1
|
Huang N, Chang C, Wu L, He Q, Zhang Z, Li X, Xu F. Distinct mutation features and its clinical significance in myelodysplastic syndromes with normal karyotype. Ann Hematol 2024; 103:4485-4495. [PMID: 39302466 DOI: 10.1007/s00277-024-06005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Myelodysplastic syndromes (MDS) is a highly heterogeneous myeloid neoplastic disease, which needs personalized evaluation and therapy. To analyze the features and significance of gene mutations for MDS patients with normal karyotype (NK) at diagnosis, targeted sequencing was conducted on 616 MDS patients with NK, alongside 457 MDS cases with abnormal karyotype (AK). The results showed that the incidence of somatic mutation reached 70.3% and 83.8% in the NK and AK group, respectively. Initial mutation including ASXL1, DNMT3A and TET2 were common in NK group, which is the same as AK group. Some karyotype-associated gene mutations, such as TP53 and U2AF1, were relatively rare in NK group. Moreover, 34 out of 91 samples who progressed to acute myeloid leukemia (AML) underwent repeat sequencing during follow-up. 25 cases were checked out with newly emerged mutations. The AML-associated genetic alterations mainly involved with active signaling and transcription factors. In patients with NK, serial targeted sequencing was employed for minimal residual disease (MRD) monitoring, indicating the efficacy and relapse of the patients. In summary, MDS with NK showed distinct mutation features from those with AK. High-frequency gene mutations together with the mutational evolution suggested the diagnostic and monitoring significance of next generation sequencing for NK-MDS.
Collapse
Affiliation(s)
- Nanfang Huang
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunkang Chang
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingyun Wu
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi He
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Zhang
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Li
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Feng Xu
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Buckstein R. SintraREViewed: practice changing, or validation required? Lancet Haematol 2024; 11:e632-e634. [PMID: 39033768 DOI: 10.1016/s2352-3026(24)00185-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 07/23/2024]
Affiliation(s)
- Rena Buckstein
- Odette Cancer Center, Sunnybrook Health Sciences, Toronto, ON M4N3M5, Canada.
| |
Collapse
|
3
|
Gener-Ricos G, Rodriguez-Sevilla JJ, Urrutia S, Bataller A, Bazinet A, Garcia-Manero G. Advances in the management of higher-risk myelodysplastic syndromes: future prospects. Leuk Lymphoma 2024; 65:1233-1244. [PMID: 38712556 DOI: 10.1080/10428194.2024.2344061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 05/08/2024]
Abstract
Higher-risk myelodysplastic syndromes (HR-MDS) are defined using a number of prognostic scoring systems that include the degree of cytopenias, percentage of blasts, cytogenetic alterations, and more recently genomic data. HR-MDS encompasses characteristics such as progressive cytopenias, increased bone marrow blasts, unfavorable cytogenetics, and an adverse mutational profile. Survival is generally poor, and patients require therapy to improve outcomes. Hypomethylating agents (HMAs), such as azacitidine, decitabine, and more recently, oral decitabine/cedazuridine, are the only approved therapies for HR-MDS. These are often continued until loss of response, progression, or unacceptable toxicity. Combinations including an HMA plus other drugs have been investigated but have not demonstrated better outcomes compared to single-agent HMA. Moreover, in a disease of high genomic complexity such as HR-MDS, therapy targeting specific genomic abnormalities is of interest. This review will examine the biological underpinnings of HR-MDS, its therapeutic landscape in the frontline and relapsed settings, as well as the impact of hematopoietic stem cell transplantation, the only known curative intervention for this disease.
Collapse
Affiliation(s)
- Georgina Gener-Ricos
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Samuel Urrutia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alex Bataller
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexandre Bazinet
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
4
|
Sadigh S, Kim AS. Molecular Pathology of Myeloid Neoplasms: Molecular Pattern Recognition. Clin Lab Med 2024; 44:339-353. [PMID: 38821648 DOI: 10.1016/j.cll.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Despite the apparent complexity of the molecular genetic underpinnings of myeloid neoplasms, most myeloid mutational profiles can be understood within a simple framework. Somatic mutations accumulate in hematopoietic stem cells with aging and toxic insults, termed clonal hematopoiesis. These "old stem cells" mutations, predominantly in the epigenetic and RNA spliceosome pathways, act as "founding" driver mutations leading to a clonal myeloid neoplasm when sufficient in number and clone size. Subsequent mutations can create the genetic flavor of the myeloid neoplasm ("backseat" drivers) due to their enrichment in certain entities or act as progression events ("aggressive" drivers) during clonal evolution.
Collapse
Affiliation(s)
- Sam Sadigh
- Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Annette S Kim
- Division of Diagnostic Genetics and Genomics, Department of Pathology, University of Michigan/Michigan Medicine, 2800 Plymouth Road, NCRC 36-1221-79, Ann Arbor, MI 48109, USA.
| |
Collapse
|
5
|
Perusini MA, Žáčková D, Kim T, Pagnano K, Pavlovsky C, Ježíšková I, Kvetková A, Jurček T, Kim J, Yoo Y, Yi S, Lee H, Kim KH, Chang M, Capo-Chichi JM, Medeiros JJF, Arruda A, Minden M, Zhang Z, Abelson S, Mayer J, Hwan Kim DD. Mutations in myeloid transcription factors and activated signaling genes predict chronic myeloid leukemia outcomes. Blood Adv 2024; 8:2361-2372. [PMID: 38447114 PMCID: PMC11127220 DOI: 10.1182/bloodadvances.2023012127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/17/2024] [Accepted: 02/15/2024] [Indexed: 03/08/2024] Open
Abstract
ABSTRACT Advancements in genomics are transforming the clinical management of chronic myeloid leukemia (CML) toward precision medicine. The impact of somatic mutations on treatment outcomes is still under debate. We studied the association of somatic mutations in epigenetic modifier genes and activated signaling/myeloid transcription factors (AS/MTFs) with disease progression and treatment failure in patients with CML after tyrosine kinase inhibitor (TKI) therapy. A total of 394 CML samples were sequenced, including 254 samples collected at initial diagnosis and 140 samples taken during follow-up. Single-molecule molecular inversion probe (smMIP)-based next-generation sequencing (NGS) was conducted targeting recurrently mutated loci in 40 genes, with a limit of detection of 0.2%. Seventy mutations were detected in 57 diagnostic samples (22.4%), whereas 64 mutations were detected in 39 of the follow-up samples (27.9%). Carrying any mutation at initial diagnosis was associated with worse outcomes after TKI therapy, particularly in AS/MTF genes. Patients having these mutations at initial diagnosis and treated with imatinib showed higher risks of treatment failure (hazard ratio, 2.53; 95% confidence interval, 1.13-5.66; P = .0239). The adverse prognostic impact of the mutations was not clear for patients treated with second-generation TKIs. The multivariate analysis affirmed that mutations in AS/MTF genes independently serve as adverse prognostic factors for molecular response, failure-free survival, and progression risk. Additionally, there was an observable nonsignificant trend indicating a heightened risk of progression to advanced disease and worse overall survival. In conclusion, mutations in the AS/MTF genes using smMIP-based NGS can help identify patients with a potential risk of both treatment failure and progression and may help upfront TKI selection.
Collapse
MESH Headings
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/mortality
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Mutation
- Male
- Middle Aged
- Female
- Adult
- Aged
- Signal Transduction
- Protein Kinase Inhibitors/therapeutic use
- Prognosis
- Transcription Factors/genetics
- Treatment Outcome
- High-Throughput Nucleotide Sequencing
- Young Adult
- Aged, 80 and over
- Disease Progression
Collapse
Affiliation(s)
- Maria Agustina Perusini
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Daniela Žáčková
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Masaryk University, Brno, Czech Republic
| | - Taehyung Kim
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, Donnelly Centre for Cellular & Biomolecular Research, Toronto, ON, Canada
| | - Katia Pagnano
- Hematology and Hemotherapy Center, University of Campinas, Campinas, Brazil
| | | | - Ivana Ježíšková
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Masaryk University, Brno, Czech Republic
| | - Anežka Kvetková
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Masaryk University, Brno, Czech Republic
| | - Tomáš Jurček
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Masaryk University, Brno, Czech Republic
| | - Jaeyoon Kim
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Youngseok Yoo
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Seongyoon Yi
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Internal Medicine, Inje University Ilsan-Paik Hospital, Goyang, Republic of Korea
| | - Hyewon Lee
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Internal Medicine, Center for Hematologic Malignancies, National Cancer Center, Goyang, Republic of Korea
| | - Kyoung Ha Kim
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Division of Hematology and Oncology, Department of Internal Medicine, Soon Chun Hyang University Seoul Hospital, Seoul, Republic of Korea
| | - Myunghee Chang
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
- National Health Insurance Service Ilsan Hospital, Ilsan, Republic of Korea
| | - Jose-Mario Capo-Chichi
- Genome Diagnostics & Cancer Cytogenetics Laboratories, Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Jessie J. F. Medeiros
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Andrea Arruda
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Malignant Hematology Tissue Bank, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Mark Minden
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Malignant Hematology Tissue Bank, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Zhaolei Zhang
- The Donnelly Centre for Cellular and Biomolecular Research, Donnelly Centre for Cellular & Biomolecular Research, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Sagi Abelson
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jiri Mayer
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Masaryk University, Brno, Czech Republic
| | - Dennis Dong Hwan Kim
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Liu X, Devadiga SA, Stanley RF, Morrow RM, Janssen KA, Quesnel-Vallières M, Pomp O, Moverley AA, Li C, Skuli N, Carroll M, Huang J, Wallace DC, Lynch KW, Abdel-Wahab O, Klein PS. A mitochondrial surveillance mechanism activated by SRSF2 mutations in hematologic malignancies. J Clin Invest 2024; 134:e175619. [PMID: 38713535 PMCID: PMC11178535 DOI: 10.1172/jci175619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 04/25/2024] [Indexed: 05/09/2024] Open
Abstract
Splicing factor mutations are common in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), but how they alter cellular functions is unclear. We show that the pathogenic SRSF2P95H/+ mutation disrupts the splicing of mitochondrial mRNAs, impairs mitochondrial complex I function, and robustly increases mitophagy. We also identified a mitochondrial surveillance mechanism by which mitochondrial dysfunction modifies splicing of the mitophagy activator PINK1 to remove a poison intron, increasing the stability and abundance of PINK1 mRNA and protein. SRSF2P95H-induced mitochondrial dysfunction increased PINK1 expression through this mechanism, which is essential for survival of SRSF2P95H/+ cells. Inhibition of splicing with a glycogen synthase kinase 3 inhibitor promoted retention of the poison intron, impairing mitophagy and activating apoptosis in SRSF2P95H/+ cells. These data reveal a homeostatic mechanism for sensing mitochondrial stress through PINK1 splicing and identify increased mitophagy as a disease marker and a therapeutic vulnerability in SRSF2P95H mutant MDS and AML.
Collapse
Affiliation(s)
- Xiaolei Liu
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sudhish A. Devadiga
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert F. Stanley
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ryan M. Morrow
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kevin A. Janssen
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Oz Pomp
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Adam A. Moverley
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Chenchen Li
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nicolas Skuli
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Martin Carroll
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jian Huang
- Coriell Institute for Medical Research, Camden, New Jersey, USA
| | - Douglas C. Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Division of Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Omar Abdel-Wahab
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Peter S. Klein
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Liu X, Devadiga SA, Stanley RF, Morrow R, Janssen K, Quesnel-Vallières M, Pomp O, Moverley AA, Li C, Skuli N, Carroll MP, Huang J, Wallace DC, Lynch KW, Abdel-Wahab O, Klein PS. A mitochondrial surveillance mechanism activated by SRSF2 mutations in hematologic malignancies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.25.546449. [PMID: 38712254 PMCID: PMC11071312 DOI: 10.1101/2023.06.25.546449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Splicing factor mutations are common in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), but how they alter cellular functions is unclear. We show that the pathogenic SRSF2P95H/+ mutation disrupts the splicing of mitochondrial mRNAs, impairs mitochondrial complex I function, and robustly increases mitophagy. We also identified a mitochondrial surveillance mechanism by which mitochondrial dysfunction modifies splicing of the mitophagy activator PINK1 to remove a poison intron, increasing the stability and abundance of PINK1 mRNA and protein. SRSF2P95H-induced mitochondrial dysfunction increased PINK1 expression through this mechanism, which is essential for survival of SRSF2P95H/+ cells. Inhibition of splicing with a glycogen synthase kinase 3 inhibitor promoted retention of the poison intron, impairing mitophagy and activating apoptosis in SRSF2P95H/+ cells. These data reveal a homeostatic mechanism for sensing mitochondrial stress through PINK1 splicing and identify increased mitophagy as a disease marker and a therapeutic vulnerability in SRSF2P95H mutant MDS and AML.
