1
|
Solomon BI, Muñoz AM, Sinaii N, Mohamed H, Farhat NM, Alexander D, Do AD, Porter FD. Swallowing characterization of adult-onset Niemann-Pick, type C1 patients. Orphanet J Rare Dis 2024; 19:231. [PMID: 38863022 PMCID: PMC11165794 DOI: 10.1186/s13023-024-03241-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Niemann-Pick disease, type C1 (NPC1) is a rare lysosomal disorder with progressive neurological manifestations, historically recognized as a pediatric disease. However, awareness of the adult-onset (AO) subtype is increasing, often with non-specific symptoms leading to delayed and misdiagnosis. Dysphagia, commonly recognized as a clinical morbidity in NPC1, raises concerns for swallowing safety and aspiration risk. This study aims to characterize swallowing function in AO NPC1, addressing the gap in understanding and clinical management. METHODS Fourteen AO NPC1 individuals in a prospective natural history study (NCT00344331) underwent comprehensive assessments, including history and physical examinations utilizing the NPC1 severity rating scale, videofluoroscopic swallowing studies with summary interpretive analysis, and cerebrospinal fluid (CSF) collection for biomarker evaluation at baseline visit. Descriptive statistics and multivariate statistical modeling were employed to analyze NPC1 disease covariates, along with the American Speech-Language-Hearing Association National Outcome Measure (ASHA-NOMS) and the NIH Penetration Aspiration Scale (NIH-PAS). RESULTS Our cohort, comprised of 14 predominately female (n = 11, 78.6%) individuals, had an average age of 43.1 ± 16.7 years at the initial visit. Overall, our AO patients were able to swallow independently with no/minimal cueing, with 6 (43%) avoiding specific food items or requiring more time. Upon risk analysis of aspiration, the cohort demonstrated no obvious aspiration risk or laryngeal aspiration in 8 (57%), minimal risk with intermittent laryngeal penetration and retrograde excursion in 5(36%), and moderate risk (7%) in only one. Dietary modifications were recommended in 7 (50%), particularly for liquid viscosities (n = 6, 43%) rather than solids (n = 3, 21%). No significant correlations were identified between swallowing outcomes and NPC1-related parameters or CSF biomarkers. CONCLUSION Despite the heterogeneity in NPC1 presentation, the AO cohort displayed functional swallowing abilities with low aspiration risk with some participants still requiring some level of dietary modifications. This study emphasizes the importance of regular swallowing evaluations and management in AO NPC1 to address potential morbidities associated with dysphagia such as aspiration. These findings provide clinical recommendations for the assessment and management of the AO cohort, contributing to improved care for these individuals.
Collapse
Affiliation(s)
- Beth I Solomon
- Speech-Language Pathology Section, Mark O. Hatfield Clinical Center, National Institutes of Health, Bethesda, MD, USA.
| | - Andrea M Muñoz
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Ninet Sinaii
- Biostatistics and Clinical Epidemiology Service, NIH Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Hibaaq Mohamed
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Nicole M Farhat
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Derek Alexander
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - An Dang Do
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Forbes D Porter
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Bremova-Ertl T, Hofmann J, Stucki J, Vossenkaul A, Gautschi M. Inborn Errors of Metabolism with Ataxia: Current and Future Treatment Options. Cells 2023; 12:2314. [PMID: 37759536 PMCID: PMC10527548 DOI: 10.3390/cells12182314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
A number of hereditary ataxias are caused by inborn errors of metabolism (IEM), most of which are highly heterogeneous in their clinical presentation. Prompt diagnosis is important because disease-specific therapies may be available. In this review, we offer a comprehensive overview of metabolic ataxias summarized by disease, highlighting novel clinical trials and emerging therapies with a particular emphasis on first-in-human gene therapies. We present disease-specific treatments if they exist and review the current evidence for symptomatic treatments of these highly heterogeneous diseases (where cerebellar ataxia is part of their phenotype) that aim to improve the disease burden and enhance quality of life. In general, a multimodal and holistic approach to the treatment of cerebellar ataxia, irrespective of etiology, is necessary to offer the best medical care. Physical therapy and speech and occupational therapy are obligatory. Genetic counseling is essential for making informed decisions about family planning.
Collapse
Affiliation(s)
- Tatiana Bremova-Ertl
- Department of Neurology, University Hospital Bern (Inselspital) and University of Bern, 3010 Bern, Switzerland; (J.H.); (J.S.)
