1
|
Djamgoz MBA. Electrical excitability of cancer cells-CELEX model updated. Cancer Metastasis Rev 2024; 43:1579-1591. [PMID: 38976181 PMCID: PMC11554705 DOI: 10.1007/s10555-024-10195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/12/2024] [Indexed: 07/09/2024]
Abstract
The normal functioning of every cell in the body depends on its bioelectric properties and many diseases are caused by genetic and/or epigenetic dysregulation of the underlying ion channels. Metastasis, the main cause of death from cancer, is a complex multi-stage process in which cells break away from a primary tumour, invade the surrounding tissues, enter the circulation by encountering a blood vessel and spread around the body, ultimately lodging in distant organs and reproliferating to form secondary tumours leading to devastating organ failure. Such cellular behaviours are well known to involve ion channels. The CELEX model offers a novel insight to metastasis where it is the electrical excitation of the cancer cells that is responsible for their aggressive and invasive behaviour. In turn, the hyperexcitability is underpinned by concomitant upregulation of functional voltage-gated sodium channels and downregulation of voltage-gated potassium channels. Here, we update the in vitro and in vivo evidence in favour of the CELEX model for carcinomas. The results are unequivocal for the sodium channel. The potassium channel arm is also broadly supported by existing evidence although these data are complicated by the impact of the channels on the membrane potential and consequent secondary effects. Finally, consistent with the CELEX model, we show (i) that carcinomas are indeed electrically excitable and capable of generating action potentials and (ii) that combination of a sodium channel inhibitor and a potassium channel opener can produce a strong, additive anti-invasive effect. We discuss the possible clinical implications of the CELEX model in managing cancer.
Collapse
Affiliation(s)
- Mustafa B A Djamgoz
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
2
|
Sakellakis M, Yoon SM, Reet J, Chalkias A. Novel insights into voltage-gated ion channels: Translational breakthroughs in medical oncology. Channels (Austin) 2024; 18:2297605. [PMID: 38154047 PMCID: PMC10761148 DOI: 10.1080/19336950.2023.2297605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/05/2023] [Indexed: 12/30/2023] Open
Abstract
Preclinical evidence suggests that voltage gradients can act as a kind of top-down master regulator during embryogenesis and orchestrate downstream molecular-genetic pathways during organ regeneration or repair. Moreover, electrical stimulation shifts response to injury toward regeneration instead of healing or scarring. Cancer and embryogenesis not only share common phenotypical features but also commonly upregulated molecular pathways. Voltage-gated ion channel activity is directly or indirectly linked to the pathogenesis of cancer hallmarks, while experimental and clinical studies suggest that their modulation, e.g., by anesthetic agents, may exert antitumor effects. A large recent clinical trial served as a proof-of-principle for the benefit of preoperative use of topical sodium channel blockade as a potential anticancer strategy against early human breast cancers. Regardless of whether ion channel aberrations are primary or secondary cancer drivers, understanding the functional consequences of these events may guide us toward the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Minas Sakellakis
- Department of Medicine, Jacobi North Central Bronx Hospital, Bronx, USA
| | - Sung Mi Yoon
- Department of Medicine, Jacobi North Central Bronx Hospital, Bronx, USA
| | - Jashan Reet
- Department of Medicine, Jacobi North Central Bronx Hospital, Bronx, USA
| | - Athanasios Chalkias
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Outcomes Research Consortium, Cleveland, OH, USA
| |
Collapse
|
3
|
Leslie TK, Tripp A, James AD, Fraser SP, Nelson M, Sajjaboontawee N, Capatina AL, Toss M, Fadhil W, Salvage SC, Garcia MA, Beykou M, Rakha E, Speirs V, Bakal C, Poulogiannis G, Djamgoz MBA, Jackson AP, Matthews HR, Huang CLH, Holding AN, Chawla S, Brackenbury WJ. A novel Na v1.5-dependent feedback mechanism driving glycolytic acidification in breast cancer metastasis. Oncogene 2024; 43:2578-2594. [PMID: 39048659 PMCID: PMC11329375 DOI: 10.1038/s41388-024-03098-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/27/2024]
Abstract
Solid tumours have abnormally high intracellular [Na+]. The activity of various Na+ channels may underlie this Na+ accumulation. Voltage-gated Na+ channels (VGSCs) have been shown to be functionally active in cancer cell lines, where they promote invasion. However, the mechanisms involved, and clinical relevance, are incompletely understood. Here, we show that protein expression of the Nav1.5 VGSC subtype strongly correlates with increased metastasis and shortened cancer-specific survival in breast cancer patients. In addition, VGSCs are functionally active in patient-derived breast tumour cells, cell lines, and cancer-associated fibroblasts. Knockdown of Nav1.5 in a mouse model of breast cancer suppresses expression of invasion-regulating genes. Nav1.5 activity increases ATP demand and glycolysis in breast cancer cells, likely by upregulating activity of the Na+/K+ ATPase, thus promoting H+ production and extracellular acidification. The pH of murine xenograft tumours is lower at the periphery than in the core, in regions of higher proliferation and lower apoptosis. In turn, acidic extracellular pH elevates persistent Na+ influx through Nav1.5 into breast cancer cells. Together, these findings show positive feedback between extracellular acidification and the movement of Na+ into cancer cells which can facilitate invasion. These results highlight the clinical significance of Nav1.5 activity as a potentiator of breast cancer metastasis and provide further evidence supporting the use of VGSC inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Theresa K Leslie
- Department of Biology, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - Aurelien Tripp
- Division of Cancer Biology, Institute of Cancer Research, London, UK
| | - Andrew D James
- Department of Biology, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - Scott P Fraser
- Department of Life Sciences, Imperial College London, London, UK
| | - Michaela Nelson
- Department of Biology, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - Nattanan Sajjaboontawee
- Department of Biology, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - Alina L Capatina
- Department of Biology, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - Michael Toss
- Department of Pathology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Wakkas Fadhil
- Department of Pathology, School of Medicine, University of Nottingham, Nottingham, UK
| | | | - Mar Arias Garcia
- Division of Cancer Biology, Institute of Cancer Research, London, UK
| | - Melina Beykou
- Division of Cancer Biology, Institute of Cancer Research, London, UK
- Department of Electrical and Electronic Engineering, Imperial College London, London, UK
| | - Emad Rakha
- Department of Pathology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Valerie Speirs
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Chris Bakal
- Division of Cancer Biology, Institute of Cancer Research, London, UK
| | | | - Mustafa B A Djamgoz
- Department of Life Sciences, Imperial College London, London, UK
- Biotechnology Research Centre, Cyprus International University, Haspolat, TRNC, Mersin, Turkey
| | - Antony P Jackson
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Hugh R Matthews
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Christopher L-H Huang
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - Andrew N Holding
- Department of Biology, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - Sangeeta Chawla
- Department of Biology, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - William J Brackenbury
- Department of Biology, University of York, York, UK.
- York Biomedical Research Institute, University of York, York, UK.
| |
Collapse
|
4
|
Liu H, Weng J, Huang CLH, Jackson AP. Voltage-gated sodium channels in cancers. Biomark Res 2024; 12:70. [PMID: 39060933 PMCID: PMC11282680 DOI: 10.1186/s40364-024-00620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Voltage-gated sodium channels (VGSCs) initiate action potentials in electrically excitable cells and tissues. Surprisingly, some VGSC genes are aberrantly expressed in a variety of cancers, derived from "non-excitable" tissues that do not generate classic action potentials, showing potential as a promising pharmacological target for cancer. Most of the previous review articles on this topic are limited in scope, and largely unable to provide researchers with a comprehensive understanding of the role of VGSC in cancers. Here, we review the expression patterns of all nine VGSC α-subunit genes (SCN1A-11A) and their four regulatory β-subunit genes (SCN1B-4B). We reviewed data from the Cancer Genome Atlas (TCGA) database, complemented by an extensive search of the published papers. We summarized and reviewed previous independent studies and analyzed the VGSC genes in the TCGA database regarding the potential impact of VGSC on cancers. A comparison between evidence gathered from independent studies and data review was performed to scrutinize potential biases in prior research and provide insights into future research directions. The review supports the view that VGSCs play an important role in diagnostics as well as therapeutics of some cancer types, such as breast, colon, prostate, and lung cancer. This paper provides an overview of the current knowledge on voltage-gated sodium channels in cancer, as well as potential avenues for further research. While further research is required to fully understand the role of VGSCs in cancer, the potential of VGSCs for clinical diagnosis and treatment is promising.
Collapse
Affiliation(s)
- Hengrui Liu
- Department of Biochemistry, Hopkins Building, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK.
| | - Jieling Weng
- Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Christopher L-H Huang
- Department of Biochemistry, Hopkins Building, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Antony P Jackson
- Department of Biochemistry, Hopkins Building, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK.
| |
Collapse
|
5
|
Pukkanasut P, Jaskula-Sztul R, Gomora JC, Velu SE. Therapeutic targeting of voltage-gated sodium channel Na V1.7 for cancer metastasis. Front Pharmacol 2024; 15:1416705. [PMID: 39045054 PMCID: PMC11263763 DOI: 10.3389/fphar.2024.1416705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/12/2024] [Indexed: 07/25/2024] Open
Abstract
This review focuses on the expression and function of voltage-gated sodium channel subtype NaV1.7 in various cancers and explores its impact on the metastasis driving cell functions such as proliferation, migration, and invasiveness. An overview of its structural characteristics, drug binding sites, inhibitors and their likely mechanisms of action are presented. Despite the lack of clarity on the precise mechanism by which NaV1.7 contributes to cancer progression and metastasis; many studies have suggested a connection between NaV1.7 and proteins involved in multiple signaling pathways such as PKA and EGF/EGFR-ERK1/2. Moreover, the functional activity of NaV1.7 appears to elevate the expression levels of MACC1 and NHE-1, which are controlled by p38 MAPK activity, HGF/c-MET signaling and c-Jun activity. This cascade potentially enhances the secretion of extracellular matrix proteases, such as MMPs which play critical roles in cell migration and invasion activities. Furthermore, the NaV1.7 activity may indirectly upregulate Rho GTPases Rac activity, which is critical for cytoskeleton reorganization, cell adhesion, and actin polymerization. The relationship between NaV1.7 and cancer progression has prompted researchers to investigate the therapeutic potential of targeting NaV1.7 using inhibitors. The positive outcome of such studies resulted in the discovery of several inhibitors with the ability to reduce cancer cell migration, invasion, and tumor growth underscoring the significance of NaV1.7 as a promising pharmacological target for attenuating cancer cell proliferation and metastasis. The research findings summarized in this review suggest that the regulation of NaV1.7 expression and function by small molecules and/or by genetic engineering is a viable approach to discover novel therapeutics for the prevention and treatment of metastasis of cancers with elevated NaV1.7 expression.
Collapse
Affiliation(s)
- Piyasuda Pukkanasut
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Renata Jaskula-Sztul
- Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Juan Carlos Gomora
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sadanandan E. Velu
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
6
|
Djamgoz MBA. Ranolazine: a potential anti-metastatic drug targeting voltage-gated sodium channels. Br J Cancer 2024; 130:1415-1419. [PMID: 38424164 PMCID: PMC11058819 DOI: 10.1038/s41416-024-02622-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Multi-faceted evidence from a range of cancers suggests strongly that de novo expression of voltage-gated sodium channels (VGSCs) plays a significant role in driving cancer cell invasiveness. Under hypoxic conditions, common to growing tumours, VGSCs develop a persistent current (INaP) which can be blocked selectively by ranolazine. METHODS Several different carcinomas were examined. We used data from a range of experimental approaches relating to cellular invasiveness and metastasis. These were supplemented by survival data mined from cancer patients. RESULTS In vitro, ranolazine inhibited invasiveness of cancer cells especially under hypoxia. In vivo, ranolazine suppressed the metastatic abilities of breast and prostate cancers and melanoma. These data were supported by a major retrospective epidemiological study on breast, colon and prostate cancer patients. This showed that risk of dying from cancer was reduced by ca.60% among those taking ranolazine, even if this started 4 years after the diagnosis. Ranolazine was also shown to reduce the adverse effects of chemotherapy on heart and brain. Furthermore, its anti-cancer effectiveness could be boosted by co-administration with other drugs. CONCLUSIONS Ranolazine, alone or in combination with appropriate therapies, could be reformulated as a safe anti-metastatic drug offering many potential advantages over current systemic treatment modalities.
Collapse
Affiliation(s)
- Mustafa B A Djamgoz
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
- Biotechnology Research Centre, Cyprus International University, Haspolat, Nicosia, TRNC, Mersin, 10, Türkiye.
| |
Collapse
|
7
|
Bian Y, Tuo J, He L, Li W, Li S, Chu H, Zhao Y. Voltage-gated sodium channels in cancer and their specific inhibitors. Pathol Res Pract 2023; 251:154909. [PMID: 37939447 DOI: 10.1016/j.prp.2023.154909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
Voltage-gated sodium channels (VGSCs) participate in generating and spreading action potentials in electrically excited cells such as neurons and muscle fibers. Abnormal expression of VGSCs has been observed in various types of tumors, while they are either not expressed or expressed at a low level in the matching normal tissue. Hence, this abnormal expression suggests that VGSCs confer some advantage or viability on tumor cells, making them a valuable indicator for identifying tumor cells. In addition, overexpression of VGSCs increased the ability of cancer cells to metastasize and invade, as well as correlated with the metastatic behavior of different cancers. Therefore, blocking VGSCs presents a new strategy for the treatment of cancers. A portion of this review summarizes the structure and function of VGSCs and also describes the correlation between VGSCs and cancers. Most importantly, we provide an overview of current research on various subtype-selective VGSC inhibitors and updates on ongoing clinical studies.