Collapse
Affiliation(s)
- Xiaolei Liu
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Sudhish A. Devadiga
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Robert F. Stanley
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Ryan Morrow
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
| | - Kevin Janssen
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
| | - Mathieu Quesnel-Vallières
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Oz Pomp
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Adam A. Moverley
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Chenchen Li
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Nicolas Skuli
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Martin P. Carroll
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Jian Huang
- Coriell Institute for Medical Research; Camden, NJ, USA
| | - Douglas C. Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
- Department of Pediatrics, Division of Human Genetics, Perelman School of Medicine; University of Pennsylvania, Philadelphia, PA, USA
| | - Kristen W. Lynch
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Omar Abdel-Wahab
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Peter S. Klein
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| |
Collapse
|
8
|
Zhang L, Deeb G, Deeb KK, Vale C, Peker Barclift D, Papadantonakis N. Measurable (Minimal) Residual Disease in Myelodysplastic Neoplasms (MDS): Current State and Perspectives. Cancers (Basel) 2024; 16:1503. [PMID: 38672585 PMCID: PMC11048433 DOI: 10.3390/cancers16081503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Myelodysplastic Neoplasms (MDS) have been traditionally studied through the assessment of blood counts, cytogenetics, and morphology. In recent years, the introduction of molecular assays has improved our ability to diagnose MDS. The role of Measurable (minimal) Residual Disease (MRD) in MDS is evolving, and molecular and flow cytometry techniques have been used in several studies. In this review, we will highlight the evolving concept of MRD in MDS, outline the various techniques utilized, and provide an overview of the studies reporting MRD and the correlation with outcomes.
Collapse
Affiliation(s)
- Linsheng Zhang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - George Deeb
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kristin K. Deeb
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Colin Vale
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Deniz Peker Barclift
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nikolaos Papadantonakis
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
9
|
Streuer A, Jann JC, Boch T, Mossner M, Riabov V, Schmitt N, Altrock E, Xu Q, Demmerle M, Nowak V, Oblaender J, Palme I, Weimer N, Rapp F, Metzgeroth G, Hecht A, Höger T, Merz C, Hofmann WK, Nolte F, Nowak D. Treatment with the apoptosis inhibitor Asunercept reduces clone sizes in patients with lower risk Myelodysplastic Neoplasms. Ann Hematol 2024; 103:1221-1233. [PMID: 38413410 PMCID: PMC10940491 DOI: 10.1007/s00277-024-05664-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/14/2024] [Indexed: 02/29/2024]
Abstract
In low-risk Myelodysplastic Neoplasms (MDS), increased activity of apoptosis-promoting factors such as tumor necrosis factor (TNFα) and pro-apoptotic Fas ligand (CD95L) have been described as possible pathomechanisms leading to impaired erythropoiesis. Asunercept (APG101) is a novel therapeutic fusion protein blocking CD95, which has previously shown partial efficacy in reducing transfusion requirement in a clinical phase I trial for low-risk MDS patients (NCT01736436; 2012-11-26). In the current study we aimed to evaluate the effect of Asunercept therapy on the clonal bone marrow composition to identify potential biomarkers to predict response. Bone marrow samples of n = 12 low-risk MDS patients from the above referenced clinical trial were analyzed by serial deep whole exome sequencing in a total of n = 58 time points. We could distinguish a mean of 3.5 molecularly defined subclones per patient (range 2-6). We observed a molecular response defined as reductions of dominant clone sizes by a variant allele frequency (VAF) decrease of at least 10% (mean 20%, range: 10.5-39.2%) in dependency of Asunercept treatment in 9 of 12 (75%) patients. Most of this decline in clonal populations was observed after completion of 12 weeks treatment. Particularly early and pronounced reductions of clone sizes were found in subclones driven by mutations in genes involved in regulation of methylation (n = 1 DNMT3A, n = 1 IDH2, n = 1 TET2). Our results suggest that APG101 could be efficacious in reducing clone sizes of mutated hematopoietic cells in the bone marrow of Myelodysplastic Neoplasms, which warrants further investigation.
Collapse
Affiliation(s)
- Alexander Streuer
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Pettenkoferstr. 22, 68169, Mannheim, Germany.
| | - Johann-Christoph Jann
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Pettenkoferstr. 22, 68169, Mannheim, Germany
| | - Tobias Boch
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Pettenkoferstr. 22, 68169, Mannheim, Germany
| | - Maximilian Mossner
- Centre for Genomics and Computational Biology, Barts Cancer Institute, London, UK
| | - Vladimir Riabov
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Pettenkoferstr. 22, 68169, Mannheim, Germany
| | - Nanni Schmitt
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Pettenkoferstr. 22, 68169, Mannheim, Germany
| | - Eva Altrock
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Pettenkoferstr. 22, 68169, Mannheim, Germany
| | - Qingyu Xu
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Pettenkoferstr. 22, 68169, Mannheim, Germany
| | - Marie Demmerle
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Pettenkoferstr. 22, 68169, Mannheim, Germany
| | - Verena Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Pettenkoferstr. 22, 68169, Mannheim, Germany
| | - Julia Oblaender
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Pettenkoferstr. 22, 68169, Mannheim, Germany
| | - Iris Palme
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Pettenkoferstr. 22, 68169, Mannheim, Germany
| | - Nadine Weimer
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Pettenkoferstr. 22, 68169, Mannheim, Germany
| | - Felicitas Rapp
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Pettenkoferstr. 22, 68169, Mannheim, Germany
| | - Georgia Metzgeroth
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Pettenkoferstr. 22, 68169, Mannheim, Germany
| | - Anna Hecht
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Pettenkoferstr. 22, 68169, Mannheim, Germany
| | | | | | - Wolf-Karsten Hofmann
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Pettenkoferstr. 22, 68169, Mannheim, Germany
| | - Florian Nolte
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Pettenkoferstr. 22, 68169, Mannheim, Germany
| | - Daniel Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Pettenkoferstr. 22, 68169, Mannheim, Germany
| |
Collapse
|
10
|
Soderquist CR, Freeman C, Lin WH, Leeman-Neill RJ, Gu Y, Carter MC, Stutzel KC, Sigcha E, Alobeid B, Fernandes H, Bhagat G, Mansukhani MM, Hsiao SJ. Clinical Utility and Reimbursement of Next-Generation Sequencing-Based Testing for Myeloid Malignancies. J Mol Diagn 2024; 26:5-16. [PMID: 37981089 DOI: 10.1016/j.jmoldx.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/12/2023] [Accepted: 09/18/2023] [Indexed: 11/21/2023] Open
Abstract
Next-generation sequencing is becoming increasingly important for the diagnosis, risk stratification, and management of patients with established or suspected myeloid malignancies. These tests are being incorporated into clinical practice guidelines and many genetic alterations now constitute disease classification criteria. However, the reimbursement for these tests is uncertain. This study analyzed the clinical impact, ordering practices, prior authorization, and reimbursement outcomes of 505 samples from 477 patients sequenced with a 50-gene myeloid next-generation sequencing panel or a 15-gene myeloproliferative neoplasm subpanel. Overall, 98% (496 of 505) of tests provided clinically useful data. Eighty-nine percent of test results, including negative findings, informed or clarified potential diagnoses, 94% of results informed potential prognoses, and 19% of tests identified a potential therapeutic target. Sequencing results helped risk-stratify patients whose bone marrow biopsy specimens were inconclusive for dysplasia, monitor genetic evolution associated with disease progression, and delineate patients with mutation-defined diagnoses. Despite the clinical value, prior authorization from commercial payors or managed government payors was approved for less than half (45%) of requests. Only 51% of all cases were reimbursed, with lack of medical necessity frequently cited as a reason for denial. This study demonstrates the existence of a substantial gap between clinical utility and payor policies on test reimbursement.
Collapse
Affiliation(s)
- Craig R Soderquist
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Christopher Freeman
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Wen-Hsuan Lin
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Rebecca J Leeman-Neill
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Yue Gu
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Melissa C Carter
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Kate C Stutzel
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Evelyn Sigcha
- Faculty Practice Organization, Revenue Management, Columbia University Irving Medical Center, New York, New York
| | - Bachir Alobeid
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Helen Fernandes
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Govind Bhagat
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Mahesh M Mansukhani
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Susan J Hsiao
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York.
| |
Collapse
|
11
|
Pozdnyakova O, Niculescu RS, Kroll T, Golemme L, Raymond N, Briggs D, Kim A. Beyond the routine CBC: machine learning and statistical analyses identify research CBC parameter associations with myelodysplastic syndromes and specific underlying pathogenic variants. J Clin Pathol 2023; 76:624-631. [PMID: 35577566 DOI: 10.1136/jclinpath-2021-207860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 04/16/2022] [Indexed: 11/04/2022]
Abstract
AIMS Given the time, expense and clinical expertise required for a myelodysplastic syndrome (MDS) diagnosis, there is a clear need for a cost-effective screening laboratory test that can rapidly and accurately distinguish patients with cytopenias related to MDS from other causes. METHODS We measured conventional and research use only complete blood cell (CBC) parameters using the Sysmex XN-series haematology analyser in 102 MDS patients (70 patients with active MDS and 32 patients in remission), 43 patients with cytopenia without morphological evidence of MDS and 484 age-adjusted controls. A variety of algorithms, including random forest machine learning, were used to construct parameter-based models to predict the presence of MDS using both CBC and molecular data or CBC data alone and correlated individual pathogenic variants/genetic pathways with CBC parameters changes. RESULTS Using the CBC parameters alone, our predictive model for active MDS showed a 0.86 receiver operating characteristic curve (ROC)/area under the ROC curve (AUC), with 0.87 sensitivity and 0.72 specificity; with the addition of the molecular and demographic status, the ROC/AUC improved to 0.93, sensitivity to 0.89 and specificity to 0.84. The most discriminatory MDS parameters were reflective of dysplastic neutrophil morphology, red cell count fragmentation and degree of platelet immaturity. Specific patterns of parameters were associated with individual gene pathogenic variants or affected pathways. CONCLUSIONS CBC research parameters can be used as an adjunct to the haematological workup of cytopenia(s) to help screen for patients with high likelihood of MDS.
Collapse
Affiliation(s)
- Olga Pozdnyakova
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | - Lisa Golemme
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Nolan Raymond
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Debra Briggs
- Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Annette Kim
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Schulz E, Aplan PD, Freeman SD, Pavletic SZ. Moving toward a conceptualization of measurable residual disease in myelodysplastic syndromes. Blood Adv 2023; 7:4381-4394. [PMID: 37267435 PMCID: PMC10432617 DOI: 10.1182/bloodadvances.2023010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/03/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023] Open
Abstract
Approximately 90% of patients with myelodysplastic syndromes (MDSs) have somatic mutations that are known or suspected to be oncogenic in the malignant cells. The genetic risk stratification of MDSs has evolved substantially with the introduction of the clinical molecular international prognostic scoring system, which establishes next-generation sequencing at diagnosis as a standard of care. Furthermore, the International Consensus Classification of myeloid neoplasms and acute leukemias has refined the MDS diagnostic criteria with the introduction of a new MDS/acute myeloid leukemia category. Monitoring measurable residual disease (MRD) has historically been used to define remission status, improve relapse prediction, and determine the efficacy of antileukemic drugs in patients with acute and chronic leukemias. However, in contrast to leukemias, assessment of MRD, including tracking of patient-specific mutations, has not yet been formally defined as a biomarker for MDS. This article summarizes current evidence and challenges and provides a conceptual framework for incorporating MRD into the treatment of MDS and future clinical trials.
