1
|
Chu LW, Chen JY, Chen YW, Hsieh S, Kung ML. Phytoconstituent-derived zingerone nanoparticles disrupt the cell adhesion mechanism and suppress cell motility in melanoma B16F10 cells. J Biotechnol 2024; 392:48-58. [PMID: 38906221 DOI: 10.1016/j.jbiotec.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/18/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Combining phytochemicals and nanotechnology to improve the unfavorable innate properties of phytochemicals and develop them into potent nanomedicines to enhance antitumor efficacy has become a novel strategy for cancer chemoprevention. Melanoma is the most aggressive, metastatic, and deadly disease of the primary cutaneous neoplasms. In this study, we fabricated phytoconstituent-derived zingerone nanoparticles (NPs) and validated their effects on cell adhesion and motility in melanoma B16F10 cells. Our data indicated that zingerone NPs significantly induced cytotoxicity and anti-colony formation and inhibited cell migration and invasion. Moreover, zingerone NPs dramatically interfered with the cytoskeletal reorganization and markedly delayed the period of cell adhesion. Our results also revealed that zingerone NPs-mediated downregulation of MMPs (matrix metalloproteinases) activity is associated with inhibiting cell adhesion and motility. We further evaluated the effects of zingerone NPs on Src/FAK /Paxillin signaling, our data showed that zingerone NPs significantly inhibited the protein activities of Src, FAK, and Paxillin, indicating that they play important roles in zingerone NP-mediated anti-motility and anti-invasion in melanoma cells. Accordingly, the phytoconstituent-zingerone NPs can strengthen the inhibition of tumor growth, invasion, and metastasis in malignant melanoma. Altogether, these multi-pharmacological benefits of zingerone NPs will effectively achieve the purpose of melanoma prevention and invasion inhibition.
Collapse
Affiliation(s)
- Li-Wen Chu
- Department of Nursing, and Department of Cosmetic Application and Management, Yuh-Ing Junior College of Health Care and Management, Kaohsiung, Taiwan
| | - Jun-Yih Chen
- Division of Neurosurgery, Fooyin University Hospital, Pingtung, Taiwan; Department of Nursing, Fooyin University, Kaohsiung, Taiwan
| | - Yun-Wen Chen
- Departments of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shuchen Hsieh
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Mei-Lang Kung
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
2
|
Keshavarz Shahbaz S, Koushki K, Izadi O, Penson PE, Sukhorukov VN, Kesharwani P, Sahebkar A. Advancements in curcumin-loaded PLGA nanoparticle delivery systems: progressive strategies in cancer therapy. J Drug Target 2024:1-26. [PMID: 39106154 DOI: 10.1080/1061186x.2024.2389892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
Cancer is a leading cause of death worldwide, and imposes a substantial socioeconomic burden with little impact especially on aggressive types of cancer. Conventional therapies have many serious side effects including generalised systemic toxicity which limits their long-term use. Tumour resistance and recurrence is another main problem associated with conventional therapy. Purified or extracted natural products have been investigated as cost-effective cancer chemoprotective agents with the potential to reverse or delaying carcinogenesis. Curcumin (CUR) as a natural polyphenolic component, exhibits many pharmacological activities such as anti-cancer, anti-inflammatory, anti-microbial, activity against neurodegenerative diseases including Alzheimer, antidiabetic activities (type II diabetes), anticoagulant properties, wound healing effects in both preclinical and clinical studies. Despite these effective protective properties, CUR has several limitations, including poor aqueous solubility, low bioavailability, chemical instability, rapid metabolism and a short half-life time. To overcome the pharmaceutical problems associated with free CUR, novel nanomedicine strategies (including polymeric nanoparticles (NPs) such as poly (lactic-co-glycolic acid) (PLGA) NPs have been developed. These formulations have the potential to improve the therapeutic efficacy of curcuminoids. In this review, we comprehensively summarise and discuss recent in vitro and in vivo studies to explore the pharmaceutical significance and clinical benefits of PLGA-NPs delivery system to improve the efficacy of CUR in the treatment of cancer.
Collapse
Affiliation(s)
- Sanaz Keshavarz Shahbaz
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
- USERN Office, Qazvin University of Medical Science, Qazvin, Iran
| | - Khadijeh Koushki
- Department of Neurosurgery, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Omid Izadi
- Department of Industrial Engineering, ACECR Institute of Higher Education Kermanshah, Kermanshah, Iran
| | - Peter E Penson
- Clinical Pharmacy and Therapeutics Research Group, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
- Liverpool Centre for Cardiovascular Science, Liverpool, UK
| | | | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Centre, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Kumar V, Bahuguna A, Kim M. Molecular insights into binding of bioactive compounds from essential oil of Trachyspermum ammi with human programmed cell death protein 1. J Biomol Struct Dyn 2024; 42:6871-6881. [PMID: 37477253 DOI: 10.1080/07391102.2023.2236709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
The human programmed cell death protein 1 (PD-1) is expressed on the surface of T cells and contributes significantly to tumor immunity. Herein, six major compounds (carvacrol, thymol, β-phellandrene, α-terpinene, myrcene D, and α-pinene) from Trachyspermum ammi were studied for their intermolecular interactions and stability against PD-1. All tested compounds displayed docking energy (-4.2 to -3.7 kcal/mol) with PD-1. The highest docking scores of -4.2 and -4.1 kcal/mol were recorded for carvacrol and thymol, respectively. Also, a 100 ns molecular dynamics simulation predicted the stability of carvacrol- and thymol-docked PD-1 complex. Maximum of < 30 Å and < 12 Å root-mean-square deviation were observed for carvacrol and thymol at the end of the 100 ns simulation with respect to protein (Cα atoms), indicating retention and displacement of carvacrol and thymol from the initial binding pocket, respectively. Moreover, the endpoint binding free energies support the higher binding affinity of carvacrol (-22.87 ± 5.52 kcal/mol) than thymol (-16.83 ± 1.30 kcal/mol). The equicrural states of the respective ligands were supported by the respective root mean square fluctuation, where no significant deviations in the atoms of the ligands were observed. These findings suggest that carvacrol and thymol inhibit the PD-1/PD-L1 axis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vishal Kumar
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea
| | - Ashutosh Bahuguna
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea
| | - Myunghee Kim
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea
- Institute of Cell Culture, Yeungnam University, Gyeongsan-si, Republic of Korea
| |
Collapse
|
4
|
Yin Q, Song SY, Bian Y, Wang Y, Deng A, Lv J, Wang Y. Unlocking the potential of pyroptosis in tumor immunotherapy: a new horizon in cancer treatment. Front Immunol 2024; 15:1381778. [PMID: 38947336 PMCID: PMC11211258 DOI: 10.3389/fimmu.2024.1381778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024] Open
Abstract
Background The interaction between pyroptosis-a form of programmed cell death-and tumor immunity represents a burgeoning field of interest. Pyroptosis exhibits a dual role in cancer: it can both promote tumor development and counteract it by activating immune responses that inhibit tumor evasion and encourage cell death. Current tumor immunotherapy strategies, notably CAR-T cell therapy and immune checkpoint inhibitors (ICIs), alongside the potential of certain traditional Chinese medicinal compounds, highlight the intricate relationship between pyroptosis and cancer immunity. As research delves deeper into pyroptosis mechanisms within tumor therapy, its application in enhancing tumor immune responses emerges as a novel research avenue. Purpose This review aims to elucidate the mechanisms underlying pyroptosis, its impact on tumor biology, and the advancements in tumor immunotherapy research. Methods A comprehensive literature review was conducted across PubMed, Embase, CNKI, and Wanfang Database from the inception of the study until August 22, 2023. The search employed keywords such as "pyroptosis", "cancer", "tumor", "mechanism", "immunity", "gasdermin", "ICB", "CAR-T", "PD-1", "PD-L1", "herbal medicine", "botanical medicine", "Chinese medicine", "traditional Chinese medicine", "immunotherapy", linked by AND/OR, to capture the latest findings in pyroptosis and tumor immunotherapy. Results Pyroptosis is governed by a complex mechanism, with the Gasdermin family playing a pivotal role. While promising for tumor immunotherapy application, research into pyroptosis's effect on tumor immunity is still evolving. Notably, certain traditional Chinese medicine ingredients have been identified as potential pyroptosis inducers, meriting further exploration. Conclusion This review consolidates current knowledge on pyroptosis's role in tumor immunotherapy. It reveals pyroptosis as a beneficial factor in the immunotherapeutic landscape, suggesting that leveraging pyroptosis for developing novel cancer treatment strategies, including those involving traditional Chinese medicine, represents a forward-looking approach in oncology.
Collapse
Affiliation(s)
- Qinan Yin
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Si-Yuan Song
- Baylor College of Medicine, Houston, TX, United States
| | - Yuan Bian
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yiping Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Anchen Deng
- Department of Neuroscience, Chengdu Shishi School, Chengdu, China
| | - Jianzhen Lv
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Ali MA, Khan N, Ali A, Akram H, Zafar N, Imran K, Khan T, Khan K, Armaghan M, Palma‐Morales M, Rodríguez‐Pérez C, Caunii A, Butnariu M, Habtemariam S, Sharifi‐Rad J. Oridonin from Rabdosia rubescens: An emerging potential in cancer therapy - A comprehensive review. Food Sci Nutr 2024; 12:3046-3067. [PMID: 38726411 PMCID: PMC11077219 DOI: 10.1002/fsn3.3986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 05/12/2024] Open
Abstract
Cancer incidences are rising each year. In 2020, approximately 20 million new cancer cases and 10 million cancer-related deaths were recorded. The World Health Organization (WHO) predicts that by 2024 the incidence of cancer will increase to 30.2 million individuals annually. Considering the invasive characteristics of its diagnostic procedures and therapeutic methods side effects, scientists are searching for different solutions, including using plant-derived bioactive compounds, that could reduce the probability of cancer occurrence and make its treatment more comfortable. In this regard, oridonin (ORI), an ent-kaurane diterpenoid, naturally found in the leaves of Rabdosia rubescens species, has been found to have antitumor, antiangiogenesis, antiasthmatic, antiinflammatory, and apoptosis induction properties. Extensive research has been performed on ORI to find various mechanisms involved in its anticancer activities. This review article provides an overview of ORI's effectiveness on murine and human cancer populations from 1976 to 2022 and provides insight into the future application of ORI in different cancer therapies.
Collapse
Affiliation(s)
| | - Noohela Khan
- Department of Nutrition SciencesRashid Latif Medical CollegeLahorePakistan
| | - Ahmad Ali
- Department of Food Science and Human NutritionUVASLahorePakistan
| | - Hira Akram
- Department of Food Science and Human NutritionUVASLahorePakistan
| | - Noushaba Zafar
- Department of Food Science and Human NutritionUVASLahorePakistan
| | - Kinza Imran
- Department of Food Science and Human NutritionUVASLahorePakistan
| | - Tooba Khan
- Department of Healthcare Biotechnology, Atta‐ur‐Rahman School of Applied BiosciencesNational University of Sciences and TechnologyIslamabadPakistan
| | | | - Muhammad Armaghan
- Department of Healthcare Biotechnology, Atta‐ur‐Rahman School of Applied BiosciencesNational University of Sciences and TechnologyIslamabadPakistan
| | - Marta Palma‐Morales
- Departamento de Nutrición y Bromatología, Facultad de FarmaciaUniversidad de GranadaGranadaSpain
- Instituto de Nutrición y Tecnología de los Alimentos ‘José Mataix’Universidad de GranadaGranadaSpain
| | - Celia Rodríguez‐Pérez
- Departamento de Nutrición y Bromatología, Facultad de FarmaciaUniversidad de GranadaGranadaSpain
- Instituto de Nutrición y Tecnología de los Alimentos ‘José Mataix’Universidad de GranadaGranadaSpain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
| | - Angela Caunii
- “Victor Babes” University of Medicine and PharmacyTimisoaraRomania
| | - Monica Butnariu
- University of Life Sciences "King Mihai I" from TimisoaraTimisoaraRomania
| | - Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UKUniversity of GreenwichKentUK
| | | |
Collapse
|
6
|
Dehghan A, Ghanbarzadeh S, Ghiass M, Imani M. Silibinin solubilization: combined effect of co-solvency and inclusion complex formation. Drug Dev Ind Pharm 2024; 50:470-480. [PMID: 38625641 DOI: 10.1080/03639045.2024.2343016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/09/2024] [Indexed: 04/17/2024]
Abstract
OBJECTIVE Belonging to the class II drugs according to the biopharmaceutics classification system, silibinin (SLB) benefits from high permeability but suffers poor solubility that negatively affects the development of any delivery system. This research aimed to improve SLB solubility by combined use of co-solvency and complexation phenomena. METHODS Solubility studies were performed using the phase solubility analysis according to the shake-flask method in the presence of ethanol and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) as a co-solvent and inclusion complexing agent, respectively. SLB release studies from chitosan nanoparticles were carried out in double-wall, diffusion cells using the optimized drug release medium. RESULTS SLB solubility was mathematically optimized constraining to using the lowest concentrations of ethanol and HP-β-CD. SLB solubility increased linearly with the increase of HP-β-CD concentration. The solubility in PBS-ethanol mixtures followed a log-linear model. SLB solubility in the presence of the ethanol co-solvent and HP-β-CD complexing agent was optimized by adopting a genetic algorithm suggesting the phosphate buffer saline solution supplemented by 6%v/v ethanol and 8 mM HP-β-CD as an optimized medium. The optimized solution was examined to study SLB release from chitosan nanoparticles (4.5 ± 0.2% drug loading) at 37 °C under static conditions. The sigmoidal release profile of SLB from the particles indicated a combination of erosion and diffusion mechanisms governing drug release from the nanoparticles. CONCLUSION SLB solubility in a buffered solution supplemented by ethanol co-solvent and HP-β-CD complexing agent is a function of free drug present in the semi-aqueous media, the drug-ligand binary complex, and the drug/ligand/co-solvent ternary complex.
