1
|
Zhang Z, Wang X, Dai Q, Qin Y, Sun X, Suzuki M, Ying X, Han M, Wei Q. Peptide-functionalized gold nanoparticles for boron neutron capture therapy with the potential to use in Glioblastoma treatment. Pharm Dev Technol 2024; 29:862-873. [PMID: 39286881 DOI: 10.1080/10837450.2024.2406044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/19/2024]
Abstract
Glioblastoma is a highly aggressive glioma with limited treatment options. Boron neutron capture therapy (BNCT) offers a promising approach for refractory cancers, utilizing boron-10 (10B) and thermal neutrons to generate cytotoxic particles. Effective BNCT depends on selective targeting and retention of 10B in tumors. Current BNCT drugs face issues with rapid clearance and poor tumor accumulation. To address this, we developed gold nanoparticles (AuNPs) functionalized with cyclic arginine-glycine-aspartic acid (cRGD) peptides as a nanocarrier for Sodium Mercaptododecaborate (BSH), resulting in AuNPs-BSH&PEG-cRGD. In vitro, AuNPs-BSH&PEG-cRGD increased 10B content in GL261 glioma cells by approximately 2.5-fold compared to unmodified AuNPs-BSH&PEG, indicating enhanced targeting due to cRGD's affinity for integrin receptor αvβ3. In a subcutaneous glioma mouse model, 6 h post-intratumoral administration, the 10B concentration in tumors was 17.98 μg/g for AuNPs-BSH&PEG-cRGD, significantly higher than 0.45 μg/g for BSH. The tumor-to-blood (T/B) and tumor-to-normal tissue (T/N) ratios were also higher for AuNPs-BSH&PEG-cRGD, suggesting improved targeting and retention. This indicates that AuNPs-BSH&PEG-cRGD may enhance BNCT efficacy and minimize normal tissue toxicity. In summary, this study provides a novel strategy for BSH delivery and may broaden the design vision of BNCT nano-boron capture agents.
Collapse
Affiliation(s)
- Zhicheng Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xin Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qi Dai
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yaxin Qin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyan Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Minoru Suzuki
- Division of Particle Radiation Oncology, Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Sennan-gun, Osaka, Japan
| | - Xiaoying Ying
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Min Han
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, China
- Division of Particle Radiation Oncology, Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Sennan-gun, Osaka, Japan
| | - Qichun Wei
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Josserand V, Lavaud J, Keramidas M, Collet C, Traboulsi W, Hoffmann P, Feige JJ, Benharouga M, Coll JL, Alfaidy N. RGD-Based Fluorescence to Assess Placental Angiogenesis. Methods Mol Biol 2024; 2728:131-136. [PMID: 38019397 DOI: 10.1007/978-1-0716-3495-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Normal fetal growth and placental development depend on active angiogenesis occurring at the fetomaternal interface throughout pregnancy. Nevertheless, reliable in vivo methods to assess placental angiogenesis are still missing. Here, we describe a quantitative and noninvasive in vivo method to specifically measure placental neovascularization in the gravid mouse. This method uses a technique based on the measurement of a fluorescent molecule Angiostamp700 that targets the alpha v beta 3 (αvβ3) integrin, a protein that is highly expressed by endothelial cells during the neovascularization and by trophoblast cells during invasion of the maternal decidua. Due to this noninvasive method, quantification of the fetomaternal angiogenic activity and information regarding the outcome of pregnancy are now possible.
Collapse
Affiliation(s)
- Veronique Josserand
- Institute for Advanced Biosciences, INSERM-UGA U1209, CNRS UMR 5309, La Tronche, France
| | - Jonathan Lavaud
- Institute for Advanced Biosciences, INSERM-UGA U1209, CNRS UMR 5309, La Tronche, France
| | - Michelle Keramidas
- Institute for Advanced Biosciences, INSERM-UGA U1209, CNRS UMR 5309, La Tronche, France
| | - Constance Collet
- Institut National de la Santé et de la Recherche Médicale, Inserm U1292, Biosanté, Grenoble, France
- University Grenoble-Alpes, Grenoble, France
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, Grenoble, France
| | - Wael Traboulsi
- Laboratory for Immuno-Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Pascale Hoffmann
- Institut National de la Santé et de la Recherche Médicale, Inserm U1292, Biosanté, Grenoble, France
- University Grenoble-Alpes, Grenoble, France
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, Grenoble, France
- Centre Hospitalo-Universitaire Grenoble Alpes, Service Obstétrique, CS 10217, Grenoble Cedex 9, France
- Université Grenoble Alpes, Grenoble, France
| | - Jean-Jacques Feige
- Institut National de la Santé et de la Recherche Médicale, Inserm U1292, Biosanté, Grenoble, France
- University Grenoble-Alpes, Grenoble, France
- Centre Hospitalo-Universitaire Grenoble Alpes, Service Obstétrique, CS 10217, Grenoble Cedex 9, France
- Université Grenoble Alpes, Grenoble, France
| | - Mohamed Benharouga
- Institut National de la Santé et de la Recherche Médicale, Inserm U1292, Biosanté, Grenoble, France
- University Grenoble-Alpes, Grenoble, France
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, Grenoble, France
| | - Jean-Luc Coll
- Institute for Advanced Biosciences, INSERM-UGA U1209, CNRS UMR 5309, La Tronche, France
| | - Nadia Alfaidy
- Institut National de la Santé et de la Recherche Médicale, Inserm U1292, Biosanté, Grenoble, France.
- University Grenoble-Alpes, Grenoble, France.
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, Grenoble, France.
- Centre Hospitalo-Universitaire Grenoble Alpes, Service Obstétrique, CS 10217, Grenoble Cedex 9, France.
- Université Grenoble Alpes, Grenoble, France.
| |
Collapse
|
3
|
Multiplexed Imaging Reveals the Spatial Relationship of the Extracellular Acidity-Targeting pHLIP with Necrosis, Hypoxia, and the Integrin-Targeting cRGD Peptide. Cells 2022; 11:cells11213499. [DOI: 10.3390/cells11213499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
pH (low) insertion peptides (pHLIPs) have been developed for cancer imaging and therapy targeting the acidic extracellular microenvironment. However, the characteristics of intratumoral distribution (ITD) of pHLIPs are not yet fully understood. This study aimed to reveal the details of the ITD of pHLIPs and their spatial relationship with other tumor features of concern. The fluorescent dye-labeled pHLIPs were intravenously administered to subcutaneous xenograft mouse models of U87MG and IGR-OV1 expressing αVβ3 integrins (using large necrotic tumors). The αVβ3 integrin-targeting Cy5.5-RAFT-c(-RGDfK-)4 was used as a reference. In vivo and ex vivo fluorescence imaging, whole-tumor section imaging, fluorescence microscopy, and multiplexed fluorescence colocalization analysis were performed. The ITD of fluorescent dye-labeled pHLIPs was heterogeneous, having a high degree of colocalization with necrosis. A direct one-to-one comparison of highly magnified images revealed the cellular localization of pHLIP in pyknotic, karyorrhexis, and karyolytic necrotic cells. pHLIP and hypoxia were spatially contiguous but not overlapping cellularly. The hypoxic region was found between the ITDs of pHLIP and the cRGD peptide and the Ki-67 proliferative activity remained detectable in the pHLIP-accumulated regions. The results provide a better understanding of the characteristics of ITD of pHLIPs, leading to new insights into the theranostic applications of pHLIPs.
Collapse
|
4
|
Folic acid conjugated poly(amidoamine) dendrimer as a smart nanocarriers for tracing, imaging, and treating cancers over-expressing folate receptors. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111156] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
5
|
Schmitthenner HF, Barrett TM, Beach SA, Heese LE, Weidman C, Dobson DE, Mahoney ER, Schug NC, Jones KG, Durmaz C, Otasowie O, Aronow S, Lee YP, Ophardt HD, Becker AE, Hornak JP, Evans IM, Ferran MC. Modular Synthesis of Peptide-Based Single- and Multimodal Targeted Molecular Imaging Agents. ACS APPLIED BIO MATERIALS 2021; 4:5435-5448. [PMID: 35006725 PMCID: PMC9633131 DOI: 10.1021/acsabm.1c00157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A practical, modular synthesis of targeted molecular imaging agents (TMIAs) containing near-infrared dyes for optical molecular imaging (OMI) or chelated metals for magnetic resonance imaging (MRI) and single-photon emission correlation tomography (SPECT) or positron emission tomography (PET) has been developed. In the method, imaging modules are formed early in the synthesis by attaching imaging agents to the side chain of protected lysines. These modules may be assembled to provide a given set of single- or dual-modal imaging agents, which may be conjugated in the last steps of the synthesis under mild conditions to linkers and targeting groups. A key discovery was the ability of a metal such as gadolinium, useful in MRI, to serve as a protecting group for the chelator, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). It was further discovered that two lanthanide metals, La and Ce, can double as protecting groups and placeholder metals, which may be transmetalated under mild conditions by metals used for PET in the final step. The modular method enabled the synthesis of discrete targeted probes with two of the same or different dyes, two same or different metals, or mixtures of dyes and metals. The approach was exemplified by the synthesis of single- or dual-modal imaging modules for MRI-OMI, PET-OMI, and PET-MRI, followed by conjugation to the integrin-seeking peptide, c(RGDyK). For Gd modules, their efficacy for MRI was verified by measuring the NMR spin-lattice relaxivity. To validate functional imaging of TMIAs, dual-modal agents containing Cy5.5 were shown to target A549 cancer cells by confocal fluorescence microscopy.
Collapse
Affiliation(s)
- Hans F Schmitthenner
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Taylor M Barrett
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Stephanie A Beach
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Lauren E Heese
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Chelsea Weidman
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Damien E Dobson
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Emily R Mahoney
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Nicholas C Schug
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Kelsea G Jones
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Ceyda Durmaz
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Osarhuwense Otasowie
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Sean Aronow
- Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Yin Peng Lee
- Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Henry D Ophardt
- Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Amy E Becker
- Chester Carlson Center for Imaging Science, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Joseph P Hornak
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York 14623, United States
- Chester Carlson Center for Imaging Science, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Irene M Evans
- Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Maureen C Ferran
- Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York 14623, United States
| |
Collapse
|
6
|
Jin ZH, Tsuji AB, Degardin M, Sugyo A, Obara S, Wakizaka H, Nagatsu K, Hu K, Zhang MR, Dumy P, Boturyn D, Higashi T. Radiotheranostic Agent 64Cu-cyclam-RAFT-c(-RGDfK-) 4 for Management of Peritoneal Metastasis in Ovarian Cancer. Clin Cancer Res 2020; 26:6230-6241. [PMID: 32933998 DOI: 10.1158/1078-0432.ccr-20-1205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/11/2020] [Accepted: 09/10/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Ovarian cancer peritoneal metastases (OCPMs) are a pathophysiologically heterogeneous group of tumors that are rarely curable. αVβ3 integrin (αVβ3) is overexpressed on tumoral neovessels and frequently on ovarian cancer cells. Here, using two clinically relevant αVβ3-positive OCPM mouse models, we studied the theranostic potential of an αVβ3-specific radiopeptide, 64Cu-cyclam-RAFT-c(-RGDfK-)4 (64Cu-RaftRGD), and its intra- and intertumoral distribution in relation to the tumor microenvironment. EXPERIMENTAL DESIGN αVβ3-expressing peritoneal and subcutaneous models of ovarian carcinoma (IGR-OV1 and NIH:OVCAR-3) were established in nude mice. 64Cu-RaftRGD was administered either intravenously or intraperitoneally. We performed intratumoral distribution (ITD) studies, PET/CT imaging and quantification, biodistribution assay and radiation dosimetry, and therapeutic efficacy and toxicity studies. RESULTS Intraperitoneal administration was an efficient route for targeting 64Cu-RaftRGD to OCPMs with excellent tumor penetration. Using the fluorescence surrogate, Cy5.5-RaftRGD, in our unique high-resolution multifluorescence analysis, we found that the ITD of 64Cu-RaftRGD was spatially distinct from, but complementary to, that of hypoxia. 64Cu-RaftRGD-based PET enabled clear visualization of multiple OCPM deposits and ascites and biodistribution analysis demonstrated an inverse correlation between tumor uptake and tumor size (1.2-17.2 mm). 64Cu-RaftRGD at a radiotherapeutic dose (148 MBq/0.357 nmol) showed antitumor activities by inhibiting tumor cell proliferation and inducing apoptosis, with negligible toxicity. CONCLUSIONS Collectively, these results demonstrate the all-in-one potential of 64Cu-RaftRGD for imaging guided radiotherapy of OCPM by targeting both tumoral neovessels and cancerous cells. On the basis of the ITD finding, we propose that pairing αVβ3- and hypoxia-targeted radiotherapies could improve therapeutic efficacy by overcoming the heterogeneity of ITD encountered with single-agent treatments.
