashi T, Jungbluth AA, Frosina D, Slotkin E, Shukla N, Meyers P, Healey JH, Hameed M, Ladanyi M. Clinical Genomic Sequencing of Pediatric and Adult Osteosarcoma Reveals Distinct Molecular Subsets with Potentially Targetable Alterations. Clin Cancer Res 2019; 25:6346-6356. [PMID: 31175097 DOI: 10.1158/1078-0432.ccr-18-4032] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/25/2019] [Accepted: 06/04/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE Although multimodal chemotherapy has improved outcomes for patients with osteosarcoma, the prognosis for patients who present with metastatic and/or recurrent disease remains poor. In this study, we sought to define how often clinical genomic sequencing of osteosarcoma samples could identify potentially actionable alterations.Experimental Design: We analyzed genomic data from 71 osteosarcoma samples from 66 pediatric and adult patients sequenced using MSK-IMPACT, a hybridization capture-based large panel next-generation sequencing assay. Potentially actionable genetic events were categorized according to the OncoKB precision oncology knowledge base, of which levels 1 to 3 were considered clinically actionable. RESULTS We found at least one potentially actionable alteration in 14 of 66 patients (21%), including amplification of CDK4 (n = 9, 14%: level 2B) and/or MDM2 (n = 9, 14%: level 3B), and somatic truncating mutations/deletions in BRCA2 (n = 3, 5%: level 2B) and PTCH1 (n = 1, level 3B). In addition, we observed mutually exclusive patterns of alterations suggesting distinct biological subsets defined by gains at 4q12 and 6p12-21. Specifically, potentially targetable gene amplifications at 4q12 involving KIT, KDR, and PDGFRA were identified in 13 of 66 patients (20%), which showed strong PDGFRA expression by IHC. In another largely nonoverlapping subset of 14 patients (24%) with gains at 6p12-21, VEGFA amplification was identified. CONCLUSIONS We found potentially clinically actionable alterations in approximately 21% of patients with osteosarcoma. In addition, at least 40% of patients have tumors harboring PDGFRA or VEGFA amplification, representing candidate subsets for clinical evaluation of additional therapeutic options. We propose a new genomically based algorithm for directing patients with osteosarcoma to clinical trial options.
Collapse
Affiliation(s)
- Yoshiyuki Suehara
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Deepu Alex
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anita Bowman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sumit Middha
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ahmet Zehir
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Debyani Chakravarty
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lu Wang
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee
| | - George Jour
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Khedoudja Nafa
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Takuo Hayashi
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Achim A Jungbluth
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Denise Frosina
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Emily Slotkin
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Neerav Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Paul Meyers
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John H Healey
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Meera Hameed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York. .,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
36
|
Park S, Kim YS, Kim DY, So I, Jeon JH. PI3K pathway in prostate cancer: All resistant roads lead to PI3K. Biochim Biophys Acta Rev Cancer 2018; 1870:198-206. [DOI: 10.1016/j.bbcan.2018.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/13/2018] [Accepted: 09/13/2018] [Indexed: 12/19/2022]
|
37
|
Wang XS, Ding XZ, Li XC, He Y, Kong DJ, Zhang L, Hu XC, Yang JQ, Zhao MQ, Gao SG, Lin TY, Li Y. A highly integrated precision nanomedicine strategy to target esophageal squamous cell cancer molecularly and physically. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2018; 14:2103-2114. [PMID: 30047470 PMCID: PMC6648684 DOI: 10.1016/j.nano.2018.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/31/2018] [Accepted: 06/13/2018] [Indexed: 01/02/2023]
Abstract
The prognosis of esophageal squamous cell carcinoma is poor. We hereby presented a highly integrated and clinically relevant precision nanomedicine strategy to target ESCC molecularly and physically for significant improvement of the treatment efficacy. We firstly identified PI3K overexpression in patient samples and its relation to poor patient survival. With our highly versatile tumor-targeted drug delivery platform (DCM), we were able to load a potent but toxic docetaxel (DTX) and a PI3K inhibitor (AZD8186) with favorable physical properties. The combination of the DTX-DCM and AZD8186-DCM showed a highly efficacious and synergistic anti-tumor effect and decreased hematotoxicity. A pro-apoptotic protein, Bax was significantly upregulated in ESCC cells treated with combination therapy compared to that with monotherapy. This study utilized a highly integrated precision nano-medicine strategy that combines the identification of cancer molecular target from human patients, precision drug delivery and effective combination therapy for the development of better ESCC treatment.
