1
|
Kuo DP, Chen YC, Cheng SJ, Hsieh KLC, Ou CY, Li YT, Chen CY. Ischemia-reperfusion injury in a salvaged penumbra: Longitudinal high-tesla perfusion magnetic resonance imaging in a rat model. Magn Reson Imaging 2024; 112:47-53. [PMID: 38909765 DOI: 10.1016/j.mri.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/23/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
INTRODUCTION Although ischemia-reperfusion (I/R) injury varies between cortical and subcortical regions, its effects on specific regions remain unclear. In this study, we used various magnetic resonance imaging (MRI) techniques to examine the spatiotemporal dynamics of I/R injury within the salvaged ischemic penumbra (IP) and reperfused ischemic core (IC) of a rodent model, with the aim of enhancing therapeutic strategies by elucidating these dynamics. MATERIALS AND METHODS A total of 17 Sprague-Dawley rats were subjected to 1 h of transient middle cerebral artery occlusion with a suture model. MRI, including diffusion tensor imaging (DTI), T2-weighted imaging, perfusion-weighted imaging, and T1 mapping, was conducted at multiple time points for up to 5 days during the I/R phases. The spatiotemporal dynamics of blood-brain barrier (BBB) modifications were characterized through changes in T1 within the IP and IC regions and compared with mean diffusivity (MD), T2, and cerebral blood flow. RESULTS During the I/R phases, the MD of the IC initially decreased, normalized after recanalization, decreased again at 24 h, and peaked on day 5. By contrast, the IP remained relatively stable. Both the IP and IC exhibited hyperperfusion, with the IP reaching its peak at 24 h, followed by resolution, whereas hyperperfusion was maintained in the IC until day 5. Despite hyperperfusion, the IP maintained an intact BBB, whereas the IC experienced persistent BBB leakage. At 24 h, the IC exhibited an increase in the T2 signal, corresponding to regions exhibiting BBB disruption at 5 days. CONCLUSIONS Hyperperfusion and BBB impairment have distinct patterns in the IP and IC. Quantitative T1 mapping may serve as a supplementary tool for the early detection of malignant hyperemia accompanied by BBB leakage, aiding in precise interventions after recanalization. These findings underscore the value of MRI markers in monitoring ischemia-specific regions and customizing therapeutic strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Duen-Pang Kuo
- Department of Medical Imaging, Taipei Medical University Hospital, Taipei, Taiwan; Translational Imaging Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yung-Chieh Chen
- Department of Medical Imaging, Taipei Medical University Hospital, Taipei, Taiwan; Translational Imaging Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sho-Jen Cheng
- Department of Medical Imaging, Taipei Medical University Hospital, Taipei, Taiwan; Translational Imaging Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Kevin Li-Chun Hsieh
- Department of Medical Imaging, Taipei Medical University Hospital, Taipei, Taiwan; Translational Imaging Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chen-Yin Ou
- Translational Imaging Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yi-Tien Li
- Translational Imaging Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Research Center for Neuroscience, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| | - Cheng-Yu Chen
- Department of Medical Imaging, Taipei Medical University Hospital, Taipei, Taiwan; Translational Imaging Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei, Taiwan; Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Radiology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
2
|
Woo CW, Choi MY, Heo H, Chae YJ, Sung YS, Choi Y, Woo DC. Ineffectiveness of 6,2',4'-trimethoxyflavone in mitigating cerebral ischemia/reperfusion injury after post-reperfusion administration in rats. Acta Radiol 2024; 65:1281-1290. [PMID: 39344293 DOI: 10.1177/02841851241275278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
BACKGROUND Pharmacological inhibition of aryl hydrocarbon receptor (AhR) activation after ischemia alleviates cerebral ischemia/reperfusion (IR) injury. PURPOSE To investigate whether AhR antagonist administration after reperfusion was also effective in attenuating cerebral IR injury. MATERIAL AND METHODS A total of 24 Sprague-Dawley rats were divided into the sham-operated group (no IR), control group (IR), and 6,2',4'-trimethoxyflavone (TMF) group (IR + TMF administration), with 10 rats assigned to each group. Cerebral IR injury was induced by 60 min of middle cerebral artery occlusion followed by reperfusion. TMF (5 mg/kg) was used as the AhR antagonist and was administered intraperitoneally immediately after reperfusion. Cerebral IR injury was observed using magnetic resonance imaging (MRI) and neurobehavioral assessments at baseline, immediately after ischemia, and at 3 days after ischemia. RESULTS On MRI, the TMF group showed no significant differences in relative apparent diffusion coefficient (ADC), T2, and fractional anisotropy (FA) values; midline shift value; and infarct volume. In terms of neurobehavioral function, factors such as grip strength, contralateral forelimb use, time to touch, and time to remove adhesive tape from the forepaw, were also not significantly different between the control and TMF groups. CONCLUSION This study demonstrated that AhR treatment after reperfusion had no noticeable effect on reducing cerebral IR injury in rats.
Collapse
Affiliation(s)
- Chul-Woong Woo
- Convergence Medicine Research Center, Asan Medical Center, Songpa-gu, Seoul, Republic of Korea
| | - Monica Young Choi
- Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, Seoul, Republic of Korea
| | - Hwon Heo
- Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, Seoul, Republic of Korea
| | - Yeon Ji Chae
- Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, Seoul, Republic of Korea
| | - Yu Sub Sung
- Clinical Research Center, Asan Medical Center, Songpa-gu, Seoul, Republic of Korea
| | - Yoonseok Choi
- Medical Research Institute, Gangneung Asan Hospital, Gangneung-si, Gangwon-do, Republic of Korea
| | - Dong Cheol Woo
- Convergence Medicine Research Center, Asan Medical Center, Songpa-gu, Seoul, Republic of Korea
- Department of Medical Science, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Songpa-gu, Seoul, Republic of Korea
| |
Collapse
|
3
|
Yang J, Cao C, Liu J, Liu Y, Lu J, Yu H, Li X, Wu J, Yu Z, Li H, Chen G. Dystrophin 71 deficiency causes impaired aquaporin-4 polarization contributing to glymphatic dysfunction and brain edema in cerebral ischemia. Neurobiol Dis 2024; 199:106586. [PMID: 38950712 DOI: 10.1016/j.nbd.2024.106586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024] Open
Abstract
OBJECTIVE The glymphatic system serves as a perivascular pathway that aids in clearing liquid and solute waste from the brain, thereby enhancing neurological function. Disorders in glymphatic drainage contribute to the development of vasogenic edema following cerebral ischemia, although the molecular mechanisms involved remain poorly understood. This study aims to determine whether a deficiency in dystrophin 71 (DP71) leads to aquaporin-4 (AQP4) depolarization, contributing to glymphatic dysfunction in cerebral ischemia and resulting in brain edema. METHODS A mice model of middle cerebral artery occlusion and reperfusion was used. A fluorescence tracer was injected into the cortex and evaluated glymphatic clearance. To investigate the role of DP71 in maintaining AQP4 polarization, an adeno-associated virus with the astrocyte promoter was used to overexpress Dp71. The expression and distribution of DP71 and AQP4 were analyzed using immunoblotting, immunofluorescence, and co-immunoprecipitation techniques. The behavior ability of mice was evaluated by open field test. Open-access transcriptome sequencing data were used to analyze the functional changes of astrocytes after cerebral ischemia. MG132 was used to inhibit the ubiquitin-proteasome system. The ubiquitination of DP71 was detected by immunoblotting and co-immunoprecipitation. RESULTS During the vasogenic edema stage following cerebral ischemia, a decline in the efflux of interstitial fluid tracer was observed. DP71 and AQP4 were co-localized and interacted with each other in the perivascular astrocyte endfeet. After cerebral ischemia, there was a notable reduction in DP71 protein expression, accompanied by AQP4 depolarization and proliferation of reactive astrocytes. Increased DP71 expression restored glymphatic drainage and reduced brain edema. AQP4 depolarization, reactive astrocyte proliferation, and the behavior of mice were improved. After cerebral ischemia, DP71 was degraded by ubiquitination, and MG132 inhibited the decrease of DP71 protein level. CONCLUSION AQP4 depolarization after cerebral ischemia leads to glymphatic clearance disorder and aggravates cerebral edema. DP71 plays a pivotal role in regulating AQP4 polarization and consequently influences glymphatic function. Changes in DP71 expression are associated with the ubiquitin-proteasome system. This study offers a novel perspective on the pathogenesis of brain edema following cerebral ischemia.
Collapse
Affiliation(s)
- Jian Yang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China; Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Chang Cao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China; Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Jiale Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China; Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Yangyang Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China; Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Jinxin Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China; Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - HaoYun Yu
- Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China; Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Jiang Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China; Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China.
| | - Zhengquan Yu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China; Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China.
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China; Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China; Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
4
|
Zhang W, Chen S, Ma B, Ding Y, Liu X, He C, Wang B, Yuan M. Trifluoperazine regulates blood-brain barrier permeability via the MLCK/p-MLC pathway to promote ischemic stroke recovery. iScience 2024; 27:109156. [PMID: 38439960 PMCID: PMC10910233 DOI: 10.1016/j.isci.2024.109156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/19/2023] [Accepted: 02/02/2024] [Indexed: 03/06/2024] Open
Abstract
Blood-brain barrier (BBB) disruption following ischemic stroke (IS) can induce significant aftereffects. Elevated calmodulin (CaM) expression following stroke causes calcium overload-a key contributor to BBB collapse. Trifluoperazine (TFP), a CaM inhibitor, reduces CaM overexpression following IS. However, it remains unclear whether TFP participates in BBB repair after IS. We administered TFP to mice subjected to middle cerebral artery occlusion (MCAO) and bEnd.3 cells subjected to oxygen-glucose deprivation (OGD). TFP treatment in MCAO mice reduced cerebral CaM expression and infarct size and decreased BBB permeability. OGD-treated bEnd.3 cells showed significantly increased CaM protein levels and reduced tight junction (TJ) protein levels; these changes were reversed by TFP treatment. Our results found that TFP administration in mice inhibited actin contraction following cerebral ischemia-reperfusion by suppressing the MLCK/p-MLC pathway, thereby attenuating cell retraction, improving TJ protein integrity, and reducing BBB permeability. Consequently, this treatment may promote neurological function recovery after IS.
Collapse
Affiliation(s)
- Wentao Zhang
- The Second Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Sisi Chen
- The Second Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Bin Ma
- The Second Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yingmei Ding
- The Second Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaofen Liu
- The Second Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Caijun He
- The Second Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Biao Wang
- The Second Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Mei Yuan
- The Second Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
5
|
Goldstein ED, Fayad FH, Shah A, Fayad N, Chang K, Snow E, Shu L, Yaghi S. FLAIR signal intensity ratio predicts small subcortical infarct early neurologic deterioration: a cross-sectional study. Neuroradiology 2024; 66:343-347. [PMID: 38273104 DOI: 10.1007/s00234-024-03295-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/14/2024] [Indexed: 01/27/2024]
Abstract
PURPOSE Prior studies have used the fluid-attenuated inversion recovery sequence signal intensity ratio (FLAIR-SIR) to predict those with an incomplete infarct that may safely receive acute thrombolytics. Clinical early neurologic deterioration (END) of small subcortical infarcts (SSIs) is suspected to occur due to delayed infarct completion. We aimed to understand if a lower FLAIR-SIR, suggestive of an incomplete infarct, would have a higher likelihood of SSI-related END. METHODS A cross-sectional retrospective study was performed of those with an acute SSI (anterior or posterior circulation) without significant parent vessel steno-occlusive disease. END was defined as a new or worsened disabling neurologic deficit during the index hospitalization. Standard-of-care brain MRIs were reviewed from the hospitalization, and a FLAIR-SIR cutoff of ≤ 1.15 was used based on prior studies. Adjusted logistic regression models were used for analysis. RESULTS We identified 252 patients meeting inclusion criteria: median (IQR) age 68 (12) years, 38.5% (97/252) female, and 11% (28/252) with END. Tobacco use was more common in those without END (32%) compared with END (55%, p = 0.03). In adjusted analyses, a FLAIR-SIR cutoff of ≤ 1.15 yielded an odds ratio of 2.8 (95% CI 1.23-6.13, p = 0.012) of early neurological deterioration. CONCLUSION Those with a FLAIR-SIR ≤ 1.15 are nearly threefold more likely to develop SSI-related END.
Collapse
Affiliation(s)
- Eric D Goldstein
- Department of Neurology, Warren Alpert Medical School of Brown University, 593 Eddy St, APC 5th Floor, Providence, 02893, RI, USA.
| | - Fayez H Fayad
- Department of Neurology, Warren Alpert Medical School of Brown University, 593 Eddy St, APC 5th Floor, Providence, 02893, RI, USA
| | - Asghar Shah
- Department of Neurology, Warren Alpert Medical School of Brown University, 593 Eddy St, APC 5th Floor, Providence, 02893, RI, USA
| | - Noora Fayad
- Undergraduate Medical Education, California North state University, Elk Grove, CA, USA
| | - Kelvin Chang
- Department of Neurology, Warren Alpert Medical School of Brown University, 593 Eddy St, APC 5th Floor, Providence, 02893, RI, USA
| | - Ethan Snow
- Department of Neurology, Warren Alpert Medical School of Brown University, 593 Eddy St, APC 5th Floor, Providence, 02893, RI, USA
| | - Liqi Shu
- Department of Neurology, Warren Alpert Medical School of Brown University, 593 Eddy St, APC 5th Floor, Providence, 02893, RI, USA
| | - Shadi Yaghi
- Department of Neurology, Warren Alpert Medical School of Brown University, 593 Eddy St, APC 5th Floor, Providence, 02893, RI, USA
| |
Collapse
|
6
|
Fladt J, Guo J, Specht JL, Wang M, Chan LL, Mctaggart R, Buck BH, Aviv R, Swartz RH, Field TS, Tarpley J, Shah R, Goyal M, Tymianski M, Hill MD, Demchuk A, d'Esterre C, Barber P. Infarct Evolution on MR-DWI After Thrombectomy in Acute Stroke Patients Randomized to Nerinetide or Placebo: The REPERFUSE-NA1 Study. Neurology 2024; 102:e207976. [PMID: 38165335 DOI: 10.1212/wnl.0000000000207976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/27/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND AND OBJECTIVES The neuroprotectant nerinetide has shown promise in reducing infarct volumes in primate models of ischemia reperfusion. We hypothesized that early secondary infarct growth after endovascular therapy (EVT) (1) may be a suitable surrogate biomarker for testing neuroprotective compounds, (2) is feasible to assess in the acute setting using sequential MRI, and (3) can be modified by treatment with nerinetide. METHODS REPERFUSE-NA1 was a prospective, multisite MRI substudy of the randomized controlled trial ESCAPE-NA1 (ClinicalTrials.gov NCT02930018) that involved patients with acute disabling large vessel occlusive stroke undergoing EVT within 12 hours of onset who were randomized to receive intravenous nerinetide or placebo. Patients enrolled in REPERFUSE-NA1 underwent sequential MRI <5 hours post-EVT (day 1) and at 24 hours (day 2). The primary outcome was total diffusion-weighted MRI infarct growth early after EVT, defined as the lesion volume difference between day 2 and day 1. The secondary outcome was region-specific infarct growth in different brain tissue compartments. Statistical analyses were performed using the Mann-Whitney U test and multiple linear regression. RESULTS Sixty-seven of 71 patients included had MRI of sufficient quality. The median infarct volume post-EVT was 12.98 mL (IQR, 5.93-28.08) in the nerinetide group and 10.80 mL (IQR, 3.11-24.45) in the control group (p = 0.59). Patients receiving nerinetide showed a median early secondary infarct growth of 5.92 mL (IQR, 1.09-21.30) compared with 10.80 mL (interquartile range [IQR], 2.54-21.81) in patients with placebo (p = 0.30). Intravenous alteplase modified the effect of nerinetide on region-specific infarct growth in white matter and basal ganglia compartments. In patients with no alteplase, the infarct growth rate was reduced by 120% (standard error [SE], 60%) in the white matter (p = 0.03) and by 340% (SE, 140%) in the basal ganglia (p = 0.02) in the nerinetide group compared with placebo after adjusting for confounders. DISCUSSION This study highlights the potential of using MR imaging as a biomarker to estimate the effect of a neuroprotective agent in acute stroke treatment. Patients with acute large vessel occlusive stroke exhibited appreciable early infarct growth both in the gray matter and the white matter after undergoing EVT. Acknowledging relatively small overall infarct volumes in this study, treatment with nerinetide was associated with slightly reduced percentage infarct growth in the white matter and basal ganglia compared with placebo in patients not receiving intravenous alteplase and had no effect on the total early secondary infarct growth. TRIAL REGISTRATION INFORMATION ClinicalTrials.gov NCT02930018. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that for patients with acute large vessel ischemic stroke undergoing EVT, nerinetide did not significantly decrease early post-EVT infarct growth compared with placebo.
