1
|
Lückgen J, Diederichs S, Raqué E, Renkawitz T, Richter W, Buchert J. Mechanoinduction of PTHrP/cAMP-signaling governs proteoglycan production in mesenchymal stromal cell-derived neocartilage. J Cell Physiol 2024:e31430. [PMID: 39238313 DOI: 10.1002/jcp.31430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Abnormal mechanical loading is one of the major risk factors for articular cartilage degeneration. Engineered mesenchymal stromal cell (MSC)-derived cartilage holds great promise for cell-based cartilage repair. However, physiological loading protocols were shown to reduce matrix synthesis of MSC-derived neocartilage in vitro and the regulators of this undesired mechanoresponse remain poorly understood. Parathyroid hormone-related protein (PTHrP) is involved in cartilage development and can affect extracellular matrix (ECM) production during MSC chondrogenesis opposingly, depending on a continuous or transient exposure. PTHrP is induced by various mechanical cues in multiple tissues and species; but whether PTHrP is regulated in response to loading of human engineered neocartilage and may affect matrix synthesis in a positive or negative manner is unknown. The aim of this study was to investigate whether dynamic loading adjusts PTHrP-signaling in human MSC-derived neocartilage and whether it regulates matrix synthesis and other factors involved in the MSC mechanoresponse. Interestingly, MSC-derived chondrocytes significantly upregulated PTHrP mRNA (PTHLH) expression along with its second messenger cAMP in response to loading in our custom-built bioreactor. Exogenous PTHrP(1-34) induced the expression of known mechanoresponse genes (FOS, FOSB, BMP6) and significantly decreased glycosaminoglycan (GAG) and collagen synthesis similar to loading. The adenylate-cyclase inhibitor MDL-12,330A rescued the load-mediated decrease in GAG synthesis, indicating a direct involvement of cAMP-signaling in the reduction of ECM production. According to COL2A1-corrected hypertrophy-associated marker expression, load and PTHrP treatment shared the ability to reduce expression of MEF2C and PTH1R. In conclusion, the data demonstrate a significant mechanoinduction of PTHLH and a negative contribution of the PTHrP-cAMP signaling axis to GAG synthesis in MSC-derived chondrocytes after loading. To improve ECM synthesis and the mechanocompetence of load-exposed neocartilage, inhibition of PTHrP activity should be considered for MSC-based cartilage regeneration strategies.
Collapse
Affiliation(s)
- Janine Lückgen
- Department of Orthopaedics, Experimental Orthopaedics, Research Centre for Molecular and Regenerative Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Solvig Diederichs
- Department of Orthopaedics, Experimental Orthopaedics, Research Centre for Molecular and Regenerative Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Elisabeth Raqué
- Department of Orthopaedics, Experimental Orthopaedics, Research Centre for Molecular and Regenerative Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Tobias Renkawitz
- Department of Orthopaedics, Research Centre for Molecular and Regenerative Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Wiltrud Richter
- Department of Orthopaedics, Experimental Orthopaedics, Research Centre for Molecular and Regenerative Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Justyna Buchert
- Department of Orthopaedics, Experimental Orthopaedics, Research Centre for Molecular and Regenerative Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
2
|
Zhao Y, Lu SM, Zhong B, Wang GC, Jia RP, Wang Q, Long JH. Parathyroid hormone related-protein (PTHrP) in tissues with poor prognosis in prostate cancer patients. Medicine (Baltimore) 2024; 103:e37934. [PMID: 38669432 PMCID: PMC11049731 DOI: 10.1097/md.0000000000037934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Parathyroid hormone-related peptide (PTHrP) is known to have a pivotal role in the progression of various solid tumors, among which prostate cancer stands out. However, the extent of PTHrP expression and its clinical implications in prostate cancer patients remain shrouded in obscurity. The primary objective of this research endeavor was to shed light on the relevance of PTHrP in the context of prostate cancer patients and to uncover the potential underlying mechanisms. METHODS The expression of PTHrP, E-cadherin, and vimentin in tumor tissues of 88 prostate cancer patients was evaluated by immunohistochemical technique. Subsequently, the associations between PTHrP and clinicopathological parameters and prognosis of patients with prostate cancer were analyzed. RESULTS Immunohistochemical analysis showed that the expression rates of PTHrP, E-cadherin, and vimentin in prostate cancer tissues were 95.5%, 88.6%, and 84.1%, respectively. Patients with a high level of PTHrP had a decreased expression of E-cadherin (P = .013) and an increased expression of vimentin (P = .010) compared with patients with a low level of PTHrP. Besides, the high expression of PTHrP was significantly correlated with a higher level of initial prostate-specific antigen (P = .026), positive lymph node metastasis (P = .010), osseous metastasis (P = .004), and Gleason score (P = .026). Moreover, patients with a high level of PTHrP had shorter progression-free survival (P = .002) than patients with a low level of PTHrP. CONCLUSION The present study indicates that PTHrP is associated with risk factors of poor outcomes in prostate cancer, while epithelial-mesenchymal transition may be involved in this process.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Urology, Xuzhou Cancer Hospital, Affiliated Hospital of Jiangsu University, Xuzhou, Jiangsu, China
- Department of Urology, Xuzhou New Health Geriatric Disease Hospital, Xuzhou, Jiangsu, China
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Sheng-Ming Lu
- Department of Urology, Subei People’s Hospital, Yangzhou, Jiangsu, China
| | - Bing Zhong
- Department of Urology, The First People’s Hospital of Huaian, Affiliated with Nanjing Medical University, Huaian, Jiangsu, China
| | - Gong-Cheng Wang
- Department of Urology, The First People’s Hospital of Huaian, Affiliated with Nanjing Medical University, Huaian, Jiangsu, China
| | - Rui-Peng Jia
- Department of Urology, Nanjing First Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qian Wang
- Department of Urology, Xuzhou Cancer Hospital, Affiliated Hospital of Jiangsu University, Xuzhou, Jiangsu, China
| | - Jian-Hua Long
- Department of Urology, The Second Affiliated Hospital of the University of South China, Hengyang, Hunan, China
| |
Collapse
|
3
|
Edwards CM, Kane JF, Smith JA, Grant DM, Johnson JA, Diaz MAH, Vecchi LA, Bracey KM, Omokehinde TN, Fontana JR, Karno BA, Scott HT, Vogel CJ, Lowery JW, Martin TJ, Johnson RW. PTHrP intracrine actions divergently influence breast cancer growth through p27 and LIFR. Breast Cancer Res 2024; 26:34. [PMID: 38409028 PMCID: PMC10897994 DOI: 10.1186/s13058-024-01791-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/19/2024] [Indexed: 02/28/2024] Open
Abstract
The role of parathyroid hormone (PTH)-related protein (PTHrP) in breast cancer remains controversial, with reports of PTHrP inhibiting or promoting primary tumor growth in preclinical studies. Here, we provide insight into these conflicting findings by assessing the role of specific biological domains of PTHrP in tumor progression through stable expression of PTHrP (-36-139aa) or truncated forms with deletion of the nuclear localization sequence (NLS) alone or in combination with the C-terminus. Although the full-length PTHrP molecule (-36-139aa) did not alter tumorigenesis, PTHrP lacking the NLS alone accelerated primary tumor growth by downregulating p27, while PTHrP lacking the NLS and C-terminus repressed tumor growth through p27 induction driven by the tumor suppressor leukemia inhibitory factor receptor (LIFR). Induction of p27 by PTHrP lacking the NLS and C-terminus persisted in bone disseminated cells, but did not prevent metastatic outgrowth, in contrast to the primary tumor site. These data suggest that the PTHrP NLS functions as a tumor suppressor, while the PTHrP C-terminus may act as an oncogenic switch to promote tumor progression through differential regulation of p27 signaling.
Collapse
Affiliation(s)
- Courtney M Edwards
- Graduate Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeremy F Kane
- Graduate Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jailyn A Smith
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Déja M Grant
- Graduate Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Meharry Medical College, Nashville, TN, USA
| | - Jasmine A Johnson
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Maria A Hernandez Diaz
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lawrence A Vecchi
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kai M Bracey
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Tolu N Omokehinde
- Graduate Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joseph R Fontana
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt University, Nashville, TN, 37232, USA
| | - Breelyn A Karno
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt University, Nashville, TN, 37232, USA
| | - Halee T Scott
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt University, Nashville, TN, 37232, USA
| | - Carolina J Vogel
- Marian University College of Osteopathic Medicine, Indianapolis, IN, USA
- Bone and Muscle Research Group, Marian University, Indianapolis, IN, USA
| | - Jonathan W Lowery
- Marian University College of Osteopathic Medicine, Indianapolis, IN, USA
- Bone and Muscle Research Group, Marian University, Indianapolis, IN, USA
- Academic Affairs, Marian University, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - T John Martin
- Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
- Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Fitzroy, VIC, Australia
| | - Rachelle W Johnson
- Graduate Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
4
|
Beddows I, Fan H, Heinze K, Johnson BK, Leonova A, Senz J, Djirackor S, Cho KR, Pearce CL, Huntsman DG, Anglesio MS, Shen H. Cell State of Origin Impacts Development of Distinct Endometriosis-Related Ovarian Carcinoma Histotypes. Cancer Res 2024; 84:26-38. [PMID: 37874327 PMCID: PMC10758692 DOI: 10.1158/0008-5472.can-23-1362] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/01/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Clear cell ovarian carcinoma (CCOC) and endometrioid ovarian carcinoma (ENOC) are ovarian carcinoma histotypes, which are both thought to arise from ectopic endometrial (or endometrial-like) cells through an endometriosis intermediate. How the same cell type of origin gives rise to two morphologically and biologically different histotypes has been perplexing, particularly given that recurrent genetic mutations are common to both and present in nonmalignant precursors. We used RNA transcription analysis to show that the expression profiles of CCOC and ENOC resemble those of normal endometrium at secretory and proliferative phases of the menstrual cycle, respectively. DNA methylation at the promoter of the estrogen receptor (ER) gene (ESR1) was enriched in CCOC, which could potentially lock the cells in the secretory state. Compared with normal secretory-type endometrium, CCOC was further defined by increased expression of cysteine and glutathione synthesis pathway genes and downregulation of the iron antiporter, suggesting iron addiction and highlighting ferroptosis as a potential therapeutic target. Overall, these findings suggest that while CCOC and ENOC arise from the same cell type, these histotypes likely originate from different cell states. This "cell state of origin" model may help to explain the presence of histologic and molecular cancer subtypes arising in other organs. SIGNIFICANCE Two cancer histotypes diverge from a common cell of origin epigenetically locked in different cell states, highlighting the importance of considering cell state to better understand the cell of origin of cancer.
Collapse
Affiliation(s)
- Ian Beddows
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan
| | - Huihui Fan
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan
| | - Karolin Heinze
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Anna Leonova
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Janine Senz
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Kathleen R. Cho
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Celeste Leigh Pearce
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - David G. Huntsman
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology & Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael S. Anglesio
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hui Shen
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan
| |
Collapse
|
5
|
Sun F, Cheng Y, Chen JR, Wanchai V, Mery DE, Xu H, Gai D, Al Hadidi S, Schinke C, Thanendrarajan S, Zangari M, van Rhee F, Tricot G, Shaughnessy JD, Zhan F. BCMA- and CST6-specific CAR T cells lyse multiple myeloma cells and suppress murine osteolytic lesions. J Clin Invest 2024; 134:e171396. [PMID: 37883186 PMCID: PMC10760955 DOI: 10.1172/jci171396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/23/2023] [Indexed: 10/27/2023] Open
Abstract
We have previously demonstrated that cystatin E/M (CST6), which is elevated in a subset of patients with multiple myeloma (MM) lacking osteolytic lesions (OLs), suppresses MM bone disease by blocking osteoclast differentiation and function. CST6 is a secreted type 2 cystatin, a cysteine protease inhibitor that regulates lysosomal cysteine proteases and the asparaginyl endopeptidase legumain. Here, we developed B cell maturation antigen (BCMA) CST6 chimeric antigen receptor T cells (CAR-T cells), which lysed MM cells and released CST6 proteins. Our in vitro studies show that these CAR-T cells suppressed the differentiation and formation of tartrate-resistant acid phosphatase-positive (TRAP+) osteoclasts. Using xenografted MM mice, bioluminescence images showed that both BCMA-CAR-T and BCMA-CST6-CAR-T cells inhibited MM growth to a similar extent. Reconstructed micro-computed tomography images revealed that BCMA-CST6-CAR-T cells, but not BCMA-CAR-T cells, prevented MM-induced bone damage and decreased osteoclast numbers. Our results provide a CAR-T strategy that targets tumor cells directly and delivers an inhibitor of bone resorption.