Collapse
Affiliation(s)
- Xin-Shuai Wang
- Henan Key Laboratory of Cancer Epigenetics; Cancer hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Xue-Zhen Ding
- Henan Key Laboratory of Cancer Epigenetics; Cancer hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Xiao-Cen Li
- Department of Biochemistry & Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA
| | - Yixuan He
- Department of Biochemistry & Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA
| | - De-Jiu Kong
- Henan Key Laboratory of Cancer Epigenetics; Cancer hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Li Zhang
- Henan Key Laboratory of Cancer Epigenetics; Cancer hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Xiao-Chen Hu
- Henan Key Laboratory of Cancer Epigenetics; Cancer hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Jun-Qiang Yang
- Henan Key Laboratory of Cancer Epigenetics; Cancer hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Meng-Qi Zhao
- Henan Key Laboratory of Cancer Epigenetics; Cancer hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - She-Gan Gao
- Henan Key Laboratory of Cancer Epigenetics; Cancer hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China.
| | - Tzu-Yin Lin
- Department of Internal Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA.
| | - Yuanpei Li
- Department of Biochemistry & Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA.
| |
Collapse
|
38
|
McKenna M, McGarrigle S, Pidgeon GP. The next generation of PI3K-Akt-mTOR pathway inhibitors in breast cancer cohorts. Biochim Biophys Acta Rev Cancer 2018; 1870:185-197. [PMID: 30318472 DOI: 10.1016/j.bbcan.2018.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/09/2018] [Accepted: 08/15/2018] [Indexed: 12/13/2022]
Abstract
The PI3K/Akt/mTOR pathway plays a role in various oncogenic processes in breast cancer and key pathway aberrations have been identified which drive the different molecular subtypes. Early drugs developed targeting this pathway produced some clinical success but were hampered by pharmacokinetics, tolerability and efficacy problems. This created a need for new PI3K pathway-inhibiting drugs, which would produce more robust results allowing incorporation into treatment regimens for breast cancer patients. In this review, the most promising candidates from the new generation of PI3K-pathway inhibitors is explored, presenting evidence from preclinical and early clinical research, as well as ongoing trials utilising these drugs in breast cancer cohorts. The problems hindering the development of drugs targeting the PI3K pathway are examined, which have created problems for their use as monotherapies. PI3K pathway inhibitor combinations therefore remains a dynamic research area, and their role in combination with immunotherapies and epigenetic therapies is also inspected.
Collapse
Affiliation(s)
- Michael McKenna
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Sarah McGarrigle
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Graham P Pidgeon
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
39
|
Cross Talk Networks of Mammalian Target of Rapamycin Signaling With the Ubiquitin Proteasome System and Their Clinical Implications in Multiple Myeloma. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 343:219-297. [PMID: 30712673 DOI: 10.1016/bs.ircmb.2018.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multiple myeloma (MM) is the second most common hematological malignancy and results from the clonal amplification of plasma cells. Despite recent advances in treatment, MM remains incurable with a median survival time of only 5-6years, thus necessitating further insights into MM biology and exploitation of novel therapeutic approaches. Both the ubiquitin proteasome system (UPS) and the PI3K/Akt/mTOR signaling pathways have been implicated in the pathogenesis, and treatment of MM and different lines of evidence suggest a close cross talk between these central cell-regulatory signaling networks. In this review, we outline the interplay between the UPS and mTOR pathways and discuss their implications for the pathophysiology and therapy of MM.