Collapse
Affiliation(s)
- Eduard Schulz
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD
| | - Peter D. Aplan
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD
| | - Sylvie D. Freeman
- Department of Clinical Immunology, Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Steven Z. Pavletic
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD
| |
Collapse
|
13
|
Nannya Y, Tobiasson M, Sato S, Bernard E, Ohtake S, Takeda J, Creignou M, Zhao L, Kusakabe M, Shibata Y, Nakamura N, Watanabe M, Hiramoto N, Shiozawa Y, Shiraishi Y, Tanaka H, Yoshida K, Kakiuchi N, Makishima H, Nakagawa M, Usuki K, Watanabe M, Imada K, Handa H, Taguchi M, Kiguchi T, Ohyashiki K, Ishikawa T, Takaori-Kondo A, Tsurumi H, Kasahara S, Chiba S, Naoe T, Miyano S, Papaemanuil E, Miyazaki Y, Hellström-Lindberg E, Ogawa S. Postazacitidine clone size predicts long-term outcome of patients with myelodysplastic syndromes and related myeloid neoplasms. Blood Adv 2023; 7:3624-3636. [PMID: 36989067 PMCID: PMC10365941 DOI: 10.1182/bloodadvances.2022009564] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 03/30/2023] Open
Abstract
Azacitidine is a mainstay of therapy for myelodysplastic syndrome (MDS)-related diseases. The purpose of our study is to elucidate the effect of gene mutations on hematological response and overall survival (OS), particularly focusing on their posttreatment clone size. We enrolled a total of 449 patients with MDS or related myeloid neoplasms. They were analyzed for gene mutations in pretreatment (n = 449) and posttreatment (n = 289) bone marrow samples using targeted-capture sequencing to assess the impact of gene mutations and their posttreatment clone size on treatment outcomes. In Cox proportional hazard modeling, multihit TP53 mutation (hazard ratio [HR], 2.03; 95% confidence interval [CI], 1.42-2.91; P < .001), EZH2 mutation (HR, 1.71; 95% CI, 1.14-2.54; P = .009), and DDX41 mutation (HR, 0.33; 95% CI, 0.17-0.62; P < .001), together with age, high-risk karyotypes, low platelets, and high blast counts, independently predicted OS. Posttreatment clone size accounting for all drivers significantly correlated with International Working Group (IWG) response (P < .001, using trend test), except for that of DDX41-mutated clones, which did not predict IWG response. Combined, IWG response and posttreatment clone size further improved the prediction of the original model and even that of a recently proposed molecular prediction model, the molecular International Prognostic Scoring System (IPSS-M; c-index, 0.653 vs 0.688; P < .001, using likelihood ratio test). In conclusion, evaluation of posttreatment clone size, together with the pretreatment mutational profile as well as the IWG response play a role in better prognostication of azacitidine-treated patients with myelodysplasia.
Collapse
Affiliation(s)
- Yasuhito Nannya
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Division of Hematopoietic Disease Control, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Magnus Tobiasson
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
- Division of Hematology, Department of Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Shinya Sato
- Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
- Japan Adult Leukemia Study Group, Japan
| | - Elsa Bernard
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - June Takeda
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Maria Creignou
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
- Division of Hematology, Department of Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Lanying Zhao
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Manabu Kusakabe
- Department of Hematology, University of Tsukuba, Tsukuba, Japan
| | - Yuhei Shibata
- Department of Hematology, Gifu Municipal Hospital, Gifu, Japan
| | - Nobuhiko Nakamura
- Department of Hematology & Infectious Disease, Gifu University Hospital, Gifu, Japan
| | - Mizuki Watanabe
- Department of Hematology and Oncology, Kyoto University, Kyoto, Japan
| | - Nobuhiro Hiramoto
- Department of Hematology, Kobe City Medical Center General Hospital, Hyogo, Japan
| | - Yusuke Shiozawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuichi Shiraishi
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroko Tanaka
- Department of Integrated Data Science, M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobuyuki Kakiuchi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideki Makishima
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Nakagawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kensuke Usuki
- Department of Hematology, NTT Medical Center Tokyo, Tokyo, Japan
| | - Mitsumasa Watanabe
- Department of Hematology, Hyogo Prefectural Amagasaki General Medical Center, Hyogo, Japan
| | - Kazunori Imada
- Department of Hematology, Japan Red Cross Osaka Hospital, Osaka, Japan
| | - Hiroshi Handa
- Department of Hematology, Gunma University, Gunma, Japan
| | - Masataka Taguchi
- Department of Hematology, Sasebo City General Hospital, Nagasaki, Japan
| | - Toru Kiguchi
- Department of Hematology, Chugoku Central Hospital, Hiroshima, Japan
| | - Kazuma Ohyashiki
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| | - Takayuki Ishikawa
- Department of Hematology, Kobe City Medical Center General Hospital, Hyogo, Japan
| | | | - Hisashi Tsurumi
- Department of Hematology & Infectious Disease, Gifu University Hospital, Gifu, Japan
| | - Senji Kasahara
- Department of Hematology, Gifu Municipal Hospital, Gifu, Japan
| | - Shigeru Chiba
- Department of Hematology, University of Tsukuba, Tsukuba, Japan
| | - Tomoki Naoe
- Japan Adult Leukemia Study Group, Japan
- Nagoya Medical Center, Aichi, Japan
| | - Satoru Miyano
- Department of Integrated Data Science, M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Elli Papaemanuil
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Yasushi Miyazaki
- Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
- Japan Adult Leukemia Study Group, Japan
| | - Eva Hellström-Lindberg
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
- Division of Hematology, Department of Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| |
Collapse
|
14
|
Xu Q, Streuer A, Jann JC, Altrock E, Schmitt N, Flach J, Sens-Albert C, Rapp F, Wolf J, Nowak V, Weimer N, Obländer J, Palme I, Kuzina M, Jawhar A, Darwich A, Weis CA, Marx A, Wuchter P, Costina V, Jäger E, Sperk E, Neumaier M, Fabarius A, Metzgeroth G, Nolte F, Steiner L, Levkin PA, Jawhar M, Hofmann WK, Riabov V, Nowak D. Inhibition of lysyl oxidases synergizes with 5-azacytidine to restore erythropoiesis in myelodysplastic and myeloid malignancies. Nat Commun 2023; 14:1497. [PMID: 36932114 PMCID: PMC10023686 DOI: 10.1038/s41467-023-37175-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 03/01/2023] [Indexed: 03/19/2023] Open
Abstract
Limited response rates and frequent relapses during standard of care with hypomethylating agents in myelodysplastic neoplasms (MN) require urgent improvement of this treatment indication. Here, by combining 5-azacytidine (5-AZA) with the pan-lysyl oxidase inhibitor PXS-5505, we demonstrate superior restoration of erythroid differentiation in hematopoietic stem and progenitor cells (HSPCs) of MN patients in 20/31 cases (65%) versus 9/31 cases (29%) treated with 5-AZA alone. This effect requires direct contact of HSPCs with bone marrow stroma components and is dependent on integrin signaling. We further confirm these results in vivo using a bone marrow niche-dependent MN xenograft model in female NSG mice, in which we additionally demonstrate an enforced reduction of dominant clones as well as significant attenuation of disease expansion and normalization of spleen sizes. Overall, these results lay out a strong pre-clinical rationale for efficacy of combination treatment of 5-AZA with PXS-5505 especially for anemic MN.
Collapse
Affiliation(s)
- Qingyu Xu
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Alexander Streuer
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Johann-Christoph Jann
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Eva Altrock
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Nanni Schmitt
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Johanna Flach
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Carla Sens-Albert
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Felicitas Rapp
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Julia Wolf
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Verena Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Nadine Weimer
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Julia Obländer
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Iris Palme
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Mariia Kuzina
- Institute of Biological and Chemical Systems - Functional Molecular Systems, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, 76344, Germany
| | - Ahmed Jawhar
- Department of Orthopedic Surgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Ali Darwich
- Department of Orthopedic Surgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Cleo-Aron Weis
- Institute of Pathology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Alexander Marx
- Institute of Pathology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Patrick Wuchter
- Institute of Transfusion Medicine and Immunology, German Red Cross Blood Service Baden-Württemberg-Hessen, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Victor Costina
- Institute of Clinical Chemistry, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Evelyn Jäger
- Institute of Clinical Chemistry, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Elena Sperk
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Michael Neumaier
- Institute of Clinical Chemistry, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Alice Fabarius
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Georgia Metzgeroth
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Florian Nolte
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Laurenz Steiner
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Pavel A Levkin
- Institute of Biological and Chemical Systems - Functional Molecular Systems, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, 76344, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, 76131, Germany
| | - Mohamad Jawhar
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Wolf-Karsten Hofmann
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Vladimir Riabov
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany.
| | - Daniel Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany.
| |
Collapse
|
15
|
Cutler JA, Pugsley HR, Bennington R, Fritschle W, Hartmann L, Zaidi N, Menssen AJ, Singleton TP, Xu D, Loken MR, Wells DA, Brodersen LE, Zehentner BK. Integrated analysis of genotype and phenotype reveals clonal evolution and cytogenetically driven disruption of myeloid cell maturation in myelodysplastic syndromes. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2023; 104:183-194. [PMID: 34773362 DOI: 10.1002/cyto.b.22036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/07/2021] [Accepted: 10/14/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Myelodysplastic syndromes (MDS) are a heterogenous collection of clonal bone marrow diseases characterized by cytopenias, abnormal karyotypes, molecular abnormalities, and dysplasia by flow cytometry and/or morphology. The progression of MDS to severe cytopenias and/or overt leukemia is associated with the accumulation of additional cytogenetic abnormalities, suggesting clonal evolution. The impact of these accumulated abnormalities on myeloid maturation and the severity of the disease is poorly understood. METHODS Bone marrow specimens from 16 patients with cytogenetic abnormalities were flow cytometrically sorted into three myeloid populations: progenitors, immature myeloid cells, and mature myeloid cells. Fluorescence in situ hybridization analysis was performed on each to determine the distribution of chromosomal abnormalities during myeloid maturation. RESULTS Our findings revealed three distinct distributions of cytogenetic abnormalities across myeloid maturation, each of which corresponded to specific cytogenetic abnormalities. Group 1 had continuous distribution across all maturational stages and contained patients with a single cytogenetic aberration associated with good-to-intermediate prognosis; Group 2 had accumulation of abnormalities in immature cells and contained patients with high-risk monosomy 7; and Group 3 had abnormalities defining the founding clone equally distributed across maturational stages while subclonal abnormalities were enriched in progenitor cells and contained patients with multiple, non-monosomy 7, abnormalities with evidence of clonal evolution. CONCLUSIONS Our findings demonstrate that low-risk abnormalities (e.g., del(20q) and trisomy 8) occurring in the founding clone display a markedly different disease etiology, with respect to myeloid maturation, than monosomy 7 or abnormalities acquired in subclones, which result in a disruption of myeloid cell maturation in MDS.
Collapse
Affiliation(s)
- Jevon A Cutler
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | - Dongbin Xu
- Hematologics Inc., Seattle, Washington, USA
| | | | | | | | | |
Collapse
|
16
|
Alkhaldi H, Sewell D, Ning Y, Kallen MA, Emadi A, Hardy NM, Baer MR. Durable response to ivosidenib in post-transplant relapse and leukemic transformation of myelodysplastic syndrome with new complex karyotype and IDH1 R132C mutation. Leuk Lymphoma 2022; 63:3000-3003. [PMID: 35938721 PMCID: PMC9779946 DOI: 10.1080/10428194.2022.2105329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 01/01/2023]
Abstract
A 75-year-old man underwent allogeneic hematopoietic stem cell transplantation from a female donor for myelodysplastic syndrome with 7% marrow blasts and 46,XY karyotype. Cytopenias recurred after 9 months. Marrow had <5% blasts, but a 47,XY,t(2;11)(q21;q23),t(2;12)(q13;q21),+mar[9]//46,XX[11] karyotype and a new IDH1 R132C mutation, variant allele frequency (VAF) 8%. Blasts increased, with 24% IDH1 R132C VAF. The IDH1 inhibitor ivosidenib was initiated. Blood and marrow normalized, with 46,XX karyotype and 100% donor engraftment. Blood counts remain normal 14 months after starting ivosidenib. Serial molecular studies identified a new mutation at transplant relapse enabling successful targeted therapy in this otherwise dismal clinical setting.
Collapse
Affiliation(s)
- Hanan Alkhaldi
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Danielle Sewell
- Translational Genomics Laboratory, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD
| | - Yi Ning
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Michael A. Kallen
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ashkan Emadi
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
- Translational Genomics Laboratory, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD
| | - Nancy M. Hardy
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Maria R. Baer
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
17
|
El Hussein S, Loghavi S. The Impact of Clonal Hierarchy and Heterogeneity on Phenotypic Manifestations of Myelodysplastic Neoplasms. Cancers (Basel) 2022; 14:5690. [PMID: 36428782 PMCID: PMC9688198 DOI: 10.3390/cancers14225690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/30/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Until recently, conventional prognostication of myelodysplastic neoplasms (MDS) was performed using the revised International Prognostic Scoring System (IPSS-R), with additional adverse prognoses conferred by select mutations. Nonetheless, the clonal diversity and dynamics of coexisting mutations have been shown to alter the prognosis and treatment response in patients with MDS. Often in the process of clonal evolution, various initial hits are preferentially followed by a specific spectrum of secondary alterations, shaping the phenotypic and biologic features of MDS. Our ability to recapitulate the clonal ontology of MDS is a necessary step toward personalized therapy and the conceptualization of a better classification system, which ideally would take into consideration all genomic aberrations and their inferred clonal architecture in individual cases. In this review, we summarize our current understanding of the molecular landscape of MDS and the role of mutational combinations, clonal burden, and clonal hierarchy in defining the clinical fate of the disease.