Collapse
Affiliation(s)
- Fumou Sun
- Myeloma Center, Winthrop P. Rockefeller Institute, Department of Internal Medicine and
| | - Yan Cheng
- Myeloma Center, Winthrop P. Rockefeller Institute, Department of Internal Medicine and
| | - Jin-Ran Chen
- Arkansas Children’s Nutrition Center, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, USA
| | - Visanu Wanchai
- Myeloma Center, Winthrop P. Rockefeller Institute, Department of Internal Medicine and
| | - David E. Mery
- Myeloma Center, Winthrop P. Rockefeller Institute, Department of Internal Medicine and
| | - Hongwei Xu
- Myeloma Center, Winthrop P. Rockefeller Institute, Department of Internal Medicine and
| | - Dongzheng Gai
- Myeloma Center, Winthrop P. Rockefeller Institute, Department of Internal Medicine and
| | - Samer Al Hadidi
- Myeloma Center, Winthrop P. Rockefeller Institute, Department of Internal Medicine and
| | - Carolina Schinke
- Myeloma Center, Winthrop P. Rockefeller Institute, Department of Internal Medicine and
| | | | - Maurizio Zangari
- Myeloma Center, Winthrop P. Rockefeller Institute, Department of Internal Medicine and
| | - Frits van Rhee
- Myeloma Center, Winthrop P. Rockefeller Institute, Department of Internal Medicine and
| | - Guido Tricot
- Myeloma Center, Winthrop P. Rockefeller Institute, Department of Internal Medicine and
| | - John D. Shaughnessy
- Myeloma Center, Winthrop P. Rockefeller Institute, Department of Internal Medicine and
| | - Fenghuang Zhan
- Myeloma Center, Winthrop P. Rockefeller Institute, Department of Internal Medicine and
| |
Collapse
|
6
|
Guo Z, Huang T, Liu Y, Liu C. Parathyroid Hormone-Related Protein Promotes the Proliferation of Patient-Derived Glioblastoma Stem Cells via Activating cAMP/PKA Signaling Pathway. Int J Stem Cells 2023; 16:315-325. [PMID: 37385633 PMCID: PMC10465338 DOI: 10.15283/ijsc22097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/14/2022] [Accepted: 11/01/2022] [Indexed: 07/01/2023] Open
Abstract
Background and Objectives Glioblastoma (GBM) is an aggressive primary brain tumor characterized by its heterogeneity and high recurrence and lethality rates. Glioblastoma stem cells (GSCs) play a crucial role in therapy resistance and tumor recurrence. Therefore, targeting GSCs is a key objective in developing effective treatments for GBM. The role of Parathyroid hormone-related peptide (PTHrP) in GBM and its impact on GSCs remains unclear. This study aimed to investigate the effect of PTHrP on GSCs and its potential as a therapeutic target for GBM. Methods and Results Using the Cancer Genome Atlas (TCGA) database, we found higher expression of PTHrP in GBM, which correlated inversely with survival. GSCs were established from three human GBM samples obtained after surgical resection. Exposure to recombinant human PTHrP protein (rPTHrP) at different concentrations significantly enhanced GSCs viability. Knockdown of PTHrP using target-specific siRNA (siPTHrP) inhibited tumorsphere formation and reduced the number of BrdU-positive cells. In an orthotopic xenograft mouse model, suppression of PTHrP expression led to significant inhibition of tumor growth. The addition of rPTHrP in the growth medium counteracted the antiproliferative effect of siPTHrP. Further investigation revealed that PTHrP increased cAMP concentration and activated the PKA signaling pathway. Treatment with forskolin, an adenylyl cyclase activator, nullified the antiproliferative effect of siPTHrP. Conclusions Our findings demonstrate that PTHrP promotes the proliferation of patient-derived GSCs by activating the cAMP/PKA signaling pathway. These results uncover a novel role for PTHrP and suggest its potential as a therapeutic target for GBM treatment.
Collapse
Affiliation(s)
- Zhenyu Guo
- Department of Neurosurgery, The 2nd Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Tingqin Huang
- Department of Neurosurgery, The 2nd Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yingfei Liu
- Institute of Neurobiology, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Chongxiao Liu
- Department of Neurosurgery, The 2nd Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
7
|
Zhang R, Li J, Badescu D, Karaplis AC, Ragoussis J, Kremer R. PTHrP Regulates Fatty Acid Metabolism via Novel lncRNA in Breast Cancer Initiation and Progression Models. Cancers (Basel) 2023; 15:3763. [PMID: 37568579 PMCID: PMC10417726 DOI: 10.3390/cancers15153763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
Parathyroid hormone-related peptide (PTHrP) is the primary cause of malignancy-associated hypercalcemia (MAH). We previously showed that PTHrP ablation, in the MMTV-PyMT murine model of breast cancer (BC) progression, can dramatically prolong tumor latency, slow tumor growth, and prevent metastatic spread. However, the signaling mechanisms using lineage tracing have not yet been carefully analyzed. Here, we generated Pthrpflox/flox; Cre+ mT/mG mice (KO) and Pthrpwt/wt; Cre+ mT/mG tumor mice (WT) to examine the signaling pathways under the control of PTHrP from the early to late stages of tumorigenesis. GFP+ mammary epithelial cells were further enriched for subsequent RNA sequencing (RNAseq) analyses. We observed significant upregulation of cell cycle signaling and fatty acid metabolism in PTHrP WT tumors, which are linked to tumor initiation and progression. Next, we observed that the expression levels of a novel lncRNA, GM50337, along with stearoyl-Coenzyme A desaturase 1 (Scd1) are significantly upregulated in PTHrP WT but not in KO tumors. We further validated a potential human orthologue lncRNA, OLMALINC, together with SCD1 that can be regulated via PTHrP in human BC cell lines. In conclusion, these novel findings could be used to develop targeted strategies for the treatment of BC and its metastatic complications.
Collapse
Affiliation(s)
- Rui Zhang
- Research Institute, McGill University Health Center, Montreal, QC H4A 3J1, Canada
| | - Jiarong Li
- Research Institute, McGill University Health Center, Montreal, QC H4A 3J1, Canada
| | - Dunarel Badescu
- Department of Human Genetics, McGill University Genome Centre, McGill University, Montreal, QC H3A 0G1, Canada (J.R.)
| | - Andrew C. Karaplis
- Lady Davis Institute for Medical Research, Montreal, QC H3T 1E2, Canada;
| | - Jiannis Ragoussis
- Department of Human Genetics, McGill University Genome Centre, McGill University, Montreal, QC H3A 0G1, Canada (J.R.)
| | - Richard Kremer
- Research Institute, McGill University Health Center, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
8
|
McKinney LP, Singh R, Jordan IK, Varambally S, Dammer EB, Lillard JW. Transcriptome Analysis Identifies Tumor Immune Microenvironment Signaling Networks Supporting Metastatic Castration-Resistant Prostate Cancer. ONCO 2023; 3:81-95. [PMID: 38435029 PMCID: PMC10906979 DOI: 10.3390/onco3020007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Prostate cancer (PCa) is the second most common cause of cancer death in American men. Metastatic castration-resistant prostate cancer (mCRPC) is the most lethal form of PCa and preferentially metastasizes to the bones through incompletely understood molecular mechanisms. Herein, we processed RNA sequencing data from patients with mCRPC (n = 60) and identified 14 gene clusters (modules) highly correlated with mCRPC bone metastasis. We used a novel combination of weighted gene co-expression network analysis (WGCNA) and upstream regulator and gene ontology analyses of clinically annotated transcriptomes to identify the genes. The cyan module (M14) had the strongest positive correlation (0.81, p = 4 × 10-15) with mCRPC bone metastasis. It was associated with two significant biological pathways through KEGG enrichment analysis (parathyroid hormone synthesis, secretion, and action and protein digestion and absorption). In particular, we identified 10 hub genes (ALPL, PHEX, RUNX2, ENPP1, PHOSPHO1, PTH1R, COL11A1, COL24A1, COL22A1, and COL13A1) using cytoHubba of Cytoscape. We also found high gene expression for collagen formation, degradation, absorption, cell-signaling peptides, and bone regulation processes through Gene Ontology (GO) enrichment analysis.
Collapse
Affiliation(s)
- Lawrence P. McKinney
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - I. King Jordan
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Sooryanarayana Varambally
- Division of Molecular and Cellular Pathology, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Eric B. Dammer
- Department of Biochemistry Emory, University School of Medicine, Atlanta, GA 30329, USA
| | - James W. Lillard
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| |
Collapse
|
9
|
Kane JF, Johnson RW. Re-Evaluating the Role of PTHrP in Breast Cancer. Cancers (Basel) 2023; 15:2670. [PMID: 37345007 PMCID: PMC10216606 DOI: 10.3390/cancers15102670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 06/23/2023] Open
Abstract
Parathyroid-hormone-related protein (PTHrP) is a protein with a long history of association with bone metastatic cancers. The paracrine signaling of PTHrP through the parathyroid hormone receptor (PTHR1) facilitates tumor-induced bone destruction, and PTHrP is known as the primary driver of humoral hypercalcemia of malignancy. In addition to paracrine signaling, PTHrP is capable of intracrine signaling independent of PTHR1 binding, which is essential for cytokine-like functions in normal physiological conditions in a variety of tissue types. Pre-clinical and clinical studies evaluating the role of PTHrP in breast cancer have yielded contradictory conclusions, in some cases indicating the protein is tumor suppressive, and in other studies, pro-growth. This review discusses the possible molecular basis for the disharmonious prognostic indications of these studies and highlights the implications of the paracrine, intracrine, and nuclear functions of the protein. This review also examines the current understanding of the functional domains of PTHrP and re-evaluates their role in the unique context of the breast cancer environment. This review will expand on the current understanding of PTHrP by attempting to reconcile the functional domains of the protein with its intracrine signaling in cancer.
Collapse
Affiliation(s)
- Jeremy F. Kane
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachelle W. Johnson
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
10
|
Lee EJ, Lee KJ, Jung S, Park KH, Park SI. Mobilization of monocytic myeloid-derived suppressor cells is regulated by PTH1R activation in bone marrow stromal cells. Bone Res 2023; 11:22. [PMID: 37085481 PMCID: PMC10121701 DOI: 10.1038/s41413-023-00255-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/23/2023] [Accepted: 03/01/2023] [Indexed: 04/23/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are bone marrow (BM)-derived immunosuppressive cells in the tumor microenvironment, but the mechanism of MDSC mobilization from the BM remains unclear. We investigated how BM stromal cell activation by PTH1R contributes to MDSC mobilization. PTH1R activation by parathyroid hormone (PTH) or PTH-related peptide (PTHrP), a tumor-derived counterpart, mobilized monocytic (M-) MDSCs from murine BM without increasing immunosuppressive activity. In vitro cell-binding assays demonstrated that α4β1 integrin and vascular cell adhesion molecule (VCAM)-1, expressed on M-MDSCs and osteoblasts, respectively, are key to M-MDSC binding to osteoblasts. Upon PTH1R activation, osteoblasts express VEGF-A and IL6, leading to Src family kinase phosphorylation in M-MDSCs. Src inhibitors suppressed PTHrP-induced MDSC mobilization, and Src activation in M-MDSCs upregulated two proteases, ADAM-17 and MMP7, leading to VCAM1 shedding and subsequent disruption of M-MDSC tethering to osteoblasts. Collectively, our data provide the molecular mechanism of M-MDSC mobilization in the bones of tumor hosts.
Collapse
Affiliation(s)
- Eun Jung Lee
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Republic of Korea
- The BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyoung Jin Lee
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Republic of Korea
- The BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seungpil Jung
- Division of Breast and Endocrine Surgery, Department of Surgery, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Kyong Hwa Park
- Division of Oncology and Hematology, Department of Internal Medicine, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Serk In Park
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Republic of Korea.
- The BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea.
- Vanderbilt Center for Bone Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
11
|
Zhao Y, Su S, Li X. Parathyroid Hormone-Related Protein/Parathyroid Hormone Receptor 1 Signaling in Cancer and Metastasis. Cancers (Basel) 2023; 15:cancers15071982. [PMID: 37046642 PMCID: PMC10093484 DOI: 10.3390/cancers15071982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
PTHrP exerts its effects by binding to its receptor, PTH1R, a G protein-coupled receptor (GPCR), activating the downstream cAMP signaling pathway. As an autocrine, paracrine, or intracrine factor, PTHrP has been found to stimulate cancer cell proliferation, inhibit apoptosis, and promote tumor-induced osteolysis of bone. Despite these findings, attempts to develop PTHrP and PTH1R as drug targets have not produced successful results in the clinic. Nevertheless, the efficacy of blocking PTHrP and PTH1R has been shown in various types of cancer, suggesting its potential for therapeutic applications. In light of these conflicting data, we conducted a comprehensive review of the studies of PTHrP/PTH1R in cancer progression and metastasis and highlighted the strengths and limitations of targeting PTHrP or PTH1R in cancer therapy. This review also offers our perspectives for future research in this field.
Collapse
|
12
|
Swami S, Zhu H, Nisco A, Kimura T, Kim MJ, Nair V, Wu JY. Parathyroid hormone 1 receptor signaling mediates breast cancer metastasis to bone in mice. JCI Insight 2023; 8:157390. [PMID: 36692956 PMCID: PMC10077472 DOI: 10.1172/jci.insight.157390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/23/2023] [Indexed: 01/25/2023] Open
Abstract
Bone metastases are a common complication of breast cancer. We have demonstrated that intermittent administration of parathyroid hormone (PTH[1-34]) reduces the incidence of bone metastases in murine models of breast cancer by acting on osteoblasts to alter the bone microenvironment. Here, we examined the role of signaling mediated by PTH 1 receptor (PTH1R) in both osteoblasts and breast cancer cells in influencing bone metastases. In mice with impaired PTH1R signaling in osteoblasts, intermittent PTH did not reduce bone metastasis. Intermittent PTH also did not reduce bone metastasis when expression of PTH1R was knocked down in 4T1 murine breast cancer cells by shRNA. In 4T1 breast cancer cells, PTH decreased expression of PTH-related protein (PTHrP), implicated in the vicious cycle of bone metastases. Knockdown of PTHrP in 4T1 cells significantly reduced migration toward MC3T3-E1 osteoblasts, and migration was further inhibited by treatment with intermittent PTH. Conversely, overexpression of PTHrP in 4T1 cells increased migration toward MC3T3-E1 osteoblasts, and this was not inhibited by PTH. In conclusion, PTH1R expression is crucial in both osteoblasts and breast cancer cells for PTH to reduce bone metastases, and in breast cancer cells, this may be mediated in part by suppression of PTHrP.
Collapse
|
13
|
Dhanapala L, Joseph S, Jones AL, Moghaddam S, Lee N, Kremer RB, Rusling JF. Immunoarray Measurements of Parathyroid Hormone-Related Peptides Combined with Other Biomarkers to Diagnose Aggressive Prostate Cancer. Anal Chem 2022; 94:12788-12797. [PMID: 36074029 DOI: 10.1021/acs.analchem.2c02648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Parathyroid hormone-related peptide (PTHrP) is related to bone metastasis and hypercalcemia in prostate and breast cancers and should be an excellent biomarker for aggressive forms of these cancers. Current clinical detection protocols for PTHrP are immunoradiometric assay and radioimmunoassay but are not sensitive enough to detect PTHrPs at early stages. We recently evaluated a prostate cancer biomarker panel, including serum monocyte differentiation antigen (CD-14), ETS-related gene protein, pigment epithelial-derived factor, and insulin-like growth factor-1, with promise for identifying aggressive prostate cancers. This panel predicted the need for patient biopsy better than PSA alone. In the present paper, we report an ultrasensitive microfluidic assay for PTHrPs and evaluate their diagnostic value and the value of including them with our prior biomarker panel to diagnose aggressive forms of prostate cancer. The immunoarray features screen-printed carbon sensor electrodes coated with 5 nm glutathione gold nanoparticles with capture antibodies attached. PTHrPs are bound to a secondary antibody attached to a polyhorseradish peroxidase label and delivered to the sensors to provide high sensitivity when activated by H2O2 and a mediator. We obtained an unprecedented 0.3 fg mL-1 limit of detection for PTHrP bioactive moieties PTHrP 1-173 and PTHrP 1-86. We also report the first study of PTHrPs in a large serum pool to identify aggressive malignancies. In assays of 130 human patient serum samples, PTHrP levels distinguished between aggressive and indolent prostate cancers with 83-91% clinical sensitivity and 78-96% specificity. Logistic regression identified the best predictive model as a combination of PTHrP 1-86 and vascular endothelial growth factor-D. PTHrP 1-173 alone also showed a high ability to differentiate aggressive and indolent cancers.