Collapse
Affiliation(s)
- Joachim Fladt
- From the Calgary Stroke Program (J.F., J.G., J.L.S., M.W., L.L.C., M.G., M.D.H., A.D., C.E., P.B.), Departments of Clinical Neurosciences, Radiology, and Community Health Sciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary,Canada; Stroke Center and Department of Neurology (J.F.), University Hospital Basel and University of Basel, Switzerland; Department of Neurology and Neurosurgery (R.M.), Rhode Island Medical Imaging, Providence, RI; Division of Neurology (B.H.B.), University of Alberta, Edmonton; Department of Radiology (R.A.), Radiation Oncology and Medical Physics, University of Ottawa, The Ottawa Hospital; Department of Medical Imaging (R.H.S.), University of Toronto, Sunnybrook Health Sciences Centre; Vancouver Stroke Program (T.S.F.), University of British Columbia, Canada; Pacific Neuroscience Institute (J.T.), Providence Little Company of Mary Medical Center, Torrance, CA; and UT Erlanger Neurology (R.S.), Chattanooga, TN; NoNO Inc (M.T.), Toronto, Canada
| | - Jen Guo
- From the Calgary Stroke Program (J.F., J.G., J.L.S., M.W., L.L.C., M.G., M.D.H., A.D., C.E., P.B.), Departments of Clinical Neurosciences, Radiology, and Community Health Sciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary,Canada; Stroke Center and Department of Neurology (J.F.), University Hospital Basel and University of Basel, Switzerland; Department of Neurology and Neurosurgery (R.M.), Rhode Island Medical Imaging, Providence, RI; Division of Neurology (B.H.B.), University of Alberta, Edmonton; Department of Radiology (R.A.), Radiation Oncology and Medical Physics, University of Ottawa, The Ottawa Hospital; Department of Medical Imaging (R.H.S.), University of Toronto, Sunnybrook Health Sciences Centre; Vancouver Stroke Program (T.S.F.), University of British Columbia, Canada; Pacific Neuroscience Institute (J.T.), Providence Little Company of Mary Medical Center, Torrance, CA; and UT Erlanger Neurology (R.S.), Chattanooga, TN; NoNO Inc (M.T.), Toronto, Canada
| | - Jacinta L Specht
- From the Calgary Stroke Program (J.F., J.G., J.L.S., M.W., L.L.C., M.G., M.D.H., A.D., C.E., P.B.), Departments of Clinical Neurosciences, Radiology, and Community Health Sciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary,Canada; Stroke Center and Department of Neurology (J.F.), University Hospital Basel and University of Basel, Switzerland; Department of Neurology and Neurosurgery (R.M.), Rhode Island Medical Imaging, Providence, RI; Division of Neurology (B.H.B.), University of Alberta, Edmonton; Department of Radiology (R.A.), Radiation Oncology and Medical Physics, University of Ottawa, The Ottawa Hospital; Department of Medical Imaging (R.H.S.), University of Toronto, Sunnybrook Health Sciences Centre; Vancouver Stroke Program (T.S.F.), University of British Columbia, Canada; Pacific Neuroscience Institute (J.T.), Providence Little Company of Mary Medical Center, Torrance, CA; and UT Erlanger Neurology (R.S.), Chattanooga, TN; NoNO Inc (M.T.), Toronto, Canada
| | - Meng Wang
- From the Calgary Stroke Program (J.F., J.G., J.L.S., M.W., L.L.C., M.G., M.D.H., A.D., C.E., P.B.), Departments of Clinical Neurosciences, Radiology, and Community Health Sciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary,Canada; Stroke Center and Department of Neurology (J.F.), University Hospital Basel and University of Basel, Switzerland; Department of Neurology and Neurosurgery (R.M.), Rhode Island Medical Imaging, Providence, RI; Division of Neurology (B.H.B.), University of Alberta, Edmonton; Department of Radiology (R.A.), Radiation Oncology and Medical Physics, University of Ottawa, The Ottawa Hospital; Department of Medical Imaging (R.H.S.), University of Toronto, Sunnybrook Health Sciences Centre; Vancouver Stroke Program (T.S.F.), University of British Columbia, Canada; Pacific Neuroscience Institute (J.T.), Providence Little Company of Mary Medical Center, Torrance, CA; and UT Erlanger Neurology (R.S.), Chattanooga, TN; NoNO Inc (M.T.), Toronto, Canada
| | - Leona L Chan
- From the Calgary Stroke Program (J.F., J.G., J.L.S., M.W., L.L.C., M.G., M.D.H., A.D., C.E., P.B.), Departments of Clinical Neurosciences, Radiology, and Community Health Sciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary,Canada; Stroke Center and Department of Neurology (J.F.), University Hospital Basel and University of Basel, Switzerland; Department of Neurology and Neurosurgery (R.M.), Rhode Island Medical Imaging, Providence, RI; Division of Neurology (B.H.B.), University of Alberta, Edmonton; Department of Radiology (R.A.), Radiation Oncology and Medical Physics, University of Ottawa, The Ottawa Hospital; Department of Medical Imaging (R.H.S.), University of Toronto, Sunnybrook Health Sciences Centre; Vancouver Stroke Program (T.S.F.), University of British Columbia, Canada; Pacific Neuroscience Institute (J.T.), Providence Little Company of Mary Medical Center, Torrance, CA; and UT Erlanger Neurology (R.S.), Chattanooga, TN; NoNO Inc (M.T.), Toronto, Canada
| | - Ryan Mctaggart
- From the Calgary Stroke Program (J.F., J.G., J.L.S., M.W., L.L.C., M.G., M.D.H., A.D., C.E., P.B.), Departments of Clinical Neurosciences, Radiology, and Community Health Sciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary,Canada; Stroke Center and Department of Neurology (J.F.), University Hospital Basel and University of Basel, Switzerland; Department of Neurology and Neurosurgery (R.M.), Rhode Island Medical Imaging, Providence, RI; Division of Neurology (B.H.B.), University of Alberta, Edmonton; Department of Radiology (R.A.), Radiation Oncology and Medical Physics, University of Ottawa, The Ottawa Hospital; Department of Medical Imaging (R.H.S.), University of Toronto, Sunnybrook Health Sciences Centre; Vancouver Stroke Program (T.S.F.), University of British Columbia, Canada; Pacific Neuroscience Institute (J.T.), Providence Little Company of Mary Medical Center, Torrance, CA; and UT Erlanger Neurology (R.S.), Chattanooga, TN; NoNO Inc (M.T.), Toronto, Canada
| | - Brian H Buck
- From the Calgary Stroke Program (J.F., J.G., J.L.S., M.W., L.L.C., M.G., M.D.H., A.D., C.E., P.B.), Departments of Clinical Neurosciences, Radiology, and Community Health Sciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary,Canada; Stroke Center and Department of Neurology (J.F.), University Hospital Basel and University of Basel, Switzerland; Department of Neurology and Neurosurgery (R.M.), Rhode Island Medical Imaging, Providence, RI; Division of Neurology (B.H.B.), University of Alberta, Edmonton; Department of Radiology (R.A.), Radiation Oncology and Medical Physics, University of Ottawa, The Ottawa Hospital; Department of Medical Imaging (R.H.S.), University of Toronto, Sunnybrook Health Sciences Centre; Vancouver Stroke Program (T.S.F.), University of British Columbia, Canada; Pacific Neuroscience Institute (J.T.), Providence Little Company of Mary Medical Center, Torrance, CA; and UT Erlanger Neurology (R.S.), Chattanooga, TN; NoNO Inc (M.T.), Toronto, Canada
| | - Richard Aviv
- From the Calgary Stroke Program (J.F., J.G., J.L.S., M.W., L.L.C., M.G., M.D.H., A.D., C.E., P.B.), Departments of Clinical Neurosciences, Radiology, and Community Health Sciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary,Canada; Stroke Center and Department of Neurology (J.F.), University Hospital Basel and University of Basel, Switzerland; Department of Neurology and Neurosurgery (R.M.), Rhode Island Medical Imaging, Providence, RI; Division of Neurology (B.H.B.), University of Alberta, Edmonton; Department of Radiology (R.A.), Radiation Oncology and Medical Physics, University of Ottawa, The Ottawa Hospital; Department of Medical Imaging (R.H.S.), University of Toronto, Sunnybrook Health Sciences Centre; Vancouver Stroke Program (T.S.F.), University of British Columbia, Canada; Pacific Neuroscience Institute (J.T.), Providence Little Company of Mary Medical Center, Torrance, CA; and UT Erlanger Neurology (R.S.), Chattanooga, TN; NoNO Inc (M.T.), Toronto, Canada
| | - Richard H Swartz
- From the Calgary Stroke Program (J.F., J.G., J.L.S., M.W., L.L.C., M.G., M.D.H., A.D., C.E., P.B.), Departments of Clinical Neurosciences, Radiology, and Community Health Sciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary,Canada; Stroke Center and Department of Neurology (J.F.), University Hospital Basel and University of Basel, Switzerland; Department of Neurology and Neurosurgery (R.M.), Rhode Island Medical Imaging, Providence, RI; Division of Neurology (B.H.B.), University of Alberta, Edmonton; Department of Radiology (R.A.), Radiation Oncology and Medical Physics, University of Ottawa, The Ottawa Hospital; Department of Medical Imaging (R.H.S.), University of Toronto, Sunnybrook Health Sciences Centre; Vancouver Stroke Program (T.S.F.), University of British Columbia, Canada; Pacific Neuroscience Institute (J.T.), Providence Little Company of Mary Medical Center, Torrance, CA; and UT Erlanger Neurology (R.S.), Chattanooga, TN; NoNO Inc (M.T.), Toronto, Canada
| | - Thalia S Field
- From the Calgary Stroke Program (J.F., J.G., J.L.S., M.W., L.L.C., M.G., M.D.H., A.D., C.E., P.B.), Departments of Clinical Neurosciences, Radiology, and Community Health Sciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary,Canada; Stroke Center and Department of Neurology (J.F.), University Hospital Basel and University of Basel, Switzerland; Department of Neurology and Neurosurgery (R.M.), Rhode Island Medical Imaging, Providence, RI; Division of Neurology (B.H.B.), University of Alberta, Edmonton; Department of Radiology (R.A.), Radiation Oncology and Medical Physics, University of Ottawa, The Ottawa Hospital; Department of Medical Imaging (R.H.S.), University of Toronto, Sunnybrook Health Sciences Centre; Vancouver Stroke Program (T.S.F.), University of British Columbia, Canada; Pacific Neuroscience Institute (J.T.), Providence Little Company of Mary Medical Center, Torrance, CA; and UT Erlanger Neurology (R.S.), Chattanooga, TN; NoNO Inc (M.T.), Toronto, Canada
| | - Jason Tarpley
- From the Calgary Stroke Program (J.F., J.G., J.L.S., M.W., L.L.C., M.G., M.D.H., A.D., C.E., P.B.), Departments of Clinical Neurosciences, Radiology, and Community Health Sciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary,Canada; Stroke Center and Department of Neurology (J.F.), University Hospital Basel and University of Basel, Switzerland; Department of Neurology and Neurosurgery (R.M.), Rhode Island Medical Imaging, Providence, RI; Division of Neurology (B.H.B.), University of Alberta, Edmonton; Department of Radiology (R.A.), Radiation Oncology and Medical Physics, University of Ottawa, The Ottawa Hospital; Department of Medical Imaging (R.H.S.), University of Toronto, Sunnybrook Health Sciences Centre; Vancouver Stroke Program (T.S.F.), University of British Columbia, Canada; Pacific Neuroscience Institute (J.T.), Providence Little Company of Mary Medical Center, Torrance, CA; and UT Erlanger Neurology (R.S.), Chattanooga, TN; NoNO Inc (M.T.), Toronto, Canada
| | - Ruchir Shah
- From the Calgary Stroke Program (J.F., J.G., J.L.S., M.W., L.L.C., M.G., M.D.H., A.D., C.E., P.B.), Departments of Clinical Neurosciences, Radiology, and Community Health Sciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary,Canada; Stroke Center and Department of Neurology (J.F.), University Hospital Basel and University of Basel, Switzerland; Department of Neurology and Neurosurgery (R.M.), Rhode Island Medical Imaging, Providence, RI; Division of Neurology (B.H.B.), University of Alberta, Edmonton; Department of Radiology (R.A.), Radiation Oncology and Medical Physics, University of Ottawa, The Ottawa Hospital; Department of Medical Imaging (R.H.S.), University of Toronto, Sunnybrook Health Sciences Centre; Vancouver Stroke Program (T.S.F.), University of British Columbia, Canada; Pacific Neuroscience Institute (J.T.), Providence Little Company of Mary Medical Center, Torrance, CA; and UT Erlanger Neurology (R.S.), Chattanooga, TN; NoNO Inc (M.T.), Toronto, Canada
| | - Mayank Goyal
- From the Calgary Stroke Program (J.F., J.G., J.L.S., M.W., L.L.C., M.G., M.D.H., A.D., C.E., P.B.), Departments of Clinical Neurosciences, Radiology, and Community Health Sciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary,Canada; Stroke Center and Department of Neurology (J.F.), University Hospital Basel and University of Basel, Switzerland; Department of Neurology and Neurosurgery (R.M.), Rhode Island Medical Imaging, Providence, RI; Division of Neurology (B.H.B.), University of Alberta, Edmonton; Department of Radiology (R.A.), Radiation Oncology and Medical Physics, University of Ottawa, The Ottawa Hospital; Department of Medical Imaging (R.H.S.), University of Toronto, Sunnybrook Health Sciences Centre; Vancouver Stroke Program (T.S.F.), University of British Columbia, Canada; Pacific Neuroscience Institute (J.T.), Providence Little Company of Mary Medical Center, Torrance, CA; and UT Erlanger Neurology (R.S.), Chattanooga, TN; NoNO Inc (M.T.), Toronto, Canada
| | - Michael Tymianski
- From the Calgary Stroke Program (J.F., J.G., J.L.S., M.W., L.L.C., M.G., M.D.H., A.D., C.E., P.B.), Departments of Clinical Neurosciences, Radiology, and Community Health Sciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary,Canada; Stroke Center and Department of Neurology (J.F.), University Hospital Basel and University of Basel, Switzerland; Department of Neurology and Neurosurgery (R.M.), Rhode Island Medical Imaging, Providence, RI; Division of Neurology (B.H.B.), University of Alberta, Edmonton; Department of Radiology (R.A.), Radiation Oncology and Medical Physics, University of Ottawa, The Ottawa Hospital; Department of Medical Imaging (R.H.S.), University of Toronto, Sunnybrook Health Sciences Centre; Vancouver Stroke Program (T.S.F.), University of British Columbia, Canada; Pacific Neuroscience Institute (J.T.), Providence Little Company of Mary Medical Center, Torrance, CA; and UT Erlanger Neurology (R.S.), Chattanooga, TN; NoNO Inc (M.T.), Toronto, Canada
| | - Michael D Hill
- From the Calgary Stroke Program (J.F., J.G., J.L.S., M.W., L.L.C., M.G., M.D.H., A.D., C.E., P.B.), Departments of Clinical Neurosciences, Radiology, and Community Health Sciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary,Canada; Stroke Center and Department of Neurology (J.F.), University Hospital Basel and University of Basel, Switzerland; Department of Neurology and Neurosurgery (R.M.), Rhode Island Medical Imaging, Providence, RI; Division of Neurology (B.H.B.), University of Alberta, Edmonton; Department of Radiology (R.A.), Radiation Oncology and Medical Physics, University of Ottawa, The Ottawa Hospital; Department of Medical Imaging (R.H.S.), University of Toronto, Sunnybrook Health Sciences Centre; Vancouver Stroke Program (T.S.F.), University of British Columbia, Canada; Pacific Neuroscience Institute (J.T.), Providence Little Company of Mary Medical Center, Torrance, CA; and UT Erlanger Neurology (R.S.), Chattanooga, TN; NoNO Inc (M.T.), Toronto, Canada
| | - Andrew Demchuk
- From the Calgary Stroke Program (J.F., J.G., J.L.S., M.W., L.L.C., M.G., M.D.H., A.D., C.E., P.B.), Departments of Clinical Neurosciences, Radiology, and Community Health Sciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary,Canada; Stroke Center and Department of Neurology (J.F.), University Hospital Basel and University of Basel, Switzerland; Department of Neurology and Neurosurgery (R.M.), Rhode Island Medical Imaging, Providence, RI; Division of Neurology (B.H.B.), University of Alberta, Edmonton; Department of Radiology (R.A.), Radiation Oncology and Medical Physics, University of Ottawa, The Ottawa Hospital; Department of Medical Imaging (R.H.S.), University of Toronto, Sunnybrook Health Sciences Centre; Vancouver Stroke Program (T.S.F.), University of British Columbia, Canada; Pacific Neuroscience Institute (J.T.), Providence Little Company of Mary Medical Center, Torrance, CA; and UT Erlanger Neurology (R.S.), Chattanooga, TN; NoNO Inc (M.T.), Toronto, Canada
| | - Christopher d'Esterre
- From the Calgary Stroke Program (J.F., J.G., J.L.S., M.W., L.L.C., M.G., M.D.H., A.D., C.E., P.B.), Departments of Clinical Neurosciences, Radiology, and Community Health Sciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary,Canada; Stroke Center and Department of Neurology (J.F.), University Hospital Basel and University of Basel, Switzerland; Department of Neurology and Neurosurgery (R.M.), Rhode Island Medical Imaging, Providence, RI; Division of Neurology (B.H.B.), University of Alberta, Edmonton; Department of Radiology (R.A.), Radiation Oncology and Medical Physics, University of Ottawa, The Ottawa Hospital; Department of Medical Imaging (R.H.S.), University of Toronto, Sunnybrook Health Sciences Centre; Vancouver Stroke Program (T.S.F.), University of British Columbia, Canada; Pacific Neuroscience Institute (J.T.), Providence Little Company of Mary Medical Center, Torrance, CA; and UT Erlanger Neurology (R.S.), Chattanooga, TN; NoNO Inc (M.T.), Toronto, Canada
| | - Philip Barber
- From the Calgary Stroke Program (J.F., J.G., J.L.S., M.W., L.L.C., M.G., M.D.H., A.D., C.E., P.B.), Departments of Clinical Neurosciences, Radiology, and Community Health Sciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary,Canada; Stroke Center and Department of Neurology (J.F.), University Hospital Basel and University of Basel, Switzerland; Department of Neurology and Neurosurgery (R.M.), Rhode Island Medical Imaging, Providence, RI; Division of Neurology (B.H.B.), University of Alberta, Edmonton; Department of Radiology (R.A.), Radiation Oncology and Medical Physics, University of Ottawa, The Ottawa Hospital; Department of Medical Imaging (R.H.S.), University of Toronto, Sunnybrook Health Sciences Centre; Vancouver Stroke Program (T.S.F.), University of British Columbia, Canada; Pacific Neuroscience Institute (J.T.), Providence Little Company of Mary Medical Center, Torrance, CA; and UT Erlanger Neurology (R.S.), Chattanooga, TN; NoNO Inc (M.T.), Toronto, Canada
| |
Collapse
|
7
|
Gomez F, El-Ghanem M, Feldstein E, Jagdeo M, Koul P, Nuoman R, Gupta G, Gandhi CD, Amuluru K, Al-Mufti F. Cerebral Ischemic Reperfusion Injury: Preventative and Therapeutic Strategies. Cardiol Rev 2023; 31:287-292. [PMID: 36129330 DOI: 10.1097/crd.0000000000000467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Acute ischemic stroke is a leading cause of morbidity and mortality in the United States. Treatment goals remain focused on restoring blood flow to compromised areas. However, a major concern arises after reperfusion occurs. Cerebral ischemic reperfusion injury is defined as damage to otherwise salvageable brain tissue occurring with the reestablishment of the vascular supply to that region. The pool of eligible patients for revascularization continues to grow, especially with the recently expanded endovascular therapeutic window. Neurointensivists should understand and manage complications of successful recanalization. In this review, we examine the pathophysiology, diagnosis, and potential management strategies in cerebral ischemic reperfusion injury.