Collapse
Affiliation(s)
- Yuan Bian
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Jiale Tuo
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Liangpeng He
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Wenwen Li
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Shangxiao Li
- School of Medical Devices, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, PR China
| | - Huiying Chu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yongshan Zhao
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
8
|
Keleş D, Sipahi M, İnanç-Sürer Ş, Djamgoz MB, Oktay G. Tetracaine downregulates matrix metalloproteinase activity and inhibits invasiveness of strongly metastatic MDA-MB-231 human breast cancer cells. Chem Biol Interact 2023; 385:110730. [PMID: 37806380 DOI: 10.1016/j.cbi.2023.110730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023]
Abstract
Tetracaine, a long-acting amino ester-type local anesthetic, prevents the initiation and propagation of action potentials by reversibly blocking voltage-gated sodium channels (VGSCs). These channels, which are highly expressed in several carcinomas (e.g. breast, prostate, colon and lung cancers) have been implicated in promoting metastatic behaviours. Recent evidence suggests that local anesthetics can suppress cancer progression. In this paper, we aimed to explore whether tetracaine would reduce the invasive characteristics of breast cancer cells. In a comparative approach, we used two cell lines of contracting metastatic potential: MDA-MB-231 (strongly metastatic) and MCF-7 (weakly metastatic). Tetracaine (50 μM and 75 μM) did not affect the proliferation of both MDA-MB-231 and MCF-7 cells. Importantly, tetracaine suppressed the migratory, invasive, and adhesive capacities of MDA-MB-231 cells; there was no effect on the motility of MCF-7 cells. Tetracaine treatment also significantly decreased the expression and activity levels of MMP-2 and MMP-9, whilst increasing TIMP-2 expression in MDA-MB-231 cells. On the other hand, VGSC α/Nav1.5 and VGSC-β1 mRNA and protein expression levels were not affected. We conclude that tetracaine has anti-invasive effects on breast cancer cells and may be exploited clinically, for example, in surgery and/or in combination therapies.
Collapse
Affiliation(s)
- Didem Keleş
- Izmir University of Economics, Vocational School of Health Services, Medical Laboratory Techniques, 35330, Balcova, Izmir, Turkey; Dokuz Eylül University, School of Medicine, Department of Medical Biochemistry, 35340, Inciralti, Izmir, Turkey
| | - Murat Sipahi
- Dokuz Eylül University, School of Medicine, Department of Medical Biochemistry, 35340, Inciralti, Izmir, Turkey
| | - Şeniz İnanç-Sürer
- Dokuz Eylül University, School of Medicine, Department of Medical Biochemistry, 35340, Inciralti, Izmir, Turkey
| | - Mustafa Ba Djamgoz
- Imperial College London, Department of Life Sciences, South Kensington Campus, SW7 2AZ, London, UK; Biotechnology Research Centre, Cyprus International University, Haspolat, Nicosia, TRNC, Mersin 10, Turkey
| | - Gülgün Oktay
- Dokuz Eylül University, School of Medicine, Department of Medical Biochemistry, 35340, Inciralti, Izmir, Turkey.
| |
Collapse
|
9
|
Malcolm JR, Sajjaboontawee N, Yerlikaya S, Plunkett-Jones C, Boxall PJ, Brackenbury WJ. Voltage-gated sodium channels, sodium transport and progression of solid tumours. CURRENT TOPICS IN MEMBRANES 2023; 92:71-98. [PMID: 38007270 DOI: 10.1016/bs.ctm.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Sodium (Na+) concentration in solid tumours of different origin is highly dysregulated, and this corresponds to the aberrant expression of Na+ transporters. In particular, the α subunits of voltage gated Na+ channels (VGSCs) raise intracellular Na+ concentration ([Na+]i) in malignant cells, which influences the progression of solid tumours, predominantly driving cancer cells towards a more aggressive and metastatic phenotype. Conversely, re-expression of VGSC β subunits in cancer cells can either enhance tumour progression or promote anti-tumourigenic properties. Metastasis is the leading cause of cancer-related mortality, highlighting an important area of research which urgently requires improved therapeutic interventions. Here, we review the extent to which VGSC subunits are dysregulated in solid tumours, and consider the implications of such dysregulation on solid tumour progression. We discuss current understanding of VGSC-dependent mechanisms underlying increased invasive and metastatic potential of solid tumours, and how the complex relationship between the tumour microenvironment (TME) and VGSC expression may further drive tumour progression, in part due to the interplay of infiltrating immune cells, cancer-associated fibroblasts (CAFs) and insufficient supply of oxygen (hypoxia). Finally, we explore past and present clinical trials that investigate utilising existing VGSC modulators as potential pharmacological options to support adjuvant chemotherapies to prevent cancer recurrence. Such research demonstrates an exciting opportunity to repurpose therapeutics in order to improve the disease-free survival of patients with aggressive solid tumours.
Collapse
Affiliation(s)
- Jodie R Malcolm
- Department of Biology, University of York, Heslington, York, United Kingdom
| | - Nattanan Sajjaboontawee
- Department of Biology, University of York, Heslington, York, United Kingdom; York Biomedical Research Institute, University of York, Heslington, York, United Kingdom
| | - Serife Yerlikaya
- Department of Biology, University of York, Heslington, York, United Kingdom; Istanbul Medipol University, Research Institute for Health Sciences and Technologies, Istanbul, Turkey
| | | | - Peter J Boxall
- Department of Biology, University of York, Heslington, York, United Kingdom; York and Scarborough Teaching Hospitals NHS Foundation Trust, York, United Kingdom
| | - William J Brackenbury
- Department of Biology, University of York, Heslington, York, United Kingdom; York Biomedical Research Institute, University of York, Heslington, York, United Kingdom.
| |
Collapse
|
10
|
Sanchez-Sandoval AL, Hernández-Plata E, Gomora JC. Voltage-gated sodium channels: from roles and mechanisms in the metastatic cell behavior to clinical potential as therapeutic targets. Front Pharmacol 2023; 14:1206136. [PMID: 37456756 PMCID: PMC10348687 DOI: 10.3389/fphar.2023.1206136] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
During the second half of the last century, the prevalent knowledge recognized the voltage-gated sodium channels (VGSCs) as the proteins responsible for the generation and propagation of action potentials in excitable cells. However, over the last 25 years, new non-canonical roles of VGSCs in cancer hallmarks have been uncovered. Their dysregulated expression and activity have been associated with aggressive features and cancer progression towards metastatic stages, suggesting the potential use of VGSCs as cancer markers and prognostic factors. Recent work has elicited essential information about the signalling pathways modulated by these channels: coupling membrane activity to transcriptional regulation pathways, intracellular and extracellular pH regulation, invadopodia maturation, and proteolytic activity. In a promising scenario, the inhibition of VGSCs with FDA-approved drugs as well as with new synthetic compounds, reduces cancer cell invasion in vitro and cancer progression in vivo. The purpose of this review is to present an update regarding recent advances and ongoing efforts to have a better understanding of molecular and cellular mechanisms on the involvement of both pore-forming α and auxiliary β subunits of VGSCs in the metastatic processes, with the aim at proposing VGSCs as new oncological markers and targets for anticancer treatments.
Collapse
Affiliation(s)
- Ana Laura Sanchez-Sandoval
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Medicina Genómica, Hospital General de México “Dr Eduardo Liceaga”, Mexico City, Mexico
| | - Everardo Hernández-Plata
- Consejo Nacional de Humanidades, Ciencias y Tecnologías and Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Juan Carlos Gomora
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
11
|
Remme CA. SCN5A channelopathy: arrhythmia, cardiomyopathy, epilepsy and beyond. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220164. [PMID: 37122208 PMCID: PMC10150216 DOI: 10.1098/rstb.2022.0164] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/31/2022] [Indexed: 05/02/2023] Open
Abstract
Influx of sodium ions through voltage-gated sodium channels in cardiomyocytes is essential for proper electrical conduction within the heart. Both acquired conditions associated with sodium channel dysfunction (myocardial ischaemia, heart failure) as well as inherited disorders secondary to mutations in the gene SCN5A encoding for the cardiac sodium channel Nav1.5 are associated with life-threatening arrhythmias. Research in the last decade has uncovered the complex nature of Nav1.5 distribution, function, in particular within distinct subcellular subdomains of cardiomyocytes. Nav1.5-based channels furthermore display previously unrecognized non-electrogenic actions and may impact on cardiac structural integrity, leading to cardiomyopathy. Moreover, SCN5A and Nav1.5 are expressed in cell types other than cardiomyocytes as well as various extracardiac tissues, where their functional role in, e.g. epilepsy, gastrointestinal motility, cancer and the innate immune response is increasingly investigated and recognized. This review provides an overview of these novel insights and how they deepen our mechanistic knowledge on SCN5A channelopathies and Nav1.5 (dys)function. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Carol Ann Remme
- Department of Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam UMC location AMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Pukkanasut P, Whitt J, Guenter R, Lynch SE, Gallegos C, Rosendo-Pineda MJ, Gomora JC, Chen H, Lin D, Sorace A, Jaskula-Sztul R, Velu SE. Voltage-Gated Sodium Channel Na V1.7 Inhibitors with Potent Anticancer Activities in Medullary Thyroid Cancer Cells. Cancers (Basel) 2023; 15:2806. [PMID: 37345144 PMCID: PMC10216335 DOI: 10.3390/cancers15102806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 06/23/2023] Open
Abstract
Our results from quantitative RT-PCR, Western blotting, immunohistochemistry, and the tissue microarray of medullary thyroid cancer (MTC) cell lines and patient specimens confirm that VGSC subtype NaV1.7 is uniquely expressed in aggressive MTC and not expressed in normal thyroid cells and tissues. We establish the druggability of NaV1.7 in MTC by identifying a novel inhibitor (SV188) and investigate its mode of binding and ability to inhibit INa current in NaV1.7. The whole-cell patch-clamp studies of the SV188 in the NaV1.7 channels expressed in HEK-293 cells show that SV188 inhibited the INa current in NaV1.7 with an IC50 value of 3.6 µM by a voltage- and use-dependent blockade mechanism, and the maximum inhibitory effect is observed when the channel is open. SV188 inhibited the viability of MTC cell lines, MZ-CRC-1 and TT, with IC50 values of 8.47 μM and 9.32 μM, respectively, and significantly inhibited the invasion of MZ-CRC-1 cells by 35% and 52% at 3 μM and 6 μM, respectively. In contrast, SV188 had no effect on the invasion of TT cells derived from primary tumor, which have lower basal expression of NaV1.7. In addition, SV188 at 3 μM significantly inhibited the migration of MZ-CRC-1 and TT cells by 27% and 57%, respectively.
Collapse
Affiliation(s)
- Piyasuda Pukkanasut
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Jason Whitt
- Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.W.); (R.G.); (H.C.)
| | - Rachael Guenter
- Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.W.); (R.G.); (H.C.)
| | - Shannon E. Lynch
- Graduate Biomedical Sciences, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (C.G.)
| | - Carlos Gallegos
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (C.G.)
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Margarita Jacaranda Rosendo-Pineda
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (M.J.R.-P.); (J.C.G.)
| | - Juan Carlos Gomora
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (M.J.R.-P.); (J.C.G.)
| | - Herbert Chen
- Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.W.); (R.G.); (H.C.)
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Diana Lin
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Anna Sorace
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (C.G.)
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Renata Jaskula-Sztul
- Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.W.); (R.G.); (H.C.)
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Sadanandan E. Velu
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
13
|
Chiliquinga AJ, Acosta B, Ogonaga-Borja I, Villarruel-Melquiades F, de la Garza J, Gariglio P, Ocádiz-Delgado R, Ramírez A, Sánchez-Pérez Y, García-Cuellar CM, Bañuelos C, Camacho J. Ion Channels as Potential Tools for the Diagnosis, Prognosis, and Treatment of HPV-Associated Cancers. Cells 2023; 12:1376. [PMID: 37408210 PMCID: PMC10217072 DOI: 10.3390/cells12101376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/19/2023] [Accepted: 05/05/2023] [Indexed: 07/07/2023] Open
Abstract
The human papilloma virus (HPV) group comprises approximately 200 genetic types that have a special affinity for epithelial tissues and can vary from producing benign symptoms to developing into complicated pathologies, such as cancer. The HPV replicative cycle affects various cellular and molecular processes, including DNA insertions and methylation and relevant pathways related to pRb and p53, as well as ion channel expression or function. Ion channels are responsible for the flow of ions across cell membranes and play very important roles in human physiology, including the regulation of ion homeostasis, electrical excitability, and cell signaling. However, when ion channel function or expression is altered, the channels can trigger a wide range of channelopathies, including cancer. In consequence, the up- or down-regulation of ion channels in cancer makes them attractive molecular markers for the diagnosis, prognosis, and treatment of the disease. Interestingly, the activity or expression of several ion channels is dysregulated in HPV-associated cancers. Here, we review the status of ion channels and their regulation in HPV-associated cancers and discuss the potential molecular mechanisms involved. Understanding the dynamics of ion channels in these cancers should help to improve early diagnosis, prognosis, and treatment in the benefit of HPV-associated cancer patients.