Collapse
Affiliation(s)
- Lasangi Dhanapala
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Sophie Joseph
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Abby L Jones
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Shirin Moghaddam
- Department of Mathematics and Statistics (MACSI), University of Limerick, Limerick V94 T9PX, Ireland
| | - Norman Lee
- Department of Pharmacology and Physiology, George Washington University, 2300 I Street, NW, Washington, Washington, District of Columbia 20037, United States.,George Washington University Cancer Center, 800 22nd Street, NW, Washington, Washington, District of Columbia 20052, United States
| | - Richard B Kremer
- Department of Medicine, McGill University Health Centre, 1001 Decarie Blvd., Montreal QC H4A, Canada
| | - James F Rusling
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States.,Department of Surgery and Neag Cancer Center, UConn Health, Farmington, Connecticut 06232, United States.,School of Chemistry, National University of Ireland Galway, Galway H91 TK33, Ireland.,Institute of Materials Science, University of Connecticut, 97 N. Eagleville Road, Storrs, Connecticut 06269, United States
| |
Collapse
|
14
|
Grunbaum A, Kremer R. Parathyroid hormone-related protein (PTHrP) and malignancy. VITAMINS AND HORMONES 2022; 120:133-177. [PMID: 35953108 DOI: 10.1016/bs.vh.2022.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
PTHrP (parathyroid hormone related protein) is an important mediator of malignancy-related tumor progression and hypercalcemia that shares considerable homology and functionality with parathyroid hormone. In this chapter, we review what has been elucidated to date regarding PTHrP's role in malignancies. Starting with a review of calcium metabolism and regulation, we then summarize the discovery and structure of PTHrP and development of sensitive immunoassays for specific measurement. Subsequently, we explore its role in tumor progression, with emphasis on the primary tumor as well as skeletal and non-osseus metastases. We then consider the clinical implications of PTHrP in cancer before concluding with a discussion of both established and potential treatments for malignancy associated hypercalcemia and bone metastases.
Collapse
Affiliation(s)
- Ami Grunbaum
- Calcium Research Laboratories and Department of Medicine, McGill University and McGill University Health Centre, Montreal, QC, Canada
| | - Richard Kremer
- Calcium Research Laboratories and Department of Medicine, McGill University and McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
15
|
Lee MY. Embryonic Programs in Cancer and Metastasis—Insights From the Mammary Gland. Front Cell Dev Biol 2022; 10:938625. [PMID: 35846378 PMCID: PMC9277484 DOI: 10.3389/fcell.2022.938625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/07/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer is characterized as a reversion of a differentiated cell to a primitive cell state that recapitulates, in many aspects, features of embryonic cells. This review explores the current knowledge of developmental mechanisms that are essential for embryonic mouse mammary gland development, with a particular focus on genes and signaling pathway components that are essential for the induction, morphogenesis, and lineage specification of the mammary gland. The roles of these same genes and signaling pathways in mammary gland or breast tumorigenesis and metastasis are then summarized. Strikingly, key embryonic developmental pathways are often reactivated or dysregulated during tumorigenesis and metastasis in processes such as aberrant proliferation, epithelial-to-mesenchymal transition (EMT), and stem cell potency which affects cellular lineage hierarchy. These observations are in line with findings from recent studies using lineage tracing as well as bulk- and single-cell transcriptomics that have uncovered features of embryonic cells in cancer and metastasis through the identification of cell types, cell states and characterisation of their dynamic changes. Given the many overlapping features and similarities of the molecular signatures of normal development and cancer, embryonic molecular signatures could be useful prognostic markers for cancer. In this way, the study of embryonic development will continue to complement the understanding of the mechanisms of cancer and aid in the discovery of novel therapeutic targets and strategies.
Collapse
|
16
|
Li J, Camirand A, Zakikhani M, Sellin K, Guo Y, Luan X, Mihalcioiu C, Kremer R. Parathyroid Hormone-Related Protein Inhibition Blocks Triple-Negative Breast Cancer Expansion in Bone Through Epithelial to Mesenchymal Transition Reversal. JBMR Plus 2022; 6:e10587. [PMID: 35720668 PMCID: PMC9189913 DOI: 10.1002/jbm4.10587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 11/10/2022] Open
Abstract
Parathyroid hormone-related protein (PTHrP) plays a major role in skeletal metastasis but its action mechanism has not been fully defined. We previously demonstrated the crucial importance of PTHrP in promoting mammary tumor initiation, growth, and metastasis in a mouse model with a mammary epithelium-targeted Pthlh gene ablation. We demonstrate here a novel mechanism for bone invasion involving PTHrP induction of epithelial to mesenchymal transition (EMT) and cancer stem cells (CSCs) regulation. Clustered regularly interspaced short palindromic repeats (CRISPR)-mediated Pthlh gene ablation was used to study EMT markers, phenotype, and invasiveness in two triple-negative breast cancer (TNBC) cell types (established MDA-MB-231 and patient-derived PT-TNBC cells). In vitro, Pthlh ablation in TNBC cells reduced EMT markers, mammosphere-forming ability, and CD44high/CD24low cells ratio. In vivo, cells were injected intratibially into athymic nude mice, and therapeutic treatment with our anti-PTHrP blocking antibody was started 2 weeks after skeletal tumors were established. In vivo, compared to control, lytic bone lesion from Pthlh -ablated cells decreased significantly over 2 weeks by 27% for MDA-MB-231 and by 75% for PT-TNBC-injected mice (p < 0.001). Micro-CT (μCT) analyses also showed that antibody therapy reduced bone lytic volume loss by 52% and 48% for non-ablated MDA-MB-231 and PT-TNBC, respectively (p < 0.05). Antibody therapy reduced skeletal tumor burden by 45% and 87% for non-ablated MDA-MB-231 and PT-TNBC, respectively (p < 0.002) and caused a significant decrease of CSC/EMT markers ALDH1, vimentin, and Slug, and an increase in E-cadherin in bone lesions. We conclude that PTHrP is a targetable EMT molecular driver and suggest that its pharmacological blockade can provide a potential therapeutic approach against established TNBC-derived skeletal lesions. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jiarong Li
- Centre for Translational BiologyMcGill University Health CentreMontréalQCCanada
| | - Anne Camirand
- Centre for Translational BiologyMcGill University Health CentreMontréalQCCanada
| | - Mahvash Zakikhani
- Centre for Translational BiologyMcGill University Health CentreMontréalQCCanada
| | - Karine Sellin
- Centre for Translational BiologyMcGill University Health CentreMontréalQCCanada
| | - Yubo Guo
- Centre for Translational BiologyMcGill University Health CentreMontréalQCCanada
- Third Affiliated HospitalBeijing University of Chinese MedicineBeijingChina
| | - XiaoRui Luan
- Centre for Translational BiologyMcGill University Health CentreMontréalQCCanada
- Department of Genetics, School of MedicineZhejiang UniversityHangzhouChina
| | - Catalin Mihalcioiu
- Centre for Translational BiologyMcGill University Health CentreMontréalQCCanada
| | - Richard Kremer
- Centre for Translational BiologyMcGill University Health CentreMontréalQCCanada
| |
Collapse
|
17
|
Silveira MN, Pozzuto L, Mendes MCS, da Cunha LP, Costa FO, Macedo LT, Brambilla SR, Carvalheira JBC. Association of Albumin-Corrected Serum Calcium Levels with Colorectal Cancer Survival Outcomes. J Clin Med 2022; 11:jcm11102928. [PMID: 35629054 PMCID: PMC9144533 DOI: 10.3390/jcm11102928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 02/07/2023] Open
Abstract
In epidemiological studies, higher calcium intake has been associated with decreased colorectal cancer (CRC) incidence. However, whether circulating calcium concentrations are associated with CRC prognosis is largely unknown. In this retrospective cohort analysis, we identified 498 patients diagnosed with stage I-IV CRC between the years of 2000 and 2018 in whom calcium and albumin level measurements within 3 months of diagnosis had been taken. We used the Kaplan-Meier method for survival analysis. We used multivariate Cox proportional hazards regression to identify associations between corrected calcium levels and CRC survival outcomes. Corrected calcium levels in the highest tertile were associated with significantly lower progression-free survival rates (hazard ratio (HR) 1.85; 95% confidence interval (CI) 1.28-2.69; p = 0.001) and overall survival (HR 1.86; 95% CI 1.26-2.74, p = 0.002) in patients with stage IV or recurrent CRC, and significantly lower disease-free survival rates (HR 1.44; 95% confidence interval (CI) 1.02-2.03; p = 0.040) and overall survival rates (HR 1.72; 95% CI 1.18-2.50; p = 0.004) in patients with stage I-III disease. In conclusion, higher corrected calcium levels after the diagnosis of CRC were significantly associated with decreased survival rates. Prospective trials are necessary to confirm this association.
Collapse
|
18
|
Grinman DY, Boras-Granic K, Takyar FM, Dann P, Hens JR, Marmol C, Lee J, Choi J, Chodosh LA, Sola MEG, Wysolmerski JJ. PTHrP induces STAT5 activation, secretory differentiation and accelerates mammary tumor development. Breast Cancer Res 2022; 24:30. [PMID: 35440032 PMCID: PMC9020078 DOI: 10.1186/s13058-022-01523-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/29/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Parathyroid hormone-related protein (PTHrP) is required for embryonic breast development and has important functions during lactation, when it is produced by alveolar epithelial cells and secreted into the maternal circulation to mobilize skeletal calcium used for milk production. PTHrP is also produced by breast cancers, and GWAS studies suggest that it influences breast cancer risk. However, the exact functions of PTHrP in breast cancer biology remain unsettled. METHODS We developed a tetracycline-regulated, MMTV (mouse mammary tumor virus)-driven model of PTHrP overexpression in mammary epithelial cells (Tet-PTHrP mice) and bred these mice with the MMTV-PyMT (polyoma middle tumor-antigen) breast cancer model to analyze the impact of PTHrP overexpression on normal mammary gland biology and in breast cancer progression. RESULTS Overexpression of PTHrP in luminal epithelial cells caused alveolar hyperplasia and secretory differentiation of the mammary epithelium with milk production. This was accompanied by activation of Stat5 and increased expression of E74-like factor-5 (Elf5) as well as a delay in post-lactation involution. In MMTV-PyMT mice, overexpression of PTHrP (Tet-PTHrP;PyMT mice) shortened tumor latency and accelerated tumor growth, ultimately reducing overall survival. Tumors overproducing PTHrP also displayed increased expression of nuclear pSTAT5 and Elf5, increased expression of markers of secretory differentiation and milk constituents, and histologically resembled secretory carcinomas of the breast. Overexpression of PTHrP within cells isolated from tumors, but not PTHrP exogenously added to cell culture media, led to activation of STAT5 and milk protein gene expression. In addition, neither ablating the Type 1 PTH/PTHrP receptor (PTH1R) in epithelial cells nor treating Tet-PTHrP;PyMT mice with an anti-PTH1R antibody prevented secretory differentiation or altered tumor latency. These data suggest that PTHrP acts in a cell-autonomous, intracrine manner. Finally, expression of PTHrP in human breast cancers is associated with expression of genes involved in milk production and STAT5 signaling. CONCLUSIONS Our study suggests that PTHrP promotes pathways leading to secretory differentiation and proliferation in both normal mammary epithelial cells and in breast tumor cells.
Collapse
Affiliation(s)
- Diego Y Grinman
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, 300 Cedar Street, TAC S120, Box 208020, New Haven, CT, 06520-8020, USA.
| | - Kata Boras-Granic
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, 300 Cedar Street, TAC S120, Box 208020, New Haven, CT, 06520-8020, USA
| | - Farzin M Takyar
- Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pamela Dann
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, 300 Cedar Street, TAC S120, Box 208020, New Haven, CT, 06520-8020, USA
| | - Julie R Hens
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, 300 Cedar Street, TAC S120, Box 208020, New Haven, CT, 06520-8020, USA
| | | | - Jongwon Lee
- Brain Korea 21 Plus Project for Biomedical Science, Korea University College of Medicine, Seoul, Korea
| | - Jungmin Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea.,Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Lewis A Chodosh
- Department of Cancer Biology, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Martin E Garcia Sola
- Departamento de Fisiología y Biología Molecular y Celular, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE), CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - John J Wysolmerski
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, 300 Cedar Street, TAC S120, Box 208020, New Haven, CT, 06520-8020, USA
| |
Collapse
|
19
|
Zhou R, Luo Z, Yin G, Yu L, Zhong H. MiR-556-5p modulates migration, invasion, and epithelial-mesenchymal transition in breast cancer cells via targeting PTHrP. J Mol Histol 2022; 53:297-308. [PMID: 35000027 DOI: 10.1007/s10735-021-10056-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 12/29/2021] [Indexed: 01/19/2023]
Abstract
Breast cancer bone metastases may block normal bone remodeling and promote bone degradation, during which several signaling pathways and small non-coding miRNAs might all play a role. miRNAs and target mRNAs that might be associated with breast cancer bone metastasis were analyzed and selected using bioinformatics analyses based on online data. The 3' untranslated region of key factors associated with breast cancer metastasis were examined for candidate miRNA binding site using Targetscan. The predicted binding was validated. The specific effects of single miRNA and dynamic effects of the miRNA-mRNA axis on breast cancer cell metastasis were investigated. miR-556-5p was downregulated in breast cancer samples according to online datasets and experimental analyses. In breast cancer cells, miR-556-5p overexpression inhibited, whereas miR-556-5p inhibition promoted cancer cell invasion and migration. Among key factors associated with breast cancer bone metastasis, parathyroid hormone related protein (PTHrP) 3'UTR possessed miR-556-5p binding site. Through direct binding, miR-556-5p negatively regulated PTHrP expression. In breast cancer cell lines, miR-556-5p inhibition promoted, whereas PTHrP silencing suppressed cancer cell migration, invasion, and epithelial-mesenchymal transition; the effects of miR-556-5p inhibition were partially reversed by PTHrP silencing. In summary, miR-556-5p targets PTHrP to modulate the cell migration and invasion of breast cancer.