Collapse
Affiliation(s)
- Siba El Hussein
- Department of Pathology, University of Rochester Medical Center, Rochester, NY 14607, USA
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
18
|
Acha P, Mallo M, Solé F. Myelodysplastic Syndromes with Isolated del(5q): Value of Molecular Alterations for Diagnostic and Prognostic Assessment. Cancers (Basel) 2022; 14:5531. [PMID: 36428627 PMCID: PMC9688702 DOI: 10.3390/cancers14225531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/30/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a group of clonal hematological neoplasms characterized by ineffective hematopoiesis in one or more bone marrow cell lineages. Consequently, patients present with variable degrees of cytopenia and dysplasia. These characteristics constitute the basis for the World Health Organization (WHO) classification criteria of MDS, among other parameters, for the current prognostic scoring system. Although nearly half of newly diagnosed patients present a cytogenetic alteration, and almost 90% of them harbor at least one somatic mutation, MDS with isolated del(5q) constitutes the only subtype clearly defined by a cytogenetic alteration. The results of several clinical studies and the advances of new technologies have allowed a better understanding of the biological basis of this disease. Therefore, since the first report of the "5q- syndrome" in 1974, changes and refinements have been made in the definition and the characteristics of the patients with MDS and del(5q). Moreover, specific genetic alterations have been found to be associated with the prognosis and response to treatments. The aim of this review is to summarize the current knowledge of the molecular background of MDS with isolated del(5q), focusing on the clinical and prognostic relevance of cytogenetic alterations and somatic mutations.
Collapse
Affiliation(s)
- Pamela Acha
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Mar Mallo
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- Microarrays Unit, Institut de Recerca Contra la Leucèmia Josep Carreras, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Francesc Solé
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- Microarrays Unit, Institut de Recerca Contra la Leucèmia Josep Carreras, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| |
Collapse
|
19
|
Hergott CB, Kim AS. Molecular Diagnostic Testing for Hematopoietic Neoplasms: Linking Pathogenic Drivers to Personalized Diagnosis. Clin Lab Med 2022; 42:325-347. [PMID: 36150815 DOI: 10.1016/j.cll.2022.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular diagnostics inhabit an increasingly central role in characterizing hematopoietic malignancies. This brief review summarizes the genomic targets important for many major categories of hematopoietic neoplasia by focusing on disease pathogenesis. In myeloid disease, recurrent mutations in key functional classes drive clonal hematopoiesis, on which additional variants can specify clinical presentation and accelerate progression. Lymphoblastic leukemias are frequently initiated by oncogenic fusions that block lymphoid maturation while, in concert with additional mutations, driving proliferation. The links between genetic aberrations and lymphoma patient outcomes have been clarified substantially through the clustering of genomic profiles. Finally, the addition of next-generation sequencing strategies to cytogenetics is refining risk stratification for plasma cell myeloma. In all categories, molecular diagnostics shed light on the unique mechanistic underpinnings of each individual malignancy, thereby empowering more rational, personalized care for these patients.
Collapse
Affiliation(s)
- Christopher B Hergott
- Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Annette S Kim
- Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Yurttaş NÖ, Eşkazan AE. Clinical Application of Biomarkers for Hematologic Malignancies. Biomark Med 2022. [DOI: 10.2174/9789815040463122010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Over the last decade, significant advancements have been made in the
molecular mechanisms, diagnostic methods, prognostication, and treatment options in
hematologic malignancies. As the treatment landscape continues to expand,
personalized treatment is much more important.
With the development of new technologies, more sensitive evaluation of residual
disease using flow cytometry and next generation sequencing is possible nowadays.
Although some conventional biomarkers preserve their significance, novel potential
biomarkers accurately detect the mutational landscape of different cancers, and also,
serve as prognostic and predictive biomarkers, which can be used in evaluating therapy
responses and relapses. It is likely that we will be able to offer a more targeted and
risk-adapted therapeutic approach to patients with hematologic malignancies guided by
these potential biomarkers. This chapter summarizes the biomarkers used (or proposed
to be used) in the diagnosis and/or monitoring of hematologic neoplasms.;
Collapse
Affiliation(s)
- Nurgül Özgür Yurttaş
- Division of Hematology, Department of Internal Medicine, Cerrahpasa Faculty of Medicine,
Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ahmet Emre Eşkazan
- Division of Hematology, Department of Internal Medicine, Cerrahpasa Faculty of Medicine,
Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
21
|
Friedrich C, Kosmider O. The Mesenchymal Niche in Myelodysplastic Syndromes. Diagnostics (Basel) 2022; 12:1639. [PMID: 35885544 PMCID: PMC9320414 DOI: 10.3390/diagnostics12071639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Myelodysplastic syndromes (MDSs) are clonal disorders characterized by ineffective hematopoiesis, resulting in cytopenias and a risk of developing acute myeloid leukemia. In addition to mutations affecting hematopoietic stem cells (HSCs), numerous studies have highlighted the role of the bone marrow microenvironment (BMME) in the development of MDSs. The mesenchymal niche represents a key component of the BMME. In this review, we discuss the role of the mesenchymal niche in the pathophysiology of MDS and provide an overview of currently available in vitro and in vivo models that can be used to study the effects of the mesenchymal niche on HSCs.
Collapse
Affiliation(s)
- Chloé Friedrich
- INSERM U1016, Institut Cochin, Université de Paris Cité, F-75014 Paris, France;
| | | |
Collapse
|
22
|
Adema V, Palomo L, Walter W, Mallo M, Hutter S, La Framboise T, Arenillas L, Meggendorfer M, Radivoyevitch T, Xicoy B, Pellagatti A, Haferlach C, Boultwood J, Kern W, Visconte V, Sekeres M, Barnard J, Haferlach T, Solé F, Maciejewski JP. Pathophysiologic and clinical implications of molecular profiles resultant from deletion 5q. EBioMedicine 2022; 80:104059. [PMID: 35617825 PMCID: PMC9130225 DOI: 10.1016/j.ebiom.2022.104059] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Haploinsufficiency (HI) resulting from deletion of the long arm of chromosome 5 [del(5q)] and the accompanied loss of heterozygosity are likely key pathogenic factors in del(5q) myeloid neoplasia (MN) although the consequences of del(5q) have not been yet clarified. METHODS Here, we explored mutations, gene expression and clinical phenotypes of 388 del(5q) vs. 841 diploid cases with MN [82% myelodysplastic syndromes (MDS)]. FINDINGS Del(5q) resulted as founder (better prognosis) or secondary hit (preceded by TP53 mutations). Using Bayesian prediction analyses on 57 HI marker genes we established the minimal del(5q) gene signature that distinguishes del(5q) from diploid cases. Clusters of diploid cases mimicking the del(5q) signature support the overall importance of del(5q) genes in the pathogenesis of MDS in general. Sub-clusters within del(5q) patients pointed towards the inherent intrapatient heterogeneity of HI genes. INTERPRETATION The underlying clonal expansion drive results from a balance between the "HI-driver" genes (e.g., CSNK1A1, CTNNA1, TCERG1) and the proapoptotic "HI-anti-drivers" (e.g., RPS14, PURA, SIL1). The residual essential clonal expansion drive allows for selection of accelerator mutations such as TP53 (denominating poor) and CSNK1A1 mutations (with a better prognosis) which overcome pro-apoptotic genes (e.g., p21, BAD, BAX), resulting in a clonal expansion. In summary, we describe the complete picture of del(5q) MN identifying the crucial genes, gene clusters and clonal hierarchy dictating the clinical course of del(5q) patients. FUNDING Torsten Haferlach Leukemia Diagnostics Foundation. US National Institute of Health (NIH) grants R35 HL135795, R01HL123904, R01 HL118281, R01 HL128425, R01 HL132071, and a grant from Edward P. Evans Foundation.
Collapse
Affiliation(s)
- Vera Adema
- Department of Translational Hematology and Oncology Research, Lerner Research Institute Cleveland Clinic, Taussig Cancer Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Laura Palomo
- Myelodysplastic Syndrome Research Group, Josep Carreras Leukaemia Research Institute, Institut Català d'Oncologia-Hospital Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona, Spain
| | | | - Mar Mallo
- Myelodysplastic Syndrome Research Group, Josep Carreras Leukaemia Research Institute, Institut Català d'Oncologia-Hospital Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona, Spain
| | | | - Thomas La Framboise
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Leonor Arenillas
- Laboratori de Citologia Hematològica, Servei de Patologia, Hospital del Mar and GRETNHE, Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | | | - Tomas Radivoyevitch
- Department of Translational Hematology and Oncology Research, Lerner Research Institute Cleveland Clinic, Taussig Cancer Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Blanca Xicoy
- Hematology Service, Institut Català d'Oncologia (ICO)-Hospital Germans Trias i Pujol, Institut de Recerca Contra la Leucèmia Josep Carreras, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Andrea Pellagatti
- Blood Cancer UK Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford and Oxford BRC Haematology Theme, Oxford, United Kingdom
| | | | - Jacqueline Boultwood
- Blood Cancer UK Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford and Oxford BRC Haematology Theme, Oxford, United Kingdom
| | | | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Lerner Research Institute Cleveland Clinic, Taussig Cancer Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Mikkael Sekeres
- Leukemia Program, Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA
| | - John Barnard
- Department of Quantitative Health Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | | | - Francesc Solé
- Myelodysplastic Syndrome Research Group, Josep Carreras Leukaemia Research Institute, Institut Català d'Oncologia-Hospital Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona, Spain
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Lerner Research Institute Cleveland Clinic, Taussig Cancer Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|
23
|
Abstract
INTRODUCTION Risk stratification is crucial to the appropriate management of many diseases, but in patients with myelodysplastic syndromes (MDS), for whom expected survival can vary greatly, accurate disease prognostication is especially important. This is further supported by a relative lack of therapies in MDS, and thus we must prognosticate carefully and accurately. Currently, patients with MDS are often grouped into higher-risk (HR) versus lower-risk (LR) disease using clinical prognostic scoring systems, but these systems have limitations. AREAS COVERED The authors reviewed the literature on diagnostics, prognostics, therapeutics and outcomes in MDS. Factors such as disease etiology, specific clinical characteristics, or molecular genetic information not captured in the international prognostic scoring system revised IPSS-R can alter risk stratification, and identify a subset of LR-MDS patients who actually behave more like HR-MDS. EXPERT OPINION This review will describe the current identification and management of patients with LR MDS disease whose condition is likely to behave in a less favorable manner than predicted by the IPSS-R. The authors comment on clinical and molecular features which are believe to upstage a patient from lower to higher risk disease.
Collapse
Affiliation(s)
- Amy E DeZern
- Division of Hematologic Malignancies, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - William Brian Dalton
- Division of Hematologic Malignancies, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, USA
| |
Collapse
|
24
|
Zamora DI, Patel GS, Grossmann I, Rodriguez K, Soni M, Joshi PK, Patel SC, Shreya D, Sange I. Myelodysplastic Syndromes and Modalities of Treatment: An Updated Literature Review. Cureus 2021; 13:e20116. [PMID: 34873563 PMCID: PMC8639322 DOI: 10.7759/cureus.20116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2021] [Indexed: 11/29/2022] Open
Abstract
Myelodysplastic syndromes (MDS) represent a large group of rare and diverse clonal stem cell disorders. These are classified into several different phenotypes and typically arise following a multistep genetic process, whereby genetic mutations alter the DNA damage and cellular stress responses, impacting transcription, RNA splicing, epigenetics, and cytokine signaling. However, despite the advances made regarding molecular pathophysiology and prognostic criteria and the influx of new treatment modalities, management is primarily based on prognostic scores, such as the Revised International Prognostic Scoring System. This poses a significant challenge to current healthcare professionals due to poor comprehension of the underlying pathophysiology. Hence, this review integrates the latest research and treatment modalities for MDS and discusses the different genetic mutations outlined in the revised World Health Organization 2016 MDS classification system and the associated treatment modalities. Additionally, future directions of research and clinical management of MDS are discussed.
Collapse
Affiliation(s)
- Diana I Zamora
- General Medicine, Universidad de Ciencias Médicas, San José, CRI
| | - Gautami S Patel
- Internal Medicine, Pramukhswami Medical College, Karamsad, IND
| | - Idan Grossmann
- Research, Medical University of Silesia, Faculty of Medical Sciences in Katowice, Katowice, POL
| | - Kevin Rodriguez
- Research, Universidad Americana Facultad de Medicina, Managua, NIC
| | - Mridul Soni
- Research, Shri Lal Bahadur Shastri Government Medical College, Mandi, IND
| | - Pranay K Joshi
- Department of Medicine, B.J. Medical College, Ahmedabad, IND
| | | | | | | |
Collapse
|
25
|
Jann JC, Mossner M, Riabov V, Altrock E, Schmitt N, Flach J, Xu Q, Nowak V, Obländer J, Palme I, Weimer N, Streuer A, Jawhar A, Darwich A, Jawhar M, Metzgeroth G, Nolte F, Hofmann WK, Nowak D. Bone marrow derived stromal cells from myelodysplastic syndromes are altered but not clonally mutated in vivo. Nat Commun 2021; 12:6170. [PMID: 34697318 PMCID: PMC8546146 DOI: 10.1038/s41467-021-26424-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 10/06/2021] [Indexed: 11/15/2022] Open
Abstract
The bone marrow (BM) stroma in myeloid neoplasms is altered and it is hypothesized that this cell compartment may also harbor clonal somatically acquired mutations. By exome sequencing of in vitro expanded mesenchymal stromal cells (MSCs) from n = 98 patients with myelodysplastic syndrome (MDS) and n = 28 healthy controls we show that these cells accumulate recurrent mutations in genes such as ZFX (n = 8/98), RANK (n = 5/98), and others. MDS derived MSCs display higher mutational burdens, increased replicative stress, senescence, inflammatory gene expression, and distinct mutational signatures as compared to healthy MSCs. However, validation experiments in serial culture passages, chronological BM aspirations and backtracking of high confidence mutations by re-sequencing primary sorted MDS MSCs indicate that the discovered mutations are secondary to in vitro expansion but not present in primary BM. Thus, we here report that there is no evidence for clonal mutations in the BM stroma of MDS patients. Bone marrow-derived mesenchymal stroma cells (MSCs) in myeloid neoplasia have been hypothesized to carry somatic mutations and contribute to pathogenesis. Here the authors analyse ex-vivo cultures and primary MSCs derived from patients with myelodysplastic syndromes, finding functional alterations but no evidence of clonal mutations.