Collapse
Affiliation(s)
| | - Brenda Acosta
- Grupo de Investigación de Ciencias en Red, Universidad Técnica del Norte, Ibarra 100105, Ecuador
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Ingrid Ogonaga-Borja
- Grupo de Investigación de Ciencias en Red, Universidad Técnica del Norte, Ibarra 100105, Ecuador
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Fernanda Villarruel-Melquiades
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Jaime de la Garza
- Unidad de Oncología Torácica y Laboratorio de Medicina Personalizada, Instituto Nacional de Cancerología (INCan), Tlalpan, Ciudad de Mexico CP 14080, Mexico
| | - Patricio Gariglio
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Rodolfo Ocádiz-Delgado
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Ana Ramírez
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Tijuana 22390, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Tlalpan, Ciudad de Mexico CP 14080, Mexico
| | - Claudia M. García-Cuellar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Tlalpan, Ciudad de Mexico CP 14080, Mexico
| | - Cecilia Bañuelos
- Programa Transdisciplinario en Desarrollo Científico y Tecnológico para la Sociedad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Javier Camacho
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| |
Collapse
|
14
|
Leslie TK, Brackenbury WJ. Sodium channels and the ionic microenvironment of breast tumours. J Physiol 2023; 601:1543-1553. [PMID: 36183245 PMCID: PMC10953337 DOI: 10.1113/jp282306] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/11/2022] [Indexed: 11/08/2022] Open
Abstract
Cancers of epithelial origin such as breast, prostate, cervical, gastric, colon and lung cancer account for a large proportion of deaths worldwide. Better treatment of metastasis, the main cause of cancer deaths, is therefore urgently required. Several of these tumours have been shown to have an abnormally high concentration of Na+ ([Na+ ]) and emerging evidence points to this accumulation being due to elevated intracellular [Na+ ]. This poses intriguing questions about the cellular mechanisms underlying Na+ dysregulation in cancer, and its pathophysiological significance. Elevated intracellular [Na+ ] may be due to alterations in activity of the Na+ /K+ -ATPase, and/or increased influx via Na+ channels and Na+ -linked transporters. Maintenance of the electrochemical Na+ gradient across the plasma membrane is vital to power many cellular processes that are highly active in cancer cells, including glucose and glutamine import. Na+ channels are also upregulated in cancer cells, which in turn promotes tumour growth and metastasis. For example, ENaC and ASICs are overexpressed in cancers, increasing invasion and proliferation. In addition, voltage-gated Na+ channels are also upregulated in a range of tumour types, where they promote metastatic cell behaviours via various mechanisms, including membrane potential depolarisation and altered pH regulation. Together, recent findings relating to elevated Na+ in the tumour microenvironment and how this may be regulated by several classes of Na+ channels provide a link between altered Na+ handling and poor clinical outcome. There are new opportunities to leverage this altered Na+ microenvironment for therapeutic benefit, as exemplified by several ongoing clinical trials.
Collapse
Affiliation(s)
- Theresa K. Leslie
- Department of BiologyUniversity of YorkHeslingtonYorkUK
- York Biomedical Research InstituteUniversity of YorkHeslingtonYorkUK
| | - William J. Brackenbury
- Department of BiologyUniversity of YorkHeslingtonYorkUK
- York Biomedical Research InstituteUniversity of YorkHeslingtonYorkUK
| |
Collapse
|
15
|
Wawrzkiewicz-Jałowiecka A, Lalik A, Lukasiak A, Richter-Laskowska M, Trybek P, Ejfler M, Opałka M, Wardejn S, Delfino DV. Potassium Channels, Glucose Metabolism and Glycosylation in Cancer Cells. Int J Mol Sci 2023; 24:ijms24097942. [PMID: 37175655 PMCID: PMC10178682 DOI: 10.3390/ijms24097942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Potassium channels emerge as one of the crucial groups of proteins that shape the biology of cancer cells. Their involvement in processes like cell growth, migration, or electric signaling, seems obvious. However, the relationship between the function of K+ channels, glucose metabolism, and cancer glycome appears much more intriguing. Among the typical hallmarks of cancer, one can mention the switch to aerobic glycolysis as the most favorable mechanism for glucose metabolism and glycome alterations. This review outlines the interconnections between the expression and activity of potassium channels, carbohydrate metabolism, and altered glycosylation in cancer cells, which have not been broadly discussed in the literature hitherto. Moreover, we propose the potential mediators for the described relations (e.g., enzymes, microRNAs) and the novel promising directions (e.g., glycans-orinented drugs) for further research.
Collapse
Affiliation(s)
- Agata Wawrzkiewicz-Jałowiecka
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Anna Lalik
- Department of Systems Biology and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Agnieszka Lukasiak
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Monika Richter-Laskowska
- The Centre for Biomedical Engineering, Łukasiewicz Research Network-Krakow Institute of Technology, 30-418 Krakow, Poland
| | - Paulina Trybek
- Institute of Physics, University of Silesia in Katowice, 41-500 Chorzów, Poland
| | - Maciej Ejfler
- Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Maciej Opałka
- Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Sonia Wardejn
- Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Domenico V Delfino
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy
| |
Collapse
|
16
|
James AD, Unthank KP, Jones I, Sajjaboontawee N, Sizer RE, Chawla S, Evans GJO, Brackenbury WJ. Sodium regulates PLC and IP 3 R-mediated calcium signaling in invasive breast cancer cells. Physiol Rep 2023; 11:e15663. [PMID: 37017052 PMCID: PMC10074044 DOI: 10.14814/phy2.15663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 03/03/2023] [Accepted: 03/21/2023] [Indexed: 04/06/2023] Open
Abstract
Intracellular Ca2+ signaling and Na+ homeostasis are inextricably linked via ion channels and co-transporters, with alterations in the concentration of one ion having profound effects on the other. Evidence indicates that intracellular Na+ concentration ([Na+ ]i ) is elevated in breast tumors, and that aberrant Ca2+ signaling regulates numerous key cancer hallmark processes. The present study therefore aimed to determine the effects of Na+ depletion on intracellular Ca2+ handling in metastatic breast cancer cell lines. The relationship between Na+ and Ca2+ was probed using fura-2 and SBFI fluorescence imaging and replacement of extracellular Na+ with equimolar N-methyl-D-glucamine (0Na+ /NMDG) or choline chloride (0Na+ /ChoCl). In triple-negative MDA-MB-231 and MDA-MB-468 cells and Her2+ SKBR3 cells, but not ER+ MCF-7 cells, 0Na+ /NMDG and 0Na+ /ChoCl resulted in a slow, sustained depletion in [Na+ ]i that was accompanied by a rapid and sustained increase in intracellular Ca2+ concentration ([Ca2+ ]i ). Application of La3+ in nominal Ca2+ -free conditions had no effect on this response, ruling out reverse-mode NCX activity and Ca2+ entry channels. Moreover, the Na+ -linked [Ca2+ ]i increase was independent of membrane potential hyperpolarization (NS-1619), but was inhibited by pharmacological blockade of IP3 receptors (2-APB), phospholipase C (PLC, U73122) or following depletion of endoplasmic reticulum Ca2+ stores (cyclopiazonic acid). Thus, Na+ is linked to PLC/IP3 -mediated activation of endoplasmic reticulum Ca2+ release in metastatic breast cancer cells and this may have an important role in breast tumors where [Na+ ]i is perturbed.
Collapse
Affiliation(s)
- Andrew D. James
- Department of BiologyUniversity of YorkYorkUK
- York Biomedical Research InstituteUniversity of YorkYorkUK
| | | | | | - Nattanan Sajjaboontawee
- Department of BiologyUniversity of YorkYorkUK
- York Biomedical Research InstituteUniversity of YorkYorkUK
| | | | - Sangeeta Chawla
- Department of BiologyUniversity of YorkYorkUK
- York Biomedical Research InstituteUniversity of YorkYorkUK
| | - Gareth J. O. Evans
- Department of BiologyUniversity of YorkYorkUK
- York Biomedical Research InstituteUniversity of YorkYorkUK
| | - William J. Brackenbury
- Department of BiologyUniversity of YorkYorkUK
- York Biomedical Research InstituteUniversity of YorkYorkUK
| |
Collapse
|
17
|
Fairhurst C, Martin F, Watt I, Bland M, Doran T, Brackenbury WJ. Sodium channel-inhibiting drugs and cancer-specific survival: a population-based study of electronic primary care data. BMJ Open 2023; 13:e064376. [PMID: 36737094 PMCID: PMC9900071 DOI: 10.1136/bmjopen-2022-064376] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Antiepileptic and antiarrhythmic drugs inhibit voltage-gated sodium (Na+) channels (VGSCs), and preclinical studies show that these medications reduce tumour growth, invasion and metastasis. We investigated the association between VGSC inhibitor use and survival in patients with breast, bowel and prostate cancer. DESIGN Retrospective cohort study. SETTING Individual electronic primary healthcare records extracted from the Clinical Practice Research Datalink. PARTICIPANTS Records for 132 996 patients with a diagnosis of breast, bowel or prostate cancer. OUTCOME MEASURES Adjusted Cox proportional hazards regression was used to analyse cancer-specific survival associated with exposure to VGSC inhibitors. Exposure to non-VGSC-inhibiting antiepileptic medication and other non-VGSC blockers were also considered. Drug exposure was treated as a time-varying covariate to account for immortal time bias. RESULTS During 1 002 225 person-years of follow-up, there were 42 037 cancer-specific deaths. 53 724 (40.4%) patients with cancer had at least one prescription for a VGSC inhibitor of interest. Increased risk of cancer-specific mortality was associated with exposure to this group of drugs (HR 1.59, 95% CI 1.56 to 1.63, p<0.001). This applied to VGSC-inhibiting tricyclic antidepressants (HR 1.61, 95% CI 1.50 to 1.65, p<0.001), local anaesthetics (HR 1.49, 95% CI 1.43 to 1.55, p<0.001) and anticonvulsants (HR 1.40, 95% CI 1.34 to 1.48, p<0.001) and persisted in sensitivity analyses. In contrast, exposure to VGSC-inhibiting class 1c and 1d antiarrhythmics was associated with significantly improved cancer-specific survival (HR 0.75, 95% CI 0.64 to 0.88, p<0.001 and HR 0.54, 95% CI 0.33 to 0.88, p=0.01, respectively). CONCLUSIONS Association between VGSC inhibitor use and mortality in patients with cancer varies according to indication. Exposure to VGSC-inhibiting antiarrhythmics, but not anticonvulsants, supports findings from preclinical data, with improved survival. However, additional confounding factors may underlie these associations, highlighting the need for further study.
Collapse
Affiliation(s)
| | - Fabiola Martin
- University of Queensland, Brisbane, Queensland, Australia
| | - Ian Watt
- Health Sciences, University of York, York, UK
| | | | - Tim Doran
- Health Sciences, University of York, York, UK
| | | |
Collapse
|
18
|
Aquaporins and Ion Channels as Dual Targets in the Design of Novel Glioblastoma Therapeutics to Limit Invasiveness. Cancers (Basel) 2023; 15:cancers15030849. [PMID: 36765806 PMCID: PMC9913334 DOI: 10.3390/cancers15030849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/20/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Current therapies for Glioblastoma multiforme (GBM) focus on eradicating primary tumors using radiotherapy, chemotherapy and surgical resection, but have limited success in controlling the invasive spread of glioma cells into a healthy brain, the major factor driving short survival times for patients post-diagnosis. Transcriptomic analyses of GBM biopsies reveal clusters of membrane signaling proteins that in combination serve as robust prognostic indicators, including aquaporins and ion channels, which are upregulated in GBM and implicated in enhanced glioblastoma motility. Accumulating evidence supports our proposal that the concurrent pharmacological targeting of selected subclasses of aquaporins and ion channels could impede glioblastoma invasiveness by impairing key cellular motility pathways. Optimal sets of channels to be selected as targets for combined therapies could be tailored to the GBM cancer subtype, taking advantage of differences in patterns of expression between channels that are characteristic of GBM subtypes, as well as distinguishing them from non-cancerous brain cells such as neurons and glia. Focusing agents on a unique channel fingerprint in GBM would further allow combined agents to be administered at near threshold doses, potentially reducing off-target toxicity. Adjunct therapies which confine GBM tumors to their primary sites during clinical treatments would offer profound advantages for treatment efficacy.
Collapse
|
19
|
Wu W, Yin Y, Feng P, Chen G, Pan L, Gu P, Zhou S, Lin F, Ji S, Zheng C, Deng M. Spider venom-derived peptide JZTX-14 prevents migration and invasion of breast cancer cells via inhibition of sodium channels. Front Pharmacol 2023; 14:1067665. [PMID: 37033662 PMCID: PMC10076671 DOI: 10.3389/fphar.2023.1067665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/13/2023] [Indexed: 04/11/2023] Open
Abstract
Nav1.5 channel is crucial for the proliferation and migration of breast cancer cells. In this study, we investigated the anticancer effect of JZTX-14, a natural peptide considered an effective antagonist of Nav1.5. First, we successfully isolated and purified the 31 amino acid peptide JZTX-14 containing three pairs of disulfide bonds from spider venom and synthesised JZTX-14 by solid phase synthesis. We then predicted their physiochemical properties and structures in the peptide database. Further, we investigated the effects of natural and synthetic JZTX-14 on the proliferation and migration of MDA-MB-231 breast cancer cells via modulation of sodium current through the Nav1.5 channel. The results showed that both synthetic and natural JZTX-14 inhibited Nav1.5 currents, indicating the successful synthesis of JZTX-14. However, JZTX-14 did not affect MDA-MB-231 cell proliferation but inhibited its migration. Transcriptome analysis revealed that JZTX-14 downregulated S100A4 and FBXO2 and upregulated SERPINB2 in MDA-MB-231 cells. Western blot analysis demonstrated an increased level of the epithelial marker, E-cadherin, and decreased levels of the mesenchymal markers, N-cadherin and vimentin, and matrix metalloproteinase (MMP2), indicating the possible underlying mechanism of the inhibition of MDA-MB-231 cell migration by JZTX-14. This study provides a new target for inhibiting breast cancer metastasis and identifies a potent natural peptide for treating Triple-negative breast cancer.