Collapse
Affiliation(s)
- Rongjun Zhou
- Department of Surgery, Changsha Hospital for Maternal and Child Health Care, No. 416 Chengnan East Road, Yuhua District, Changsha, 410007, Hunan, China.
| | - Zhen Luo
- Department of General Surgery, The First Hospital of Changsha, Changsha, 410005, Hunan, China
| | - Guanqun Yin
- Department of Surgery, Changsha Hospital for Maternal and Child Health Care, No. 416 Chengnan East Road, Yuhua District, Changsha, 410007, Hunan, China
| | - Lanting Yu
- Department of Surgery, Changsha Hospital for Maternal and Child Health Care, No. 416 Chengnan East Road, Yuhua District, Changsha, 410007, Hunan, China
| | - Hao Zhong
- Department of Surgery, Changsha Hospital for Maternal and Child Health Care, No. 416 Chengnan East Road, Yuhua District, Changsha, 410007, Hunan, China
| |
Collapse
|
20
|
Johnson RW, Rhoades J, Martin TJ. Parathyroid hormone-related protein in breast cancer bone metastasis. VITAMINS AND HORMONES 2022; 120:215-230. [PMID: 35953110 DOI: 10.1016/bs.vh.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Parathyroid hormone-related protein (PTHrP) was discovered as the tumor product causing the humoral hypercalcemia of malignancy. Its structural similarity to the hormone, PTH, with 8 of the first 13 amino acids identical, was sufficient to explain the sharing by PTHrP and PTH of a common receptor, PTH1R, although the remainder of the sequences are unique. PTHrP has important roles in development of several organs, including breast and bone, and functions as a paracrine factor postnatally in these and other tissues. In addition to its hormonal role in cancer, PTHrP is produced by two thirds of primary breast cancers and 90% of bone metastases from breast cancer, leading to the concept that its production in bone by breast cancer cells promotes bone resorption, thus favoring tumor establishment and expansion, and an exit from tumor dormancy in bone through downregulation of leukemia inducing factor receptor (LIFR). Cancer production of PTHrP is increased by bone-derived growth factors, with particular attention paid to TGFβ, as well as by promoter-driven transcriptional effects, such as the hedgehog signaling factor, GLI2, and microenvironment effects including changes in underlying stiffness of substrates for cells. Although interest has been focused on PTHrP-induced bone resorption in bone metastasis, a mechanistically separate, protective effect against tumor progression has been proposed. Although there is conflicting mouse data, there are clinical studies suggesting that increased production of PTHrP by breast cancers confers upon them a less invasive phenotype, an effect distinct from the bone resorption-stimulating action that favors bone metastasis.
Collapse
Affiliation(s)
- Rachelle W Johnson
- Department of Medicine, Division of Clinical Pharmacology, and Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Julie Rhoades
- Department of Medicine, Division of Clinical Pharmacology, and Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, United States
| | - T John Martin
- St Vincent's Institute of Medical Research, University of Melbourne, St Vincent's Health, Melbourne, VIC, Australia.
| |
Collapse
|
21
|
Payer LM, Steranka JP, Kryatova MS, Grillo G, Lupien M, Rocha PP, Burns KH. Alu insertion variants alter gene transcript levels. Genome Res 2021; 31:2236-2248. [PMID: 34799402 PMCID: PMC8647820 DOI: 10.1101/gr.261305.120] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 09/23/2021] [Indexed: 12/23/2022]
Abstract
Alu are high copy number interspersed repeats that have accumulated near genes during primate and human evolution. They are a pervasive source of structural variation in modern humans. Impacts that Alu insertions may have on gene expression are not well understood, although some have been associated with expression quantitative trait loci (eQTLs). Here, we directly test regulatory effects of polymorphic Alu insertions in isolation of other variants on the same haplotype. To screen insertion variants for those with such effects, we used ectopic luciferase reporter assays and evaluated 110 Alu insertion variants, including more than 40 with a potential role in disease risk. We observed a continuum of effects with significant outliers that up- or down-regulate luciferase activity. Using a series of reporter constructs, which included genomic context surrounding the Alu, we can distinguish between instances in which the Alu disrupts another regulator and those in which the Alu introduces new regulatory sequence. We next focused on three polymorphic Alu loci associated with breast cancer that display significant effects in the reporter assay. We used CRISPR to modify the endogenous sequences, establishing cell lines varying in the Alu genotype. Our findings indicate that Alu genotype can alter expression of genes implicated in cancer risk, including PTHLH, RANBP9, and MYC These data show that commonly occurring polymorphic Alu elements can alter transcript levels and potentially contribute to disease risk.
Collapse
Affiliation(s)
- Lindsay M Payer
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Jared P Steranka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Maria S Kryatova
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Giacomo Grillo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - Pedro P Rocha
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland 20892-4340, USA
- National Cancer Institute, NIH, Bethesda, Maryland 20892, USA
| | - Kathleen H Burns
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- McKusick-Nathans Institute of Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
22
|
Novoa Díaz MB, Carriere PM, Martín MJ, Calvo N, Gentili C. Involvement of parathyroid hormone-related peptide in the aggressive phenotype of colorectal cancer cells. World J Gastroenterol 2021; 27:7025-7040. [PMID: 34887626 PMCID: PMC8613645 DOI: 10.3748/wjg.v27.i41.7025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/26/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) remains one of the leading causes of mortality from malignant diseases worldwide. In general terms, CRC presents high heterogeneity due to the influence of different genetic and environmental factors; also, the neoplastic cells are strongly influenced by the extracellular matrix and several surrounding cells, known together as the tumor microenvironment (TME). Bidirectional communication takes place between the tumor and the TME through the release of autocrine and paracrine factors. Parathyroid hormone-related peptide (PTHrP) is a cytokine secreted by a wide variety of tissues and is able to regulate several cellular functions both in physiological as well as in pathological processes. It exerts its effects as a paracrine/autocrine factor, although its mode of action is mainly paracrine. It has been shown that this peptide is expressed by several tumors and that the tumor secretion of PTHrP is responsible for the malignant humoral hypercalcemia. Eight years ago, when our research group started studying PTHrP effects in the experimental models derived from intestinal tumors, the literature available at the time addressing the effects of PTHrP on colorectal tumors was limited, and no articles had been published regarding to the paracrine action of PTHrP in CRC cells. Based on this and on our previous findings regarding the role of PTH in CRC cells, our purpose in recent years has been to explore the role of PTHrP in CRC. We analyzed the behavior of CRC cells treated with exogenous PTHrP, focalizing in the study of the following events: Survival, cell cycle progression and proliferation, migration, chemoresistance, tumor-associated angiogenesis, epithelial to mesenchymal transition program and other events also associated with invasion, such us the induction of cancer stem cells features. This work summarizes the major findings obtained by our investigation group using in vitro and in vivo CRC models that evidence the participation of PTHrP in the acquisition of an aggressive phenotype of CRC cells and the molecular mechanisms involved in these processes. Recently, we found that this cytokine induces this malignant behavior not only by its direct action on these intestinal cells but also through its influence on cells derived from TME, promoting a communication between CRC cells and surrounding cells that contributes to the molecular and morphological changes observed in CRC cells. These investigations establish the basis for our next studies in order to address the clinical applicability of our findings. Recognizing the factors and mechanisms that promote invasion in CRC cells, evasion to the cytotoxic effects of current CRC therapies and thus metastasis is decisive for the identification of new markers with the potential to improve early diagnosis and/or to predict prognosis, to predetermine drug resistance and to provide treatment guidelines that include targeted therapies for this disease.
Collapse
Affiliation(s)
- María Belén Novoa Díaz
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| | - Pedro Matías Carriere
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| | - María Julia Martín
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Buenos Aires, Argentina
- Departamento de Química, Universidad Nacional del Sur (UNS)- INQUISUR (CONICET-UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| | - Natalia Calvo
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| | - Claudia Gentili
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| |
Collapse
|
23
|
Todd VM, Vecchi LA, Clements ME, Snow KP, Ontko CD, Himmel L, Pinelli C, Rafat M, Johnson RW. Hypoxia inducible factor signaling in breast tumors controls spontaneous tumor dissemination in a site-specific manner. Commun Biol 2021; 4:1122. [PMID: 34556788 PMCID: PMC8460839 DOI: 10.1038/s42003-021-02648-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023] Open
Abstract
Hypoxia is a common feature in tumors and induces signaling that promotes tumor cell survival, invasion, and metastasis, but the impact of hypoxia inducible factor (HIF) signaling in the primary tumor on dissemination to bone in particular remains unclear. To better understand the contributions of hypoxia inducible factor 1 alpha (HIF1α), HIF2α, and general HIF pathway activation in metastasis, we employ a PyMT-driven spontaneous murine mammary carcinoma model with mammary specific deletion of Hif1α, Hif2α, or von Hippel-Lindau factor (Vhl) using the Cre-lox system. Here we show that Hif1α or Hif2α deletion in the primary tumor decreases metastatic tumor burden in the bone marrow, while Vhl deletion increases bone tumor burden, as hypothesized. Unexpectedly, Hif1α deletion increases metastatic tumor burden in the lung, while deletion of Hif2α or Vhl does not affect pulmonary metastasis. Mice with Hif1α deleted tumors also exhibit reduced bone volume as measured by micro computed tomography, suggesting that disruption of the osteogenic niche may be involved in the preference for lung dissemination observed in this group. Thus, we reveal that HIF signaling in breast tumors controls tumor dissemination in a site-specific manner.
Collapse
Affiliation(s)
- Vera M Todd
- Graduate Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University, Nashville, TN, USA
| | - Lawrence A Vecchi
- Vanderbilt Center for Bone Biology, Vanderbilt University, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Miranda E Clements
- Tumor Microenvironment and Metastasis Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Katherine P Snow
- Vanderbilt Center for Bone Biology, Vanderbilt University, Nashville, TN, USA
- Department of Medicine, Health, and Society, Vanderbilt University, Nashville, TN, USA
| | - Cayla D Ontko
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Lauren Himmel
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christopher Pinelli
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Marjan Rafat
- Vanderbilt Center for Bone Biology, Vanderbilt University, Nashville, TN, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Rachelle W Johnson
- Graduate Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Center for Bone Biology, Vanderbilt University, Nashville, TN, USA.
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
24
|
Barrio E, Vecino R, Sánchez-Morán I, Rodríguez C, Suárez-Pindado A, Bolaños JP, Almeida A, Delgado-Esteban M. Preconditioning-Activated AKT Controls Neuronal Tolerance to Ischemia through the MDM2-p53 Pathway. Int J Mol Sci 2021; 22:ijms22147275. [PMID: 34298892 PMCID: PMC8304232 DOI: 10.3390/ijms22147275] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 12/28/2022] Open
Abstract
One of the most important mechanisms of preconditioning-mediated neuroprotection is the attenuation of cell apoptosis, inducing brain tolerance after a subsequent injurious ischemia. In this context, the antiapoptotic PI3K/AKT signaling pathway plays a key role by regulating cell differentiation and survival. Active AKT is known to increase the expression of murine double minute-2 (MDM2), an E3-ubiquitin ligase that destabilizes p53 to promote the survival of cancer cells. In neurons, we recently showed that the MDM2–p53 interaction is potentiated by pharmacological preconditioning, based on subtoxic stimulation of NMDA glutamate receptor, which prevents ischemia-induced neuronal apoptosis. However, whether this mechanism contributes to the neuronal tolerance during ischemic preconditioning (IPC) is unknown. Here, we show that IPC induced PI3K-mediated phosphorylation of AKT at Ser473, which in turn phosphorylated MDM2 at Ser166. This phosphorylation triggered the nuclear stabilization of MDM2, leading to p53 destabilization, thus preventing neuronal apoptosis upon an ischemic insult. Inhibition of the PI3K/AKT pathway with wortmannin or by AKT silencing induced the accumulation of cytosolic MDM2, abrogating IPC-induced neuroprotection. Thus, IPC enhances the activation of PI3K/AKT signaling pathway and promotes neuronal tolerance by controlling the MDM2–p53 interaction. Our findings provide a new mechanistic pathway involved in IPC-induced neuroprotection via modulation of AKT signaling, suggesting that AKT is a potential therapeutic target against ischemic injury.
Collapse
Affiliation(s)
- Emilia Barrio
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, 37007 Salamanca, Spain; (E.B.); (R.V.); (I.S.-M.); (C.R.); (A.S.-P.); (J.P.B.); (A.A.)
| | - Rebeca Vecino
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, 37007 Salamanca, Spain; (E.B.); (R.V.); (I.S.-M.); (C.R.); (A.S.-P.); (J.P.B.); (A.A.)
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, 37007 Salamanca, Spain
| | - Irene Sánchez-Morán
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, 37007 Salamanca, Spain; (E.B.); (R.V.); (I.S.-M.); (C.R.); (A.S.-P.); (J.P.B.); (A.A.)
| | - Cristina Rodríguez
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, 37007 Salamanca, Spain; (E.B.); (R.V.); (I.S.-M.); (C.R.); (A.S.-P.); (J.P.B.); (A.A.)
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, 37007 Salamanca, Spain
- Department of Biochemistry and Molecular Biology, University of Salamanca, 37007 Salamanca, Spain
| | - Alberto Suárez-Pindado
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, 37007 Salamanca, Spain; (E.B.); (R.V.); (I.S.-M.); (C.R.); (A.S.-P.); (J.P.B.); (A.A.)
| | - Juan P. Bolaños
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, 37007 Salamanca, Spain; (E.B.); (R.V.); (I.S.-M.); (C.R.); (A.S.-P.); (J.P.B.); (A.A.)