Collapse
Affiliation(s)
- Johann-Christoph Jann
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Maximilian Mossner
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Vladimir Riabov
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Eva Altrock
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Nanni Schmitt
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Johanna Flach
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Qingyu Xu
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Verena Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Julia Obländer
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Iris Palme
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Nadine Weimer
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Alexander Streuer
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Ahmed Jawhar
- Department of Orthopedic Surgery, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Ali Darwich
- Department of Orthopedic Surgery, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Mohammad Jawhar
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Georgia Metzgeroth
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Florian Nolte
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Wolf-Karsten Hofmann
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Daniel Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany.
| |
Collapse
|
26
|
Sadigh S, Kim AS. Molecular Pathology of Myeloid Neoplasms: Molecular Pattern Recognition. Surg Pathol Clin 2021; 14:517-528. [PMID: 34373100 DOI: 10.1016/j.path.2021.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Despite the apparent complexity of the molecular genetic underpinnings of myeloid neoplasms, most myeloid mutational profiles can be understood within a simple framework. Somatic mutations accumulate in hematopoietic stem cells with aging and toxic insults, termed clonal hematopoiesis. These "old stem cells" mutations, predominantly in the epigenetic and RNA spliceosome pathways, act as "founding" driver mutations leading to a clonal myeloid neoplasm when sufficient in number and clone size. Subsequent mutations can create the genetic flavor of the myeloid neoplasm ("backseat" drivers) due to their enrichment in certain entities or act as progression events ("aggressive" drivers) during clonal evolution.
Collapse
Affiliation(s)
- Sam Sadigh
- Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Annette S Kim
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
27
|
Jann JC, Tothova Z. Cohesin mutations in myeloid malignancies. Blood 2021; 138:649-661. [PMID: 34157074 PMCID: PMC8394903 DOI: 10.1182/blood.2019004259] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/24/2021] [Indexed: 12/25/2022] Open
Abstract
Cohesin is a multisubunit protein complex that forms a ring-like structure around DNA. It is essential for sister chromatid cohesion, chromatin organization, transcriptional regulation, and DNA damage repair and plays a major role in dynamically shaping the genome architecture and maintaining DNA integrity. The core complex subunits STAG2, RAD21, SMC1, and SMC3, as well as its modulators PDS5A/B, WAPL, and NIPBL, have been found to be recurrently mutated in hematologic and solid malignancies. These mutations are found across the full spectrum of myeloid neoplasia, including pediatric Down syndrome-associated acute megakaryoblastic leukemia, myelodysplastic syndromes, chronic myelomonocytic leukemia, and de novo and secondary acute myeloid leukemias. The mechanisms by which cohesin mutations act as drivers of clonal expansion and disease progression are still poorly understood. Recent studies have described the impact of cohesin alterations on self-renewal and differentiation of hematopoietic stem and progenitor cells, which are associated with changes in chromatin and epigenetic state directing lineage commitment, as well as genomic integrity. Herein, we review the role of the cohesin complex in healthy and malignant hematopoiesis. We discuss clinical implications of cohesin mutations in myeloid malignancies and discuss opportunities for therapeutic targeting.
Collapse
Affiliation(s)
- Johann-Christoph Jann
- Department of Hematology and Oncology, University of Heidelberg, Mannheim, Germany; and
| | - Zuzana Tothova
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
28
|
Zhan D, Park CY. Stem Cells in the Myelodysplastic Syndromes. FRONTIERS IN AGING 2021; 2:719010. [PMID: 35822030 PMCID: PMC9261372 DOI: 10.3389/fragi.2021.719010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/02/2021] [Indexed: 01/12/2023]
Abstract
The myelodysplastic syndromes (MDS) represent a group of clonal disorders characterized by ineffective hematopoiesis, resulting in peripheral cytopenias and frequent transformation to acute myeloid leukemia (AML). We and others have demonstrated that MDS arises in, and is propagated by malignant stem cells (MDS-SCs), that arise due to the sequential acquisition of genetic and epigenetic alterations in normal hematopoietic stem cells (HSCs). This review focuses on recent advancements in the cellular and molecular characterization of MDS-SCs, as well as their role in mediating MDS clinical outcomes. In addition to discussing the cell surface proteins aberrantly upregulated on MDS-SCs that have allowed the identification and prospective isolation of MDS-SCs, we will discuss the recurrent cytogenetic abnormalities and genetic mutations present in MDS-SCs and their roles in initiating disease, including recent studies demonstrating patterns of clonal evolution and disease progression from pre-malignant HSCs to MDS-SCs. We also will discuss the pathways that have been described as drivers or promoters of disease, including hyperactivated innate immune signaling, and how the identification of these alterations in MDS-SC have led to investigations of novel therapeutic strategies to treat MDS. It is important to note that despite our increasing understanding of the pathogenesis of MDS, the molecular mechanisms that drive responses to therapy remain poorly understood, especially the mechanisms that underlie and distinguish hematologic improvement from reductions in blast burden. Ultimately, such distinctions will be required in order to determine the shared and/or unique molecular mechanisms that drive ineffective hematopoiesis, MDS-SC maintenance, and leukemic transformation.
Collapse
Affiliation(s)
- Di Zhan
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, United States
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, United States
| | - Christopher Y. Park
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, United States
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, United States
- *Correspondence: Christopher Y. Park,
| |
Collapse
|
29
|
Schmitt N, Jann JC, Altrock E, Flach J, Danner J, Uhlig S, Streuer A, Knaflic A, Riabov V, Xu Q, Mehralivand A, Palme I, Nowak V, Obländer J, Weimer N, Haselmann V, Jawhar A, Darwich A, Weis CA, Marx A, Steiner L, Jawhar M, Metzgeroth G, Boch T, Nolte F, Hofmann WK, Nowak D. Preclinical evaluation of eltrombopag in a PDX model of myelodysplastic syndromes. Leukemia 2021; 36:236-247. [PMID: 34172896 PMCID: PMC8727300 DOI: 10.1038/s41375-021-01327-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 01/17/2023]
Abstract
Preclinical research of myelodysplastic syndromes (MDSs) is hampered by a lack of feasible disease models. Previously, we have established a robust patient-derived xenograft (PDX) model for MDS. Here we demonstrate for the first time that this model is applicable as a preclinical platform to address pending clinical questions by interrogating the efficacy and safety of the thrombopoietin receptor agonist eltrombopag. Our preclinical study included n = 49 xenografts generated from n = 9 MDS patient samples. Substance efficacy was evidenced by FACS-based human platelet quantification and clonal bone marrow evolution was reconstructed by serial whole-exome sequencing of the PDX samples. In contrast to clinical trials in humans, this experimental setup allowed vehicle- and replicate-controlled analyses on a patient–individual level deciphering substance-specific effects from natural disease progression. We found that eltrombopag effectively stimulated thrombopoiesis in MDS PDX without adversely affecting the patients’ clonal composition. In conclusion, our MDS PDX model is a useful tool for testing new therapeutic concepts in MDS preceding clinical trials.
Collapse
Affiliation(s)
- Nanni Schmitt
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Johann-Christoph Jann
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Eva Altrock
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Johanna Flach
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Justine Danner
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefanie Uhlig
- Flow Core Mannheim and Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Alexander Streuer
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Antje Knaflic
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Vladimir Riabov
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Qingyu Xu
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Arwin Mehralivand
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Iris Palme
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Verena Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Julia Obländer
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nadine Weimer
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Verena Haselmann
- Institute of Clinical Chemistry, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ahmed Jawhar
- Department of Orthopedics and Traumatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ali Darwich
- Department of Orthopedics and Traumatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Cleo-Aron Weis
- Institute of Pathology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Alexander Marx
- Institute of Pathology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Laurenz Steiner
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Mohamad Jawhar
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Georgia Metzgeroth
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tobias Boch
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Florian Nolte
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Wolf-Karsten Hofmann
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Daniel Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
30
|
Cytarabine and EIP co-administration synergistically reduces viability of acute lymphoblastic leukemia cells with high ERG expression. Leuk Res 2021; 109:106649. [PMID: 34271301 DOI: 10.1016/j.leukres.2021.106649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/16/2021] [Accepted: 06/20/2021] [Indexed: 11/24/2022]
Abstract
The E26 transformation sequence-related gene ERG encodes a transcription factor involved in normal hematopoiesis, and its expression is abnormal in leukemia. Especially in a type of acute lymphoblastic leukemia (ALL) that is refractory and easy to relapse, the expression of ERG protein is abnormally increased. Chemotherapy can alleviate the condition of ALL, but the location and survival mechanism of the remaining ALL cells after chemotherapy are still not fully understood. It is becoming increasingly clear that the interaction between leukemia cells and their microenvironment plays an important role in the acquisition of drug resistance mutations and disease recurrence. We selected an acute lymphocytic leukemia cell line with high ERG expression, and studied the synergistic effect of chemotherapeutics and small molecule peptides through cell proliferation, apoptosis, and cell cycle experiments; At the same time, we inoculated acute lymphocytic leukemia cells with high ERG expression into mice with severe immunodeficiency to simulate human ALL and investigated (i) the effects of co-administration on the nesting and invasion of leukemia cells and (ii) the effects of the small molecule peptide drug EIP, which targets ERG, on the sensitivity of ALL chemotherapy and the underlying mechanisms.Ara-c and EIP synergistically reduces viability of ALL cells with high ERG expression may be achieved by promoting their apoptosis and inhibiting their nesting.
Collapse
|
31
|
Abstract
Tumour evolution is a complex interplay between the acquisition of somatic (epi)genomic changes in tumour cells and the phenotypic consequences they cause, all in the context of a changing microenvironment. Single-cell sequencing offers a window into this dynamic process at the ultimate resolution of individual cells. In this review, we discuss the transformative insight offered by single-cell sequencing technologies for understanding tumour evolution.
Collapse
Affiliation(s)
- Maximilian Mossner
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Ann-Marie C Baker
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Trevor A Graham
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| |
Collapse
|
32
|
Abstract
Haematopoietic stem and progenitor cells (HSPCs) are defined as unspecialized cells that give rise to more differentiated cells. In a similar way, leukaemic stem and progenitor cells (LSPCs) are defined as unspecialized leukaemic cells, which can give rise to more differentiated cells. Leukaemic cells carry leukaemic mutations/variants and have clear differentiation abnormalities. Pre-leukaemic HSPCs (PreL-HSPCs) carry pre-leukaemic mutations/variants (pLMs) and are capable of producing mature functional cells, which will carry the same variants. Under the roof of LSPCs, one can find a broad range of cell types genetic and disease phenotypes. Present-day knowledge suggests that this phenotypic heterogeneity is the result of interactions between the cell of origin, the genetic background and the microenvironment background. The combination of these attributes will define the LSPC phenotype, frequency, differentiation capacity and evolutionary trajectory. Importantly, as LSPCs are leukaemia-initiating cells that sustain clinical remission and are the source of relapse, an improved understanding of LSPCs phenotype would offer better clinical opportunities for the treatment and hopefully prevention of human leukaemia. The current review will focus on LSPCs attributes in the context of human haematologic malignancies.
Collapse
Affiliation(s)
- L I Shlush
- From the, Liran Shlush's Lab - Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - T Feldman
- From the, Liran Shlush's Lab - Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
33
|
Schwenger E, Steidl U. An evolutionary approach to clonally complex hematologic disorders. Blood Cancer Discov 2021; 2:201-215. [PMID: 34027415 PMCID: PMC8133502 DOI: 10.1158/2643-3230.bcd-20-0219] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/13/2022] Open
Abstract
Emerging clonal complexity has brought into question the way in which we perceive and, in turn, treat disorders of the hematopoietic system. Former models of cell-intrinsic clonal dominance driven by acquisition of driver genes in a stereotypic sequence are often insufficient in explaining observations such as clonal hematopoiesis, and new paradigms are in order. Here, we review the evidence both within the hematologic malignancy field and also borrow from perspectives rooted in evolutionary biology to reframe pathogenesis of hematologic disorders as dynamic processes involving complex interplays of genetic and non-genetic subclones and the tissue microenvironment in which they reside.
