1
|
Costello LF, McMenamin PG, Quayle MR, Bertram JF, Adams JW. Applying 3D surface scanning technology to create photorealistic three-dimensional printed replicas of human anatomy. Future Sci OA 2024; 10:2381956. [PMID: 39135497 PMCID: PMC11323862 DOI: 10.1080/20565623.2024.2381956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/12/2024] [Indexed: 08/16/2024] Open
Abstract
Aim: To describe advances in 3D data capture and printing that allow photorealistic replicas of human anatomical specimens for education and research, and discuss advantages of current generation printing for replica design and manufacture. Materials & methods: We combine surface scanning and computerized tomography datasets that maximize precise color and geometric capture with ultra violet (UV) curable resin printing to replicate human anatomical specimens. Results: We describe the process for color control, print design and translation of photorealistic 3D meshes into 3D prints in durable resins. Conclusion: Current technologies allow previously unachievable ability to capture and reproduce anatomical specimens, and provide a platform for a new generation of 3D printed teaching materials to be designed and used in anatomy education environments.
Collapse
Affiliation(s)
- Lucy F Costello
- Centre for Human Anatomy Education, Department of Anatomy & Developmental Biology, Monash University, Clayton, Victoria, 3800, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Paul G McMenamin
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Michelle R Quayle
- Centre for Human Anatomy Education, Department of Anatomy & Developmental Biology, Monash University, Clayton, Victoria, 3800, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - John F Bertram
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Justin W Adams
- Centre for Human Anatomy Education, Department of Anatomy & Developmental Biology, Monash University, Clayton, Victoria, 3800, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
- Geosciences, Museums Victoria, Melbourne, Victoria, 3000, Australia
| |
Collapse
|
2
|
Goswami D, Kazim M, Nguyen CT. Applications of 3D Printing Technology in Diagnosis and Management of Heart Failure. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2024; 26:271-277. [DOI: 10.1007/s11936-024-01045-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/12/2024] [Indexed: 01/03/2025]
Abstract
AbstractPurpose of Review3D printing (3DP) technology has emerged as a valuable tool for surgeons and cardiovascular interventionalists in developing and tailoring patient-specific treatment strategies, especially in complex and rare cases. This short review covers advances, primarily in the last three years, in the use of 3DP in the diagnosis and management of heart failure and related cardiovascular conditions.Recent FindingsLatest studies include utilization of 3DP in ventricular assist device placement, congenital heart disease identification and treatment, pre-operative planning and management in hypertrophic cardiomyopathy, clinician as well as patient education, and benchtop mock circulatory loops.SummaryStudies reported benefits for patients including significantly reduced operation time, potential for lower radiation exposure, shorter mechanical ventilation times, lower intraoperative blood loss, and less total hospitalization time, as a result of the use of 3DP. As 3DP technology continues to evolve, clinicians, basic science researchers, engineers, and regulatory authorities must collaborate closely to optimize the utilization of 3D printing technology in the diagnosis and management of heart failure.
Collapse
|
3
|
Sun Z, Silberstein J, Vaccarezza M. Cardiovascular Computed Tomography in the Diagnosis of Cardiovascular Disease: Beyond Lumen Assessment. J Cardiovasc Dev Dis 2024; 11:22. [PMID: 38248892 PMCID: PMC10816599 DOI: 10.3390/jcdd11010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Cardiovascular CT is being widely used in the diagnosis of cardiovascular disease due to the rapid technological advancements in CT scanning techniques. These advancements include the development of multi-slice CT, from early generation to the latest models, which has the capability of acquiring images with high spatial and temporal resolution. The recent emergence of photon-counting CT has further enhanced CT performance in clinical applications, providing improved spatial and contrast resolution. CT-derived fractional flow reserve is superior to standard CT-based anatomical assessment for the detection of lesion-specific myocardial ischemia. CT-derived 3D-printed patient-specific models are also superior to standard CT, offering advantages in terms of educational value, surgical planning, and the simulation of cardiovascular disease treatment, as well as enhancing doctor-patient communication. Three-dimensional visualization tools including virtual reality, augmented reality, and mixed reality are further advancing the clinical value of cardiovascular CT in cardiovascular disease. With the widespread use of artificial intelligence, machine learning, and deep learning in cardiovascular disease, the diagnostic performance of cardiovascular CT has significantly improved, with promising results being presented in terms of both disease diagnosis and prediction. This review article provides an overview of the applications of cardiovascular CT, covering its performance from the perspective of its diagnostic value based on traditional lumen assessment to the identification of vulnerable lesions for the prediction of disease outcomes with the use of these advanced technologies. The limitations and future prospects of these technologies are also discussed.
Collapse
Affiliation(s)
- Zhonghua Sun
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia; (J.S.); (M.V.)
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA 6102, Australia
| | - Jenna Silberstein
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia; (J.S.); (M.V.)
| | - Mauro Vaccarezza
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia; (J.S.); (M.V.)
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
4
|
Jinga MR, Lee RBY, Chan KL, Marway PS, Nandapalan K, Rhode K, Kui C, Lee M. Assessing the impact of 3D image segmentation workshops on anatomical education and image interpretation: A prospective pilot study. ANATOMICAL SCIENCES EDUCATION 2023; 16:1024-1032. [PMID: 37381649 DOI: 10.1002/ase.2314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
Three-dimensional (3D) segmentation, a process involving digitally marking anatomical structures on cross-sectional images such as computed tomography (CT), and 3D printing (3DP) are being increasingly utilized in medical education. Exposure to this technology within medical schools and hospitals remains limited in the United Kingdom. M3dicube UK, a national medical student, and junior doctor-led 3DP interest group piloted a 3D image segmentation workshop to gauge the impact of incorporating 3D segmentation technology on anatomical education. The workshop, piloted with medical students and doctors within the United Kingdom between September 2020 and 2021, introduced participants to 3D segmentation and offered practical experience segmenting anatomical models. Thirty-three participants were recruited, with 33 pre-workshop and 24 post-workshop surveys completed. Two-tailed t-tests were used to compare mean scores. From pre- to post-workshop, increases were noted in participants' confidence in interpreting CT scans (2.36 to 3.13, p = 0.010) and interacting with 3D printing technology (2.15 to 3.33, p = 0.00053), perceived utility of creating 3D models to aid image interpretation (4.18 to 4.45, p = 0.0027), improved anatomical understanding (4.2 to 4.7, p = 0.0018), and utility in medical education (4.45 to 4.79, p = 0.077). This pilot study provides early evidence of the utility of exposing medical students and healthcare professionals in the United Kingdom to 3D segmentation as part of their anatomical education, with additional benefit in imaging interpretation ability.
Collapse
Affiliation(s)
| | - Rachel B Y Lee
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Kai Lok Chan
- The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Prabhvir S Marway
- Southend Hospital, Mid and South Essex NHS Foundation Trust, Southend-on-Sea, UK
| | | | - Kawal Rhode
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Christopher Kui
- Newcastle-Upon-Tyne Hospitals NHS Foundation Trust, Newcastle-Upon-Tyne, UK
| | - Matthew Lee
- Transformation Directorate, NHS England, London, UK
| |
Collapse
|
5
|
Mohanadas HP, Nair V, Doctor AA, Faudzi AAM, Tucker N, Ismail AF, Ramakrishna S, Saidin S, Jaganathan SK. A Systematic Analysis of Additive Manufacturing Techniques in the Bioengineering of In Vitro Cardiovascular Models. Ann Biomed Eng 2023; 51:2365-2383. [PMID: 37466879 PMCID: PMC10598155 DOI: 10.1007/s10439-023-03322-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023]
Abstract
Additive Manufacturing is noted for ease of product customization and short production run cost-effectiveness. As our global population approaches 8 billion, additive manufacturing has a future in maintaining and improving average human life expectancy for the same reasons that it has advantaged general manufacturing. In recent years, additive manufacturing has been applied to tissue engineering, regenerative medicine, and drug delivery. Additive Manufacturing combined with tissue engineering and biocompatibility studies offers future opportunities for various complex cardiovascular implants and surgeries. This paper is a comprehensive overview of current technological advancements in additive manufacturing with potential for cardiovascular application. The current limitations and prospects of the technology for cardiovascular applications are explored and evaluated.
Collapse
Affiliation(s)
| | - Vivek Nair
- Computational Fluid Dynamics (CFD) Lab, Mechanical and Aerospace Engineering, University of Texas Arlington, Arlington, TX, 76010, USA
| | | | - Ahmad Athif Mohd Faudzi
- Faculty of Engineering, School of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
- Centre for Artificial Intelligence and Robotics, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Nick Tucker
- School of Engineering, College of Science, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Ahmad Fauzi Ismail
- School of Chemical and Energy Engineering, Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers & Nanotechnology Initiative, National University of Singapore, Singapore, Singapore
| | - Syafiqah Saidin
- IJNUTM Cardiovascular Engineering Centre, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Saravana Kumar Jaganathan
- Faculty of Engineering, School of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia.
- Centre for Artificial Intelligence and Robotics, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia.
- School of Engineering, College of Science, Brayford Pool, Lincoln, LN6 7TS, UK.
| |
Collapse
|
6
|
Luxford JC, Cheng TL, Mervis J, Anderson J, Clarke J, Croker S, Nusem E, Bray L, Gunasekera H, Scott KM. An Opportunity to See the Heart Defect Physically: Medical Student Experiences of Technology-Enhanced Learning with 3D Printed Models of Congenital Heart Disease. MEDICAL SCIENCE EDUCATOR 2023; 33:1095-1107. [PMID: 37886275 PMCID: PMC10597946 DOI: 10.1007/s40670-023-01840-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 10/28/2023]
Abstract
Three-dimensional (3D) printing is increasingly used in medical education and paediatric cardiology. A technology-enhanced learning (TEL) module was designed to accompany 3D printed models of congenital heart disease (CHD) to aid in the teaching of medical students. There are few studies evaluating the attitudes and perceptions of medical students regarding their experience of learning about CHD using 3D printing. This study aimed to explore senior medical students' experiences in learning about paediatric cardiology through a workshop involving 3D printed models of CHD supported by TEL in the form of online case-based learning. A mixed-methods evaluation was undertaken involving a post-workshop questionnaire (n = 94 students), and focus groups (n = 16 students). Focus group and free-text questionnaire responses underwent thematic analysis. Questionnaire responses demonstrated widespread user satisfaction; 91 (97%) students agreed that the workshop was a valuable experience. The highest-level satisfaction was for the physical 3D printed models, the clinical case-based learning, and opportunity for peer collaboration. Thematic analysis identified five key themes: a variable experience of prior learning, interplay between physical and online models, flexible and novel workshop structure, workshop supported the learning outcomes, and future opportunities for learning using 3D printing. A key novel finding was that students indicated the module increased their confidence to teach others about CHD and recommended expansion to other parts of the curriculum. 3D printed models of CHD are a valuable learning resource and contribute to the richness and enjoyment of medical student learning, with widespread satisfaction. Supplementary Information The online version contains supplementary material available at 10.1007/s40670-023-01840-w.