Collapse
|
40
|
Lynch JT, Polanska UM, Hancox U, Delpuech O, Maynard J, Trigwell C, Eberlein C, Lenaghan C, Polanski R, Avivar-Valderas A, Cumberbatch M, Klinowska T, Critchlow SE, Cruzalegui F, Barry ST. Combined Inhibition of PI3Kβ and mTOR Inhibits Growth of PTEN-null Tumors. Mol Cancer Ther 2018; 17:2309-2319. [PMID: 30097489 DOI: 10.1158/1535-7163.mct-18-0183] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/12/2018] [Accepted: 08/02/2018] [Indexed: 11/16/2022]
Abstract
Loss of the tumor suppressor PTEN confers a tumor cell dependency on the PI3Kβ isoform. Achieving maximal inhibition of tumor growth through PI3K pathway inhibition requires sustained inhibition of PI3K signaling; however, efficacy is often limited by suboptimal inhibition or reactivation of the pathway. To select combinations that deliver comprehensive suppression of PI3K signaling in PTEN-null tumors, the PI3Kβ inhibitor AZD8186 was combined with inhibitors of kinases implicated in pathway reactivation in an extended cell proliferation assay. Inhibiting PI3Kβ and mTOR gave the most effective antiproliferative effects across a panel of PTEN-null tumor cell lines. The combination of AZD8186 and the mTOR inhibitor vistusertib was also effective in vivo controlling growth of PTEN-null tumor models of TNBC, prostate, and renal cancers. In vitro, the combination resulted in increased suppression of pNDRG1, p4EBP1, as well as HMGCS1 with reduced pNDRG1 and p4EBP1 more closely associated with effective suppression of proliferation. In vivo biomarker analysis revealed that the monotherapy and combination treatment consistently reduced similar biomarkers, while combination increased nuclear translocation of the transcription factor FOXO3 and reduction in glucose uptake. These data suggest that combining the PI3Kβ inhibitor AZD8186 and vistusertib has potential to be an effective combination treatment for PTEN-null tumors. Mol Cancer Ther; 17(11); 2309-19. ©2018 AACR.
Collapse
Affiliation(s)
- James T Lynch
- Bioscience, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Urszula M Polanska
- Bioscience, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Ursula Hancox
- Bioscience, Oncology, IMED Biotech Unit, AstraZeneca, Alderley Park, United Kingdom
| | - Oona Delpuech
- Bioscience, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Juliana Maynard
- Alderley Imaging, Alderley Park Ltd, Alderley Park, United Kingdom
| | - Catherine Trigwell
- Bioscience, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Catherine Eberlein
- Bioscience, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Carol Lenaghan
- Bioscience, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Radoslaw Polanski
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Alvaro Avivar-Valderas
- Translational Sciences, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Marie Cumberbatch
- Bioscience, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Teresa Klinowska
- Bioscience, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Susan E Critchlow
- Bioscience, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Francisco Cruzalegui
- Translational Sciences, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Simon T Barry
- Bioscience, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom.
| |
Collapse
|
41
|
Come JH, Collier PN, Henderson JA, Pierce AC, Davies RJ, Le Tiran A, O'Dowd H, Bandarage UK, Cao J, Deininger D, Grey R, Krueger EB, Lowe DB, Liang J, Liao Y, Messersmith D, Nanthakumar S, Sizensky E, Wang J, Xu J, Chin EY, Damagnez V, Doran JD, Dworakowski W, Griffith JP, Jacobs MD, Khare-Pandit S, Mahajan S, Moody CS, Aronov AM. Design and Synthesis of a Novel Series of Orally Bioavailable, CNS-Penetrant, Isoform Selective Phosphoinositide 3-Kinase γ (PI3Kγ) Inhibitors with Potential for the Treatment of Multiple Sclerosis (MS). J Med Chem 2018; 61:5245-5256. [PMID: 29847724 DOI: 10.1021/acs.jmedchem.8b00085] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The lipid kinase phosphoinositide 3-kinase γ (PI3Kγ) has attracted attention as a potential target to treat a variety of autoimmune disorders, including multiple sclerosis, due to its role in immune modulation and microglial activation. By minimizing the number of hydrogen bond donors while targeting a previously uncovered selectivity pocket adjacent to the ATP binding site of PI3Kγ, we discovered a series of azaisoindolinones as selective, brain penetrant inhibitors of PI3Kγ. This ultimately led to the discovery of 16, an orally bioavailable compound that showed efficacy in murine experimental autoimmune encephalomyelitis (EAE), a preclinical model of multiple sclerosis.