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, 37007 Salamanca, Spain
- Department of Biochemistry and Molecular Biology, University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Angeles Almeida
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, 37007 Salamanca, Spain; (E.B.); (R.V.); (I.S.-M.); (C.R.); (A.S.-P.); (J.P.B.); (A.A.)
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, 37007 Salamanca, Spain
- Department of Biochemistry and Molecular Biology, University of Salamanca, 37007 Salamanca, Spain
| | - Maria Delgado-Esteban
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, 37007 Salamanca, Spain; (E.B.); (R.V.); (I.S.-M.); (C.R.); (A.S.-P.); (J.P.B.); (A.A.)
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, 37007 Salamanca, Spain
- Department of Biochemistry and Molecular Biology, University of Salamanca, 37007 Salamanca, Spain
- Correspondence: ; Tel.: +34-923-29-4908
| |
Collapse
|
25
|
Li J, Luco AL, Camirand A, St-Arnaud R, Kremer R. Vitamin D Regulates CXCL12/CXCR4 and Epithelial-to-Mesenchymal Transition in a Model of Breast Cancer Metastasis to Lung. Endocrinology 2021; 162:6164379. [PMID: 33693593 PMCID: PMC8183495 DOI: 10.1210/endocr/bqab049] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Indexed: 12/31/2022]
Abstract
Vitamin D deficiency is associated with poor cancer outcome in humans, and administration of vitamin D or its analogs decreases tumor progression and metastasis in animal models. Using the mouse mammary tumor virus-polyoma middle T antigen (MMTV-PyMT) model of mammary cancer, we previously demonstrated a significant acceleration of carcinogenesis in animals on a low vitamin D diet and a reduction in spontaneous lung metastases when mice received vitamin D through perfusion. We investigate here the action mechanism for vitamin D in lung metastasis in the same non-immunodeficient model and demonstrate that it involves the control of epithelial to mesenchymal transition as well as interactions between chemokine C-X-C motif chemokine 12 (CXCL12) and its receptor C-X-C chemokine receptor type 4 (CXCR4). In vitro, 10-9M vitamin D treatment modifies the phenotype of MMTV-PyMT primary mammary tumor cells and significantly decreases their invasiveness and mammosphere formation capacity by 40% and 50%, respectively. Vitamin D treatment also inhibits phospho-signal transducer and activator of transcription 3 (p-STAT3), zinc finger E-box-binding homeobox 1 (Zeb1), and vimentin by 52%, 75%, and 77%, respectively, and increases E-cadherin by 87%. In vivo, dietary vitamin D deficiency maintains high levels of Zeb1 and p-STAT3 in cells from primary mammary tumors and increases CXCL12 expression in lung stroma by 64%. In lung metastases, vitamin D deficiency increases CXCL12/CXCR4 co-localization by a factor of 2.5. These findings indicate an involvement of vitamin D in mammary cancer "seed" (primary tumor cell) and "soil" (metastatic site) and link vitamin D deficiency to epithelial-to-mesenchymal transition (EMT), CXCL12/CXCR4 signaling, and accelerated metastasis, suggesting vitamin D repleteness in breast cancer patients could enhance the efficacy of co-administered therapies in preventing spread to distant organs.
Collapse
Affiliation(s)
- Jiarong Li
- Department of Medicine, McGill University Health Centre, Glen Site, Montréal, QC, Canada
| | - Aimée-Lee Luco
- Department of Medicine, McGill University Health Centre, Glen Site, Montréal, QC, Canada
| | - Anne Camirand
- Department of Medicine, McGill University Health Centre, Glen Site, Montréal, QC, Canada
| | - René St-Arnaud
- Department of Orthopaedic Surgery, Faculty of Dentistry, Shriners Hospital, Montréal, QC, Canada
| | - Richard Kremer
- Department of Medicine, McGill University Health Centre, Glen Site, Montréal, QC, Canada
- Correspondence: Richard Kremer, Department of Medicine, McGill University Health Centre, Glen site E-M1.3221, 1001 Décarie Blvd, Montréal, QC, Canada, H4A 3J1.
| |
Collapse
|
26
|
Bernhardt SM, Dasari P, Glynn DJ, Woolford L, Moldenhauer LM, Walsh D, Townsend AR, Price TJ, Ingman WV. Ovarian cycle stage critically affects 21-gene recurrence scores in Mmtv-Pymt mouse mammary tumours. BMC Cancer 2021; 21:736. [PMID: 34174867 PMCID: PMC8236154 DOI: 10.1186/s12885-021-08496-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/14/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The Oncotype DX 21-gene Recurrence Score is predictive of adjuvant chemotherapy benefit for women with early-stage, estrogen receptor (ER)-positive, HER2-negative breast cancer. In premenopausal women, fluctuations in estrogen and progesterone during the menstrual cycle impact gene expression in hormone-responsive cancers. However, the extent to which menstrual cycling affects the Oncotype DX 21-gene signature remains unclear. Here, we investigate the impact of ovarian cycle stage on the 21-gene signature using a naturally cycling mouse model of breast cancer. METHODS ER-positive mammary tumours were dissected from naturally cycling Mmtv-Pymt mice at either the estrus or diestrus phase of the ovarian cycle. The Oncotype DX 21-gene signature was assessed through quantitative real time-PCR, and a 21-gene experimental recurrence score analogous to the Oncotype DX Recurrence Score was calculated. RESULTS Tumours collected at diestrus exhibited significant differences in expression of 6 Oncotype DX signature genes (Ki67, Ccnb1, Esr1, Erbb2, Grb7, Bag1; p ≤ 0.05) and a significant increase in 21-gene recurrence score (21.8 ± 2.4; mean ± SEM) compared to tumours dissected at estrus (15.5 ± 1.9; p = 0.03). Clustering analysis revealed a subgroup of tumours collected at diestrus characterised by increased expression of proliferation- (p < 0.001) and invasion-group (p = 0.01) genes, and increased 21-gene recurrence score (p = 0.01). No correlation between ER, PR, HER2, and KI67 protein abundance measured by Western blot and abundance of mRNA for the corresponding gene was observed, suggesting that gene expression is more susceptible to hormone-induced fluctuation compared to protein expression. CONCLUSIONS Ovarian cycle stage at the time of tissue collection critically affects the 21-gene signature in Mmtv-Pymt murine mammary tumours. Further studies are required to determine whether Oncotype DX Recurrence Scores in women are similarly affected by menstrual cycle stage.
Collapse
Affiliation(s)
- Sarah M Bernhardt
- Discipline of Surgery, Adelaide Medical School, University of Adelaide, The Queen Elizabeth Hospital, Adelaide, 28 Woodville Rd, Woodville, 5011, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Pallave Dasari
- Discipline of Surgery, Adelaide Medical School, University of Adelaide, The Queen Elizabeth Hospital, Adelaide, 28 Woodville Rd, Woodville, 5011, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Danielle J Glynn
- Discipline of Surgery, Adelaide Medical School, University of Adelaide, The Queen Elizabeth Hospital, Adelaide, 28 Woodville Rd, Woodville, 5011, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Lucy Woolford
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Lachlan M Moldenhauer
- Robinson Research Institute, University of Adelaide, Adelaide, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - David Walsh
- Discipline of Surgery, Adelaide Medical School, University of Adelaide, The Queen Elizabeth Hospital, Adelaide, 28 Woodville Rd, Woodville, 5011, Australia
| | - Amanda R Townsend
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Department of Medical Oncology, The Queen Elizabeth Hospital, Adelaide, SA, Australia
| | - Timothy J Price
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Department of Medical Oncology, The Queen Elizabeth Hospital, Adelaide, SA, Australia
| | - Wendy V Ingman
- Discipline of Surgery, Adelaide Medical School, University of Adelaide, The Queen Elizabeth Hospital, Adelaide, 28 Woodville Rd, Woodville, 5011, Australia.
- Robinson Research Institute, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
27
|
Zhou P, Xiao Q, Su ZT, Zhu L, Jin FX, Du XY. Effect of parathyroid hormone-related protein on intracellular calcium ion and cyclic adenosine monophosphate concentrations in cardiac fibroblasts. J Int Med Res 2021; 48:300060520931245. [PMID: 32909483 PMCID: PMC7488908 DOI: 10.1177/0300060520931245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Objective This study aimed to determine the effect of parathyroid hormone-related protein (PTHrP) on proliferation of cardiac fibroblasts (CFs) in primary cultures of neonatal Wistar rats. Methods Different PTHrP concentrations were added to CFs of neonatal Wistar rats and the cells were grouped according to the concentrations added. A verapamil (VPL) group and a calcitriol (CAL) group were also established. Changes in cell proliferation and in cyclic adenosine monophosphate and calcium ion levels were identified and recorded. Results We found that as the concentration of PTHrP increased, 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT, a tetrazolium salt) colorimetric absorbance values (A values) decreased. These values in the PTHrP groups were significantly lower than those in the control group. MTT colorimetric A values and 3H-thymidine deoxyribose intake were lower in the VPL group, low-dose CAL group, and the PTHrP 10−7 mol/L group compared with the control group. However, MTT colorimetric A values and 3H-thymidine deoxyribose intake were higher in the high-dose CAL group than in the PTHrP 10−7 mol/L group. As PTHrP concentrations increased, intracellular cyclic adenosine monophosphate concentrations also increased. Conclusion PTHrp, VPL, and low-dose CAL inhibit proliferation of CFs, while high-dose CAL promotes proliferation of CFs.
Collapse
Affiliation(s)
- Ping Zhou
- Department of Pediatrics, Second Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang Province, China
| | - Qiong Xiao
- Department of Infectious Diseases, Children's Hospital of Harbin, Harbin City, Heilongjiang Province, China
| | - Zhao-Ting Su
- Department of Nephrology, Harbin No.4 Hospital, Harbin city, Heilongjiang province, China
| | - Lin Zhu
- Department of Pediatrics, Second Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang Province, China
| | - Fang-Xia Jin
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin city, Heilongjiang province, China
| | - Xuan-Yi Du
- Department of Nephrology, Harbin No.4 Hospital, Harbin city, Heilongjiang province, China
| |
Collapse
|
28
|
Edwards CM, Johnson RW. From Good to Bad: The Opposing Effects of PTHrP on Tumor Growth, Dormancy, and Metastasis Throughout Cancer Progression. Front Oncol 2021; 11:644303. [PMID: 33828987 PMCID: PMC8019909 DOI: 10.3389/fonc.2021.644303] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Parathyroid hormone related protein (PTHrP) is a multifaceted protein with several biologically active domains that regulate its many roles in normal physiology and human disease. PTHrP causes humoral hypercalcemia of malignancy (HHM) through its endocrine actions and tumor-induced bone destruction through its paracrine actions. PTHrP has more recently been investigated as a regulator of tumor dormancy owing to its roles in regulating tumor cell proliferation, apoptosis, and survival through autocrine/paracrine and intracrine signaling. Tumor expression of PTHrP in late stages of cancer progression has been shown to promote distant metastasis formation, especially in bone by promoting tumor-induced osteolysis and exit from dormancy. In contrast, PTHrP may protect against further tumor progression and improve patient survival in early disease stages. This review highlights current knowledge from preclinical and clinical studies examining the role of PTHrP in promoting tumor progression as well as skeletal and soft tissue metastasis, especially with regards to the protein as a regulator of tumor dormancy. The discussion will also provide perspectives on PTHrP as a prognostic factor and therapeutic target to inhibit tumor progression, prevent tumor recurrence, and improve patient survival.
Collapse
Affiliation(s)
- Courtney M. Edwards
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Center for Bone Biology, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Rachelle W. Johnson
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Center for Bone Biology, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
29
|
Al-Khan AA, Al Balushi NR, Richardson SJ, Danks JA. Roles of Parathyroid Hormone-Related Protein (PTHrP) and Its Receptor (PTHR1) in Normal and Tumor Tissues: Focus on Their Roles in Osteosarcoma. Front Vet Sci 2021; 8:637614. [PMID: 33796580 PMCID: PMC8008073 DOI: 10.3389/fvets.2021.637614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary bone tumor and originates from bone forming mesenchymal cells and primarily affects children and adolescents. The 5-year survival rate for OS is 60 to 65%, with little improvement in prognosis during the last four decades. Studies have demonstrated the evolving roles of parathyroid hormone-related protein (PTHrP) and its receptor (PTHR1) in bone formation, bone remodeling, regulation of calcium transport from blood to milk, regulation of maternal calcium transport to the fetus and reabsorption of calcium in kidneys. These two molecules also play critical roles in the development, progression and metastasis of several tumors such as breast cancer, lung carcinoma, chondrosarcoma, squamous cell carcinoma, melanoma and OS. The protein expression of both PTHrP and PTHR1 have been demonstrated in OS, and their functions and proposed signaling pathways have been investigated yet their roles in OS have not been fully elucidated. This review aims to discuss the latest research with PTHrP and PTHR1 in OS tumorigenesis and possible mechanistic pathways. This review is dedicated to Professor Michael Day who died in May 2020 and was a very generous collaborator.