Collapse
Affiliation(s)
- Jack C. Luxford
- Faculty of Medicine and Health, Children’s Hospital Westmead Clinical School, The University of Sydney, Sydney, NSW Australia
- Heart Centre for Children, The Children’s Hospital at Westmead, Sydney, Australia
| | - Tegan L. Cheng
- Sydney School of Health Sciences, The University of Sydney, Sydney, NSW Australia
- EPIC Lab, The Children’s Hospital at Westmead, Sydney, Australia
| | - Jonathan Mervis
- Heart Centre for Children, The Children’s Hospital at Westmead, Sydney, Australia
| | - Jennifer Anderson
- Faculty of Medicine and Health, Children’s Hospital Westmead Clinical School, The University of Sydney, Sydney, NSW Australia
| | - Jillian Clarke
- Discipline of Medical Imaging, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW Australia
| | - Sarah Croker
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW Australia
| | - Erez Nusem
- School of Architecture, The University of Queensland, Brisbane, QLD Australia
| | - Liam Bray
- Faculty of Architecture, Design and Planning, The University of Sydney, Sydney, NSW Australia
| | - Hasantha Gunasekera
- Faculty of Medicine and Health, Children’s Hospital Westmead Clinical School, The University of Sydney, Sydney, NSW Australia
| | - Karen M. Scott
- Faculty of Medicine and Health, Children’s Hospital Westmead Clinical School, The University of Sydney, Sydney, NSW Australia
| |
Collapse
|
7
|
Yaprak F, Ozer MA, Govsa F, Cinkooglu A, Pinar Y, Gokmen G. Prespecialist perceptions of three-dimensional heart models in anatomical education. Surg Radiol Anat 2023; 45:1165-1175. [PMID: 37537403 DOI: 10.1007/s00276-023-03211-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023]
Abstract
PURPOSE This article aims to discuss the use of three-dimensional (3D) printed models of vascular variation cases as an educational tool for undergraduate and postgraduate anatomy students. METHODS This advanced study involved ten anatomy assistants who were provided with five distinct cases of congenital cardiovascular variations, each accompanied by a computed tomography angiography (CT-A) and 1:1 solid model format. The residents were asked to generate perceptions for both formats and then compare these perceptions based on identifying the variation, defining the structural features, and evaluating relevant educational perspectives. RESULTS The vascular origin measurement values compared to the statistically evaluated real values of the related cases showed that models were 1:1 identical copies. Qualitative assessment feedback from five stations supported the usefulness of 3D models as educational tools for organ anatomy, simulation of variational structures, and overall medical education and anatomy training. Models showcasing different anatomical variations such as aortic arch with Type 2 pattern, a right-sided aortic arch with Type 2 pattern, an aberrant right subclavian artery, arteria lusoria in thorax, and a left coronary artery originating from pulmonary trunk in an Alcapa type pattern allow for better analysis due to their complex anatomies, thus optimizing the study of variation-specific anatomy. The perception level in the 3D model contained higher points in all of the nine parameters, namely identification of cardiovascular variations, defining the vessel with anomaly, aortic arch branch count and appearance order, feasibility of using it in peers and student education. 3D models received a score 9.1 points, while CT-A images were rated at 4.8 out of 10. CONCLUSION 3D printed anatomical models of variational cardiovascular anatomy serve as essential components of anatomy training and postgraduate clinical perception by granting demonstrative feedback and a superior comprehension of the visuospatial relationship between the anatomical structures.
Collapse
Affiliation(s)
- Fulya Yaprak
- Department of Anatomy, Digital Imaging and 3D Modelling Laboratory, Faculty of Medicine, Ege University, Izmir, Turkey
- Department of Anatomy, Faculty of Medicine, Izmir Democracy University, Izmir, Turkey
| | - Mehmet Asim Ozer
- Department of Anatomy, Digital Imaging and 3D Modelling Laboratory, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Figen Govsa
- Department of Anatomy, Digital Imaging and 3D Modelling Laboratory, Faculty of Medicine, Ege University, Izmir, Turkey.
| | - Akin Cinkooglu
- Department of Radiology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Yelda Pinar
- Department of Anatomy, Digital Imaging and 3D Modelling Laboratory, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Gokhan Gokmen
- Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
8
|
Wibowo G, Anggrahini DW, Rismawanti RI, Fatimah VAN, Hakim A, Hidayah RN, Gharini PPR. 3D-Printing-Based Fluoroscopic Coronary Angiography Simulator Improves Learning Capability Among Cardiology Trainees. ADVANCES IN MEDICAL EDUCATION AND PRACTICE 2023; 14:763-771. [PMID: 37465375 PMCID: PMC10351594 DOI: 10.2147/amep.s407629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/23/2023] [Indexed: 07/20/2023]
Abstract
Aim One of the essential competencies of cardiology trainees is the ability to perform coronary angiography with good projection. Purpose This study is a research and development study aimed at testing the effectiveness of 3D-printing-based fluoroscopic coronary angiography simulator as a learning medium for diagnostic coronary angiogram. Methods Thirty-four cardiology trainees randomly were divided into two groups. Both groups took a pretest before the intervention. The first group (group A) studied using conventional learning media and underwent the first post-test. Afterward, they switched to a 3D-printing-based fluoroscopic coronary angiography simulator and underwent a second post-test. The second group (group B) studied using a 3D-printing-based fluoroscopic coronary angiography simulator, underwent the first post-test, switched to the conventional learning media, and underwent a second post-test. Results The delta between the post-test I and the pretest of group B was 8.53, higher than the delta between the post-test I and the pretest of group A (5.21) with a significant difference (p = 0.003). In group A, the delta between post-test II and pretest was 9.65, higher than the delta between post-test I and pretest (5.21) with a significant difference (p < 0.001). Conclusion 3D-printing-based fluoroscopic coronary angiography simulator is effective as a learning medium for coronary angiogram diagnostics.
Collapse
Affiliation(s)
- Ganda Wibowo
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Integrated Cardiovascular Center, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Dyah Wulan Anggrahini
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Integrated Cardiovascular Center, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Rochmi Isnaini Rismawanti
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Vita Arfiana Nurul Fatimah
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Alhadi Hakim
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Rachmadya Nur Hidayah
- Department of Medical Education and Bioethics, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Putrika Prastuti Ratna Gharini
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Integrated Cardiovascular Center, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| |
Collapse
|
9
|
Adnan S, Xiao J. A scoping review on the trends of digital anatomy education. Clin Anat 2023; 36:471-491. [PMID: 36583721 DOI: 10.1002/ca.23995] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/31/2022]
Abstract
Digital technologies are changing the landscape of anatomy education. To reveal the trend of digital anatomy education across medical science disciplines, searches were performed using PubMed, EMBASE, and MEDLINE bibliographic databases for research articles published from January 2010 to June 2021 (inclusive). The search was restricted to publications written in English language and to articles describing teaching tools in undergraduate and postgraduate anatomy and pre-vocational clinical anatomy training courses. Among 156 included studies across six health disciplines, 35% used three-dimensional (3D) digital printing tools, 24.2% augmented reality (AR), 22.3% virtual reality (VR), 11.5% web-based programs, and 4.5% tablet-based apps. There was a clear discipline-dependent preference in the choice and employment of digital anatomy education. AR and VR were the more commonly adopted digital tools for medical and surgical anatomy education, while 3D printing is more broadly used for nursing, allied health and dental health education compared to other digital resources. Digital modalities were predominantly adopted for applied interactive anatomy education and primarily in advanced anatomy curricula such as regional anatomy and neuroanatomy. Moreover, there was a steep increase in VR anatomy combining digital simulation for surgical anatomy training. There is a consistent increase in the adoption of digital modalities in anatomy education across all included health disciplines. AR and VR anatomy incorporating digital simulation will play a more prominent role in medical education of the future. Combining multimodal digital resources that supports blended and interactive learning will further modernize anatomy education, moving medical education further away from its didactic history.
Collapse
Affiliation(s)
- Sharmeen Adnan
- Department of Health Sciences and Biostatistics, School of Health Sciences, Swinburne University of Technology, Hawthorn, Australia
| | - Junhua Xiao
- Department of Health Sciences and Biostatistics, School of Health Sciences, Swinburne University of Technology, Hawthorn, Australia.,School of Allied Health, La Trobe University, Bundoora, Australia
| |
Collapse
|
10
|
Way of Planning a Complex Interventional Treatment with Support of a 3-Dimensional Printed Heart Model in a Patient with Interrupted Aortic Arch Type A. Pediatr Cardiol 2023; 44:732-735. [PMID: 36307564 PMCID: PMC9950167 DOI: 10.1007/s00246-022-03025-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/04/2022] [Indexed: 10/31/2022]
|
11
|
Sun Z, Wong YH, Yeong CH. Patient-Specific 3D-Printed Low-Cost Models in Medical Education and Clinical Practice. MICROMACHINES 2023; 14:464. [PMID: 36838164 PMCID: PMC9959835 DOI: 10.3390/mi14020464] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
3D printing has been increasingly used for medical applications with studies reporting its value, ranging from medical education to pre-surgical planning and simulation, assisting doctor-patient communication or communication with clinicians, and the development of optimal computed tomography (CT) imaging protocols. This article presents our experience of utilising a 3D-printing facility to print a range of patient-specific low-cost models for medical applications. These models include personalized models in cardiovascular disease (from congenital heart disease to aortic aneurysm, aortic dissection and coronary artery disease) and tumours (lung cancer, pancreatic cancer and biliary disease) based on CT data. Furthermore, we designed and developed novel 3D-printed models, including a 3D-printed breast model for the simulation of breast cancer magnetic resonance imaging (MRI), and calcified coronary plaques for the simulation of extensive calcifications in the coronary arteries. Most of these 3D-printed models were scanned with CT (except for the breast model which was scanned using MRI) for investigation of their educational and clinical value, with promising results achieved. The models were confirmed to be highly accurate in replicating both anatomy and pathology in different body regions with affordable costs. Our experience of producing low-cost and affordable 3D-printed models highlights the feasibility of utilizing 3D-printing technology in medical education and clinical practice.
Collapse
Affiliation(s)
- Zhonghua Sun
- Discipline of Medical Radiation Science, Curtin Medical School, Curtin University, Perth 6845, Australia
- Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Perth 6845, Australia
- School of Medicine and Medical Advancement for Better Quality of Life Impact Lab, Taylor’s University, Subang Jaya 47500, Malaysia
| | - Yin How Wong
- School of Medicine and Medical Advancement for Better Quality of Life Impact Lab, Taylor’s University, Subang Jaya 47500, Malaysia
| | - Chai Hong Yeong
- School of Medicine and Medical Advancement for Better Quality of Life Impact Lab, Taylor’s University, Subang Jaya 47500, Malaysia
| |
Collapse
|
12
|
Patient-Specific 3D-Printed Models in Pediatric Congenital Heart Disease. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10020319. [PMID: 36832448 PMCID: PMC9955978 DOI: 10.3390/children10020319] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/25/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Three-dimensional (3D) printing technology has become increasingly used in the medical field, with reports demonstrating its superior advantages in both educational and clinical value when compared with standard image visualizations or current diagnostic approaches. Patient-specific or personalized 3D printed models serve as a valuable tool in cardiovascular disease because of the difficulty associated with comprehending cardiovascular anatomy and pathology on 2D flat screens. Additionally, the added value of using 3D-printed models is especially apparent in congenital heart disease (CHD), due to its wide spectrum of anomalies and its complexity. This review provides an overview of 3D-printed models in pediatric CHD, with a focus on educational value for medical students or graduates, clinical applications such as pre-operative planning and simulation of congenital heart surgical procedures, and communication between physicians and patients/parents of patients and between colleagues in the diagnosis and treatment of CHD. Limitations and perspectives on future research directions for the application of 3D printing technology into pediatric cardiology practice are highlighted.