Collapse
Affiliation(s)
- Jon H Come
- Vertex Pharmaceuticals Incorporated , 50 Northern Avenue , Boston , Massachusetts 02210 , United States
| | - Philip N Collier
- Vertex Pharmaceuticals Incorporated , 50 Northern Avenue , Boston , Massachusetts 02210 , United States
| | - James A Henderson
- Vertex Pharmaceuticals Incorporated , 50 Northern Avenue , Boston , Massachusetts 02210 , United States
| | - Albert C Pierce
- Vertex Pharmaceuticals Incorporated , 50 Northern Avenue , Boston , Massachusetts 02210 , United States
| | - Robert J Davies
- Vertex Pharmaceuticals Incorporated , 50 Northern Avenue , Boston , Massachusetts 02210 , United States
| | - Arnaud Le Tiran
- Vertex Pharmaceuticals Incorporated , 50 Northern Avenue , Boston , Massachusetts 02210 , United States
| | - Hardwin O'Dowd
- Vertex Pharmaceuticals Incorporated , 50 Northern Avenue , Boston , Massachusetts 02210 , United States
| | - Upul K Bandarage
- Vertex Pharmaceuticals Incorporated , 50 Northern Avenue , Boston , Massachusetts 02210 , United States
| | - Jingrong Cao
- Vertex Pharmaceuticals Incorporated , 50 Northern Avenue , Boston , Massachusetts 02210 , United States
| | - David Deininger
- Vertex Pharmaceuticals Incorporated , 50 Northern Avenue , Boston , Massachusetts 02210 , United States
| | - Ron Grey
- Vertex Pharmaceuticals Incorporated , 50 Northern Avenue , Boston , Massachusetts 02210 , United States
| | - Elaine B Krueger
- Vertex Pharmaceuticals Incorporated , 50 Northern Avenue , Boston , Massachusetts 02210 , United States
| | - Derek B Lowe
- Vertex Pharmaceuticals Incorporated , 50 Northern Avenue , Boston , Massachusetts 02210 , United States
| | - Jianglin Liang
- Vertex Pharmaceuticals Incorporated , 50 Northern Avenue , Boston , Massachusetts 02210 , United States
| | - Yusheng Liao
- Vertex Pharmaceuticals Incorporated , 50 Northern Avenue , Boston , Massachusetts 02210 , United States
| | - David Messersmith
- Vertex Pharmaceuticals Incorporated , 50 Northern Avenue , Boston , Massachusetts 02210 , United States
| | - Suganthi Nanthakumar
- Vertex Pharmaceuticals Incorporated , 50 Northern Avenue , Boston , Massachusetts 02210 , United States
| | - Emmanuelle Sizensky
- Vertex Pharmaceuticals Incorporated , 50 Northern Avenue , Boston , Massachusetts 02210 , United States
| | - Jian Wang
- Vertex Pharmaceuticals Incorporated , 50 Northern Avenue , Boston , Massachusetts 02210 , United States
| | - Jinwang Xu
- Vertex Pharmaceuticals Incorporated , 50 Northern Avenue , Boston , Massachusetts 02210 , United States
| | - Elaine Y Chin
- Vertex Pharmaceuticals Incorporated , 50 Northern Avenue , Boston , Massachusetts 02210 , United States
| | - Veronique Damagnez
- Vertex Pharmaceuticals Incorporated , 50 Northern Avenue , Boston , Massachusetts 02210 , United States
| | - John D Doran
- Vertex Pharmaceuticals Incorporated , 50 Northern Avenue , Boston , Massachusetts 02210 , United States
| | - Wojciech Dworakowski
- Vertex Pharmaceuticals Incorporated , 50 Northern Avenue , Boston , Massachusetts 02210 , United States
| | - James P Griffith
- Vertex Pharmaceuticals Incorporated , 50 Northern Avenue , Boston , Massachusetts 02210 , United States
| | - Marc D Jacobs
- Vertex Pharmaceuticals Incorporated , 50 Northern Avenue , Boston , Massachusetts 02210 , United States
| | - Suvarna Khare-Pandit
- Vertex Pharmaceuticals Incorporated , 50 Northern Avenue , Boston , Massachusetts 02210 , United States
| | - Sudipta Mahajan
- Vertex Pharmaceuticals Incorporated , 50 Northern Avenue , Boston , Massachusetts 02210 , United States
| | - Cameron S Moody
- Vertex Pharmaceuticals Incorporated , 50 Northern Avenue , Boston , Massachusetts 02210 , United States
| | - Alex M Aronov
- Vertex Pharmaceuticals Incorporated , 50 Northern Avenue , Boston , Massachusetts 02210 , United States
| |
Collapse
|
42
|