Collapse
Affiliation(s)
- Azam Dehghan
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Saeed Ghanbarzadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Pharmaceutics, School of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Majid Ghiass
- Department of Novel Drug Delivery Systems, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Mohammad Imani
- Department of Novel Drug Delivery Systems, Iran Polymer and Petrochemical Institute, Tehran, Iran
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
7
|
Li X, Jiang Y, Wang Y, Li N, Zhang S, Lv K, Jia R, Wei T, Li X, Han C, Lin J. KLF4 suppresses anticancer effects of brusatol via transcriptional upregulating NCK2 expression in melanoma. Biochem Pharmacol 2024; 223:116197. [PMID: 38583810 DOI: 10.1016/j.bcp.2024.116197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 04/09/2024]
Abstract
Brusatol (Bru), a main extract from traditional Chinese medicine Brucea javanica, has been reported to exist antitumor effect in many tumors including melanoma. However, the underlying mechanism in its anti-melanoma effect still need further exploration. Here, we reported that the protein expression of KLF4 in melanoma cells were significantly downregulated in response to brusatol treatment. Overexpression of KLF4 suppressed brusatol-induced melanoma cell apoptosis; while knockdown of KLF4 enhanced antitumor effects of brusatol on melanoma cells not only in vitro but also in vivo. Further studies on the mechanism revealed that KLF4 bound to the promoter of NCK2 directly and facilitated NCK2 transcription, which suppressed the antitumor effect of brusatol on melanoma. Furthermore, our findings showed that miR-150-3p was dramatically upregulated under brusatol treatment which resulted in the downregulation of KLF4. Our results suggested that the miR-150-3p/KLF4/NCK2 axis might play an important role in the antitumour effects of brusatol in melanoma.
Collapse
Affiliation(s)
- Xiaodong Li
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian 116044, PR China; Institute of Cancer Stem Cell of Dalian Medical University, Dalian 116044, PR China
| | - Yuankuan Jiang
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian 116044, PR China
| | - Ying Wang
- Institute of Cancer Stem Cell of Dalian Medical University, Dalian 116044, PR China
| | - Na Li
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian 116044, PR China
| | - Shumeng Zhang
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian 116044, PR China
| | - Kejia Lv
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian 116044, PR China
| | - Renchuan Jia
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian 116044, PR China
| | - Tianfu Wei
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian 116044, PR China
| | - Xiaojie Li
- College of Stomatology Dalian Medical University, Dalian 116044, PR China.
| | - Chuanchun Han
- Institute of Cancer Stem Cell of Dalian Medical University, Dalian 116044, PR China.
| | - Jingrong Lin
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian 116044, PR China.
| |
Collapse
|
8
|
Cancemi G, Caserta S, Gangemi S, Pioggia G, Allegra A. Exploring the Therapeutic Potential of Ganoderma lucidum in Cancer. J Clin Med 2024; 13:1153. [PMID: 38398467 PMCID: PMC10889924 DOI: 10.3390/jcm13041153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Triterpenoids, such as ganoderic acid, and polysaccharides, including β-D-glucans, α-D-glucans, and α-D-mannans, are the main secondary metabolites of the medicinal fungus Ganoderma lucidum. There is evidence of the effects of ganoderic acid in hematological malignancies, whose mechanisms involve the stimulation of immune response, the macrophage-like differentiation, the activation of MAP-K pathway, an IL3-dependent cytotoxic action, the induction of cytoprotective autophagy, and the induction of apoptosis. In fact, this compound has been tested in twenty-six different human cancer cell types and has shown an anti-proliferative activity, especially in leukemia, lymphoma, and myeloma lines. Moreover, research clarified the capability of molecules from Ganoderma lucidum to induce mitochondrial damage in acute promyelocytic leukemia cells, without cytotoxic effects in normal mononuclear cells. Active lipids extracted from the spores of this fungus have also been shown to induce apoptosis mediated by downregulation of P-Akt and upregulation of caspases-3, -8, and -9. Among in vivo studies, a study in BALB/c mice injected with WEHI-3 leukemic cells suggested that treatment with Ganoderma lucidum promotes differentiation of T- and B-cell precursors, phagocytosis by PBMCs, and NK cell activity. Our review presents data revealing the possibility of employing Ganoderma lucidum in hematological malignancies and incorporating it into clinical practice.
Collapse
Affiliation(s)
- Gabriella Cancemi
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, via Consolare Valeria, 98125 Messina, Italy
| | - Santino Caserta
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, via Consolare Valeria, 98125 Messina, Italy
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy
| | - Alessandro Allegra
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, via Consolare Valeria, 98125 Messina, Italy
| |
Collapse
|
9
|
Gu X, Xu L, Fu Y, Fan S, Huang T, Yu J, Chen J, Sui X, Xie X. Elemene Injection Overcomes Paclitaxel Resistance in Breast Cancer through AR/RUNX1 Signal: Network Pharmacology and Experimental Validation. Curr Pharm Des 2024; 30:2313-2324. [PMID: 38918989 PMCID: PMC11475252 DOI: 10.2174/0113816128315677240620052444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Paclitaxel (PTX) is a cornerstone chemotherapy for Breast Cancer (BC), yet its impact is limited by emerging resistance. Elemene Injection (EI) has shown potential in overcoming chemotherapy resistance. However, the efficacy by which EI restores PTX sensitivity in BC and the implicated molecular mechanism remain uncharted. METHODS Network pharmacology and bioinformatic analysis were conducted to investigate the targets and mechanisms of EI in overcoming PTX resistance. A paclitaxel-resistant MCF-7 cell line (MCF-7PR) was established. The efficacy of EI and/or PTX in inhibiting cell viability was evaluated using sulforhodamine B assay, while cell proliferation was assessed using EdU staining. Furthermore, protein and gene expression analysis was performed through Western blotting and qPCR. RESULTS The EI containing three active components exhibited a multifaceted impact by targeting an extensive repertoire of 122 potential molecular targets. By intersecting with 761 differentially expressed genes, we successfully identified 9 genes that displayed a direct association with resistance to PTX in BC, presenting promising potential as therapeutic targets for the EI to effectively counteract PTX resistance. Enrichment analysis indicated a significant correlation between these identified targets and critical biological processes, particularly DNA damage response and cell cycle regulation. This correlation was further substantiated through meticulous analysis of single-cell datasets. Molecular docking analysis revealed robust binding affinities between the active components of the EI and the identified molecular targets. Subsequently, in vitro experiments unequivocally demonstrated the dose- and time-dependent inhibitory effects of the EI on both PTX-resistant and sensitive BC cell lines, effectively mitigating the resistance phenotype associated with PTX administration. Furthermore, our findings have indicated EI to effectively suppress the protein expression levels of AR and RUNX1 in MCF-7 and MCF-7PR cells under PTX treatment, as well as downregulate the mRNA expression levels of stem-like properties' markers, KLF4 and OCT4, in these cell lines. CONCLUSION Elemene Injection (EI) application has exhibited a significant capability to mitigate PTX resistance in BC, which has been achieved through targeted suppression of the AR/RUNX1 axis, revealing a key strategy to overcome chemotherapeutic resistance.
Collapse
Affiliation(s)
- Xidong Gu
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310003, Zhejiang, China
| | - Leilai Xu
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310003, Zhejiang, China
| | - Yuanyuan Fu
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310003, Zhejiang, China
| | - Shuyao Fan
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310003, Zhejiang, China
| | - Tianjian Huang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Jiangting Yu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Jiaying Chen
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Xinbing Sui
- Department of Medical Oncology, School of Pharmacy, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, Zhejiang, China
| | - Xiaohong Xie
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310003, Zhejiang, China
| |
Collapse
|
10
|
Hao L, Li S, Deng J, Li N, Yu F, Jiang Z, Zhang J, Shi X, Hu X. The current status and future of PD-L1 in liver cancer. Front Immunol 2023; 14:1323581. [PMID: 38155974 PMCID: PMC10754529 DOI: 10.3389/fimmu.2023.1323581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
The application of immunotherapy in tumor, especially immune checkpoint inhibitors (ICIs), has played an important role in the treatment of advanced unresectable liver cancer. However, the efficacy of ICIs varies greatly among different patients, which has aroused people's attention to the regulatory mechanism of programmed death ligand-1 (PD-L1) in the immune escape of liver cancer. PD-L1 is regulated by multiple levels and signaling pathways in hepatocellular carcinoma (HCC), including gene variation, epigenetic inheritance, transcriptional regulation, post-transcriptional regulation, and post-translational modification. More studies have also found that the high expression of PD-L1 may be the main factor affecting the immunotherapy of liver cancer. However, what is the difference of PD-L1 expressed by different types of cells in the microenvironment of HCC, and which type of cells expressed PD-L1 determines the effect of tumor immunotherapy remains unclear. Therefore, clarifying the regulatory mechanism of PD-L1 in liver cancer can provide more basis for liver cancer immunotherapy and combined immune treatment strategy. In addition to its well-known role in immune regulation, PD-L1 also plays a role in regulating cancer cell proliferation and promoting drug resistance of tumor cells, which will be reviewed in this paper. In addition, we also summarized the natural products and drugs that regulated the expression of PD-L1 in HCC.
Collapse
Affiliation(s)
- Liyuan Hao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shenghao Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Clinical Research Center, Shijiazhuang Fifth Hospital, Shijiazhuang, Hebei, China
| | - Jiali Deng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Na Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fei Yu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhi Jiang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Junli Zhang
- Department of Infectious Diseases, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xinli Shi
- Center of Experimental Management, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Han J, Wang S, Ding M. Retrospective Analysis of Pregnancy Outcomes Following External Cephalic Version for Breech Presentation. Int J Womens Health 2023; 15:1941-1949. [PMID: 38106566 PMCID: PMC10724068 DOI: 10.2147/ijwh.s428946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/22/2023] [Indexed: 12/19/2023] Open
Abstract
Objective We explored the feasibility and safety of external cephalic version (ECV) for cases of breech presentation. Methods We retrospectively analyzed data from 158 singleton pregnant women with breech presentation at 36 weeks gestation, admitted to Guangzhou Hospital of Integrated Traditional and Western Medicine from January 2018 to March 2022. 42 underwent ECV, categorized as the ECV group, while 116 without ECV comprised the control group. Systematic collection and evaluation of pregnancy outcomes were conducted for both groups. Results Within the control group, 16 cases experienced a spontaneous transition to head presentation, among which 14 cases resulted in successful vaginal deliveries. In 2 cases, cesarean deliveries were performed due to fetal macrosomia and persistent posterior occipital presentation. Furthermore, 2 cases of breech presentation in pregnant women were successfully delivered vaginally through breech traction, necessitating an emergency procedure due to the wide opening of the uterus. Within the ECV group, 28 cases were successfully inverted to the cephalic presentation. Among them, 1 case underwent an emergency cesarean delivery due to fetal distress during cephalic delivery, 3 cases required cesarean deliveries due to abnormal labor, and 24 cases were successfully delivered vaginally. The comparative analyses showed that the cesarean section rate (18/42 vs 100/116) and non-cephalic delivery rate (14/42 vs 100/116) in the ECV group were significantly lower than those in the control group (P < 0.001). There was no statistically significant differences between the two groups with respect to the rate of newborns with Apgar score < 7 (1/42 vs 3/116), premature rupture of membrane (3/42 vs 20/116), acute fetal distress (2/42 vs 2/116), and cord prolapse (0/42 vs 1/116) (P > 0.05). Conclusion ECV can effectively reduce the rate of cesarean delivery and non-cephalic deliveries. However, it but requires strict adherence to indications and continuous monitoring.