Collapse
Affiliation(s)
- Zhao-Hui Jin
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.
| | - Atsushi B Tsuji
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.
| | | | - Aya Sugyo
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Satoshi Obara
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hidekatsu Wakizaka
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kotaro Nagatsu
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kuan Hu
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Ming-Rong Zhang
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Pascal Dumy
- Institut des Biomolécules Max Mousseron, École Nationale Supérieure de Chimie de Montpellier, Université de Montpellier, Montpellier, France
| | | | - Tatsuya Higashi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
7
|
Stepan KO, Li MM, Kang SY, Puram SV. Molecular margins in head and neck cancer: Current techniques and future directions. Oral Oncol 2020; 110:104893. [PMID: 32702629 DOI: 10.1016/j.oraloncology.2020.104893] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022]
Abstract
Complete tumor extirpation with clear surgical margins remains a central tenet of oncologic head and neck surgery. Rates of locoregional recurrence and survival are both significantly worse when clear margins are unable to be obtained. Current clinical practice relies on the use of frozen sections intra-operatively, followed by traditional histopathologic analysis post-operatively to assess the surgical margin. However, with improved understanding of tumor biology and advances in technology, new techniques have emerged to analyze margins at a molecular level. Such molecular margin analysis interrogates tissue for genetic, epigenetic, or proteomic changes that may belie tumor presence or aggressive features not captured by standard histopathologic techniques. Intra-operatively, this information may be used to guide resection, while post-operatively, it may help to stratify patients for adjuvant treatment. In this review, we summarize the current state of molecular margin analysis and describe directions for future research.
Collapse
Affiliation(s)
- Katelyn O Stepan
- Department of Otolaryngology - Head and Neck Surgery, Washington University School of Medicine, 4921 Parkview Pl, St. Louis, MO 63110, USA
| | - Michael M Li
- Department of Otolaryngology - Head and Neck Surgery, Ohio State University Wexner Medical Center, 410 W. 10(th) Ave, Columbus, OH, USA
| | - Stephen Y Kang
- Department of Otolaryngology - Head and Neck Surgery, Ohio State University Wexner Medical Center, 410 W. 10(th) Ave, Columbus, OH, USA
| | - Sidharth V Puram
- Department of Otolaryngology - Head and Neck Surgery, Washington University School of Medicine, 4921 Parkview Pl, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, 4921 Parkview Pl, St. Louis, MO 63110, USA.
| |
Collapse
|
8
|
Jin ZH, Tsuji AB, Degardin M, Sugyo A, Yoshii Y, Nagatsu K, Zhang MR, Fujibayashi Y, Dumy P, Boturyn D, Higashi T. Uniform intratumoral distribution of radioactivity produced using two different radioagents, 64Cu-cyclam-RAFT-c(-RGDfK-) 4 and 64Cu-ATSM, improves therapeutic efficacy in a small animal tumor model. EJNMMI Res 2018; 8:54. [PMID: 29923139 PMCID: PMC6008272 DOI: 10.1186/s13550-018-0407-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/05/2018] [Indexed: 12/15/2022] Open
Abstract
Background The present study proposed a new concept for targeted radionuclide therapy (TRT) to improve the intratumoral distribution of radioactivity using two different radiopharmaceuticals. We examined the efficacy of a combination of a tetrameric cyclic Arg-Gly-Asp (cRGD) peptide-based radiopharmaceutical, 64Cu-cyclam-RAFT-c(-RGDfK-)4 (64Cu-RaftRGD, an αVβ3 integrin [αVβ3] tracer), and 64Cu-diacetyl-bis (N4-methylthiosemicarbazone) (64Cu-ATSM, a supposed tracer for hypoxic metabolism) in a small animal tumor model. Results Mice with subcutaneous αVβ3-positive U87MG glioblastoma xenografts were used. The intratumoral distribution of a near-infrared dye, Cy5.5-labeled RAFT-c(-RGDfK-)4 (Cy5.5-RaftRGD), 64Cu-RaftRGD, and 64Cu-ATSM was visualized by fluorescence imaging and autoradiography of the co-injected Cy5.5-RaftRGD with 64Cu-RaftRGD or 64Cu-ATSM at 3 h postinjection. Mice were treated with a single intravenous dose of the vehicle solution (control), 18.5 or 37 MBq of 64Cu-RaftRGD or 64Cu-ATSM, or a combination (18.5 MBq of each agent). The tumor volume, tumor cell proliferation, body weight, survival, and tumor and organ uptake of radiopharmaceuticals were assessed. It was shown that Cy5.5-RaftRGD colocalized with 64Cu-RaftRGD and could be used as a surrogate for the radioactive agent. The intratumoral distribution of Cy5.5-RaftRGD and 64Cu-ATSM was discordant and nearly complementary, indicating a more uniform distribution of radioactivity achievable with the combined use of 64Cu-RaftRGD and 64Cu-ATSM. Neither 64Cu-RaftRGD nor 64Cu-ATSM showed significant effects on tumor growth at 18.5 MBq. The combination of both (18.5 MBq each) showed sustained inhibitory effects against tumor growth and tumor cell proliferation and prolonged the survival of the mice, compared to that by either single agent at 37 MBq. Interestingly, the uptake of the combination by the tumor was higher than that of 64Cu-RaftRGD alone, but lower than that of 64Cu-ATSM alone. The kidneys showed the highest uptake of 64Cu-RaftRGD, whereas the liver exhibited the highest uptake of 64Cu-ATSM. No obvious adverse effects were observed in all treated mice. Conclusions The combination of 64Cu-RaftRGD and 64Cu-ATSM achieved an improved antitumor effect owing to the more uniform intratumoral distribution of radioactivity. Thus, combining different radiopharmaceuticals to improve the intratumoral distribution would be a promising concept for more effective and safer TRT. Electronic supplementary material The online version of this article (10.1186/s13550-018-0407-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhao-Hui Jin
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage, Chiba, 263-8555, Japan.
| | - Atsushi B Tsuji
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage, Chiba, 263-8555, Japan
| | - Mélissa Degardin
- Département de Chimie Moléculaire-UMR CNRS 5250, Université Grenoble Alpes, 38041, Grenoble Cedex 9, France
| | - Aya Sugyo
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage, Chiba, 263-8555, Japan
| | - Yukie Yoshii
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage, Chiba, 263-8555, Japan
| | - Kotaro Nagatsu
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage, Chiba, 263-8555, Japan
| | - Ming-Rong Zhang
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage, Chiba, 263-8555, Japan
| | - Yasuhisa Fujibayashi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage, Chiba, 263-8555, Japan
| | - Pascal Dumy
- IBMM, UMR-5247, Université de Montpellier, CNRS, École Nationale Supérieure de Chimie de Montpellier, 34296, Montpellier Cedex 5, France
| | - Didier Boturyn
- Département de Chimie Moléculaire-UMR CNRS 5250, Université Grenoble Alpes, 38041, Grenoble Cedex 9, France
| | - Tatsuya Higashi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage, Chiba, 263-8555, Japan
| |
Collapse
|
9
|
Effect of multiple cyclic RGD peptides on tumor accumulation and intratumoral distribution of IRDye 700DX-conjugated polymers. Sci Rep 2018; 8:8126. [PMID: 29802410 PMCID: PMC5970177 DOI: 10.1038/s41598-018-26593-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/10/2018] [Indexed: 12/20/2022] Open
Abstract
Strategic delivery of IRDye 700DX (photosensitizer) is a key for improving its effect in photodynamic therapy. In this study, we have synthesized IRDye 700DX-conjugated polymers containing multiple cyclic RGD peptides to deliver IRDye 700DX selectively to tumor cells and tumor-associated blood vessels overexpressing αvβ3 integrin. Our polymer has a backbone of hydrophilic poly(ethylene glycol)-poly(L-glutamic acid) block copolymer, and cyclic RGD peptides are conjugated to side chains of the poly(L-glutamic acid) while IRDye 700DX is conjugated to the terminal of poly(ethylene glycol). The polymers exhibited selective accumulation to the target sites in a subcutaneous solid tumor, and the accumulation was augmented with the increased number of cyclic RGD peptides. More importantly, the polymer containing 15 cyclic RGD peptides in one construct revealed preferential accumulation on the tumor-associated blood vessels without compromising penetration to deep portions of the tumor, thereby drastically inhibiting tumor growth upon photoirradiation, while the polymer containing 5 cyclic RGD peptides showed moderate antitumor activity despite efficient accumulation in the tumor with almost homogenous intratumoral distribution. These results suggest that controlling the intratumoral distribution of IRDye 700DX is critical for successful PDT, and our polymer containing multiple cyclic RGD peptides may be a promising carrier for this spatial control.