Collapse
Affiliation(s)
- Awf A Al-Khan
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia.,Department of Pathology, Sohar Hospital, Sohar, Oman
| | - Noora R Al Balushi
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Samantha J Richardson
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia.,School of Science, RMIT University, Bundoora, VIC, Australia
| | - Janine A Danks
- School of Science, RMIT University, Bundoora, VIC, Australia.,The University of Melbourne, Department of Medicine, Austin Health, Heidelberg, VIC, Australia
| |
Collapse
|
30
|
Pitarresi JR, Norgard RJ, Chiarella AM, Suzuki K, Bakir B, Sahu V, Li J, Zhao J, Marchand B, Wengyn MD, Hsieh A, Kim IK, Zhang A, Sellin K, Lee V, Takano S, Miyahara Y, Ohtsuka M, Maitra A, Notta F, Kremer R, Stanger BZ, Rustgi AK. PTHrP Drives Pancreatic Cancer Growth and Metastasis and Reveals a New Therapeutic Vulnerability. Cancer Discov 2021; 11:1774-1791. [PMID: 33589425 DOI: 10.1158/2159-8290.cd-20-1098] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/09/2020] [Accepted: 01/20/2021] [Indexed: 12/27/2022]
Abstract
Pancreatic cancer metastasis is a leading cause of cancer-related deaths, yet very little is understood regarding the underlying biology. As a result, targeted therapies to inhibit metastasis are lacking. Here, we report that the parathyroid hormone-related protein (PTHrP encoded by PTHLH) is frequently amplified as part of the KRAS amplicon in patients with pancreatic cancer. PTHrP upregulation drives the growth of both primary and metastatic tumors in mice and is highly enriched in pancreatic ductal adenocarcinoma metastases. Loss of PTHrP-either genetically or pharmacologically-dramatically reduces tumor burden, eliminates metastasis, and enhances overall survival. These effects are mediated in part through a reduction in epithelial-to-mesenchymal transition, which reduces the ability of tumor cells to initiate metastatic cascade. Spp1, which encodes osteopontin, is revealed to be a downstream effector of PTHrP. Our results establish a new paradigm in pancreatic cancer whereby PTHrP is a driver of disease progression and emerges as a novel therapeutic vulnerability. SIGNIFICANCE: Pancreatic cancer often presents with metastases, yet no strategies exist to pharmacologically inhibit this process. Herein, we establish the oncogenic and prometastatic roles of PTHLH, a novel amplified gene in pancreatic ductal adenocarcinoma. We demonstrate that blocking PTHrP activity reduces primary tumor growth, prevents metastasis, and prolongs survival in mice.This article is highlighted in the In This Issue feature, p. 1601.
Collapse
Affiliation(s)
- Jason R Pitarresi
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Robert J Norgard
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Anna M Chiarella
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Kensuke Suzuki
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Basil Bakir
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Varun Sahu
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Jinyang Li
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Jun Zhao
- Sheikh Ahmed Center for Pancreatic Cancer Research and the Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Benoît Marchand
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Maximilian D Wengyn
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Antony Hsieh
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Il-Kyu Kim
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Amy Zhang
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Karine Sellin
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University and McGill University Health Centre, Montréal, Quebec, Canada
| | - Vivian Lee
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shigetsugu Takano
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoji Miyahara
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masayuki Ohtsuka
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Anirban Maitra
- Sheikh Ahmed Center for Pancreatic Cancer Research and the Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Faiyaz Notta
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Richard Kremer
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University and McGill University Health Centre, Montréal, Quebec, Canada
| | - Ben Z Stanger
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Anil K Rustgi
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York.
| |
Collapse
|
31
|
Lanigan LG, Hildreth BE, Dirksen WP, Simmons JK, Martin CK, Werbeck JL, Thudi NK, Papenfuss TL, Boyaka PN, Toribio RE, Ward JM, Weilbaecher KN, Rosol TJ. In Vivo Tumorigenesis, Osteolytic Sarcomas, and Tumorigenic Cell Lines from Transgenic Mice Expressing the Human T-Lymphotropic Virus Type 1 (HTLV-1) Tax Viral Oncogene. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:335-352. [PMID: 33181139 PMCID: PMC7863134 DOI: 10.1016/j.ajpath.2020.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/17/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022]
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) causes adult T-cell leukemia, a disease commonly associated with hypercalcemia and osteolysis. There is no effective treatment for HTLV-1, and the osteolytic mechanisms are not fully understood. Mice expressing the HTLV-1 oncogene Tax, driven by the human granzyme B promoter (Tax+), develop osteolytic tumors. To investigate the progression of the bone-invasive malignancies, wild-type, Tax+, and Tax+/interferon-γ-/- mice were assessed using necropsy, histologic examination, IHC analysis, flow cytometry, and advanced imaging. Tax+ and Tax+/interferon-γ-/- malignancies of the ear, tail, and foot comprised poorly differentiated, round to spindle-shaped cells with prominent neutrophilic infiltrates. Tail tumors originated from muscle, nerve, and/or tendon sheaths, with frequent invasion into adjacent bone. F4/80+ and anti-mouse CD11b (Mac-1)+ histiocytic cells predominated within the tumors. Three Tax+/interferon-γ-/- cell lines were generated for in vivo allografts, in vitro gene expression and bone resorption assays. Two cell lines were of monocyte/macrophage origin, and tumors formed in vivo in all three. Differences in Pthrp, Il6, Il1a, Il1b, and Csf3 expression in vitro were correlated with differences in in vivo plasma calcium levels, tumor growth, metastasis, and neutrophilic inflammation. Tax+ mouse tumors were classified as bone-invasive histiocytic sarcomas. The cell lines are ideal for further examination of the role of HTLV-1 Tax in osteolytic tumor formation and the development of hypercalcemia and tumor-associated inflammation.
Collapse
Affiliation(s)
- Lisa G Lanigan
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio; Tox Path Specialists, a StageBio Company, Fredrick, Maryland
| | - Blake E Hildreth
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio; Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Wessel P Dirksen
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio
| | - Jessica K Simmons
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio
| | - Chelsea K Martin
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio; Department of Pathology and Microbiology, University of Prince Edward Island, Atlantic Veterinary College, Prince Edward Island, Canada
| | - Jillian L Werbeck
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio
| | - Nandu K Thudi
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio
| | - Tracey L Papenfuss
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio
| | - Prosper N Boyaka
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio
| | - Ramiro E Toribio
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio
| | | | - Katherine N Weilbaecher
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Thomas J Rosol
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio.
| |
Collapse
|
32
|
Attalla S, Taifour T, Bui T, Muller W. Insights from transgenic mouse models of PyMT-induced breast cancer: recapitulating human breast cancer progression in vivo. Oncogene 2021; 40:475-491. [PMID: 33235291 PMCID: PMC7819848 DOI: 10.1038/s41388-020-01560-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/27/2020] [Accepted: 11/06/2020] [Indexed: 01/05/2023]
Abstract
Breast cancer is associated with the second highest cancer-associated deaths worldwide. Therefore, understanding the key events that determine breast cancer progression, modulation of the tumor-microenvironment and metastasis, which is the main cause of cancer-associated death, are of great importance. The mammary specific polyomavirus middle T antigen overexpression mouse model (MMTV-PyMT), first published in 1992, is the most commonly used genetically engineered mouse model (GEMM) for cancer research. Mammary lesions arising in MMTV-PyMT mice follow similar molecular and histological progression as human breast tumors, making it an invaluable tool for cancer researchers and instrumental in understanding tumor biology. In this review, we will highlight key studies that demonstrate the utility of PyMT derived GEMMs in understanding the molecular basis of breast cancer progression, metastasis and highlight its use as a pre-clinical tool for therapeutic discovery.
Collapse
Affiliation(s)
- Sherif Attalla
- Department of Biochemistry, McGill University, Montreal, QC, H3A 1A3, Canada
- Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Tarek Taifour
- Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 1A3, Canada
- Faculty of Medicine, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Tung Bui
- Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 1A3, Canada
| | - William Muller
- Department of Biochemistry, McGill University, Montreal, QC, H3A 1A3, Canada.
- Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 1A3, Canada.
- Faculty of Medicine, McGill University, Montreal, QC, H3A 1A3, Canada.
| |
Collapse
|
33
|
Zhang Z, Yao Y, Yuan Q, Lu C, Zhang X, Yuan J, Hou K, Zhang C, Du Z, Gao X, Chen X. Gold clusters prevent breast cancer bone metastasis by suppressing tumor-induced osteoclastogenesis. Theranostics 2020; 10:4042-4055. [PMID: 32226538 PMCID: PMC7086366 DOI: 10.7150/thno.42218] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/10/2020] [Indexed: 12/24/2022] Open
Abstract
Rationale: Bone is the most frequent site for breast cancer metastasis, which accounts for the leading cause of death in advanced breast cancer patients. Serious skeletal-related events (SREs) caused by bone metastasis have a decisive impact on the life expectancy of breast cancer patients, making breast cancer almost incurable. Metastatic breast cancer cell induced pathological osteoclastogenesis is a key driver of bone metastasis and osteolytic bone lesions. We previously reported that gold clusters can prevent inflammation induced osteoclastogenesis and osteolysis in vivo. In this study, we investigated the effects of a BSA-coated gold cluster on metastatic breast cancer-induced osteoclastogenesis in vitro and tumor-induced osteolysis in vivo, and elucidated its possible mechanism. Methods: Breast cancer cell line MDA-MB-231 was used to evaluate the regulatory effects of gold clusters on breast cancer metastasis and tumor induced osteoclastogenesis in vitro. Cell counting kit-8, transwell, wound-healing and colony formation assays were performed to evaluate the effect of gold clusters on proliferation and metastasis of MDA-MB-231 cells. Tartrate-resistant acid phosphatase (TRAP) staining and filamentous-actin rings analysis were used to detect the regulatory effects of gold clusters on MDA-MB-231 cell-conditioned medium (MDA-MB-231 CM) triggered and receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis in mouse bone marrow-derived mononuclear cells (BMMs). A mouse model of breast cancer bone metastasis was used to evaluate the in vivo activity of the gold cluster on the tumor induced osteolysis. Results: The gold clusters suppressed the migration, invasion and colony formation of MDA-MB-231 cells in a dose-dependent manner in vitro. The gold clusters strongly inhibited both MDA-MB-231 CM triggered and RANKL-induced osteoclast formation from BMMs in vitro. Cell studies indicated that the gold clusters suppressed the expression of osteolysis-related factors in MDA-MB-231 cells and inhibited the subsequent activation of NF-κB pathway in BMMs. Treatment with the clusters at a dose of 10 mg Au/kg.bw significantly reduces the breast cancer cell induced osteolysis in vivo. Conclusion: Therefore, the gold clusters may offer new therapeutic agents for preventing breast cancer bone metastasis and secondary osteolysis to improve patient outcomes.
Collapse
Affiliation(s)
- Zhichao Zhang
- Spine Center, Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yawen Yao
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, China
| | - Qing Yuan
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, China
- Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing, China
| | - Cao Lu
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, China
| | - Xiangchun Zhang
- CAS Key Laboratory for the Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Jinling Yuan
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, China
| | - Kaixiao Hou
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, China
| | - Chunyu Zhang
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, China
| | - Zhongying Du
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, China
| | - Xueyun Gao
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, China
- Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing, China
- CAS Key Laboratory for the Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Xiongsheng Chen
- Spine Center, Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
34
|
Kohart NA, Elshafae SM, Demirer AA, Dirksen WP, Breitbach JT, Shu ST, Xiang J, Weilbaecher KN, Rosol TJ. Parathyroid hormone-related protein promotes bone loss in T-cell leukemia as well as in solid tumors. Leuk Lymphoma 2019; 61:409-419. [PMID: 31592701 DOI: 10.1080/10428194.2019.1672055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Parathyroid hormone-related protein (PTHrP) and macrophage inflammatory protein-1α (MIP-1α) are important factors that increase bone resorption and hypercalcemia in adult T-cell leukemia (ATL). We investigated the role of PTHrP and MIP-1α in the development of local osteolytic lesions in T-cell leukemia through overexpression in Jurkat T-cells. Injections of Jurkat-PTHrP and Jurkat-MIP-1α into the tibia and the left ventricle of NSG mice were performed to evaluate tumor growth and metastasis in vivo. Jurkat-pcDNA tibial neoplasms grew at a significantly greater rate and total tibial tumor burden was significantly greater than Jurkat-PTHrP neoplasms. Despite the lower tibial tumor burden, Jurkat-PTHrP bone neoplasms had significantly greater osteolysis than Jurkat-pcDNA and Jurkat-MIP-1α neoplasms. Jurkat-PTHrP and Jurkat-pcDNA cells preferentially metastasized to bone following intracardiac injection, though the overall metastatic burden was lower in Jurkat-PTHrP mice. These findings demonstrate that PTHrP induced pathologic osteolysis in T-cell leukemia but did not increase the incidence of skeletal metastasis.
Collapse
Affiliation(s)
- Nicole A Kohart
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Said M Elshafae
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.,Department of Pathology, Faculty of Veterinary Medicine, Benha University, Kalyubia, Egypt
| | - Aylin A Demirer
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.,Department of Pathology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Wessel P Dirksen
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Justin T Breitbach
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Sherry T Shu
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jingyu Xiang
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Katherine N Weilbaecher
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Thomas J Rosol
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.,Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| |
Collapse
|
35
|
Alveolar progenitor cells in the mammary gland are dependent on the β4 integrin. Dev Biol 2019; 457:13-19. [PMID: 31586558 DOI: 10.1016/j.ydbio.2019.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/18/2019] [Accepted: 10/01/2019] [Indexed: 01/13/2023]
Abstract
Understanding how progenitor cell function is regulated in the mammary gland is an important developmental problem that has significant implications for breast cancer. Although it had been assumed that the expression the α6β4 integrin (β4) is restricted to the basal lineage, we report that alveolar progenitor cells in the mouse mammary gland also express this integrin based on analysis of single cell RNA-Seq data. Subsequent experiments using a mouse mammary epithelial cell line (NMuMG) confirmed this finding and revealed that β4 is essential for maintaining progenitor function as assessed by serial passage mammosphere assays. These data were substantiated by analyzing the alveolar progenitor population isolated from nulliparous mouse mammary glands. Based on the finding that the alveolar progenitor cells express Whey Acidic Protein (WAP), WAP-Cre mice were crossed with itgβ4flox/flox mice to generate conditional knock-out of β4 in alveolar progenitor cells. These itgβ4flox/floxWAP-Cre+ mice exhibited significant defects in alveologenesis and milk production during pregnancy compared to itgβ4flox/floxWAP-Cre- mice, establishing a novel role for the β4 integrin in alveolar progenitor function and alveologenesis.