Collapse
Affiliation(s)
- Jun Han
- Department of Obstetrics, Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, 510800, People’s Republic of China
| | - Shuai Wang
- Department of Critical Care Medicine, Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, 510800, People’s Republic of China
| | - Mei Ding
- Department of Obstetrics, Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, 510800, People’s Republic of China
| |
Collapse
|
12
|
Chen Y, Liu M, Wen J, Yang Z, Li G, Cao Y, Sun L, Ren X. Panax japonicus C.A. Meyer: a comprehensive review on botany, phytochemistry, pharmacology, pharmacokinetics and authentication. Chin Med 2023; 18:148. [PMID: 37950271 PMCID: PMC10636818 DOI: 10.1186/s13020-023-00857-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Panax japonicus C.A. Meyer (Zhujieshen) is widely used in traditional medicine as a tonic hemostatic and anti-inflammatory agent in China, Japan, and Korea. Furthermore, it is used as an important substitute for ginseng roots by minority ethnic groups in China. The purpose of this review is to summarize the latest research on Zhujieshen in recent years, aiming at providing a systematic overview of the current knowledge, and perspectives for future research and exploitation. MAIN BODY This review examines the research advances in botanical profile, phytochemicals, pharmacology, pharmacokinetics, and authentication of Zhujieshen. Various compounds have been reported as active components, mainly including saponins, volatile oils, and polysaccharides. Pharmacological investigations have demonstrated that Zhujieshen is an important herb with significant bioactivities, such as anti-inflammatory, hepato-protective, cardio-protective, neuro-protective, anti-tumor, anti-oxidant, anti-thrombotic and immunomodulatory activities. CONCLUSION Currently, research on Zhujieshen is in the preliminary stages, and further research is required to understand the active compounds present and mechanisms of action. We hope that this comprehensive review of Zhujieshen will serve as a background for future research and exploitation.
Collapse
Affiliation(s)
- Yuan Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Meiqi Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jinli Wen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zijie Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Guohui Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ying Cao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lili Sun
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Xiaoliang Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| |
Collapse
|
13
|
Kim B, Puthukanoori RK, Martha B, Reddy Muthyala N, Thota S, Thummala V, Rao Paraselli B, Chen DYK. Stereo-Controlled Synthesis of Vicinal Tertiary Carbinols: Application in the Synthesis of a Diol Substructure of Zaragozic Acid, Pactamycin and Ryanodol. Chemistry 2023; 29:e202301938. [PMID: 37395682 DOI: 10.1002/chem.202301938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/04/2023]
Abstract
A novel and flexible approach for the stereo-controlled synthesis of vicinal tertiary carbinols is reported. The developed strategy featured a highly diastereoselective singlet-oxygen (O2 1 ) [4+2] cycloaddition of rationally designed cyclohexadienones (derived from oxidative dearomatization of the corresponding carboxylic-acid appended phenol precursors), followed by programmed "O-O" and "C-C" bond cleavage. In doing so, a highly functionalized and versatile intermediate was identified and prepared in synthetically useful quantity as a plausible precursor to access a variety of designed and naturally occurring vicinal tertiary carbinol containing compounds. Most notably, the developed strategy was successfully applied in the stereo-controlled synthesis of advanced core structures of zaragozic acid, pactamycin and ryanodol.
Collapse
Affiliation(s)
- Byungjoo Kim
- Department of Chemistry, Seoul National University, Gwanak-1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | | | | | | | - Srinivas Thota
- Chemveda Life Sciences, Pvt. Ltd., Hyderabad, Telangana, 500039, India
| | | | | | - David Y-K Chen
- Department of Chemistry, Seoul National University, Gwanak-1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| |
Collapse
|
14
|
Li GQ, Gao SX, Wang FH, Kang L, Tang ZY, Ma XD. Anticancer mechanisms on pyroptosis induced by Oridonin: New potential targeted therapeutic strategies. Biomed Pharmacother 2023; 165:115019. [PMID: 37329709 DOI: 10.1016/j.biopha.2023.115019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023] Open
Abstract
Pyroptosis is a type of inflammatory cell death that is triggered by the formation of pores on the cell membrane by gasdermin (GSDM) family proteins. This process activates inflammasomes and leads to the maturation and release of proinflammatory cytokines such as interleukin-1β (IL-1β) and interleukin-18 (IL-18). Pyroptosis, a form of programmed cell death, has been found to be associated with various biomolecules such as caspases, granzymes, non-coding RNA (lncRNA), reactive oxygen species (ROS), and NOD-like receptor protein 3 (NLRP3). These biomolecules have been shown to play a dual role in cancer by affecting cell proliferation, metastasis, and the tumor microenvironment (TME), resulting in both tumor promotion and anti-tumor effects. Recent studies have found that Oridonin (Ori) has anti-tumor effects by regulating pyroptosis through various pathways. Ori can inhibit pyroptosis by inhibiting caspase-1, which is responsible for activating pyroptosis of the canonical pathway. Additionally, Ori can inhibit pyroptosis by inhibiting NLRP3, which is responsible for activating pyroptosis of the noncanonical pathway. Interestingly, Ori can also activate pyroptosis by activating caspase-3 and caspase-8, which are responsible for activating pyroptosis of the emerging pathway; Ori has been found to be effective in inhibiting pyroptosis by blocking the action of perforin, which is responsible for facilitating the entry of granzyme into cells and activating pyroptosis. Additionally, Ori plays a crucial role in regulating pyroptosis by promoting the accumulation of ROS while inhibiting the ncRNA and NLRP3 pathways. It is worth noting that all of these pathways ultimately regulate pyroptosis by influencing the cleavage of GSDM, which is a key factor in the process. These studies concludes that Ori has extensive anti-cancer effects that are related to its potential regulatory function on pyroptosis. The paper summarizes several potential ways in which Ori participates in the regulation of pyroptosis, providing a reference for further study on the relationship between Ori, pyroptosis, and cancer.
Collapse
Affiliation(s)
- Guo Qiang Li
- Pharmacy school, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Shi Xiang Gao
- Pharmacy school, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Fu Han Wang
- Pharmacy school, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Le Kang
- Department of Cardiac Surgery, Zhongshan Hospital, Affiliated Fudan University, Shang Hai 200030, PR China.
| | - Ze Yao Tang
- Pharmacy school, Dalian Medical University, Dalian 116044, Liaoning, PR China.
| | - Xiao Dong Ma
- Pharmacy school, Dalian Medical University, Dalian 116044, Liaoning, PR China.
| |
Collapse
|
15
|
Gjorgieva Ackova D, Maksimova V, Smilkov K, Buttari B, Arese M, Saso L. Alkaloids as Natural NRF2 Inhibitors: Chemoprevention and Cytotoxic Action in Cancer. Pharmaceuticals (Basel) 2023; 16:850. [PMID: 37375797 DOI: 10.3390/ph16060850] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/28/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Being a controller of cytoprotective actions, inflammation, and mitochondrial function through participating in the regulation of multiple genes in response to stress-inducing endogenous or exogenous stressors, the transcription factor Nuclear Factor Erythroid 2-Related Factor 2 (NRF2) is considered the main cellular defense mechanism to maintain redox balance at cellular and tissue level. While a transient activation of NRF2 protects normal cells under oxidative stress, the hyperactivation of NRF2 in cancer cells may help them to survive and to adapt under oxidative stress. This can be detrimental and related to cancer progression and chemotherapy resistance. Therefore, inhibition of NRF2 activity may be an effective approach for sensitizing cancer cells to anticancer therapy. In this review, we examine alkaloids as NRF2 inhibitors from natural origin, their effects on cancer therapy, and/or as sensitizers of cancer cells to anticancer chemotherapeutics, and their potential clinical applications. Alkaloids, as inhibitor of the NRF2/KEAP1 signaling pathway, can have direct (berberine, evodiamine, and diterpenic aconitine types of alkaloids) or indirect (trigonelline) therapeutic/preventive effects. The network linking alkaloid action with oxidative stress and NRF2 modulation may result in an increased NRF2 synthesis, nuclear translocation, as well in a downstream impact on the synthesis of endogenous antioxidants, effects strongly presumed to be the mechanism of action of alkaloids in inducing cancer cell death or promoting sensitivity of cancer cells to chemotherapeutic agents. In this regard, the identification of additional alkaloids targeting the NRF2 pathway is desirable and the information arising from clinical trials will reveal the potential of these compounds as a promising target for anticancer therapy.
Collapse
Affiliation(s)
- Darinka Gjorgieva Ackova
- Department of Applied Pharmacy, Division of Pharmacy, Faculty of Medical Sciences, Goce Delcev University, Stip, Krste Misirkov Str., No. 10-A, P.O. Box 201, 2000 Stip, North Macedonia
| | - Viktorija Maksimova
- Department of Applied Pharmacy, Division of Pharmacy, Faculty of Medical Sciences, Goce Delcev University, Stip, Krste Misirkov Str., No. 10-A, P.O. Box 201, 2000 Stip, North Macedonia
| | - Katarina Smilkov
- Department of Applied Pharmacy, Division of Pharmacy, Faculty of Medical Sciences, Goce Delcev University, Stip, Krste Misirkov Str., No. 10-A, P.O. Box 201, 2000 Stip, North Macedonia
| | - Brigitta Buttari
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Aging, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Marzia Arese
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Piazz. le A. Moro 5, 00185 Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
16
|
Xiong J, Yuan H, Fei S, Yang S, You M, Liu L. The preventive role of the red gingeng ginsenoside Rg3 in the treatment of lung tumorigenesis induced by benzo(a)pyrene. Sci Rep 2023; 13:4528. [PMID: 36941308 PMCID: PMC10027881 DOI: 10.1038/s41598-023-31710-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 03/16/2023] [Indexed: 03/23/2023] Open
Abstract
Red ginseng has been used in traditional medicine for centuries in Asia. In this study, we evaluated four types of red ginseng grown in different areas (Chinese red ginseng, Korean red ginseng A, Korean red ginseng B, and Korean red ginseng C) for their ability to inhibit lung tumor formation and growth induced by the carcinogen benzo(a)pyrene (B(a)P) in A/J mice and found that Korean red ginseng B was the most effective at lowering the tumor load among the four red ginseng varieties. Moreover, we analyzed the levels of various ginsenosides (Rg1, Re, Rc, Rb2, Rb3, Rb1, Rh1, Rd, Rg3, Rh2, F1, Rk1, and Rg5) in four kinds of red ginseng extract and found that Korean red ginseng B had the highest level of ginsenoside Rg3 (G-Rg3), which suggested that G-Rg3 may play an important role in its therapeutic efficacy. This work revealed that the bioavailability of G-Rg3 was relatively poor. However, when G-Rg3 was coadministered with verapamil, a P-glycoprotein inhibitor, the G-Rg3 efflux in Caco-2 cells was lowered, the small intestinal absorption rate of G-Rg3 in the rat models was increased, the concentration levels of G-Rg3 were elevated in the intestine and plasma, and its tumor-preventive abilities in the tumorigenesis rat model induced by B(a)P were also augmented. We also found that G-Rg3 reduced B(a)P-induced cytotoxicity and DNA adduct formation in human lung cells and rescued phase II enzyme expression and activity through Nrf2 pathways, which may be the potential mechanisms underlying the inhibitory effects of G-Rg3 on lung tumorigenesis. Our study showed a potentially vital role of G-Rg3 in targeting lung tumors in murine models. The oral bioavailability of this ginsenoside was augmented by targeting P-glycoprotein, which allowed the molecule to exert its anticancer effects.