Collapse
Affiliation(s)
- Francisco Gomez
- From the Department of Neurology, University of Missouri School of Medicine, Columbia, MO
| | - Mohammad El-Ghanem
- Department of Neuroendovascular Surgery, HCA Houston Healthcare, Houston, TX
| | - Eric Feldstein
- Westchester Medical Center, Maria Fareri Children's Hospital, Valhalla, NY
| | - Matt Jagdeo
- Westchester Medical Center, Maria Fareri Children's Hospital, Valhalla, NY
| | - Prateeka Koul
- Department of Neurology, Northshore-Long Island Jewish Medical Center, Manhasset, NY
| | - Rolla Nuoman
- Westchester Medical Center, Maria Fareri Children's Hospital, Valhalla, NY
| | - Gaurav Gupta
- Department of Neurosurgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Chirag D Gandhi
- Westchester Medical Center, Maria Fareri Children's Hospital, Valhalla, NY
| | - Krishna Amuluru
- Department of Neurological Surgery, University of Indiana, Indianapolis, IN
| | - Fawaz Al-Mufti
- Westchester Medical Center, Maria Fareri Children's Hospital, Valhalla, NY
| |
Collapse
|
8
|
Sperring CP, Savage WM, Argenziano MG, Leifer VP, Alexander J, Echlov N, Spinazzi EF, Connolly ES. No-Reflow Post-Recanalization in Acute Ischemic Stroke: Mechanisms, Measurements, and Molecular Markers. Stroke 2023; 54:2472-2480. [PMID: 37534511 DOI: 10.1161/strokeaha.123.044240] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Acute ischemic stroke remains the primary cause of disability worldwide. For patients with large vessel occlusions, intravenous thrombolysis followed by mechanical thrombectomy remains the standard of care. Revascularization of the large vessel is typically successful. However, despite reopening of the occluded vessel, many patients fail to return to independence. Functional failure, despite macrovascular recanalization, is often referred to as the no-reflow phenomenon. Even with an extensive characterization of reperfusion in animal models, numerous mechanisms may explain no-reflow. Further, uniform measurements of this microvascular dysfunction and prognostic markers associated with no-reflow are lacking. In this review, we highlight a number of mechanisms that may explain no-reflow, characterize current multimodal measurements, and assess its molecular markers.
Collapse
Affiliation(s)
- Colin P Sperring
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital
| | - William M Savage
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital
| | - Michael G Argenziano
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital
| | - Valia P Leifer
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital
| | - Julia Alexander
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital
| | - Nicolas Echlov
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital
| | - Eleonora F Spinazzi
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital
| | - E Sander Connolly
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital
| |
Collapse
|
9
|
Jang M, Han S, Cho H. Correspondence between development of cytotoxic edema and cerebrospinal fluid volume and flow in the third ventricle after ischemic stroke. J Stroke Cerebrovasc Dis 2023; 32:107200. [PMID: 37290155 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107200] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/10/2023] Open
Abstract
OBJECTIVES The importance of monitoring cerebrospinal fluid for the development of edema in ischemic stroke has been emphasized; however, studies on the relationship between intraventricular cerebrospinal fluid behavior and edema through longitudinal observations and analysis are rare. This study aimed to investigate the correlation between the development of cytotoxic edema and cerebrospinal fluid volume and flow in the third ventricle after ischemic stroke. MATERIALS AND METHODS The ventricle and edema regions were obtained using apparent diffusion coefficients and T2 and subdivided into lateral/ventral 3rd ventricles and cytotoxic/vasogenic (or cyst) edema, respectively. In rat models of ischemic stroke, the volume and flow (via the pseudo-diffusion coefficient [D*]) of the ventricles and edema volumes were longitudinally monitored for up to 45 days after surgery. RESULTS The volume of cytotoxic edema increased in the hyperacute and acute phases, whereas the volume (r = -0.49) and median D* values (r = -0.48 in the anterior-posterior direction) of the ventral 3rd ventricle both decreased, showing negative correlations with the volume of cytotoxic edema. In contrast, the volume of vasogenic edema/cyst was positively correlated with the volume (r = 0.73) and median D* values (r = 0.78 in the anterior-posterior direction) of the lateral ventricle in the subacute and chronic phases. CONCLUSIONS This study showed that the evolution of cerebrospinal fluid volume and flow in the ventricles was associated with edema progression at different time points in the ischemic stroke brain. This provides an efficient framework for monitoring and quantifying the interplay between cerebrospinal fluid and edema.
Collapse
Affiliation(s)
- MinJung Jang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea; Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - SoHyun Han
- Research Equipment Operations Division, Korea Basic Science Institute, Cheongju 28119, South Korea
| | - HyungJoon Cho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea.
| |
Collapse
|
10
|
Nagy SA, Ivic I, Tóth P, Komoly S, Kiss T, Pénzes M, Málnási-Csizmadia A, Dóczi T, Perlaki G, Orsi G. Post-reperfusion acute MR diffusion in stroke is a potential predictor for clinical outcome in rats. Sci Rep 2023; 13:5598. [PMID: 37019923 PMCID: PMC10076321 DOI: 10.1038/s41598-023-32679-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Middle cerebral artery occlusion (MCAO) models show substantial variability in outcome, introducing uncertainties in the evaluation of treatment effects. Early outcome predictors would be essential for prognostic purposes and variability control. We aimed to compare apparent diffusion coefficient (ADC) MRI data obtained during MCAO and shortly after reperfusion for their potentials in acute-phase outcome prediction. Fifty-nine male rats underwent a 45-min MCAO. Outcome was defined in three ways: 21-day survival; 24 h midline-shift and neurological scores. Animals were divided into two groups: rats surviving 21 days after MCAO (survival group, n = 46) and rats dying prematurely (non-survival/NS group, n = 13). At reperfusion, NS group showed considerably larger lesion volume and lower mean ADC of the initial lesion site (p < 0.0001), while during occlusion there were no significant group differences. At reperfusion, each survival animal showed decreased lesion volume and increased mean ADC of the initial lesion site compared to those during occlusion (p < 10-6), while NS group showed a mixed pattern. At reperfusion, lesion volume and mean ADC of the initial lesion site were significantly associated with 24 h midline-shift and neurological scores. Diffusion MRI performed soon after reperfusion has a great impact in early-phase outcome prediction, and it works better than the measurement during occlusion.
Collapse
Affiliation(s)
- Szilvia Anett Nagy
- ELKH-PTE Clinical Neuroscience MR Research Group, Ret Str. 2, 7623, Pecs, Hungary.
- Pecs Diagnostic Centre, Rét Street 2, 7623, Pecs, Hungary.
- Structural Neurobiology Research Group, Szentágothai Research Centre, University of Pecs, Ifjúság Street 20, 7624, Pecs, Hungary.
- Department of Neurology, Medical School, University of Pecs, Rét Street 2, 7623, Pecs, Hungary.
| | - Ivan Ivic
- Pecs Diagnostic Centre, Rét Street 2, 7623, Pecs, Hungary
- Selvita d.o.o., Prilaz Baruna Filipovića 29, 10000, Zagreb, Croatia
| | - Péter Tóth
- ELKH-PTE Clinical Neuroscience MR Research Group, Ret Str. 2, 7623, Pecs, Hungary
- Department of Neurosurgery, Medical School, University of Pecs, Rét Street 2, 7623, Pecs, Hungary
| | - Sámuel Komoly
- Department of Neurology, Medical School, University of Pecs, Rét Street 2, 7623, Pecs, Hungary
| | - Tamás Kiss
- Szentágothai Research Centre, University of Pecs, Ifjúság Street 20, Pecs, Hungary
| | - Máté Pénzes
- Department of Biochemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/C, 1117, Budapest, Hungary
- Motorpharma Ltd., Szilágyi E. Fasor 27, 1026, Budapest, Hungary
| | - András Málnási-Csizmadia
- Motorpharma Ltd., Szilágyi E. Fasor 27, 1026, Budapest, Hungary
- ELKH-ELTE Motor Pharmacology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/C, 1117, Budapest, Hungary
| | - Tamás Dóczi
- Pecs Diagnostic Centre, Rét Street 2, 7623, Pecs, Hungary
- Department of Neurosurgery, Medical School, University of Pecs, Rét Street 2, 7623, Pecs, Hungary
| | - Gábor Perlaki
- ELKH-PTE Clinical Neuroscience MR Research Group, Ret Str. 2, 7623, Pecs, Hungary
- Pecs Diagnostic Centre, Rét Street 2, 7623, Pecs, Hungary
- Department of Neurology, Medical School, University of Pecs, Rét Street 2, 7623, Pecs, Hungary
- Department of Neurosurgery, Medical School, University of Pecs, Rét Street 2, 7623, Pecs, Hungary
| | - Gergely Orsi
- ELKH-PTE Clinical Neuroscience MR Research Group, Ret Str. 2, 7623, Pecs, Hungary
- Pecs Diagnostic Centre, Rét Street 2, 7623, Pecs, Hungary
- Department of Neurology, Medical School, University of Pecs, Rét Street 2, 7623, Pecs, Hungary
- Department of Neurosurgery, Medical School, University of Pecs, Rét Street 2, 7623, Pecs, Hungary
| |
Collapse
|
11
|
Clemente-Moragón A, Oliver E, Calle D, Cussó L, Gómez M, Pradillo JM, Castejón R, Rallón N, Benito JM, Fernández-Ferro JC, Carneado-Ruíz J, Moro MA, Sánchez-González J, Fuster V, Cortés-Canteli M, Desco M, Ibáñez B. Neutrophil β 1 adrenoceptor blockade blunts stroke-associated neuroinflammation. Br J Pharmacol 2023; 180:459-478. [PMID: 36181002 PMCID: PMC10100149 DOI: 10.1111/bph.15963] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 04/10/2022] [Accepted: 04/28/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Reperfusion therapy is the standard of care for ischaemic stroke; however, there is a need to identify new therapeutic targets able to ameliorate cerebral damage. Neutrophil β1 adrenoceptors (β1AR) have been linked to neutrophil migration during exacerbated inflammation. Given the central role of neutrophils in cerebral damage during stroke, we hypothesize that β1AR blockade will improve stroke outcomes. EXPERIMENTAL APPROACH Rats were subjected to middle cerebral artery occlusion-reperfusion to evaluate the effect on stroke of the selective β1AR blocker metoprolol (12.5 mg·kg-1 ) when injected i.v. 10 min before reperfusion. KEY RESULTS Magnetic resonance imaging and histopathology analysis showed that pre-reperfusion i.v. metoprolol reduced infarct size. This effect was accompanied by reduced cytotoxic oedema at 24 h and vasogenic oedema at 7 days. Metoprolol-treated rats showed reduced brain neutrophil infiltration and those which infiltrated displayed a high proportion of anti-inflammatory phenotype (N2, YM1+ ). Additional inflammatory models demonstrated that metoprolol specifically blocked neutrophil migration via β1AR and excluded a significant effect on the glia compartment. Consistently, metoprolol did not protect the brain in neutrophil-depleted rats upon stroke. In patients suffering an ischaemic stroke, β1AR blockade by metoprolol reduced circulating neutrophil-platelet co-aggregates. CONCLUSIONS AND IMPLICATIONS Our findings describe that β1AR blockade ameliorates cerebral damage by targeting neutrophils, identifying a novel therapeutic target to improve outcomes in patients with stroke. This therapeutic strategy is in the earliest stages of the translational pathway and should be further explored.
Collapse
Affiliation(s)
- Agustín Clemente-Moragón
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Eduardo Oliver
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Daniel Calle
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Lorena Cussó
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Salud Mental (CIBERSAM), Madrid, Spain
| | - Mónica Gómez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Jesús M Pradillo
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Madrid, Spain
| | - Raquel Castejón
- Internal Medicine Department, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Norma Rallón
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Hospital Universitario Rey Juan Carlos, Madrid, Spain
| | - José M Benito
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Department of Neurology, Hospital Universitario Rey Juan Carlos, Madrid, Spain
| | - José C Fernández-Ferro
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Department of Neurology, Hospital Universitario Rey Juan Carlos, Madrid, Spain
| | | | - María A Moro
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Cardiovascular Risk Factors and Brain Function program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Valentín Fuster
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Marta Cortés-Canteli
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Cardiovascular Risk Factors and Brain Function program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Manuel Desco
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Salud Mental (CIBERSAM), Madrid, Spain
| | - Borja Ibáñez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Cardiology Department, IIS-Fundación Jiménez Díaz Hospital, Madrid, Spain
| |
Collapse
|
12
|
Zhou Y, He Y, Yan S, Chen L, Zhang R, Xu J, Hu H, Liebeskind DS, Lou M. Reperfusion Injury Is Associated With Poor Outcome in Patients With Recanalization After Thrombectomy. Stroke 2023; 54:96-104. [PMID: 36367100 DOI: 10.1161/strokeaha.122.039337] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The existence of cerebral reperfusion injury in human beings remains controversial. Thus, we aimed to explore the presence of reperfusion injury in acute ischemic stroke patients with recanalization after mechanical thrombectomy and analyzed its impact on neurological outcome. METHODS We reviewed our prospectively collected database CIPPIS (Comparison Influence to Prognosis of CTP and MRP in AIS Patients, NCT03367286), and enrolled anterior circulation large artery occlusion patients with recanalization after mechanical thrombectomy who underwent (1) computed tomography (CT) perfusion on admission and immediately after recanalization to determine reperfusion region, and (2) CT and/or magnetic resonance imaging (MRI) immediately and 24 hours after recanalization to determine lesion areas. The expansion of lesion between recanalization and 24 hours within reperfusion region was potentially caused by reperfusion, thus termed as radiological observed reperfusion injury (RORI). Based on the imaging modality immediately after recanalization, RORI was further divided into RORICT and RORIMRI. We first included a small cohort who had performed both CT and MRI immediately after recanalization to validate the consistency between RORICT and RORIMRI (Study 1). Then the association with RORICT and poor outcome, defined as 3-month modified Rankin Scale score of 3 to 6, was explored in a larger cohort (Study 2). RESULTS Study 1 included 23 patients and good consistency was found between RORICT and RORIMRI (intraclass correlation=0.97, P<0.001). Among 226 patients included in Study 2, a total of 106 (46.9%) were identified with RORI. The ratio of RORI to reperfusion region was 30.1 (16.2, 51.0)% and was independently associated with poor outcome (odds ratio=1.55 per 10% [95% CI' 1.30-1.84]; P<0.001). CONCLUSIONS Our findings suggested that RORI was relatively frequent in stroke patients with recanalization after mechanical thrombectomy and associated with poor outcome despite successful recanalization. REGISTRATION URL: https://www. CLINICALTRIALS gov; Unique identifier: NCT03367286.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Neurology, the 2nd Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China (Y.Z., Y.H., S.Y., L.C., R.Z., J.X., H.H., M.L.)