Collapse
|
10
|
Duret D, Grassin A, Henry M, Jacquet T, Thoreau F, Denis-Quanquin S, Coll JL, Boturyn D, Favier A, Charreyre MT. “Polymultivalent” Polymer–Peptide Cluster Conjugates for an Enhanced Targeting of Cells Expressing αvβ3 Integrins. Bioconjug Chem 2017; 28:2241-2245. [DOI: 10.1021/acs.bioconjchem.7b00362] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Damien Duret
- Univ Lyon, Université Lyon 1, INSA de
Lyon, CNRS, Laboratoire Ingénierie des Matériaux Polymères,
UMR5223, F-69621 Villeurbanne, France
- Univ Lyon, Ens de Lyon, CNRS, Laboratoire Joliot-Curie,
USR3010, F-69364 Lyon, France
| | - Adrien Grassin
- Université Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France
| | - Maxime Henry
- Centre
de Recherche UGA-INSERM U1209 - UMR CNRS 5309, Institute for Advanced Biosciences, F-38700 Grenoble, France
| | - Thibault Jacquet
- Centre
de Recherche UGA-INSERM U1209 - UMR CNRS 5309, Institute for Advanced Biosciences, F-38700 Grenoble, France
| | - Fabien Thoreau
- Université Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France
- Centre
de Recherche UGA-INSERM U1209 - UMR CNRS 5309, Institute for Advanced Biosciences, F-38700 Grenoble, France
| | - Sandrine Denis-Quanquin
- Univ Lyon, Ens de Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie, UMR5182, F-69342 Lyon, France
| | - Jean-Luc Coll
- Centre
de Recherche UGA-INSERM U1209 - UMR CNRS 5309, Institute for Advanced Biosciences, F-38700 Grenoble, France
| | - Didier Boturyn
- Université Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France
| | - Arnaud Favier
- Univ Lyon, Université Lyon 1, INSA de
Lyon, CNRS, Laboratoire Ingénierie des Matériaux Polymères,
UMR5223, F-69621 Villeurbanne, France
- Univ Lyon, Ens de Lyon, CNRS, Laboratoire Joliot-Curie,
USR3010, F-69364 Lyon, France
| | - Marie-Thérèse Charreyre
- Univ Lyon, Université Lyon 1, INSA de
Lyon, CNRS, Laboratoire Ingénierie des Matériaux Polymères,
UMR5223, F-69621 Villeurbanne, France
- Univ Lyon, Ens de Lyon, CNRS, Laboratoire Joliot-Curie,
USR3010, F-69364 Lyon, France
| |
Collapse
|
11
|
Folic acid-decorated polyamidoamine dendrimer exhibits high tumor uptake and sustained highly localized retention in solid tumors: Its utility for local siRNA delivery. Acta Biomater 2017; 57:251-261. [PMID: 28438704 DOI: 10.1016/j.actbio.2017.04.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/06/2017] [Accepted: 04/20/2017] [Indexed: 12/13/2022]
Abstract
The utility of folic acid (FA)-decorated polyamidoamine dendrimer G4 (G4-FA) as a vector was investigated for local delivery of siRNA. In a xenograft HN12 (or HN12-YFP) tumor mouse model of head and neck squamous cell carcinomas (HNSCC), intratumorally (i.t.) injected G4-FA exhibited high tumor uptake and sustained highly localized retention in the tumors according to near infrared (NIR) imaging assessment. siRNA against vascular endothelial growth factor A (siVEGFA) was chosen as a therapeutic modality. Compared to the nontherapeutic treatment groups (PBS solution or dendrimer complexed with nontherapeutic siRNA against green fluorescent protein (siGFP)), G4-FA/siVEGFA showed tumor inhibition effects in single-dose and two-dose regimen studies. In particular, two doses of G4-FA/siVEGFA i.t. administered eight days apart resulted in a more profound inhibition of tumor growth, accompanied with significant reduction in angiogenesis, as judged by CD31 staining and microvessel counts. Tumor size reduction in the two-dose regimen study was ascertained semi-quantitatively by live fluorescence imaging of YFP tumors and independently supported antitumor effects of G4-FA/siVEGFA. Taken together, G4-FA shows high tumor uptake and sustained retention properties, making it a suitable platform for local delivery of siRNAs to treat cancers that are readily accessible such as HNSCC. STATEMENT OF SIGNIFICANCE Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide and is difficult to transfect for gene therapy. We developed folate receptor (FR)-targeted polyamidoamine (PAMAM) dendrimer for enhanced delivery of genes to HNSCC and gained in-depth understanding of how gene delivery and transfection in head and neck squamous cancer cells can be enhanced via FR-targeted PAMAM dendrimers. The results we report here are encouraging and present latest advances in using dendrimers for cancer therapies, in particular for HNSCC. Our work has demonstrated that localized delivery of FR-targeted PAMAM dendrimer G4 complexed with siVEGFA resulted in pronounced tumor suppression in an HN12 xenograft tumor model. Tumor suppression was attributed to enhanced tumor uptake of siRNA and prolonged nanoparticle retention in the tumor. Taken together, G4-FA shows high tumor uptake and sustained highly localized retention properties, making it a suitable platform for local delivery of siRNAs to treat cancers that are readily accessible such as HNSCC.
Collapse
|
12
|
Karageorgis A, Claron M, Jugé R, Aspord C, Thoreau F, Leloup C, Kucharczak J, Plumas J, Henry M, Hurbin A, Verdié P, Martinez J, Subra G, Dumy P, Boturyn D, Aouacheria A, Coll JL. Systemic Delivery of Tumor-Targeted Bax-Derived Membrane-Active Peptides for the Treatment of Melanoma Tumors in a Humanized SCID Mouse Model. Mol Ther 2017; 25:534-546. [PMID: 28153100 DOI: 10.1016/j.ymthe.2016.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 01/03/2023] Open
Abstract
Melanoma is a highly metastatic and deadly form of cancer. Invasive melanoma cells overexpress integrin αvβ3, which is a well-known target for Arg-Gly-Asp-based (RGD) peptides. We developed a sophisticated method to synthetize milligram amounts of a targeted vector that allows the RGD-mediated targeting, internalization, and release of a mitochondria-disruptive peptide derived from the pro-apoptotic Bax protein. We found that 2.5 μM Bax[109-127] was sufficient to destabilize the mitochondria in ten different tumor cell lines, even in the presence of the anti-apoptotic Bcl2 protein, which is often involved in tumor resistance. This pore-forming peptide displayed antitumor activity when it was covalently linked by a disulfide bridge to the tetrameric RAFT-c[RGD]4-platform and after intravenous injection in a human melanoma tumor model established in humanized immuno-competent mice. In addition to its direct toxic effect, treatment with this combination induced the release of the immuno-stimulating factor monocyte chimoattractant protein 1 (MCP1) in the blood and a decrease in the level of the pro-angiogenic factor FGF2. Our novel multifunctional, apoptosis-inducing agent could be further customized and assayed for potential use in tumor-targeted therapy.
Collapse
Affiliation(s)
- Anastassia Karageorgis
- INSERM U1209, Institut Albert Bonniot, 38706 La Tronche, France; Université Grenoble Alpes, 38000 Grenoble, France
| | - Michaël Claron
- Université Grenoble Alpes, 38000 Grenoble, France; CNRS UMR 5250, ICMG FR2607, 38000 Grenoble, France
| | - Romain Jugé
- Molecular Biology of the Cell Laboratory (LBMC), Ecole Normale Supérieure de Lyon, UMR 5239 CNRS - UCBL - ENS Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Caroline Aspord
- Université Grenoble Alpes, 38000 Grenoble, France; EMR EFS-UGA-INSERM U1209- CNRS, Immunobiology and Immunotherapy of Chronic Diseases, 38706 La Tronche, France; EFS Rhone-Alpes, R&D Laboratory, 38701 La Tronche, France
| | - Fabien Thoreau
- INSERM U1209, Institut Albert Bonniot, 38706 La Tronche, France; Université Grenoble Alpes, 38000 Grenoble, France; CNRS UMR 5250, ICMG FR2607, 38000 Grenoble, France
| | - Claire Leloup
- Université Grenoble Alpes, 38000 Grenoble, France; EMR EFS-UGA-INSERM U1209- CNRS, Immunobiology and Immunotherapy of Chronic Diseases, 38706 La Tronche, France; EFS Rhone-Alpes, R&D Laboratory, 38701 La Tronche, France
| | - Jérôme Kucharczak
- Molecular Biology of the Cell Laboratory (LBMC), Ecole Normale Supérieure de Lyon, UMR 5239 CNRS - UCBL - ENS Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Joël Plumas
- Université Grenoble Alpes, 38000 Grenoble, France; EMR EFS-UGA-INSERM U1209- CNRS, Immunobiology and Immunotherapy of Chronic Diseases, 38706 La Tronche, France; EFS Rhone-Alpes, R&D Laboratory, 38701 La Tronche, France
| | - Maxime Henry
- INSERM U1209, Institut Albert Bonniot, 38706 La Tronche, France; Université Grenoble Alpes, 38000 Grenoble, France
| | - Amandine Hurbin
- INSERM U1209, Institut Albert Bonniot, 38706 La Tronche, France; Université Grenoble Alpes, 38000 Grenoble, France
| | - Pascal Verdié
- CNRS UMR 5247, Institut des Biomolécules Max Mousseron IBMM, 34095 Montpellier, France
| | - Jean Martinez
- CNRS UMR 5247, Institut des Biomolécules Max Mousseron IBMM, 34095 Montpellier, France
| | - Gilles Subra
- CNRS UMR 5247, Institut des Biomolécules Max Mousseron IBMM, 34095 Montpellier, France
| | - Pascal Dumy
- CNRS UMR 5250, ICMG FR2607, 38000 Grenoble, France; CNRS UMR 5247, Institut des Biomolécules Max Mousseron IBMM, 34095 Montpellier, France
| | - Didier Boturyn
- Université Grenoble Alpes, 38000 Grenoble, France; CNRS UMR 5250, ICMG FR2607, 38000 Grenoble, France
| | - Abdel Aouacheria
- Molecular Biology of the Cell Laboratory (LBMC), Ecole Normale Supérieure de Lyon, UMR 5239 CNRS - UCBL - ENS Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France; Institut des Sciences de l'Evolution de Montpellier (ISEM), UMR 5554, Université de Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, 34095 Montpellier, France.
| | - Jean-Luc Coll
- INSERM U1209, Institut Albert Bonniot, 38706 La Tronche, France; Université Grenoble Alpes, 38000 Grenoble, France.
| |
Collapse
|
13
|
Zhou Z, Lu ZR. Molecular imaging of the tumor microenvironment. Adv Drug Deliv Rev 2017; 113:24-48. [PMID: 27497513 DOI: 10.1016/j.addr.2016.07.012] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 07/28/2016] [Indexed: 12/19/2022]
Abstract
The tumor microenvironment plays a critical role in tumor initiation, progression, metastasis, and resistance to therapy. It is different from normal tissue in the extracellular matrix, vascular and lymphatic networks, as well as physiologic conditions. Molecular imaging of the tumor microenvironment provides a better understanding of its function in cancer biology, and thus allowing for the design of new diagnostics and therapeutics for early cancer diagnosis and treatment. The clinical translation of cancer molecular imaging is often hampered by the high cost of commercialization of targeted imaging agents as well as the limited clinical applications and small market size of some of the agents. Because many different cancer types share similar tumor microenvironment features, the ability to target these biomarkers has the potential to provide clinically translatable molecular imaging technologies for a spectrum of cancers and broad clinical applications. There has been significant progress in targeting the tumor microenvironment for cancer molecular imaging. In this review, we summarize the principles and strategies of recent advances made in molecular imaging of the tumor microenvironment, using various imaging modalities for early detection and diagnosis of cancer.
Collapse
|
14
|
Gao M, Yu F, Lv C, Choo J, Chen L. Fluorescent chemical probes for accurate tumor diagnosis and targeting therapy. Chem Soc Rev 2017; 46:2237-2271. [DOI: 10.1039/c6cs00908e] [Citation(s) in RCA: 527] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review focuses on small molecular ligand-targeted fluorescent imaging probes and fluorescent theranostics, including their design strategies and applications in clinical tumor treatment.