Collapse
|
13
|
Mao X, Wang Z. Research Progress of Three-Dimensional Bioprinting Artificial Cardiac Tissue. Tissue Eng Regen Med 2023; 20:1-9. [PMID: 36401767 PMCID: PMC9852375 DOI: 10.1007/s13770-022-00495-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022] Open
Abstract
Cardiovascular disease is one of the main diseases that endanger human life and health, and heart failure often occurs when the cardiovascular disease develops to the end-stage. Heart transplantation is the most effective treatment. However, there has always been a shortage of living heart organs. With the development of regenerative medicine, researchers have turned to bioprinting technology that can build tissues and organs in vitro. A large number of relevant literature on three-dimensional (3D) bioprinted hearts were searched and screened in Google Scholar. 3D bioprinting technology can accurately print biomaterials containing living cells into 3D functional living tissues, providing a feasible solution to the shortage of transplantable organs. As one of the most important organs in the human body, the research on 3D bioprinting of the heart has currently become a hot topic. This paper briefly overviews 3D bioprinting technology and the progress in bioprinting cardiac tissue. It is believed that in the future, bio-printed hearts will become a reality, making a new way of providing artificial organs for heart transplantation.
Collapse
Affiliation(s)
- Xin Mao
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, People's Republic of China
| | - Zhehui Wang
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, People's Republic of China.
| |
Collapse
|
14
|
Huang YH, Nascene D, Spilseth B, Chuy JA. High-Fidelity Simulation Training for Nasal Bridle Placement with a 3D Printed Model. ANNALS OF 3D PRINTED MEDICINE 2023. [DOI: 10.1016/j.stlm.2023.100108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
|
15
|
Capelli C, Bertolini M, Schievano S. 3D-printed and computational models: a combined approach for patient-specific studies. 3D Print Med 2023. [DOI: 10.1016/b978-0-323-89831-7.00011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
16
|
Salazar D, Thompson M, Rosen A, Zuniga J. Using 3D Printing to Improve Student Education of Complex Anatomy: a Systematic Review and Meta-analysis. MEDICAL SCIENCE EDUCATOR 2022; 32:1209-1218. [PMID: 36276759 PMCID: PMC9583986 DOI: 10.1007/s40670-022-01595-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 05/29/2023]
Abstract
Objective Additive manufacturing has played an increasingly important role in the field of health care. One of the most recent applications has been the development of 3D printed anatomical models specifically to improve student education. The purpose of this review was to assess the potential for 3D printed models to improve understanding of complex anatomy in undergraduate and medical/professional students. Methods A systematic review was performed to investigate the different implementations of 3D printed anatomical models in educational curricula. In addition, a meta-analysis was conducted to assess the differences in comprehension between students who received 3D printed models as part of their instruction and those taught with traditional methods. Results Of the 10 groups included in the meta-analysis, students whose educational experience included a 3D printed model scored roughly 11% better on objective assessments compared to students who did not use such models (Hedge's g = 0.742, p < 0.001). Conclusion Based on these findings, the use of 3D printed anatomical models as a method of education is likely to improve students' understanding of complex anatomical structures.
Collapse
Affiliation(s)
- David Salazar
- Department of Biomechanics, University of Nebraska at Omaha, 6160 University Dr S, Omaha, NE 68182 USA
| | - Michael Thompson
- Department of Biomechanics, University of Nebraska at Omaha, 6160 University Dr S, Omaha, NE 68182 USA
| | - Adam Rosen
- School of Health and Kinesiology, University of Nebraska at Omaha, 6160 University Dr S, Omaha, NE 68182 USA
| | - Jorge Zuniga
- Department of Biomechanics, University of Nebraska at Omaha, 6160 University Dr S, Omaha, NE 68182 USA
| |
Collapse
|
17
|
Sun Z, Wee C. 3D Printed Models in Cardiovascular Disease: An Exciting Future to Deliver Personalized Medicine. MICROMACHINES 2022; 13:1575. [PMID: 36295929 PMCID: PMC9610217 DOI: 10.3390/mi13101575] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
3D printing has shown great promise in medical applications with increased reports in the literature. Patient-specific 3D printed heart and vascular models replicate normal anatomy and pathology with high accuracy and demonstrate superior advantages over the standard image visualizations for improving understanding of complex cardiovascular structures, providing guidance for surgical planning and simulation of interventional procedures, as well as enhancing doctor-to-patient communication. 3D printed models can also be used to optimize CT scanning protocols for radiation dose reduction. This review article provides an overview of the current status of using 3D printing technology in cardiovascular disease. Limitations and barriers to applying 3D printing in clinical practice are emphasized while future directions are highlighted.
Collapse
Affiliation(s)
- Zhonghua Sun
- Discipline of Medical Radiation Science, Curtin Medical School, Curtin University, Perth 6845, Australia
| | - Cleo Wee
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth 6845, Australia
| |
Collapse
|
18
|
Ganapathy A, Chen D, Elumalai A, Albers B, Tappa K, Jammalamadaka U, Hoegger MJ, Ballard DH. Guide for starting or optimizing a 3D printing clinical service. Methods 2022; 206:41-52. [PMID: 35964862 DOI: 10.1016/j.ymeth.2022.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022] Open
Abstract
Three-dimensional (3D) printing has applications in many fields and has gained substantial traction in medicine as a modality to transform two-dimensional scans into three-dimensional renderings. Patient-specific 3D printed models have direct patient care uses in surgical and procedural specialties, allowing for increased precision and accuracy in developing treatment plans and guiding surgeries. Medical applications include surgical planning, surgical guides, patient and trainee education, and implant fabrication. 3D printing workflow for a laboratory or clinical service that produces anatomic models and guides includes optimizing imaging acquisition and post-processing, segmenting the imaging, and printing the model. Quality assurance considerations include supervising medical imaging expert radiologists' guidance and self-implementing in-house quality control programs. The purpose of this review is to provide a workflow and guide for starting or optimizing laboratories and clinical services that 3D-print anatomic models or guides for clinical use.
Collapse
Affiliation(s)
- Aravinda Ganapathy
- School of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| | - David Chen
- School of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| | - Anusha Elumalai
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Brian Albers
- 3D Printing Center, Barnes Jewish Hospital, St. Louis, MO, USA.
| | - Karthik Tappa
- Anatomic 3D Printing and Visualization Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | | | - Mark J Hoegger
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA.
| | - David H Ballard
- School of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
19
|
Tejo-Otero A, Valls-Esteve A, Fenollosa-Artés F, Siles-Hinojosa A, Nafria B, Ayats M, Buj-Corral I, Otero MC, Rubio-Palau J, Munuera J, Krauel L. Patient comprehension of oncologic surgical procedures using 3D printed surgical planning prototypes. ANNALS OF 3D PRINTED MEDICINE 2022. [DOI: 10.1016/j.stlm.2022.100068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
20
|
PARK CHUNKYU, KIM JUNGHUN. DEVELOPMENT OF A THREE-DIMENSIONAL-PRINTED HEART MODEL REPLICATING THE ELASTICITY, TEAR RESISTANCE, AND HARDNESS OF PIG HEART USING AGILUS AND TANGO. J MECH MED BIOL 2022. [DOI: 10.1142/s0219519422400073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study proposes a manufacturing method for reproducing some physical properties of the heart by comparing the elasticity, tear resistance, and hardness of a pig heart and three-dimensional printing materials, Agilus and Tango. A Digital Force Gauge was used to analyze elastic modulus and tear resistance, whereas a Shore A hardness meter was used to measure hardness. Agilus and Tango had 10 and 5 times higher elasticity, respectively, 2 and 4 times higher tear resistance, and a higher Shore A hardness than the pig heart. In summary, the pig heart had a more similar elasticity and Shore A hardness than the Tango sample, whereas more tear resistance was similar to the Agilus sample. Therefore, we proposed elasticity and tear resistance equations that can be used to build a heart model and a conversion table for heart fabrication at various thicknesses.
Collapse
Affiliation(s)
- CHUN-KYU PARK
- Department of Biomedical Engineering, Kyungpook National University, Sangyeok-dong, Buk-gu, Daegu, Republic of Korea
| | - JUNGHUN KIM
- Bio-Medical Research Institute, Kyungpook National University Hospital, Sangyeok-dong, Buk-gu, Daegu, Republic of Korea
| |
Collapse
|
21
|
Asif A, Lee E, Caputo M, Biglino G, Shearn AIU. Role of 3D printing technology in paediatric teaching and training: a systematic review. BMJ Paediatr Open 2021; 5:10.1136/bmjpo-2021-001050. [PMID: 35290958 PMCID: PMC8655595 DOI: 10.1136/bmjpo-2021-001050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/15/2021] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND In the UK, undergraduate paediatric training is brief, resulting in trainees with a lower paediatric knowledge base compared with other aspects of medicine. With congenital conditions being successfully treated at childhood, adult clinicians encounter and will need to understand these complex pathologies. Patient-specific 3D printed (3DP) models have been used in clinical training, especially for rarer, complex conditions. We perform a systematic review to evaluate the evidence base in using 3DP models to train paediatricians, surgeons, medical students and nurses. METHODS Online databases PubMed, Web of Science and Embase were searched between January 2010 and April 2020 using search terms relevant to "paediatrics", "education", "training" and "3D printing". Participants were medical students, postgraduate trainees or clinical staff. Comparative studies (patient-specific 3DP models vs traditional teaching methods) and non-comparative studies were included. Outcomes gauged objective and subjective measures: test scores, time taken to complete tasks, self-reported confidence and personal preferences on 3DP models. If reported, the cost of and time taken to produce the models were noted. RESULTS From 587 results, 15 studies fit the criteria of the review protocol, with 5/15 being randomised controlled studies and 10/15 focussing on cardiovascular conditions. Participants using 3DP models demonstrated improved test scores and faster times to complete procedures and identify anatomical landmarks compared with traditional teaching methods (2D diagrams, lectures, videos and supervised clinical events). User feedback was positive, reporting greater user self-confidence in understanding concepts with users wishing for integrated use of 3DP in regular teaching. Four studies reported the costs and times of production, which varied depending on model complexity and printer. 3DP models were cheaper than 'off-the-shelf' models available on the market and had the benefit of using real-world pathologies. These mostly non-randomised and single-centred studies did not address bias or report long-term or clinically translatable outcomes. CONCLUSIONS 3DP models were associated with greater user satisfaction and good short-term educational outcomes, with low-quality evidence. Multicentred, randomised studies with long-term follow-up and clinically assessed outcomes are needed to fully assess their benefits in this setting. PROSPERO REGISTRATION NUMBER CRD42020179656.
Collapse
Affiliation(s)
- Ashar Asif
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Elgin Lee
- Children's Services Directorate, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Massimo Caputo
- Bristol Medical School, University of Bristol, Bristol, UK.,Bristol Heart Institute, University Hospitals Bristol and Weston NHS Trust, Bristol, UK
| | - Giovanni Biglino
- Bristol Heart Institute, University Hospitals Bristol and Weston NHS Trust, Bristol, UK.,National Heart and Lung Institute, Imperial College London, London, UK
| | - Andrew Ian Underwood Shearn
- Bristol Medical School, University of Bristol, Bristol, UK .,Bristol Heart Institute, University Hospitals Bristol and Weston NHS Trust, Bristol, UK
| |
Collapse
|
22
|
Bertolini M, Rossoni M, Colombo G. Operative Workflow from CT to 3D Printing of the Heart: Opportunities and Challenges. Bioengineering (Basel) 2021; 8:bioengineering8100130. [PMID: 34677203 PMCID: PMC8533410 DOI: 10.3390/bioengineering8100130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/07/2021] [Accepted: 09/17/2021] [Indexed: 01/25/2023] Open
Abstract
Medical images do not provide a natural visualization of 3D anatomical structures, while 3D digital models are able to solve this problem. Interesting applications based on these models can be found in the cardiovascular field. The generation of a good-quality anatomical model of the heart is one of the most complex tasks in this context. Its 3D representation has the potential to provide detailed spatial information concerning the heart’s structure, also offering the opportunity for further investigations if combined with additive manufacturing. When investigated, the adaption of printed models turned out to be beneficial in complex surgical procedure planning, for training, education and medical communication. In this paper, we will illustrate the difficulties that may be encountered in the workflow from a stack of Computed Tomography (CT) to the hand-held printed heart model. An important goal will consist in the realization of a heart model that can take into account real wall thickness variability. Stereolithography printing technology will be exploited with a commercial rigid resin. A flexible material will be tested too, but results will not be so satisfactory. As a preliminary validation of this kind of approach, print accuracy will be evaluated by directly comparing 3D scanner acquisitions to the original Standard Tessellation Language (STL) files.