| | - Yaode He
- Department of Neurology, the 2nd Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China (Y.Z., Y.H., S.Y., L.C., R.Z., J.X., H.H., M.L.)
| | - Shenqiang Yan
- Department of Neurology, the 2nd Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China (Y.Z., Y.H., S.Y., L.C., R.Z., J.X., H.H., M.L.)
| | - Lin Chen
- Department of Neurology, the 2nd Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China (Y.Z., Y.H., S.Y., L.C., R.Z., J.X., H.H., M.L.)
| | - Ruoxia Zhang
- Department of Neurology, the 2nd Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China (Y.Z., Y.H., S.Y., L.C., R.Z., J.X., H.H., M.L.)
| | - Jinjin Xu
- Department of Neurology, the 2nd Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China (Y.Z., Y.H., S.Y., L.C., R.Z., J.X., H.H., M.L.)
| | - Haitao Hu
- Department of Neurology, the 2nd Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China (Y.Z., Y.H., S.Y., L.C., R.Z., J.X., H.H., M.L.)
| | | | - Min Lou
- Department of Neurology, the 2nd Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China (Y.Z., Y.H., S.Y., L.C., R.Z., J.X., H.H., M.L.)
| |
Collapse
|
13
|
Kawauchi S, Yasuhara T, Kin K, Yabuno S, Sugahara C, Nagase T, Hosomoto K, Okazaki Y, Tomita Y, Umakoshi M, Sasaki T, Kameda M, Borlongan CV, Date I. Transplantation of modified human bone marrow-derived stromal cells affords therapeutic effects on cerebral ischemia in rats. CNS Neurosci Ther 2022; 28:1974-1985. [PMID: 36000240 PMCID: PMC9627357 DOI: 10.1111/cns.13947] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 02/06/2023] Open
Abstract
AIMS SB623 cells are human bone marrow stromal cells transfected with Notch1 intracellular domain. In this study, we examined potential regenerative mechanisms underlying stereotaxic transplantation of SB623 cells in rats with experimental acute ischemic stroke. METHODS We prepared control group, empty capsule (EC) group, SB623 cell group (SB623), and encapsulated SB623 cell (eSB623) group. Transient middle cerebral artery occlusion (MCAO) was performed on day 0, and 24 h after MCAO, stroke rats received transplantation into the envisioned ischemic penumbra. Modified neurological severity score (mNSS) was evaluated, and histological evaluations were performed. RESULTS In the mNSS, SB623 and eSB623 groups showed significant improvement compared to the other groups. Histological analysis revealed that the infarction area in SB623 and eSB623 groups was reduced. In the eSB623 group, robust cell viability and neurogenesis were detected in the subventricular zone that increased significantly compared to all other groups. CONCLUSION SB623 cells with or without encapsulation showed therapeutic effects on ischemic stroke. Encapsulated SB623 cells showed enhanced neurogenesis and increased viability inside the capsules. This study reveals the mechanism of secretory function of transplanted SB623 cells, but not cell-cell interaction as primarily mediating the cells' functional benefits in ischemic stroke.
Collapse
Affiliation(s)
- Satoshi Kawauchi
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Takao Yasuhara
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Kyohei Kin
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan,Department of Psychiatry and Behavioral NeurobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Satoru Yabuno
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Chiaki Sugahara
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Takayuki Nagase
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Kakeru Hosomoto
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Yosuke Okazaki
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Yousuke Tomita
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Michiari Umakoshi
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Tatsuya Sasaki
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | | | - Cesario V. Borlongan
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain RepairUniversity of South FloridaTampaFloridaUSA
| | - Isao Date
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| |
Collapse
|
14
|
Roflumilast, a cyclic nucleotide phosphodiesterase 4 inhibitor, protects against cerebrovascular endothelial injury following cerebral ischemia/reperfusion by activating the Notch1/Hes1 pathway. Eur J Pharmacol 2022; 926:175027. [DOI: 10.1016/j.ejphar.2022.175027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/22/2022]
|
15
|
Zhao Y, Chen Y, Chen Y, Zhang L, Wang X, He X. A Fully Convolutional Network (FCN) based Automated Ischemic Stroke Segment Method using Chemical Exchange Saturation Transfer Imaging. Med Phys 2022; 49:1635-1647. [PMID: 35083756 DOI: 10.1002/mp.15483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/26/2021] [Accepted: 01/02/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Chemical exchange saturation transfer (CEST) MRI is a promising imaging modality in ischemic stroke detection for its sensitivity in sensing post-ischemic pH alteration. However, the accurate segmentation of pH-altered regions remains difficult due to the complicated sources in water signal changes of CEST MRI. Meanwhile, manual localization and quantification of stroke lesions are laborious and time-consuming, which cannot meet the urgent need for timely therapeutic interventions. PURPOSE The goal of this study was to develop an automatic lesion segmentation approach of ischemic region based on CEST MR images. A novel segmentation framework based on fully convolutional neural network was investigated for our task. METHODS Z-spectra from 10 rats were manually labeled as ground truth and split into two datasets, where the training dataset including 3 rats was used to generate a segmentation model, and the remaining rats were used as test datasets to evaluate the model's performance. Then a 1-D fully convolutional neural network equipped with bottleneck structures was set up, and a Grad-CAM approach was used to produce a coarse localization map, which can reflect the relevancy to the 'ischemia' class of each pixel. RESULTS As compared with the ground truth, the proposed network model achieved satisfying segmentation results with high values of evaluation metrics including specificity (SPE), sensitivity (SEN), accuracy (ACC), and Dice similarity coefficient (DSC), especially in some intractable situations where conventional MRI modalities and CEST quantitative method failed to distinguish between ischemic and normal tissues, and the model with augmentation was robust to input perturbations. The Grad-CAM maps performed clear tissue change distributions and interpreted the segmentations, and showed a strong correlation with the quantitative method, gave extended thinking to the function of networks. CONCLUSIONS The proposed method can segment ischemia region from CEST images, with the Grad-CAM maps give access to interpretative information about the segmentations, which demonstrates great potential in clinical routines. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yingcheng Zhao
- Xi'an Key Lab of Radiomics and Intelligent Perception, School of Information Sciences and Technology, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Yibing Chen
- Xi'an Key Lab of Radiomics and Intelligent Perception, School of Information Sciences and Technology, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Yanrong Chen
- Xi'an Key Lab of Radiomics and Intelligent Perception, School of Information Sciences and Technology, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Lihong Zhang
- College of Computer Science and Technology (Software College), Henan Polytechnic University, Jiaozuo, Henan, 454003, China
| | - Xiaoli Wang
- Department of Medical Imaging, Weifang Medical University, Weifang, 261053, China
| | - Xiaowei He
- Xi'an Key Lab of Radiomics and Intelligent Perception, School of Information Sciences and Technology, Northwest University, Xi'an, Shaanxi, 710069, China
| |
Collapse
|
16
|
Zhang X, Huang P, Zhang R. Evaluation and Prediction of Post-stroke Cerebral Edema Based on Neuroimaging. Front Neurol 2022; 12:763018. [PMID: 35087464 PMCID: PMC8786707 DOI: 10.3389/fneur.2021.763018] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Cerebral edema is a common complication of acute ischemic stroke that leads to poorer functional outcomes and substantially increases the mortality rate. Given that its negative effects can be reduced by more intensive monitoring and evidence-based interventions, the early identification of patients with a high risk of severe edema is crucial. Neuroimaging is essential for the assessment and prediction of edema. Simple markers, such as midline shift and hypodensity volume on computed tomography, have been used to evaluate edema in clinical trials; however, advanced techniques can be applied to examine the underlying mechanisms. In this study, we aimed to review current imaging tools in the assessment and prediction of cerebral edema to provide guidance for using these methods in clinical practice.
Collapse
Affiliation(s)
| | | | - Ruiting Zhang
- Department of Radiology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Yeh SJ, Hsu PH, Yeh TY, Yang WK, Chang KP, Chiang CS, Tang SC, Tsai LK, Jeng JS, Hsieh ST. Capping Protein Regulator and Myosin 1 Linker 3 (CARMIL3) as a Molecular Signature of Ischemic Neurons in the DWI-T2 Mismatch Areas After Stroke. Front Mol Neurosci 2022; 14:754762. [PMID: 34975397 PMCID: PMC8716926 DOI: 10.3389/fnmol.2021.754762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/29/2021] [Indexed: 11/15/2022] Open
Abstract
Ischemic stroke with a mismatch between diffusion-weighted imaging (DWI) and fluid-attenuated inversion recovery (FLAIR) or T2-weighted images indicates onset within 4.5 h, but the pathological substrates in the DWI-T2 mismatch and T2(+) areas remain elusive. In this study, proteomics was used to explore (1) the protein expression profiles in the T2(+), mismatch, and contralateral areas, and (2) the protein with the highest expression in the T2(+) area in the brains of male Sprague-Dawley rats within 4.5 h after middle cerebral artery occlusion (MCAO). The expression of the candidate protein was further validated in (1) rat brain subjected to MCAO, (2) rat primary cortical neuronal culture with oxygen-glucose deprivation (OGD), and (3) infarcted human brain tissues. This study showed that apoptosis was observed in the T2(+) and mismatch regions and necroptosis in the T2(+) region of rat brains after MCAO. We identified capping protein regulator and myosin 1 linker 3 (CARMIL3) as the candidate molecule in the T2(+) and mismatch areas, exclusively in neurons, predominantly in the cytoplasm, and most abundant in the mismatch area. The CARMIL3(+) neurons and neurites in the mismatch and T2(+) areas were larger than those in the control area, and associated with (1) increased expression of sulfonylurea receptor 1 (SUR1), indicating edema, (2) accumulation of p62, indicating impaired autophagy, and (3) increase in 8-hydroxy-2′-deoxyguanosine (8-OHdG), indicating oxidative stress. The increased expression of CARMIL3 was validated in a cell model of cortical neurons after OGD and in infarcted human brain tissues. In conclusion, this study shows that the mismatch and T2(+) areas within 4.5 h after ischemia are characterized by upregulated expression of CARMIL3 in neurons, particularly the mismatch area, which is associated with neuronal edema, impaired autophagy, and oxidative stress, indicating that CARMIL3 serves as a molecular signature of brain ischemia.
Collapse
Affiliation(s)
- Shin-Joe Yeh
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Pang-Hung Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Ti-Yen Yeh
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wei-Kang Yang
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ko-Ping Chang
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Sung Chiang
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Sung-Chun Tang
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Kai Tsai
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.,Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Jiann-Shing Jeng
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Sung-Tsang Hsieh
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
18
|
Lebrun F, Violle N, Letourneur A, Muller C, Fischer N, Levilly A, Orset C, Sors A, Vivien D. Post-acute delivery of α5-GABAA antagonist, S 44819, improves functional recovery in juvenile rats following stroke. Exp Neurol 2021; 347:113881. [PMID: 34597681 DOI: 10.1016/j.expneurol.2021.113881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 11/04/2022]
Abstract
Hypo-excitability was reported in the peri-infarct tissue following stroke, an effect counteracted by a blockage of α5-GABAA receptors in adult rodents. Our present study aims to evaluate the effect of a selective α5-GABAA receptor antagonist, S 44819, in stroke in juvenile animals. We have set up and characterized an original model of transient ischemic stroke in 28 day-old Sprague-Dawley rats (45-min occlusion of the middle cerebral artery by intraluminal suture). In this model, S 44819 (1, 3 and 10 mg/kg, b.i.d) was orally administered from day 3 to day 16 after stroke onset. Sensorimotor recovery was assessed on day 1, day 9 and day 16 after stroke onset. Results show that rats treated with S 44819 at the doses of 3 and 10 mg/kg displayed a significant improvement of the neurological deficits (neuroscore) on day 9 and day 16, when compared with animals treated with vehicle. Grip-test data analysis reveals that rats treated with S 44819 at the dose of 3 mg/kg displayed a better recovery on day 9 and day 16. These results are in agreement with those previously observed in adult rats, demonstrating that targeting α5-GABAA receptors improves neurological recovery after stroke in juvenile rats.
Collapse
Affiliation(s)
- Florent Lebrun
- ETAP-Lab, STROK@LLIANCE, 13 Rue du Bois de la Champelle, 54500 Vandoeuvre-les-Nancy, France; Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Caen, France
| | - Nicolas Violle
- ETAP-Lab, STROK@LLIANCE, 13 Rue du Bois de la Champelle, 54500 Vandoeuvre-les-Nancy, France
| | - Annelise Letourneur
- ETAP-Lab, STROK@LLIANCE, 13 Rue du Bois de la Champelle, 54500 Vandoeuvre-les-Nancy, France
| | - Christophe Muller
- ETAP-Lab, STROK@LLIANCE, 13 Rue du Bois de la Champelle, 54500 Vandoeuvre-les-Nancy, France
| | - Nicolas Fischer
- ETAP-Lab, STROK@LLIANCE, 13 Rue du Bois de la Champelle, 54500 Vandoeuvre-les-Nancy, France
| | - Anthony Levilly
- ESRP (European Stroke Research Platform), Centre Universitaire de Ressources Biologiques (CURB), Université Caen Basse Normandie, Caen, France
| | - Cyrille Orset
- Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Caen, France; ESRP (European Stroke Research Platform), Centre Universitaire de Ressources Biologiques (CURB), Université Caen Basse Normandie, Caen, France
| | - Aurore Sors
- Institut de Recherches Internationales Servier, Suresnes, France
| | - Denis Vivien
- Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Caen, France; Department of Clinical Research, CHU Caen-Normandie, Caen, France.
| |
Collapse
|
19
|
McCarthy DJ, Ayodele M, Luther E, Sheinberg D, Bryant JP, Elwardany O, Kimball J, Starke RM. Prolonged Heightened Blood Pressure Following Mechanical Thrombectomy for Acute Stroke is Associated with Worse Outcomes. Neurocrit Care 2021; 32:198-205. [PMID: 31385182 DOI: 10.1007/s12028-019-00803-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Most data evaluating the relationship of post-mechanical thrombectomy (MT) blood pressure (BP) management and outcomes of patients with large vessel occlusion (LVO) focus on early BP control within the first 24 h. We investigated the correlation of daily BP trends up to the third day following MT with patient outcomes. METHODS We retrospectively reviewed our prospectively maintained database for LVO patients treated with MT from February 2015 to December 2017. Recorded BP values for 72 h post-reperfusion were reviewed. Daily peak systolic and diastolic blood pressures (SBP, DBP) were extracted for each day post-procedure. The association and importance between BP increments of 10 mmHg and mortality, hemorrhage, and functional independence (FI = mRS ≤ 2) was analyzed in a multivariable logistic regression and random forest (RF) analyses modeling. RESULTS A total of 212 thrombectomies were included. An increase in peak 24-h SBP was independently associated with higher likelihood of symptomatic hemorrhage (OR 1.2, p = 0.048) and decreased functional independence (OR 0.85, p = 0.03). Higher day 2 and day 3 peak SBP was strongly correlated with decreased functional independence and higher mortality. Third day SBP < 140 was independently associated with higher likelihood of functional independence (OR 4.3, p = 0.0004). Post-MT patients with and without functional independence demonstrated a similar relative decrease in peak SBP between the first 2 days following thrombectomy (p = 0.26); however, those without functional independence experienced a significant rebound increase in peak SBP on the third day following MT (mean change from day 2 to 3: FI - 3.5 mmHg, non-FI + 3.9 mmHg; p = 0.005). CONCLUSION High daily maximum SBP and a rebound SBP on the third day following MT is independently associated with increased likelihood of functional dependence.
Collapse
Affiliation(s)
- David J McCarthy
- Department of Neurosurgery, University of Miami, Miami, USA.