Collapse
Affiliation(s)
- Min Gao
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Fabiao Yu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Changjun Lv
- Department of Respiratory Medicine
- Affiliated Hospital of Binzhou Medical University
- Binzhou 256603
- China
| | - Jaebum Choo
- Department of Bionano Engineering
- Hanyang University
- Ansan 426-791
- South Korea
| | - Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| |
Collapse
|
15
|
van Driel PBAA, Boonstra MC, Prevoo HAJM, van de Giessen M, Snoeks TJA, Tummers QRJG, Keereweer S, Cordfunke RA, Fish A, van Eendenburg JDH, Lelieveldt BPF, Dijkstra J, van de Velde CJH, Kuppen PJK, Vahrmeijer AL, Löwik CWGM, Sier CFM. EpCAM as multi-tumour target for near-infrared fluorescence guided surgery. BMC Cancer 2016; 16:884. [PMID: 27842504 PMCID: PMC5109830 DOI: 10.1186/s12885-016-2932-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 10/30/2016] [Indexed: 01/08/2023] Open
Abstract
Background Evaluation of resection margins during cancer surgery can be challenging, often resulting in incomplete tumour removal. Fluorescence-guided surgery (FGS) aims to aid the surgeon to visualize tumours and resection margins during surgery. FGS relies on a clinically applicable imaging system in combination with a specific tumour-targeting contrast agent. In this study EpCAM (epithelial cell adhesion molecule) is evaluated as target for FGS in combination with the novel Artemis imaging system. Methods The NIR fluorophore IRDye800CW was conjugated to the well-established EpCAM specific monoclonal antibody 323/A3 and an isotype IgG1 as control. The anti-EpCAM/800CW conjugate was stable in serum and showed preserved binding capacity as evaluated on EpCAM positive and negative cell lines, using flow cytometry and cell-based plate assays. Four clinically relevant orthotopic tumour models, i.e. colorectal cancer, breast cancer, head and neck cancer, and peritonitis carcinomatosa, were used to evaluate the performance of the anti-EpCAM agent with the clinically validated Artemis imaging system. The Pearl Impulse small animal imaging system was used as reference. The specificity of the NIRF signal was confirmed using bioluminescence imaging and green-fluorescent protein. Results All tumour types could clearly be delineated and resected 72 h after injection of the imaging agent. Using NIRF imaging millimetre sized tumour nodules were detected that were invisible for the naked eye. Fluorescence microscopy demonstrated the distribution and tumour specificity of the anti-EpCAM agent. Conclusions This study shows the potential of an EpCAM specific NIR-fluorescent agent in combination with a clinically validated intraoperative imaging system to visualize various tumours during surgery.
Collapse
Affiliation(s)
- P B A A van Driel
- Department of Radiology, Division of Molecular Imaging, Leiden University Medical Centre, Leiden, Netherlands.,Percuros BV, Enschede, The Netherlands
| | - M C Boonstra
- Department of Surgery, Leiden University Medical Centre, Leiden, Netherlands
| | - H A J M Prevoo
- Department of Surgery, Leiden University Medical Centre, Leiden, Netherlands
| | - M van de Giessen
- Department of Radiology and Division of Image Processing, Leiden University Medical Centre, Leiden, Netherlands
| | - T J A Snoeks
- Department of Radiology, Division of Molecular Imaging, Leiden University Medical Centre, Leiden, Netherlands
| | - Q R J G Tummers
- Department of Surgery, Leiden University Medical Centre, Leiden, Netherlands
| | - S Keereweer
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus Medical Centre, Rotterdam, Netherlands
| | - R A Cordfunke
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, Leiden, Netherlands
| | - A Fish
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - B P F Lelieveldt
- Department of Radiology and Division of Image Processing, Leiden University Medical Centre, Leiden, Netherlands
| | - J Dijkstra
- Department of Radiology and Division of Image Processing, Leiden University Medical Centre, Leiden, Netherlands
| | - C J H van de Velde
- Department of Surgery, Leiden University Medical Centre, Leiden, Netherlands
| | - P J K Kuppen
- Department of Surgery, Leiden University Medical Centre, Leiden, Netherlands.,Antibodies for Research Applications BV, Gouda, The Netherlands
| | - A L Vahrmeijer
- Department of Surgery, Leiden University Medical Centre, Leiden, Netherlands
| | - C W G M Löwik
- Department of Radiology, Division of Molecular Imaging, Leiden University Medical Centre, Leiden, Netherlands
| | - C F M Sier
- Department of Surgery, Leiden University Medical Centre, Leiden, Netherlands. .,Antibodies for Research Applications BV, Gouda, The Netherlands.
| |
Collapse
|
16
|
Ha Y, Choi HK. Recent conjugation strategies of small organic fluorophores and ligands for cancer-specific bioimaging. Chem Biol Interact 2016; 248:36-51. [DOI: 10.1016/j.cbi.2016.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/02/2016] [Accepted: 02/08/2016] [Indexed: 01/03/2023]
|
17
|
Gilad Y, Noy E, Senderowitz H, Albeck A, Firer MA, Gellerman G. Synthesis, biological studies and molecular dynamics of new anticancer RGD-based peptide conjugates for targeted drug delivery. Bioorg Med Chem 2015; 24:294-303. [PMID: 26719208 DOI: 10.1016/j.bmc.2015.12.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/07/2015] [Accepted: 12/11/2015] [Indexed: 01/22/2023]
Abstract
New cyclic RGD peptide-anticancer agent conjugates, with different chemical functionalities attached to the parent peptide were synthesized in order to evaluate their biological activities and to provide a comparative study of their drug release profiles. The Integrin binding c(RGDfK) penta-peptide was used for the synthesis of Camptothecin (CPT) carbamate and Chlorambucil (CLB) amide conjugates. Substitution of the amino acid Lys with Ser resulted in a modified c(RGDfS) with a new attachment site, which enabled the synthesis of an ester CLB conjugate. Functional versatility of the conjugates was reflected in the variability of their drug release profiles, while the conserved RGD sequence of a selective binding to the αv integrin family, likely preserved their recognition by the Integrin and consequently their favorable toxicity towards targeted cancer cells. This hypothesis was supported by a computational analysis suggesting that all conjugates occupy conformational spaces similar to that of the Integrin bound bio-active parent peptide.
Collapse
Affiliation(s)
- Y Gilad
- Department of Biological Chemistry, Ariel University, Ariel 40700, Israel; The Julius Spokojny Bioorganic Chemistry Laboratory, Department of Chemistry, Bar Ilan University, Ramat Gan 52900, Israel
| | - E Noy
- Department of Chemistry, Bar Ilan University, Ramat Gan 52900, Israel
| | - H Senderowitz
- Department of Chemistry, Bar Ilan University, Ramat Gan 52900, Israel
| | - A Albeck
- The Julius Spokojny Bioorganic Chemistry Laboratory, Department of Chemistry, Bar Ilan University, Ramat Gan 52900, Israel
| | - M A Firer
- Department of Chemical Engineering, Ariel University, Ariel 40700, Israel
| | - G Gellerman
- Department of Biological Chemistry, Ariel University, Ariel 40700, Israel.
| |
Collapse
|
18
|
Atallah I, Milet C, Quatre R, Henry M, Reyt E, Coll JL, Hurbin A, Righini C. Role of near-infrared fluorescence imaging in the resection of metastatic lymph nodes in an optimized orthotopic animal model of HNSCC. Eur Ann Otorhinolaryngol Head Neck Dis 2015; 132:337-42. [DOI: 10.1016/j.anorl.2015.08.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
19
|
Atallah I, Milet C, Henry M, Josserand V, Reyt E, Coll JL, Hurbin A, Righini CA. Near-infrared fluorescence imaging-guided surgery improves recurrence-free survival rate in novel orthotopic animal model of head and neck squamous cell carcinoma. Head Neck 2015; 38 Suppl 1:E246-55. [PMID: 25546527 DOI: 10.1002/hed.23980] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2014] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Appropriate animal models are required to test novel therapeutics for head and neck squamous cell carcinoma (HNSCC) such as near-infrared (NIR) imaging-guided surgery. METHODS We developed an optimized animal model of orthotopic HNSCC (in female athymic NMRI (Naval Medical Research Institute) nude mice) with a prolonged survival time. Resection of the orthotopic tumors was performed 30 days after implantation with or without the aid of a miniaturized clinical grade NIR optical imaging device, after systemic administration of a fluorescent RGD-based probe that targets αv β3 integrin. RESULTS NIR optical imaging-guided surgery increased the recurrence-free survival rate by 50% through the detection of fluorescent cancer residues as small as 185 µm; these fragments could remain unidentified if resection was performed exclusively under unaided visual guidance. CONCLUSION NIR optical imaging-guided surgery showed an improved HNSCC tumor resection quality in our optimized orthotopic animal model. © 2015 Wiley Periodicals, Inc. Head Neck 38: E246-E255, 2016.
Collapse
Affiliation(s)
- Ihab Atallah
- INSERM U823, Grenoble Cedex, France.,Joseph Fourier University, Grenoble Cedex, France.,Department of Otolaryngology-Head and Neck Surgery, Grenoble University Hospital, Cedex, France
| | - Clément Milet
- INSERM U823, Grenoble Cedex, France.,Joseph Fourier University, Grenoble Cedex, France
| | - Maxime Henry
- INSERM U823, Grenoble Cedex, France.,Joseph Fourier University, Grenoble Cedex, France
| | - Véronique Josserand
- INSERM U823, Grenoble Cedex, France.,Joseph Fourier University, Grenoble Cedex, France
| | - Emile Reyt
- Joseph Fourier University, Grenoble Cedex, France.,Department of Otolaryngology-Head and Neck Surgery, Grenoble University Hospital, Cedex, France
| | - Jean-Luc Coll
- INSERM U823, Grenoble Cedex, France.,Joseph Fourier University, Grenoble Cedex, France
| | - Amandine Hurbin
- INSERM U823, Grenoble Cedex, France.,Joseph Fourier University, Grenoble Cedex, France
| | - Christian Adrien Righini
- INSERM U823, Grenoble Cedex, France.,Joseph Fourier University, Grenoble Cedex, France.,Department of Otolaryngology-Head and Neck Surgery, Grenoble University Hospital, Cedex, France
| |
Collapse
|
20
|
Jin ZH, Furukawa T, Kumata K, Xie L, Yui J, Wakizaka H, Fujibayashi Y, Zhang MR, Saga T. Development of the Fibronectin–Mimetic Peptide KSSPHSRN(SG) 5RGDSP as a Novel Radioprobe for Molecular Imaging of the Cancer Biomarker α 5β 1 Integrin. Biol Pharm Bull 2015; 38:1722-31. [DOI: 10.1248/bpb.b15-00344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Zhao-Hui Jin
- Molecular Imaging Center, National Institute of Radiological Sciences
| | - Takako Furukawa
- Molecular Imaging Center, National Institute of Radiological Sciences
| | - Katsushi Kumata
- Molecular Imaging Center, National Institute of Radiological Sciences
| | - Lin Xie
- Molecular Imaging Center, National Institute of Radiological Sciences
| | - Joji Yui
- Molecular Imaging Center, National Institute of Radiological Sciences
| | | | | | - Ming-Rong Zhang
- Molecular Imaging Center, National Institute of Radiological Sciences
| | - Tsuneo Saga
- Molecular Imaging Center, National Institute of Radiological Sciences
| |
Collapse
|
21
|
Leung SJ, Rice PS, Barton JK. In vivo molecular mapping of the tumor microenvironment in an azoxymethane-treated mouse model of colon carcinogenesis. Lasers Surg Med 2014; 47:40-9. [PMID: 25487746 DOI: 10.1002/lsm.22309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2014] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Development of miniaturized imaging systems with molecular probes enables examination of molecular changes leading to initiation and progression of colorectal cancer in an azoxymethane (AOM)-induced mouse model of the disease. Through improved and novel studies of animal disease models, more effective diagnostic and treatment strategies may be developed for clinical translation. We introduce use of a miniaturized multimodal endoscope with lavage-delivered fluorescent probes to examine dynamic microenvironment changes in an AOM-treated mouse model. STUDY DESIGN/MATERIALS AND METHODS The endoscope is equipped with optical coherence tomography (OCT) and laser induced fluorescence (LIF) imaging modalities. It is used with Cy5.5-conjugated antibodies to create time-resolved molecular maps of colon carcinogenesis. We monitored in vivo changes in molecular expression over a five month period for four biomarkers: epithelial growth factor receptor (EGFR), transferrin receptor (TfR), transforming growth factor beta 1 (TGFβ1), and chemokine (C-X-C motif) receptor 2 (CXCR2). In vivo OCT and LIF images were compared over multiple time points to correlate increases in biomarker expression with adenoma development. RESULTS This system is uniquely capable of tracking in vivo changes in molecular expression over time. Increased expression of the biomarker panel corresponded to sites of disease and offered predictive utility in highlighting sites of disease prior to detectable structural changes. Biomarker expression also tended to increase with higher tumor burden and growth rate in the colon. CONCLUSION We can use miniaturized dual modality endoscopes with fluorescent probes to study the tumor microenvironment in developmental animal models of cancer and supplement findings from biopsy and tissue harvesting.