Collapse
|
23
|
Karsenty C, Guitarte A, Dulac Y, Briot J, Hascoet S, Vincent R, Delepaul B, Vignaud P, Djeddai C, Hadeed K, Acar P. The usefulness of 3D printed heart models for medical student education in congenital heart disease. BMC MEDICAL EDUCATION 2021; 21:480. [PMID: 34496844 PMCID: PMC8424617 DOI: 10.1186/s12909-021-02917-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/28/2021] [Indexed: 05/29/2023]
Abstract
BACKGROUND Three-dimensional (3D) printing technology enables the translation of 2-dimensional (2D) medical imaging into a physical replica of a patient's individual anatomy and may enhance the understanding of congenital heart defects (CHD). We aimed to evaluate the usefulness of a spectrum of 3D-printed models in teaching CHD to medical students. RESULTS We performed a prospective, randomized educational procedure to teach fifth year medical students four CHDs (atrial septal defect (ASD, n = 74), ventricular septal defect (VSD, n = 50), coarctation of aorta (CoA, n = 118) and tetralogy of Fallot (ToF, n = 105)). Students were randomized into printing groups or control groups. All students received the same 20 min lecture with projected digital 2D images. The printing groups also manipulated 3D printed models during the lecture. Both groups answered an objective survey (Multiple-choice questionnaire) twice, pre- and post-test, and completed a post-lecture subjective survey. Three hundred forty-seven students were included and both teaching groups for each CHD were comparable in age, sex and pre-test score. Overall, objective knowledge improved after the lecture and was higher in the printing group compared to the control group (16.3 ± 2.6 vs 14.8 ± 2.8 out of 20, p < 0.0001). Similar results were observed for each CHD (p = 0.0001 ASD group; p = 0.002 VSD group; p = 0.0005 CoA group; p = 0.003 ToF group). Students' opinion of their understanding of CHDs was higher in the printing group compared to the control group (respectively 4.2 ± 0.5 vs 3.8 ± 0.4 out of 5, p < 0.0001). CONCLUSION The use of 3D printed models in CHD lectures improve both objective knowledge and learner satisfaction for medical students. The practice should be mainstreamed.
Collapse
Affiliation(s)
- Clement Karsenty
- Pediatric cardiology unit, Children Hospital, CHU Toulouse, 330 Avenue de Grande Bretagne TSA 70034, 31059, Toulouse cedex 9, France.
- Institut Des Maladies Métaboliques Et Cardiovasculaires, Université de Toulouse, INSERM U1048, I2MC, 1, Avenue Jean Poulhès-BP84225, Toulouse, France.
| | - Aitor Guitarte
- Pediatric cardiology unit, Children Hospital, CHU Toulouse, 330 Avenue de Grande Bretagne TSA 70034, 31059, Toulouse cedex 9, France
| | - Yves Dulac
- Pediatric cardiology unit, Children Hospital, CHU Toulouse, 330 Avenue de Grande Bretagne TSA 70034, 31059, Toulouse cedex 9, France
| | - Jerome Briot
- Pediatric cardiology unit, Children Hospital, CHU Toulouse, 330 Avenue de Grande Bretagne TSA 70034, 31059, Toulouse cedex 9, France
| | - Sebastien Hascoet
- Department of Pediatric and Adult Congenital Heart Diseases, Marie Lannelongue Hospital, Groupe Hospitalier Saint Joseph Reference Center of Complex Congenital Heart Diseases M3C, Le Plessis Robinson, France
| | - Remi Vincent
- Pediatric cardiology unit, Children Hospital, CHU Toulouse, 330 Avenue de Grande Bretagne TSA 70034, 31059, Toulouse cedex 9, France
| | - Benoit Delepaul
- Pediatric cardiology unit, Children Hospital, CHU Toulouse, 330 Avenue de Grande Bretagne TSA 70034, 31059, Toulouse cedex 9, France
| | - Paul Vignaud
- Pediatric cardiology unit, Children Hospital, CHU Toulouse, 330 Avenue de Grande Bretagne TSA 70034, 31059, Toulouse cedex 9, France
| | - Camelia Djeddai
- Pediatric cardiology unit, Children Hospital, CHU Toulouse, 330 Avenue de Grande Bretagne TSA 70034, 31059, Toulouse cedex 9, France
| | - Khaled Hadeed
- Pediatric cardiology unit, Children Hospital, CHU Toulouse, 330 Avenue de Grande Bretagne TSA 70034, 31059, Toulouse cedex 9, France
| | - Philippe Acar
- Pediatric cardiology unit, Children Hospital, CHU Toulouse, 330 Avenue de Grande Bretagne TSA 70034, 31059, Toulouse cedex 9, France
| |
Collapse
|
24
|
Affiliation(s)
- Zhonghua Sun
- Discipline of Medical Radiation Science, Curtin Medical School, Curtin University, GPO Box U1987, Perth, Australia
| |
Collapse
|
25
|
Azkue JJ. External surface anatomy of the postfolding human embryo: Computer-aided, three-dimensional reconstruction of printable digital specimens. J Anat 2021; 239:1438-1451. [PMID: 34275144 PMCID: PMC8602026 DOI: 10.1111/joa.13514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 01/20/2023] Open
Abstract
Opportunities for clinicians, researchers, and medical students to become acquainted with the three‐dimensional (3D) anatomy of the human embryo have historically been limited. This work was aimed at creating a collection of digital, printable 3D surface models demonstrating major morphogenetic changes in the embryo's external anatomy, including typical features used for external staging. Twelve models were digitally reconstructed based on optical projection tomography, high‐resolution episcopic microscopy and magnetic resonance imaging datasets of formalin‐fixed specimens of embryos of developmental stages 12 through 23, that is, stages following longitudinal and transverse embryo folding. The reconstructed replica reproduced the external anatomy of the actual specimens in great detail, and the progress of development over stages was recognizable in a variety of external anatomical features and bodily structures, including the general layout and curvature of the body, the pharyngeal arches and cervical sinus, the physiological gut herniation, and external genitalia. In addition, surface anatomy features commonly used for embryo staging, such as distinct steps in the morphogenesis of facial primordia and limb buds, were also apparent. These digital replica, which are all provided for 3D visualization and printing, can serve as a novel resource for teaching and learning embryology and may contribute to a better appreciation of the human embryonic development.
Collapse
Affiliation(s)
- Jon Jatsu Azkue
- Department of Neurosciences, School of Medicine and Nursery, Universty of the Basque Country, UPV/EHU, Leioa, Bizkaia, Spain
| |
Collapse
|
26
|
Gharleghi R, Dessalles CA, Lal R, McCraith S, Sarathy K, Jepson N, Otton J, Barakat AI, Beier S. 3D Printing for Cardiovascular Applications: From End-to-End Processes to Emerging Developments. Ann Biomed Eng 2021; 49:1598-1618. [PMID: 34002286 PMCID: PMC8648709 DOI: 10.1007/s10439-021-02784-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/24/2021] [Indexed: 12/16/2022]
Abstract
3D printing as a means of fabrication has seen increasing applications in medicine in the last decade, becoming invaluable for cardiovascular applications. This rapidly developing technology has had a significant impact on cardiovascular research, its clinical translation and education. It has expanded our understanding of the cardiovascular system resulting in better devices, tools and consequently improved patient outcomes. This review discusses the latest developments and future directions of generating medical replicas ('phantoms') for use in the cardiovascular field, detailing the end-to-end process from medical imaging to capture structures of interest, to production and use of 3D printed models. We provide comparisons of available imaging modalities and overview of segmentation and post-processing techniques to process images for printing, detailed exploration of latest 3D printing methods and materials, and a comprehensive, up-to-date review of milestone applications and their impact within the cardiovascular domain across research, clinical use and education. We then provide an in-depth exploration of future technologies and innovations around these methods, capturing opportunities and emerging directions across increasingly realistic representations, bioprinting and tissue engineering, and complementary virtual and mixed reality solutions. The next generation of 3D printing techniques allow patient-specific models that are increasingly realistic, replicating properties, anatomy and function.
Collapse
Affiliation(s)
- Ramtin Gharleghi
- Faculty of Engineering, School of Mechanical and Manufacturing, UNSW, Sydney, Australia
| | | | - Ronil Lal
- Faculty of Engineering, School of Mechanical and Manufacturing, UNSW, Sydney, Australia
| | - Sinead McCraith
- Faculty of Engineering, School of Mechanical and Manufacturing, UNSW, Sydney, Australia
| | | | - Nigel Jepson
- Prince of Wales Hospital, Sydney, Australia
- Prince of Wales Clinical School of Medicine, UNSW, Sydney, Australia
| | - James Otton
- Department of Cardiology, Liverpool Hospital, Sydney, Australia
| | | | - Susann Beier
- Faculty of Engineering, School of Mechanical and Manufacturing, UNSW, Sydney, Australia.
| |
Collapse
|
27
|
Tan H, Huang E, Deng X, Ouyang S. Application of 3D printing technology combined with PBL teaching model in teaching clinical nursing in congenital heart surgery: A case-control study. Medicine (Baltimore) 2021; 100:e25918. [PMID: 34011060 PMCID: PMC8137022 DOI: 10.1097/md.0000000000025918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 04/19/2021] [Indexed: 01/05/2023] Open
Abstract
We aimed to explore the application of three-dimensional (3D) printing technology with problem-based learning (PBL) teaching model in clinical nursing education of congenital heart surgery, and to further improve the teaching quality of clinical nursing in congenital heart surgery. In this study, a total of 132 trainees of clinical nursing in congenital heart surgery from a grade-A tertiary hospital in 2019 were selected and randomly divided into 3D printing group or traditional group. The 3D printing group was taught with 3D printed heart models combined with PBL teaching technique, while the traditional group used conventional teaching aids combined with PBL technique for teaching. After the teaching process, the 2 groups of nursing students were assessed and surveyed separately to evaluate the results. Compared to the traditional group, the theoretical scores, clinical nursing thinking ability, self-evaluation for comprehensive ability, and teaching satisfaction from the questionnaires filled by the 3D printing group were all higher than the traditional group. The difference was found to be statistically significant (P < .05). Our study has shown the 3D printing technology combined with the PBL teaching technique in the clinical nursing teaching of congenital heart surgery achieved good results.
Collapse
Affiliation(s)
- Hui Tan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha 410000, Hunan Province, China; Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University
| | - Erjia Huang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha 410000, Hunan Province, China; Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University
| | - Xicheng Deng
- Heart Center, Hunan Children's Hospital, Changsha, China
| | - Shayuan Ouyang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha 410000, Hunan Province, China; Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University
| |
Collapse
|
28
|
Ma Y, Ding P, Li L, Liu Y, Jin P, Tang J, Yang J. Three-dimensional printing for heart diseases: clinical application review. Biodes Manuf 2021; 4:675-687. [PMID: 33948306 PMCID: PMC8085656 DOI: 10.1007/s42242-021-00125-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/05/2021] [Indexed: 11/03/2022]
Abstract
Heart diseases remain the top threat to human health, and the treatment of heart diseases changes with each passing day. Convincing evidence shows that three-dimensional (3D) printing allows for a more precise understanding of the complex anatomy associated with various heart diseases. In addition, 3D-printed models of cardiac diseases may serve as effective educational tools and for hands-on simulation of surgical interventions. We introduce examples of the clinical applications of different types of 3D printing based on specific cases and clinical application scenarios of 3D printing in treating heart diseases. We also discuss the limitations and clinically unmet needs of 3D printing in this context.