- University of Miami Miller School of Medicine, 1095 N.W. 14th Terrace, 2nd Floor (D4-6), Miami, FL, 33136, USA.
| | | | - Evan Luther
- Department of Neurosurgery, University of Miami, Miami, USA
| | | | | | - Omar Elwardany
- Department of Neurosurgery, University of Miami, Miami, USA
| | - John Kimball
- Department of Neurosurgery, University of Miami, Miami, USA
| | | |
Collapse
|
20
|
Alam JJ, Krakovsky M, Germann U, Levy A. Continuous administration of a p38α inhibitor during the subacute phase after transient ischemia-induced stroke in the rat promotes dose-dependent functional recovery accompanied by increase in brain BDNF protein level. PLoS One 2020; 15:e0233073. [PMID: 33275615 PMCID: PMC7717516 DOI: 10.1371/journal.pone.0233073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 11/20/2020] [Indexed: 12/17/2022] Open
Abstract
There is unmet need for effective stroke therapies. Numerous neuroprotection attempts for acute cerebral ischemia have failed and as a result there is growing interest in developing therapies to promote functional recovery through increasing synaptic plasticity. For this research study, we hypothesized that in addition to its previously reported role in mediating cell death during the acute phase, the alpha isoform of p38 mitogen-activated protein kinase, p38α, may also contribute to interleukin-1β-mediated impairment of functional recovery during the subacute phase after acute ischemic stroke. Accordingly, an oral, brain-penetrant, small molecule p38α inhibitor, neflamapimod, was evaluated as a subacute phase stroke treatment to promote functional recovery. Neflamapimod administration to rats after transient middle cerebral artery occlusion at two dose levels was initiated outside of the previously characterized therapeutic window for neuroprotection of less than 24 hours for p38α inhibitors. Six-week administration of neflamapimod, starting at 48 hours after reperfusion, significantly improved behavioral outcomes assessed by the modified neurological severity score at Week 4 and at Week 6 post stroke in a dose-dependent manner. Neflamapimod demonstrated beneficial effects on additional measures of sensory and motor function. It also resulted in a dose-related increase in brain-derived neurotrophic factor (BDNF) protein levels, a previously reported potential marker of synaptic plasticity that was measured in brain homogenates at sacrifice. Taken together with literature evidence on the role of p38α-dependent suppression by interleukin-1β of BDNF-mediated synaptic plasticity and BDNF production, our findings support a mechanistic model in which inhibition of p38α promotes functional recovery after ischemic stroke by blocking the deleterious effects of interleukin-1β on synaptic plasticity. The dose-related in vivo efficacy of neflamapimod offers the possibility of having a therapy for stroke that could be initiated outside the short time window for neuroprotection and for improving recovery after a completed stroke.
Collapse
Affiliation(s)
- John J. Alam
- EIP Pharma, Inc., Boston, Massachusetts, United States of America
- * E-mail:
| | | | - Ursula Germann
- EIP Pharma, Inc., Boston, Massachusetts, United States of America
| | | |
Collapse
|
21
|
Kwon JI, Heo H, Ham SJ, Chae YJ, Lee DW, Kim ST, Min J, Sung YS, Kim KW, Choi Y, Woo DC, Woo CW. Aryl hydrocarbon receptor antagonism before reperfusion attenuates cerebral ischaemia/reperfusion injury in rats. Sci Rep 2020; 10:14906. [PMID: 32913241 PMCID: PMC7483549 DOI: 10.1038/s41598-020-72023-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
Aryl hydrocarbon receptor (AhR) antagonism can mitigate cellular damage associated with cerebral ischaemia and reperfusion (I/R) injury. This study investigated the neuroprotective effects of AhR antagonist administration before reperfusion in a rat stroke model and influence of the timing of AhR antagonist administration on its neuroprotective effects. Magnetic resonance imaging (MRI) was performed at baseline, immediately after, and 3, 8, and 24 h after ischaemia in the sham, control (I/R injury), TMF10 (trimethoxyflavone [TMF] administered 10 min post-ischaemia), and TMF50 (TMF administered 50 min post-ischaemia) groups. The TMF treatment groups had significantly fewer infarcts than the control group. At 24 h, the relative apparent diffusion coefficient values of the ischaemic core and peri-infarct region were significantly higher and relative T2 values were significantly lower in the TMF10 groups than in the control group. The TMF treatment groups showed significantly fewer terminal deoxynucleotidyl transferase dUTP nick-end labelling positive (+) cells (%) in the peri-infarct region than the control group. This study demonstrated that TMF treatment 10 or 50 min after ischaemia alleviated brain damage. Furthermore, the timing of AhR antagonist administration affected the inhibition of cellular or vasogenic oedema formation caused by a transient ischaemic stroke.
Collapse
Affiliation(s)
- Jae-Im Kwon
- Asan Institute for Life Sciences, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Hwon Heo
- Asan Institute for Life Sciences, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Su Jeong Ham
- Asan Institute for Life Sciences, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Yeon Ji Chae
- Asan Institute for Life Sciences, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Do-Wan Lee
- Asan Institute for Life Sciences, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Sang Tae Kim
- Convergence Medicine Research Center, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Joongkee Min
- Asan Institute for Life Sciences, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Yu Sub Sung
- Clinical Research Center, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Kyung Won Kim
- Department of Radiology, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Yoonseok Choi
- Medical Research Institute, Gangneung Asan Hospital, 38, Bangdong-gil, Sacheon-myeon, Gangneung-si, Gangwon-do, Republic of Korea
| | - Dong Cheol Woo
- Convergence Medicine Research Center, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| | - Chul-Woong Woo
- Convergence Medicine Research Center, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
22
|
Gwak DS, Park HK, Jung C, Kim JH, Lee J, Kim BJ, Han MK, Bae HJ. Infarct growth patterns may vary in acute stroke due to large vessel occlusion and recanalization with endovascular therapy. Eur Radiol 2020; 30:6432-6440. [PMID: 32676782 DOI: 10.1007/s00330-020-07068-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/27/2020] [Accepted: 07/03/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES This study aimed to investigate infarct growth patterns in stroke patients with large vessel occlusion (LVO) and successful recanalization by endovascular therapy (EVT). METHODS A total of 135 patients with LVO of the internal carotid artery or proximal segment of the middle cerebral artery admitted within 12 h after onset, having baseline National Institute of Health Stroke Scale score ≥ 5 points, and successfully recanalized by EVT were enrolled. Infarct growth pattern models were developed based on infarct volumes on diffusion-weighted imaging before and after reperfusion. Single pattern models of linear, logarithmic, and exponential shapes were initially tested. Their appropriateness was predetermined. If none of these patterns was suitable, the best pattern model, which was the most suitable pattern among the three shapes selected for each individual, was tested. Clinical correlates were explored. RESULTS Each single pattern model was tested for their suitability. However, none of the single pattern models successfully represented infarct growth curves: Of all subjects, only 63.7%, 62.2%, and 54.1% of patients were explained by the logarithmic, linear, and exponential model, respectively. Compared with the single pattern models, the best pattern model explained 80.7% of the subjects. The linear shape fit best in 40 patients, the logarithmic in 51, and the exponential in 44. Those fit best for the logarithmic pattern showed more favorable outcomes at discharge (31.4%) than did the others (linear, 10.0%; exponential, 9.1%; p = 0.01). CONCLUSIONS Infarct growth patterns may vary among individual patients with acute stroke due to LVO and successful treatment with EVT. KEY POINTS • Infarct growth during the acute stage of stroke is highly dynamic and the exact shape remains unknown. • Infarct growth pattern models were developed based on infarct volumes on diffusion-weighted imaging before and after reperfusion. • Infarct growth patterns may not be singular, rather various among individual patients with acute stroke due to LVO and successful treatment with EVT.
Collapse
Affiliation(s)
- Dong-Seok Gwak
- Department of Neurology, Kyungpook National University Hospital, Daegu, South Korea
| | - Hong-Kyun Park
- Department of Neurology, Inje University Ilsan Paik Hospital, Inje University College of Medicine, Goyang, South Korea
| | - Cheolkyu Jung
- Department of Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Jae Hyoung Kim
- Department of Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Juneyoung Lee
- Department of Biostatistics, Korea University College of Medicine, Seoul, South Korea
| | - Beom Joon Kim
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82, Gumi-ro 173 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, South Korea
| | - Moon-Ku Han
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82, Gumi-ro 173 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, South Korea
| | - Hee-Joon Bae
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82, Gumi-ro 173 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, South Korea.
| |
Collapse
|
23
|
Morgan CA, Mesquita M, Ashioti M, Beech JS, Williams SCR, Irving E, Cash D. Late changes in blood-brain barrier permeability in a rat tMCAO model of stroke detected by gadolinium-enhanced MRI. Neurol Res 2020; 42:844-852. [PMID: 32600164 DOI: 10.1080/01616412.2020.1786637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVES After cerebral ischaemia the blood-brain barrier (BBB) may be compromised and this has been observed in both clinical and preclinical studies. The timing of BBB disruption after ischaemia has long been considered to be biphasic, however some groups contest this view. Therefore, the purpose of this study was to characterize the BBB permeability timecourse in a rat model at both acute and chronic time points. METHODS Unilateral transient middle cerebral artery occlusion (tMCAO) was performed in 15 male Sprague Dawley rats. Change in T1-weighted MR signal before and after an injection of gadolinium-based contrast agent was calculated voxelwise to derive a BBB permeability index (BBBPI) at both early (6 h, 12 h, and 24 h) and late (7 and 14 days) time points. RESULTS As expected, BBBPI in the non-lesioned ROI was not significantly different from pre-occlusion baseline at any time point. However, BBBPI in the ipsilateral (lesioned) ROI was statistically different to baseline at day 7 (p < 0.001) and day 14 (p < 0.01) post-tMCAO. There was a small, but not-significant increase in BBBPI in the earlier phase (at 6 hours). DISCUSSION Our results indicate a significant late opening of the BBB. This is important as the majority of previous studies have only characterised an early acute BBB permeability in ischemia. However, the later period of increased permeability may indicate an optimal time for drug delivery across the BBB, when it is especially suited to drugs targeting delayed processes.
Collapse
Affiliation(s)
- Catherine A Morgan
- School of Psychology and Centre for Brain Research, The University of Auckland , Auckland, New Zealand.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London , London, UK
| | - Michel Mesquita
- School of Psychology and Centre for Brain Research, The University of Auckland , Auckland, New Zealand
| | - Maria Ashioti
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster , London, UK
| | - John S Beech
- School of Psychology and Centre for Brain Research, The University of Auckland , Auckland, New Zealand
| | - Steve C R Williams
- School of Psychology and Centre for Brain Research, The University of Auckland , Auckland, New Zealand
| | - Elaine Irving
- Value Evidence & Outcomes, GlaxoSmithKline R&D Ltd , Stevenage, UK
| | - Diana Cash
- School of Psychology and Centre for Brain Research, The University of Auckland , Auckland, New Zealand
| |
Collapse
|
24
|
Malik I, Shah FA, Ali T, Tan Z, Alattar A, Ullah N, Khan AU, Alshaman R, Li S. Potent Natural Antioxidant Carveol Attenuates MCAO-Stress Induced Oxidative, Neurodegeneration by Regulating the Nrf-2 Pathway. Front Neurosci 2020; 14:659. [PMID: 32714135 PMCID: PMC7344277 DOI: 10.3389/fnins.2020.00659] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/28/2020] [Indexed: 12/17/2022] Open
Abstract
Ischemic stroke is a severe neurological disorder with a high prevalence rate in developed countries. It is characterized by permanent or transient cerebral ischemia and it activates syndrome of pathological events such as membrane depolarization, glutamate excitotoxicity, and intracellular calcium buildup. Carveol is widely employed as anti-inflammatory and antioxidant in traditional Chinese medicine. In the present study, the neuroprotective effects of post-treated carveol were demonstrated against transient middle cerebral artery occlusion (MCAO) induced focal ischemic cerebral injury. Male Sprague Dawley (SD) rats were subjected to two different experimental protocols to determine the dose and effects of carveol, and to demonstrate the underlying role of the nuclear factor E2-related factor (Nrf2) pathway. Our results showed that MCAO induced marked neuronal injury in the ipsilateral cortex and striatum associated with higher inflammatory cytokines expression, along with apoptotic markers such as caspase-3 and the phosphorylated c-Jun N-terminal kinase (JNK). Furthermore, MCAO induced a marked increase in oxidative stress as evidenced by high lipid peroxidase (LPO) content accompanied by the depressed antioxidant system. Carveol significantly reversed the oxidative stress and downregulated inflammatory cascades by enhancing endogenous antioxidant mechanisms including the Nrf2 gene, which critically regulates the expression of several downstream antioxidants. Further, to determine the possible involvement of Nrf2 in carveol mediated neuroprotection, we antagonized Nrf2 by all-trans retinoic acid (ATRA), and such treatment abrogated the protective effects of carveol accompanied with exaggerated neuronal toxicity as demonstrated by higher infarction area. The target effects of carveol were further supported by molecular docking analysis of drug-protein interactions. Together, our findings suggest that carveol could activate endogenous master anti-oxidant Nrf2, which further regulates the expression of downstream antioxidants, eventually ameliorating MCAO-induced neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Imran Malik
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan.,State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Fawad Ali Shah
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Tahir Ali
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Zhen Tan
- Health Management Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, China
| | - Abdullah Alattar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Najeeb Ullah
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, China.,Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Arif-Ullah Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Reem Alshaman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, China
| |
Collapse
|
25
|
Mohsin Alvi A, Tariq Al Kury L, Umar Ijaz M, Ali Shah F, Tariq Khan M, Sadiq Sheikh A, Nadeem H, Khan AU, Zeb A, Li S. Post-Treatment of Synthetic Polyphenolic 1,3,4 Oxadiazole Compound A3, Attenuated Ischemic Stroke-Induced Neuroinflammation and Neurodegeneration. Biomolecules 2020; 10:biom10060816. [PMID: 32466476 PMCID: PMC7355474 DOI: 10.3390/biom10060816] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 12/17/2022] Open
Abstract
Ischemic stroke is categorized by either permanent or transient blood flow obstruction, impeding the distribution of oxygen and essential nutrients to the brain. In this study, we examined the neuroprotective effects of compound A3, a synthetic polyphenolic drug product, against ischemic brain injury by employing an animal model of permanent middle cerebral artery occlusion (p-MCAO). Ischemic stroke induced significant elevation in the levels of reactive oxygen species and, ultimately, provoked inflammatory cascade. Here, we demonstrated that A3 upregulated the endogenous antioxidant enzymes, such as glutathione s-transferase (GST), glutathione (GSH), and reversed the ischemic-stroke-induced nitric oxide (NO) and lipid peroxidation (LPO) elevation in the peri-infarct cortical and striatal tissue, through the activation of endogenous antioxidant nuclear factor E2-related factor or nuclear factor erythroid 2 (Nrf2). In addition, A3 attenuated neuroinflammatory markers such as ionized calcium-binding adapter molecule-1 (Iba-1), cyclooxygenase-2 (COX-2), tumor necrotic factor-α (TNF-α), toll-like receptors (TLR4), and nuclear factor-κB (NF-κB) by down-regulating p-JNK as evidenced by immunohistochemical results. Moreover, treatment with A3 reduced the infarction area and neurobehavioral deficits. We employed ATRA to antagonize Nrf2, which abrogated the neuroprotective effects of A3 to further assess the possible involvement of the Nrf2 pathway, as demonstrated by increased infarction and hyperexpression of inflammatory markers. Together, our findings suggested that A3 could activate Nrf2, which in turn regulates the downstream antioxidants, eventually mitigating MCAO-induced neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Arooj Mohsin Alvi
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan; (A.M.A.); (M.T.K.); (A.S.S.); (H.N.); (A.-u.K.); (A.Z.)
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Lina Tariq Al Kury
- College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, UAE;
| | - Muhammad Umar Ijaz
- Department of Zoology, Wildlife, and Fisheries, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Fawad Ali Shah
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan; (A.M.A.); (M.T.K.); (A.S.S.); (H.N.); (A.-u.K.); (A.Z.)
- Correspondence: (F.A.S.); (S.L.)
| | - Muhammad Tariq Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan; (A.M.A.); (M.T.K.); (A.S.S.); (H.N.); (A.-u.K.); (A.Z.)
- Department of Pharmacy, Capital University of Science and Technology, Islamabad 44000, Pakistan
| | - Ahmed Sadiq Sheikh
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan; (A.M.A.); (M.T.K.); (A.S.S.); (H.N.); (A.-u.K.); (A.Z.)
| | - Humaira Nadeem
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan; (A.M.A.); (M.T.K.); (A.S.S.); (H.N.); (A.-u.K.); (A.Z.)
| | - Arif-ullah Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan; (A.M.A.); (M.T.K.); (A.S.S.); (H.N.); (A.-u.K.); (A.Z.)
| | - Alam Zeb
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan; (A.M.A.); (M.T.K.); (A.S.S.); (H.N.); (A.-u.K.); (A.Z.)