Collapse
Affiliation(s)
- Jie Xiong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongmei Yuan
- Department of Pathology, Wuhan Jinyintan Hospital, Wuhan, 430023, China
| | - Shihong Fei
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shengli Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ming You
- Center for Cancer Prevention, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA.
| | - Li Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
17
|
Gan Y, Li X, Han S, Zhou L, Li W. Targeting Mcl-1 Degradation by Bergenin Inhibits Tumorigenesis of Colorectal Cancer Cells. Pharmaceuticals (Basel) 2023; 16:241. [PMID: 37259388 PMCID: PMC9965350 DOI: 10.3390/ph16020241] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 09/29/2023] Open
Abstract
Myeloid leukemia 1 (Mcl-1) is frequently overexpressed in human malignancies and emerged as a promising drug target. In this study, we verified the inhibitory effect of bergenin on colorectal cancer cells both in vivo and in vitro. In an in vitro setting, bergenin significantly reduced the viability and colony formation and promoted apoptosis of CRC cells dose-dependently. Bergenin decreased the activity of Akt/GSK3β signaling and enhanced the interaction between FBW7 and Mcl-1, which eventually induced Mcl-1 ubiquitination and degradation. Using the HA-Ub K48R mutant, we demonstrated that bergenin promotes Mcl-1 K48-linked polyubiquitination and degradation. In vivo studies showed that bergenin significantly reduced tumor size and weight without toxicity to vital organs in mice. Overall, our results support the role of bergenin in inhibiting CRC cells via inducing Mcl-1 destruction, suggesting that targeting Mcl-1 ubiquitination could be an alternative strategy for antitumor therapy.
Collapse
Affiliation(s)
- Yu Gan
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Xiaoying Li
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Shuangze Han
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Li Zhou
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, The Third Xiangya Hospital, Central South University, Changsha 410008, China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| |
Collapse
|
18
|
Li BY, Qin JC, Shen YF, Yang F, Wang T, Ling F, Wang GX. A therapeutic agent of ursolic acid demonstrates potential application in aquaculture. Virus Res 2023; 323:198965. [PMID: 36272540 PMCID: PMC10194260 DOI: 10.1016/j.virusres.2022.198965] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/02/2022] [Accepted: 10/09/2022] [Indexed: 11/09/2022]
Abstract
Micropterus salmoides rhabdovirus (MSRV) has a high mortality rate and causes huge economic losses to the aquaculture industry. In this study, we identified that ursolic acid (UA) had antiviral efficacy against MSRV in vitro and in vivo. The results showed that UA inhibited MSRV replication in grass carp ovary (GCO) cells with a half-maximal inhibitory concentration (IC50) of 5.55 μM, reduced viral titers and decreased cytopathic effects (CPE). Mechanistically, UA does not directly damage viral particles. On the other hand, UA inhibits MSRV replication by altering viral binding and release. Furthermore, pre- and post-treatment assays revealed that UA had preventive and therapeutic effects. For in vivo studies, UA could enhance the survival rate of MSRV-infected largemouth bass. Similarly, UA reduced the viral load of MSRV in the heart, spleen and brain at 3, 5 and 7 d post-infection. In conclusion, UA is an effective inhibitor of rhabdovirus in aquaculture.
Collapse
Affiliation(s)
- Bo-Yang Li
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Jia-Cheng Qin
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Yu-Feng Shen
- Changzhou Agricultural Comprehensive Technology Extension Center, Middle Changjiang Road 289-1nd, Changzhou, Jiangsu 213002, China
| | - Fei Yang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Tao Wang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Fei Ling
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China.
| |
Collapse
|
19
|
周 永, 潘 永, 杨 丽, 别 明. [Myrislignan Induces Apoptosis in Gastric Cancer Cell Line Through PI3K/AKT Signaling Pathway]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:136-141. [PMID: 36647656 PMCID: PMC10409035 DOI: 10.12182/20230160101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Indexed: 01/18/2023]
Abstract
Objective To investigate the effect of myrislignan (MYR) on the apoptosis of gastric cancer cell line and its relationship with phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway. Methods The gastric cells (SGC-7901) were treated with MYR at different concentrations, i.e., 0, 25, 50, 100, and 200 μmol/L, for 48 h and 72 h and the effect of MYR on the proliferation of SGC-7901 cells was measured by CCK-8 assay. Then, SGC-7901 cells were treated with different concentrations of MYR at 50, 100, and 200 μmol/L for 48 h. Meanwhile, a normal control group and a dimethyl sulfoxide (DMSO) solvent control group (0.1% DMSO) were established. Flow cytometry was used to determine the apoptosis rate of SGC-7901 cells. The protein expression levels of PI3K, AKT, Bcl-2-associated X protein (BAX), cysteine-dependent aspartate-specifc protease-3 (Caspase-3), and Caspase-9 were determined by Western blot. Then, PI3K activator (20 μmol/mL) was used to treat SGC-7901 cells for 48 h in 4 groups, the control group, 0.1% DMSO group, MYR group, and MYR+PI3K activator group, and the effect on MYR's induction of apoptosis and regulation of the protein expression levels of PI3K, AKT, BAX, Caspase-3, and Caspase-9 in SGC-7901 cells. Results Compared with the control group, MYR at 50, 100 and 200 μmol/L inhibited the proliferation of gastric cancer cells, increased the apoptosis rate, down-regulated the protein expression levels of PI3K and AKT, and up-regulated the protein expression levels of BAX, Caspase-3, and Caspase-9 in a dose-dependent manner ( P<0.05). However, PI3K activator attenuated MYR-induced apoptosis in gastric cancer cells and MYR's regulation of PI3K, AKT, BAX, Caspase-3, and Caspase-9 protein expression ( P<0.05). Conclusion MYR induces the expression of BAX, Caspase-3, and Caspase-9 proteins by inhibiting the PI3K/AKT signaling pathway, thereby promoting the apoptosis of gastric cancer cells.
Collapse
Affiliation(s)
- 永君 周
- 成都乐助生物科技有限公司 (成都 610041)Chengdu Lezhu Biotechnology Ltd., Chengdu 610041, China
| | - 永越 潘
- 成都乐助生物科技有限公司 (成都 610041)Chengdu Lezhu Biotechnology Ltd., Chengdu 610041, China
| | - 丽君 杨
- 成都乐助生物科技有限公司 (成都 610041)Chengdu Lezhu Biotechnology Ltd., Chengdu 610041, China
| | - 明江 别
- 成都乐助生物科技有限公司 (成都 610041)Chengdu Lezhu Biotechnology Ltd., Chengdu 610041, China
- 西藏大学 (拉萨 850000)Tibet University, Lhasa 850000, China
- 四川大学华西公共卫生学院/四川大学华西第四医院 检验科 (成都 610041)Department of Clinical Laboratory, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
20
|
Ishabiyi FO, Ogidi JO, Olukade BA, Amorha CC, El-Sharkawy LY, Okolo CC, Adeniyi TM, Atasie NH, Ibrahim A, Balogun TA. Computational Evaluation of Azadirachta indica-Derived Bioactive Compounds as Potential Inhibitors of NLRP3 in the Treatment of Alzheimer's Disease. J Alzheimers Dis 2023; 94:S67-S85. [PMID: 36683510 PMCID: PMC10473084 DOI: 10.3233/jad-221020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND The development of therapeutic agents against Alzheimer's disease (AD) has stalled recently. Drug candidates targeting amyloid-β (Aβ) deposition have often failed clinical trials at different stages, prompting the search for novel targets for AD therapy. The NLRP3 inflammasome is an integral part of innate immunity, contributing to neuroinflammation and AD pathophysiology. Thus, it has become a promising new target for AD therapy. OBJECTIVE The study sought to investigate the potential of bioactive compounds derived from Azadirachta-indica to inhibit the NLRP3 protein implicated in the pathophysiology of AD. METHODS Structural bioinformatics via molecular docking and density functional theory (DFT) analysis was utilized for the identification of novel NLRP3 inhibitors from A. indica bioactive compounds. The compounds were further subjected to pharmacokinetic and drug-likeness analysis. Results obtained from the compounds were compared against that of oridonin, a known NLRP3 inhibitor. RESULTS The studied compounds optimally saturated the binding site of the NLRP3 NACHT domain, forming principal interactions with the different amino acids at its binding site. The studied compounds also demonstrated better bioactivity and chemical reactivity as ascertained by DFT analysis and all the compounds except 7-desacetyl-7-benzoylazadiradione, which had two violations, conformed to Lipinski's rule of five. CONCLUSION In silico studies show that A. indica derived compounds have better inhibitory potential against NLRP3 and better pharmacokinetic profiles when compared with the reference ligand (oridonin). These compounds are thus proposed as novel NLRP3 inhibitors for the treatment of AD. Further wet-lab studies are needed to confirm the potency of the studied compounds.
Collapse
Affiliation(s)
- Felix Oluwasegun Ishabiyi
- Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
- Institute of Bioinformatics and Molecular Therapeutics, Oshogbo, Osun State, Nigeria
| | - James Okwudirichukwu Ogidi
- Faculty of Pharmacy, University of Nigeria, Nsukka, Enugu, Nigeria
- Institute of Bioinformatics and Molecular Therapeutics, Oshogbo, Osun State, Nigeria
| | - Baliqis Adejoke Olukade
- Physiology Department, Faculty of Basic Medical Sciences, Olabisi Onabanjo University, Sagamu Campus, Nigeria
- Institute of Bioinformatics and Molecular Therapeutics, Oshogbo, Osun State, Nigeria
| | - Chizoba Christabel Amorha
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
- Institute of Bioinformatics and Molecular Therapeutics, Oshogbo, Osun State, Nigeria
| | - Lina Y. El-Sharkawy
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, United Kingdom
- Institute of Bioinformatics and Molecular Therapeutics, Oshogbo, Osun State, Nigeria
| | - Chukwuemeka Calistus Okolo
- Department of Veterinary Medicine University of Nigeria, Nsukka, Nigeria
- Institute of Bioinformatics and Molecular Therapeutics, Oshogbo, Osun State, Nigeria
| | - Titilope Mary Adeniyi
- Department of Biochemistry, Adekunle Ajasin University, Akungba Akoko, Ondo State, Nigeria
- Institute of Bioinformatics and Molecular Therapeutics, Oshogbo, Osun State, Nigeria
| | - Nkechi Hope Atasie
- Nigerian Correctional Services, Enugu Custodial Center, Enugu State, Nigeria
- Institute of Bioinformatics and Molecular Therapeutics, Oshogbo, Osun State, Nigeria
| | - Abdulwasiu Ibrahim
- Department of Biochemistry, Drosophila Laboratory, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
- Institute of Bioinformatics and Molecular Therapeutics, Oshogbo, Osun State, Nigeria
| | | |
Collapse
|
21
|
Xie Y, Wang Z, Wu Q, Er-Bu A, Liang X, He C, Yin L, Xu F, Sang G, Car R. Response surface methodology for optimization of the extraction of polysaccharide from the roots of onosma hookeri clarke. var. longiforum duthie and its antioxidant capacity and immune activity. Prep Biochem Biotechnol 2022; 53:923-930. [PMID: 36576214 DOI: 10.1080/10826068.2022.2158474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Onosma hookeri Clarke. var. longiforum Duthie (OHC-LD), one of the traditional Tibetan medicine, has been found many functions, including removing heat to cool blood, nourishing lung and inhibiting bacteria. In order to study the polysaccharides in OHC-LD water extract, the optimal extraction progress of polysaccharides of the roots of OHC-LD by response surface method designed with three-factor three-level Box-Behnken method and the antioxidant capacity and immune activity of the crude polysaccharide were studied in this investigation. Under the best conditions, the extraction yield of polysaccharide was 3.19±0.09% (n = 3). After purification, the crude polysaccharide was obtained with polysaccharide contents of 42.57%, which demonstrated stronger DPPH scavenging activity than BHT at low concentrations (<625 µg/mL), and comparable ABTS radical scavenging activity as BHT at high concentrations (≥1250 µg/mL). Additionally, it also exhibited a certain cell proliferation activity and an enhancement of the phagocytic ability of RAW264.7 cells. This study revealed that the crude polysaccharide from the roots of OHC-LD might be exploited as a natural antioxidant and immune enhance agent in the future in both medical and food industry.