Collapse
Affiliation(s)
- Sarah J Leung
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ
| | | | | |
Collapse
|
22
|
Ibsen S, Shi G, Schutt C, Shi L, Suico KD, Benchimol M, Serra V, Simberg D, Berns M, Esener S. The behavior of lipid debris left on cell surfaces from microbubble based ultrasound molecular imaging. ULTRASONICS 2014; 54:2090-8. [PMID: 25059435 PMCID: PMC4151124 DOI: 10.1016/j.ultras.2014.06.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 04/25/2014] [Accepted: 06/23/2014] [Indexed: 05/05/2023]
Abstract
Lipid monolayer coated microbubbles are currently being developed to identify vascular regions that express certain surface proteins as part of the new technique of ultrasound molecular imaging. The microbubbles are functionalized with targeting ligands which bind to the desired cells holding the microbubbles in place as the remaining unbound microbubbles are eliminated from circulation. Subsequent scanning with ultrasound can detect the highly reflectant microbubbles that are left behind. The ultrasound scanning and detection process results in the destruction of the microbubble, creating lipid fragments from the monolayer. Here we demonstrate that microbubbles targeted to 4T1 murine breast cancer cells and human umbilical cord endothelial cells leave behind adhered fragments of the lipid monolayer after exposure to ultrasound with peak negative pressures of 0.18 and 0.8MPa. Most of the observed fragments were large enough to be resistant to receptor mediated endocytosis. The fragments were not observed to incorporate into the lipid membrane of the cell over a period of 96min. They were not observed to break into smaller pieces or significantly change shape but they were observed to undergo translation and rotation across the cell surface as the cells migrated over the substrate. These large fragments will apparently remain on the surface of the targeted cells for significant periods of time and need to be considered for their potential effects on blood flow through the microcapillaries and potential for immune system recognition.
Collapse
Affiliation(s)
- Stuart Ibsen
- Department of Bioengineering, Moores Cancer Center, University of California San Diego, 3855 Health Sciences Dr. # 0815, La Jolla, CA 92093-0815, USA.
| | - Guixin Shi
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Carolyn Schutt
- Department of Bioengineering, Moores Cancer Center, University of California San Diego, 3855 Health Sciences Dr. # 0815, La Jolla, CA 92093-0815, USA
| | - Linda Shi
- Department of Bioengineering, Moores Cancer Center, University of California San Diego, 3855 Health Sciences Dr. # 0815, La Jolla, CA 92093-0815, USA
| | - Kyle-David Suico
- Department of Bioengineering, Moores Cancer Center, University of California San Diego, 3855 Health Sciences Dr. # 0815, La Jolla, CA 92093-0815, USA
| | - Michael Benchimol
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Viviana Serra
- Department of Bioengineering, Moores Cancer Center, University of California San Diego, 3855 Health Sciences Dr. # 0815, La Jolla, CA 92093-0815, USA
| | - Dmitri Simberg
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Michael Berns
- Department of Bioengineering, Moores Cancer Center, University of California San Diego, 3855 Health Sciences Dr. # 0815, La Jolla, CA 92093-0815, USA
| | - Sadik Esener
- Department of Nanoengineering, Moores Cancer Center, University of California at San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
23
|
Bozon-Petitprin A, Bacot S, Gauchez AS, Ahmadi M, Bourre JC, Marti-Batlle D, Perret P, Broisat A, Riou LM, Claron M, Boturyn D, Fagret D, Ghezzi C, Vuillez JP. Targeted radionuclide therapy with RAFT-RGD radiolabelled with (90)Y or (177)Lu in a mouse model of αvβ3-expressing tumours. Eur J Nucl Med Mol Imaging 2014; 42:252-63. [PMID: 25164771 DOI: 10.1007/s00259-014-2891-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/31/2014] [Indexed: 12/22/2022]
Abstract
PURPOSE The αvβ3 integrin plays an important role in tumour-induced angiogenesis, tumour proliferation, survival and metastasis. The tetrameric RGD-based peptide, regioselectively addressable functionalized template-(cyclo-[RGDfK])4 (RAFT-RGD), specifically targets the αvβ3 integrin in vitro and in vivo. The aim of this study was to evaluate the therapeutic potential of RAFT-RGD radiolabelled with β(-) emitters in a nude mouse model of αvβ3 integrin-expressing tumours. METHODS Biodistribution and SPECT/CT imaging studies were performed after injection of (90)Y-RAFT-RGD or (177)Lu-RAFT-RGD in nude mice subcutaneously xenografted with αvβ3 integrin-expressing U-87 MG cells. Experimental targeted radionuclide therapy with (90)Y-RAFT-RGD or (177)Lu-RAFT-RGD and (90)Y-RAFT-RAD or (177)Lu-RAFT-RAD (nonspecific controls) was evaluated by intravenous injection of the radionuclides into mice bearing αvβ3 integrin-expressing U-87 MG tumours of different sizes (small or large) or bearing TS/A-pc tumours that do not express αvβ3. Tumour volume doubling time was used to evaluate the efficacy of each treatment. RESULTS Injection of 37 MBq of (90)Y-RAFT-RGD into mice with large αvβ3-positive tumours or 37 MBq of (177)Lu-RAFT-RGD into mice with small αvβ3-positive tumours caused significant growth delays compared to mice treated with 37 MBq of (90)Y-RAFT-RAD or 37 MBq of (177)Lu-RAFT-RAD or untreated mice. In contrast, injection of 30 MBq of (90)Y-RAFT-RGD had no effect on the growth of αvβ3-negative tumours. CONCLUSION (90)Y-RAFT-RGD and (177)Lu-RAFT-RGD are potent agents targeting αvβ3-expressing tumours for internal targeted radiotherapy.
Collapse
|
24
|
Schutt CE, Ibsen SD, Benchimol MJ, Hsu MJ, Esener SC. Manipulating nanoscale features on the surface of dye-loaded microbubbles to increase their ultrasound-modulated fluorescence output. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:3316-3324. [PMID: 24839198 PMCID: PMC4142090 DOI: 10.1002/smll.201302786] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 01/14/2014] [Indexed: 06/03/2023]
Abstract
The nanoscale surface features of lipid-coated microbubbles can dramatically affect how the lipids interact with one another as the microbubble diameter expands and contracts under the influence of ultrasound. During microbubble manufacturing, the different lipid shell species naturally partition forming concentrated lipid islands. In this study the dynamics of how these nanoscale islands accommodate the expansion of the microbubbles are monitored by measuring the fluorescence intensity changes that occur as self-quenching lipophilic dye molecules embedded in the lipid layer change their distance from one another. It was found that when the dye molecules were concentrated in islands, less than 5% of the microbubbles displayed measurable fluorescence intensity modulation indicating the islands were not able to expand sufficiently for the dye molecules to separate from one another. When the microbubbles were heated and cooled rapidly through the lipid transition temperature the islands were melted creating an even distribution of dye about the surface. This resulted in over 50% of the microbubbles displaying the fluorescence-modulated signal indicating that the dye molecules could now separate sufficiently to change their self-quenching efficiency. The separation of the surface lipids in these different formations has significant implications for microbubble development as ultrasound and optical contrast agents.
Collapse
Affiliation(s)
- Carolyn E. Schutt
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr. MC 0412, La Jolla, CA 92093-0412
| | - Stuart D. Ibsen
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093 USA
| | - Michael J. Benchimol
- Department of Electrical & Computer Engineering, University of California San Diego, La Jolla, CA 92093 USA
| | - Mark J. Hsu
- Department of Electrical & Computer Engineering, University of California San Diego, La Jolla, CA 92093 USA
| | - Sadik C. Esener
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093 USA
| |
Collapse
|
25
|
Gravier J, Sancey L, Hirsjärvi S, Rustique E, Passirani C, Benoît JP, Coll JL, Texier I. FRET imaging approaches for in vitro and in vivo characterization of synthetic lipid nanoparticles. Mol Pharm 2014; 11:3133-44. [PMID: 25098740 DOI: 10.1021/mp500329z] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
DiI and DiD, two fluorophores able to interact by FRET (Förster resonance energy transfer), were coencapsulated in the core of lipid nanocapsules (LNCs) and nanoemulsions (LNEs), lipophilic reservoirs for the delivery of drugs. The ability of FRET imaging to provide information on the kinetics of dissociation of the nanoparticles in the presence of bovine serum albumin (BSA) or whole serum, or after incubation with cancer cells, and after systemic administration in tumor-bearing mice, was studied. Both microscopic and macroscopic imaging was performed to determine the behavior of the nanostructures in a biological environment. When 2 mg/mL FRET LNEs or LNCs were dispersed in buffer, in the presence of unloaded nanoparticles, BSA, or in whole serum, the presence of serum was the most active in destroying the particles. This occurred immediately with a diminution of 20% of FRET, then slowly, ending up with still 30% intact nanoparticles at 24 h. LNCs were internalized rapidly in cultured cells with the FRET signal decreasing within the first minutes of incubation, and then a plateau was reached and LNCs remained intact during 3 h. In contrast, LNEs were poorly internalized and were rapidly dissociated after internalization. Following their iv injection, LNCs appeared very stable in subcutaneous tumors implanted in mice. Intact particles were found using microscopic FRET determination on tumor sections 24 h after injection, that correlated well with the 8% calculated noninvasively on live animals. FRET investigations showed the potential to determine valid and reliable information about in vitro and in vivo behavior of nanoparticles.
Collapse
|
26
|
Atallah I, Milet C, Coll JL, Reyt E, Righini CA, Hurbin A. Role of near-infrared fluorescence imaging in head and neck cancer surgery: from animal models to humans. Eur Arch Otorhinolaryngol 2014; 272:2593-600. [PMID: 25115313 DOI: 10.1007/s00405-014-3224-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 07/29/2014] [Indexed: 12/18/2022]
Abstract
Complete resection of head and neck cancers with negative surgical margins improves the prognosis of the disease and decreases the recurrence rate. Near-infrared fluorescence-guided surgery of head and neck cancer is a rapidly evolving field that represents an invaluable tool for tumor detection and resection. Here, we present a literature review of the principles of near-infrared fluorescence imaging and its use in head and neck cancer surgery. We discuss important studies in both animal models and humans that have been carried out up to this point. We also outline the important fluorescent molecules and devices used in head and neck fluorescence imaging-guided surgery. Although near-infrared fluorescence-guided surgery for head and neck cancers showed efficacy in animal models, its use in humans is limited by the small number of fluorescent probes that are approved for clinical use. However, it is considered as a novel surgical aid that helps delineate tumor margins preoperatively and could spare patients from the added morbidity that is associated with additional surgery or chemoradiation. In addition, it is a useful tool to detect sentinel lymph nodes as well as metastatic lymph nodes.