Nevedomskaya E, Baumgart SJ, Haendler B. Recent Advances in Prostate Cancer Treatment and Drug Discovery. Int J Mol Sci 2018; 19:ijms19051359. [PMID: 29734647 PMCID: PMC5983695 DOI: 10.3390/ijms19051359] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 02/08/2023] Open
Abstract
Novel drugs, drug sequences and combinations have improved the outcome of prostate cancer in recent years. The latest approvals include abiraterone acetate, enzalutamide and apalutamide which target androgen receptor (AR) signaling, radium-223 dichloride for reduction of bone metastases, sipuleucel-T immunotherapy and taxane-based chemotherapy. Adding abiraterone acetate to androgen deprivation therapy (ADT) in order to achieve complete androgen blockade has proven highly beneficial for treatment of locally advanced prostate cancer and metastatic hormone-sensitive prostate cancer (mHSPC). Also, ADT together with docetaxel treatment showed significant benefit in mHSPC. Ongoing clinical trials for different subgroups of prostate cancer patients include the evaluation of the second-generation AR antagonists enzalutamide, apalutamide and darolutamide, of inhibitors of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) pathway, of inhibitors of DNA damage response, of targeted alpha therapy and of prostate-specific membrane antigen (PSMA) targeting approaches. Advanced clinical studies with immune checkpoint inhibitors have shown limited benefits in prostate cancer and more trials are needed to demonstrate efficacy. The identification of improved, personalized treatments will be much supported by the major progress recently made in the molecular characterization of early- and late-stage prostate cancer using “omics” technologies. This has already led to novel classifications of prostate tumors based on gene expression profiles and mutation status, and should greatly help in the choice of novel targeted therapies best tailored to the needs of patients.
Collapse
Affiliation(s)
- Ekaterina Nevedomskaya
- Therapeutic Research Groups, Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany.
| | - Simon J Baumgart
- Therapeutic Research Groups, Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany.
| | - Bernard Haendler
- Therapeutic Research Groups, Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany.
| |
Collapse
|
43
|
Gonçalves BF, de Campos SGP, Fávaro WJ, Brandt JZ, Pinho CF, Justulin LA, Taboga SR, Scarano WR. Combinatorial Effect of Abiraterone Acetate and NVP-BEZ235 on Prostate Tumor Progression in Rats. Discov Oncol 2018; 9:175-187. [PMID: 29363091 DOI: 10.1007/s12672-018-0323-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/10/2018] [Indexed: 01/08/2023] Open
Abstract
Use of drug combinations that target different pathways involved in the development and progression of prostate cancer (PCa) has emerged as an alternative to overcome the resistance caused by drug monotherapies. The antiandrogen abiraterone acetate and the PI3K/Akt inhibitor NVP-BEZ235 (BEZ235) may be suitable options for the prevention of drug resistance and the inhibition of PCa progression. The aim of the present study was to evaluate whether abiraterone acetate and BEZ235 achieve superior therapeutic effects to either drug administered as monotherapy, in the early stages of PCa in an androgen-dependent system. Our study showed that each drug might impair tumor growth by reducing proliferation and increasing cell death when administered as monotherapy. However, tumor growth continued to progress with each drug monotherapy and some important side effects were related to BEZ. Conversely, when used in combination, the drugs impaired the inflammatory response, decreased hyperplastic lesions, and blocked tumor progression from premalignant to a malignant stage. Our data showed that the strategy to block the androgenic and PI3K/AKT/mTOR pathway is an effective therapeutic option and should be investigated including distinct PI3K pathway inhibitors.