- Center for Rare Diseases, University Hospital Bern (Inselspital) and University of Bern, 3010 Bern, Switzerland
| | - Jan Hofmann
- Department of Neurology, University Hospital Bern (Inselspital) and University of Bern, 3010 Bern, Switzerland; (J.H.); (J.S.)
| | - Janine Stucki
- Department of Neurology, University Hospital Bern (Inselspital) and University of Bern, 3010 Bern, Switzerland; (J.H.); (J.S.)
| | - Anja Vossenkaul
- Division of Pediatric Endocrinology, Diabetes and Metabolism, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (A.V.); (M.G.)
| | - Matthias Gautschi
- Division of Pediatric Endocrinology, Diabetes and Metabolism, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (A.V.); (M.G.)
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
3
|
Tyler SE, Tyler LD. Pathways to healing: Plants with therapeutic potential for neurodegenerative diseases. IBRO Neurosci Rep 2023; 14:210-234. [PMID: 36880056 PMCID: PMC9984566 DOI: 10.1016/j.ibneur.2023.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/25/2023] [Indexed: 02/12/2023] Open
Abstract
Some of the greatest challenges in medicine are the neurodegenerative diseases (NDs), which remain without a cure and mostly progress to death. A companion study employed a toolkit methodology to document 2001 plant species with ethnomedicinal uses for alleviating pathologies relevant to NDs, focusing on its relevance to Alzheimer's disease (AD). This study aimed to find plants with therapeutic bioactivities for a range of NDs. 1339 of the 2001 plant species were found to have a bioactivity from the literature of therapeutic relevance to NDs such as Parkinson's disease, Huntington's disease, AD, motor neurone diseases, multiple sclerosis, prion diseases, Neimann-Pick disease, glaucoma, Friedreich's ataxia and Batten disease. 43 types of bioactivities were found, such as reducing protein misfolding, neuroinflammation, oxidative stress and cell death, and promoting neurogenesis, mitochondrial biogenesis, autophagy, longevity, and anti-microbial activity. Ethno-led plant selection was more effective than random selection of plant species. Our findings indicate that ethnomedicinal plants provide a large resource of ND therapeutic potential. The extensive range of bioactivities validate the usefulness of the toolkit methodology in the mining of this data. We found that a number of the documented plants are able to modulate molecular mechanisms underlying various key ND pathologies, revealing a promising and even profound capacity to halt and reverse the processes of neurodegeneration.
Collapse
Key Words
- A-H, Alpers-Huttenlocher syndrome
- AD, Alzheimer’s disease
- ALS, Amyotrophic lateral sclerosis
- BBB, blood-brain barrier
- C. elegans,, Caenorhabditis elegans
- CJD, Creutzfeldt-Jakob disease
- CMT, Charcot–Marie–Tooth disease
- CS, Cockayne syndrome
- Ech A, Echinochrome A
- FDA, Food and Drug Administration
- FRDA, Friedreich’s ataxia
- FTD, Frontotemporal dementia
- HD, Huntington’s disease
- Hsp, Heat shock protein
- LSD, Lysosomal storage diseases
- MS, Multiple sclerosis
- MSA, Multiple system atrophy
- MSP, Multisystem proteinopathy
- Medicinal plant
- ND, neurodegenerative disease
- NPC, Neimann-Pick disease type C
- NSC, neural stem cells
- Neuro-inflammation
- Neurodegeneration
- Neurogenesis
- PC, pharmacological chaperone
- PD, Parkinson’s disease
- Protein misfolding
- SMA, Spinal muscular atrophy
- VD, Vascular dementia
- prion dis, prion diseases
- α-syn, alpha-synuclein
Collapse
Affiliation(s)
- Sheena E.B. Tyler
- John Ray Research Field Station, Cheshire, United Kingdom
- Corresponding author.