Collapse
Affiliation(s)
- Ihab Atallah
- Albert Bonniot Institute, CRI INSERM/UJF U823, BP170, 38042, Grenoble Cedex 9, France,
| | | | | | | | | | | |
Collapse
|
27
|
Noninvasive and quantitative assessment of in vivo fetomaternal interface angiogenesis using RGD-based fluorescence. BIOMED RESEARCH INTERNATIONAL 2014; 2014:309082. [PMID: 25110672 PMCID: PMC4119748 DOI: 10.1155/2014/309082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 05/27/2014] [Indexed: 11/17/2022]
Abstract
Angiogenesis is a key process for proper placental development and for the success of pregnancy. Although numerous in vitro methods have been developed for the assessment of this process, relatively few reliable in vivo methods are available to evaluate this activity throughout gestation. Here we report an in vivo technique that specifically measures placental neovascularization. The technique is based on the measurement of a fluorescent alpha v beta 3 (αvβ3) integrin-targeting molecule called Angiolone-Alexa-Fluor 700. The αvβ3 integrin is highly expressed by endothelial cells during the neovascularization and by trophoblast cells during their invasion of the maternal decidua. Angiolone was injected to gravid mice at 6.5 and 11.5 days post coitus (dpc). The fluorescence was analyzed one day later at 7.5 and 12.5 dpc, respectively. We demonstrated that (i) Angiolone targets αvβ3 protein in the placenta with a strong specificity, (ii) this technique is quantitative as the measurement was correlated to the increase of the placental size observed with increasing gestational age, and (iii) information on the outcome is possible, as abnormal placentation could be detected early on during gestation. In conclusion, we report the validation of a new noninvasive and quantitative method to assess the placental angiogenic activity, in vivo.
Collapse
|
28
|
Raissi AJ, Scangarello FA, Hulce KR, Pontrello JK, Paradis S. Enhanced potency of the metalloprotease inhibitor TAPI-2 by multivalent display. Bioorg Med Chem Lett 2014; 24:2002-7. [PMID: 24581919 PMCID: PMC4043442 DOI: 10.1016/j.bmcl.2014.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/27/2014] [Accepted: 02/04/2014] [Indexed: 11/25/2022]
Abstract
Metalloproteases regulate a vast array of critical cellular processes such as proliferation, migration, repair, and invasion/metastasis. In so doing, metalloproteases have been shown to play key roles in the pathogenesis of multiple disorders including arteriosclerosis, arthritis, cancer metastasis, and ischemic brain injury. Therefore, much work has focused on developing metalloprotease inhibitors to provide a potential therapeutic benefit against the progression of these and other diseases. In order to produce a more potent inhibitor of metalloproteases, we synthesized multivalent displays of a metalloprotease inhibitor derived from the ring-opening metathesis polymerization (ROMP). Specifically, multivalent ligands of a broad-spectrum metalloprotease inhibitor, TAPI-2, were generated upon conjugation of the amine-bearing inhibitor with the ROMP-derived N-hydroxysuccinimide ester polymer. By monitoring the metalloprotease dependent cleavage of the transmembrane protein Semaphorin4D (Sema4D), we demonstrated an enhancement of inhibition by multivalent TAPI-2 compared to monovalent TAPI-2. To further optimize the potency of the multivalent inhibitor, we systematically varied the polymer length and inhibitor ligand density (mole fraction, χ). We observed that while ligand density plays a modest role in the potency of inhibition caused by the multivalent TAPI-2 display, the length of the polymer produces a much greater effect on inhibitor potency, with the shortest polymer achieving the greatest level of inhibition. These findings validate the use of multivalent display to enhance the potency of metalloprotease inhibitors and further, suggest this may be a useful approach to enhance potency of other small molecule towards their targets.
Collapse
Affiliation(s)
- Aram J Raissi
- Department of Biology, National Center for Behavioral Genomics, and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02454, United States
| | - Frank A Scangarello
- Department of Biology, National Center for Behavioral Genomics, and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02454, United States; Department of Chemistry, Brandeis University, Waltham, MA 02454, United States
| | - Kaitlin R Hulce
- Department of Chemistry, Brandeis University, Waltham, MA 02454, United States
| | - Jason K Pontrello
- Department of Chemistry, Brandeis University, Waltham, MA 02454, United States.
| | - Suzanne Paradis
- Department of Biology, National Center for Behavioral Genomics, and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02454, United States.
| |
Collapse
|
29
|
Noninvasive and quantitative assessment of in vivo angiogenesis using RGD-based fluorescence imaging of subcutaneous sponges. Mol Imaging Biol 2014; 15:239-44. [PMID: 23054555 DOI: 10.1007/s11307-012-0595-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE There is a real need to adapt simple and reproducible imaging methodologies to evaluate noninvasively pro- and antiangiogenic activities of new treatments in a physiological context in mice. PROCEDURE The angiogenic response to fibroblast growth factor 2 (FGF-2) in a model of subcutaneously implanted cellulose sponges was measured in parallel after an intravenous injection of a fluorescent αvβ3 integrin-targeting molecule (Angiolone(TM)) and an fluorescence diffuse optical tomography optical imaging system and by measuring the hemoglobin content in the sponges. RESULTS Optical measurements of angiogenesis correlated perfectly with the values obtained using hemoglobin quantification. This assay can be used to follow the activity of a pro- or antiangiogenic treatment like demonstrated after FGF-2 or angiostatin, respectively. CONCLUSION The perfectly controlled quality of cellulose sponges combined to this noninvasive optical method allow rapid, accurate, and reproducible measurements of angiogenic activities in vivo at the preclinical level.
Collapse
|
30
|
Effect of particle size on the biodistribution of lipid nanocapsules: Comparison between nuclear and fluorescence imaging and counting. Int J Pharm 2013; 453:594-600. [DOI: 10.1016/j.ijpharm.2013.05.057] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 05/28/2013] [Indexed: 01/09/2023]
|
31
|
Hirsjärvi S, Dufort S, Bastiat G, Saulnier P, Passirani C, Coll JL, Benoît JP. Surface modification of lipid nanocapsules with polysaccharides: from physicochemical characteristics to in vivo aspects. Acta Biomater 2013; 9:6686-93. [PMID: 23395817 DOI: 10.1016/j.actbio.2013.01.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 01/27/2013] [Accepted: 01/30/2013] [Indexed: 11/26/2022]
Abstract
Attaching polysaccharides to the surface of nanoparticles offers the possibility of modifying the physicochemical and biological properties of the core particles. The surface of lipid nanocapsules (LNCs) was modified by post-insertion of amphiphilic lipochitosan (LC) or lipodextran (LD). Modelling of these LNCs by the drop tensiometer technique revealed that the positively charged LC made the LNC surface more rigid, whereas the neutral, higher M(W) LD had no effect on the surface elasticity. Both LNC-LC and LNC-LD activated the complement system more than the blank LNC, thus suggesting increased capture by the mononuclear phagocyte system. In vitro, the positively charged LNC-LC were more efficiently bound by the model HEK293(β3) cells compared to LNC and LNC-LD. Finally, it was observed that neither LC nor LD changed the in vivo biodistribution properties of LNCs in mice. These polysaccharide-coated LNCs, especially LNC-LC, are promising templates for targeting ligands (e.g. peptides, proteins) or therapeutic molecules (e.g. siRNA).
Collapse
|
32
|
Hirsjärvi S, Dufort S, Gravier J, Texier I, Yan Q, Bibette J, Sancey L, Josserand V, Passirani C, Benoit JP, Coll JL. Influence of size, surface coating and fine chemical composition on the in vitro reactivity and in vivo biodistribution of lipid nanocapsules versus lipid nanoemulsions in cancer models. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:375-87. [DOI: 10.1016/j.nano.2012.08.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 07/14/2012] [Accepted: 08/08/2012] [Indexed: 10/27/2022]
|
33
|
Jiang L, Greenwood TR, Amstalden van Hove ER, Chughtai K, Raman V, Winnard PT, Heeren R, Artemov D, Glunde K. Combined MR, fluorescence and histology imaging strategy in a human breast tumor xenograft model. NMR IN BIOMEDICINE 2013; 26:285-298. [PMID: 22945331 PMCID: PMC4162316 DOI: 10.1002/nbm.2846] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 07/25/2012] [Accepted: 07/26/2012] [Indexed: 05/29/2023]
Abstract
Applications of molecular imaging in cancer and other diseases frequently require the combination of in vivo imaging modalities, such as MR and optical imaging, with ex vivo optical, fluorescence, histology and immunohistochemical imaging to investigate and relate molecular and biological processes to imaging parameters within the same region of interest. We have developed a multimodal image reconstruction and fusion framework that accurately combines in vivo MRI and MRSI, ex vivo brightfield and fluorescence microscopic imaging and ex vivo histology imaging. Ex vivo brightfield microscopic imaging was used as an intermediate modality to facilitate the ultimate link between ex vivo histology and in vivo MRI/MRSI. Tissue sectioning necessary for optical and histology imaging required the generation of a three-dimensional reconstruction module for two-dimensional ex vivo optical and histology imaging data. We developed an external fiducial marker-based three-dimensional reconstruction method, which was able to fuse optical brightfield and fluorescence with histology imaging data. The registration of the three-dimensional tumor shape was pursued to combine in vivo MRI/MRSI and ex vivo optical brightfield and fluorescence imaging data. This registration strategy was applied to in vivo MRI/MRSI, ex vivo optical brightfield/fluorescence and histology imaging datasets obtained from human breast tumor models. Three-dimensional human breast tumor datasets were successfully reconstructed and fused with this platform.
Collapse
Affiliation(s)
- Lu Jiang
- The Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tiffany R. Greenwood
- The Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Kamila Chughtai
- FOM-Institute for Atomic and Molecular Physics, Amsterdam, The Netherlands
| | - Venu Raman
- The Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Paul T. Winnard
- The Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ron Heeren
- FOM-Institute for Atomic and Molecular Physics, Amsterdam, The Netherlands
| | - Dmitri Artemov
- The Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kristine Glunde
- The Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
34
|
Bianchi A, Lux F, Tillement O, Crémillieux Y. Contrast enhanced lung MRI in mice using ultra-short echo time radial imaging and intratracheally administrated Gd-DOTA-based nanoparticles. Magn Reson Med 2012; 70:1419-26. [PMID: 23233439 DOI: 10.1002/mrm.24580] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 10/08/2012] [Accepted: 11/11/2012] [Indexed: 12/20/2022]
Abstract
PURPOSE To investigate the in vivo T1 -enhancement of the lung parenchyma in free-breathing healthy mice following intratracheal administration of Gd-DOTA-based nanoparticles, to assess the enhancement kinetics of the instilled contrast medium and to identify its elimination pathways. METHODS Ultrashort Echo Time (276 μs) proton MRI of the lung was performed (N = 14) at 4.7 T after the intratracheal instillation of 50 μL of seven different concentrations of contrast agent solution (from 2 to 100 mM of Gd(3+) ). The signal enhancement (SE) in lungs, blood, liver, kidneys, and bladder was assessed (N = 3) for a 50 mM concentration solution at different time points. RESULTS The largest SE in lungs (266 ± 14%) was observed for a 50 mM solution of Gd(3+) . In lungs, the SE was observed to decay exponentially with a time constant of 149 ± 51 min. The passage of the nanoparticles from lung tissue to blood and kidneys, and ultimately to the bladder, was observed. No significant hepatic enhancement was measured. CONCLUSION This study demonstrates the feasibility of large SEs of lung tissue using intratracheally administrated solutions of Gd-based contrast agents. In future applications, the SE in lungs could be used to image the biodistribution of coadministrated drug aerosols or to selectively enhance lung diseased tissues.