Collapse
Affiliation(s)
- Bianca Facchim Gonçalves
- Department of Morphology, Institute of Biosciences, Sao Paulo State University (UNESP), Rua Professor Doutor Antonio Celso Wagner Zanin, 250, Botucatu, SP, 18618-689, Brazil.
| | | | - Wagner José Fávaro
- Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Joyce Zalotti Brandt
- Department of Morphology, Institute of Biosciences, Sao Paulo State University (UNESP), Rua Professor Doutor Antonio Celso Wagner Zanin, 250, Botucatu, SP, 18618-689, Brazil
| | - Cristiane Figueiredo Pinho
- Department of Morphology, Institute of Biosciences, Sao Paulo State University (UNESP), Rua Professor Doutor Antonio Celso Wagner Zanin, 250, Botucatu, SP, 18618-689, Brazil
| | - Luis Antônio Justulin
- Department of Morphology, Institute of Biosciences, Sao Paulo State University (UNESP), Rua Professor Doutor Antonio Celso Wagner Zanin, 250, Botucatu, SP, 18618-689, Brazil
| | - Sebastião Roberto Taboga
- Institute of Biosciences, Humanities and Exact Sciences, Sao Paulo State University (UNESP), São José do Rio Preto, SP, Brazil
| | - Wellerson Rodrigo Scarano
- Department of Morphology, Institute of Biosciences, Sao Paulo State University (UNESP), Rua Professor Doutor Antonio Celso Wagner Zanin, 250, Botucatu, SP, 18618-689, Brazil
| |
Collapse
|
44
|
Survival kinase genes present prognostic significance in glioblastoma. Oncotarget 2018; 7:20140-51. [PMID: 26956052 PMCID: PMC4991443 DOI: 10.18632/oncotarget.7917] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/14/2016] [Indexed: 01/28/2023] Open
Abstract
Cancer biomarkers with a strong predictive power for diagnosis/prognosis and a potential to be therapeutic targets have not yet been fully established. Here we employed a loss-of-function screen in glioblastoma (GBM), an infiltrative brain tumor with a dismal prognosis, and identified 20 survival kinase genes (SKGs). Survival analyses using The Cancer Genome Atlas (TCGA) datasets revealed that the expression of CDCP1, CDKL5, CSNK1E, IRAK3, LATS2, PRKAA1, STK3, TBRG4, and ULK4 stratified GBM prognosis with or without temozolomide (TMZ) treatment as a covariate. For the first time, we found that GBM patients with a high level of NEK9 and PIK3CB had a greater chance of having recurrent tumors. The expression of CDCP1, IGF2R, IRAK3, LATS2, PIK3CB, ULK4, or VRK1 in primary GBM tumors was associated with recurrence-related prognosis. Notably, the level of PIK3CB in recurrent tumors was much higher than that in newly diagnosed ones. Congruent with these results, genes in the PI3K/AKT pathway showed a significantly strong correlation with recurrence rate, further highlighting the pivotal role of PIK3CB in the disease progression. Importantly, 17 SKGs together presented a novel GBM prognostic signature. SKGs identified herein are associated with recurrence rate and present prognostic significance in GBM, thereby becoming attractive therapeutic targets.
Collapse
|
45
|
Identification of differential PI3K pathway target dependencies in T-cell acute lymphoblastic leukemia through a large cancer cell panel screen. Oncotarget 2017; 7:22128-39. [PMID: 26989080 PMCID: PMC5008349 DOI: 10.18632/oncotarget.8031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/18/2016] [Indexed: 12/31/2022] Open
Abstract
Selective phosphoinositide 3-kinase (PI3K)/AKT/mTOR inhibitors are currently under evaluation in clinical studies. To identify tumor types that are sensitive to PI3K pathway inhibitors we screened compounds targeting PI3Kα/δ (AZD8835), PI3Kβ/δ (AZD8186), AKT (AZD5363) and mTORC1/2 (AZD2014) against a cancer cell line panel (971 cell lines). There was an enrichment of hematological malignancies that were sensitive to AKT and mTOR inhibition, with the greatest degree of sensitivity observed in T-cell acute lymphoblastic leukemia (T-ALL). We found that all NOTCH mutant T-ALL cell lines were sensitive to AKT and mTORC1/2 inhibitors, with only partial sensitivity to agents that target the PI3K α, β or δ isoforms. Induction of apoptosis only occurred following AKTi treatment in cell lines with PTEN protein loss and high levels of active AKT. In summary, we have demonstrated that T-ALL cell lines show differential sensitivity to inhibition at different nodes in the PI3K/AKT/mTOR pathway and inhibiting AKT or mTOR may have a therapeutic benefit in this disease setting.