| | - Luke D.K. Tyler
- School of Natural Sciences, Bangor University, Gwynedd, United Kingdom
| |
Collapse
|
4
|
Gutić M, Milosavljević MN, Janković SM. Cost-effectiveness of miglustat versus symptomatic therapy of Niemann-Pick disease type C. Int J Clin Pharm 2022; 44:1442-1453. [PMID: 36243834 DOI: 10.1007/s11096-022-01491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/14/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Niemann-Pick disease type C (NP-C) is a progressive neurodegenerative disorder with early infantile (< 2 years), late infantile (2-6 years), juvenile (7-15 years) and adolescent (> 15 years) onset. The mainstay of therapy for NP-C patients with neurological symptoms is miglustat, a drug that may modify the course of the disease. AIM Our aim was to evaluate the cost-effectiveness of miglustat in comparison to symptomatic therapy in patients with NP-C in the socio-economic settings of the Republic of Serbia, an upper-middle-income European economy. METHOD The perspective of the Serbian Republic Health Insurance Fund was chosen for this study, and the time horizon was eighty years. The main outcomes of the study were quality-adjusted life years gained with miglustat and comparator, and direct costs of treatment. The study was conducted through the generation and simulation of the Discrete-Event Simulation model. The model results were obtained after Monte Carlo microsimulation of a sample with 1000 virtual patients. RESULTS Treatment with miglustat was not cost-effective when compared with symptomatic therapy and was associated with negative values of net monetary benefit regardless of the onset of neurological manifestations (- 110,447,627.00 ± 701,614.00 RSD, - 343,871,695.00 ± 2,577,441.00 RSD, - 1,397,908,502.00 ± 23,084,235.00 RSD and - 2,953,680,879.00 ± 33,297,412.00 RSD) for early infantile, late infantile, juvenile and adolescent cohorts, respectively). CONCLUSION When traditional pharmacoeconomic evaluation is employed, miglustat is not a cost-effective option in comparison to symptomatic therapy for the treatment of NP-C. However, given the proven efficacy of miglustat, there is a need to find ways to make this drug available to all patients with NP-C.
Collapse
Affiliation(s)
- Medo Gutić
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000, Kragujevac, Serbia
| | - Miloš N Milosavljević
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000, Kragujevac, Serbia.
| | - Slobodan M Janković
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000, Kragujevac, Serbia
| |
Collapse
|
5
|
Solomon BI, Muñoz AM, Sinaii N, Farhat NM, Smith AC, Bianconi S, Dang Do A, Backman MC, Machielse L, Porter FD. Phenotypic expression of swallowing function in Niemann-Pick disease type C1. Orphanet J Rare Dis 2022; 17:342. [PMID: 36064725 PMCID: PMC9446530 DOI: 10.1186/s13023-022-02472-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 08/13/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Niemann-Pick disease type C1 (NPC1) is a rare autosomal recessive disease characterized by endolysosomal accumulation of unesterified cholesterol with progressive deterioration in swallowing, often leading to premature death. Although documented, the natural history of NPC1 swallowing dysfunction has yet to be delineated systematically. This manuscript aims to provide a comprehensive characterization of the phenotypic spectrum and progression of swallowing dysfunction in NPC1. METHODOLOGY The National Institutes of Health (NIH) NPC1 natural history study (NCT00344331) enrolled 120 patients, who underwent comprehensive interpretative swallow assessments for swallowing safety, dietary modifications, and aspiration risk. Longitudinal statistical modeling accounted for all outcomes with NPC1 disease covariates (first symptom onset, age at neurological symptom onset, seizure history, duration of neurological symptoms) as well as miglustat use (a glucosylceramide synthase inhibitor) and NIH study duration (NIHSD; the length of time an individual participated in the NIH study). Probabilities for disease progression and time to swallowing decline were conducted for the entire cohort. RESULTS Time to swallowing decline with American Speech-Language-Hearing Association National Outcome Measure (ASHA-NOMS) and the NIH-adapted Penetration Aspiration Scale (NIH-PAS) were identified: [Formula: see text] person-years and [Formula: see text] person-years, respectively. NIHSD and seizure history consistently and significantly were associated with decline (ORNIHSD = 1.34-2.10, 95% CI 1.04-3.4, p = 0.001-0.026; ORSeizure = 3.26-18.22, 1.03-167.79; p = 0.001-0.046), while miglustat use revealed protection (ORMiglustat = 0.01-0.43, 0.007-0.98; p = 0.001-0.044). The probability of decline with NPC1 neurological severity scale and annual severity increment scale were established with the aforementioned covariates, varying amongst subgroups. CONCLUSION This study represents the most extensive collection of prospective, instrumental swallowing assessments in NPC1 to date with an interpretive analysis providing an improved understanding of NPC1 disease progression with swallowing function-serving as a foundation for clinical management and future NPC1 therapeutics.