Collapse
Affiliation(s)
- Andrea Bianchi
- Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Université Bordeaux Segalen, Bordeaux, France
| | | | | | | |
Collapse
|
35
|
Wenk CHF, Ponce F, Guillermet S, Tenaud C, Boturyn D, Dumy P, Watrelot-Virieux D, Carozzo C, Josserand V, Coll JL. Near-infrared optical guided surgery of highly infiltrative fibrosarcomas in cats using an anti-αvß3 integrin molecular probe. Cancer Lett 2012. [PMID: 23200675 DOI: 10.1016/j.canlet.2012.10.041] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We investigated how near-infrared imaging could improve highly infiltrative spontaneous fibrosarcoma surgery in 12 cats in a clinical veterinary phase. We used an RGD-based nanoprobe at different doses and times before surgery and a portable clinical grade imaging system. All tumours were labelled by the tracer and had an overall tumour-to-healthy tissue ratio of 14±1 during surgery. No false negatives were found, and the percentage of tumour cells was linearly correlated with the fluorescence intensity. All cats recovered well and were submitted to long-term follow-up that is currently on-going 1year after the beginning of the study.
Collapse
Affiliation(s)
- Christiane H F Wenk
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 823, Institut Albert Bonniot, Grenoble, France; Université Joseph Fourier (UJF), Grenoble, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Yuan A, Wu J, Tang X, Zhao L, Xu F, Hu Y. Application of near-infrared dyes for tumor imaging, photothermal, and photodynamic therapies. J Pharm Sci 2012; 102:6-28. [PMID: 23132644 DOI: 10.1002/jps.23356] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 09/28/2012] [Accepted: 10/10/2012] [Indexed: 01/12/2023]
Abstract
Near-infrared (NIR) dyes, small organic molecules that function in the NIR region, have received increasing attention in recent years as diagnostic and therapeutic agents in the field of tumor research. They have been demonstrated great successes in imaging and treating tumors both in vitro and in vivo. And their different applications in clinical practices have made rapid gains. This review primarily focuses on the progress of the application of NIR dyes in tumor imaging and therapy. In particular, advances in the use of different NIR dyes in tumor-specific imaging, photothermal, and photodynamic therapies are discussed. Limitations and prospects associated with NIR dyes in diagnostic and therapeutic application are also reviewed.
Collapse
Affiliation(s)
- Ahu Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, P.R. China
| | | | | | | | | | | |
Collapse
|
37
|
Wang JW, Valentijn JA, Valentijn KM, Dragt BS, Voorberg J, Reitsma PH, Eikenboom J. Formation of platelet-binding von Willebrand factor strings on non-endothelial cells. J Thromb Haemost 2012; 10:2168-78. [PMID: 22905953 DOI: 10.1111/j.1538-7836.2012.04891.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Von Willebrand factor (VWF) forms strings on activated vascular endothelial cells that recruit platelets and initiate clot formation. Alterations in VWF strings may disturb hemostasis. This study was aimed at developing a flexible model system for structure-function studies of VWF strings. METHODS VWF strings were generated by inducing exocytosis of pseudo-Weibel-Palade bodies from VWF-transfected HEK293 cells, and the properties of these strings under static conditions and under flow were characterized. RESULTS Upon exocytosis, VWF unfurled into strings several hundred micrometers in length. These strings could form bundles and networks, and bound platelets under flow, resembling authentic endothelial VWF strings. Anchorage of the platelet-decorated VWF strings was independent of P-selectin and integrin α(V) β(3). Translocation of platelets along the strings, elongation and fragmentation of the strings frequently occurred under flow. Furthermore, VWF variants with the p.Tyr87Ser and p.Cys2773Ser mutations, which are defective in multimer assembly, did not give rise to VWF strings. Also, insertion of the green fluorescent protein into VWF inhibited string formation. CONCLUSIONS HEK293 cells provide a flexible and useful model system for the study of VWF string formation. Our results suggest that structural changes in VWF may modulate string formation and function, and contribute to hemostatic disorders.
Collapse
Affiliation(s)
- J W Wang
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, the Netherlands.
| | | | | | | | | | | | | |
Collapse
|
38
|
Christie RJ, Matsumoto Y, Miyata K, Nomoto T, Fukushima S, Osada K, Halnaut J, Pittella F, Kim HJ, Nishiyama N, Kataoka K. Targeted polymeric micelles for siRNA treatment of experimental cancer by intravenous injection. ACS NANO 2012; 6:5174-5189. [PMID: 22575090 DOI: 10.1021/nn300942b] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Small interfering ribonucleic acid (siRNA) cancer therapies administered by intravenous injection require a delivery system for transport from the bloodstream into the cytoplasm of diseased cells to perform the function of gene silencing. Here we describe nanosized polymeric micelles that deliver siRNA to solid tumors and elicit a therapeutic effect. Stable multifunctional micelle structures on the order of 45 nm in size formed by spontaneous self-assembly of block copolymers with siRNA. Block copolymers used for micelle formation were designed and synthesized to contain three main features: a siRNA binding segment containing thiols, a hydrophilic nonbinding segment, and a cell-surface binding peptide. Specifically, poly(ethylene glycol)-block-poly(L-lysine) (PEG-b-PLL) comprising lysine amines modified with 2-iminothiolane (2IT) and the cyclo-Arg-Gly-Asp (cRGD) peptide on the PEG terminus was used. Modification of PEG-b-PLL with 2IT led to improved control of micelle formation and also increased stability in the blood compartment, while installation of the cRGD peptide improved biological activity. Incorporation of siRNA into stable micelle structures containing the cRGD peptide resulted in increased gene silencing ability, improved cell uptake, and broader subcellular distribution in vitro and also improved accumulation in both the tumor mass and tumor-associated blood vessels following intravenous injection into mice. Furthermore, stable and targeted micelles inhibited the growth of subcutaneous HeLa tumor models and demonstrated gene silencing in the tumor mass following treatment with antiangiogenic siRNAs. This new micellar nanomedicine could potentially expand the utility of siRNA-based therapies for cancer treatments that require intravenous injection.
Collapse
Affiliation(s)
- R James Christie
- Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Jin ZH, Furukawa T, Claron M, Boturyn D, Coll JL, Fukumura T, Fujibayashi Y, Dumy P, Saga T. Positron emission tomography imaging of tumor angiogenesis and monitoring of antiangiogenic efficacy using the novel tetrameric peptide probe 64Cu-cyclam-RAFT-c(-RGDfK-)4. Angiogenesis 2012; 15:569-80. [PMID: 22644563 PMCID: PMC3496517 DOI: 10.1007/s10456-012-9281-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 05/08/2012] [Indexed: 02/06/2023]
Abstract
64Cu-cyclam-RAFT-c(-RGDfK-)4 is a novel multimeric positron emission tomography (PET) probe for αVβ3 integrin imaging. Its uptake and αVβ3 expression in tumors showed a linear correlation. Since αVβ3 integrin is strongly expressed on activated endothelial cells during angiogenesis, we aimed to determine whether 64Cu-cyclam-RAFT-c(-RGDfK-)4 PET can be used to image tumor angiogenesis and monitor the antiangiogenic effect of a novel multi-targeted tyrosine kinase inhibitor, TSU-68. Athymic nude mice bearing human hepatocellular carcinoma HuH-7 xenografts, which expressed negligible αVβ3 levels on the tumor cells, received intraperitoneal injections of TSU-68 or the vehicle for 14 days. Antiangiogenic effects were determined at the end of therapy in terms of 64Cu-cyclam-RAFT-c(-RGDfK-)4 uptake evaluated using PET, biodistribution assay, and autoradiography, and they were compared with microvessel density (MVD) determined by CD31 immunostaining. 64Cu-cyclam-RAFT-c(-RGDfK-)4 PET enabled clear tumor visualization by targeting the vasculature, and the biodistribution assay indicated high tumor-to-blood and tumor-to-muscle ratios of 31.6 ± 6.3 and 6.7 ± 1.1, respectively, 3 h after probe injection. TSU-68 significantly slowed tumor growth and reduced MVD; these findings were consistent with a significant reduction in the tumor 64Cu-cyclam-RAFT-c(-RGDfK-)4 uptake. Moreover, a linear correlation was observed between tumor MVD and the corresponding standardized uptake value (SUV) (r = 0.829, P = 0.011 for SUVmean; r = 0.776, P = 0.024 for SUVmax) determined by quantitative PET. Autoradiography and immunostaining showed that the distribution of intratumoral radioactivity and tumor vasculature corresponded. We concluded that 64Cu-cyclam-RAFT-c(-RGDfK-)4 PET can be used for in vivo angiogenesis imaging and monitoring of tumor response to antiangiogenic therapy.
Collapse
Affiliation(s)
- Zhao-Hui Jin
- Molecular Imaging Center, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba, 263-8555, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Briat A, Wenk CHF, Ahmadi M, Claron M, Boturyn D, Josserand V, Dumy P, Fagret D, Coll JL, Ghezzi C, Sancey L, Vuillez JP. Reduction of renal uptake of 111In-DOTA-labeled and A700-labeled RAFT-RGD during integrin αvβ3 targeting using single photon emission computed tomography and optical imaging. Cancer Sci 2012; 103:1105-10. [PMID: 22448775 DOI: 10.1111/j.1349-7006.2012.02286.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 03/05/2012] [Accepted: 03/07/2012] [Indexed: 11/27/2022] Open
Abstract
Integrin α(v)β(3) expression is upregulated during tumor growth and invasion in newly formed endothelial cells in tumor neovasculature and in some tumor cells. A tetrameric RGD-based peptide, regioselectively addressable functionalized template-(cyclo-[RGDfK])4 (RAFT-RGD), specifically targets integrin α(v)β(3) in vitro and in vivo. When labeled with indium-111, the RAFT-RGD is partially reabsorbed and trapped in the kidneys, limiting its use for further internal targeted radiotherapy and imaging investigations. We studied the effect of Gelofusine on RAFT-RGD renal retention in tumor-bearing mice. Mice were imaged using single photon emission computed tomography and optical imaging 1 and 24 h following tracer injection. Distribution of RAFT-RGD was further investigated by tissue removal and direct counting of the tracer. Kidney sections were analyzed by confocal microscopy. Gelofusine significantly induced a >50% reduction of the renal reabsorption of (111)In-DOTA-RAFT-RGD and A700-RAFT-RGD, without affecting tumor uptake. Injection of Gelofusine significantly reduced the renal retention of labeled RAFT-RGD, while increasing the tumor over healthy tissue ratio. These results will lead to the development of future therapeutic approaches.