Collapse
|
46
|
García-Aranda M, Redondo M. Protein Kinase Targets in Breast Cancer. Int J Mol Sci 2017; 18:ijms18122543. [PMID: 29186886 PMCID: PMC5751146 DOI: 10.3390/ijms18122543] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 01/10/2023] Open
Abstract
With 1.67 million new cases and 522,000 deaths in the year 2012, breast cancer is the most common type of diagnosed malignancy and the second leading cause of cancer death in women around the world. Despite the success of screening programs and the development of adjuvant therapies, a significant percentage of breast cancer patients will suffer a metastatic disease that, to this day, remains incurable and justifies the research of new therapies to improve their life expectancy. Among the new therapies that have been developed in recent years, the emergence of targeted therapies has been a milestone in the fight against cancer. Over the past decade, many studies have shown a causal role of protein kinase dysregulations or mutations in different human diseases, including cancer. Along these lines, cancer research has demonstrated a key role of many protein kinases during human tumorigenesis and cancer progression, turning these molecules into valid candidates for new targeted therapies. The subsequent discovery and introduction in 2001 of the kinase inhibitor imatinib, as a targeted treatment for chronic myelogenous leukemia, revolutionized cancer genetic pathways research, and lead to the development of multiple small-molecule kinase inhibitors against various malignancies, including breast cancer. In this review, we analyze studies published to date about novel small-molecule kinase inhibitors and evaluate if they would be useful to develop new treatment strategies for breast cancer patients.
Collapse
Affiliation(s)
- Marilina García-Aranda
- Biochemistry Department, Hospital Costa del Sol, Carretera de Cádiz km, 187, 29600 Marbella, Málaga, Spain.
| | - Maximino Redondo
- Biochemistry Department, Hospital Costa del Sol, Carretera de Cádiz km, 187, 29600 Marbella, Málaga, Spain.
- Biochemistry Department, Facultad de Medicina de la Universidad de Málaga, Bulevar Louis Pasteur 32, 29010 Málaga, Spain.
| |
Collapse
|
47
|
Lynch JT, Polanska UM, Delpuech O, Hancox U, Trinidad AG, Michopoulos F, Lenaghan C, McEwen R, Bradford J, Polanski R, Ellston R, Avivar-Valderas A, Pilling J, Staniszewska A, Cumberbatch M, Critchlow SE, Cruzalegui F, Barry ST. Inhibiting PI3Kβ with AZD8186 Regulates Key Metabolic Pathways in PTEN-Null Tumors. Clin Cancer Res 2017; 23:7584-7595. [DOI: 10.1158/1078-0432.ccr-17-0676] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 08/12/2017] [Accepted: 09/26/2017] [Indexed: 11/16/2022]
|
48
|
Convergent Akt activation drives acquired EGFR inhibitor resistance in lung cancer. Nat Commun 2017; 8:410. [PMID: 28871105 PMCID: PMC5583255 DOI: 10.1038/s41467-017-00450-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 06/29/2017] [Indexed: 12/20/2022] Open
Abstract
Non-small-cell lung cancer patients with activating epidermal growth factor receptor (EGFR) mutations typically benefit from EGFR tyrosine kinase inhibitor treatment. However, virtually all patients succumb to acquired EGFR tyrosine kinase inhibitor resistance that occurs via diverse mechanisms. The diversity and unpredictability of EGFR tyrosine kinase inhibitor resistance mechanisms presents a challenge for developing new treatments to overcome EGFR tyrosine kinase inhibitor resistance. Here, we show that Akt activation is a convergent feature of acquired EGFR tyrosine kinase inhibitor resistance, across a spectrum of diverse, established upstream resistance mechanisms. Combined treatment with an EGFR tyrosine kinase inhibitor and Akt inhibitor causes apoptosis and synergistic growth inhibition in multiple EGFR tyrosine kinase inhibitor-resistant non-small-cell lung cancer models. Moreover, phospho-Akt levels are increased in most clinical specimens obtained from EGFR-mutant non-small-cell lung cancer patients with acquired EGFR tyrosine kinase inhibitor resistance. Our findings provide a rationale for clinical trials testing Akt and EGFR inhibitor co-treatment in patients with elevated phospho-Akt levels to therapeutically combat the heterogeneity of EGFR tyrosine kinase inhibitor resistance mechanisms. EGFR-mutant non-small cell lung cancer are often resistant to EGFR tyrosine kinase inhibitor treatment. In this study, the authors show that resistant tumors display high Akt activation and that a combined treatment with AKT inhibitors causes synergistic tumour growth inhibition in vitro and in vivo.