Collapse
Affiliation(s)
- Wenfang Wu
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yuan Yin
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Peihao Feng
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Gong Chen
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Liangyu Pan
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Panyang Gu
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Siqin Zhou
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Fulong Lin
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Siyu Ji
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | | | - Meichun Deng
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- *Correspondence: Meichun Deng,
| |
Collapse
|
20
|
Lopez-Charcas O, Poisson L, Benouna O, Lemoine R, Chadet S, Pétereau A, Lahlou W, Guyétant S, Ouaissi M, Pukkanasut P, Dutta S, Velu SE, Besson P, Moussata D, Roger S. Voltage-Gated Sodium Channel Na V1.5 Controls NHE-1-Dependent Invasive Properties in Colon Cancer Cells. Cancers (Basel) 2022; 15:cancers15010046. [PMID: 36612049 PMCID: PMC9817685 DOI: 10.3390/cancers15010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of death worldwide, with 0.9 million deaths per year. The metastatic stage of the disease is identified in about 20% of cases at the first diagnosis and is associated with low patient-survival rates. Voltage-gated sodium channels (NaV) are abnormally overexpressed in several carcinomas including CRC and are strongly associated with the metastatic behavior of cancer cells. Acidification of the extracellular space by Na+/H+ exchangers (NHE) contributes to extracellular matrix degradation and cell invasiveness. In this study, we assessed the expression levels of pore-forming α-subunits of NaV channels and NHE exchangers in tumor and adjacent non-malignant tissues from colorectal cancer patients, CRC cell lines and primary tumor cells. In all cases, SCN5A (gene encoding for NaV1.5) was overexpressed and positively correlated with cancer stage and poor survival prognosis for patients. In addition, we identified an anatomical differential expression of SCN5A and SLC9A1 (gene encoding for NHE-1) being particularly relevant for tumors that originated on the sigmoid colon epithelium. The functional activity of NaV1.5 channels was characterized in CRC cell lines and the primary cells of colon tumors obtained using tumor explant methodologies. Furthermore, we assessed the performance of two new small-molecule NaV1.5 inhibitors on the reduction of sodium currents, as well as showed that silencing SCN5A and SLC9A1 substantially reduced the 2D invasive capabilities of cancer cells. Thus, our findings show that both NaV1.5 and NHE-1 represent two promising targetable membrane proteins against the metastatic progression of CRC.
Collapse
Affiliation(s)
- Osbaldo Lopez-Charcas
- EA4245, Transplantation, Immunologie et Inflammation, Faculté de Médecine, Université de Tours, 37032 Tours, France
- Correspondence: (O.L.-C.); (S.R.); Tel.: +33-2-47-36-61-30 (S.R.)
| | - Lucile Poisson
- EA4245, Transplantation, Immunologie et Inflammation, Faculté de Médecine, Université de Tours, 37032 Tours, France
| | - Oumnia Benouna
- EA4245, Transplantation, Immunologie et Inflammation, Faculté de Médecine, Université de Tours, 37032 Tours, France
| | - Roxane Lemoine
- EA4245, Transplantation, Immunologie et Inflammation, Faculté de Médecine, Université de Tours, 37032 Tours, France
| | - Stéphanie Chadet
- EA4245, Transplantation, Immunologie et Inflammation, Faculté de Médecine, Université de Tours, 37032 Tours, France
| | - Adrien Pétereau
- Service D’anatomie et de Cytologie Pathologiques, Hôpital Trousseau, CHU de Tours, 37170 Tours, France
| | - Widad Lahlou
- Service D’hépato-Gastroentérologie et de Cancérologie Digestive, Hôpital Trousseau, CHU de Tours, 37170 Tours, France
| | - Serge Guyétant
- Service D’anatomie et de Cytologie Pathologiques, Hôpital Trousseau, CHU de Tours, 37170 Tours, France
| | - Mehdi Ouaissi
- EA4245, Transplantation, Immunologie et Inflammation, Faculté de Médecine, Université de Tours, 37032 Tours, France
- Service de Chirurgie Viscérale et Oncologique, Hôpital Trousseau, CHU de Tours, 37170 Tours, France
| | - Piyasuda Pukkanasut
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294-1240, USA
| | - Shilpa Dutta
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294-1240, USA
| | - Sadanandan E. Velu
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294-1240, USA
| | - Pierre Besson
- EA4245, Transplantation, Immunologie et Inflammation, Faculté de Médecine, Université de Tours, 37032 Tours, France
| | - Driffa Moussata
- EA4245, Transplantation, Immunologie et Inflammation, Faculté de Médecine, Université de Tours, 37032 Tours, France
- Service D’hépato-Gastroentérologie et de Cancérologie Digestive, Hôpital Trousseau, CHU de Tours, 37170 Tours, France
| | - Sébastien Roger
- EA4245, Transplantation, Immunologie et Inflammation, Faculté de Médecine, Université de Tours, 37032 Tours, France
- Correspondence: (O.L.-C.); (S.R.); Tel.: +33-2-47-36-61-30 (S.R.)
| |
Collapse
|
21
|
Quicke P, Sun Y, Arias-Garcia M, Beykou M, Acker CD, Djamgoz MBA, Bakal C, Foust AJ. Voltage imaging reveals the dynamic electrical signatures of human breast cancer cells. Commun Biol 2022; 5:1178. [DOI: 10.1038/s42003-022-04077-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
AbstractCancer cells feature a resting membrane potential (Vm) that is depolarized compared to normal cells, and express active ionic conductances, which factor directly in their pathophysiological behavior. Despite similarities to ‘excitable’ tissues, relatively little is known about cancer cell Vm dynamics. Here high-throughput, cellular-resolution Vm imaging reveals that Vm fluctuates dynamically in several breast cancer cell lines compared to non-cancerous MCF-10A cells. We characterize Vm fluctuations of hundreds of human triple-negative breast cancer MDA-MB-231 cells. By quantifying their Dynamic Electrical Signatures (DESs) through an unsupervised machine-learning protocol, we identify four classes ranging from "noisy” to “blinking/waving“. The Vm of MDA-MB-231 cells exhibits spontaneous, transient hyperpolarizations inhibited by the voltage-gated sodium channel blocker tetrodotoxin, and by calcium-activated potassium channel inhibitors apamin and iberiotoxin. The Vm of MCF-10A cells is comparatively static, but fluctuations increase following treatment with transforming growth factor-β1, a canonical inducer of the epithelial-to-mesenchymal transition. These data suggest that the ability to generate Vm fluctuations may be a property of hybrid epithelial-mesenchymal cells or those originated from luminal progenitors.
Collapse
|
22
|
Sharudin NA, Murtadha Noor Din AH, Azahar II, Azlan MM, Yaacob NS, Sarmiento ME, Dominguez AA, Mokhtar NF. Invasion and Metastasis Suppression by Anti-Neonatal Nav1.5 Antibodies in Breast Cancer. Asian Pac J Cancer Prev 2022; 23:2953-2964. [PMID: 36172657 PMCID: PMC9810324 DOI: 10.31557/apjcp.2022.23.9.2953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Detectable neonatal Nav1.5 (nNav1.5) expression in tumour breast tissue positive for lymph node metastasis and triple-negative subtype serves as a valid tumour-associated antigen to target and prevent breast cancer invasion and metastasis. Therapeutic antibodies against tumour antigens have become the predominant class of new drugs in cancer therapy because of their fewer adverse effects and high specificity. OBJECTIVE This study was designed to investigate the therapeutic and anti-metastatic potential of the two newly obtained anti-nNav1.5 antibodies, polyclonal anti-nNav1.5 (pAb-nNav1.5) and monoclonal anti-nNav1.5 (mAb-nNav1.5), on breast cancer invasion and metastasis. METHODS MDA-MB-231 and 4T1 cells were used as in vitro models to study the effect of pAb-nNav1.5 (59.2 µg/ml) and mAb-nNav1.5 (10 µg/ml) (24 hours treatment) on cell invasion. 4T1-induced mammary tumours in BALB/c female mice were used as an in vivo model to study the effect of a single dose of intravenous pAb-nNav1.5 (1 mg/ml) and mAb-nNav1.5 (1 mg/ml) on the occurrence of metastasis. Real-time PCR and immunofluorescence staining were conducted to assess the effect of antibody treatment on nNav1.5 mRNA and protein expression, respectively. The animals' body weight, organs, lesions, and tumour mass were also measured and compared. RESULTS pAb-nNav1.5 and mAb-nNav1.5 treatments effectively suppressed the invasion of MDA-MB-231 and 4T1 cells in the 3D spheroid invasion assay. Both antibodies significantly reduced nNav1.5 gene and protein expression in these cell lines. Treatment with pAb-nNav1.5 and mAb-nNav1.5 successfully reduced mammary tumour tissue size and mass and prevented lesions in vital organs of the mammary tumour animal model whilst maintaining the animal's healthy weight. mRNA expression of nNav1.5 in mammary tumour tissues was only reduced by mAb-nNav1.5. CONCLUSION Overall, this work verifies the uniqueness of targeting nNav1.5 in breast cancer invasion and metastasis prevention, but more importantly, humanised versions of mAb-nNav1.5 may be valuable passive immunotherapeutic agents to target nNav1.5 in breast cancer.
Collapse
Affiliation(s)
- Nur Aishah Sharudin
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Ahmad Hafiz Murtadha Noor Din
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Irfan Irsyad Azahar
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Mawaddah Mohd Azlan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Nik Soriani Yaacob
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Maria Elena Sarmiento
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Armando Acosta Dominguez
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Noor Fatmawati Mokhtar
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia. ,For Correspondence:
| |
Collapse
|
23
|
Grolez GP, Chinigò G, Barras A, Hammadi M, Noyer L, Kondratska K, Bulk E, Oullier T, Marionneau-Lambot S, Le Mée M, Rétif S, Lerondel S, Bongiovanni A, Genova T, Roger S, Boukherroub R, Schwab A, Fiorio Pla A, Gkika D. TRPM8 as an Anti-Tumoral Target in Prostate Cancer Growth and Metastasis Dissemination. Int J Mol Sci 2022; 23:ijms23126672. [PMID: 35743115 PMCID: PMC9224463 DOI: 10.3390/ijms23126672] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/05/2022] [Accepted: 06/12/2022] [Indexed: 02/04/2023] Open
Abstract
In the fight against prostate cancer (PCa), TRPM8 is one of the most promising clinical targets. Indeed, several studies have highlighted that TRPM8 involvement is key in PCa progression because of its impact on cell proliferation, viability, and migration. However, data from the literature are somewhat contradictory regarding the precise role of TRPM8 in prostatic carcinogenesis and are mostly based on in vitro studies. The purpose of this study was to clarify the role played by TRPM8 in PCa progression. We used a prostate orthotopic xenograft mouse model to show that TRPM8 overexpression dramatically limited tumor growth and metastasis dissemination in vivo. Mechanistically, our in vitro data revealed that TRPM8 inhibited tumor growth by affecting the cell proliferation and clonogenic properties of PCa cells. Moreover, TRPM8 impacted metastatic dissemination mainly by impairing cytoskeleton dynamics and focal adhesion formation through the inhibition of the Cdc42, Rac1, ERK, and FAK pathways. Lastly, we proved the in vivo efficiency of a new tool based on lipid nanocapsules containing WS12 in limiting the TRPM8-positive cells' dissemination at metastatic sites. Our work strongly supports the protective role of TRPM8 on PCa progression, providing new insights into the potential application of TRPM8 as a therapeutic target in PCa treatment.
Collapse
Affiliation(s)
- Guillaume P. Grolez
- Laboratoire de Physiologie Cellulaire, INSERM U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, University of Lille, 59000 Villeneuve d’Ascq, France; (G.P.G.); (G.C.); (L.N.); (K.K.); (A.F.P.)
| | - Giorgia Chinigò
- Laboratoire de Physiologie Cellulaire, INSERM U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, University of Lille, 59000 Villeneuve d’Ascq, France; (G.P.G.); (G.C.); (L.N.); (K.K.); (A.F.P.)
- Department of Life Science and Systems Biology, University of Turin, 10123 Turin, Italy;
| | - Alexandre Barras
- CNRS, Centrale Lille, Univ. Lille, Univ. Polytechnique Hauts-de-France, UMR 8520—IEMN, 59000 Lille, France; (A.B.); (M.H.); (R.B.)
| | - Mehdi Hammadi
- CNRS, Centrale Lille, Univ. Lille, Univ. Polytechnique Hauts-de-France, UMR 8520—IEMN, 59000 Lille, France; (A.B.); (M.H.); (R.B.)
| | - Lucile Noyer
- Laboratoire de Physiologie Cellulaire, INSERM U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, University of Lille, 59000 Villeneuve d’Ascq, France; (G.P.G.); (G.C.); (L.N.); (K.K.); (A.F.P.)
| | - Kateryna Kondratska
- Laboratoire de Physiologie Cellulaire, INSERM U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, University of Lille, 59000 Villeneuve d’Ascq, France; (G.P.G.); (G.C.); (L.N.); (K.K.); (A.F.P.)
| | - Etmar Bulk
- Institute of Physiology II, University of Münster, 48149 Münster, Germany; (E.B.); (A.S.)
| | - Thibauld Oullier
- Cancéropôle du Grand Ouest, Plateforme In Vivo, 44000 Nantes, France; (T.O.); (S.M.-L.)
| | | | - Marilyne Le Mée
- CNRS UAR44, PHENOMIN-TAAM, 45071 Orléans, France; (M.L.M.); (S.R.); (S.L.)
| | - Stéphanie Rétif
- CNRS UAR44, PHENOMIN-TAAM, 45071 Orléans, France; (M.L.M.); (S.R.); (S.L.)
| | - Stéphanie Lerondel
- CNRS UAR44, PHENOMIN-TAAM, 45071 Orléans, France; (M.L.M.); (S.R.); (S.L.)
| | - Antonino Bongiovanni
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41—UMS 2014—PLBS, University of Lille, 59000 Lille, France;
| | - Tullio Genova
- Department of Life Science and Systems Biology, University of Turin, 10123 Turin, Italy;
- Nanostructured Interfaces and Surfaces Centre of Excellence (NIS), University of Turin, 10123 Turin, Italy
| | - Sébastien Roger
- Transplantation, Immunologie et Inflammation T2I-EA 4245, Université de Tours, 37044 Tours, France;
| | - Rabah Boukherroub
- CNRS, Centrale Lille, Univ. Lille, Univ. Polytechnique Hauts-de-France, UMR 8520—IEMN, 59000 Lille, France; (A.B.); (M.H.); (R.B.)
| | - Albrecht Schwab
- Institute of Physiology II, University of Münster, 48149 Münster, Germany; (E.B.); (A.S.)
| | - Alessandra Fiorio Pla
- Laboratoire de Physiologie Cellulaire, INSERM U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, University of Lille, 59000 Villeneuve d’Ascq, France; (G.P.G.); (G.C.); (L.N.); (K.K.); (A.F.P.)