Collapse
Affiliation(s)
- Yunyu Xie
- Natural Medicine Research Center, College of veterinary medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhenyu Wang
- Natural Medicine Research Center, College of veterinary medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qiang Wu
- Natural Medicine Research Center, College of veterinary medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Aga Er-Bu
- Medical college, Tibet University, Lasa, Tibet, China
| | - Xiaoxia Liang
- Natural Medicine Research Center, College of veterinary medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Changliang He
- Natural Medicine Research Center, College of veterinary medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lizi Yin
- Natural Medicine Research Center, College of veterinary medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Funeng Xu
- Natural Medicine Research Center, College of veterinary medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Geng Sang
- Tibet Medical University, Lasa, Tibet, China
| | | |
Collapse
|
22
|
Chang Y, Lu Z, Sui J, Jin T, Zhang M. Biometrics Data Visualization of Ginsenosides in Anticancer Investigations. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 51:35-51. [PMID: 36408727 DOI: 10.1142/s0192415x23500039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ginsenoside extracts have been shown to have anticancer effects by a growing number of studies and have thus become a hot topic in cancer research. Our study used VOSviewer and CiteSpace softwares to conduct a bibliometric approach to co-citation and co-occurrence analysis of countries, institutions, authors, references, and keywords in the field of cancer research to investigate the current status and trends of ginsenosides research in cancer. The web of science core collection (WoSCC) contained a total of 1102 papers. China made the most contributions in this area, with the most publications (742, 67.3%), and collaborated closely with Korea and the USA. The Journal of Ginseng Research, with the most total citations (1607) and an IF of 6.06, is the leading journal in the field of ginsenoside and cancer research, publishing high quality articles. Saponin and its extracts inhibit oxidative stress, promote apoptosis, and inhibits chemotherapy resistance by ginsenosides, all of which are hot research areas in this field. In the coming years, it is expected that the combination of ginsenosides and nanoparticles, in-depth mechanisms of cancer inhibition, and targeted therapy will receive widespread attention.
Collapse
Affiliation(s)
- Ying Chang
- Department of Ultrasound Medicine, Affiliated Hospital of Yanbian University, Yanji 133000, P. R. China.,Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji 133002, P. R. China.,Key Laboratory of the Science and Technology, Department of Jilin Province, Yanji 133002, P. R. China
| | - Zhongqi Lu
- Department of Ultrasound Medicine, Affiliated Hospital of Yanbian University, Yanji 133000, P. R. China.,Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji 133002, P. R. China.,Key Laboratory of the Science and Technology, Department of Jilin Province, Yanji 133002, P. R. China
| | - Jinyuan Sui
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji 133002, P. R. China.,Key Laboratory of the Science and Technology, Department of Jilin Province, Yanji 133002, P. R. China
| | - Tiefeng Jin
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji 133002, P. R. China.,Key Laboratory of the Science and Technology, Department of Jilin Province, Yanji 133002, P. R. China
| | - Meihua Zhang
- Department of Ultrasound Medicine, Affiliated Hospital of Yanbian University, Yanji 133000, P. R. China.,Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji 133002, P. R. China.,Key Laboratory of the Science and Technology, Department of Jilin Province, Yanji 133002, P. R. China
| |
Collapse
|
23
|
Alam M, Abbasi K, Nouri F, Golkar M, Ranjbar R, Yazdanian M, Hosseini ZS, Tahmasebi E, Tebyaniyan H. The Cytotoxicity and Anticancer Effects of Propolis against the Oral Squamous Cell Carcinoma: In Vitro Study. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background and aim: A wide range of therapeutic properties, including anti-cancer properties, are attributed to propolis, a resinous product obtained from several plants that possess a variety of medicinal properties. A study on honeybee-produced propolis showed that in mice, it showed a significant reduction in the progression of squamous cell carcinoma in the head and neck, but in humans, its role in HNSCC remains unclear.
Method and materials: Propolis was sampled from two types of Iranian. Extraction was done using ethanolic extracts of propolis. The cll viability was evaluated by MTT assay. Cancer cell lines were assessed for gene expression, such as mmp-2, mmp-9, bax, and bcl-2.
Results: Increased sample concentrations reduced cell viability but did not cause significant cytotoxicity. A RT-PCR indicated that the Khalkhal sample produced more effects among the two samples, and the level of bax mRNA gene expression in the Khalkhal sample was increased. With an increasing concentration of Khalkhal samples, the expression increased. Increasing Khalkhal sample concentration also reduced mRNA levels of bcl-2, mmp-2, and mmp-9.
Conclusion: Khalkhal’s propolis can be considered a suitable sample for the study of antiapoptotic and proapoptotic gene expression. Additionally, it can be used as a potential candidate for inhibiting the proliferation and spread of oral cancer cells.
Collapse
|
24
|
Seo JH, Yoon G, Park S, Shim JH, Chae JI, Jeon YJ. Deoxypodophyllotoxin Induces ROS-Mediated Apoptosis by Modulating the PI3K/AKT and p38 MAPK-Dependent Signaling in Oral Squamous Cell Carcinoma. J Microbiol Biotechnol 2022; 32:1103-1109. [PMID: 36039387 PMCID: PMC9628964 DOI: 10.4014/jmb.2207.07012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/03/2022] [Accepted: 08/22/2022] [Indexed: 12/15/2022]
Abstract
Deoxypodophyllotoxin (DPT), a naturally occurring flavonolignan, possesses several pharmacological properties, including anticancer property. However, the mechanisms underlying DPT mode of action in oral squamous cell carcinoma (OSCC) remain unknown. This study aimed to investigate the anticancer effects of DPT on OSCC and the underlying mechanisms. Results of the MTT assay revealed that DPT significantly reduced the cell viability in a time- and dose-dependent manner. Flow cytometry analysis revealed that DPT induces apoptosis in OSCC cells in a dose-dependent manner. Moreover, DPT enhanced the production of mitochondrial reactive oxygen species (ROS) in OSCC cells. Mechanistically, DPT induced apoptosis in OSCC cells by suppressing the PI3K/AKT signaling pathway while activating the p38 MAPK signaling to regulate the expression of apoptotic proteins. Treatment with SC79, an AKT activator, reversed the effects of DPT on AKT signaling in OSCC cells. Taken together, these results provide the basis for the use of DPT in combination with conventional chemotherapy for the treatment of oral cancer.
Collapse
Affiliation(s)
- Ji-Hye Seo
- Department of Dental Pharmacology, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
| | - Seryoung Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan‐Gun, Jeonnam, Republic of Korea
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea,
J.I. Chae Phone:+82-63-270-4024 Fax:+82-63-270-4037 E-mail:
| | - Young-Joo Jeon
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea,Corresponding authors Y.J. Jeon Phone:+82-42-860-4386 Fax:+82-42-860-8596 E-mail:
| |
Collapse
|
25
|
Ozok-Arici O, Kavak E, Kivrak A. Synthesis of Thiophene/Furan-Artemisinin Hybrid Molecules. Chem Biodivers 2022; 19:e202200144. [PMID: 35713943 DOI: 10.1002/cbdv.202200144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/17/2022] [Indexed: 11/11/2022]
Abstract
Natural products with semi-synthetic molecules displays higher biological activities, and creates new biological properties for the treatment of diseases. Although, natural products like artemisinin have been used as a traditional medicine over thousands of years, structure and biological properties of many natural products were investigated in the 20th century. Design and synthesis of new biologically active compounds including natural products have very critical roles to find novel drug candidates. Herein, novel thiophene/furan bridge artemisinin derivatives were synthesized by starting from artemisinin. Firstly, benzothiophene derivatives are synthesized, then Stergich esterification reactions give the new artemisinin hybrid molecules with moderate to high yields.
Collapse
Affiliation(s)
- Omruye Ozok-Arici
- Eski?ehir Osmangazi Üniversitesi: Eskisehir Osmangazi Universitesi, Chemistry, Eskişehir Osmangazi Üniversitesi Fen Edebiyat Fakültesi Kimya Bölümü, 26040, Odunpazarı, TURKEY
| | - Emrah Kavak
- Van Yuzuncu Yil Universitesi, Chemistry, Eskisehir Osmangazi University, Arts and Science Faculty Depatment of Chemistry, 26040, Eskisehir, TURKEY
| | - Arif Kivrak
- Eskisehir Osmangazi University: Eskisehir Osmangazi Universitesi, Chemistry, Eskisehir Osmangazi University, Arts and Science Faculty Depatment of Chemistry, 26040, Eskisehir, TURKEY
| |
Collapse
|
26
|
Song YC, Lee DY, Yeh PY. A Novel Chinese Herbal and Corresponding Chemical Formula for Cancer Treatment by Targeting Tumor Maintenance, Progression, and Metastasis. Front Pharmacol 2022; 13:907826. [PMID: 35721174 PMCID: PMC9204638 DOI: 10.3389/fphar.2022.907826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
We characterized a so-called "heirloom recipe" Chinese herbal formula (temporarily named Formula X) that contains five Chinese medical botanical drugs, Huang-Lian (Coptis chinensis Franch. [Ranunculaceae]), Huang-Qin (Scutellaria baicalensis Georgi [Lamiaceae]), Bai-Wei (Vincetoxicum atratum (Bunge) C. Morren and Decne. [Apocynaceae]), E-Zhu (Curcuma aromatica Salisb. [Zingiberaceae]) and Bai-Zhu (Atractylodes macrocephala Koidz. [Asteraceae]). Formula X inhibited the growth of various cancer cells and decreased the expression levels of a panel of proteins, including CD133, Myc, PD-L1, and Slug, in cancer cells. We further found that the inhibition of growth and protein expression were exerted by Huang-Lian, Huang-Qin, and Bai-Wei (formula HHB), which exhibited the same biological effects as those of Formula X. Furthermore, we selected three active chemicals, berberine, baicalin, and saponin from Huang-Lian, Huang-Qin, and Bai-Wei, respectively, to produce a chemical formulation (formula BBS), which exhibited similar effects on cell growth and protein expression as those induced by formula HHB. Both the formulae HHB and BBS suppressed tumor growth in an animal study. Moreover, they decreased the protein levels of Myc and PD-L1 in tumor cells in vivo. In summary, we established a novel Chinese herbal formula and a chemical formula that targeted three important processes, tumor maintenance (tumor stem cells), progression, and metastasis, and that influenced the response of tumors to host immunosuppression, for the potentially effective treatment of cancer patients.
Collapse
Affiliation(s)
- Ying-Chyi Song
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Der-Yen Lee
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Pei-Yen Yeh
- TCM division, Jin-Mi company, Taipei, Taiwan
| |
Collapse
|
27
|
Sulaiman MK, Lakshmanan J. Systemic and Anticancer Potential of Adaptogenic Constituents Isolated from Traditional Herbs - A Mini-Review. Anticancer Agents Med Chem 2022; 22:2811-2821. [PMID: 35400325 DOI: 10.2174/1871520622666220408091610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/21/2022] [Accepted: 02/23/2022] [Indexed: 11/22/2022]
Abstract
Adaptogens were initially recognized as stress-resistance inducing compounds. Recent studies reveal that adaptogens are pleiotropically-acting chemical constituents that can be isolated from traditional herbs. They are gaining increasing attention in cancer chemotherapy. This review summarizes the physiological action of adaptogens isolated from the 9 most widely used traditional herbs implicated in cancer therapy viz., Withania somnifera, Tinospora cordifolia, Rhodiola rosea, Emblica officinalis, Glycyrrhiza glabra, Bacopa monnieri, Asparagus racemosus, Ocimum sanctum, and Panax notoginseng. The studies were identified through a systematic search of major computerized databases such as Pubmed, Embase, Medline, Inflibnet, Google Scholar, and Cochrane Library. Individual names of each herb and biological action were the search terms employed. In this review, we have enlisted the chemical constituents and their mechanism of action in a few organ systems as well as in cancer cells. Studies indicate that the adaptogens isolated from these herbs can be broadly arranged into 2 classes based on their chemical structure. These molecules exert a positive influence on several organ systems such as respiratory, nervous, cardiovascular, immune, and gastrointestinal tract. It is also clear that adaptogens act as effective chemopreventive agents alone or in combination with chemo drugs in multiple cancers by targeting multiple intracellular target proteins. Therefore, we conclude that adaptogens are versatile ligands capable of eliciting many systemic effects. Their biological functions are complex, varied, and context-dependent in various cancers. This offers great scope for personalized treatment and cancer chemoprevention in the future.