Collapse
Affiliation(s)
- Emily Schwenger
- Albert Einstein College of Medicine - Montefiore Health System, Bronx, New York
- Departments of Cell Biology and Medicine (Oncology), Albert Einstein Cancer Center, Bronx, New York
- Blood Cancer Institute, Albert Einstein Cancer Center, Bronx, New York
- Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Ulrich Steidl
- Albert Einstein College of Medicine - Montefiore Health System, Bronx, New York.
- Departments of Cell Biology and Medicine (Oncology), Albert Einstein Cancer Center, Bronx, New York.
- Blood Cancer Institute, Albert Einstein Cancer Center, Bronx, New York.
- Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
34
|
Wang H, Li Y, Xu Q, Zhou W, Yin C, Wang R, Wang M, Xu Y, Li Y, Yu L. Comparison of Upfront Transplantation and Pretransplant Cytoreductive Therapy for Advanced Myelodysplastic Syndrome. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2021; 21:631-640. [PMID: 34074612 DOI: 10.1016/j.clml.2021.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the only curative therapy for advanced myelodysplastic syndrome (MDS). However, the value of pretransplant cytoreduction remains debatable. PATIENTS AND METHODS We retrospectively compared the outcomes of upfront transplantation and pretransplant cytoreduction. Of 69 patients, 39 received upfront allo-HSCT and 30 received pretransplant cytoreduction, including chemotherapy (n = 16), hypomethylating agents (HMAs, n = 6), and HMAs with chemotherapy (n = 8). RESULTS The upfront group achieved similar overall survival (OS) and a trend of better progression-free survival (PFS) from diagnosis compared with the cytoreduction group (3-year PFS, 64.0% vs. 44.4%, P = .076). Posttransplant outcomes were comparable between the two groups in terms of OS, relapse-free survival (RFS), cumulative incidence of relapse (CIR), and non-relapse mortality (NRM). In patients with ≥2 mutations, the upfront group achieved better OS and PFS (3-year OS, 100.0% vs. 68.6%, P = .044; 3-year PFS: 92.3% vs. 43.9%, P = .016) than the cytoreduction group. Patients achieving remission in the cytoreduction group had outcomes similar to the upfront group, but those without remission before transplantation had a significantly worse posttransplant OS (3-year OS, 46.7% vs. 75.7%, P = .038). Patients with pretransplant HMAs had better PFS than those with chemotherapy or HMAs plus chemotherapy (P < 0.05). CONCLUSION Compared with pretransplant cytoreduction, upfront allo-HSCT might provide more benefit to some patients with advanced MDS if there are suitable donors. HMAs would be a good alternative during the donor search.
Collapse
Affiliation(s)
- Hong Wang
- School of Medicine, Nankai University, Tianjin, China; Department of Hematology, Chinese PLA General Hospital, Beijing, China; Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Yan Li
- Department of Hematology, Chinese PLA General Hospital, Beijing, China; Department of Hematology, Peking University, Third Hospital, Beijing, China
| | - Qingyu Xu
- Department of Hematology, Chinese PLA General Hospital, Beijing, China; Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Wei Zhou
- School of Medicine, Nankai University, Tianjin, China; Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Chengliang Yin
- Faculty of Medicine, Macau University of Science and Technology, Macau, China; Medical Big Data Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China; National Engineering Laboratory for Medical Big Data Application Technology, Chinese PLA General Hospital, Beijing, China
| | - Ruiqi Wang
- School of Medicine, Nankai University, Tianjin, China; Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Mengzhen Wang
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Yuanyuan Xu
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Yonghui Li
- Department of Hematology, Chinese PLA General Hospital, Beijing, China; Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Li Yu
- School of Medicine, Nankai University, Tianjin, China; Department of Hematology, Chinese PLA General Hospital, Beijing, China; Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China.
| |
Collapse
|
35
|
Exploiting the Role of Hypoxia-Inducible Factor 1 and Pseudohypoxia in the Myelodysplastic Syndrome Pathophysiology. Int J Mol Sci 2021; 22:ijms22084099. [PMID: 33921064 PMCID: PMC8071466 DOI: 10.3390/ijms22084099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 01/02/2023] Open
Abstract
Myelodysplastic syndromes (MDS) comprise a heterogeneous group of clonal hematopoietic stem (HSCs) and/or progenitor cells disorders. The established dependence of MDS progenitors on the hypoxic bone marrow (BM) microenvironment turned scientific interests to the transcription factor hypoxia-inducible factor 1 (HIF-1). HIF-1 facilitates quiescence maintenance and regulates differentiation by manipulating HSCs metabolism, being thus an appealing research target. Therefore, we examine the aberrant HIF-1 stabilization in BMs from MDS patients and controls (CTRLs). Using a nitroimidazole–indocyanine conjugate, we show that HIF-1 aberrant expression and transcription activity is oxygen independent, establishing the phenomenon of pseudohypoxia in MDS BM. Next, we examine mitochondrial quality and quantity along with levels of autophagy in the differentiating myeloid lineage isolated from fresh BM MDS and CTRL aspirates given that both phenomena are HIF-1 dependent. We show that the mitophagy of abnormal mitochondria and autophagic death are prominently featured in the MDS myeloid lineage, their severity increasing with intra-BM blast counts. Finally, we use in vitro cultured CD34+ HSCs isolated from fresh human BM aspirates to manipulate HIF-1 expression and examine its potential as a therapeutic target. We find that despite being cultured under 21% FiO2, HIF-1 remained aberrantly stable in all MDS cultures. Inhibition of the HIF-1α subunit had a variable beneficial effect in all <5%-intra-BM blasts-MDS, while it had no effect in CTRLs or in ≥5%-intra-BM blasts-MDS that uniformly died within 3 days of culture. We conclude that HIF-1 and pseudohypoxia are prominently featured in MDS pathobiology, and their manipulation has some potential in the therapeutics of benign MDS.
Collapse
|
36
|
Stauber J, Greally JM, Steidl U. Preleukemic and leukemic evolution at the stem cell level. Blood 2021; 137:1013-1018. [PMID: 33275656 PMCID: PMC7907728 DOI: 10.1182/blood.2019004397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
Hematological malignancies are an aggregate of diverse populations of cells that arise following a complex process of clonal evolution and selection. Recent approaches have facilitated the study of clonal populations and their evolution over time across multiple phenotypic cell populations. In this review, we present current concepts on the role of clonal evolution in leukemic initiation, disease progression, and relapse. We highlight recent advances and unanswered questions about the contribution of the hematopoietic stem cell population to these processes.
Collapse
Affiliation(s)
- Jacob Stauber
- Albert Einstein College of Medicine-Montefiore Health System, The Bronx, NY
| | - John M Greally
- Albert Einstein College of Medicine-Montefiore Health System, The Bronx, NY
| | - Ulrich Steidl
- Albert Einstein College of Medicine-Montefiore Health System, The Bronx, NY
| |
Collapse
|
37
|
Analysis of Intratumoral Heterogeneity in Myelodysplastic Syndromes with Isolated del(5q) Using a Single Cell Approach. Cancers (Basel) 2021; 13:cancers13040841. [PMID: 33671317 PMCID: PMC7922695 DOI: 10.3390/cancers13040841] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/09/2021] [Accepted: 02/14/2021] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal hematopoietic stem cell malignancies characterized by ineffective differentiation of one or more bone marrow cell lineages. Only 50% of patients with de novo MDS will be found to have cytogenetic abnormalities, of which del(5q) is the most common. In 10% of MDS cases, del(5q) is found as a sole abnormality. In this work, a single cell approach was used to analyze intratumoral heterogeneity in four patients with MDS with isolated del(5q). We were able to observe that an ancestral event in one patient can appear as a secondary hit in another one, thus reflecting the high intratumoral heterogeneity in MDS with isolated del(5q) and the importance of patient-specific molecular characterization. Abstract Myelodysplastic syndromes (MDS) are a heterogeneous group of hematological diseases. Among them, the most well characterized subtype is MDS with isolated chromosome 5q deletion (MDS del(5q)), which is the only one defined by a cytogenetic abnormality that makes these patients candidates to be treated with lenalidomide. During the last decade, single cell (SC) analysis has emerged as a powerful tool to decipher clonal architecture and to further understand cancer and other diseases at higher resolution level compared to bulk sequencing techniques. In this study, a SC approach was used to analyze intratumoral heterogeneity in four patients with MDS del(5q). Single CD34+CD117+CD45+CD19- bone marrow hematopoietic stem progenitor cells were isolated using the C1 system (Fluidigm) from diagnosis or before receiving any treatment and from available follow-up samples. Selected somatic alterations were further analyzed in SC by high-throughput qPCR (Biomark HD, Fluidigm) using specific TaqMan assays. A median of 175 cells per sample were analyzed. Inferred clonal architectures were relatively simple and either linear or branching. Similar to previous studies based on bulk sequencing to infer clonal architecture, we were able to observe that an ancestral event in one patient can appear as a secondary hit in another one, thus reflecting the high intratumoral heterogeneity in MDS del(5q) and the importance of patient-specific molecular characterization.
Collapse
|
38
|
Angarola BL, Anczuków O. Splicing alterations in healthy aging and disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021. [PMID: 33565261 DOI: 10.1002/wrna.1643.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alternative RNA splicing is a key step in gene expression that allows generation of numerous messenger RNA transcripts encoding proteins of varied functions from the same gene. It is thus a rich source of proteomic and functional diversity. Alterations in alternative RNA splicing are observed both during healthy aging and in a number of human diseases, several of which display premature aging phenotypes or increased incidence with age. Age-associated splicing alterations include differential splicing of genes associated with hallmarks of aging, as well as changes in the levels of core spliceosomal genes and regulatory splicing factors. Here, we review the current known links between alternative RNA splicing, its regulators, healthy biological aging, and diseases associated with aging or aging-like phenotypes. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
| | - Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA.,Department of Genetics and Genome Sciences, UConn Health, Farmington, Connecticut, USA.,Institute for Systems Genomics, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
39
|
Angarola BL, Anczuków O. Splicing alterations in healthy aging and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1643. [PMID: 33565261 DOI: 10.1002/wrna.1643] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/19/2022]
Abstract
Alternative RNA splicing is a key step in gene expression that allows generation of numerous messenger RNA transcripts encoding proteins of varied functions from the same gene. It is thus a rich source of proteomic and functional diversity. Alterations in alternative RNA splicing are observed both during healthy aging and in a number of human diseases, several of which display premature aging phenotypes or increased incidence with age. Age-associated splicing alterations include differential splicing of genes associated with hallmarks of aging, as well as changes in the levels of core spliceosomal genes and regulatory splicing factors. Here, we review the current known links between alternative RNA splicing, its regulators, healthy biological aging, and diseases associated with aging or aging-like phenotypes. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
| | - Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA.,Department of Genetics and Genome Sciences, UConn Health, Farmington, Connecticut, USA.,Institute for Systems Genomics, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
40
|
Chronic myeloid neoplasms harboring concomitant mutations in myeloproliferative neoplasm driver genes (JAK2/MPL/CALR) and SF3B1. Mod Pathol 2021; 34:20-31. [PMID: 32694616 DOI: 10.1038/s41379-020-0624-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 01/10/2023]
Abstract
JAK2, CALR, and MPL are myeloproliferative neoplasm (MPN)-driver mutations, whereas SF3B1 is strongly associated with ring sideroblasts (RS) in myelodysplastic syndrome (MDS). Concomitant mutations of SF3B1 and MPN-driver mutations out of the context of MDS/MPN with RS and thrombocytosis (MDS/MPN-RS-T) are not well-studied. From the cases (<5% blasts) tested by NGS panels interrogating at least 42 myeloid neoplasm-related genes, we identified 18 MDS/MPN-RS-T, 42 MPN, 10 MDS, and 6 MDS/MPN-U cases with an SF3B1 and an MPN-driver mutation. Using a 10% VAF difference to define "SF3B1-dominant," "MPN-mutation dominant," and "no dominance," the majority of MDS/MPN-RS-T clustered in "SF3B1-dominant" and "no dominance" regions. Aside from parameters as thrombocytosis and ≥15% RS required for RS-T, MDS also differed in frequent neutropenia, multilineage dysplasia, and notably more cases with <10% VAF of MPN-driver mutations (60%, p = 0.0346); MPN differed in more frequent splenomegaly, myelofibrosis, and higher VAF of "MPN-driver mutations." "Gray zone" cases with features overlapping MDS/MPN-RS-T were observed in over one-thirds of non-RS-T cases. This study shows that concomitant SF3B1 and MPN-driver mutations can be observed in MDS, MPN, and MDS/MPN-U, each showing overlapping but also distinctively different clinicopathological features. Clonal hierarchy, cytogenetic abnormalities, and additional somatic mutations may in part contribute to different disease phenotypes, which may help in the classification of "gray zone" cases.