- Department of Life Science and Systems Biology, University of Turin, 10123 Turin, Italy;
- CNRS UAR44, PHENOMIN-TAAM, 45071 Orléans, France; (M.L.M.); (S.R.); (S.L.)
| | - Dimitra Gkika
- CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020-UMR 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University Lille, 59000 Villeneuve d’Ascq, France
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Institut Universitaire de France (IUF), 75231 Paris, France
- Correspondence:
| |
Collapse
|
24
|
Anti-invasive effects of minoxidil on human breast cancer cells: combination with ranolazine. Clin Exp Metastasis 2022; 39:679-689. [PMID: 35643818 PMCID: PMC9338910 DOI: 10.1007/s10585-022-10166-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 04/11/2022] [Indexed: 12/11/2022]
Abstract
A plethora of ion channels have been shown to be involved systemically in the pathophysiology of cancer and ion channel blockers can produce anti-metastatic effects. However, although ion channels are known to frequently function in concerted action, little is known about possible combined effects of ion channel modulators on metastatic cell behaviour. Here, we investigated functional consequences of pharmacologically modulating ATP-gated potassium (KATP) channel and voltage-gated sodium channel (VGSC) activities individually and in combination. Two triple-negative human breast cancer cell lines were used: MDA-MB-231 and MDA-MB-468, the latter mainly for comparison. Most experiments were carried out on hypoxic cells. Electrophysiological effects were studied by whole-cell patch clamp recording. Minoxidil (a KATP channel opener) and ranolazine (a blocker of the VGSC persistent current) had no effect on cell viability and proliferation, alone or in combination. In contrast, invasion was significantly reduced in a dose-dependent manner by clinical concentrations of minoxidil and ranolazine. Combining the two drugs produced significant additive effects at concentrations as low as 0.625 μM ranolazine and 2.5 μM minoxidil. Electrophysiologically, acute application of minoxidil shifted VGSC steady-state inactivation to more hyperpolarised potentials and slowed recovery from inactivation, consistent with inhibition of VGSC activation. We concluded (i) that clinically relevant doses of minoxidil and ranolazine individually could inhibit cellular invasiveness dose dependently and (ii) that their combination was additionally effective. Accordingly, ranolazine, minoxidil and their combination may be repurposed as novel anti-metastatic agents.
Collapse
|
25
|
Djamgoz MBA. Ion Transporting Proteins and Cancer: Progress and Perspectives. Rev Physiol Biochem Pharmacol 2022; 183:251-277. [PMID: 35018530 DOI: 10.1007/112_2021_66] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ion transporting proteins (ITPs) comprise a wide range of ion channels, exchangers, pumps and ionotropic receptors many of which are expressed in tumours and contribute dynamically to the different components and stages of the complex cancer process, from initiation to metastasis. In this promising major field of biomedical research, several candidate ITPs have emerged as clinically viable. Here, we consider a series of general issues concerning the oncological potential of ITPs focusing on voltage-gated sodium channels as a 'case study'. First, we outline some key properties of 'cancer' as a whole. These include epigenetics, stemness, metastasis, heterogeneity, neuronal characteristics and bioelectricity. Cancer specificity of ITP expression is evaluated in relation to tissue restriction, splice variance, functional specificity and macro-molecular complexing. As regards clinical potential, diagnostics is covered with emphasis on enabling early detection. For therapeutics, we deal with molecular approaches, drug repurposing and combinations. Importantly, we emphasise the need for carefully designed clinical trials. We highlight also the area of 'social responsibility' and the need to involve the public (cancer patients and healthy individuals) in the work of cancer research professionals as well as clinicians. In advising patients how best to manage cancer, and live with it, we offer the following four principles: Awareness and prevention, early detection, specialist, integrated care, and psychological support. Finally, we highlight four key prerequisites for commercialisation of ITP-based technologies against cancer. We conclude that ITPs offer significant potential as regards both understanding the intricacies of the complex process of cancer and for developing much needed novel therapies.
Collapse
Affiliation(s)
- Mustafa B A Djamgoz
- Department of Life Sciences, Imperial College London, London, UK. .,Biotechnology Research Centre, Cyprus International University, Nicosia, Mersin, Turkey.
| |
Collapse
|
26
|
Discovering the Triad between Nav1.5, Breast Cancer, and the Immune System: A Fundamental Review and Future Perspectives. Biomolecules 2022; 12:biom12020310. [PMID: 35204811 PMCID: PMC8869595 DOI: 10.3390/biom12020310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 02/05/2023] Open
Abstract
Nav1.5 is one of the nine voltage-gated sodium channel-alpha subunit (VGSC-α) family members. The Nav1.5 channel typically carries an inward sodium ion current that depolarises the membrane potential during the upstroke of the cardiac action potential. The neonatal isoform of Nav1.5, nNav1.5, is produced via VGSC-α alternative splicing. nNav1.5 is known to potentiate breast cancer metastasis. Despite their well-known biological functions, the immunological perspectives of these channels are poorly explored. The current review has attempted to summarise the triad between Nav1.5 (nNav1.5), breast cancer, and the immune system. To date, there is no such review available that encompasses these three components as most reviews focus on the molecular and pharmacological prospects of Nav1.5. This review is divided into three major subsections: (1) the review highlights the roles of Nav1.5 and nNav1.5 in potentiating the progression of breast cancer, (2) focuses on the general connection between breast cancer and the immune system, and finally (3) the review emphasises the involvements of Nav1.5 and nNav1.5 in the functionality of the immune system and the immunogenicity. Compared to the other subsections, section three is pretty unexploited; it would be interesting to study this subsection as it completes the triad.
Collapse
|
27
|
Fnu G, Weber GF. Alterations of Ion Homeostasis in Cancer Metastasis: Implications for Treatment. Front Oncol 2022; 11:765329. [PMID: 34988012 PMCID: PMC8721045 DOI: 10.3389/fonc.2021.765329] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/23/2021] [Indexed: 12/20/2022] Open
Abstract
We have previously reported that metastases from all malignancies are characterized by a core program of gene expression that suppresses extracellular matrix interactions, induces vascularization/tissue remodeling, activates the oxidative metabolism, and alters ion homeostasis. Among these features, the least elucidated component is ion homeostasis. Here we review the literature with the goal to infer a better mechanistic understanding of the progression-associated ionic alterations and identify the most promising drugs for treatment. Cancer metastasis is accompanied by skewing in calcium, zinc, copper, potassium, sodium and chloride homeostasis. Membrane potential changes and water uptake through Aquaporins may also play roles. Drug candidates to reverse these alterations are at various stages of testing, with some having entered clinical trials. Challenges to their utilization comprise differences among tumor types and the involvement of multiple ions in each case. Further, adverse effects may become a concern, as channel blockers, chelators, or supplemented ions will affect healthy and transformed cells alike.
Collapse
Affiliation(s)
- Gulimirerouzi Fnu
- College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH, United States
| | - Georg F Weber
- College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH, United States
| |
Collapse
|
28
|
Ranolazine: An Old Drug with Emerging Potential; Lessons from Pre-Clinical and Clinical Investigations for Possible Repositioning. Pharmaceuticals (Basel) 2021; 15:ph15010031. [PMID: 35056088 PMCID: PMC8777683 DOI: 10.3390/ph15010031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023] Open
Abstract
Ischemic heart disease is a significant public health problem with high mortality and morbidity. Extensive scientific investigations from basic sciences to clinics revealed multilevel alterations from metabolic imbalance, altered electrophysiology, and defective Ca2+/Na+ homeostasis leading to lethal arrhythmias. Despite the recent identification of numerous molecular targets with potential therapeutic interest, a pragmatic observation on the current pharmacological R&D output confirms the lack of new therapeutic offers to patients. By contrast, from recent trials, molecules initially developed for other fields of application have shown cardiovascular benefits, as illustrated with some anti-diabetic agents, regardless of the presence or absence of diabetes, emphasizing the clear advantage of “old” drug repositioning. Ranolazine is approved as an antianginal agent and has a favorable overall safety profile. This drug, developed initially as a metabolic modulator, was also identified as an inhibitor of the cardiac late Na+ current, although it also blocks other ionic currents, including the hERG/Ikr K+ current. The latter actions have been involved in this drug’s antiarrhythmic effects, both on supraventricular and ventricular arrhythmias (VA). However, despite initial enthusiasm and promising development in the cardiovascular field, ranolazine is only authorized as a second-line treatment in patients with chronic angina pectoris, notwithstanding its antiarrhythmic properties. A plausible reason for this is the apparent difficulty in linking the clinical benefits to the multiple molecular actions of this drug. Here, we review ranolazine’s experimental and clinical knowledge on cardiac metabolism and arrhythmias. We also highlight advances in understanding novel effects on neurons, the vascular system, skeletal muscles, blood sugar control, and cancer, which may open the way to reposition this “old” drug alone or in combination with other medications.
Collapse
|
29
|
Fuchs E, Messerer DAC, Karpel-Massler G, Fauler M, Zimmer T, Jungwirth B, Föhr KJ. Block of Voltage-Gated Sodium Channels as a Potential Novel Anti-cancer Mechanism of TIC10. Front Pharmacol 2021; 12:737637. [PMID: 34744721 PMCID: PMC8567104 DOI: 10.3389/fphar.2021.737637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/15/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Tumor therapeutics are aimed to affect tumor cells selectively while sparing healthy ones. For this purpose, a huge variety of different drugs are in use. Recently, also blockers of voltage-gated sodium channels (VGSCs) have been recognized to possess potentially beneficial effects in tumor therapy. As these channels are a frequent target of numerous drugs, we hypothesized that currently used tumor therapeutics might have the potential to block VGSCs in addition to their classical anti-cancer activity. In the present work, we have analyzed the imipridone TIC10, which belongs to a novel class of anti-cancer compounds, for its potency to interact with VGSCs. Methods: Electrophysiological experiments were performed by means of the patch-clamp technique using heterologously expressed human heart muscle sodium channels (hNav1.5), which are among the most common subtypes of VGSCs occurring in tumor cells. Results: TIC10 angular inhibited the hNav1.5 channel in a state- but not use-dependent manner. The affinity for the resting state was weak with an extrapolated Kr of about 600 μM. TIC10 most probably did not interact with fast inactivation. In protocols for slow inactivation, a half-maximal inhibition occurred around 2 µM. This observation was confirmed by kinetic studies indicating that the interaction occurred with a slow time constant. Furthermore, TIC10 also interacted with the open channel with an affinity of approximately 4 µM. The binding site for local anesthetics or a closely related site is suggested as a possible target as the affinity for the well-characterized F1760K mutant was reduced more than 20-fold compared to wild type. Among the analyzed derivatives, ONC212 was similarly effective as TIC10 angular, while TIC10 linear more selectively interacted with the different states. Conclusion: The inhibition of VGSCs at low micromolar concentrations might add to the anti-tumor properties of TIC10.
Collapse
Affiliation(s)
- Eva Fuchs
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Ulm, Ulm, Germany
| | | | | | - Michael Fauler
- Institute of General Physiology, University of Ulm, Ulm, Germany
| | - Thomas Zimmer
- Institute of Physiology, University Hospital of Jena, Jena, Germany
| | - Bettina Jungwirth
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Ulm, Ulm, Germany
| | - Karl Josef Föhr
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Ulm, Ulm, Germany
| |
Collapse
|
30
|
D'Imperio S, Monasky MM, Micaglio E, Ciconte G, Anastasia L, Pappone C. Brugada Syndrome: Warning of a Systemic Condition? Front Cardiovasc Med 2021; 8:771349. [PMID: 34722688 PMCID: PMC8553994 DOI: 10.3389/fcvm.2021.771349] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 09/23/2021] [Indexed: 12/19/2022] Open
Abstract
Brugada syndrome (BrS) is a hereditary disorder, characterized by a specific electrocardiogram pattern and highly related to an increased risk of sudden cardiac death. BrS has been associated with other cardiac and non-cardiac pathologies, probably because of protein expression shared by the heart and other tissue types. In fact, the most commonly found mutated gene in BrS, SCN5A, is expressed throughout nearly the entire body. Consistent with this, large meals and alcohol consumption can trigger arrhythmic events in patients with BrS, suggesting a role for organs involved in the digestive and metabolic pathways. Ajmaline, a drug used to diagnose BrS, can have side effects on non-cardiac tissues, such as the liver, further supporting the idea of a role for organs involved in the digestive and metabolic pathways in BrS. The BrS electrocardiogram (ECG) sign has been associated with neural, digestive, and metabolic pathways, and potential biomarkers for BrS have been found in the serum or plasma. Here, we review the known associations between BrS and various organ systems, and demonstrate support for the hypothesis that BrS is not only a cardiac disorder, but rather a systemic one that affects virtually the whole body. Any time that the BrS ECG sign is found, it should be considered not a single disease, but rather the final step in any number of pathways that ultimately threaten the patient's life. A multi-omics approach would be appropriate to study this syndrome, including genetics, epigenomics, transcriptomics, proteomics, metabolomics, lipidomics, and glycomics, resulting eventually in a biomarker for BrS and the ability to diagnose this syndrome using a minimally invasive blood test, avoiding the risk associated with ajmaline testing.