Collapse
Affiliation(s)
- Yanyan Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Airforce Medical University, Xi’an, 710032 China
| | - Peng Ding
- Department of Cardiovascular Surgery, Xijing Hospital, Airforce Medical University, Xi’an, 710032 China
| | - Lanlan Li
- Department of Cardiovascular Surgery, Xijing Hospital, Airforce Medical University, Xi’an, 710032 China
| | - Yang Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Airforce Medical University, Xi’an, 710032 China
| | - Ping Jin
- Department of Cardiovascular Surgery, Xijing Hospital, Airforce Medical University, Xi’an, 710032 China
| | - Jiayou Tang
- Department of Cardiovascular Surgery, Xijing Hospital, Airforce Medical University, Xi’an, 710032 China
| | - Jian Yang
- Department of Cardiovascular Surgery, Xijing Hospital, Airforce Medical University, Xi’an, 710032 China
| |
Collapse
|
29
|
Noël GPJC, Ding W, Steinmetz P. 3D Printed Heart Models Illustrating Myocardial Perfusion Territories to Augment Echocardiography and Electrocardiography Interpretation. MEDICAL SCIENCE EDUCATOR 2021; 31:439-446. [PMID: 34457902 PMCID: PMC8368875 DOI: 10.1007/s40670-020-01177-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/20/2020] [Indexed: 06/13/2023]
Abstract
Visualizing the vascular territories of coronary arteries during echocardiography or electrocardiography (ECG) requires trainees to mentally relate and overlay 2D sonographic images or cardiac lead projections with 3D anatomical representations of the ventricular walls and their respective blood supply. To facilitate the acquisition of these competencies, this study focuses on the feasibility of developing low-cost, open-sourced 3D printed heart models with standard ultrasound views or ECG lead projections illustrating the myocardial perfusion territories. A 3D digital heart model was cut to reflect the typical cardiac ultrasound views. The 4-chamber view model was further punctured for the paths of the precordial and limb leads of an ECG. Painting coronary arteries on the surface and internal views of the 3D prints illustrated vessel territories. Students, residents, and staff were surveyed during bedside ultrasound simulation sessions and ECG teaching half-days. Results demonstrated clear appreciation of 3D printed models, which suggests such models can easily be implemented by other institutions to augment trainees' experience during skill acquisition.
Collapse
Affiliation(s)
- Geoffroy P. J. C. Noël
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Strathcona Anatomy Building, 3640 University Street, Montreal, QC H3A 0C7 Canada
- Institute of Health Science Education, Faculty of Medicine, McGill University, Montreal, Canada
| | - Weimeng Ding
- Undergraduate Education, Faculty of Medicine, McGill University, Montreal, Canada
| | - Peter Steinmetz
- Department of Family Medicine, Faculty of Medicine, McGill University, Montreal, QC Canada
| |
Collapse
|
30
|
Kozak MF, Afiune JY, Grosse-Wortmann L. Current Use of Pediatric Cardiac Magnetic Resonance Imaging in Brazil. Arq Bras Cardiol 2021; 116:305-312. [PMID: 33656080 PMCID: PMC7909959 DOI: 10.36660/abc.20190860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/10/2020] [Indexed: 11/23/2022] Open
Abstract
Fundamento Dados sobre o uso de ressonância magnética cardíaca (RMC) em crianças no Brasil são escassos. Objetivos Buscamos oferecer informações sobre as práticas atuais de RMC pediátricas no Brasil. Métodos Um questionário foi enviado a médicos solicitantes de RMC de todo o país, cobrindo informações sobre si próprios, sobre seus serviços de RMC, contexto clínico dos pacientes e sobre os obstáculos para a realização de RMC em crianças. Para a análise estatística, um p < 0,05 bilateral foi considerado significativo. Resultados A pesquisa obteve 142 respostas. Foi relatado que a RMC está disponível para 79% dos respondentes, dos quais 52% raramente ou nunca a utilizam. As indicações mais comuns são cardiomiopatias (84%), pós-operatório de correção de tetralogia de Fallot (81%) e malformações do arco aórtico (53%). A complexidade do exame se correlacionou à relação RMC/cirurgia (Rho = 0,48, IC 95% = 0,32-0,62, p < 0,0001) e ao número de exames de RMC (Rho = 0,52, IC 95% = 0,38-0,64, p < 0,0001). A complexidade da RMC esteve associada à sua realização por cardiologistas pediátricos (RC 2,04, IC 95% 1,2-3,89, p < 0,01). Os principais obstáculos ao uso mais frequente de RMC foram o alto custo (65%), a necessidade de sedação (60%) e o número insuficiente de profissionais qualificados (55%). Conclusão A RMC pediátrica não é usada frequentemente no Brasil. A presença de um cardiologista pediátrico a frente dos exames esteve associado ao uso de RMC em pacientes mais complexos. O treinamento de especialistas em RMC pediátrica e a educação dos médicos solicitantes são passos importantes na direção de um uso mais abrangente de RMC no Brasil. (Arq Bras Cardiol. 2021; 116(2):305-312)
Collapse
Affiliation(s)
- Marcelo Felipe Kozak
- Instituto de Cardiologia do Distrito Federal - Cardiologia Pediátrica, Brasília, DF - Brasil.,Hospital da Criança de Brasília José de Alencar - Ecocardiografia, Brasília, DF - Brasil
| | - Jorge Yussef Afiune
- Instituto de Cardiologia do Distrito Federal - Cardiologia Pediátrica, Brasília, DF - Brasil
| | - Lars Grosse-Wortmann
- Doernbecher Children's Hospital, Oregon Health and Science University - Division of Pediatric Cardiology, Department of Pediatrics, Portland, Oregon - EUA.,The Hospital for Sick Children, University of Toronto - Department of Pediatrics, Toronto, Ontario - Canadá
| |
Collapse
|
31
|
Kim JH, Park CK, Park JE, Lee JM. 3D print material study to reproduce the function of pig heart tissue. Technol Health Care 2021; 29:27-34. [PMID: 33682742 PMCID: PMC8150471 DOI: 10.3233/thc-218003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Three-dimensional (3D) printing technology for heart simulation can be represented as complex anatomical structures, and objective information can be provided. OBJECTIVE: We studied 3D print material to find a material with the same elastic coefficient as pig elastic coefficient. METHODS: Pig heart sample, Agilus sample, Tango sample, TPU sample, and silicone sample were studied. The elastic coefficient of each specimen was measured using an elastic coefficient measuring instrument. The analysis was performed using the average value of ten specimens of the same size. We suggested an equation to find the elastic coefficient of material by the thickness using the elastic coefficient of Agilus, Tango, and silicone. RESULTS: The sample with similar elasticity to the pig sample did not show the same coefficient of elasticity at the same sample size. In Tango, the 0.5 mm high elastic force was about 3 times higher than the pig sample 7 mm elastic force. CONCLUSIONS: The study was conducted using 3D print material and silicone which can reproduce the elasticity of pig heart. However, no material is currently available to reproduce pig heart sample of the same size. However, if the heart is developed considering only elasticity, it can be sufficiently reproduced using the research results.
Collapse
Affiliation(s)
- Jung-Hun Kim
- Bio-Medical Research institute, Kyungpook National University Hospital, Sangyeok-dong, Buk-gu, Daegu, South Korea.,Bio-Medical Research institute, Kyungpook National University Hospital, Sangyeok-dong, Buk-gu, Daegu, South Korea
| | - Chun-Kyu Park
- Department of Biomedical Engineering, Kyungpook National University, Sangyeok-dong, Buk-gu, Daegu, South Korea.,Bio-Medical Research institute, Kyungpook National University Hospital, Sangyeok-dong, Buk-gu, Daegu, South Korea
| | - Ji-Eun Park
- Nonlinear Dynamics Laboratory, Kyungpook National University, Sangyeok-dong, Buk-gu, Daegu, South Korea
| | - Jong-Min Lee
- Department of Radiology, School of Medicine, Kyungpook National University, Sangyeok-dong, Buk-gu, Daegu, South Korea
| |
Collapse
|
32
|
Patel N, Costa A, Sanders SP, Ezon D. Stereoscopic virtual reality does not improve knowledge acquisition of congenital heart disease. Int J Cardiovasc Imaging 2021; 37:2283-2290. [PMID: 33677745 DOI: 10.1007/s10554-021-02191-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/09/2021] [Indexed: 11/30/2022]
Abstract
Advances in virtual reality have made it possible for clinicians and trainees to interact with 3D renderings of hearts with congenital heart disease in 3D stereoscopic vision. No study to date has assessed whether this technology improved instruction compared to standard 2D interfaces. The purpose of this study was to assess whether stereoscopic virtual reality improves congenital heart disease anatomy education. Subjects in a prospective, blinded, randomized trial completed a pre-test assessing factual and visuospatial knowledge of common atrioventricular canal and were randomized to an intervention or control group based on their score. The intervention group used a 3D virtual reality (VR) headset to visualize a lecture with 3D heart models while the control group used a desktop (DT) computer interface with the same models. Subjects took a post-test and provided subjective feedback. 51 subjects were enrolled, 24 in the VR group & 27 in the DT group. The median score difference for VR subjects was 12 (IQR 9-13.3), compared to 10 (IQR 7.5-12) in the DT group. No difference in score improvement was found (p = 0.11). VR subjects' impression of the ease of use of their interface was higher than DT subjects (median 8 vs 7, respectively, p = 0.01). VR subjects' impression of their understanding of the subject matter was higher than desktop subjects (median 7 vs 5, respectively, p = 0.01). There was no statistically significant difference in the knowledge acquisition observed between the stereoscopic virtual reality group and the monoscopic desktop-based group. Participants in virtual reality reported a better learning experience and self-assessment suggesting virtual reality may increase learner engagement in understanding congenital heart disease.
Collapse
Affiliation(s)
- Neil Patel
- Icahn School of Medicine at Mount Sinai, Children's Heart Center, Mt. Sinai Hospital, 1 Gustave L Levy Place, Box 1201, New York, NY, 10029, USA
| | - Anthony Costa
- Icahn School of Medicine at Mount Sinai, Children's Heart Center, Mt. Sinai Hospital, 1 Gustave L Levy Place, Box 1201, New York, NY, 10029, USA
| | | | - David Ezon
- Icahn School of Medicine at Mount Sinai, Children's Heart Center, Mt. Sinai Hospital, 1 Gustave L Levy Place, Box 1201, New York, NY, 10029, USA.
| |
Collapse
|
33
|
Segaran N, Saini G, Mayer JL, Naidu S, Patel I, Alzubaidi S, Oklu R. Application of 3D Printing in Preoperative Planning. J Clin Med 2021; 10:jcm10050917. [PMID: 33652844 PMCID: PMC7956651 DOI: 10.3390/jcm10050917] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/07/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Preoperative planning is critical for success in the surgical suite. Current techniques for surgical planning are limited; clinicians often rely on prior experience and medical imaging to guide the decision-making process. Furthermore, two-dimensional (2D) presentations of anatomical structures may not accurately portray their three-dimensional (3D) complexity, often leaving physicians ill-equipped for the procedure. Although 3D postprocessed images are an improvement on traditional 2D image sets, they are often inadequate for surgical simulation. Medical 3D printing is a rapidly expanding field and could provide an innovative solution to current constraints of preoperative planning. As 3D printing becomes more prevalent in medical settings, it is important that clinicians develop an understanding of the technologies, as well as its uses. Here, we review the fundamentals of 3D printing and key aspects of its workflow. The many applications of 3D printing for preoperative planning are discussed, along with their challenges.