Collapse
Affiliation(s)
- Beth I Solomon
- Speech-Language Pathology Section, Mark O. Hatfield Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bld. 10 1-NW-1455, Bethesda, MD, 20892, USA.
| | - Andrea M Muñoz
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Ninet Sinaii
- Biostatistics and Clinical Epidemiology Service, NIH Clinical Center, National Institutes of Health, Bethesda, USA
| | - Nicole M Farhat
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Andrew C Smith
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Simona Bianconi
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - An Dang Do
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | - Leonza Machielse
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Forbes D Porter
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
6
|
Azab B, Rabab’h O, Aburizeg D, Mohammad H, Dardas Z, Mustafa L, Khasawneh RA, Awad H, Hatmal MM, Altamimi E. Potential Composite Digenic Contribution of NPC1 and NOD2 Leading to Atypical Lethal Niemann-Pick Type C with Initial Crohn’s Disease-like Presentation: Genotype-Phenotype Correlation Study. Genes (Basel) 2022; 13:genes13060973. [PMID: 35741735 PMCID: PMC9223108 DOI: 10.3390/genes13060973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/31/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
Abstract
Niemann–Pick disease type C (NPC) is an autosomal recessive neurovisceral disease characterized by progressive neurodegeneration with variable involvement of multisystemic abnormalities. Crohn’s disease (CD) is an inflammatory bowel disease (IBD) with a multifactorial etiology influenced by variants in NOD2. Here, we investigated a patient with plausible multisystemic overlapping manifestations of both NPC and CD. Her initial hospitalization was due to a prolonged fever and non-bloody diarrhea. A few months later, she presented with recurrent skin tags and anal fissures. Later, her neurological and pulmonary systems progressively deteriorated, leading to her death at the age of three and a half years. Differential diagnosis of her disease encompassed a battery of clinical testing and genetic investigations. The patient’s clinical diagnosis was inconclusive. Specifically, the histopathological findings were directed towards an IBD disease. Nevertheless, the diagnosis of IBD was not consistent with the patient’s subsequent neurological and pulmonary deterioration. Consequently, we utilized a genetic analysis approach to guide the diagnosis of this vague condition. Our phenotype–genotype association attempts led to the identification of candidate disease-causing variants in both NOD2 and NPC1. In this study, we propose a potential composite digenic impact of these two genes as the underlying molecular etiology. This work lays the foundation for future functional and mechanistic studies to unravel the digenic role of NOD2 and NPC1.
Collapse
Affiliation(s)
- Bilal Azab
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pathology and Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan; (D.A.); (H.M.); (L.M.); (H.A.)
- Correspondence: (B.A.); (E.A.)
| | - Omar Rabab’h
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA;
| | - Dunia Aburizeg
- Department of Pathology and Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan; (D.A.); (H.M.); (L.M.); (H.A.)
| | - Hashim Mohammad
- Department of Pathology and Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan; (D.A.); (H.M.); (L.M.); (H.A.)
| | - Zain Dardas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Lina Mustafa
- Department of Pathology and Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan; (D.A.); (H.M.); (L.M.); (H.A.)
| | - Ruba A. Khasawneh
- Department of Diagnostic Radiology and Nuclear Medicine, Faculty of Medicine King Abdullah University Hospital, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Heyam Awad
- Department of Pathology and Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan; (D.A.); (H.M.); (L.M.); (H.A.)
| | - Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa 13133, Jordan;
| | - Eyad Altamimi
- Pediatric Department, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
- Correspondence: (B.A.); (E.A.)
| |
Collapse
|
7
|
Solomon BI, Smith AC, Sinaii N, Farhat N, King MC, Machielse L, Porter FD. Association of Miglustat With Swallowing Outcomes in Niemann-Pick Disease, Type C1. JAMA Neurol 2021; 77:1564-1568. [PMID: 32897301 DOI: 10.1001/jamaneurol.2020.3241] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Niemann-Pick disease, type C1 (NPC1) is a progressive neurovisceral disease with no US Food and Drug Administration-approved therapy. Miglustat, a drug used off-label in the United States for the treatment of NPC1, appears to stabilize neurologic disease progression. Several prospective trials suggest that miglustat stabilizes oropharyngeal swallowing function; however, its effect on dysphagia and aspiration risk has not been demonstrated instrumentally. Objective To determine if miglustat therapy is associated with stabilized swallowing dysfunction in individuals with NPC1. Design, Setting, and Participants Patients with confirmed NPC1 diagnoses were evaluated in a single-center cohort study of NPC1 from April 1997 to November 2019. Longitudinal data from individuals with neurologic disease onset prior to age 15 years were analyzed. The study population was divided into those with neurologic disease onset in early childhood (age <6 years) and late childhood (age ≥6 years and <15 years). Analysis began September 2019. Exposures Oral miglustat at baseline and at follow-up. Main Outcomes and Measures Oropharyngeal swallowing function was assessed with videofluoroscopic swallowing studies. Overall swallowing ability and aspiration risk were evaluated using the American Speech-Language-Hearing Association National Outcome Measurement System swallowing domain and an adapted Rosenbek aspiration-penetration scale, respectively. Results Overall, 50 participants were evaluated at baseline (median [interquartile range] age, 9.4 [3.4-16.4] years; 26 [52%] female). The median (interquartile range) duration of follow-up was 3.0 (1.1-4.4) years. Miglustat use was associated with decreased odds of worse American Speech-Language-Hearing Association National Outcome Measurement System swallowing domain outcomes in all 3 subsets (overall: odds ratio [OR], 0.09 [95% CI, 0.02-0.36); P < .001; early childhood: OR, 0.17 [95% CI, 0.04-0.67]; P = .01; late childhood: OR, 0.05 [95% CI, 0.01-0.29]; P = .001). Miglustat use was associated with decreased odds of worse Rosenbek aspiration-penetration scale outcomes in the overall cohort (OR, 0.28 [95% CI, 0.08-0.95]; P = .04) but not in each subgroup (early childhood: OR, 0.27 [95% CI, 0.06-1.22]; P = .09; late childhood: OR, 0.38 [95% CI, 0.06-2.33]; P = .29). Conclusions and Relevance These data suggest that miglustat use is associated with stabilized swallowing function and reduced aspiration risk in NPC1, thus supporting its use in this population. In addition, these data demonstrate that a quantification of swallowing dysfunction can be used as a clinically relevant, functional outcome measure in future therapeutic trials in NPC1.