Collapse
Affiliation(s)
- Sara D'Imperio
- Arrhythmology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Donato, Milan, Italy
| | - Michelle M Monasky
- Arrhythmology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Donato, Milan, Italy
| | - Emanuele Micaglio
- Arrhythmology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Donato, Milan, Italy
| | - Giuseppe Ciconte
- Arrhythmology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Donato, Milan, Italy
| | - Luigi Anastasia
- Faculty of Medicine and Surgery, University of Vita-Salute San Raffaele, Milan, Italy
| | - Carlo Pappone
- Arrhythmology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Donato, Milan, Italy.,Faculty of Medicine and Surgery, University of Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
31
|
Varricchio A, Ramesh SA, Yool AJ. Novel Ion Channel Targets and Drug Delivery Tools for Controlling Glioblastoma Cell Invasiveness. Int J Mol Sci 2021; 22:ijms222111909. [PMID: 34769339 PMCID: PMC8584308 DOI: 10.3390/ijms222111909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 12/13/2022] Open
Abstract
Comprising more than half of all brain tumors, glioblastoma multiforme (GBM) is a leading cause of brain cancer-related deaths worldwide. A major clinical challenge is presented by the capacity of glioma cells to rapidly infiltrate healthy brain parenchyma, allowing the cancer to escape control by localized surgical resections and radiotherapies, and promoting recurrence in other brain regions. We propose that therapies which target cellular motility pathways could be used to slow tumor dispersal, providing a longer time window for administration of frontline treatments needed to directly eradicate the primary tumors. An array of signal transduction pathways are known to be involved in controlling cellular motility. Aquaporins (AQPs) and voltage-gated ion channels are prime candidates as pharmacological targets to restrain cell migration in glioblastoma. Published work has demonstrated AQPs 1, 4 and 9, as well as voltage-gated potassium, sodium and calcium channels, chloride channels, and acid-sensing ion channels are expressed in GBM and can influence processes of cell volume change, extracellular matrix degradation, cytoskeletal reorganization, lamellipodial and filopodial extension, and turnover of cell-cell adhesions and focal assembly sites. The current gap in knowledge is the identification of optimal combinations of targets, inhibitory agents, and drug delivery systems that will allow effective intervention with minimal side effects in the complex environment of the brain, without disrupting finely tuned activities of neuro-glial networks. Based on published literature, we propose that co-treatments using AQP inhibitors in addition to other therapies could increase effectiveness, overcoming some limitations inherent in current strategies that are focused on single mechanisms. An emerging interest in nanobodies as drug delivery systems could be instrumental for achieving the selective delivery of combinations of agents aimed at multiple key targets, which could enhance success in vivo.
Collapse
Affiliation(s)
- Alanah Varricchio
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Sunita A. Ramesh
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia;
| | - Andrea J. Yool
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
- Correspondence:
| |
Collapse
|
32
|
Fraser SP, Tesi A, Bonito B, Ka Ming Hui M, Arcangeli A, Djamgoz MB. Potassium Channel Blockage and Invasiveness of Strongly Metastatic Prostate and Breast Cancer Cells. Bioelectricity 2021. [DOI: 10.1089/bioe.2020.0041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Scott P. Fraser
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Imperial College London, London, United Kingdom
| | - Alessandra Tesi
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Imperial College London, London, United Kingdom
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Benedetta Bonito
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Imperial College London, London, United Kingdom
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Marcus Ka Ming Hui
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Imperial College London, London, United Kingdom
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mustafa B.A. Djamgoz
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Imperial College London, London, United Kingdom
- Biotechnology Research Centre, Cyprus International University, Haspolat, Nicosia, North Cyprus, Turkey
| |
Collapse
|
33
|
Fraser SP, Onkal R, Theys M, Bosmans F, Djamgoz MBA. Neonatal Na V 1.5: Pharmacological distinctiveness of a cancer-related voltage-gated sodium channel splice variant. Br J Pharmacol 2021; 179:473-486. [PMID: 34411279 DOI: 10.1111/bph.15668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/26/2021] [Accepted: 07/31/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Voltage-gated sodium (NaV ) channels are expressed de novo in carcinomas where their activity promotes invasiveness. Breast and colon cancer cells express the neonatal splice variant of NaV 1.5 (nNaV 1.5) which has several amino acid substitutions in the domain I voltage-sensor compared to its adult counterpart (aNaV 1.5). This study aimed to determine whether nNaV 1.5 could be distinguished pharmacologically from aNaV 1.5. EXPERIMENTAL APPROACH Cells expressing either nNaV 1.5 or aNaV 1.5 were exposed to small-molecule inhibitors, an antibody or natural toxins, and changes in electrophysiological parameters were measured. Stable expression in EBNA cells and transient expression in Xenopus laevis oocytes were used. Currents were recorded by whole-cell patch clamp and two-electrode voltage-clamp, respectively. KEY RESULTS Several clinically-used blockers of Nav channels (lidocaine, procaine, phenytoin, mexiletine, ranolazine and riluzole) could not distinguish between nNaV 1.5 or aNaV 1.5. On the other hand, two tarantula toxins (HaTx and ProTx-II) and a polyclonal antibody (NESOpAb) preferentially inhibited currents elicited by either nNaV 1.5 or aNaV 1.5 by binding to the spliced region of the channel. Furthermore, the amino acid residue at position 211 (aspartate in aNaV 1.5/lysine in nNaV 1.5), i.e. the charge reversal in the spliced region of the channel, played a key role in the selectivity especially in the antibody binding. CONCLUSION AND IMPLICATIONS We conclude that the cancer-related nNaV 1.5 channel can be distinguished pharmacologically from its nearest neighbour, aNaV 1.5. Thus, it may be possible to design small molecules as anti-metastatic drugs for non-toxic therapy of nNaV 1.5-expressing carcinomas.
Collapse
Affiliation(s)
- Scott P Fraser
- Imperial College London, Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, London, UK
| | - Rustem Onkal
- Imperial College London, Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, London, UK.,Biotechnology Research Centre, Cyprus International University, Haspolat, Nicosia, TRNC, Mersin 10, Turkey
| | - Margaux Theys
- Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium
| | - Frank Bosmans
- Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium
| | - Mustafa B A Djamgoz
- Imperial College London, Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, London, UK.,Biotechnology Research Centre, Cyprus International University, Haspolat, Nicosia, TRNC, Mersin 10, Turkey
| |
Collapse
|
34
|
Gould HJ, Miller PR, Edenfield S, Sherman KJ, Brady CK, Paul D. Emergency Use of Targeted Osmotic Lysis for the Treatment of a Patient with Aggressive Late-Stage Squamous Cell Carcinoma of the Cervix. ACTA ACUST UNITED AC 2021; 28:2115-2122. [PMID: 34201380 PMCID: PMC8293172 DOI: 10.3390/curroncol28030196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/26/2021] [Accepted: 06/06/2021] [Indexed: 12/17/2022]
Abstract
Upregulation of voltage-gated sodium channels (VGSCs) and Na+/K+-ATPase (sodium pumps) is common across most malignant carcinomas. Targeted osmotic lysis (TOL) is a developing technology in which the concomitant stimulation of VGSCs and pharmacological blockade of sodium pumps causes rapid selective osmotic lysis of carcinoma cells. This treatment of cervical carcinoma is evidence that TOL is a safe, well-tolerated and effective treatment for aggressive advanced carcinomas that has the potential to extend life without compromising its quality. TOL is likely to have broad application for the treatment of advanced-stage carcinomas.
Collapse
Affiliation(s)
- Harry J. Gould
- Department of Neurology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- Oleander Medical Technologies, Baton Rouge, LA 70803, USA; (P.R.M.); (D.P.)
- Correspondence: ; Tel.: +1-504-568-5080
| | - Paige R. Miller
- Oleander Medical Technologies, Baton Rouge, LA 70803, USA; (P.R.M.); (D.P.)
| | - Samantha Edenfield
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (S.E.); (K.J.S.)
| | - Kelly Jean Sherman
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (S.E.); (K.J.S.)
| | - Chad K. Brady
- Department of Radiology, West Virginia University Medical School, Morgantown, WV 26506, USA;
| | - Dennis Paul
- Oleander Medical Technologies, Baton Rouge, LA 70803, USA; (P.R.M.); (D.P.)
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (S.E.); (K.J.S.)
| |
Collapse
|
35
|
Lopez-Charcas O, Pukkanasut P, Velu SE, Brackenbury WJ, Hales TG, Besson P, Gomora JC, Roger S. Pharmacological and nutritional targeting of voltage-gated sodium channels in the treatment of cancers. iScience 2021; 24:102270. [PMID: 33817575 PMCID: PMC8010468 DOI: 10.1016/j.isci.2021.102270] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Voltage-gated sodium (NaV) channels, initially characterized in excitable cells, have been shown to be aberrantly expressed in non-excitable cancer tissues and cells from epithelial origins such as in breast, lung, prostate, colon, and cervix, whereas they are not expressed in cognate non-cancer tissues. Their activity was demonstrated to promote aggressive and invasive potencies of cancer cells, both in vitro and in vivo, whereas their deregulated expression in cancer tissues has been associated with metastatic progression and cancer-related death. This review proposes NaV channels as pharmacological targets for anticancer treatments providing opportunities for repurposing existing NaV-inhibitors or developing new pharmacological and nutritional interventions.
Collapse
Affiliation(s)
- Osbaldo Lopez-Charcas
- Université de Tours, EA4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Piyasuda Pukkanasut
- Department of Chemistry, The University of Alabama at Birmingham, CHEM 280. 901, 14th Street S, Birmingham, AL 35294, USA
| | - Sadanandan E. Velu
- Department of Chemistry, The University of Alabama at Birmingham, CHEM 280. 901, 14th Street S, Birmingham, AL 35294, USA
| | - William J. Brackenbury
- Department of Biology, York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK
| | - Tim G. Hales
- Institute of Academic Anaesthesia, Division of Systems Medicine, School of Medicine, the University of Dundee, DD1 9SY, Dundee, UK
| | - Pierre Besson
- Université de Tours, EA4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Juan Carlos Gomora
- Instituto de Fisiología Celular, Circuito Exterior s/n Ciudad Universitaria, Universidad Nacional Autónoma de México, Mexico City, 04510 México
| | - Sébastien Roger
- Université de Tours, EA4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
- Institut Universitaire de France, 75005 Paris, France
| |
Collapse
|
36
|
Sodium ion channels as potential therapeutic targets for cancer metastasis. Drug Discov Today 2021; 26:1136-1147. [PMID: 33545383 DOI: 10.1016/j.drudis.2021.01.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/31/2020] [Accepted: 01/27/2021] [Indexed: 12/28/2022]
Abstract
Is it possible to develop drugs for the treatment of a specific type of metastatic cancer by targeting sodium ion channels?
Collapse
|
37
|
Abstract
Although normal cells depend on exogenous lipids to function and survive, excessive amount of body fat has been associated with increased risk for certain human cancers. Cancer cells can redirect metabolic pathways to meet energy demands through the regulation of fatty acid metabolism. The importance of de novo fatty acid synthesis and fatty acid oxidation in cancer cells suggests fatty acid metabolism may be targeted for anticancer treatment through the use of pharmacological blockade to limit cell proliferation, growth, and transformation. However, our current knowledge about fatty acid metabolism in cancer cells remains limited, and the investigations of such processes and related pathways are certainly warranted to reveal the clinical relevance of fatty acid metabolism in cancer diagnosis and therapy.
Collapse
|
38
|
Targeting Fat Oxidation in Mouse Prostate Cancer Decreases Tumor Growth and Stimulates Anti-Cancer Immunity. Int J Mol Sci 2020; 21:ijms21249660. [PMID: 33352903 PMCID: PMC7766808 DOI: 10.3390/ijms21249660] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 12/24/2022] Open
Abstract
Lipid catabolism represents an Achilles heel in prostate cancer (PCa) that can be exploited for therapy. CPT1A regulates the entry of fatty acids into the mitochondria for beta-oxidation and its inhibition has been shown to decrease PCa growth. In this study, we examined the pharmacological blockade of lipid oxidation with ranolazine in TRAMPC1 PCa models. Oral administration of ranolazine (100 mg/Kg for 21 days) resulted in decreased tumor CD8+ T-cells Tim3 content, increased macrophages, and decreased blood myeloid immunosuppressive monocytes. Using multispectral staining, drug treatments increased infiltration of CD8+ T-cells and dendritic cells compared to vehicle. Functional studies with spleen cells of drug-treated tumors co-cultured with TRAMPC1 cells showed increased ex vivo T-cell cytotoxic activity, suggesting an anti-tumoral response. Lastly, a decrease in CD4+ and CD8+ T-cells expressing PD1 was observed when exhausted spleen cells were incubated with TRAMPC1 Cpt1a-KD compared to the control cells. These data indicated that genetically blocking the ability of the tumor cells to oxidize lipid can change the activation status of the neighboring T-cells. This study provides new knowledge of the role of lipid catabolism in the intercommunication of tumor and immune cells, which can be extrapolated to other cancers with high CPT1A expression.
Collapse
|
39
|
Voltage-gated sodium channel Na v1.5 promotes tumor progression and enhances chemosensitivity to 5-fluorouracil in colorectal cancer. Cancer Lett 2020; 500:119-131. [PMID: 33338532 DOI: 10.1016/j.canlet.2020.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/30/2020] [Accepted: 12/09/2020] [Indexed: 12/24/2022]
Abstract
Nav1.5, encoded by SCN5A, has been associated with metastasis in colorectal cancer (CRC). Here, we investigated the mechanism by which Nav1.5 regulates tumor progression and whether Nav1.5 influences chemosensitivity to 5-fluorouracil (5-FU) in CRCs. CRC cases were evaluated for Nav1.5 expression. Elevated Nav1.5 expression was associated with poor prognosis in CRCs, whereas stage II/III patients with upregulated SCN5A expression could have better survival after receiving 5-FU-based adjuvant chemotherapy. In CRC cells, SCN5A knockdown reduced the proliferation, migration and invasion. According to RNA sequencing, SCN5A knockdown inhibited both the cell cycle and epithelial-mesenchymal transition. In addition, Nav1.5 stabilized the KRas-calmodulin complex to modulate Ras signaling, promoting Ca2+ influx through the Na+-Ca2+ exchanger and Ca2+ release-activated calcium channel. Meanwhile, SCN5A knockdown increased the 50% inhibitory concentration to 5-FU by upregulating 5-FU-stimulated apoptosis in CRCs. In conclusion, Nav1.5 could progress to proliferation and metastasis through Ca2+/calmodulin-dependent Ras signaling in CRC, and it could also enhance 5-FU-stimulated apoptosis. Clinically, patients with stage II/III CRCs with elevated SCN5A expression demonstrated poor prognosis, yet those patients could benefit more from 5-FU-based chemotherapy than patients with lower SCN5A expression.