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
- Correspondence: (F.A.S.); (S.L.)
| |
Collapse
|
26
|
Jin S, Han S, Stoyanova R, Ackerstaff E, Cho H. Pattern recognition analysis of dynamic susceptibility contrast (DSC)‐MRI curves automatically segments tissue areas with intact blood–brain barrier in a rat stroke model: A feasibility and comparison study. J Magn Reson Imaging 2020; 51:1369-1381. [PMID: 31654463 PMCID: PMC8566029 DOI: 10.1002/jmri.26949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/12/2019] [Indexed: 11/21/2023] Open
Abstract
BackgroundThe manual segmentation of intact blood–brain barrier (BBB) regions in the stroke brain is cumbersome, due to the coexistence of infarction, large blood vessels, ventricles, and intact BBB regions, specifically in areas with weak signal enhancement following contrast agent injection.HypothesisThat from dynamic susceptibility contrast (DSC)‐MRI alone, without user intervention, regions of weak BBB damage can be segmented based on the leakage‐related parameter K
2 and the extent of intact BBB regions, needed to estimate K
2 values, determined.Study TypeFeasibility.Animal ModelTen female Sprague–Dawley rats (SD, 200–250g) underwent 1‐hour middle carotid artery occlusion (MCAO) and 1‐day reperfusion. Two SD rats underwent 1‐hour MCAO with 3‐day and 5‐day reperfusion.Field Strength/Sequence7T; ADC and T1 maps using diffusion‐weighted echo planar imaging (EPI) and relaxation enhancement (RARE) with variable repetition time (TR), respectively. dynamic contrast‐enhanced (DCE)‐MRI using FLASH. DSC‐MRI using gradient‐echo EPI.AssessmentConstrained nonnegative matrix factorization (cNMF) was applied to the dynamic ‐curves of DSC‐MRI (<4 min) in a BBB‐disrupted rat model. Areas of voxels with intact BBB, classified by automated cNMF analyses, were then used in estimating K
1 and K
2 values, and compared with corresponding values from manually‐derived areas.Statistical TestsMean ± standard deviation of ΔT1‐differences between ischemic and healthy areas were displayed with unpaired Student's t‐tests. Scatterplots were displayed with slopes and intercepts and Pearson's r values were evaluated between K
2 maps obtained with automatic (cNMF)‐ and manually‐derived regions of interest (ROIs) of the intact BBB region.ResultsMildly BBB‐damaged areas (indistinguishable from DCE‐MRI (10 min) parameters) were automatically segmented. Areas of voxels with intact BBB, classified by automated cNMF, matched closely the corresponding, manually‐derived areas when respective areas were used in estimating K
2 maps (Pearson's r = 0.97, 12 slices).Data ConclusionAutomatic segmentation of short DSC‐MRI data alone successfully identified areas with intact and compromised BBB in the stroke brain and compared favorably with manual segmentation.Level of Evidence: 3Technical Efficacy: Stage 1J. Magn. Reson. Imaging 2020;51:1369–1381.
Collapse
Affiliation(s)
- Seokha Jin
- Department of Biomedical Engineering Ulsan National Institute of Science and Technology Ulsan South Korea
| | - SoHyun Han
- Center of Neuroscience Imaging Research Sungkyunkwan University Suwon South Korea
| | - Radka Stoyanova
- Department of Radiation Oncology Miller School of Medicine, University of Miami Miami Florida USA
| | - Ellen Ackerstaff
- Department of Medical Physics Memorial Sloan Kettering Cancer Center New York New York USA
| | - HyungJoon Cho
- Department of Biomedical Engineering Ulsan National Institute of Science and Technology Ulsan South Korea
| |
Collapse
|
27
|
González-Nieto D, Fernández-Serra R, Pérez-Rigueiro J, Panetsos F, Martinez-Murillo R, Guinea GV. Biomaterials to Neuroprotect the Stroke Brain: A Large Opportunity for Narrow Time Windows. Cells 2020; 9:E1074. [PMID: 32357544 PMCID: PMC7291200 DOI: 10.3390/cells9051074] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke represents one of the most prevalent pathologies in humans and is a leading cause of death and disability. Anti-thrombolytic therapy with tissue plasminogen activator (t-PA) and surgical thrombectomy are the primary treatments to recanalize occluded vessels and normalize the blood flow in ischemic and peri-ischemic regions. A large majority of stroke patients are refractory to treatment or are not eligible due to the narrow time window of therapeutic efficacy. In recent decades, we have significantly increased our knowledge of the molecular and cellular mechanisms that inexorably lead to progressive damage in infarcted and peri-lesional brain areas. As a result, promising neuroprotective targets have been identified and exploited in several stroke models. However, these considerable advances have been unsuccessful in clinical contexts. This lack of clinical translatability and the emerging use of biomaterials in different biomedical disciplines have contributed to developing a new class of biomaterial-based systems for the better control of drug delivery in cerebral disorders. These systems are based on specific polymer formulations structured in nanoparticles and hydrogels that can be administered through different routes and, in general, bring the concentrations of drugs to therapeutic levels for prolonged times. In this review, we first provide the general context of the molecular and cellular mechanisms impaired by cerebral ischemia, highlighting the role of excitotoxicity, inflammation, oxidative stress, and depolarization waves as the main pathways and targets to promote neuroprotection avoiding neuronal dysfunction. In the second part, we discuss the versatile role played by distinct biomaterials and formats to support the sustained administration of particular compounds to neuroprotect the cerebral tissue at risk of damage.
Collapse
Affiliation(s)
- Daniel González-Nieto
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (R.F.-S.); (J.P.-R.); (G.V.G.)
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Rocío Fernández-Serra
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (R.F.-S.); (J.P.-R.); (G.V.G.)
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - José Pérez-Rigueiro
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (R.F.-S.); (J.P.-R.); (G.V.G.)
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Fivos Panetsos
- Neurocomputing and Neurorobotics Research Group: Faculty of Biology and Faculty of Optics, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- Brain Plasticity Group, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | | | - Gustavo V. Guinea
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (R.F.-S.); (J.P.-R.); (G.V.G.)
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|
28
|
Zhang X, Tang X, Ma F, Fan Y, Sun P, Zhu T, Zhang J, Hamblin MH, Chen YE, Yin KJ. Endothelium-targeted overexpression of Krüppel-like factor 11 protects the blood-brain barrier function after ischemic brain injury. Brain Pathol 2020; 30:746-765. [PMID: 32196819 DOI: 10.1111/bpa.12831] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/07/2020] [Accepted: 03/15/2020] [Indexed: 12/22/2022] Open
Abstract
Microvascular endothelial cell (EC) injury and the subsequent blood-brain barrier (BBB) breakdown are frequently seen in many neurological disorders, including stroke. We have previously documented that peroxisome proliferator-activated receptor gamma (PPARγ)-mediated cerebral protection during ischemic insults needs Krüppel-like factor 11 (KLF11) as a critical coactivator. However, the role of endothelial KLF11 in cerebrovascular function and stroke outcome is unclear. This study is aimed at investigating the regulatory role of endothelial KLF11 in BBB preservation and neurovascular protection after ischemic stroke. EC-targeted overexpression of KLF11 significantly mitigated BBB leakage in ischemic brains, evidenced by significantly reduced extravasation of BBB tracers and infiltration of peripheral immune cells, and less brain water content. Endothelial cell-selective KLF11 transgenic (EC-KLF11 Tg) mice also exhibited smaller brain infarct and improved neurological function in response to ischemic insults. Furthermore, EC-targeted transgenic overexpression of KLF11 preserved cerebral tight junction (TJ) levels and attenuated the expression of pro-inflammatory factors in mice after ischemic stroke. Mechanistically, we demonstrated that KLF11 directly binds to the promoter of major endothelial TJ proteins including occludin and ZO-1 to promote their activities. Our data indicate that KLF11 functions at the EC level to preserve BBB structural and functional integrity, and therefore, confers brain protection in ischemic stroke. KLF11 may be a novel therapeutic target for the treatment of ischemic stroke and other neurological conditions involving BBB breakdown and neuroinflammation.
Collapse
Affiliation(s)
- Xuejing Zhang
- Pittsburgh Institute of Brain Disorders & Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213
| | - Xuelian Tang
- Pittsburgh Institute of Brain Disorders & Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213
| | - Feifei Ma
- Pittsburgh Institute of Brain Disorders & Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213
| | - Yanbo Fan
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109
| | - Ping Sun
- Pittsburgh Institute of Brain Disorders & Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213
| | - Tianqing Zhu
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109
| | - Jifeng Zhang
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109
| | - Milton H Hamblin
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue SL83, New Orleans, LA, 70112
| | - Y Eugene Chen
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109
| | - Ke-Jie Yin
- Pittsburgh Institute of Brain Disorders & Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15261
| |
Collapse
|
29
|
Kim GH, Subash M, Yoon JS, Jo D, Han J, Hong JM, Kim SS, Suh-Kim H. Neurogenin-1 Overexpression Increases the Therapeutic Effects of Mesenchymal Stem Cells through Enhanced Engraftment in an Ischemic Rat Brain. Int J Stem Cells 2020; 13:127-141. [PMID: 31887850 PMCID: PMC7119213 DOI: 10.15283/ijsc19111] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/14/2022] Open
Abstract
Background and Objectives Stem cell therapy is a promising strategy for treating neurological diseases but its effectiveness is influenced by the route of administration and the characteristics of the stem cells. We determined whether neural induction of mesenchymal stem cells (MSCs) was beneficial when the cells were delivered intra-arterially through the carotid artery. Methods and Results MSCs were neurally induced using a retroviral vector expressing the neurogenic transcription factor neurogenin-1 (Ngn1). The LacZ gene encoding bacterial β-galactosidase was used as a control. Ischemic stroke was induced by transluminal occlusion of the middle cerebral artery and 3 days later the MSCs were delivered intra-arterially through the internal carotid artery. Magnetic resonance imaging analysis indicated that compared to MSCs expressing LacZ (MSCs/LacZ), MSCs expressing Ngn1 (MSCs/Ngn1) exhibited increased recruitment to the ischemic region and populated this area for a longer duration. Immunohistochemical analysis indicated that compared to MSCs/LacZ, MSCs/Ngn1 more effectively alleviated neurological dysfunction by blocking secondary damage associated with neuronal cell death and brain inflammation. Microarray and real-time PCR analysis indicated that MSCs/Ngn1 exhibited increased expression of chemotactic cytokine receptors, adherence to endothelial cells, and migration ability. Conclusions Neural induction with Ngn1 increases the homing ability of MSCs, enhancing their engraftment efficiency in the ischemic rat brain. Intra-arterial delivery of neurally induced MSCs/Ngn1 3 days after ischemic injury blocks neuronal cell death and inflammation, and improves functional recovery. Thus, intra-arterial administration of stem cells with neural properties may be a novel therapy for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Gyu-Hee Kim
- Department of Anatomy, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Sciences, Ajou Graduate School, Suwon, Korea
| | - Marasini Subash
- Department of Anatomy, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Sciences, Ajou Graduate School, Suwon, Korea
| | - Jeong Seon Yoon
- Department of Anatomy, Ajou University School of Medicine, Suwon, Korea
| | - Darong Jo
- Department of Biomedical Sciences, Ajou Graduate School, Suwon, Korea.,Research Center CelleBrain Ltd., Jeonju, Korea
| | - Jihun Han
- Department of Anatomy, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Sciences, Ajou Graduate School, Suwon, Korea
| | - Ji Man Hong
- Department of Biomedical Sciences, Ajou Graduate School, Suwon, Korea.,Department of Neurology, Ajou University School of Medicine, Suwon, Korea
| | - Sung-Soo Kim
- Department of Anatomy, Ajou University School of Medicine, Suwon, Korea
| | - Haeyoung Suh-Kim
- Department of Anatomy, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Sciences, Ajou Graduate School, Suwon, Korea.,Research Center CelleBrain Ltd., Jeonju, Korea
| |
Collapse
|
30
|
Nagaraja N, Forder JR, Warach S, Merino JG. Reversible diffusion-weighted imaging lesions in acute ischemic stroke: A systematic review. Neurology 2020; 94:571-587. [PMID: 32132175 DOI: 10.1212/wnl.0000000000009173] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/27/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES To systematically review the literature for reversible diffusion-weighted imaging (DWIR) lesions and to describe its prevalence, predictors, and clinical significance. METHODS Studies were included if the first DWI MRI was performed within 24 hours of stroke onset and follow-up DWI or fluid-attenuated inversion recovery (FLAIR)/T2 was performed within 7 or 90 days, respectively, to measure DWIR. We abstracted clinical, imaging, and outcomes data. RESULTS Twenty-three studies met the study criteria. The prevalence of DWIR was 26.5% in DWI-based studies and 6% in FLAIR/T2-based studies. DWIR was associated with recanalization or reperfusion of the ischemic tissue with or without the use of tissue plasminogen activator (t-PA) or endovascular therapy, earlier treatment with t-PA, shorter time to endovascular therapy after MRI, and absent or less severe perfusion deficit within the DWI lesion. DWIR was associated with early neurologic improvement in 5 of 6 studies (defined as improvement in the NIH Stroke Scale (NIHSS) score by 4 or 8 points from baseline or NIHSS score 0 to 2 at 24 hours after treatment or at discharge or median NIHSS score at 7 days) and long-term outcome in 6 of 7 studies (defined as NIHSS score ≤1, improvement in the NIHSS score ≥8 points, or modified Rankin Scale score up to ≤2 at 30 or 90 days) likely due to reperfusion. CONCLUSIONS DWIR is seen in up to a quarter of patients with acute ischemic stroke, and it is associated with good clinical outcome following reperfusion. Our findings highlight the pitfalls of DWI to define ischemic core in the early hours of stroke.
Collapse
Affiliation(s)
- Nandakumar Nagaraja
- From the Department of Neurology (N.N.), University of Florida College of Medicine, Gainesville; Department of Radiology and Biomedical Engineering (J.R.F.), University of Florida, Gainesville; Dell Medical School (S.W.), University of Texas at Austin; and Department of Neurology (J.G.M.), Georgetown University School of Medicine, Washington, DC.
| | - John R Forder
- From the Department of Neurology (N.N.), University of Florida College of Medicine, Gainesville; Department of Radiology and Biomedical Engineering (J.R.F.), University of Florida, Gainesville; Dell Medical School (S.W.), University of Texas at Austin; and Department of Neurology (J.G.M.), Georgetown University School of Medicine, Washington, DC
| | - Steven Warach
- From the Department of Neurology (N.N.), University of Florida College of Medicine, Gainesville; Department of Radiology and Biomedical Engineering (J.R.F.), University of Florida, Gainesville; Dell Medical School (S.W.), University of Texas at Austin; and Department of Neurology (J.G.M.), Georgetown University School of Medicine, Washington, DC
| | - Jośe G Merino
- From the Department of Neurology (N.N.), University of Florida College of Medicine, Gainesville; Department of Radiology and Biomedical Engineering (J.R.F.), University of Florida, Gainesville; Dell Medical School (S.W.), University of Texas at Austin; and Department of Neurology (J.G.M.), Georgetown University School of Medicine, Washington, DC
| |
Collapse
|
31
|
|
32
|
Sah RG, Nobakht S, Rajashekar D, Mouches P, Forkert ND, Sitaram A, Tsang A, Hill MD, Demchuk AM, d'Esterre CD, Barber PA. Temporal evolution and spatial distribution of quantitative T2 MRI following acute ischemia reperfusion injury. Int J Stroke 2019; 15:495-506. [DOI: 10.1177/1747493019895673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Determining mechanisms of secondary stroke injury related to cerebral blood flow and the severity of microvascular injury contributing to edema and blood-brain barrier breakdown will be critical for the development of adjuvant therapies for revascularization treatment. Aim To characterize the heterogeneity of the ischemic lesion using quantitative T2 imaging along with diffusion-weighted magnetic resonance imaging (DWI) within five hours of treatment. Methods Quantitative T2 magnetic resonance imaging was acquired within 5 h (baseline) and at 24 h (follow-up) of stroke treatment in 29 patients. Dynamic contrast enhanced permeability imaging was performed at baseline in a subgroup of patients. Absolute volume change and lesion percent change was determined for the quantitative T2, DWI, and absolute volume change sequences. A Gaussian process with RRELIEFF feature selection algorithm was used for prediction of relative quantitative T2 and DWI lesion growth, baseline and follow-up quantitative T2/DWI lesion ratios, and also NIHSS at 24 h and change in NIHSS from admission to 24 h. Results In n = 27 patients, median (interquartile range) lesion percent change was 114.8% (48.9%, 259.1%) for quantitative T2, 48.2% (−12.6%, 179.6%) for absolute volume change, and 62.7% (26.3%, 230.9%) for DWI, respectively. Our model, consisting of baseline NIHSS, CT ASPECTS, and systolic blood pressure, showed a strong correlation with quantitative T2 percent change (cross correlation R2 = 0.80). There was a strong predictive ability for quantitative T2/DWI lesion ratio at 24 h using baseline NIHSS and last seen normal to 24 h magnetic resonance imaging time (cross correlation R2 = 0.93). Baseline dynamic contrast enhanced permeability was moderately correlated to the baseline quantitative T2 values (rho = 0.38). Conclusion Quantitative T2 imaging provides critical information for development of therapeutic approaches that could ameliorate microvascular damage during ischemia reperfusion.