Collapse
|
36
|
Tastanova A, Folcher M, Müller M, Camenisch G, Ponti A, Horn T, Tikhomirova MS, Fussenegger M. Synthetic biology-based cellular biomedical tattoo for detection of hypercalcemia associated with cancer. Sci Transl Med 2019; 10:10/437/eaap8562. [PMID: 29669854 DOI: 10.1126/scitranslmed.aap8562] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 03/29/2018] [Indexed: 12/12/2022]
Abstract
Diagnosis marks the beginning of any successful therapy. Because many medical conditions progress asymptomatically over extended periods of time, their timely diagnosis remains difficult, and this adversely affects patient prognosis. Focusing on hypercalcemia associated with cancer, we aimed to develop a synthetic biology-inspired biomedical tattoo using engineered cells that would (i) monitor long-term blood calcium concentration, (ii) detect onset of mild hypercalcemia, and (iii) respond via subcutaneous accumulation of the black pigment melanin to form a visible tattoo. For this purpose, we designed cells containing an ectopically expressed calcium-sensing receptor rewired to a synthetic signaling cascade that activates expression of transgenic tyrosinase, which produces melanin in response to persistently increased blood Ca2+ We confirmed that the melanin-generated color change produced by this biomedical tattoo could be detected with the naked eye and optically quantified. The system was validated in wild-type mice bearing subcutaneously implanted encapsulated engineered cells. All animals inoculated with hypercalcemic breast and colon adenocarcinoma cells developed tattoos, whereas no tattoos were seen in animals inoculated with normocalcemic tumor cells. All tumor-bearing animals remained asymptomatic throughout the 38-day experimental period. Although hypercalcemia is also associated with other pathologies, our findings demonstrate that it is possible to detect hypercalcemia associated with cancer in murine models using this cell-based diagnostic strategy.
Collapse
Affiliation(s)
- Aizhan Tastanova
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Marc Folcher
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Marius Müller
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Gieri Camenisch
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Aaron Ponti
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Thomas Horn
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Maria S Tikhomirova
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland. .,Faculty of Science, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| |
Collapse
|
37
|
Assaker G, Camirand A, Abdulkarim B, Omeroglu A, Deschenes J, Joseph K, Noman ASM, Ramana Kumar AV, Kremer R, Sabri S. PTHrP, A Biomarker for CNS Metastasis in Triple-Negative Breast Cancer and Selection for Adjuvant Chemotherapy in Node-Negative Disease. JNCI Cancer Spectr 2019; 4:pkz063. [PMID: 32296756 PMCID: PMC7050156 DOI: 10.1093/jncics/pkz063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 07/01/2019] [Accepted: 08/08/2019] [Indexed: 12/19/2022] Open
Abstract
Background Triple-negative breast cancer (TNBC) is characterized by poor prognosis and lack of targeted therapies and biomarkers to guide decisions on adjuvant chemotherapy. Parathyroid hormone-related protein (PTHrP) is frequently overexpressed in breast cancer and involved in proliferation and metastasis, two hallmarks of poor prognosis for node-negative breast cancer. We investigated the prognostic value of PTHrP with respect to organ-specific metastasis and nodal status in TNBC. Methods We assessed PTHrP expression using immunohistochemistry in a clinically annotated tissue microarray for a population-based study of 314 patients newly diagnosed with TNBC, then analyzed its correlation to progression and survival using Kaplan-Meier and Cox regression analyses. The Cancer Genome Atlas (TCGA) validation analysis was performed through Bioconductor. All statistical tests were two-sided. Results PTHrP overexpression (160 of 290 scorable cases, 55.2%) was statistically significantly associated in univariate analysis with decreased overall survival (OS) in our cohort (P = .0055) and The Cancer Genome Atlas (P = .0018) and decreased central nervous system (CNS)-progression-free survival (P = .0029). In multivariate analysis, PTHrP was a statistically significant independent prognostic factor for CNS-progression-free survival in TNBC (hazard ratio [HR] = 5.014, 95% confidence interval [CI] = 1.421 to 17.692, P = .0122) and for OS selectively in node-negative TNBC (HR = 2.423, 95% CI = 1.129 to 5.197, P = .0231). Strikingly, PTHrP emerged as the only statistically significant prognostic factor (HR = 2.576, 95% CI = 1.019 to 6.513, P = .0456) for OS of low-clinical risk node-negative patients who did not receive adjuvant chemotherapy. Conclusions PTHrP is a novel independent prognostic factor for CNS metastasis and adjuvant chemotherapy selection of low-clinical risk node-negative TNBC. Its predictive value needs to be prospectively assessed in clinical trials.
Collapse
Affiliation(s)
- Gloria Assaker
- See the Notes section for the full list of authors' affiliations
| | - Anne Camirand
- See the Notes section for the full list of authors' affiliations
| | | | - Atilla Omeroglu
- See the Notes section for the full list of authors' affiliations
| | - Jean Deschenes
- See the Notes section for the full list of authors' affiliations
| | - Kurian Joseph
- See the Notes section for the full list of authors' affiliations
| | | | | | - Richard Kremer
- See the Notes section for the full list of authors' affiliations
| | - Siham Sabri
- See the Notes section for the full list of authors' affiliations
| |
Collapse
|
38
|
Regulation of Hedgehog signaling Offers A Novel Perspective for Bone Homeostasis Disorder Treatment. Int J Mol Sci 2019; 20:ijms20163981. [PMID: 31426273 PMCID: PMC6719140 DOI: 10.3390/ijms20163981] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/10/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023] Open
Abstract
The hedgehog (HH) signaling pathway is central to the regulation of bone development and homeostasis. HH signaling is not only involved in osteoblast differentiation from bone marrow mesenchymal stem cells (BM-MSCs), but also acts upstream within osteoblasts via the OPG/RANK/RANKL axis to control the expression of RANKL. HH signaling has been found to up-regulate parathyroid hormone related protein (PTHrP) expression in osteoblasts, which in turn activates its downstream targets nuclear factor of activated T cells (NFAT) and cAMP responsive element binding protein (CREB), and as a result CREB and NFAT cooperatively increase RANKL expression and osteoclastogenesis. Osteoblasts must remain in balance with osteoclasts in order to avoid excessive bone formation or resorption, thereby maintaining bone homeostasis. This review systemically summarizes the mechanisms whereby HH signaling induces osteoblast development and controls RANKL expression through PTHrP in osteoblasts. Proper targeting of HH signaling may offer a therapeutic option for treating bone homeostasis disorders.
Collapse
|
39
|
García M, Rodríguez-Hernández CJ, Mateo-Lozano S, Pérez-Jaume S, Gonçalves-Alves E, Lavarino C, Mora J, de Torres C. Parathyroid hormone-like hormone plays a dual role in neuroblastoma depending on PTH1R expression. Mol Oncol 2019; 13:1959-1975. [PMID: 31293052 PMCID: PMC6717746 DOI: 10.1002/1878-0261.12542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/21/2019] [Accepted: 07/08/2019] [Indexed: 12/15/2022] Open
Abstract
We have previously reported the expression of parathyroid hormone‐like hormone (PTHLH) in well‐differentiated, Schwannian stroma‐rich neuroblastic tumors. The aim of this study was to functionally assess the role of PTHLH and its receptor, PTH1R, in neuroblastoma. Stable knockdown of PTHLH and PTH1R was conducted in neuroblastoma cell lines to investigate the succeeding phenotype induced both in vitro and in vivo. Downregulation of PTHLH reduced MYCN expression and subsequently induced cell cycle arrest, senescence, and migration and invasion impairment in a MYCN‐amplified, TP53‐mutated neuroblastoma cell line. These phenotypes were associated with reduced tumorigenicity in a murine model. We also show that PTHLH expression is not under the control of the calcium‐sensing receptor in neuroblastoma. Conversely, its production is stimulated by epidermal growth factor receptor (EGFR). Accordingly, irreversible EGFR inhibition with canertinib abolished PTHLH expression. The oncogenic role of PTHLH appeared to be a consequence of its intracrine function, as downregulation of its receptor, PTH1R, increased anchorage‐independent growth and induced a more undifferentiated, invasive phenotype. Respectively, high PTH1R mRNA expression was found in MYCN nonamplified primary tumors and also significantly associated with other prognostic factors of good outcome. This study provides the first evidence of the dual role of PTHLH in the behavior of neuroblastomas. Moreover, the identification of EGFR as a transcriptional regulator of PTHLH in neuroblastoma provides a novel therapeutic opportunity to promote a less aggressive tumor phenotype through irreversible inhibition of EGFR tyrosine kinase activity.
Collapse
Affiliation(s)
- Marta García
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | | | - Silvia Mateo-Lozano
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Sara Pérez-Jaume
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Eliana Gonçalves-Alves
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Cinzia Lavarino
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain.,Department of Haematology and Oncology, Hospital Sant Joan de Déu Barcelona, Esplugues de Llobregat, Spain
| | - Jaume Mora
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain.,Department of Haematology and Oncology, Hospital Sant Joan de Déu Barcelona, Esplugues de Llobregat, Spain
| | - Carmen de Torres
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain.,Department of Haematology and Oncology, Hospital Sant Joan de Déu Barcelona, Esplugues de Llobregat, Spain
| |
Collapse
|
40
|
He S, Tang J, Diao N, Liao Y, Shi J, Xu X, Xie F, Bai L. Parathyroid hormone-related protein activates HSCs via hedgehog signalling during liver fibrosis development. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1984-1994. [PMID: 31311343 DOI: 10.1080/21691401.2019.1615931] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shuying He
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Tang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Na Diao
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan Liao
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Shi
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoping Xu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fang Xie
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lan Bai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
41
|
Martin TJ, Johnson RW. Multiple actions of parathyroid hormone-related protein in breast cancer bone metastasis. Br J Pharmacol 2019; 178:1923-1935. [PMID: 31087800 DOI: 10.1111/bph.14709] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/16/2019] [Accepted: 04/23/2019] [Indexed: 12/14/2022] Open
Abstract
The sequence similarity within the amino-terminal regions of parathyroid hormone (PTH) and PTH-related protein (PTHrP) allows the two to share actions at a common site, the PTH1 receptor. A number of biological activities have been ascribed to actions of other domains within PTHrP. PTHrP production by late stage breast cancer has been shown to contribute to bone metastasis formation through promotion of osteoclast formation and bone resorption by action through PTH1 receptors. There is evidence also for a role for PTHrP early in breast cancer that is protective against tumour progression. No signalling pathway has been identified for this effect. PTHrP has also been identified as a factor promoting the emergence of breast cancer cells from dormancy in bone. In that case, PTHrP does not function through activation of PTH1 receptors, despite having very substantial effects on transcriptional activity of the breast cancer cells. This indicates actions of PTHrP that are non-canonical, that is, mediated through domains other than the amino-terminal. It is concluded that PTHrP has several distinct paracrine, autocrine, and intracrine actions in the course of breast cancer pathophysiology. Some are mediated through action at PTH1 receptors and others are controlled by other domains within PTHrP. LINKED ARTICLES: This article is part of a themed issue on The molecular pharmacology of bone and cancer-related bone diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.9/issuetoc.
Collapse
Affiliation(s)
- T John Martin
- St Vincent's Institute of Medical Research, University of Melbourne, St Vincent's Health, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, St Vincent's Health, Melbourne, Victoria, Australia
| | - Rachelle W Johnson
- Department of Medicine, Division of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
42
|
Ratnadiwakara M, Rooke M, Ohms SJ, French HJ, Williams RBH, Li RW, Zhang D, Lucas RM, Blackburn AC. The SuprMam1 breast cancer susceptibility locus disrupts the vitamin D/ calcium/ parathyroid hormone pathway and alters bone structure in congenic mice. J Steroid Biochem Mol Biol 2019; 188:48-58. [PMID: 30529760 DOI: 10.1016/j.jsbmb.2018.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 01/08/2023]
Abstract
Breast cancer is a complex disease, and approximately 30% of cases are considered to be hereditary or familial, with a large fraction of this being polygenic. However, it is difficult to demonstrate the functional importance of genes of small effect in population studies, and these genes are not always easily targeted for prevention. The SuprMam (suppressor of mammary tumour) breast cancer susceptibility alleles were previously identified as contributors to spontaneous mammary tumour development in Trp53+/- mice. In this study, we have generated and characterised congenic mice that contain the BALB/c SuprMam1 (susceptibility) locus on a C57BL/6 (resistant) background and discovered a subtle impairment in the vitamin D/ calcium/ parathyroid hormone (PTH) pathway. This was evident as altered gene expression in the mammary glands of key players in this pathway. Further functional analysis of the mice revealed elevated PTH levels, reduced Cyp27b1 expression in kidneys, and reduced trabecular bone volume/ tissue volume percentage. Plasma 25(OH)D and serum calcium were unchanged. This impairment was a result of genetic differences and occurred only in females, but the elevated PTH levels could be overcome with either calcium or vitamin D dietary supplementation. Either low levels of active vitamin D (1,25(OH)2D) or chronically elevated PTH levels may contribute to increased breast cancer susceptibility. These indicators are not easily measured in human population studies, but either mechanism may be preventable with dietary calcium or vitamin D supplements. Therefore, SuprMam congenic mice could serve as a valuable model for studying the role of gene-hormone-environment interactions of the vitamin D/ calcium/ PTH pathway in cancer and other diseases and for testing preventive interventions.
Collapse
Affiliation(s)
- Madara Ratnadiwakara
- Cancer Metabolism and Genetics Group, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - Melissa Rooke
- Cancer Metabolism and Genetics Group, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - Stephen J Ohms
- ACRF Biomolecular Resource Facility, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - Hugh J French
- Molecular Systems Biology Group, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - Rohan B H Williams
- Molecular Systems Biology Group, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - Rachel W Li
- Trauma and Orthopaedic Research Laboratory, The Medical School, The Australian National University, Canberra, ACT, 2601, Australia
| | - Donghai Zhang
- Trauma and Orthopaedic Research Laboratory, The Medical School, The Australian National University, Canberra, ACT, 2601, Australia
| | - Robyn M Lucas
- National Centre for Epidemiology and Population Health, Research School of Population Health, The Australian National University, Canberra, ACT, 2601, Australia
| | - Anneke C Blackburn
- Cancer Metabolism and Genetics Group, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
43
|
Sharma B, Nannuru KC, Saxena S, Varney ML, Singh RK. CXCR2: A Novel Mediator of Mammary Tumor Bone Metastasis. Int J Mol Sci 2019; 20:ijms20051237. [PMID: 30871004 PMCID: PMC6429058 DOI: 10.3390/ijms20051237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/23/2019] [Accepted: 03/07/2019] [Indexed: 01/23/2023] Open
Abstract
Most breast cancer patients die due to bone metastasis. Although metastasis accounts for 5% of the breast cancer cases, it is responsible for most of the deaths. Sometimes even before the detection of a primary tumor, most of the patients have bone and lymph node metastasis. Moreover, at the time of death, breast cancer patients have the bulk of the tumor burden in their bones. Therapy options are available for the treatment of primary tumors, but there are minimal options for treating breast cancer patients who have bone metastasis. C-X-C motif chemokine receptor type 2 (CXCR2) receptor-mediated signaling has been shown to play a critical role during bone-related inflammations and its ligands C-X-C motif chemokine ligand 6 (CXCL6) and 8 (CXCL8) aid in the resorption of bone during bone metastasis. In this study, we tested the hypothesis that CXCR2 contributes to mammary tumor-induced osteolysis and bone metastasis. In the present study, we examined the role of both tumor cell-derived and host-derived CXCR2 in influencing mammary tumor cell bone metastasis. For understanding the role of tumor cell-derived CXCR2, we utilized Cl66 CXCR2 knockdown (Cl66-shCXCR2) and Cl66-Control cells (Cl66-Control) and observed a significant decrease in tumor growth and tumor-induced osteolysis in Cl66-shCXCR2 cells in comparison with the Cl66-Control cells. Next, for understanding the role of host-derived CXCR2, we utilized mice with genomic knockdown of CXCR2 (Cxcr2-/-) and injected Cl66-Luciferase (Cl66-Luc) or 4T1-Luciferase (4T1-Luc) cells. We observed decreased bone destruction and metastasis in the bone of Cxcr2-/- mice. Our data suggest the importance of both tumor cell- and host-derived CXCR2 signaling in the bone metastasis of breast cancer cells.