Collapse
Affiliation(s)
| | - Jaganathan Lakshmanan
- Dr. Hiram C. Polk, Jr., Department of Surgery, University of Louisville, 511, S FLoyd St, MDR Building, RM#317, Louisville, KY 40202. USA
| |
Collapse
|
28
|
Gong RH, Chen M, Huang C, Wong HLX, Kwan HY, Bian Z. Combination of artesunate and WNT974 induces KRAS protein degradation by upregulating E3 ligase ANACP2 and β-TrCP in the ubiquitin–proteasome pathway. Cell Commun Signal 2022; 20:34. [PMID: 35305671 PMCID: PMC8934478 DOI: 10.1186/s12964-022-00834-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/29/2022] [Indexed: 12/01/2022] Open
Abstract
Background KRAS mutation is one of the dominant gene mutations in colorectal cancer (CRC). Up to present, targeting KRAS for CRC treatment remains a clinical challenge. WNT974 (LGK974) is a porcupine inhibitor that interferes Wnt signaling pathway. Artesunate (ART) is a water-soluble semi-synthetic derivative of artemisinin. Methods The synergistic effect of ART and WNT974 combination in reducing CRC cell viability was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. RT-PCR was utilized for the mRNA levels of KRAS, CUL7, ANAPC2, UBE2M, RNF123, SYVN1, or β-TrCP. Western blot assay was utilized for the protein levels of NRAS, HRAS, KRAS, ANAPC2, β-TrCP, GSK-3β, p-Akt (Ser473), t-Akt, p-PI3K (Tyr458), t-PI3K, p-mTOR (Ser2448), t-mTOR. Xenograft mouse model assay was performed for the anti-CRC effect of combination of ART and WNT974 in vivo. IHC assay was utilized for the levels of KRAS, β-TrCP, GSK-3β or ANAPC2 in tumor tissues. Results Our study shows that the combination of WNT974 and ART exhibits synergistic effect in reducing CRC growth. The combination treatment significantly reduces KRAS protein level and activity in CRC cells. Interestingly, the combination treatment increases E3 ligases ANAPC2 expression. Our data show that overexpression of ANAPC2 significantly reduces KRAS protein levels, which is reversed by MG132. Knockdown of ANAPC2 in CRC abolishes the combination treatment-reduce KRAS expression. Besides, the treatment also increases the expressions of GSK-3β and E3 ligase β-TrCP that is known to degrade GSK-3β-phosphorylated KRAS protein. Knockdown of β-TrCP- and inhibition of GSK-3β abolish the combination treatment-induce KRAS ubiquitination and reduction in expression. Last but not least, combination treatment suppresses PI3K/Akt/m-TOR signaling pathway. Conclusions Our data clearly show that the combination treatment significantly enhances KRAS protein degradation via the ubiquitination ubiquitin–proteasome pathway, which is also demonstrated in xenograft mouse model. The study provides strong scientific evidence for the development of the combination of WNT974 and ART as KRAS-targeting therapeutics for CRC treatment. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00834-2.
Collapse
|
29
|
Momordica charantia-derived extracellular vesicles-like nanovesicles inhibited glioma proliferation, migration, and invasion by regulating the PI3K/AKT signaling pathway. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
30
|
Yang YS, Wen D, Zhao XF. Preventive and therapeutic effect of intraportal oridonin on BALb/c nude mice hemispleen model of colon cancer liver metastasis. Transl Cancer Res 2022; 10:1324-1335. [PMID: 35116458 PMCID: PMC8798652 DOI: 10.21037/tcr-20-3042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/27/2021] [Indexed: 01/15/2023]
Abstract
Background This study is to investigate the preventive and therapeutic effect of intraportal oridonin on colorectal cancer liver metastasis (CRCLM). Methods The inhibitory effect of oridonin on HT29 cells was determined by CCK-8 and MTT assays. The preventive and therapeutic effect of intraportal oridonin on CRCLM were investigated by establishing BALb/c nude mice hemispleen models of colon cancer liver metastasis. The microscopic characteristics of tumor tissues were observed by hematoxylin-eosin staining, immunohistochemistry and TUNEL staining. On the other hand, liver function enzymes, such as alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP), were detected to evaluate the hepatotoxicity of intraportal oridonin. The serum levels of tumor markers, including carcinoembryonic antigen (CEA) and α-fetoprotein (AFP), were used to investigate the intervention effect of intraportal oridonin on CRCLM. Results Oridonin exerted an inhibitory effect on the proliferation of HT29 cells in vitro. Intraportal oridonin was found to effectively prevent the occurrence and formation of CRCLM, whilst intraportal oridonin can also exert a therapeutic effect on CRCLM. Additionally, liver enzymes testing indicated that intraportal oridonin possesses non-hepatotoxicity, instead can effectively alleviate liver injury caused by tumor. Furthermore, intraportal oridonin was also revealed to decrease the serum levels of AFP and CEA. Conclusions Intraportal oridonin can effectively inhibit the formation of liver metastatic tumor and exert a certain degree of preventive and therapeutic effect on CRCLM. These findings indicate intraportal oridonin to be a promising anti-metastasis agent for CRCLM.
Collapse
Affiliation(s)
- Yu-Shen Yang
- Department of General Surgery, Dalian University Affiliated Xinhua Hospital, Dalian, China
| | - Dan Wen
- Department of General Surgery, Dalian University Affiliated Xinhua Hospital, Dalian, China
| | - Xue-Feng Zhao
- Department of General Surgery, Dalian University Affiliated Xinhua Hospital, Dalian, China
| |
Collapse
|
31
|
β-Elemene Restrains PTEN mRNA Degradation to Restrain the Growth of Lung Cancer Cells via METTL3-Mediated N6 Methyladenosine Modification. JOURNAL OF ONCOLOGY 2022; 2022:3472745. [PMID: 35069732 PMCID: PMC8769858 DOI: 10.1155/2022/3472745] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022]
Abstract
Lung cancer is one of the most fatal malignancies and the leading cause of cancer death worldwide. β-Elemene, a well-known anticancer drug, has drawn a great deal of attention from researchers attributed to its limited side impacts. N6-Methyladenosine (m6A) modification is the most common RNA modification and plays a vital role in the pathogenesis of multiple tumors. However, the functional link between β-elemene and the m6A modification in lung cancer development remains unexplored. In this study, we investigated whether m6A modification was responsible for the impacts of β-elemene on lung cancer. Firstly, outcomes suggested that β-elemene restrained the malignant behaviors of A549 together with H1299 cells. Thereafter, we observed that β-elemene markedly regulated METTL3, YTHDF1, and YTHDC1 among various m6A modulators. METTL3 was selected for further study because of its oncogenic function in lung cancer. RT-qRCR and western blot assays exhibited that the mRNA and protein expression levels of METTL3 were lessened by the administration of β-elemene. Mechanistically, β-elemene exerted the restrictive impacts on the cell growth of lung cancer in vivo and in vitro through targeting METTL3. More importantly, β-elemene contributed to the augmented PTEN expression via suppressing its m6A modification. To sum up, we provided strong clues that β-elemene promoted PTEN expression to retard lung cancer progression by the regulation of METTL3-mediated m6A modification.
Collapse
|
32
|
Chen W, Feng Z, Liu Q. Asymmetric total synthesis of (1 S,2 S,4 S)-β-elemene. RSC Adv 2022; 12:8249-8255. [PMID: 35424753 PMCID: PMC8982354 DOI: 10.1039/d2ra01408d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 11/21/2022] Open
Abstract
Elemenes are sesquiterpene natural products extracted from Chinese medicinal herbs and have been used as an important antitumor drug in China. Here, we report the first stereoselective total synthesis of (1S,2S,4S)-β-elemene using (R)-carvone as a chiral pool starting material. The isopropenyl moiety was achieved in a highly stereoselective manner through 1,4-Michael conjugate addition. The following transformations like regio- and stereoselective aldol condensation, Wittig olefination have been employed as the key steps, resulting in a concise total synthesis of (1S,2S,4S)-β-elemene. Our accomplishment will allow further biological investigations of this natural product and open opportunities for developing a new potentially promising antitumor drug. The first asymmetric total synthesis of (1S,2S,4S)-β-elemene was accomplished in five steps or eight steps by using the chiral pool strategy.![]()
Collapse
Affiliation(s)
- Wei Chen
- Guangdong-Macao Traditional Chinese Medicine Technology Industrial Park Development Co., Ltd., Zhuhai 519031, P. R. China
- School of Chinese Medicine, Southern Medicinal University, Guangzhou 510515, P. R. China
| | - Zhun Feng
- Guangdong-Macao Traditional Chinese Medicine Technology Industrial Park Development Co., Ltd., Zhuhai 519031, P. R. China
| | - Qiang Liu
- School of Chinese Medicine, Southern Medicinal University, Guangzhou 510515, P. R. China
| |
Collapse
|
33
|
Anticancer Activity of Moringa peregrina (Forssk.) Fiori.: A Native Plant in Traditional Herbal Medicine of the United Arab Emirates. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae8010037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Moringa peregrina (Forssk.) Fiori. is a native desert tree growing in United Arab Emirates (UAE). The plant is being cultivated in many parts of UAE, owing to its uses in traditional medicinal and food systems. In the present study bioactivities of cultivated M. peregrina species samples are evaluated with cytotoxic studies in the human breast cancer cell line (MCF-7) and human colon adenocarcinoma cell line (Caco-2). Different extracts with hexane, chloroform, acetone and methanol were prepared from tubers, leaves and stem of M. peregrina for estimating their antioxidant contents and anticancer activities. The study was performed at different concentrations and all the extracts showed dose-depended response on both the cell lines. Among the extracts tested, the chloroform extract of stem showed remarkable anti-proliferative/cell death activity (IC50 = 45.53 µg/mL of 48 h incubation and 33.32 µg/mL of 72 h incubation) on MCF-7 cell lines. Whereas the same extract showed comparatively less activity (IC50 = 93.75 µg/mL of 48 h incubation and 87.76 µg/mL of 72 h incubation) on Caco-2 cell lines. The anti-proliferative effect of leaf extract with chloroform showed a drastic change in cell viability from 48 to 72 h incubation, in MCF-7 cells 220 to 87.5 µg/mL and in Caco-2 cells 500.9 to 72.9 µg/mL, respectively. Moreover, less than 200 µg/mL of IC50 values reported in hexane extracts of tubers (188.6 µg/mL for 48 h and 164.3 µg/mL for 72 h), acetone extracts of tubers (167.4 µg/mL for 72 h) and acetone extracts of stem (171.5 µg/mL for 48 h and 101.7 µg/mL for 72 h) on MCF-7 cells. PARP (Poly (ADP-ribose) polymerase) cleavage assay and DNA fragmentation assay performed to understand the cause of cell death. Treatment of extract on the normal fibroblast cell line required more concentration for cytotoxicity compared to the treatment on the cancer cells. This ability of the extract proved the anti-cancer property of the M. peregrina extract from the stem, tuber and leaves. The information provided in the present study enables further studies on the isolation and characterization of an anticancer molecule from the tubers of M. peregrina.
Collapse
|
34
|
Shahcheraghi SH, Salemi F, Peirovi N, Ayatollahi J, Alam W, Khan H, Saso L. Nrf2 Regulation by Curcumin: Molecular Aspects for Therapeutic Prospects. Molecules 2021; 27:167. [PMID: 35011412 PMCID: PMC8746993 DOI: 10.3390/molecules27010167] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Nuclear factor erythroid 2 p45-related factor (2Nrf2) is an essential leucine zipper protein (bZIP) that is primarily located in the cytoplasm under physiological conditions. Nrf2 principally modulates endogenous defense in response to oxidative stress in the brain.In this regard, Nrf2 translocates into the nucleus and heterodimerizes with the tiny Maf or Jun proteins. It then attaches to certain DNA locations in the nucleus, such as electrophile response elements (EpRE) or antioxidant response elements (ARE), to start the transcription of cytoprotective genes. Many neoplasms have been shown to have over activated Nrf2, strongly suggesting that it is responsible for tumors with a poor prognosis. Exactly like curcumin, Zinc-curcumin Zn (II)-curc compound has been shown to induce Nrf2 activation. In the cancer cell lines analyzed, Zinc-curcumin Zn (II)-curc compound can also display anticancer effects via diverse molecular mechanisms, including markedly increasing heme oxygenase-1 (HO-1) p62/SQSTM1 and the Nrf2 protein levels along with its targets. It also strikingly decreases the levels of Nrf2 inhibitor, Kelch-like ECH-associated protein 1 (Keap1) protein.As a result, the crosstalk between p62/SQSTM1 and Nrf2 could be used to improve cancer patient response to treatments. The interconnected anti-inflammatory and antioxidative properties of curcumin resulted from its modulatory effects on Nrf2 signaling pathway have been shown to improve insulin resistance. Curcumin exerts its anti-inflammatory impact through suppressing metabolic reactions and proteins such as Keap1 that provoke inflammation and oxidation. A rational amount of curcumin-activated antioxidant Nrf2 HO-1 and Nrf2-Keap1 pathways and upregulated the modifier subunit of glutamate-cysteine ligase involved in the production of the intracellular antioxidant glutathione. Enhanced expression of glutamate-cysteine ligase, a modifier subunit (GLCM), inhibited transcription of glutamate-cysteine ligase, a catalytic subunit (GCLC). A variety of in vivo, in vitro and clinical studies has been done so far to confirm the protective role of curcumin via Nrf2 regulation. This manuscript is designed to provide a comprehensive review on the molecular aspects of curcumin and its derivatives/analogs via regulation of Nrf2 regulation.