Collapse
Affiliation(s)
- Rani Gupta Sah
- Calgary Stroke Program, Department of Clinical Neurosciences, University of Calgary, Calgary, Canada
- Seaman Family Centre, Foothills Medical Centre, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences
| | | | - Deepthi Rajashekar
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Radiology, University of Calgary, Calgary, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Canada
| | - Pauline Mouches
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Radiology, University of Calgary, Calgary, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Canada
| | - Nils D Forkert
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences
- Department of Radiology, University of Calgary, Calgary, Canada
| | - Amith Sitaram
- Calgary Stroke Program, Department of Clinical Neurosciences, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences
| | - Adrian Tsang
- Seaman Family Centre, Foothills Medical Centre, Calgary, Canada
| | - Michael D Hill
- Calgary Stroke Program, Department of Clinical Neurosciences, University of Calgary, Calgary, Canada
- Seaman Family Centre, Foothills Medical Centre, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences
| | - Andrew M Demchuk
- Calgary Stroke Program, Department of Clinical Neurosciences, University of Calgary, Calgary, Canada
- Seaman Family Centre, Foothills Medical Centre, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences
| | - Christopher D d'Esterre
- Calgary Stroke Program, Department of Clinical Neurosciences, University of Calgary, Calgary, Canada
- Seaman Family Centre, Foothills Medical Centre, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences
| | - Philip A Barber
- Calgary Stroke Program, Department of Clinical Neurosciences, University of Calgary, Calgary, Canada
- Seaman Family Centre, Foothills Medical Centre, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences
| |
Collapse
|
33
|
Namioka T, Namioka A, Sasaki M, Kataoka-Sasaki Y, Oka S, Nakazaki M, Onodera R, Suzuki J, Sasaki Y, Nagahama H, Kocsis JD, Honmou O. Intravenous infusion of mesenchymal stem cells promotes functional recovery in a rat model of chronic cerebral infarction. J Neurosurg 2019; 131:1289-1296. [PMID: 30485210 DOI: 10.3171/2018.5.jns18140] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/10/2018] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Intravenous infusion of mesenchymal stem cells (MSCs) derived from adult bone marrow improves behavioral function in rat models of cerebral infarction. Although clinical studies are ongoing, most studies have focused on the acute or subacute phase of stroke. In the present study, MSCs derived from bone marrow of rats were intravenously infused 8 weeks after the induction of a middle cerebral artery occlusion (MCAO) to investigate whether delayed systemic injection of MSCs improves functional outcome in the chronic phase of stroke in rats. METHODS Eight weeks after induction of the MCAO, the rats were randomized and intravenously infused with either MSCs or vehicle. Ischemic volume and behavioral performance were examined. Blood-brain barrier (BBB) integrity was assessed by quantifying the leakage of Evans blue into the brain parenchyma after intravenous infusion. Immunohistochemical analysis was also performed to evaluate the stability of the BBB. RESULTS Motor recovery was better in the MSC-treated group than in the vehicle-treated group, with rapid improvement (evident at 1 week post-infusion). In MSC-treated rats, reduced BBB leakage and increased microvasculature/repair and neovascularization were observed. CONCLUSIONS These results indicate that the systemic infusion of MSCs results in functional improvement, which is associated with structural changes in the chronic phase of cerebral infarction, including in the stabilization of the BBB.
Collapse
Affiliation(s)
- Takahiro Namioka
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ai Namioka
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masanori Sasaki
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- 3Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, Connecticut
| | - Yuko Kataoka-Sasaki
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shinichi Oka
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masahito Nakazaki
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Rie Onodera
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Junpei Suzuki
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuichi Sasaki
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Nagahama
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Jeffery D Kocsis
- 2Department of Neurology, Yale University School of Medicine, New Haven; and
- 3Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, Connecticut
| | - Osamu Honmou
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- 3Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
34
|
Namioka A, Namioka T, Sasaki M, Kataoka-Sasaki Y, Oka S, Nakazaki M, Onodera R, Suzuki J, Sasaki Y, Nagahama H, Kocsis JD, Honmou O. Intravenous infusion of mesenchymal stem cells for protection against brainstem infarction in a persistent basilar artery occlusion model in the adult rat. J Neurosurg 2019; 131:1308-1316. [PMID: 30485204 DOI: 10.3171/2018.4.jns173121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/05/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Morbidity and mortality in patients with posterior circulation stroke remains an issue despite advances in acute stroke therapies. The intravenous infusion of mesenchymal stem cells (MSCs) elicits therapeutic efficacy in experimental supratentorial stroke models. However, since there are few reliable animal models of ischemia in the posterior circulation, the therapeutic approach with intravenous MSC infusion has not been tested. The objective of this study was to test the hypothesis that intravenously infused MSCs provide functional recovery in a newly developed model of brainstem infarction in rats. METHODS Basilar artery (BA) occlusion (BAO) was established in rats by selectively ligating 4 points of the proximal BA with 10-0 nylon monofilament suture. The intravenous infusion of MSCs was performed 1 day after BAO induction. MRI and histological examinations were performed to assess ischemic lesion volume, while multiple behavioral tests were performed to evaluate functional recovery. RESULTS The MSC-treated group exhibited a greater reduction in ischemic lesion volume, while behavioral testing indicated that the MSC-infused group had greater improvement than the vehicle group 28 days after the MSC infusion. Accumulated infused MSCs were observed in the ischemic brainstem lesion. CONCLUSIONS Infused MSCs may provide neuroprotection to facilitate functional outcomes and reduce ischemic lesion volume as evaluated in a newly developed rat model of persistent BAO.
Collapse
Affiliation(s)
- Ai Namioka
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takahiro Namioka
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masanori Sasaki
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- 3Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, Connecticut
| | - Yuko Kataoka-Sasaki
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shinichi Oka
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masahito Nakazaki
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Rie Onodera
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Junpei Suzuki
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuichi Sasaki
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Nagahama
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Jeffery D Kocsis
- 2Department of Neurology, Yale University School of Medicine, New Haven; and
- 3Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, Connecticut
| | - Osamu Honmou
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- 3Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
35
|
Gong P, Zhang Z, Zou Y, Tian Q, Han S, Xu Z, Liao J, Gao L, Chen Q, Li M. Tetramethylpyrazine attenuates blood-brain barrier disruption in ischemia/reperfusion injury through the JAK/STAT signaling pathway. Eur J Pharmacol 2019; 854:289-297. [DOI: 10.1016/j.ejphar.2019.04.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 01/22/2023]
|
36
|
Stoll G, Nieswandt B. Thrombo-inflammation in acute ischaemic stroke — implications for treatment. Nat Rev Neurol 2019; 15:473-481. [DOI: 10.1038/s41582-019-0221-1] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2019] [Indexed: 01/17/2023]
|
37
|
Jiang B, Ball RL, Michel P, Li Y, Zhu G, Ding V, Su B, Naqvi Z, Eskandari A, Desai M, Wintermark M. Factors influencing infarct growth including collateral status assessed using computed tomography in acute stroke patients with large artery occlusion. Int J Stroke 2019; 14:603-612. [PMID: 31096871 DOI: 10.1177/1747493019851278] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In major ischemic stroke caused by a large artery occlusion, neuronal loss varies considerably across individuals without revascularization. This study aims to identify which patient characteristics are most highly associated with this variability. Demographic and clinical information were retrospectively collected on a registry of 878 patients. Imaging biomarkers including Alberta Stroke Program Early CT score, noncontrast head computed tomography infarct volume, perfusion computed tomography infarct core and penumbra, occlusion site, collateral score, and recanalization status were evaluated on the baseline and early follow-up computed tomography images. Infarct growth rates were calculated by dividing infarct volumes by the time elapsed between the computed tomography scan and the symptom onset. Collateral score was graded into four levels (0, 1, 2, and 3) in comparison with the normal side. Correlation of perfusion computed tomography and noncontrast head computed tomography infarct volumes and infarct growth rates were estimated with the nonparametric Spearman's rank correlation. Conditional inference trees were used to identify the clinical and imaging biomarkers that were most highly associated with the infarct growth rate and modified Rankin Scale at 90 days. Two hundred and thirty-two patients met the inclusion criteria for this study. The median infarct growth rates for perfusion computed tomography and noncontrast head computed tomography were 11.2 and 6.2 ml/log(min) in logarithmic model, and 18.9 and 10.4 ml/h in linear model, respectively. Noncontrast head computed tomography and perfusion computed tomography infarct volumes and infarct growth rates were significantly correlated (rho=0.53; P < 0.001). Collateral status was the strongest predictor for infarct growth rates. For collateral=0, the perfusion computed tomography and noncontrast head computed tomography infarct growth rate were 31.56 and 16.86 ml/log(min), respectively. Patients who had collateral >0 and penumbra volumes>92 ml had the lowest predicted perfusion computed tomography infarct growth rates (6.61 ml/log(min)). Collateral status was closely related to the diversity of infarct growth rates, poor collaterals were associated with a faster infarct growth rates and vice versa.
Collapse
Affiliation(s)
- Bin Jiang
- 1 Department of Radiology, Neuroradiology Section, Stanford University School of Medicine, Stanford, USA
| | - Robyn L Ball
- 2 Department of Medicine, Quantitative Sciences Unit, Stanford University, Stanford, USA
| | - Patrik Michel
- 3 Department of Neurology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Ying Li
- 1 Department of Radiology, Neuroradiology Section, Stanford University School of Medicine, Stanford, USA
| | - Guangming Zhu
- 1 Department of Radiology, Neuroradiology Section, Stanford University School of Medicine, Stanford, USA
| | - Victoria Ding
- 2 Department of Medicine, Quantitative Sciences Unit, Stanford University, Stanford, USA
| | - Bochao Su
- 1 Department of Radiology, Neuroradiology Section, Stanford University School of Medicine, Stanford, USA
| | - Zack Naqvi
- 1 Department of Radiology, Neuroradiology Section, Stanford University School of Medicine, Stanford, USA
| | - Ashraf Eskandari
- 3 Department of Neurology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Manisha Desai
- 2 Department of Medicine, Quantitative Sciences Unit, Stanford University, Stanford, USA
| | - Max Wintermark
- 1 Department of Radiology, Neuroradiology Section, Stanford University School of Medicine, Stanford, USA
| |
Collapse
|
38
|
Bayliss M, Trotman-Lucas M, Janus J, Kelly ME, Gibson CL. Pre-stroke surgery is not beneficial to normotensive rats undergoing sixty minutes of transient focal cerebral ischemia. PLoS One 2018; 13:e0209370. [PMID: 30592760 PMCID: PMC6310237 DOI: 10.1371/journal.pone.0209370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/04/2018] [Indexed: 11/18/2022] Open
Abstract
Experimental stroke in rodents, via middle cerebral artery occlusion (MCAO), can be associated with a negative impact on wellbeing and mortality. In hypertensive rodents, pre-stroke craniotomy increased survival and decreased body weight loss post-MCAO. Here we determined the effect, in normotensive Sprague-Dawley rats following 60 minutes MCAO, with or without pre-surgical craniotomy, on post-stroke outcomes in terms of weight loss, neurological deficit, lesion volume and functional outcomes. There was no effect of pre-stroke craniotomy on indicators of wellbeing including survival rate (P = 0.32), body weight loss (P = 0.42) and neurological deficit (P = 0.75). We also assessed common outcome measures following experimental stroke and found no effect of pre-stroke craniotomy on lesion volume as measured by T2-weighted MRI (P = 0.846), or functional performance up to 28 days post-MCAO (staircase test, P = 0.32; adhesive sticker test, P = 0.49; cylinder test, P = 0.38). Thus, pre-stroke craniotomy did not improve animal welfare in terms of body weight loss and neurological deficit. However, it is important, given that a number of drug delivery studies utilise the craniotomy procedure, to note that there was no effect on lesion volume or functional outcome following experimental stroke.
Collapse
MESH Headings
- Animals
- Blood Pressure
- Cerebrum/blood supply
- Cerebrum/diagnostic imaging
- Craniotomy
- Disease Models, Animal
- Humans
- Infarction, Middle Cerebral Artery/diagnostic imaging
- Infarction, Middle Cerebral Artery/etiology
- Infarction, Middle Cerebral Artery/mortality
- Infarction, Middle Cerebral Artery/prevention & control
- Ischemic Attack, Transient/diagnostic imaging
- Ischemic Attack, Transient/etiology
- Ischemic Attack, Transient/mortality
- Ischemic Attack, Transient/prevention & control
- Magnetic Resonance Imaging
- Male
- Rats
- Rats, Sprague-Dawley
- Survival Rate
- Treatment Outcome
- Weight Loss
Collapse
Affiliation(s)
- Michaela Bayliss
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, Leicester, United Kingdom
| | - Melissa Trotman-Lucas
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, Leicester, United Kingdom
| | - Justyna Janus
- Preclinical Imaging Facility, Core Biotechnology Services, University of Leicester, Leicester, United Kingdom
| | - Michael E. Kelly
- Preclinical Imaging Facility, Core Biotechnology Services, University of Leicester, Leicester, United Kingdom
| | - Claire L. Gibson
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
39
|
Choi S, Saxena N, Dhammu T, Khan M, Singh AK, Singh I, Won J. Regulation of endothelial barrier integrity by redox-dependent nitric oxide signaling: Implication in traumatic and inflammatory brain injuries. Nitric Oxide 2018; 83:51-64. [PMID: 30590116 DOI: 10.1016/j.niox.2018.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/15/2018] [Accepted: 12/21/2018] [Indexed: 12/28/2022]
Abstract
Nitric oxide (NO) synthesized by eNOS plays a key role in regulation of endothelial barrier integrity but underlying cell signaling pathway is not fully understood at present. Here, we report opposing roles of two different redox-dependent NO metabolites; peroxynitrite (ONOO-) vs. S-nitrosoglutathione (GSNO), in cell signaling pathways for endothelial barrier disruption. In cultured human brain microvessel endothelial cells (hBMVECs), thrombin induced F-actin stress fiber formation causes barrier disruption via activating eNOS. Thrombin induced eNOS activity participated in cell signaling (e.g. RhoA and calcium influx mediated phosphorylation of myosin light chain) for F-actin stress fiber formation by increasing ONOO- levels. On the other hand, thrombin had no effect on intracellular levels of S-nitrosoglutathione (GSNO), another cellular NO metabolite. However, exogenous GSNO treatment attenuated the thrombin-induced cell signaling pathways for endothelial barrier disruption, thus suggesting the role of a shift of NO metabolism (GSNO vs. ONOO-) toward ONOO- synthesis in cell signaling for endothelial barrier disruption. Consistent with these in vitro studies, in animal models of traumatic brain injury and experimental autoimmune encephalomyelitis (EAE), ONOO- scavenger treatment as well as GSNO treatment were effective for attenuation of BBB leakage, edema formation, and CNS infiltration of mononuclear cells. Taken together, these data document that eNOS-mediated NO production and following redox-dependent NO metabolites (ONOO- vs. GSNO) are potential therapeutic target for CNS microvascular disease (traumatic and inflammatory) pathologies.
Collapse
Affiliation(s)
- Seungho Choi
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Nishant Saxena
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Tajinder Dhammu
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA; Pathology and Laboratory Medicine Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA; Research Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA.
| | - Jeseong Won
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
40
|
Bazzigaluppi P, Adams C, Koletar MM, Dorr A, Pikula A, Carlen PL, Stefanovic B. Oophorectomy Reduces Estradiol Levels and Long-Term Spontaneous Neurovascular Recovery in a Female Rat Model of Focal Ischemic Stroke. Front Mol Neurosci 2018; 11:338. [PMID: 30271324 PMCID: PMC6146137 DOI: 10.3389/fnmol.2018.00338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/28/2018] [Indexed: 12/31/2022] Open
Abstract
Although epidemiological evidence suggests significant sex and gender-based differences in stroke risk and recovery, females have been widely under-represented in preclinical stroke research. The neurovascular sequelae of brain ischemia in females, in particular, are largely uncertain. We set out to address this gap by a multimodal in vivo study of neurovascular recovery from endothelin-1 model of cortical focal-stroke in sham vs. ovariectomized female rats. Three weeks post ischemic insult, sham operated females recapitulated the phenotype previously reported in male rats in this model, of normalized resting perfusion but sustained peri-lesional cerebrovascular hyperreactivity. In contrast, ovariectomized (Ovx) females showed reduced peri-lesional resting blood flow, and elevated cerebrovascular responsivity to hypercapnia in the peri-lesional and contra-lateral cortices. Electrophysiological recordings showed an attenuation of theta to low-gamma phase-amplitude coupling in the peri-lesional tissue of Ovx animals, despite relative preservation of neuronal power. Further, this chronic stage neuronal network dysfunction was inversely correlated with serum estradiol concentration. Our pioneering data demonstrate dramatic differences in spontaneous recovery in the neurovascular unit between Ovx and Sham females in the chronic stage of stroke, underscoring the importance of considering hormonal-dependent aspects of the ischemic sequelae in the development of novel therapeutic approaches and patient recruitment in clinical trials.