Collapse
|
41
|
Current and emerging strategies for management of myelodysplastic syndromes. Blood Rev 2020; 48:100791. [PMID: 33423844 DOI: 10.1016/j.blre.2020.100791] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/27/2020] [Accepted: 12/23/2020] [Indexed: 12/21/2022]
Abstract
Myelodysplastic syndromes (MDS) are characterized by ineffective hematopoiesis with varying degrees of dysplasia and peripheral cytopenias. MDS are driven by structural chromosomal alterations and somatic mutations in neoplastic myeloid cells, which are supported by a tumorigenic and a proinflammatory marrow microenvironment. Current treatment strategies for lower-risk MDS focus on improving quality of life and cytopenias, while prolonging survival and delaying disease progression is the focus for higher-risk MDS. Several promising drugs are in the horizon, including the hypoxia-inducible factor stabilizer roxadustat, telomerase inhibitor imetelstat, oral hypomethylating agents (CC-486), TP53 modulators (APR-246 and ALRN-6924), and the anti-CD47 antibody magrolimab. Targeted therapies approved for acute myeloid leukemia treatment, such as isocitrate dehdyrogenase inhibitors and venetoclax, are also being studied for use in MDS. In this review, we provide a brief overview of pathogenesis and current treatment strategies in MDS followed by a discussion of newer agents that are under clinical investigation.
Collapse
|
42
|
Bewersdorf JP, Carraway H, Prebet T. Emerging treatment options for patients with high-risk myelodysplastic syndrome. Ther Adv Hematol 2020; 11:2040620720955006. [PMID: 33240476 PMCID: PMC7675905 DOI: 10.1177/2040620720955006] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are clonal hematopoietic stem cell disorders
characterized by ineffective hematopoiesis with peripheral blood cytopenias,
dysplastic cell morphology, and a variable risk of progression to acute myeloid
leukemia (AML). The hypomethylating agents (HMA) azacitidine and decitabine have
been used for over a decade in MDS treatment and lead to a modest survival
benefit. However, response rates are only around 40% and responses are mostly
transient. For HMA-refractory patients the prognosis is poor and there are no
therapies approved by the United States Food and Drug Administration. Combinations of HMAs, especially along with immune checkpoint inhibitors, have
shown promising signals in both the frontline and HMA-refractory setting.
Several other novel agents including orally available and longer acting HMAs,
the BCL-2 inhibitor venetoclax, oral agents targeting driver mutations
(IDH1/2, FLT3), immunotherapies, and new options for
intensive chemotherapy have been studied with variable success and will be
reviewed herein. Except for the minority of patients with targetable driver
mutations, HMAs – likely as part of combination therapies – will remain the
backbone of frontline MDS treatment. However, the wider use of genetic testing
may enable a more targeted and individualized therapy of MDS patients.
Collapse
Affiliation(s)
- Jan Philipp Bewersdorf
- Department of Internal Medicine, Section of Hematology, Yale University School of Medicine, New Haven, CT, USA
| | - Hetty Carraway
- Leukemia Program, Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Thomas Prebet
- Department of Internal Medicine, Section of Hematology, Yale University School of Medicine, 37 College Street, Room 101, New Haven, CT 06511, USA
| |
Collapse
|
43
|
Caponetti GC, Bagg A. Mutations in myelodysplastic syndromes: Core abnormalities and CHIPping away at the edges. Int J Lab Hematol 2020; 42:671-684. [PMID: 32757473 DOI: 10.1111/ijlh.13284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 12/18/2022]
Abstract
The myelodysplastic syndromes (MDS) are a heterogeneous constellation of hematologic malignancies characterized by aberrant differentiation and clonal expansion of abnormal myeloid cells that initially manifest with ineffective hematopoiesis and consequent cytopenias. The prognosis of MDS is variable and depends on clinical and hematologic parameters, cytogenetic and molecular findings, as well as comorbidities. Gene sequencing studies have uncovered remarkable genomic complexity within MDS, based on the presence of recurrent and sometimes co-operating mutations in genes encoding proteins that play a role in numerous biologic pathways. Although the treatment of MDS is currently limited to the use of hypomethylating, immunomodulatory, or erythropoiesis-stimulating agents, improved understanding of the molecular underpinnings of its pathophysiology has led to the development of multiple targeted treatments that are poised to be added to the therapeutic armamentarium. This review will focus on the role of mutations in the pathogenesis, diagnosis, and prognosis of MDS and how the discovery of clonal hematopoiesis of indeterminate potential (CHIP) might impact the utility of detecting mutations in the diagnosis of MDS.
Collapse
Affiliation(s)
- Gabriel C Caponetti
- Department of Pathology and Laboratory Medicine, Division of Hematopathology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Adam Bagg
- Department of Pathology and Laboratory Medicine, Division of Hematopathology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
44
|
Prognostic significance of serial molecular annotation in myelodysplastic syndromes (MDS) and secondary acute myeloid leukemia (sAML). Leukemia 2020; 35:1145-1155. [PMID: 32728186 DOI: 10.1038/s41375-020-0997-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 07/01/2020] [Accepted: 07/21/2020] [Indexed: 01/07/2023]
Abstract
The implementation of next-generation sequencing (NGS) has influenced diagnostic, prognostic, and therapeutic decisions in myeloid malignancies. However, the clinical relevance of serial molecular annotation in patients with myelodysplastic syndrome (MDS) undergoing active treatment is unknown. MDS or secondary acute myeloid leukemia (sAML) patients who had at least two NGS assessments were identified. Outcomes according to mutation clearance (NGS-) on serial assessment were investigated. Univariate and multivariate Cox regression models were used to evaluate the prognostic impact of NGS trajectory on overall survival (OS). A total of 157 patients (MDS [n = 95]; sAML [n = 52]; CMML [n = 10]) were identified, with 93% of patients receiving treatment between NGS assessments. Magnitude of VAF delta from baseline was significantly associated with quality of response to treatment. Patients achieving NGS- had significantly improved OS compared to patients with mutation persistence (median OS not reached vs. 18.5 months; P = 0.002), which was confirmed in multivariate analysis (HR,0.14; 95%CI = 0.03-0.56; P = 0.0064). Serial TP53 VAF evaluation predicts outcomes with TP53 clearance representing an independent covariate for superior OS (HR,0.22; 95%CI = 0.05-0.99; P = 0.048). Collectively, our study highlights the clinical value of serial NGS during treatment and warrants prospective validation of NGS negativity as a biomarker for treatment outcome.
Collapse
|
45
|
Rinke J, Chase A, Cross NCP, Hochhaus A, Ernst T. EZH2 in Myeloid Malignancies. Cells 2020; 9:cells9071639. [PMID: 32650416 PMCID: PMC7407223 DOI: 10.3390/cells9071639] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
Our understanding of the significance of epigenetic dysregulation in the pathogenesis of myeloid malignancies has greatly advanced in the past decade. Enhancer of Zeste Homolog 2 (EZH2) is the catalytic core component of the Polycomb Repressive Complex 2 (PRC2), which is responsible for gene silencing through trimethylation of H3K27. EZH2 dysregulation is highly tumorigenic and has been observed in various cancers, with EZH2 acting as an oncogene or a tumor-suppressor depending on cellular context. While loss-of-function mutations of EZH2 frequently affect patients with myelodysplastic/myeloproliferative neoplasms, myelodysplastic syndrome and myelofibrosis, cases of chronic myeloid leukemia (CML) seem to be largely characterized by EZH2 overexpression. A variety of other factors frequently aberrant in myeloid leukemia can affect PRC2 function and disease pathogenesis, including Additional Sex Combs Like 1 (ASXL1) and splicing gene mutations. As the genetic background of myeloid malignancies is largely heterogeneous, it is not surprising that EZH2 mutations act in conjunction with other aberrations. Since EZH2 mutations are considered to be early events in disease pathogenesis, they are of therapeutic interest to researchers, though targeting of EZH2 loss-of-function does present unique challenges. Preliminary research indicates that combined tyrosine kinase inhibitor (TKI) and EZH2 inhibitor therapy may provide a strategy to eliminate the residual disease burden in CML to allow patients to remain in treatment-free remission.
Collapse
Affiliation(s)
- Jenny Rinke
- Klinik für Innere Medizin II, Universitätsklinikum Jena, 07743 Jena, Germany; (J.R.); (A.H.)
| | - Andrew Chase
- School of Medicine, University of Southampton, Southampton SO17 1BJ, UK; (A.C.); (N.C.P.C.)
- Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury SP2 8BJ, UK
| | - Nicholas C. P. Cross
- School of Medicine, University of Southampton, Southampton SO17 1BJ, UK; (A.C.); (N.C.P.C.)
- Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury SP2 8BJ, UK
| | - Andreas Hochhaus
- Klinik für Innere Medizin II, Universitätsklinikum Jena, 07743 Jena, Germany; (J.R.); (A.H.)
| | - Thomas Ernst
- Klinik für Innere Medizin II, Universitätsklinikum Jena, 07743 Jena, Germany; (J.R.); (A.H.)
- Correspondence: ; Tel.: +49-3641-9324201; Fax: +49-3641-9324202
| |
Collapse
|
46
|
Beck RC, Kim AS, Goswami RS, Weinberg OK, Yeung CCS, Ewalt MD. Molecular/Cytogenetic Education for Hematopathology Fellows. Am J Clin Pathol 2020; 154:149-177. [PMID: 32444878 DOI: 10.1093/ajcp/aqaa038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES At a discussion on molecular/cytogenetic education for hematopathology fellows at the 2018 Society for Hematopathology Program Directors Meeting, consensus was that fellows should understand basic principles and indications for and limitations of molecular/cytogenetic testing used in routine practice. Fellows should also be adept at integrating results of such testing for rendering a final diagnosis. To aid these consensus goals, representatives from the Society for Hematopathology and the Association for Molecular Pathology formed a working group to devise a molecular/cytogenetic curriculum for hematopathology fellow education. CURRICULUM SUMMARY The curriculum includes a primer on cytogenetics and molecular techniques. The bulk of the curriculum reviews the molecular pathology of individual malignant hematologic disorders, with applicable molecular/cytogenetic testing for each and following the 2017 World Health Organization classification of hematologic neoplasms. Benign hematologic disorders and bone marrow failure syndromes are also discussed briefly. Extensive tables are used to summarize genetics of individual disorders and appropriate methodologies. CONCLUSIONS This curriculum provides an overview of the current understanding of the molecular biology of hematologic disorders and appropriate ancillary testing for their evaluation. The curriculum may be used by program directors for training hematopathology fellows or by practicing hematopathologists.
Collapse
Affiliation(s)
- Rose C Beck
- Department of Pathology, University Hospitals of Cleveland, Case Western Reserve University, Cleveland, OH (Society for Hematopathology Representative)
| | - Annette S Kim
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (Association for Molecular Pathology Representative)
| | - Rashmi S Goswami
- Department of Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Olga K Weinberg
- Department of Pathology, Boston Children’s Hospital, Boston, MA
| | - Cecilia C S Yeung
- Department of Pathology, University of Washington, and Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Mark D Ewalt
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora
| |
Collapse
|
47
|
Menssen AJ, Walter MJ. Genetics of progression from MDS to secondary leukemia. Blood 2020; 136:50-60. [PMID: 32430504 PMCID: PMC7332895 DOI: 10.1182/blood.2019000942] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/27/2019] [Indexed: 12/14/2022] Open
Abstract
Our understanding of the genetics of acute myeloid leukemia (AML) development from myelodysplastic syndrome (MDS) has advanced significantly as a result of next-generation sequencing technology. Although differences in cell biology and maturation exist between MDS and AML secondary to MDS, these 2 diseases are genetically related. MDS and secondary AML cells harbor mutations in many of the same genes and functional categories, including chromatin modification, DNA methylation, RNA splicing, cohesin complex, transcription factors, cell signaling, and DNA damage, confirming that they are a disease continuum. Differences in the frequency of mutated genes in MDS and secondary AML indicate that the order of mutation acquisition is not random during progression. In almost every case, disease progression is associated with clonal evolution, typically defined by the expansion or emergence of a subclone with a unique set of mutations. Monitoring tumor burden and clonal evolution using sequencing provides advantages over using the blast count, which underestimates tumor burden, and could allow for early detection of disease progression prior to clinical deterioration. In this review, we outline advances in the study of MDS to secondary AML progression, with a focus on the genetics of progression, and discuss the advantages of incorporating molecular genetic data in the diagnosis, classification, and monitoring of MDS to secondary AML progression. Because sequencing is becoming routine in the clinic, ongoing research is needed to define the optimal assay to use in different clinical situations and how the data can be used to improve outcomes for patients with MDS and secondary AML.