Collapse
Affiliation(s)
- Nicole Segaran
- Minimally Invasive Therapeutics Laboratory, Department of Vascular and Interventional Radiology, Mayo Clinic, Phoenix, AZ 85054, USA; (N.S.); (G.S.)
| | - Gia Saini
- Minimally Invasive Therapeutics Laboratory, Department of Vascular and Interventional Radiology, Mayo Clinic, Phoenix, AZ 85054, USA; (N.S.); (G.S.)
| | - Joseph L. Mayer
- 3D Innovations Laboratory, Mayo Clinic Arizona, 5711 E. Mayo Blvd. Support Services Building, Phoenix, AZ 85054, USA;
| | - Sailen Naidu
- Department of Radiology, Mayo Clinic, Phoenix, AZ 85054, USA; (S.N.); (I.P.); (S.A.)
| | - Indravadan Patel
- Department of Radiology, Mayo Clinic, Phoenix, AZ 85054, USA; (S.N.); (I.P.); (S.A.)
| | - Sadeer Alzubaidi
- Department of Radiology, Mayo Clinic, Phoenix, AZ 85054, USA; (S.N.); (I.P.); (S.A.)
| | - Rahmi Oklu
- Minimally Invasive Therapeutics Laboratory, Department of Vascular and Interventional Radiology, Mayo Clinic, Phoenix, AZ 85054, USA; (N.S.); (G.S.)
- 3D Innovations Laboratory, Mayo Clinic Arizona, 5711 E. Mayo Blvd. Support Services Building, Phoenix, AZ 85054, USA;
- Department of Radiology, Mayo Clinic, Phoenix, AZ 85054, USA; (S.N.); (I.P.); (S.A.)
- Correspondence: ; Tel.: +1-480-342-5664
| |
Collapse
|
34
|
Tack P, Willems R, Annemans L. An early health technology assessment of 3D anatomic models in pediatric congenital heart surgery: potential cost-effectiveness and decision uncertainty. Expert Rev Pharmacoecon Outcomes Res 2021; 21:1107-1115. [PMID: 33475446 DOI: 10.1080/14737167.2021.1879645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Background: Three-dimensional anatomic models have been used for surgical planning and simulation in pediatric congenital heart surgery. This research is the first to evaluate the potential cost-effectiveness of 3D anatomic models with the intent to guide surgeons and decision makers on its use.Method: A decision tree and subsequent Markov model with a 15-year time horizon was constructed and analyzed for nine cardiovascular surgeries. Epidemiological, clinical, and economic data were derived from databases. Literature and experts were consulted to close data gaps. Scenario, one-way, threshold, and probabilistic sensitivity analysis captured methodological and parameter uncertainty.Results: Incremental costs of using anatomical models ranged from -366€ (95% credibility interval: -2595€; 1049€) in the Norwood operation to 1485€ (95% CI: 1206€; 1792€) in atrial septal defect repair. Incremental health-benefits ranged from negligible in atrial septal defect repair to 0.54 Quality Adjusted Life Years (95% CI: 0.06; 1.43) in truncus arteriosus repair. Variability in the results was mainly caused by a temporary postoperative quality-adjusted life years gain.Conclusion: For complex operations, the implementation of anatomic models is likely to be cost-effective on a 15 year time horizon. For the right indication, these models thus provide a clinical advantage at an acceptable cost.
Collapse
Affiliation(s)
- Philip Tack
- Department of Innovation, Entrepreneurship and Service Management, Ghent University, Ghent, Belgium
| | - Ruben Willems
- Department of Public Health, Ghent University, Ghent, Belgium
| | - Lieven Annemans
- Department of Public Health, Ghent University, Ghent, Belgium
| |
Collapse
|
35
|
Huang J, Shi H, Chen Q, Hu J, Zhang Y, Song H, Zhou Q. Three-Dimensional Printed Model Fabrication and Effectiveness Evaluation in Fetuses With Congenital Heart Disease or With a Normal Heart. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2021; 40:15-28. [PMID: 32562576 DOI: 10.1002/jum.15366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/02/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVES The purpose of this study was to investigate the technical feasibility and accuracy of applying 3-dimensional (3D) printing of normal and abnormal fetal hearts based on spatiotemporal image correlation (STIC) volume-rendered data. METHODS Spatiotemporal image correlation volume images of 15 healthy fetuses and 15 fetuses with cardiac abnormalities were collected, and Mimics software (Materialise NV, Leuven, Belgium) was used to postprocess the volume data to obtain a 3D digital model of fetal heart and large blood vessel morphologic characteristics and to output the file to a 3D printer for printing the 3D model of the fetal heart and large blood vessels. The effect accuracy of the 3D printed model was qualitatively evaluated by showing the 3D anatomic structure of the model combined with echocardiographic or autopsy results, and the dimensional accuracy of the 3D printed model was quantitatively evaluated by comparing the measured data of the model and echocardiography. RESULTS In all 30 fetuses, STIC volume data of the fetal heart were successfully reprocessed and printed out, which could visually display the morphologic characteristics of the fetal heart chamber and passage of the great vessels under normal and abnormal pathologic conditions. No significant differences in all of the heart size parameters were found between the 3D digital model, 3D printed model, and routine echocardiographic images (all P > .05). Moreover, the size parameters were concordant well between the methods, and all of the data points fell within the limits of agreement. CONCLUSIONS It is feasible to 3D print the fetal heart using STIC volumetric images as the data source, and the 3D printed model can fully and accurately display abnormal anatomic structures of the heart.
Collapse
Affiliation(s)
- Jia Huang
- Ultrasonography Center of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hua Shi
- Ultrasonography Center of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qian Chen
- Ultrasonography Center of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiaqi Hu
- Ultrasonography Center of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuguo Zhang
- Ultrasonography Center of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongning Song
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing Zhou
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
36
|
Clinical Applications of Patient-Specific 3D Printed Models in Cardiovascular Disease: Current Status and Future Directions. Biomolecules 2020; 10:biom10111577. [PMID: 33233652 PMCID: PMC7699768 DOI: 10.3390/biom10111577] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 01/09/2023] Open
Abstract
Three-dimensional (3D) printing has been increasingly used in medicine with applications in many different fields ranging from orthopaedics and tumours to cardiovascular disease. Realistic 3D models can be printed with different materials to replicate anatomical structures and pathologies with high accuracy. 3D printed models generated from medical imaging data acquired with computed tomography, magnetic resonance imaging or ultrasound augment the understanding of complex anatomy and pathology, assist preoperative planning and simulate surgical or interventional procedures to achieve precision medicine for improvement of treatment outcomes, train young or junior doctors to gain their confidence in patient management and provide medical education to medical students or healthcare professionals as an effective training tool. This article provides an overview of patient-specific 3D printed models with a focus on the applications in cardiovascular disease including: 3D printed models in congenital heart disease, coronary artery disease, pulmonary embolism, aortic aneurysm and aortic dissection, and aortic valvular disease. Clinical value of the patient-specific 3D printed models in these areas is presented based on the current literature, while limitations and future research in 3D printing including bioprinting of cardiovascular disease are highlighted.
Collapse
|
37
|
Utility of three-dimensional printed heart models for education on complex congenital heart diseases. Cardiol Young 2020; 30:1637-1642. [PMID: 33161936 DOI: 10.1017/s1047951120003753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE The objective of this study was to evaluate the feasibility and effects of education on complex congenital heart diseases using patient-specific three-dimensional printed heart models. METHODS Three-dimensional printed heart models were created using computed tomography data obtained from 11 patients with complex congenital heart disease. Fourteen kinds of heart models, encompassing nine kinds of complex congenital heart disease were printed. Using these models, a series of educational hands-on seminars, led by an experienced paediatric cardiac surgeon and a paediatric cardiologist, were conducted for medical personnel who were involved in the care of congenital heart disease patients. Contents of the seminars included anatomy, three-dimensional structure, pathophysiology, and surgery for each diagnosis. Likert-type (10-point scale) questionnaires were used before and after each seminar to evaluate the effects of education. RESULTS Between November 2019 and June 2020, a total of 16 sessions of hands-on seminar were conducted. The total number of questionnaire responses was 75. Overall, participants reported subjective improvement in understanding anatomy (4.8 ± 2.1 versus 8.4 ± 1.1, p < 0.001), three-dimensional structure (4.6 ± 2.2 versus 8.9 ± 1.0, p < 0.001), pathophysiology (4.8 ± 2.2 versus 8.5 ± 1.0, p < 0.001), and surgery (4.9 ± 2.3 versus 8.8 ± 0.9, p < 0.001) of the congenital heart disease investigated. CONCLUSIONS The utilisation of three-dimensional printed heart models for education on complex congenital heart disease was feasible and improved medical personnel's understanding of complex congenital heart disease. This education tool may be an effective alternative to conventional education tools for complex congenital heart disease.
Collapse
|
38
|
Ye Z, Dun A, Jiang H, Nie C, Zhao S, Wang T, Zhai J. The role of 3D printed models in the teaching of human anatomy: a systematic review and meta-analysis. BMC MEDICAL EDUCATION 2020; 20:335. [PMID: 32993608 PMCID: PMC7523371 DOI: 10.1186/s12909-020-02242-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 09/10/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Three-dimensional (3D) printing is an emerging technology widely used in medical education. However, its role in the teaching of human anatomy needs further evaluation. METHODS PubMed, Embase, EBSCO, SpringerLink, and Nature databases were searched systematically for studies published from January 2011 to April 2020 in the English language. GRADEprofiler software was used to evaluate the quality of literature. In this study, a meta-analysis of continuous and binary data was conducted. Both descriptive and statistical analyses were used. RESULTS Comparing the post-training tests in neuroanatomy, cardiac anatomy, and abdominal anatomy, the standardized mean difference (SMD) of the 3D group and the conventional group were 1.27, 0.37, and 2.01, respectively (p < 0.05). For 3D vs. cadaver and 3D vs. 2D, the SMD were 0.69 and 1.05, respectively (p < 0.05). For answering time, the SMD of the 3D group vs. conventional group was - 0.61 (P < 0.05). For 3D print usefulness, RR = 2.29(P < 0.05). Five of the six studies showed that satisfaction of the 3D group was higher than that of the conventional group. Two studies showed that accuracy of answering questions in the 3D group was higher than that in the conventional group. CONCLUSIONS Compared with students in the conventional group, those in the 3D printing group had advantages in accuracy and answering time. In the test of anatomical knowledge, the test results of students in the 3D group were not inferior (higher or equal) to those in the conventional group. The post-training test results of the 3D group were higher than those in the cadaver or 2D group. More students in the 3D printing group were satisfied with their learning compared with the conventional group. The results could be influenced by the quality of the randomized controlled trials. In a framework of ethical rigor, the application of the 3D printing model in human anatomy teaching is expected to grow further.