Collapse
|
49
|
Janku F. Phosphoinositide 3-kinase (PI3K) pathway inhibitors in solid tumors: From laboratory to patients. Cancer Treat Rev 2017; 59:93-101. [PMID: 28779636 DOI: 10.1016/j.ctrv.2017.07.005] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 02/07/2023]
Abstract
The phosphoinositide 3-kinase (PI3K) pathway is an intracellular signaling pathway that has regulatory roles in cell survival, proliferation, and differentiation, and a critical role in tumorigenesis. In cancer, multiple studies have investigated the therapeutic targeting of the PI3K pathway, and multiple inhibitors targeting PI3K and its isoforms, protein kinase B/AKT, mammalian target of rapamycin (mTOR), and other pathway proteins have been developed. For the treatment of solid tumors, only allosteric mTOR inhibitors, such as everolimus and temsirolimus, are currently approved for clinical use. This review describes the PI3K inhibitors that have progressed from the laboratory to late-stage clinical trials, and discusses the challenges that have prevented other compounds from doing the same. Challenges to the therapeutic effectiveness of some PI3K inhibitors include the absence of reliable and effective biomarkers, their limited efficacy as single agents, insufficient development of rational therapeutic combinations, the use of schedules with a variety of off-target effects, and suboptimal therapeutic exposures. Therefore, with regard to PI3K inhibitors currently in late-stage clinical trials, the identification of appropriate biomarkers of efficacy and the development of optimal combination regimens and dosing schedules are likely to be important for graduation into clinical practice.
Collapse
Affiliation(s)
- Filip Janku
- MD Anderson Cancer Center, Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Houston, TX, USA.
| |
Collapse
|
50
|
Vangapandu HV, Jain N, Gandhi V. Duvelisib: a phosphoinositide-3 kinase δ/γ inhibitor for chronic lymphocytic leukemia. Expert Opin Investig Drugs 2017; 26:625-632. [PMID: 28388280 PMCID: PMC5584596 DOI: 10.1080/13543784.2017.1312338] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/24/2017] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Frontline chemotherapy is successful against chronic lymphocytic leukemia (CLL), but results in untoward toxicity. Further, prognostic factors, cytogenetic anomalies, and compensatory cellular signaling lead to therapy resistance or disease relapse. Therefore, for the past few years, development of targeted therapies is on the rise. PI3K is a major player in the B-cell receptor (BCR) signaling axis, which is critical for the survival and maintenance of B cells. Duvelisib, a PI3K δ/γ dual isoform specific inhibitor that induces apoptosis and reduces cytokine and chemokine levels in vitro, holds promise for CLL. Areas covered: Herein, we review PI3K isoforms and their inhibitors in general, and duvelisib in particular; examine literature on preclinical investigations, pharmacokinetics and clinical studies of duvelisib either as single agent or in combination, for patients with CLL and other lymphoid malignancies. Expert opinion: Duvelisib targets the PI3K δ isoform, which is necessary for cell proliferation and survival, and γ isoform, which is critical for cytokine signaling and pro-inflammatory responses from the microenvironment. In phase I clinical trials, duvelisib as a single agent showed promise for CLL and other lymphoid malignancies. Phase II and III trials of duvelisib alone or in combination with other agents are ongoing.
Collapse
Affiliation(s)
- Hima V. Vangapandu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Varsha Gandhi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054
| |
Collapse
|