Collapse
Affiliation(s)
- Andrew J Menssen
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO; and
| | - Matthew J Walter
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO; and
- Siteman Cancer Center, Washington University, St. Louis, MO
| |
Collapse
|
48
|
Geissler K, Jäger E, Barna A, Gurbisz M, Graf T, Graf E, Nösslinger T, Pfeilstöcker M, Tüchler H, Sliwa T, Keil F, Geissler C, Heibl S, Thaler J, Machherndl-Spandl S, Zach O, Weltermann A, Bettelheim P, Stauder R, Zebisch A, Sill H, Schwarzinger I, Schneeweiss B, Öhler L, Ulsperger E, Kusec R, Germing U, Sperr WR, Knöbl P, Jäger U, Hörmann G, Valent P. Correlation of RAS-Pathway Mutations and Spontaneous Myeloid Colony Growth with Progression and Transformation in Chronic Myelomonocytic Leukemia-A Retrospective Analysis in 337 Patients. Int J Mol Sci 2020; 21:ijms21083025. [PMID: 32344757 PMCID: PMC7215883 DOI: 10.3390/ijms21083025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 01/07/2023] Open
Abstract
Although the RAS-pathway has been implicated as an important driver in the pathogenesis of chronic myelomonocytic leukemia (CMML) a comprehensive study including molecular and functional analyses in patients with progression and transformation has not been performed. A close correlation between RASopathy gene mutations and spontaneous in vitro myeloid colony (CFU-GM) growth in CMML has been described. Molecular and/or functional analyses were performed in three cohorts of 337 CMML patients: in patients without (A, n = 236) and with (B, n = 61) progression/transformation during follow-up, and in patients already transformed at the time of sampling (C, n = 40 + 26 who were before in B). The frequencies of RAS-pathway mutations (variant allele frequency ≥ 20%) in cohorts A, B, and C were 30%, 47%, and 71% (p < 0.0001), and of high colony growth (≥20/105 peripheral blood mononuclear cells) 31%, 44%, and 80% (p < 0.0001), respectively. Increases in allele burden of RAS-pathway mutations and in numbers of spontaneously formed CFU-GM before and after transformation could be shown in individual patients. Finally, the presence of mutations in RASopathy genes as well as the presence of high colony growth prior to transformation was significantly associated with an increased risk of acute myeloid leukemia (AML) development. Together, RAS-pathway mutations in CMML correlate with an augmented autonomous expansion of neoplastic precursor cells and indicate an increased risk of AML development which may be relevant for targeted treatment strategies.
Collapse
MESH Headings
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cytogenetic Analysis
- Disease Progression
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Myelomonocytic, Chronic/genetics
- Leukemia, Myelomonocytic, Chronic/metabolism
- Leukemia, Myelomonocytic, Chronic/mortality
- Leukemia, Myelomonocytic, Chronic/pathology
- Mutation
- Neoplasm Staging
- Neoplastic Stem Cells/metabolism
- Prognosis
- Retrospective Studies
- Signal Transduction
- ras Proteins/genetics
- ras Proteins/metabolism
Collapse
Affiliation(s)
- Klaus Geissler
- Medical School, Sigmund Freud University, 1020 Vienna, Austria
- Department of Internal Medicine V with Hematology, Oncology and Palliative Medicine, Hospital Hietzing, 1130 Vienna, Austria; (T.G.); (E.G.)
- Correspondence: ; Tel.: +43-01-80110-3122; Fax: +43-01-80110-2671
| | - Eva Jäger
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria; (E.J.); (M.G.); (I.S.)
| | - Agnes Barna
- Blood Transfusion Service, Blood Transfusion Service for Upper Austria, Austrian Red Cross, 4020 Linz, Austria;
| | - Michael Gurbisz
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria; (E.J.); (M.G.); (I.S.)
| | - Temeida Graf
- Department of Internal Medicine V with Hematology, Oncology and Palliative Medicine, Hospital Hietzing, 1130 Vienna, Austria; (T.G.); (E.G.)
| | - Elmir Graf
- Department of Internal Medicine V with Hematology, Oncology and Palliative Medicine, Hospital Hietzing, 1130 Vienna, Austria; (T.G.); (E.G.)
| | - Thomas Nösslinger
- Department of Internal Medicine III, Hanusch Hospital, 1140 Vienna, Austria; (T.N.); (M.P.); (H.T.); (T.S.); (F.K.)
| | - Michael Pfeilstöcker
- Department of Internal Medicine III, Hanusch Hospital, 1140 Vienna, Austria; (T.N.); (M.P.); (H.T.); (T.S.); (F.K.)
| | - Heinz Tüchler
- Department of Internal Medicine III, Hanusch Hospital, 1140 Vienna, Austria; (T.N.); (M.P.); (H.T.); (T.S.); (F.K.)
| | - Thamer Sliwa
- Department of Internal Medicine III, Hanusch Hospital, 1140 Vienna, Austria; (T.N.); (M.P.); (H.T.); (T.S.); (F.K.)
| | - Felix Keil
- Department of Internal Medicine III, Hanusch Hospital, 1140 Vienna, Austria; (T.N.); (M.P.); (H.T.); (T.S.); (F.K.)
| | - Christoph Geissler
- Department of Laboratory Medicine, Hospital Hietzing, 1130 Vienna, Austria;
| | - Sonja Heibl
- Department of Internal Medicine IV, Hospital Wels-Grieskirchen, 4600 Wels, Austria; (S.H.); (J.T.)
| | - Josef Thaler
- Department of Internal Medicine IV, Hospital Wels-Grieskirchen, 4600 Wels, Austria; (S.H.); (J.T.)
| | - Sigrid Machherndl-Spandl
- Department of Internal Medicine I with Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz Barmherzige Schwestern - Elisabethinen, 4020 Linz, Austria; (S.M.-S.); (O.Z.); (A.W.); (P.B.)
| | - Otto Zach
- Department of Internal Medicine I with Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz Barmherzige Schwestern - Elisabethinen, 4020 Linz, Austria; (S.M.-S.); (O.Z.); (A.W.); (P.B.)
| | - Ansgar Weltermann
- Department of Internal Medicine I with Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz Barmherzige Schwestern - Elisabethinen, 4020 Linz, Austria; (S.M.-S.); (O.Z.); (A.W.); (P.B.)
| | - Peter Bettelheim
- Department of Internal Medicine I with Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz Barmherzige Schwestern - Elisabethinen, 4020 Linz, Austria; (S.M.-S.); (O.Z.); (A.W.); (P.B.)
| | - Reinhard Stauder
- Internal Medicine V with Hematology and Oncology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Armin Zebisch
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, 8036 Graz, Austria; (A.Z.); (H.S.)
- Otto-Loewi-Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8036 Graz, Austria
| | - Heinz Sill
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, 8036 Graz, Austria; (A.Z.); (H.S.)
| | - Ilse Schwarzinger
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria; (E.J.); (M.G.); (I.S.)
| | - Bruno Schneeweiss
- Department of Internal Medicine, Hospital Kirchdorf, 4560 Kirchdorf, Austria;
| | - Leopold Öhler
- Department of Internal Medicine/Oncology, St. Josef Hospital, 1130 Vienna, Austria;
| | - Ernst Ulsperger
- Department of Internal Medicine, Hospital Horn, 3580 Horn, Austria;
| | - Rajko Kusec
- School of Medicine, University of Zagreb, University Hospital Dubrava, 10000 Zagreb, Croatia;
| | - Ulrich Germing
- Department of Hematology, Oncology, and Clinical Immunology, Heinrich-Heine-University, 40225 Düsseldorf, Germany;
| | - Wolfgang R. Sperr
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (W.R.S.); (P.K.); (U.J.); (P.V.)
| | - Paul Knöbl
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (W.R.S.); (P.K.); (U.J.); (P.V.)
| | - Ulrich Jäger
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (W.R.S.); (P.K.); (U.J.); (P.V.)
| | - Gregor Hörmann
- Central Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (W.R.S.); (P.K.); (U.J.); (P.V.)
- Ludwig Boltzmann Institute for Hematology and Oncology (LBI HO), Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
49
|
Calleja A, Yun S, Moreilhon C, Karsenti JM, Gastaud L, Mannone L, Komrokji R, Al Ali N, Dadone-Montaudie B, Robert G, Auberger P, Raynaud S, Sallman DA, Cluzeau T. Clonal selection in therapy-related myelodysplastic syndromes and acute myeloid leukemia under azacitidine treatment. Eur J Haematol 2020; 104:488-498. [PMID: 31990086 DOI: 10.1111/ejh.13390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Therapy-related myelodysplastic syndrome and acute myeloid leukemia (t-MDS/AML) are defined as complications of previous cytotoxic therapy. Azacitidine (AZA), a hypomethylating agent, has showed activity in t-MDS/AML. OBJECTIVES We evaluated the clonal dynamics of AZA-treated t-MDS/AML. METHODS We collected bone marrow samples, at diagnosis and during treatment, from AZA-treated t-MDS/AML patients. NGS on 19 myeloid genes was performed, and candidate mutations with a variant allele frequency >5% were selected. RESULTS Seven t-AML and 12 t-MDS were included with median age of 71 (56-82) years old, median number of AZA cycles of 6 (1-15), and median overall survival (OS) of 14 (3-29) months. We observed correlation between AZA response and clonal selection. Decrease of TP53-mutated clone was correlated with response to AZA, confirming AZA efficacy in this subgroup. In some patients, emergence of mutations was correlated with progression or relapse without impact on OS. Clones with mutations in genes for DNA methylation regulation frequently occurred with other mutations and remained stable during AZA treatment, independent of AZA response. CONCLUSION We confirmed that the molecular complexity of t-MNs and that the follow-up of clonal selection during AZA treatment could be useful to define treatment combination.
Collapse
Affiliation(s)
- Anne Calleja
- Hematology Department, Cote D'Azur University, Nice Sophia Antipolis University, CHU of Nice, Nice, France.,Cote d'Azur University, INSERM U1065, Mediterranean Center of Molecular Medecine, Nice, France
| | - Seongseok Yun
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Chimène Moreilhon
- Cote D'Azur University, Nice Sophia Antipolis University, CHU of Nice, Onco-hematology Laboratory, Nice, France
| | - Jean Michel Karsenti
- Hematology Department, Cote D'Azur University, Nice Sophia Antipolis University, CHU of Nice, Nice, France
| | - Lauris Gastaud
- Oncology Department, Antoine Lacassagne Center, Nice, France
| | - Lionel Mannone
- Hematology Department, Cote D'Azur University, Nice Sophia Antipolis University, CHU of Nice, Nice, France
| | - Rami Komrokji
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Najla Al Ali
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Bérangère Dadone-Montaudie
- Anatomopathology Department, Cote d'Azur University, Nice Sophia Antipolis University, CHU of Nice, Nice, France
| | - Guillaume Robert
- Cote d'Azur University, INSERM U1065, Mediterranean Center of Molecular Medecine, Nice, France
| | - Patrick Auberger
- Cote d'Azur University, INSERM U1065, Mediterranean Center of Molecular Medecine, Nice, France
| | - Sophie Raynaud
- Cote D'Azur University, Nice Sophia Antipolis University, CHU of Nice, Onco-hematology Laboratory, Nice, France
| | - David A Sallman
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Thomas Cluzeau
- Hematology Department, Cote D'Azur University, Nice Sophia Antipolis University, CHU of Nice, Nice, France.,Cote d'Azur University, INSERM U1065, Mediterranean Center of Molecular Medecine, Nice, France
| |
Collapse
|
50
|
Brunner AM, Steensma DP. Targeting Aberrant Splicing in Myelodysplastic Syndromes: Biologic Rationale and Clinical Opportunity. Hematol Oncol Clin North Am 2020; 34:379-391. [PMID: 32089217 DOI: 10.1016/j.hoc.2019.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Myelodysplastic syndromes are enriched for somatic mutations in the pre-mRNA splicing apparatus, with recurrent acquired mutations most commonly occurring in SF3B1, SRSF2, U2AF1, and ZRSR2. These mutations appear to be early events in the pathogenesis of disease, and, given their frequency and central role in leukemogenesis, are of interest as potential therapeutic targets. Clinical trials are exploring targets that directly affect the spliceosome (splicing modulators or protein arginine methyltransferase 5 inhibitors) or that exploit possible vulnerabilities created by alternative splicing (inhibiting ATR). Future research is needed to explore novel targets and therapeutic combinations and understand how these mutations lead to clonal dominance.
Collapse
Affiliation(s)
- Andrew M Brunner
- Massachusetts General Hospital, Zero Emerson Place, Suite 118, Boston, MA 02114, USA.
| | - David P Steensma
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| |
Collapse
|