Collapse
Affiliation(s)
| | | | - Sugandha Saxena
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5845, USA.
| | - Michelle L Varney
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5845, USA.
| | - Rakesh K Singh
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5845, USA.
| |
Collapse
|
44
|
Calvo N, Carriere P, Martín MJ, Gigola G, Gentili C. PTHrP treatment of colon cancer cells promotes tumor associated-angiogenesis by the effect of VEGF. Mol Cell Endocrinol 2019; 483:50-63. [PMID: 30639585 DOI: 10.1016/j.mce.2019.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/30/2018] [Accepted: 01/07/2019] [Indexed: 02/06/2023]
Abstract
We showed that Parathyroid Hormone-related Peptide (PTHrP) induces proliferation, migration, survival and chemoresistance via MAPKs and PI3K/AKT pathways in colorectal cancer (CRC) cells. The objective of this study was to investigate if PTHrP is also involved in tumor angiogenesis. PTHrP increased VEGF expression and the number of structures with characteristics of neoformed vessels in xenografts tumor. Also, PTHrP increased mRNA levels of VEGF, HIF-1α and MMP-9 via ERK1/2 and PI3K/Akt pathways in Caco-2 and HCT116 cells. Tumor conditioned media (TCMs) from both cell lines treated with PTHrP increases the number of cells, the migration and the tube formation in the endothelial HMEC-1 cells, whereas the neutralizing antibody against VEGF diminished this response. In contrast, PTHrP by direct treatment only increased ERK1/2 phosphorylation and the HMEC-1 cells number. These results provide the first evidence related to the mode of action of PTHrP that leads to its proangiogenic effects in the CRC.
Collapse
Affiliation(s)
- Natalia Calvo
- Dept. Biología Bioquímica y Farmacia-INBIOSUR, Universidad Nacional del Sur, Bahía Blanca, Argentina.
| | - Pedro Carriere
- Dept. Biología Bioquímica y Farmacia-INBIOSUR, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - María Julia Martín
- Dept. Biología Bioquímica y Farmacia-INBIOSUR, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Graciela Gigola
- Dept. Biología Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Claudia Gentili
- Dept. Biología Bioquímica y Farmacia-INBIOSUR, Universidad Nacional del Sur, Bahía Blanca, Argentina
| |
Collapse
|
45
|
Zhang R, Li J, Assaker G, Camirand A, Sabri S, Karaplis AC, Kremer R. Parathyroid Hormone-Related Protein (PTHrP): An Emerging Target in Cancer Progression and Metastasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1164:161-178. [DOI: 10.1007/978-3-030-22254-3_13] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
46
|
Hussain S, Saxena S, Shrivastava S, Mohanty AK, Kumar S, Singh RJ, Kumar A, Wani SA, Gandham RK, Kumar N, Sharma AK, Tiwari AK, Singh RK. Gene expression profiling of spontaneously occurring canine mammary tumours: Insight into gene networks and pathways linked to cancer pathogenesis. PLoS One 2018; 13:e0208656. [PMID: 30517191 PMCID: PMC6281268 DOI: 10.1371/journal.pone.0208656] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/20/2018] [Indexed: 11/24/2022] Open
Abstract
Spontaneously occurring canine mammary tumours (CMTs) are the most common neoplasms of unspayed female dogs leading to thrice higher mortality rates than human breast cancer. These are also attractive models for human breast cancer studies owing to clinical and molecular similarities. Thus, they are important candidates for biomarker studies and understanding cancer pathobiology. The study was designed to explore underlying molecular networks and pathways in CMTs for deciphering new prognostic factors and therapeutic targets. To gain an insight into various pathways and networks associated with the development and pathogenesis of CMTs, comparative cDNA microarray expression profiling was performed using CMT tissues and healthy mammary gland tissues. Upon analysis, 1700 and 1287 differentially expressed genes (DEGs, P ≤ 0.05) were identified in malignant and benign tissues, respectively. DEGs identified from microarray analysis were further annotated using the Ingenuity Systems Pathway Analysis (IPA) tool for detection of deregulated canonical pathways, upstream regulators, and networks associated with malignant, as well as, benign disease. Top scoring key networks in benign and malignant mammary tumours were having central nodes of VEGF and BUB1B, respectively. Cyclins & cell cycle regulation and TREM1 signalling were amongst the top activated canonical pathways in CMTs. Other cancer related significant pathways like apoptosis signalling, dendritic cell maturation, DNA recombination and repair, Wnt/β-catenin signalling, etc. were also found to be altered. Furthermore, seven proteins (ANXA2, APOCII, CDK6, GATC, GDI2, GNAQ and MYH9) highly up-regulated in malignant tissues were identified by two-dimensional gel electrophoresis (2DE) and MALDI-TOF PMF studies which were in concordance with microarray data. Thus, the study has uncovered ample number of candidate genes associated with CMTs which need to be further validated as therapeutic targets and prognostic markers.
Collapse
Affiliation(s)
- Shahid Hussain
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute [Deemed University], Izatnagar, Bareilly, UP, India
| | - Sonal Saxena
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute [Deemed University], Izatnagar, Bareilly, UP, India
- * E-mail: (SON); (SAM); (RKS)
| | - Sameer Shrivastava
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute [Deemed University], Izatnagar, Bareilly, UP, India
- * E-mail: (SON); (SAM); (RKS)
| | - Ashok Kumar Mohanty
- Animal Biotechnology Division, ICAR-National Dairy Research Institute [Deemed University], Karnal, Haryana, India
| | - Sudarshan Kumar
- Animal Biotechnology Division, ICAR-National Dairy Research Institute [Deemed University], Karnal, Haryana, India
| | - Rajkumar James Singh
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute [Deemed University], Izatnagar, Bareilly, UP, India
| | - Abhinav Kumar
- Department of Computer Science and Engineering, Indian Institute of Technology (IIT) BHU, Varanasi, India
| | | | - Ravi Kumar Gandham
- National Institute of Animal Biotechnology, Miyapur, Hyderabad, Telangana, India
| | - Naveen Kumar
- Division of Veterinary Surgery, ICAR-Indian Veterinary Research Institute [Deemed University], Izatnagar, Bareilly, UP, India
| | - Anil Kumar Sharma
- Division of Veterinary Pathology, ICAR-Indian Veterinary Research Institute [Deemed University], Izatnagar, Bareilly, UP, India
| | - Ashok Kumar Tiwari
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute [Deemed University], Izatnagar, Bareilly, UP, India
| | - Raj Kumar Singh
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute [Deemed University], Izatnagar, Bareilly, UP, India
- * E-mail: (SON); (SAM); (RKS)
| |
Collapse
|
47
|
Tran TH, Utama FE, Sato T, Peck AR, Langenheim JF, Udhane SS, Sun Y, Liu C, Girondo MA, Kovatich AJ, Hooke JA, Shriver CD, Hu H, Palazzo JP, Bibbo M, Auer PW, Flister MJ, Hyslop T, Mitchell EP, Chervoneva I, Rui H. Loss of Nuclear Localized Parathyroid Hormone-Related Protein in Primary Breast Cancer Predicts Poor Clinical Outcome and Correlates with Suppressed Stat5 Signaling. Clin Cancer Res 2018; 24:6355-6366. [PMID: 30097435 DOI: 10.1158/1078-0432.ccr-17-3280] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/29/2018] [Accepted: 08/07/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE Parathyroid hormone-related protein (PTHrP) is required for normal mammary gland development and biology. A PTHLH gene polymorphism is associated with breast cancer risk, and PTHrP promotes growth of osteolytic breast cancer bone metastases. Accordingly, current dogma holds that PTHrP is upregulated in malignant primary breast tumors, but solid evidence for this assumption is missing. EXPERIMENTAL DESIGN We used quantitative IHC to measure PTHrP in normal and malignant breast epithelia, and correlated PTHrP levels in primary breast cancer with clinical outcome. RESULTS PTHrP levels were markedly downregulated in malignant compared with normal breast epithelia. Moreover, low levels of nuclear localized PTHrP in cancer cells correlated with unfavorable clinical outcome in a test and a validation cohort of breast cancer treated at different institutions totaling nearly 800 cases. PTHrP mRNA levels in tumors of a third cohort of 737 patients corroborated this association, also after multivariable adjustment for standard clinicopathologic parameters. Breast cancer PTHrP levels correlated strongly with transcription factors Stat5a/b, which are established markers of favorable prognosis and key mediators of prolactin signaling. Prolactin stimulated PTHrP transcript and protein in breast cancer cell lines in vitro and in vivo, effects mediated by Stat5 through the P2 gene promoter, producing transcript AT6 encoding the PTHrP 1-173 isoform. Low levels of AT6, but not two alternative transcripts, correlated with poor clinical outcome. CONCLUSIONS This study overturns the prevailing view that PTHrP is upregulated in primary breast cancers and identifies a direct prolactin-Stat5-PTHrP axis that is progressively lost in more aggressive tumors.
Collapse
Affiliation(s)
- Thai H Tran
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Fransiscus E Utama
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Takahiro Sato
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Amy R Peck
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - John F Langenheim
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Sameer S Udhane
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yunguang Sun
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Chengbao Liu
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Melanie A Girondo
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Albert J Kovatich
- John P. Murtha Cancer Center, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Jeffrey A Hooke
- John P. Murtha Cancer Center, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Craig D Shriver
- John P. Murtha Cancer Center, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Hai Hu
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, Pennsylvania
| | - Juan P Palazzo
- Department of Pathology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Marluce Bibbo
- Department of Pathology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Paul W Auer
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Michael J Flister
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Terry Hyslop
- Duke Cancer Institute, Department of Biostatistics & Bioinformatics, Duke University, Durham, North Carolina
| | - Edith P Mitchell
- Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Inna Chervoneva
- Division of Biostatistics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
48
|
Abstract
Multiple myeloma (MM) is the second-most-common hematologic malignancy and the most frequent cancer to involve bone. MM bone disease (MMBD) has devastating consequences for patients, including dramatic bone loss, severe bone pain, and pathological fractures that markedly decrease the quality of life and impact survival of MM patients. MMBD results from excessive osteoclastic bone resorption and persistent suppressed osteoblastic bone formation, causing lytic lesions that do not heal, even when patients are in complete and prolonged remission. This review discusses the cellular and molecular mechanisms that regulate the uncoupling of bone remodeling in MM, the effects of MMBD on tumor growth, and potential therapeutic approaches that may prevent severe bone loss and repair damaged bone in MM patients.
Collapse
Affiliation(s)
- Silvia Marino
- Department of Medicine, Division Hematology Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - G David Roodman
- Department of Medicine, Division Hematology Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Roudebush VA Medical Center, Indianapolis, Indiana 46202
| |
Collapse
|
49
|
Brook N, Brook E, Dharmarajan A, Dass CR, Chan A. Breast cancer bone metastases: pathogenesis and therapeutic targets. Int J Biochem Cell Biol 2018; 96:63-78. [DOI: 10.1016/j.biocel.2018.01.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/31/2017] [Accepted: 01/04/2018] [Indexed: 01/03/2023]
|
50
|
de la Escosura-Muñiz A, Espinoza-Castañeda M, Chamorro-García A, Rodríguez-Hernández CJ, de Torres C, Merkoçi A. In situ monitoring of PTHLH secretion in neuroblastoma cells cultured onto nanoporous membranes. Biosens Bioelectron 2018; 107:62-68. [PMID: 29438908 DOI: 10.1016/j.bios.2018.01.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/25/2018] [Accepted: 01/30/2018] [Indexed: 01/23/2023]
Abstract
In this work, we propose for the first time the use of anodic aluminum oxide (AAO) nanoporous membranes for in situ monitoring of parathyroid hormone-like hormone (PTHLH) secretion in cultured human cells. The biosensing system is based on the nanochannels blockage upon immunocomplex formation, which is electrically monitored through the voltammetric oxidation of Prussian blue nanoparticles (PBNPs). Models evaluated include a neuroblastoma cell line (SK-N-AS) and immortalized keratinocytes (HaCaT) as a control of high PTHLH production. The effect of total number of seeded cells and incubation time on the secreted PTHLH levels is assessed, finding that secreted PTHLH levels range from approximately 60 to 400 ng/mL. Moreover, our methodology is also applied to analyse PTHLH production following PTHLH gene knockdown upon transient cell transfection with a specific silencing RNA (siRNA). Given that inhibition of PTHLH secretion reduces cell proliferation, survival and invasiveness in a number of tumors, our system provides a powerful tool for the preclinical evaluation of therapies that regulate PTHLH production. This nanoporous membrane - based sensing technology might be useful to monitor the active secretion of other proteins as well, thus contributing to characterize their regulation and function.
Collapse
Affiliation(s)
- Alfredo de la Escosura-Muñiz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Marisol Espinoza-Castañeda
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Alejandro Chamorro-García
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | | | | | - Arben Merkoçi
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|