Collapse
|
40
|
Wu M, Lou W, Lou M, Fu P, Yu XF. Integrated Analysis of Distant Metastasis-Associated Genes and Potential Drugs in Colon Adenocarcinoma. Front Oncol 2020; 10:576615. [PMID: 33194689 PMCID: PMC7645237 DOI: 10.3389/fonc.2020.576615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/28/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Most colon adenocarcinoma (COAD) patients die of distant metastasis, though there are some therapies for metastatic COAD. However, the genes exclusively expressed in metastatic COAD remain unclear. This study aims to identify prognosis-related genes associated with distant metastasis and develop therapeutic strategies for COAD patients. Methods: Transcriptomic data from The Cancer Genome Atlas (TCGA; n = 514) cohort were analyzed as a discovery dataset. Next, the data from the GEPIA database and PROGgeneV2 database were used to validate our analysis. Key genes were identified based on the differential miRNA and mRNA expression with respect to M stage. The potential drugs targeting candidate differentially expressed genes (DEGs) were also investigated. Results: A total of 127 significantly DEGs in patients with distant metastasis compared with patients without distant metastasis were identified. Then, four prognosis-related genes (LEP, DLX2, CLSTN2, and REG3A) were selected based on clustering analysis and survival analysis. Finally, three compounds targeting the candidate DEGs, including ajmaline, TTNPB, and dydrogesterone, were predicted to be potential drugs for COAD. Conclusions: This study revealed that distant metastasis in COAD is associated with a specific group of genes, and three existing drugs may suppress the distant metastasis of COAD.
Collapse
Affiliation(s)
- Miaowei Wu
- Cancer Institute, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weiyang Lou
- Department of Breast Surgery, First Affiliated Hospital of Zhejiang University, College of Medicine, Zhejiang University, Hangzhou, China
| | - Meng Lou
- Cancer Institute, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Peifen Fu
- Department of Breast Surgery, First Affiliated Hospital of Zhejiang University, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao-Fang Yu
- Cancer Institute, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
41
|
Leslie TK, Brückner L, Chawla S, Brackenbury WJ. Inhibitory Effect of Eslicarbazepine Acetate and S-Licarbazepine on Na v1.5 Channels. Front Pharmacol 2020; 11:555047. [PMID: 33123007 PMCID: PMC7567166 DOI: 10.3389/fphar.2020.555047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022] Open
Abstract
Eslicarbazepine acetate (ESL) is a dibenzazepine anticonvulsant approved as adjunctive treatment for partial-onset epileptic seizures. Following first pass hydrolysis of ESL, S-licarbazepine (S-Lic) represents around 95% of circulating active metabolites. S-Lic is the main enantiomer responsible for anticonvulsant activity and this is proposed to be through the blockade of voltage-gated Na+ channels (VGSCs). ESL and S-Lic both have a voltage-dependent inhibitory effect on the Na+ current in N1E-115 neuroblastoma cells expressing neuronal VGSC subtypes including Nav1.1, Nav1.2, Nav1.3, Nav1.6, and Nav1.7. ESL has not been associated with cardiotoxicity in healthy volunteers, although a prolongation of the electrocardiographic PR interval has been observed, suggesting that ESL may also inhibit cardiac Nav1.5 isoform. However, this has not previously been studied. Here, we investigated the electrophysiological effects of ESL and S-Lic on Nav1.5 using whole-cell patch clamp recording. We interrogated two model systems: (1) MDA-MB-231 metastatic breast carcinoma cells, which endogenously express the "neonatal" Nav1.5 splice variant, and (2) HEK-293 cells stably over-expressing the "adult" Nav1.5 splice variant. We show that both ESL and S-Lic inhibit transient and persistent Na+ current, hyperpolarise the voltage-dependence of fast inactivation, and slow the recovery from channel inactivation. These findings highlight, for the first time, the potent inhibitory effects of ESL and S-Lic on the Nav1.5 isoform, suggesting a possible explanation for the prolonged PR interval observed in patients on ESL treatment. Given that numerous cancer cells have also been shown to express Nav1.5, and that VGSCs potentiate invasion and metastasis, this study also paves the way for future investigations into ESL and S-Lic as potential invasion inhibitors.
Collapse
Affiliation(s)
| | - Lotte Brückner
- Department of Biology, University of York, York, United Kingdom
| | - Sangeeta Chawla
- Department of Biology, University of York, York, United Kingdom.,York Biomedical Research Institute, University of York, York, United Kingdom
| | - William J Brackenbury
- Department of Biology, University of York, York, United Kingdom.,York Biomedical Research Institute, University of York, York, United Kingdom
| |
Collapse
|
42
|
Capatina AL, Lagos D, Brackenbury WJ. Targeting Ion Channels for Cancer Treatment: Current Progress and Future Challenges. Rev Physiol Biochem Pharmacol 2020; 183:1-43. [PMID: 32865696 DOI: 10.1007/112_2020_46] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ion channels are key regulators of cancer cell pathophysiology. They contribute to a variety of processes such as maintenance of cellular osmolarity and membrane potential, motility (via interactions with the cytoskeleton), invasion, signal transduction, transcriptional activity and cell cycle progression, leading to tumour progression and metastasis. Ion channels thus represent promising targets for cancer therapy. Ion channels are attractive targets because many of them are expressed at the plasma membrane and a broad range of existing inhibitors are already in clinical use for other indications. However, many of the ion channels identified in cancer cells are also active in healthy normal cells, so there is a risk that certain blockers may have off-target effects on normal physiological function. This review describes recent research advances into ion channel inhibitors as anticancer therapeutics. A growing body of evidence suggests that a range of existing and novel Na+, K+, Ca2+ and Cl- channel inhibitors may be effective for suppressing cancer cell proliferation, migration and invasion, as well as enhancing apoptosis, leading to suppression of tumour growth and metastasis, either alone or in combination with standard-of-care therapies. The majority of evidence to date is based on preclinical in vitro and in vivo studies, although there are several examples of ion channel-targeting strategies now reaching early phase clinical trials. Given the strong links between ion channel function and regulation of tumour growth, metastasis and chemotherapy resistance, it is likely that further work in this area will facilitate the development of new therapeutic approaches which will reach the clinic in the future.
Collapse
Affiliation(s)
| | - Dimitris Lagos
- Hull York Medical School, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - William J Brackenbury
- Department of Biology, University of York, York, UK.
- York Biomedical Research Institute, University of York, York, UK.
| |
Collapse
|
43
|
Attané C, Milhas D, Hoy AJ, Muller C. Metabolic Remodeling Induced by Adipocytes: A New Achilles' Heel in Invasive Breast Cancer? Curr Med Chem 2020; 27:3984-4001. [PMID: 29708068 DOI: 10.2174/0929867325666180426165001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 03/21/2018] [Accepted: 03/28/2018] [Indexed: 02/06/2023]
Abstract
Metabolic reprogramming represents an important hallmark of cancer cells. Besides de novo fatty acid synthesis, it is now clear that cancer cells can acquire Fatty Acids (FA) from tumor-surrounding adipocytes to increase their invasive capacities. Indeed, adipocytes release FA in response to tumor secreted factors that are transferred to tumor cells to be either stored as triglycerides and other complex lipids or oxidized in mitochondria. Like all cells, FA can be released over time from triglyceride stores through lipolysis and then oxidized in mitochondria in cancer cells. This metabolic interaction results in specific metabolic remodeling in cancer cells, and underpins adipocyte stimulated tumor progression. Lipolysis and fatty acid oxidation therefore represent novel targets of interest in the treatment of cancer. In this review, we summarize the recent advances in our understanding of the metabolic reprogramming induced by adipocytes, with a focus on breast cancer. Then, we recapitulate recent reports studying the effect of lipolysis and fatty acid oxidation inhibitors on tumor cells and discuss the interest to target these metabolic pathways as new therapeutic approaches for cancer.
Collapse
Affiliation(s)
- Camille Attané
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, 205 Route de Narbonne, 31077 Toulouse Cedex, France
| | - Delphine Milhas
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, 205 Route de Narbonne, 31077 Toulouse Cedex, France
| | - Andrew J Hoy
- Discipline of Physiology, School of Medical Sciences and Bosch Institute, Charles Perkins Centre, University of Sydney, NSW 2006, Sydney, Australia
| | - Catherine Muller
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, 205 Route de Narbonne, 31077 Toulouse Cedex, France
| |
Collapse
|
44
|
Brisson L, Chadet S, Lopez-Charcas O, Jelassi B, Ternant D, Chamouton J, Lerondel S, Le Pape A, Couillin I, Gombault A, Trovero F, Chevalier S, Besson P, Jiang LH, Roger S. P2X7 Receptor Promotes Mouse Mammary Cancer Cell Invasiveness and Tumour Progression, and Is a Target for Anticancer Treatment. Cancers (Basel) 2020; 12:cancers12092342. [PMID: 32825056 PMCID: PMC7565976 DOI: 10.3390/cancers12092342] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
The P2X7 receptor is an ATP-gated cation channel with a still ambiguous role in cancer progression, proposed to be either pro- or anti-cancerous, depending on the cancer or cell type in the tumour. Its role in mammary cancer progression is not yet defined. Here, we show that P2X7 receptor is functional in highly aggressive mammary cancer cells, and induces a change in cell morphology with fast F-actin reorganization and formation of filopodia, and promotes cancer cell invasiveness through both 2- and 3-dimensional extracellular matrices in vitro. Furthermore, P2X7 receptor sustains Cdc42 activity and the acquisition of a mesenchymal phenotype. In an immunocompetent mouse mammary cancer model, we reveal that the expression of P2X7 receptor in cancer cells, but not in the host mice, promotes tumour growth and metastasis development, which were reduced by treatment with specific P2X7 antagonists. Our results demonstrate that P2X7 receptor drives mammary tumour progression and represents a pertinent target for mammary cancer treatment.
Collapse
Affiliation(s)
- Lucie Brisson
- Inserm UMR1069-Nutrition, Growth and Cancer, University of Tours, 37032 Tours, France; (L.B.); (J.C.); (S.C.)
| | - Stéphanie Chadet
- EA4245-Transplantation, Immunology and Inflammation, University of Tours, 37032 Tours, France; (S.C.); (O.L.-C.); (B.J.); (D.T.); (P.B.); (L.-H.J.)
| | - Osbaldo Lopez-Charcas
- EA4245-Transplantation, Immunology and Inflammation, University of Tours, 37032 Tours, France; (S.C.); (O.L.-C.); (B.J.); (D.T.); (P.B.); (L.-H.J.)
| | - Bilel Jelassi
- EA4245-Transplantation, Immunology and Inflammation, University of Tours, 37032 Tours, France; (S.C.); (O.L.-C.); (B.J.); (D.T.); (P.B.); (L.-H.J.)
| | - David Ternant
- EA4245-Transplantation, Immunology and Inflammation, University of Tours, 37032 Tours, France; (S.C.); (O.L.-C.); (B.J.); (D.T.); (P.B.); (L.-H.J.)
| | - Julie Chamouton
- Inserm UMR1069-Nutrition, Growth and Cancer, University of Tours, 37032 Tours, France; (L.B.); (J.C.); (S.C.)
| | - Stéphanie Lerondel
- CNRS UPS44 TAAM, PHENOMIN, Centre d’Imagerie du Petit Animal, 45071 Orléans, France; (S.L.); (A.L.P.)
| | - Alain Le Pape
- CNRS UPS44 TAAM, PHENOMIN, Centre d’Imagerie du Petit Animal, 45071 Orléans, France; (S.L.); (A.L.P.)
| | - Isabelle Couillin
- Laboratory of Molecular and Experimental Immunology and Neurogenetics, UMR 7355, CNRS, University of Orléans, 45071 Orléans, France; (I.C.); (A.G.)
| | - Aurélie Gombault
- Laboratory of Molecular and Experimental Immunology and Neurogenetics, UMR 7355, CNRS, University of Orléans, 45071 Orléans, France; (I.C.); (A.G.)
| | | | - Stéphan Chevalier
- Inserm UMR1069-Nutrition, Growth and Cancer, University of Tours, 37032 Tours, France; (L.B.); (J.C.); (S.C.)
| | - Pierre Besson
- EA4245-Transplantation, Immunology and Inflammation, University of Tours, 37032 Tours, France; (S.C.); (O.L.-C.); (B.J.); (D.T.); (P.B.); (L.-H.J.)
| | - Lin-Hua Jiang
- EA4245-Transplantation, Immunology and Inflammation, University of Tours, 37032 Tours, France; (S.C.); (O.L.-C.); (B.J.); (D.T.); (P.B.); (L.-H.J.)
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Pathophysiology, Xinxiang Medical University, Xinxiang 453003, China
| | - Sébastien Roger
- EA4245-Transplantation, Immunology and Inflammation, University of Tours, 37032 Tours, France; (S.C.); (O.L.-C.); (B.J.); (D.T.); (P.B.); (L.-H.J.)