Collapse
Affiliation(s)
- Paolo Bazzigaluppi
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Conner Adams
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Margaret M Koletar
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Adrienne Dorr
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Aleksandra Pikula
- Adult Vascular Neurology, Toronto Western Hospital, Toronto, ON, Canada
| | - Peter L Carlen
- Fundamental Neurobiology, Krembil Research Institute, Toronto, ON, Canada
| | - Bojana Stefanovic
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
41
|
Wilson CS, Mongin AA. Cell Volume Control in Healthy Brain and Neuropathologies. CURRENT TOPICS IN MEMBRANES 2018; 81:385-455. [PMID: 30243438 DOI: 10.1016/bs.ctm.2018.07.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Regulation of cellular volume is a critical homeostatic process that is intimately linked to ionic and osmotic balance in the brain tissue. Because the brain is encased in the rigid skull and has a very complex cellular architecture, even minute changes in the volume of extracellular and intracellular compartments have a very strong impact on tissue excitability and function. The failure of cell volume control is a major feature of several neuropathologies, such as hyponatremia, stroke, epilepsy, hyperammonemia, and others. There is strong evidence that such dysregulation, especially uncontrolled cell swelling, plays a major role in adverse pathological outcomes. To protect themselves, brain cells utilize a variety of mechanisms to maintain their optimal volume, primarily by releasing or taking in ions and small organic molecules through diverse volume-sensitive ion channels and transporters. In principle, the mechanisms of cell volume regulation are not unique to the brain and share many commonalities with other tissues. However, because ions and some organic osmolytes (e.g., major amino acid neurotransmitters) have a strong impact on neuronal excitability, cell volume regulation in the brain is a surprisingly treacherous process, which may cause more harm than good. This topical review covers the established and emerging information in this rapidly developing area of physiology.
Collapse
Affiliation(s)
- Corinne S Wilson
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - Alexander A Mongin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States; Department of Biophysics and Functional Diagnostics, Siberian State Medical University, Tomsk, Russian Federation
| |
Collapse
|
42
|
Shekhar S, Cunningham MW, Pabbidi MR, Wang S, Booz GW, Fan F. Targeting vascular inflammation in ischemic stroke: Recent developments on novel immunomodulatory approaches. Eur J Pharmacol 2018; 833:531-544. [PMID: 29935175 DOI: 10.1016/j.ejphar.2018.06.028] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/02/2018] [Accepted: 06/19/2018] [Indexed: 10/28/2022]
Abstract
Ischemic stroke is a devastating and debilitating medical condition with limited therapeutic options. However, accumulating evidence indicates a central role of inflammation in all aspects of stroke including its initiation, the progression of injury, and recovery or wound healing. A central target of inflammation is disruption of the blood brain barrier or neurovascular unit. Here we discuss recent developments in identifying potential molecular targets and immunomodulatory approaches to preserve or protect barrier function and limit infarct damage and functional impairment. These include blocking harmful inflammatory signaling in endothelial cells, microglia/macrophages, or Th17/γδ T cells with biologics, third generation epoxyeicosatrienoic acid (EET) analogs with extended half-life, and miRNA antagomirs. Complementary beneficial pathways may be enhanced by miRNA mimetics or hyperbaric oxygenation. These immunomodulatory approaches could be used to greatly expand the therapeutic window for thrombolytic treatment with tissue plasminogen activator (t-PA). Moreover, nanoparticle technology allows for the selective targeting of endothelial cells for delivery of DNA/RNA oligonucleotides and neuroprotective drugs. In addition, although likely detrimental to the progression of ischemic stroke by inducing inflammation, oxidative stress, and neuronal cell death, 20-HETE may also reduce susceptibility of onset of ischemic stroke by maintaining autoregulation of cerebral blood flow. Although the interaction between inflammation and stroke is multifaceted, a better understanding of the mechanisms behind the pro-inflammatory state at all stages will hopefully help in developing novel immunomodulatory approaches to improve mortality and functional outcome of those inflicted with ischemic stroke.
Collapse
Affiliation(s)
- Shashank Shekhar
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS, USA; Institute of Clinical Medicine, University of Turku, Turku, Finland
| | - Mark W Cunningham
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Mallikarjuna R Pabbidi
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Shaoxun Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - George W Booz
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
43
|
Dornbos D, Ding Y. Reperfusion injury in the age of revascularization. Brain Circ 2018; 4:40-42. [PMID: 30276335 PMCID: PMC6057702 DOI: 10.4103/bc.bc_5_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 03/23/2018] [Accepted: 03/27/2018] [Indexed: 11/16/2022] Open
Affiliation(s)
- David Dornbos
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Yuchuan Ding
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
44
|
Complete Restitution of the Ischemic Penumbra after Successful Thrombectomy : A Pilot Study Using Quantitative MRI. Clin Neuroradiol 2018; 29:415-423. [PMID: 29460141 DOI: 10.1007/s00062-018-0675-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 01/25/2018] [Indexed: 12/26/2022]
Abstract
PURPOSE Endovascular thrombectomy is highly effective in patients with proximal large artery occlusion but the relevance of reperfusion injury after recanalization is a matter of debate. The aim of this study was to investigate potential residual metabolic distress and microstructural tissue damage or edema after reperfusion using quantitative oxygen-sensitive T2' and T2-mapping in patients successfully treated by thrombectomy. METHODS Included in this study were 11 patients (mean age 70 ± 11.4 years) with acute ischemic stroke due to internal carotid artery and/or middle cerebral artery occlusion. Quantitative T2 and T2' (1/T2' = 1/T2* - 1/T2) were determined within the ischemic core and hypoperfused but salvaged tissue with delayed time-to-peak (TTP) in patients before and after successful thrombectomy and compared to a control region within the unaffected hemisphere. RESULTS Decreased T2' values within hypoperfused tissue before thrombectomy showed a normalization after recanalization (p < 0.01). In formerly hypoperfused but salvaged tissue, T2 values increased significantly after thrombectomy (p < 0.05) but did not differ from reference values in the control region. In salvaged tissue, increases of quantitative T2' and T2 to follow-up were more pronounced in areas with severe TTP delay. CONCLUSION After successful recanalization, T2' re-increased back to normal in formerly hypoperfused areas as a sign of prompt normalization of oxygen metabolism. Furthermore, quantitative T2 in the formerly hypoperfused tissue did not differ from reference values in unaffected tissue. These results indicate complete restitution of salvaged tissue after reperfusion and support the overall safety of endovascular thrombectomy with respect to microstructural tissue integrity.
Collapse
|
45
|
Abstract
Magnetic Resonance Imaging (MRI) is an important tool to study various animal models of degenerative diseases. This chapter describes routine protocols of T 1-, T 2-, and T 2*-weighted and diffusion-weighted MRI for rodent brain and spinal cord. These protocols can be used to measure atrophy, axonal and myelin injury and changes in white matter connectivity.
Collapse
Affiliation(s)
- Nyoman D Kurniawan
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, QLD, Australia.
| |
Collapse
|
46
|
Chang JY, Park H, Jang SY, Jung S, Bae HJ, Kwon OK, Han MK. Early partial recanalization after intravenous thrombolysis leads to prediction of favorable outcome in cases of acute ischemic stroke with major vessel occlusion. J Clin Neurosci 2017; 46:30-36. [DOI: 10.1016/j.jocn.2017.08.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/15/2017] [Indexed: 11/16/2022]
|
47
|
Woo CW, Kwon JI, Kim KW, Kim JK, Jeon SB, Jung SC, Choi CG, Kim ST, Kim J, Ham SJ, Shim WH, Sung YS, Ha HK, Choi Y, Woo DC. The administration of hydrogen sulphide prior to ischemic reperfusion has neuroprotective effects in an acute stroke model. PLoS One 2017; 12:e0187910. [PMID: 29161281 PMCID: PMC5697867 DOI: 10.1371/journal.pone.0187910] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/28/2017] [Indexed: 11/18/2022] Open
Abstract
Emerging evidence has suggested that hydrogen sulfide (H2S) may alleviate the cellular damage associated with cerebral ischemia/reperfusion (I/R) injury. In this study, we assessed using 1H-magnetic resonance imaging/magnetic resonance spectroscopy (1H-MRI/MRS) and histologic analysis whether H2S administration prior to reperfusion has neuroprotective effects. We also evaluated for differences in the effects of H2S treatment at 2 time points. 1H-MRI/MRS data were obtained at baseline, and at 3, 9, and 24 h after ischemia from 4 groups: sham, control (I/R injury), sodium hydrosulfide (NaHS)-30 and NaHS-1 (NaHS delivery at 30 and 1 min before reperfusion, respectively). The total infarct volume and the midline shift at 24 h post-ischemia were lowest in the NaHS-1, followed by the NaHS-30 and control groups. Peri-infarct volume was significantly lower in the NaHS-1 compared to NaHS-30 and control animals. The relative apparent diffusion coefficient (ADC) in the peri-infarct region showed that the NaHS-1 group had significantly lower values compared to the NaHS-30 and control animals and that NaHS-1 rats showed significantly higher relative T2 values in the peri-infarct region compared to the controls. The relative ADC value, relative T2 value, levels of N-acetyl-L-aspartate (NAA), and the NAA, glutamate, and taurine combination score (NGT) in the ischemic core region at 24 h post-ischemia did not differ significantly between the 2 NaHS groups and the control except that the NAA and NGT values were higher in the peri-infarct region of the NaHS-1 animals at 9 h post-ischemia. In the ischemic core and peri-infarct regions, the apoptosis rate was lowest in the NaHS-1 group, followed by the NaHS-30 and control groups. Our results suggest that H2S treatment has neuroprotective effects on the peri-infarct region during the evolution of I/R injury. Furthermore, our findings indicate that the administration of H2S immediately prior to reperfusion produces the highest neuroprotective effects.
Collapse
Affiliation(s)
- Chul-Woong Woo
- Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, Seoul, Republic of Korea
| | - Jae-Im Kwon
- Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, Seoul, Republic of Korea
| | - Kyung-Won Kim
- Department of Radiology, Asan Medical Center, Songpa-gu, Seoul, Republic of Korea
| | - Jeong-Kon Kim
- Department of Radiology, Asan Medical Center, Songpa-gu, Seoul, Republic of Korea
| | - Sang-Beom Jeon
- Department of Neurology, Asan Medical Center, Songpa-gu, Seoul, Republic of Korea
| | - Seung-Chae Jung
- Department of Radiology, Asan Medical Center, Songpa-gu, Seoul, Republic of Korea
| | - Choong-Gon Choi
- Department of Radiology, Asan Medical Center, Songpa-gu, Seoul, Republic of Korea
| | - Sang-Tae Kim
- Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, Seoul, Republic of Korea
| | - Jinil Kim
- Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, Seoul, Republic of Korea
| | - Su Jeong Ham
- Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, Seoul, Republic of Korea
| | - Woo-Hyun Shim
- Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, Seoul, Republic of Korea
| | - Yu Sub Sung
- Department of Radiology, Asan Medical Center, Songpa-gu, Seoul, Republic of Korea
| | - Hyun Kwon Ha
- Medical Research Institute, Gangneung Asan Hospital Gangneung-si, Gangwon-do, Republic of Korea
| | - Yoonseok Choi
- Medical Research Institute, Gangneung Asan Hospital Gangneung-si, Gangwon-do, Republic of Korea
- * E-mail: (YSC); (DCW)
| | - Dong-Cheol Woo
- Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, Seoul, Republic of Korea
- * E-mail: (YSC); (DCW)
| |
Collapse
|
48
|
Abstract
Magnetic resonance imaging, positron emission tomography, and optical imaging have emerged as key tools to understand brain function and neurological disorders in preclinical mouse models. They offer the unique advantage of monitoring individual structural and functional changes over time. What remained unsolved until recently was to generate whole-brain microscopy data which can be correlated to the 3D in vivo neuroimaging data. Conventional histological sections are inappropriate especially for neuronal tracing or the unbiased screening for molecular targets through the whole brain. As part of the European Society for Molecular Imaging (ESMI) meeting 2016 in Utrecht, the Netherlands, we addressed this issue in the Molecular Neuroimaging study group meeting. Presentations covered new brain clearing methods, light sheet microscopes for large samples, and automatic registration of microscopy to in vivo imaging data. In this article, we summarize the discussion; give an overview of the novel techniques; and discuss the practical needs, benefits, and limitations.
Collapse
|
49
|
Husson B, Durand C, Hertz-Pannier L. [Recommendations for imaging neonatal ischemic stroke]. Arch Pediatr 2017; 24:9S19-9S27. [PMID: 28867033 DOI: 10.1016/s0929-693x(17)30327-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Neuroimaging is critical for the diagnosis of neonatal arterial ischemic stroke (NAIS) and for prognosis estimation. The purpose of this work is to define guidelines of clinical neuroimaging for the diagnosis of NAIS, for the optimization of the imaging timing and for the assessment of the prognostic value of each imaging technique. A systematic search of electronic databases (Medline via Pubmed) for studies whose title and abstract were focused on NAIS has been conducted. One hundred and ten articles were selected and their results were analyzed by three Senior Practitioners of pediatric radiology using common methodology for guidelines elaboration within the group of experts gathered by Scientific Societies in the field. MRI with a diffu si on-weighted sequence (DWI) and T1, T2, and T2*-weighted sequences must be performed in the case of suspected NAIS (no sedation is required). In the first hours after the injury, an acute ischemic lesion is characterized by a hypersignal on the diffusion-weighted sequence, with a decrease of the apparent coefficient of diffusion (ADC). The best time to evaluate the extent of the ischemic lesion is between day 2 and day 4 after injury, when the ADC decrease reaches its nadir. In the acute phase, US may be useful as first imaging at the bedside to exclude other pathologies like large space-occupying hemorrhages, but its specific added value on NAIS diagnosis or prognosis assessment is very low. CT scan has no added value in NAIS, compared to MRI. Motor outcome is correlated with the extent of the lesion and with the presence of a definite injury of the corticospinal tract, which is well seen on the diffusion sequence at the acute stage. A secondary atrophy within the mesencephalon (cerebral peduncles) is tied in with a high risk of hemiplegia. Visual outcome is more often compromised in the case of lesions of the posterior cerebral artery territory.
Collapse
Affiliation(s)
- B Husson
- AP-HP, centre national de référence de l'AVC de l'enfant et service de radiologie pédiatrique, Hôpital Le Kremlin-Bicêtre, 78, rue du Général-Leclerc, Le Kremlin-Bicêtre, 94270 France.
| | - C Durand
- CHU de Grenoble, clinique d'imagerie pédiatrique, hôpital Couple-Enfant, quai Yermoloff, Grenoble, 38043 France
| | - L Hertz-Pannier
- UMR129, INSERM/Université Paris-Descartes, UNIACTZ/Neurospin, CEA-Saclay Bat 145, Gif-sur-Yvette, 9191 France
| |
Collapse
|
50
|
Kamran S, Akhtar N, Alboudi A, Kamran K, Ahmad A, Inshasi J, Salam A, Shuaib A, Qidwai U. Prediction of infarction volume and infarction growth rate in acute ischemic stroke. Sci Rep 2017; 7:7565. [PMID: 28790400 PMCID: PMC5548812 DOI: 10.1038/s41598-017-08044-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/28/2017] [Indexed: 12/01/2022] Open
Abstract
The prediction of infarction volume after stroke onset depends on the shape of the growth dynamics of the infarction. To understand growth patterns that predict lesion volume changes, we studied currently available models described in literature and compared the models with Adaptive Neuro-Fuzzy Inference System [ANFIS], a method previously unused in the prediction of infarction growth and infarction volume (IV). We included 67 patients with malignant middle cerebral artery [MMCA] stroke who underwent decompressive hemicraniectomy. All patients had at least three cranial CT scans prior to the surgery. The rate of growth and volume of infarction measured on the third CT was predicted with ANFIS without statistically significant difference compared to the ground truth [P = 0.489]. This was not possible with linear, logarithmic or exponential methods. ANFIS was able to predict infarction volume [IV3] over a wide range of volume [163.7–600 cm3] and time [22–110 hours]. The cross correlation [CRR] indicated similarity between the ANFIS-predicted IV3 and original data of 82% for ANFIS, followed by logarithmic 70%, exponential 63% and linear 48% respectively. Our study shows that ANFIS is superior to previously defined methods in the prediction of infarction growth rate (IGR) with reasonable accuracy, over wide time and volume range.
Collapse
Affiliation(s)
- Saadat Kamran
- The Neuroscience Institute (Stroke Center of Excellence), Hamad General Hospital, Medical Corporation, Doha, Qatar. .,Weill Cornell School of Medicine, Doha, Qatar.
| | - Naveed Akhtar
- The Neuroscience Institute (Stroke Center of Excellence), Hamad General Hospital, Medical Corporation, Doha, Qatar.,Weill Cornell School of Medicine, Doha, Qatar
| | | | - Kainat Kamran
- School of Liberal Arts, University of Illinois, Chicago, USA
| | | | | | - Abdul Salam
- The Neuroscience Institute (Stroke Center of Excellence), Hamad General Hospital, Medical Corporation, Doha, Qatar
| | - Ashfaq Shuaib
- The Neuroscience Institute (Stroke Center of Excellence), Hamad General Hospital, Medical Corporation, Doha, Qatar.,Stroke Program, Department of Neurology, University of Alberta, Edmonton, Alberta, Canada
| | - Uvais Qidwai
- KINDI Center for Computing Research, Qatar University, Doha, Qatar
| |
Collapse
|