Collapse
Affiliation(s)
- Zhen Ye
- Department of Molecular Biology, Basic Medical College, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, P.R. China
| | - Aishe Dun
- Department of Anatomy, Basic Medical College, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, P.R. China
| | - Hanming Jiang
- Department of Molecular Biology, Basic Medical College, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, P.R. China
| | - Cuifang Nie
- Department of Infectious Disease, Tai'an Central Hospital, Tai'an, Shandong, P.R. China
| | - Shulian Zhao
- Department of Infectious Disease, Tai'an Central Hospital, Tai'an, Shandong, P.R. China
| | - Tao Wang
- Department of Molecular Biology, Basic Medical College, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, P.R. China
| | - Jing Zhai
- Department of Molecular Biology, Basic Medical College, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, P.R. China.
| |
Collapse
|
39
|
Veronese P, Bertelli F, Cattapan C, Andolfatto M, Gervasi MT, Vida VL. Three-Dimensional Printing of Fetal Heart With d-Transposition of the Great Arteries From Ultrasound Imaging Data. World J Pediatr Congenit Heart Surg 2020; 12:291-292. [PMID: 32851914 DOI: 10.1177/2150135120947687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We reconstructed and printed a 3D model of the fetal heart affected by d-transposition of the great arteries from prenatal ultrasound images. Our 3D model revealed to be very helpful in showing the basic anatomical features of fetal complex Congenital Heart Disease (CHD) and represents an interesting additional diagnostic tool to the current standard imaging armamentarium, improving the quality of prenatal parental counseling.
Collapse
Affiliation(s)
- Paola Veronese
- Maternal-Fetal Medicine Unit, Department of Women's and Children's Health, AOPD, Padua, Italy
| | - Francesco Bertelli
- Paediatric and Congenital Cardiac Surgery Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, 9308University of Padua, Italy
| | - Claudia Cattapan
- Paediatric and Congenital Cardiac Surgery Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, 9308University of Padua, Italy
| | - Matteo Andolfatto
- Maternal-Fetal Medicine Unit, Department of Women's and Children's Health, AOPD, Padua, Italy
| | - Maria Teresa Gervasi
- Maternal-Fetal Medicine Unit, Department of Women's and Children's Health, AOPD, Padua, Italy
| | - Vladimiro L Vida
- Maternal-Fetal Medicine Unit, Department of Women's and Children's Health, AOPD, Padua, Italy
| |
Collapse
|
40
|
Wang DD, Qian Z, Vukicevic M, Engelhardt S, Kheradvar A, Zhang C, Little SH, Verjans J, Comaniciu D, O'Neill WW, Vannan MA. 3D Printing, Computational Modeling, and Artificial Intelligence for Structural Heart Disease. JACC Cardiovasc Imaging 2020; 14:41-60. [PMID: 32861647 DOI: 10.1016/j.jcmg.2019.12.022] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 01/19/2023]
Abstract
Structural heart disease (SHD) is a new field within cardiovascular medicine. Traditional imaging modalities fall short in supporting the needs of SHD interventions, as they have been constructed around the concept of disease diagnosis. SHD interventions disrupt traditional concepts of imaging in requiring imaging to plan, simulate, and predict intraprocedural outcomes. In transcatheter SHD interventions, the absence of a gold-standard open cavity surgical field deprives physicians of the opportunity for tactile feedback and visual confirmation of cardiac anatomy. Hence, dependency on imaging in periprocedural guidance has led to evolution of a new generation of procedural skillsets, concept of a visual field, and technologies in the periprocedural planning period to accelerate preclinical device development, physician, and patient education. Adaptation of 3-dimensional (3D) printing in clinical care and procedural planning has demonstrated a reduction in early-operator learning curve for transcatheter interventions. Integration of computation modeling to 3D printing has accelerated research and development understanding of fluid mechanics within device testing. Application of 3D printing, computational modeling, and ultimately incorporation of artificial intelligence is changing the landscape of physician training and delivery of patient-centric care. Transcatheter structural heart interventions are requiring in-depth periprocedural understanding of cardiac pathophysiology and device interactions not afforded by traditional imaging metrics.
Collapse
Affiliation(s)
- Dee Dee Wang
- Center for Structural Heart Disease, Division of Cardiology, Henry Ford Health System, Detroit, Michigan, USA.
| | - Zhen Qian
- Hippocrates Research Lab, Tencent America, Palo Alto, California, USA
| | - Marija Vukicevic
- Department of Cardiology, Methodist DeBakey Heart Center, Houston Methodist Hospital, Houston, Texas, USA
| | - Sandy Engelhardt
- Artificial Intelligence in Cardiovascular Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Arash Kheradvar
- Department of Biomedical Engineering, Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, California, USA
| | - Chuck Zhang
- H. Milton Stewart School of Industrial & Systems Engineering and Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta Georgia, USA
| | - Stephen H Little
- Department of Cardiology, Methodist DeBakey Heart Center, Houston Methodist Hospital, Houston, Texas, USA
| | - Johan Verjans
- Australian Institute for Machine Learning, University of Adelaide, Adelaide South Australia, Australia
| | - Dorin Comaniciu
- Siemens Healthineers, Medical Imaging Technologies, Princeton, New Jersey, USA
| | - William W O'Neill
- Center for Structural Heart Disease, Division of Cardiology, Henry Ford Health System, Detroit, Michigan, USA
| | - Mani A Vannan
- Hippocrates Research Lab, Tencent America, Palo Alto, California, USA
| |
Collapse
|
41
|
Tretter JT, Gupta SK, Izawa Y, Nishii T, Mori S. Virtual Dissection: Emerging as the Gold Standard of Analyzing Living Heart Anatomy. J Cardiovasc Dev Dis 2020; 7:E30. [PMID: 32806725 PMCID: PMC7570024 DOI: 10.3390/jcdd7030030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022] Open
Abstract
Traditionally, gross cardiac anatomy has been described mainly based on the findings in the dissection suite. Analyses of heart specimens have contributed immensely towards building a fundamental knowledge of cardiac anatomy. However, there are limitations in analyzing the autopsied heart removed from the thorax. Three-dimensional imaging allows visualization of the blood-filled heart in vivo in attitudinally appropriate fashion. This is of paramount importance for not only demonstration of cardiac anatomy for educational purposes, but also for the detailed anatomical evaluation in patients with acquired and congenital heart disease. In this review, we discuss the advantages of three-dimensional imaging, specifically focusing on virtual dissection, a volume rendering-based reconstruction technique using computed tomographic data. We highlight examples of three-dimensional imaging in both education and guiding patient management.
Collapse
Affiliation(s)
- Justin T. Tretter
- Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Saurabh Kumar Gupta
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Yu Izawa
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan;
| | - Tatsuya Nishii
- Department of Radiology, National Cerebral and Cardiovascular Center, Suita, Osaka 564-8565, Japan;
| | - Shumpei Mori
- UCLA Cardiac Arrhythmia Center, UCLA Health System, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
42
|
Bezek LB, Cauchi MP, De Vita R, Foerst JR, Williams CB. 3D printing tissue-mimicking materials for realistic transseptal puncture models. J Mech Behav Biomed Mater 2020; 110:103971. [PMID: 32763836 DOI: 10.1016/j.jmbbm.2020.103971] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 01/09/2023]
Abstract
Applications of additive manufacturing (commonly referred to as 3D printing) in direct fabrication of models for pre-surgical planning, functional testing, and medical training are on the rise. However, one current limitation to the accuracy of models for cardiovascular procedural training is a lack of printable materials that accurately mimic human tissue. Most of the available elastomeric materials lack mechanical properties representative of human tissues. To address the gap, the authors explore the multi-material capability of material jetting additive manufacturing to combine non-curing and photo-curing inks to achieve material properties that more closely replicate human tissues. The authors explore the impact of relative material concentration on tissue-relevant properties from puncture and tensile testing under submerged conditions. Further, the authors demonstrate the ability to mimic the mechanical properties of the fossa ovalis, which proves beneficial for accurately simulating transseptal punctures. A fossa ovalis mimic was printed and assembled within a full patient-specific heart model for validation, where it exhibited accuracy in both mechanical properties and geometry. The explored material combination provides the opportunity to fabricate future medical models that are more realistic and better suited for pre-surgical planning and medical student training. This will ultimately guide safer, more efficient practices.
Collapse
Affiliation(s)
- Lindsey B Bezek
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | | | - Raffaella De Vita
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Jason R Foerst
- Section of Interventional and Structural Cardiology, Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA
| | | |
Collapse
|
43
|
Salavitabar A, Figueroa CA, Lu JC, Owens ST, Axelrod DM, Zampi JD. Emerging 3D technologies and applications within congenital heart disease: teach, predict, plan and guide. Future Cardiol 2020; 16:695-709. [PMID: 32628520 DOI: 10.2217/fca-2020-0004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
3D visualization technologies have evolved to become a mainstay in the management of congenital heart disease (CHD) with a growing presence within multiple facets. Printed and virtual 3D models allow for a more comprehensive approach to educating trainees and care team members. Computational fluid dynamics can take 3D modeling to the next level, by predicting post-procedural outcomes and helping to determine surgical approach. 3D printing and extended reality are developing resources for pre-procedural planning and intra-procedural guidance with the potential to revolutionize decision-making and procedural success. Challenges still remain within existing technologies and their applications to the CHD field. Addressing these gaps, both by those within and outside of CHD, will transform education and patient care within our field.
Collapse
Affiliation(s)
- Arash Salavitabar
- C.S. Mott Children's Hospital, University of Michigan Congenital Heart Center, Ann Arbor, MI 48109, USA
| | - C Alberto Figueroa
- Departments of Biomedical Engineering & Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jimmy C Lu
- C.S. Mott Children's Hospital, University of Michigan Congenital Heart Center, Ann Arbor, MI 48109, USA
| | - Sonal T Owens
- C.S. Mott Children's Hospital, University of Michigan Congenital Heart Center, Ann Arbor, MI 48109, USA
| | - David M Axelrod
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Jeffrey D Zampi
- C.S. Mott Children's Hospital, University of Michigan Congenital Heart Center, Ann Arbor, MI 48109, USA
| |
Collapse
|
44
|
Lin ZW, Huang ST, Xu N, Cao H, Chen Q. Parents' knowledge and attitudes regarding transthoracic device closure of VSD in children: a cross-sectional study. J Cardiothorac Surg 2020; 15:75. [PMID: 32381035 PMCID: PMC7206819 DOI: 10.1186/s13019-020-01124-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/28/2020] [Indexed: 12/04/2022] Open
Abstract
Objectives This study aimed to identify Chinese parents’ knowledge and attitudes toward transthoracic device closure of ventricular septal defect (VSD). Methods This cross-sectional study collected data on a total of 203 Chinese parents of patients with VSD were included, and an author-designed three-page questionnaire was used. Results A total of 73.9% of the parents had heard of transthoracic device closure of VSD; however, they lacked detailed knowledge. 88.2% parents expressed their willingness to undergo this procedure. Although there was no significant correlation between knowledge about the occluder material and acceptance of the method, knowledge of other information was significantly related to willingness to undergo the procedure. Some parents expressed some concerns and high expectations, but the postoperative risk reduced their desire for accepting the procedure. This study also found that most parents did not have a detailed understanding of such procedure. Conclusion Parents of patients with VSD in China need continued education regarding transthoracic device closure of VSD, especially in terms of its benefits and limited postoperative complications. In addition, it is essential to reduce the cost of this procedure to promote its development and application.
Collapse
Affiliation(s)
- Ze-Wei Lin
- Department of Cardiac Surgery, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Shu-Ting Huang
- Department of Cardiac Surgery, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Ning Xu
- Department of Cardiac Surgery, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Hua Cao
- Department of Cardiac Surgery, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Qiang Chen
- Department of Cardiac Surgery, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China. .,Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
45
|
Sun Z. Use of Three-dimensional Printing in the Development of Optimal Cardiac CT Scanning Protocols. Curr Med Imaging 2020; 16:967-977. [PMID: 32107994 DOI: 10.2174/1573405616666200124124140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 01/01/2023]
Abstract
Three-dimensional (3D) printing is increasingly used in medical applications with most of the studies focusing on its applications in medical education and training, pre-surgical planning and simulation, and doctor-patient communication. An emerging area of utilising 3D printed models lies in the development of cardiac computed tomography (CT) protocols for visualisation and detection of cardiovascular disease. Specifically, 3D printed heart and cardiovascular models have shown potential value in the evaluation of coronary plaques and coronary stents, aortic diseases and detection of pulmonary embolism. This review article provides an overview of the clinical value of 3D printed models in these areas with regard to the development of optimal CT scanning protocols for both diagnostic evaluation of cardiovascular disease and reduction of radiation dose. The expected outcomes are to encourage further research towards this direction.