- Institut Universitaire de France, 75005 Paris, France
- Correspondence: ; Tel.: +33-2-47-36-61-30
| |
Collapse
|
45
|
Levobupivacaine inhibits proliferation and promotes apoptosis of breast cancer cells by suppressing the PI3K/Akt/mTOR signalling pathway. BMC Res Notes 2020; 13:386. [PMID: 32807213 PMCID: PMC7430121 DOI: 10.1186/s13104-020-05191-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/16/2020] [Indexed: 12/16/2022] Open
Abstract
Objective This study aimed to test the hypothesis that levobupivacaine has anti-tumour effects on breast cancer cells. Results Colony formation and transwell assay were used to determine breast cancer cells proliferation. Flow Cytometry (annexin V and PI staining) was used to investigate breast cancer cells apoptosis. The effects of levobupivacaine on cellular signalling and molecular response were studied with Quantitative Polymerase Chain Reaction and western blot. Induction of apoptosis was confirmed by cell viability, morphological changes showed cell shrinkage, rounding, and detachments from plates. The results of the western blot and Quantitative Polymerase Chain Reaction indicated activation of active caspase-3 and inhibition of FOXO1. The results of the flow Cytometry confirmed that levobupivacaine inhibited breast cancer cell proliferation and enhanced apoptosis of breast cancer cells. Quantitative Polymerase Chain Reaction and Western blot analysis showed increased p21 and decreased cyclin D. Quantitative Polymerase Chain Reaction and western blot analysis showed that levobupivacaine significantly increased Bax expression, accompanied by a significant decreased Bcl-2 expression and inhibition of PI3K/Akt/mTOR signalling pathway. These findings suggested that levobupivacaine inhibits proliferation and promotes breast cancer cells apoptosis in vitro.
Collapse
|
46
|
Poisson L, Lopez-Charcas O, Chadet S, Bon E, Lemoine R, Brisson L, Ouaissi M, Baron C, Besson P, Roger S, Moussata D. Rock inhibition promotes Na V1.5 sodium channel-dependent SW620 colon cancer cell invasiveness. Sci Rep 2020; 10:13350. [PMID: 32770034 PMCID: PMC7414216 DOI: 10.1038/s41598-020-70378-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/29/2020] [Indexed: 12/21/2022] Open
Abstract
The acquisition of invasive capacities by carcinoma cells, i.e. their ability to migrate through and to remodel extracellular matrices, is a determinant process leading to their dissemination and to the development of metastases. these cancer cell properties have often been associated with an increased Rho-ROCK signalling, and ROCK inhibitors have been proposed for anticancer therapies. In this study we used the selective ROCK inhibitor, Y-27632, to address the participation of the Rho-ROCK signalling pathway in the invasive properties of SW620 human colon cancer cells. Contrarily to initial assumptions, Y-27632 induced the acquisition of a pro-migratory cell phenotype and increased cancer cell invasiveness in both 3- and 2-dimensions assays. This effect was also obtained using the other ROCK inhibitor Fasudil as well as with knocking down the expression of ROCK-1 or ROCK-2, but was prevented by the inhibition of NaV1.5 voltage-gated sodium channel activity. Indeed, ROCK inhibition enhanced the activity of the pro-invasive NaV1.5 channel through a pathway that was independent of gene expression regulation. In conclusions, our evidence identifies voltage-gated sodium channels as new targets of the ROCK signalling pathway, as well as responsible for possible deleterious effects of the use of ROCK inhibitors in the treatment of cancers.
Collapse
Affiliation(s)
- Lucile Poisson
- EA4245 Transplantation, Immunologie, Inflammation, Université de Tours, 10 Boulevard Tonnellé, 37032, Tours, France.,Inserm UMR1069, Nutrition, Croissance et Cancer, Université de Tours, Tours, France
| | - Osbaldo Lopez-Charcas
- EA4245 Transplantation, Immunologie, Inflammation, Université de Tours, 10 Boulevard Tonnellé, 37032, Tours, France
| | - Stéphanie Chadet
- EA4245 Transplantation, Immunologie, Inflammation, Université de Tours, 10 Boulevard Tonnellé, 37032, Tours, France
| | - Emeline Bon
- EA4245 Transplantation, Immunologie, Inflammation, Université de Tours, 10 Boulevard Tonnellé, 37032, Tours, France
| | - Roxane Lemoine
- EA4245 Transplantation, Immunologie, Inflammation, Université de Tours, 10 Boulevard Tonnellé, 37032, Tours, France
| | - Lucie Brisson
- Inserm UMR1069, Nutrition, Croissance et Cancer, Université de Tours, Tours, France
| | - Mehdi Ouaissi
- EA4245 Transplantation, Immunologie, Inflammation, Université de Tours, 10 Boulevard Tonnellé, 37032, Tours, France.,CHRU de Tours, Tours, France
| | - Christophe Baron
- EA4245 Transplantation, Immunologie, Inflammation, Université de Tours, 10 Boulevard Tonnellé, 37032, Tours, France.,CHRU de Tours, Tours, France
| | - Pierre Besson
- EA4245 Transplantation, Immunologie, Inflammation, Université de Tours, 10 Boulevard Tonnellé, 37032, Tours, France
| | - Sébastien Roger
- EA4245 Transplantation, Immunologie, Inflammation, Université de Tours, 10 Boulevard Tonnellé, 37032, Tours, France. .,Institut Universitaire de France, Paris, France.
| | - Driffa Moussata
- EA4245 Transplantation, Immunologie, Inflammation, Université de Tours, 10 Boulevard Tonnellé, 37032, Tours, France.,CHRU de Tours, Tours, France
| |
Collapse
|
47
|
Luo Q, Wu T, Wu W, Chen G, Luo X, Jiang L, Tao H, Rong M, Kang S, Deng M. The Functional Role of Voltage-Gated Sodium Channel Nav1.5 in Metastatic Breast Cancer. Front Pharmacol 2020; 11:1111. [PMID: 32792949 PMCID: PMC7393602 DOI: 10.3389/fphar.2020.01111] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022] Open
Abstract
Voltage-gated sodium channels (VGSCs), which are abnormally expressed in various types of cancers such as breast cancer, prostate cancer, lung cancer, and cervical cancer, are involved in the metastatic process of invasion and migration. Nav1.5 is a pore-forming α subunit of VGSC encoded by SCN5A. Various studies have demonstrated that Nav1.5, often as its neonatal splice form, is highly expressed in metastatic breast cancer cells. Abnormal activation and expression of Nav1.5 trigger a variety of cellular mechanisms, including changing H+ efflux, promoting epithelial-to-mesenchymal transition (EMT) and the expression of cysteine cathepsin, to potentiate the metastasis and invasiveness of breast cancer cells in vitro and in vivo. Here, we systematically review the latest available data on the pro-metastatic effect of Nav1.5 and its underlying mechanisms in breast cancer. We summarize the factors affecting Nav1.5 expression in breast cancer cells, and discuss the potential of Nav1.5 blockers serving as candidates for breast cancer treatment.
Collapse
Affiliation(s)
- Qianxuan Luo
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Ting Wu
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Wenfang Wu
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
| | - Gong Chen
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
| | - Xuan Luo
- Department of Biochemistry and Molecular Biology, Hunan Normal University, Changsha, China
| | - Liping Jiang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Huai Tao
- Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, China
| | - Mingqiang Rong
- Department of Biochemistry and Molecular Biology, Hunan Normal University, Changsha, China
| | - Shuntong Kang
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Meichun Deng
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
48
|
Díaz-García A, Varela D. Voltage-Gated K +/Na + Channels and Scorpion Venom Toxins in Cancer. Front Pharmacol 2020; 11:913. [PMID: 32655396 PMCID: PMC7325878 DOI: 10.3389/fphar.2020.00913] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 06/04/2020] [Indexed: 12/25/2022] Open
Abstract
Ion channels have recently been recognized as novel therapeutic targets in cancer research since they are overexpressed in different histological tissues, and their activity is linked to proliferation, tumor progression, angiogenesis, metastasis, and apoptosis. Voltage gated-potassium channels (VGKC) are involved in cell proliferation, cancer progression, cell cycle transition, and apoptosis. Moreover, voltage-dependent sodium channels (VGSC) contribute to decreases in extracellular pH, which, in turn, promotes cancer cell migration and invasion. Furthermore, VGSC and VGKC modulate voltage-sensitive Ca2+ channel activity by controlling the membrane potential and regulating Ca2+ influx, which functions as a second messenger in processes related to proliferation, invasion, migration, and metastasis. The subgroup of these types of channels that have shown a high oncogenic potential have become known as "oncochannels", and the evidence has highlighted them as key potential therapeutic targets. Scorpion venoms contain a high proportion of peptide toxins that act by modulating voltage-gated Na+/K+ channel activity. Increasing scientific data have pointed out that scorpion venoms and their toxins can affect the activity of oncochannels, thus showing their potential for anticancer therapy. In this review, we provide an update of the most relevant voltage-gated Na+\K+ ion channels as cellular targets and discuss the possibility of using scorpion venom and toxins for anticancer therapy.
Collapse
Affiliation(s)
- Alexis Díaz-García
- LifEscozul Chile SpA, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago, Chile
| | - Diego Varela
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago, Chile
- Program of Physiology and Biophysics, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
| |
Collapse
|
49
|
Costa B, Amorim I, Gärtner F, Vale N. Understanding Breast cancer: from conventional therapies to repurposed drugs. Eur J Pharm Sci 2020; 151:105401. [PMID: 32504806 DOI: 10.1016/j.ejps.2020.105401] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 04/22/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022]
Abstract
Breast cancer is the most common cancer among women and is considered a developed country disease. Moreover, is a heterogenous disease, existing different types and stages of breast cancer development, therefore, better understanding of cancer biology, helps to improve the development of therapies. The conventional treatments accessible after diagnosis, have the main goal of controlling the disease, by improving survival. In more advance stages the aim is to prolong life and symptom palliation care. Surgery, radiation therapy and chemotherapy are the main options available, which must be adapted to each person individually. However, patients are developing resistance to the conventional therapies. This resistance is due to alterations in important regulatory pathways such as PI3K/AKt/mTOR, this pathway contributes to trastuzumab resistance, a reference drug to treat breast cancer. Therefore, is proposed the repurposing of drugs, instead of developing drugs de novo, for example, to seek new medical treatments within the drugs available, to be used in breast cancer treatment. Providing safe and tolerable treatments to patients, and new insights to efficacy and efficiency of breast cancer treatments. The economic and social burden of cancer is enormous so it must be taken measures to relieve this burden and to ensure continued access to therapies to all patients. In this review we focus on how conventional therapies against breast cancer are leading to resistance, by reviewing those mechanisms and discussing the efficacy of repurposed drugs to fight breast cancer.
Collapse
Affiliation(s)
- Bárbara Costa
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo 228, 4050-313 Porto, Portugal
| | - Irina Amorim
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo 228, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal; i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - Fátima Gärtner
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo 228, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal; i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - Nuno Vale
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo 228, 4050-313 Porto, Portugal; Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo 228, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal; i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal.
| |
Collapse
|
50
|
Paul D, Maggi P, Piero FD, Scahill SD, Sherman KJ, Edenfield S, Gould HJ. Targeted Osmotic Lysis of Highly Invasive Breast Carcinomas Using Pulsed Magnetic Field Stimulation of Voltage-Gated Sodium Channels and Pharmacological Blockade of Sodium Pumps. Cancers (Basel) 2020; 12:cancers12061420. [PMID: 32486340 PMCID: PMC7352419 DOI: 10.3390/cancers12061420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022] Open
Abstract
Abstract: Concurrent activation of voltage-gated sodium channels (VGSCs) and blockade of Na+ pumps causes a targeted osmotic lysis (TOL) of carcinomas that over-express the VGSCs. Unfortunately, electrical current bypasses tumors or tumor sections because of the variable resistance of the extracellular microenvironment. This study assesses pulsed magnetic fields (PMFs) as a potential source for activating VGSCs to initiate TOL in vitro and in vivo as PMFs are unaffected by nonconductive tissues. In vitro, PMFs (0-80 mT, 10 msec pulses, 15 pps for 10 min) combined with digoxin-lysed (500 nM) MDA-MB-231 breast cancer cells stimulus-dependently. Untreated, stimulation-only, and digoxin-only control cells did not lyse. MCF-10a normal breast cells were also unaffected. MDA-MB-231 cells did not lyse in a Na+-free buffer. In vivo, 30 min of PMF stimulation of MDA-MB-231 xenografts in J/Nu mice or 4T1 homografts in BALB/c mice, concurrently treated with 7 mg/kg digoxin reduced tumor size by 60-100%. Kidney, spleen, skin and muscle from these animals were unaffected. Stimulation-only and digoxin-only controls were similar to untreated tumors. BALB/C mice with 4T1 homografts survived significantly longer than mice in the three control groups. The data presented is evidence that the PMFs to activate VGSCs in TOL provide sufficient energy to lyse highly malignant cells in vitro and to reduce tumor growth of highly malignant grafts and improve host survival in vivo, thus supporting targeted osmotic lysis of cancer as a possible method for treating late-stage carcinomas without compromising noncancerous tissues.
Collapse
Affiliation(s)
- Dennis Paul
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (D.P.); (S.D.S.); (K.J.S.); (S.E.)
| | - Paul Maggi
- Department of Physics, Louisiana State University, Baton Rouge, LA 70808, USA.;
| | - Fabio Del Piero
- Department of Pathobiological Sciences and Louisiana Animal Disease Diagnostic Laboratory (LADDL), Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70808, USA.;
| | - Steven D. Scahill
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (D.P.); (S.D.S.); (K.J.S.); (S.E.)
| | - Kelly Jean Sherman
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (D.P.); (S.D.S.); (K.J.S.); (S.E.)
| | - Samantha Edenfield
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (D.P.); (S.D.S.); (K.J.S.); (S.E.)
| | - Harry J. Gould
- Department of Neurology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- Correspondence: ; Tel.: +1-504-568-5080
| |
Collapse
|