Collapse
Affiliation(s)
- Seyed Hossein Shahcheraghi
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd 8916978477, Iran; (S.H.S.); (J.A.)
| | - Fateme Salemi
- School of Medicine, Islamic Azad University of Medical Sciences, Yazd 19395/1495, Iran;
| | - Niloufar Peirovi
- School of Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran;
| | - Jamshid Ayatollahi
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd 8916978477, Iran; (S.H.S.); (J.A.)
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, 00185 Rome, Italy;
| |
Collapse
|
35
|
The pro-apoptotic and cytotoxic efficacy of polydatin encapsulated poly(lactic-co-glycolic acid) (PLGA) nanoparticles. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Oridonin Dose-Dependently Modulates the Cell Senescence and Apoptosis of Gastric Cancer Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5023536. [PMID: 34795783 PMCID: PMC8595004 DOI: 10.1155/2021/5023536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/28/2021] [Accepted: 10/01/2021] [Indexed: 11/18/2022]
Abstract
Gastric cancer (GC) is the fourth most lethal cancer. Effective treatments are lacking, and our knowledge of the pathogenic mechanisms in play is poor. Oridonin from the Chinese herb Rabdosia rubescens exerts various anticancer activities. However, the dose-dependent effects of oridonin on human GC remain unclear. Here, we found that oridonin inhibited GC cell growth in a time- and dose-dependent manner. Low-dose oridonin induced GC cell cycle arrest at G0/G1 and cell senescence by suppressing the c-Myc-AP4 pathway and enhancing p53-p21 signaling. AP4 overexpression partly abrogated the oridonin-induced senescence of GC cells. High-dose oridonin induced apoptosis and autophagy, with the autophagy inhibitor BafA1 attenuating oridonin-induced apoptosis. Together, the findings indicate that oridonin at different doses modulates GC cell senescence and apoptosis; oridonin may thus usefully treat GC.
Collapse
|
37
|
Wen D, Yang YS, Gao DZ, Wang Z, Jiang QW, Zhao XF. Oridonin Enhances the Anti-Metastasis Effect of Oxaliplatinliplatin on Colorectal Cancer Liver Metastasis. Bull Exp Biol Med 2021; 172:26-32. [PMID: 34792718 DOI: 10.1007/s10517-021-05324-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Indexed: 11/26/2022]
Abstract
The anti-metastasis effect of oridonin in combination with oxaliplatin on colorectal cancer liver metastasis was studied using a BALB/c nude mouse model. The liver condition, bloody ascites, cholestasis, and liver metastasis scores in the three groups receiving oxaliplatin combined with oridonin were significantly milder than in the control group and importantly the anti-migratory effect of oxaliplatin combined with oridonin was obviously the strongest (p<0.05). Oridonin possessed no hepatotoxicity; instead, it effectively alleviated liver injury caused by oxaliplatin. Oridonin alone or in combination with oxaliplatin significantly decreased serum levels of α-fetoprotein and carcinoembryonic antigen. Therefore, oridonin combined with oxaliplatin displays great potential to markedly increase the anti-metastasis effect of oxaliplatin in the treatment of liver metastases of colorectal cancer.
Collapse
Affiliation(s)
- D Wen
- Department of General Surgery, Dalian University Affiliated Xinhua Hospital, Dalian, China
| | - Y S Yang
- Department of General Surgery, Dalian University Affiliated Xinhua Hospital, Dalian, China
| | - D Z Gao
- Department of General Surgery, Dalian University Affiliated Xinhua Hospital, Dalian, China
| | - Z Wang
- Department of General Surgery, Dalian University Affiliated Xinhua Hospital, Dalian, China
| | - Q W Jiang
- Department of General Surgery, Dalian University Affiliated Xinhua Hospital, Dalian, China
| | - X F Zhao
- Department of General Surgery, Dalian University Affiliated Xinhua Hospital, Dalian, China.
| |
Collapse
|
38
|
Silver Ion-Complexation High-Speed Countercurrent Chromatography Coupled with Prep-HPLC for Separation of Sesquiterpenoids from Germacrene A Fermentation Broth. FERMENTATION 2021. [DOI: 10.3390/fermentation7040230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A silver ion high-speed counter-current chromatography ([Ag+]-HSCCC) was developed to separate and purify five sesquiterpenoids from germacrene A fermentation broth. The solvent system was consisted of n-hexane-methanol-silver nitrate (3 mol/L) solution (10:9.5:0.5, v/v). By employing this chromatographic protocol, five sesquiterpenoids named β-elemene (1; 54.1 mg), germacrene A (2; 28.5 mg), γ-selinene (3; 4.6 mg), β-selinene (4; 3.4 mg), and α-selinene (5; 1.3 mg) were obtained successfully from 500 mg extracted crude sample with purities of 97.1%, 95.2%, 98.2%, 96.3% and 98.5%, respectively, combined with preparative HPLC. The results reveal that the addition of metal ion in biphasic solvent system significantly improved the HSCCC separation factor of sesquiterpenoids. Meanwhile, our study also provided an alternate approach to separate the compounds with less polarity, also geometrical isomers and various natural product classes.
Collapse
|
39
|
Zhang SX, Liu W, Ai B, Sun LL, Chen ZS, Lin LZ. Current Advances and Outlook in Gastric Cancer Chemoresistance: A Review. Recent Pat Anticancer Drug Discov 2021; 17:26-41. [PMID: 34587888 DOI: 10.2174/1574892816666210929165729] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/19/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Surgical resection of the lesion is the standard primary treatment of gastric cancer. Unfortunately, most patients are already in the advanced stage of the disease when they are diagnosed with gastric cancer. Alternative therapies, such as radiation therapy and chemotherapy, can achieve only very limited benefits. The emergence of cancer drug resistance has always been the major obstacle to the cure of tumors. The main goal of modern cancer pharmacology is to determine the underlying mechanism of anticancer drugs. OBJECTIVE Here, we mainly review the latest research results related to the mechanism of chemotherapy resistance in gastric cancer, the application of natural products in overcoming the chemotherapy resistance of gastric cancer, and the new strategies currently being developed to treat tumors based on immunotherapy and gene therapy. CONCLUSION The emergence of cancer drug resistance is the main obstacle in achieving alleviation and final cure for gastric cancer. Mixed therapies are considered to be a possible way to overcome chemoresistance. Natural products are the main resource for discovering new drugs specific for treating chemoresistance, and further research is needed to clarify the mechanism of natural product activity in patients. .
Collapse
Affiliation(s)
- Sheng-Xiong Zhang
- Guangdong Province Work Injury Rehabilitation Hospital, Guangzhou, 510440. China
| | - Wei Liu
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006. China
| | - Bo Ai
- Huazhong University of Science and Technology, Wuhan, 430030. China
| | - Ling-Ling Sun
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405. China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY 11439, New York. United States
| | - Li-Zhu Lin
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405. China
| |
Collapse
|
40
|
Targeting Drug Chemo-Resistance in Cancer Using Natural Products. Biomedicines 2021; 9:biomedicines9101353. [PMID: 34680470 PMCID: PMC8533186 DOI: 10.3390/biomedicines9101353] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the leading causes of death globally. The development of drug resistance is the main contributor to cancer-related mortality. Cancer cells exploit multiple mechanisms to reduce the therapeutic effects of anticancer drugs, thereby causing chemotherapy failure. Natural products are accessible, inexpensive, and less toxic sources of chemotherapeutic agents. Additionally, they have multiple mechanisms of action to inhibit various targets involved in the development of drug resistance. In this review, we have summarized the basic research and clinical applications of natural products as possible inhibitors for drug resistance in cancer. The molecular targets and the mechanisms of action of each natural product are also explained. Diverse drug resistance biomarkers were sensitive to natural products. P-glycoprotein and breast cancer resistance protein can be targeted by a large number of natural products. On the other hand, protein kinase C and topoisomerases were less sensitive to most of the studied natural products. The studies discussed in this review will provide a solid ground for scientists to explore the possible use of natural products in combination anticancer therapies to overcome drug resistance by targeting multiple drug resistance mechanisms.
Collapse
|
41
|
Kazantseva L, Becerra J, Santos-Ruiz L. Oridonin enhances antitumor effects of doxorubicin in human osteosarcoma cells. Pharmacol Rep 2021; 74:248-256. [PMID: 34427908 PMCID: PMC8786785 DOI: 10.1007/s43440-021-00324-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 11/28/2022]
Abstract
Background Doxorubicin is the chemotherapeutic drug of choice in osteosarcoma treatment, but its cumulative administration causes dilated cardiomyopathy. Combination therapy represents a potential strategy to reduce the therapeutic dosage of the chemotherapeutic agent and minimize its side effects. The aim of this study was to evaluate the potential of oridonin, a natural product from the medicinal herb Rabdosia rubescens, to act in combination with doxorubicin for osteosarcoma treatment. To date, there are no reports of the simultaneous administration of both drugs in osteosarcoma therapy. Methods The combined administration of different doses of oridonin and doxorubicin, as compared with the drugs alone, were tested in an in vitro model of osteosarcoma. The synergistic effect of the drugs on cell death was assessed by alamarBlue™ and by CompuSyn software. Early and late apoptosis markers (JC-1 fluorescence and Annexin V immunofluorescence), as well as the production of reactive oxygen species, were evaluated by flow cytometry. Western blot was used to assess the expression of anti-apoptotic proteins. Results Oridonin and doxorubicin presented a synergistic cytotoxic effect in osteosarcoma cells. In the presence of sub-cytotoxic concentrations of the natural product, there was an increased accumulation of intracellular doxorubicin, increased levels of reactive oxygen species (ROS), alteration of mitochondria membrane potential and a higher rate of apoptosis. Conclusion The combined use of oridonin and doxorubicin could help to reduce the clinical dosage of doxorubicin and its dangerous side effects.
Collapse
Affiliation(s)
- Liliya Kazantseva
- Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Universidad de Málaga, Parque Tecnológico de Andalucía, C/ Severo Ochoa, 35, 29590, Campanillas Málaga, Spain.,Centro de Investigación Biomédica en Red, Biotecnología, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.,Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - José Becerra
- Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Universidad de Málaga, Parque Tecnológico de Andalucía, C/ Severo Ochoa, 35, 29590, Campanillas Málaga, Spain.,Centro de Investigación Biomédica en Red, Biotecnología, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.,Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain.,Departamento de Biología Celular, Genética y Fisiología Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071, Málaga, Spain
| | - Leonor Santos-Ruiz
- Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Universidad de Málaga, Parque Tecnológico de Andalucía, C/ Severo Ochoa, 35, 29590, Campanillas Málaga, Spain. .,Centro de Investigación Biomédica en Red, Biotecnología, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain. .,Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain. .,Departamento de Biología Celular, Genética y Fisiología Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071, Málaga, Spain.
| |
Collapse
|
42
|
|
43
|
Beltzig L, Frumkina A, Schwarzenbach C, Kaina B. Cytotoxic, Genotoxic and Senolytic Potential of Native and Micellar Curcumin. Nutrients 2021; 13:nu13072385. [PMID: 34371895 PMCID: PMC8308652 DOI: 10.3390/nu13072385] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Curcumin, a natural polyphenol and the principal bioactive compound in Curcuma longa, was reported to have anti-inflammatory, anti-cancer, anti-diabetic and anti-rheumatic activity. Curcumin is not only considered for preventive, but also for therapeutic, purposes in cancer therapy, which requires a killing effect on cancer cells. A drawback, however, is the low bioavailability of curcumin due to its insolubility in water. To circumvent this limitation, curcumin was administered in different water-soluble formulations, including liposomes or embedded into nanoscaled micelles. The high uptake rate of micellar curcumin makes it attractive also for cancer therapeutic strategies. Native curcumin solubilised in organic solvent was previously shown to be cytotoxic and bears a genotoxic potential. Corresponding studies with micellar curcumin are lacking. METHODS We compared the cytotoxic and genotoxic activity of native curcumin solubilised in ethanol (Cur-E) with curcumin embedded in micells (Cur-M). We measured cell death by MTT assays, apoptosis, necrosis by flow cytometry, senolysis by MTT and C12FDG and genotoxicity by FPG-alkaline and neutral singe-cell gel electrophoresis (comet assay). RESULTS Using a variety of primary and established cell lines, we show that Cur-E and Cur-M reduce the viability in all cell types in the same dose range. Cur-E and Cur-M induced dose-dependently apoptosis, but did not exhibit senolytic activity. In the cytotoxic dose range, Cur-E and Cur-M were positive in the alkaline and the neutral comet assay. Genotoxic effects vanished upon removal of curcumin, indicating efficient and complete repair of DNA damage. For inducing cell death, which was measured 48 h after the onset of treatment, permanent exposure was required while 60 min pulse-treatment was ineffective. In all assays, Cur-E and Cur-M were equally active, and the concentration above which significant cytotoxic and genotoxic effects were observed was 10 µM. Micelles not containing curcumin were completely inactive. CONCLUSIONS The data show that micellar curcumin has the same cytotoxicity and genotoxicity profile as native curcumin. The effective concentration on different cell lines, including primary cells, was far above the curcumin concentration that can be achieved systemically in vivo, which leads us to conclude that native curcumin and curcumin administered as food supplement in a micellar formulation at the ADI level are not cytotoxic/genotoxic, indicating a wide margin of safety.