Collapse
Affiliation(s)
- Arnaud Briat
- INSERM U877, Radiopharmaceutiques Biocliniques, Grenoble, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wu F, Bhansali SG, Tamhane M, Kumar R, Vathy LA, Ding H, Yong KT, Bergey EJ, Prasad PN, Morris ME. Noninvasive real-time fluorescence imaging of the lymphatic uptake of BSA-IRDye 680 conjugate administered subcutaneously in mice. J Pharm Sci 2012; 101:1744-54. [PMID: 22262501 DOI: 10.1002/jps.23058] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 12/22/2011] [Accepted: 01/04/2012] [Indexed: 01/18/2023]
Abstract
The goal of our studies was to determine lymphatic uptake of bovine serum albumin (BSA) using real-time noninvasive fluorescence imaging. BSA labeled with near-infrared dye (IRDye) 680 was used as a model protein-dye conjugate. The conjugation of BSA with IRDye 680 was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Size-exclusion high-performance liquid chromatography and SDS-PAGE demonstrated that the IRDye 680-labeled BSA conjugate in the lymph node (LN) homogenate samples was stable at physiological temperature (37°C) for at least 5 days. Whole-body noninvasive optical imaging of hairless SKH-1 mice was performed after subcutaneous (s.c.) injection (dose = 0.1 mg/kg) into the front footpad. Noninvasive fluorescence imaging demonstrated that BSA-IRDye 680 conjugates were dynamically taken up by the lymphatic system, accumulated in the axillary LNs and then cleared, indicating that lymphatic transport plays a role in the absorption of BSA. Ex vivo tissue imaging of LN homogenates provided confirmatory data with respect to the uptake of fluorescent-labeled BSA determined by in vivo imaging. Noninvasive real-time imaging of LNs provides a novel tool for evaluating uptake and accumulation of fluorescent-labeled proteins by the lymphatic system after s.c. injection in a mouse model.
Collapse
Affiliation(s)
- Fang Wu
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Amherst, New York 14260, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Reul R, Tsapis N, Hillaireau H, Sancey L, Mura S, Recher M, Nicolas J, Coll JL, Fattal E. Near infrared labeling of PLGA for in vivo imaging of nanoparticles. Polym Chem 2012. [DOI: 10.1039/c2py00520d] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
43
|
Luo S, Zhang E, Su Y, Cheng T, Shi C. A review of NIR dyes in cancer targeting and imaging. Biomaterials 2011; 32:7127-38. [PMID: 21724249 DOI: 10.1016/j.biomaterials.2011.06.024] [Citation(s) in RCA: 988] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Accepted: 06/09/2011] [Indexed: 11/29/2022]
Abstract
The development of multifunctional agents for simultaneous tumor targeting and near infrared (NIR) fluorescence imaging is expected to have significant impact on future personalized oncology owing to the very low tissue autofluorescence and high tissue penetration depth in the NIR spectrum window. Cancer NIR molecular imaging relies greatly on the development of stable, highly specific and sensitive molecular probes. Organic dyes have shown promising clinical implications as non-targeting agents for optical imaging in which indocyanine green has long been implemented in clinical use. Recently, significant progress has been made on the development of unique NIR dyes with tumor targeting properties. Current ongoing design strategies have overcome some of the limitations of conventional NIR organic dyes, such as poor hydrophilicity and photostability, low quantum yield, insufficient stability in biological system, low detection sensitivity, etc. This potential is further realized with the use of these NIR dyes or NIR dye-encapsulated nanoparticles by conjugation with tumor specific ligands (such as small molecules, peptides, proteins and antibodies) for tumor targeted imaging. Very recently, natively multifunctional NIR dyes that can preferentially accumulate in tumor cells without the need of chemical conjugation to tumor targeting ligands have been developed and these dyes have shown unique optical and pharmaceutical properties for biomedical imaging with superior signal-to-background contrast index. The main focus of this article is to provide a concise overview of newly developed NIR dyes and their potential applications in cancer targeting and imaging. The development of future multifunctional agents by combining targeting, imaging and even therapeutic routes will also be discussed. We believe these newly developed multifunctional NIR dyes will broaden current concept of tumor targeted imaging and hold promise to make an important contribution to the diagnosis and therapeutics for the treatment of cancer.
Collapse
Affiliation(s)
- Shenglin Luo
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | | | | | | | | |
Collapse
|
44
|
Mery E, Jouve E, Guillermet S, Bourgognon M, Castells M, Golzio M, Rizo P, Delord JP, Querleu D, Couderc B. Intraoperative fluorescence imaging of peritoneal dissemination of ovarian carcinomas. A preclinical study. Gynecol Oncol 2011; 122:155-62. [DOI: 10.1016/j.ygyno.2011.02.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 01/27/2011] [Accepted: 02/25/2011] [Indexed: 11/30/2022]
|
45
|
Montcuquet AS, Hervé L, Navarro F, Dinten JM, Mars JI. In vivo fluorescence spectra unmixing and autofluorescence removal by sparse nonnegative matrix factorization. IEEE Trans Biomed Eng 2011; 58:2554-65. [PMID: 21672672 DOI: 10.1109/tbme.2011.2159382] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fluorescence imaging locates fluorescent markers that specifically bind to targets; like tumors, markers are injected to a patient, optimally excited with near-infrared light, and located thanks to backward-emitted fluorescence analysis. To investigate thick and diffusive media, as the fluorescence signal decreases exponentially with the light travel distance, the autofluorescence of biological tissues comes to be a limiting factor. To remove autofluorescence and isolate specific fluorescence, a spectroscopic approach, based on nonnegative matrix factorization (NMF), is explored. To improve results on spatially sparse markers detection, we suggest a new constrained NMF algorithm that takes sparsity constraints into account. A comparative study between both algorithms is proposed on simulated and in vivo data.
Collapse
|
46
|
Jin ZH, Furukawa T, Galibert M, Boturyn D, Coll JL, Fukumura T, Saga T, Dumy P, Fujibayashi Y. Noninvasive visualization and quantification of tumor αVβ3 integrin expression using a novel positron emission tomography probe, 64Cu-cyclam-RAFT-c(-RGDfK-)4. Nucl Med Biol 2011; 38:529-40. [PMID: 21531290 DOI: 10.1016/j.nucmedbio.2010.11.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/01/2010] [Accepted: 11/11/2010] [Indexed: 11/27/2022]
Abstract
INTRODUCTION The α(V)β(3) integrin is a well-known transmembrane receptor involved in tumor invasion, angiogenesis and metastasis. Our aim was to evaluate a novel positron emission tomography (PET) probe, (64)Cu-cyclam-RAFT-c(-RGDfK-)(4), for noninvasive visualization and quantification of α(V)β(3) integrin expression. METHODS RAFT-c(-RGDfK-)(4), a tetrameric cyclic Arg-Gly-Asp (RGD)-based peptide, was conjugated with a bifunctional chelator, 1,4,8,11-tetraazacyclotetradecane (cyclam), radiolabeled with the positron emitter (64)Cu and evaluated in vitro by cell binding and competitive inhibition assays and in vivo by biodistribution and receptor blocking studies, and PET imaging. The following cell lines, human embryonic kidney HEK293(β(1)) [α(V)β(3)-negative] and HEK293(β(3)) [α(V)β(3)-overexpressing] and human glioblastoma U87MG [naturally expressing α(V)β(3)], together with their subcutaneous xenografts in athymic nude mice, were used for the present study. The expression levels of α(V)β(3) on these cell lines and tumor xenografts were analyzed by flow cytometry and sodium dodecyl sulfate-polyacrylamide gel electrophoresis/autoradiography, respectively. RESULTS (64)Cu-cyclam-RAFT-c(-RGDfK-)(4) demonstrated the in vitro and in vivo specificity for the α(V)β(3) integrin and displayed rapid blood clearance, predominantly renal excretion and low uptake in nontumor tissues. Tumor uptake of (64)Cu-cyclam-RAFT-c(-RGDfK-)(4) (3 h postinjection) in HEK293(β(3)) (high levels of α(V)β(3)), U87MG (moderate levels of α(V)β(3)) and HEK293(β(1)) (undetectable levels of α(V)β(3)) tumors was 9.35%±1.19%, 3.46%±0.45% and 1.18%±0.30% injected dose per gram, respectively, with a strong and positive correlation with the tumor α(V)β(3) expression levels (correlation coefficient=0.967; P<.0001). Positron emission tomographic images showed that α(V)β(3)-positive tumors were clearly visualized with high tumor-to-background contrast, and agreed well with the biodistribution results. CONCLUSION (64)Cu-cyclam-RAFT-c(-RGDfK-)(4) exhibits potential for noninvasively quantifying α(V)β(3) expression.
Collapse
Affiliation(s)
- Zhao-Hui Jin
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Imaging of αvβ3 expression in malignant diseases has been extensively studied in the last years, mainly because the level of integrin αvβ3 expression might be a surrogate parameter of angiogenic activity. Most studies have been performed using preclinical tumor models but recently first results if imaging αvβ3 expression in patients have been published. The first approach used was the radiotracer approach with tracers for positron emission tomography (PET) like [(18)F]Galacto-RGD or tracers for single photon emission computed tomography (SPECT) like [(99m)Tc]NC100692. In this article we will focus on the experimental design and methodology of PET imaging of αvβ3 expression with the tracer [(18)F]Galacto-RGD. Common difficulties and pitfalls in image acquisition and interpretation will be discussed. Finally, the performance of PET will be compared to other methods of imaging of αvβ3 expression, like magnetic resonance imaging, ultrasound, or optical imaging.
Collapse
Affiliation(s)
- Ambros J Beer
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany.
| | | |
Collapse
|
48
|
Welsh DJ, Smith DK. Comparing dendritic and self-assembly strategies to multivalency—RGD peptide–integrin interactions. Org Biomol Chem 2011; 9:4795-801. [DOI: 10.1039/c1ob05241a] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
49
|
Dufort S, Sancey L, Hurbin A, Foillard S, Boturyn D, Dumy P, Coll JL. Targeted delivery of a proapoptotic peptide to tumors in vivo. J Drug Target 2010; 19:582-8. [PMID: 21182462 DOI: 10.3109/1061186x.2010.542245] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
RGD peptides recognize the α(v)β(3) integrin, a receptor that is overexpressed on the surface of both tumor blood vessels and cancerous cells. These peptides are powerful tools that act as single antiangiogenic molecules, but recently also have been used for tumor imaging and drug targeting. We designed the molecule RAFT-(c[-RGDfK-])(4), a constrained and chemically defined entity that can be produced at clinical-grade quality. This scaffold was covalently coupled via a labile bridge to the proapoptotic peptide (KLAKLAK)(2) (RAFT-RGD-KLA). A fluorescent, activatable probe was also introduced, allowing intracellular localization. At 2.5 µM, this molecule induced the intracellular release of an active KLA peptide, which in turn caused mitochondrial depolarization and cell death in vitro in tumor cells. In a mouse model, the RAFT-RGD-KLA peptide was found to prevent the growth of remote subcutaneous tumors. This study demonstrated that the antitumor peptide is capable of killing tumor cells in an RGD-dependent manner, thus lowering the nonspecific cytotoxic effects expected to occur when using cationic cytotoxic peptides. Thus, this chemistry is suitable for the design of complex, multifunctional molecules that can be used for both imaging and therapeutics, representing the next generation of perfectly controlled, targeted drug-delivery systems.
Collapse
|
50
|
Kagadis GC, Loudos G, Katsanos K, Langer SG, Nikiforidis GC. In vivosmall animal imaging: Current status and future prospects. Med Phys 2010; 37:6421-42. [DOI: 10.1118/1.3515456] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|