Collapse
Affiliation(s)
- Zhonghua Sun
- Discipline of Medical Radiation Sciences, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, 6845, Australia
| |
Collapse
|
46
|
Illmann CF, Hosking M, Harris KC. Utility and Access to 3-Dimensional Printing in the Context of Congenital Heart Disease: An International Physician Survey Study. CJC Open 2020; 2:207-213. [PMID: 32695970 PMCID: PMC7365821 DOI: 10.1016/j.cjco.2020.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/23/2020] [Indexed: 11/26/2022] Open
Abstract
Background Three-dimensional (3D) printing is a new technology capable of producing patient-specific 3D cardiac models. Methods A cross-sectional survey of pediatric cardiologists was conducted. Members of the Canadian Pediatric Cardiology Association and Congenital Cardiac Interventional Study Consortium were invited to participate. A questionnaire was distributed using Research Electronic Data Capture between May and September 2019. Results were analyzed using descriptive statistics, Fisher exact test, and odds ratio. Results A total of 71 pediatric cardiologists responded. Some 85% (60/71) agreed that patient-specific 3D printed cardiac models are a beneficial tool in treating children with congenital heart disease (CHD); 80% of those (48/60) believe 3D models facilitate communication with colleagues; 49% (35/71) of respondents had access to 3D printing technology; and 77% (27/35) of those were using models for clinical care. Access differed according to geographic location (P = 0.004). Of respondents, Americans were 5.5 times more likely (confidence interval, 1.6-19.2) than Canadians to have access to 3D printing technology. The primary reason for lack of access was financial barriers (50%, 18/36). In clinical practice, surgical planning is the primary use of models (96%, 26/27), followed by interventional catheterization planning (52%, 14/27). Double outlet right ventricle was the most commonly modelled lesion (70%, 19/27). Conclusion 3D printing is a new technology that is beneficial in the care of children with CHD. Access to 3D printing varies by geographic location. In pediatric cardiology, 3D models are primarily used for procedural planning for CHD lesions with complex 3D spatial relationships.
Collapse
Affiliation(s)
- Caroline F Illmann
- Children's Heart Centre, BC Children's Hospital, Vancouver, British Columbia, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin Hosking
- Children's Heart Centre, BC Children's Hospital, Vancouver, British Columbia, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin C Harris
- Children's Heart Centre, BC Children's Hospital, Vancouver, British Columbia, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
47
|
Mitsuoka H, Terai Y, Miyano Y, Naitou T, Tanai J, Kawaguchi S, Goto S, Miura Y, Nakai M, Yamazaki F. Preoperative Planning for Physician-Modified Endografts Using a Three-Dimensional Printer. Ann Vasc Dis 2019; 12:334-339. [PMID: 31636743 PMCID: PMC6766763 DOI: 10.3400/avd.ra.19-00062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The medical uses of three-dimensional (3D) printing are evolving at a rapid pace. The current roles and the future outlooks of this technology for physician-modified endovascular graft (PMEG) in patients with juxtarenal aneurysm are discussed. Fenestrations of PMEG are designed taking into account the geometry of the stent graft. Designing of such stent grafts is extremely complicated, especially when PMEG is planned for the angulated portion of the aorta. A 3D model enables the designing of branch fenestrations, with consideration for the geometrical adaptation of the stent graft in a complex aortic anatomy. With the aid of 3D-printing technology, patients with juxtarenal aortic pathologies can be treated using fenestrated stent grafts, preserving the vital organ circulation and securing a robust length of proximal sealing zone.
Collapse
Affiliation(s)
- Hiroshi Mitsuoka
- Department of Cardiovascular Surgery, Shizuoka City Shizuoka Hospital, Shizuoka, Shizuoka, Japan
| | - Yasuhiko Terai
- Department of Cardiovascular Surgery, Shizuoka City Shizuoka Hospital, Shizuoka, Shizuoka, Japan
| | - Yuta Miyano
- Department of Cardiovascular Surgery, Shizuoka City Shizuoka Hospital, Shizuoka, Shizuoka, Japan
| | - Toyotaka Naitou
- Department of Cardiovascular Surgery, Shizuoka City Shizuoka Hospital, Shizuoka, Shizuoka, Japan
| | - Junsuke Tanai
- Department of Cardiovascular Surgery, Shizuoka City Shizuoka Hospital, Shizuoka, Shizuoka, Japan
| | - Shinji Kawaguchi
- Department of Cardiovascular Surgery, Shizuoka City Shizuoka Hospital, Shizuoka, Shizuoka, Japan
| | - Shinnosuke Goto
- Department of Cardiovascular Surgery, Shizuoka City Shizuoka Hospital, Shizuoka, Shizuoka, Japan
| | - Yujirou Miura
- Department of Cardiovascular Surgery, Shizuoka City Shizuoka Hospital, Shizuoka, Shizuoka, Japan
| | - Masanao Nakai
- Department of Cardiovascular Surgery, Shizuoka City Shizuoka Hospital, Shizuoka, Shizuoka, Japan
| | - Fumio Yamazaki
- Department of Cardiovascular Surgery, Shizuoka City Shizuoka Hospital, Shizuoka, Shizuoka, Japan
| |
Collapse
|
48
|
Lau IWW, Sun Z. Dimensional Accuracy and Clinical Value of 3D Printed Models in Congenital Heart Disease: A Systematic Review and Meta-Analysis. J Clin Med 2019; 8:jcm8091483. [PMID: 31540421 PMCID: PMC6780783 DOI: 10.3390/jcm8091483] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 12/24/2022] Open
Abstract
The aim of this paper is to summarize and evaluate results from existing studies on accuracy and clinical value of three-dimensional printed heart models (3DPHM) for determining whether 3D printing can significantly improve on how the congenital heart disease (CHD) is managed in current clinical practice. Proquest, Google Scholar, Scopus, PubMed, and Medline were searched for relevant studies until April 2019. Two independent reviewers performed manual data extraction and assessed the risk of bias of the studies using the tools published on National Institutes of Health (NIH) website. The following data were extracted from the studies: author, year of publication, study design, imaging modality, segmentation software, utility of 3DPHM, CHD types, and dimensional accuracy. R software was used for the meta-analysis. Twenty-four articles met the inclusion criteria and were included in the systematic review. However, only 7 studies met the statistical requirements and were eligible for meta-analysis. Cochran's Q test demonstrated significant variation among the studies for both of the meta-analyses of accuracy of 3DPHM and the utility of 3DPHM in medical education. Analysis of all included studies reported the mean deviation between the 3DPHM and the medical images is not significant, implying that 3DPHM are highly accurate. As for the utility of the 3DPHM, it is reported in all relevant studies that the 3DPHM improve the learning experience and satisfaction among the users, and play a critical role in facilitating surgical planning of complex CHD cases. 3DPHM have the potential to enhance communication in medical practice, however their clinical value remains debatable. More studies are required to yield a more meaningful meta-analysis.
Collapse
Affiliation(s)
- Ivan Wen Wen Lau
- Discipline of Medical Radiation Sciences, School of Molecular and Life Sciences, Curtin University, Perth 6845, Western Australia, Australia.
| | - Zhonghua Sun
- Discipline of Medical Radiation Sciences, School of Molecular and Life Sciences, Curtin University, Perth 6845, Western Australia, Australia.
| |
Collapse
|
49
|
Smerling J, Marboe CC, Lefkowitch JH, Pavlicova M, Bacha E, Einstein AJ, Naka Y, Glickstein J, Farooqi KM. Utility of 3D Printed Cardiac Models for Medical Student Education in Congenital Heart Disease: Across a Spectrum of Disease Severity. Pediatr Cardiol 2019; 40:1258-1265. [PMID: 31240370 DOI: 10.1007/s00246-019-02146-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/20/2019] [Indexed: 10/26/2022]
Abstract
The most common modes of medical education for congenital heart disease (CHD) rely heavily on 2-dimensional imaging. Three-dimensional (3D) printing technology allows for the creation of physical cardiac models that can be used for teaching trainees. 3D printed cardiac models were created for the following lesions: pulmonic stenosis, atrial septal defect, tetralogy of Fallot, d-transposition of the great arteries, coarctation of the aorta, and hypoplastic left heart syndrome. Medical students participated in a workshop consisting of different teaching stations. At the 3D printed station, students completed a pre- and post-intervention survey assessing their knowledge of each cardiac lesion on a Likert scale. Students were asked to rank the educational benefit of each modality. Linear regression was utilized to assess the correlation of the mean increase in knowledge with increasing complexity of CHD based on the Aristotle Basic Complexity Level. 45 medical students attended the CHD workshop. Students' knowledge significantly improved for every lesion (p < 0.001). A strong positive correlation was found between mean increase in knowledge and increasing complexity of CHD (R2 = 0.73, p < 0.05). The 3D printed models, pathology specimens and spoken explanation were found to be the most helpful modalities. Students "strongly agreed" the 3D printed models made them more confident in explaining congenital cardiac anatomy to others (mean = 4.23, ± 0.69), and that they recommend the use of 3D models for future educational sessions (mean = 4.40, ± 0.69). 3D printed cardiac models should be included in medical student education particularly for lesions that require a complex understanding of spatial relationships.
Collapse
Affiliation(s)
- Jennifer Smerling
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Charles C Marboe
- Department of Pathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jay H Lefkowitch
- Department of Pathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Martina Pavlicova
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Emile Bacha
- Division of Pediatric Cardiothoracic Surgery, Department of Surgery, Columbia University Medical Center, New York, NY, USA
| | - Andrew J Einstein
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.,Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yoshifumi Naka
- Division of Cardiothoracic Surgery, Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Julie Glickstein
- Division of Cardiology, Department of Pediatrics, Columbia University Irving Medical Center, 3959 Broadway, CHN-2, New York, NY, 10023, USA
| | - Kanwal M Farooqi
- Division of Cardiology, Department of Pediatrics, Columbia University Irving Medical Center, 3959 Broadway, CHN-2, New York, NY, 10023, USA.
| |
Collapse
|
50
|
XU J, SHU Q. [Application of 3D printing techniques in treatment of congenital heart disease]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2019; 48:573-579. [PMID: 31901034 PMCID: PMC8800709 DOI: 10.3785/j.issn.1008-9292.2019.10.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/07/2019] [Indexed: 01/24/2023]
Abstract
Congenital heart disease (CHD) is the most common birth defect at present. In recent years, the application of 3D printing in the diagnosis and treatment of CHD has been widely recognized, which presents CHD lesions in 3D solid model and provides a better understanding of the anatomy of CHD. In the future, 3D printing technology would improve the surgical proficiency, shorten the operation time, reduce the occurrence of perioperative complications, and create more personalized cardiovascular implants, therefore promote the precision of diagnosis and treatment for congenital heart disease. This article reviews the application of 3D printing technology in preoperative planning, intraoperative navigation and personalized implants of CHD, in surgical training and medical education, as well as in promoting doctor-patient communication and better understanding their condition for patients.
Collapse
Affiliation(s)
| | - Qiang SHU
- 舒强(1965-), 男, 博士, 教授, 博士生导师, 主要从事出生缺陷防治和小儿心胸外科研究; E-mail:
;
https://orcid.org/0000-0002-4106-6255
| |
Collapse
|