Collapse
|
44
|
Patel A, Vanecha R, Patel J, Patel D, Shah U, Bambharoliya T. Development of Natural Bioactive Alkaloids: Anticancer perspective. Mini Rev Med Chem 2021; 22:200-212. [PMID: 34254913 DOI: 10.2174/1389557521666210712111331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/11/2021] [Accepted: 04/20/2021] [Indexed: 11/22/2022]
Abstract
Cancer is a frightful disease that still poses a 'nightmare' worldwide, causing millions of casualties annually due to one of the human race's most significant healthcare challenges that requires a pragmatic treatment strategy. However, plants and plant-derived products revolutionize the field as they are quick, cleaner, eco-friendly, low-cost, effective, and less toxic than conventional treatment methods. Plants are repositories for new chemical entities and have a promising cancer research path, supplying 60% of the anticancer agents currently used. Alkaloids are important chemical compounds that serve as a rich reservoir for drug discovery and development. However, some alkaloids derived from natural herbs display anti-proliferation and antimetastatic activity on different forms of cancer, both in vitro and in vivo. Alkaloids have also been widely formulated as anticancer medications, such as camptothecin and vinblastine. Still, more research and clinical trials are required before final recommendations can be made on specific alkaloids. This review focuses on the naturally-derived bioactive alkaloids with prospective anticancer properties based on the information in the literature.
Collapse
Affiliation(s)
- Ashish Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT-Campus, Changa-388421, Anand, Gujarat, India
| | - Ravi Vanecha
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT-Campus, Changa-388421, Anand, Gujarat, India
| | - Jay Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT-Campus, Changa-388421, Anand, Gujarat, India
| | - Divy Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT-Campus, Changa-388421, Anand, Gujarat, India
| | - Umang Shah
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT-Campus, Changa-388421, Anand, Gujarat, India
| | | |
Collapse
|
45
|
Rahman HS. Preclinical Drug Discovery in Colorectal Cancer: A Focus on Natural Compounds. Curr Drug Targets 2021; 22:977-997. [PMID: 33820517 DOI: 10.2174/1389450122666210405105206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/15/2021] [Accepted: 02/01/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is considered one of the most predominant and deadly cancer globally. Nowadays, the main clinical management for this cancer includes chemotherapy and surgery; however, these treatments result in the occurrence of drug resistance and severe side effects, and thus it is a crucial requirement to discover an alternative and potential therapy for CRC treatment. Numerous therapeutic cancers were initially recognized from natural metabolites utilized in traditional medicine, and several recent types of research have shown that many natural products own potential effects against CRC and may assist the action of chemotherapy for the treatment of CRC. It has been indicated that most patients are well tolerated by natural compounds without showing any toxicity signs even at high doses. Conventional chemotherapeutics interaction with natural medicinal compounds presents a new feature in cancer exploration and treatment. Most of the natural compounds overwhelm malignant cell propagation by apoptosis initiation of CRC cells and arresting of the cell cycle (especially at G, S, and G2/M phase) that result in inhibition of tumor growth. OBJECTIVE This mini-review aimed to focus on natural compounds (alkaloids, flavonoids, polysaccharides, polyphenols, terpenoids, lactones, quinones, etc.) that were identified to have anti- CRC activity in vitro on CRC cell lines and/or in vivo experiments on animal models. CONCLUSION Most of the studied active natural compounds possess anti-CRC activity via different mechanisms and pathways in vitro and in vivo that might be used as assistance by clinicians to support chemotherapy therapeutic strategy and treatment doses for cancer patients.
Collapse
Affiliation(s)
- Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Sulaimani, 46001 Sulaymaniyah, Iraq.,Department of Medical Laboratory Sciences, Komar University of Science and Technology, Chaq-Chaq Qularaisee, Sulaimaniyah, Iraq
| |
Collapse
|
46
|
Özenver N, Efferth T. Phytochemical inhibitors of the NLRP3 inflammasome for the treatment of inflammatory diseases. Pharmacol Res 2021; 170:105710. [PMID: 34089866 DOI: 10.1016/j.phrs.2021.105710] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/15/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023]
Abstract
The NLRP3 inflammasome holds a crucial role in innate immune responses. Pathogen- and danger-associated molecular patterns may initiate inflammasome activation and following inflammatory cytokine release. The inflammasome formation and its-associated activity are involved in various pathological conditions such as cardiovascular, central nervous system, metabolic, renal, inflammatory and autoimmune diseases. Although the mechanism behind NLRP3-mediated disorders have not been entirely illuminated, many phytochemicals and medicinal plants have been described to prevent inflammatory disorders. In the present review, we mainly introduced phytochemicals inhibiting NLRP3 inflammasome in addition to NLRP3-mediated diseases. For this purpose, we performed a systematic literature search by screening PubMed, Scopus, and Google Scholar databases. By compiling the data of phytochemical inhibitors targeting NLRP3 inflammasome activation, a complex balance between inflammasome activation or inhibition with NLRP3 as central player was pointed out in NLRP3-driven pathological conditions. Phytochemicals represent potential therapeutic leads, enabling the generation of chemical derivatives with improved pharmacological features to treat NLRP3-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Nadire Özenver
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey; Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
47
|
Wang Z, Wang Z, Du C, Zhang Y, Tao B, Xian H. β-elemene affects angiogenesis of infantile hemangioma by regulating angiotensin-converting enzyme 2 and hypoxia-inducible factor-1 alpha. J Nat Med 2021; 75:655-663. [PMID: 33861415 DOI: 10.1007/s11418-021-01516-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
Infantile hemangioma (IH) is the most common benign vascular tumor resulting from the hyper-proliferation of vascular endothelial cells. In treatment of various tumors including IH, β-elemene, a compound extracted from Rhizoma zedoariae, has been reported to have anti-tumor effect. However, the underlying mechanisms of β-elemene in hemangioma have remained uninvestigated. In this presented study, functional analysis showed that low concentrations of β-elemene promoted the proliferation, migration and tube formation of human hemangioma endothelial cells (HemECs), while high concentrations of β-elemene produced inhibitory effects. Further, we also found that angiotensin-converting enzyme 2 (ACE2) expression was down-regulated at both mRNA and protein levels, while hypoxia-inducible factor-1 alpha (HIF-1-α) was up-regulated in infantile hemangiomas tissues and HemECs at both mRNA and protein levels. This result suggested that ACE2 and HIF-1-α play roles in IH. ACE2 expression was down-regulated with the treatment of β-elemene at different dosage point. Interestingly, the expression of Vascular endothelial growth factor-A (VEGFA) increased with treatment of low concentrations of β-elemene in HemECs, in contrary, the expression of VEGFA expression decreased with treatment of high concentrations of β-elemene. Moreover, if the concentration of β-elemene reached 40 μg/ml or higher, the expression of HIF-1-α decreased. Taken together, our data indicated that the different effects of β-elemene on the proliferation, migration and angiogenesis of hemangioma at different concentrations: The ACE2 signaling pathway dominates with treatment of low concentrations of β-elemene, stimulating the expression of downstream VEGFA to promote the angiogenesis of hemangioma; under the condition of high concentrations of β-elemene, the HIF-1-α signaling pathway inhibits the expression of VEGFA and further inhibits the angiogenesis of hemangioma.
Collapse
Affiliation(s)
- Zhenyu Wang
- Department of Pediatric Surgery, Affiliated Hospital of Nantong University, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Zhaoxiang Wang
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong University, Jiangsu, 226001, China
| | - Chenyu Du
- Department of Physiology, School of Medicine, Nantong University, Jiangsu, 226001, China
| | - Ye Zhang
- Laboratory of Medical Science, School of Medicine, Nantong University, Jiangsu, 226001, China
| | - Baorui Tao
- Laboratory of Medical Science, School of Medicine, Nantong University, Jiangsu, 226001, China
| | - Hua Xian
- Department of Pediatric Surgery, Affiliated Hospital of Nantong University, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
48
|
Li X, Li W, Yang P, Zhou H, Zhang W, Ma L. Anticancer effects of Cryptotanshinone against lung cancer cells through ferroptosis. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
49
|
Multiple strategies with the synergistic approach for addressing colorectal cancer. Biomed Pharmacother 2021; 140:111704. [PMID: 34082400 DOI: 10.1016/j.biopha.2021.111704] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer treatment is improving widely over time, but finding a proper defender to beat them seems like a distant dream. The quest for identification and discovery of drugs with an effective action is still a vital work. The role of a membrane protein called P-glycoprotein, which functions as garbage chute that efflux the waste, xenobiotics, and toxins out of the cancer cells acts as a major reason behind the therapeutic failure of most chemotherapeutic drugs. In this review, we mainly focused on a multiple strategies by employing 5-Fluorouracil, curcumin, and lipids in Nano formulation for the possible treatment of colorectal cancer and its metastasis. Eventually, multidrug resistance and angiogenesis can be altered and it would be helpful in colorectal cancer targeting.We have depicted the possible way for the depletion of colorectal cancer cells without disturbing the normal cells. The concept of focusing on multiple pathways for marking the colorectal cancer cells could help in activating one among the pathways if the other one fails. The activity of the 5-Fluorouracil can be enhanced with the help of curcumin which acts as a chemosensitizer, chemotherapeutic agent, and even for altering the resistance. As we eat to survive, so do the cancer cells. The cancer cells utilize the energy source to stay alive and survive. Fatty acids can be used as the energy source and this concept can be employed for targeting the colorectal cancer cells and also for altering the resistant part.
Collapse
|
50
|
Ozok O, Kavak E, Kivrak A. Synthesis of novel artesunate-benzothiophene and artemisinin-benzothiophene derivatives. Nat Prod Res 2021; 36:5228-5234. [PMID: 34024198 DOI: 10.1080/14786419.2021.1928116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Natural products are used for the treatment of a variety of diseases for many years. Last decades, design and synthesis of novel biologically active hybrid molecules including natural product is gained big importance due to their unique and new biological properties. In the present study, novel artemisinin-benzothiophene derivatives (12 A-F) are synthesised. Initially, benzothiophene derivatives (4 A-4F) are prepared via the Pd-catalyzed coupling reactions and iodocyclisation reactions. Then, Suzuki-Miyaura coupling reactions were used for the formation of intermediates 6 A-6F (between 64% and 91% yields). Finally, the Steglich esterification reaction between intermediate 6 and artesunate formed the artemisinin-benzothiophene hybrids (9 A-9F) in moderate to excellent yields under very mild reaction conditions. When intermediate 6 was reacted with dihydroartemisinin, product 12 A-12F was also obtained with high yields.
Collapse
Affiliation(s)
- Omruye Ozok
- Department of Chemistry, Faculty of Sciences, Van Yüzüncü Yil University, Van, Turkey.,Department of Molecular Biology and Genetics, Faculty of Sciences, Van Yüzüncü Yil University, Van, Turkey
| | - Emrah Kavak
- Department of Chemistry, Faculty of Sciences, Van Yüzüncü Yil University, Van, Turkey
| | - Arif Kivrak
- Department of Chemistry, Faculty of Sciences, Van Yüzüncü Yil University, Van, Turkey.,Faculty of Sciences and Arts, Department of Chemistry, Eskisehir Osmangazi University, Eskişehir, Turkey
| |
Collapse
|