Collapse
Affiliation(s)
- Beth I Solomon
- Speech-Language Pathology Section, Rehabilitation Medicine Department, Mark O. Hatfield Clinical Center, Bethesda, Maryland
| | - Andrew C Smith
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Ninet Sinaii
- Biostatistics and Clinical Epidemiology Service, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Nicole Farhat
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Monique C King
- Speech-Language Pathology Section, Rehabilitation Medicine Department, Mark O. Hatfield Clinical Center, Bethesda, Maryland
| | - Leonza Machielse
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Forbes D Porter
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| |
Collapse
|
8
|
Han S, Zhang H, Yi M, Liu X, Maegawa GHB, Zou Y, Wang Q, Wu D, Ye Z. Potential Disease-Modifying Effects of Lithium Carbonate in Niemann-Pick Disease, Type C1. Front Pharmacol 2021; 12:667361. [PMID: 34177581 PMCID: PMC8220070 DOI: 10.3389/fphar.2021.667361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/25/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Niemann-Pick disease type C1 (NP-C1) is a rare, autosomal-recessive neurodegenerative disorder with no United States Food and Drug Administration (FDA)-approved drug. Lithium has been shown to have considerable neuroprotective effects for neurological disorders such as bipolar disorder, Alzheimer's disease and stroke and has been tested in many clinical trials. However, the pharmacological effect of lithium on NP-C1 neurodegenerative processes has not been investigated. The aim of this study was to provide an initial evaluation of the safety and feasibility of lithium carbonate in patients with NP-C1. Methods: A total of 13 patients diagnosed with NP-C1 who met the inclusion criteria received lithium orally at doses of 300, 600, 900, or 1,200 mg daily. The dose was reduced based on tolerance or safety observations. Plasma 7-ketocholesterol (7-KC), an emerging biomarker of NP-C1, was the primary endpoint. Secondary endpoints included NPC Neurological Severity Scores (NNSS) and safety. Results: Of the 13 patients with NP-C1 (12-33 years) enrolled, three withdrew (discontinuation of follow-up outpatient visits). The last observed post-treatment values of 7-KC concentrations (128 ng/ml, SEM 20) were significantly lower than pretreatment baselines values (185 ng/ml, SEM 29; p = 0.001). The mean NNSS was improved after lithium treatment at 12 months (p = 0.005). Improvement in swallowing capacity was observed in treated patients (p = 0.014). No serious adverse events were recorded in the patients receiving lithium. Conclusion: Lithium is a potential therapeutic option for NP-C1 patients. Larger randomized and double-blind clinical trials are needed to further support this finding. Clinical Trial Registration: ClinicalTrials.gov, NCT03201627.
Collapse
Affiliation(s)
- Shiqian Han
- Department of Tropical Medicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Huiwen Zhang
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengni Yi
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoqing Liu
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gustavo H B Maegawa
- Department of Pediatrics, Genetics and Metabolism, University of Florida, Gainesville, FL, United States
| | - Yunding Zou
- Department of Hematology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qijun Wang
- Department of Gastroenterology of Ruijin Hospital, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Departments of Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, United States.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
| | - Dianqing Wu
- Departments of Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, United States.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
| | - Zhijia Ye
- Department of Tropical Medicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China.,Laboratory Animal Research Center, Chongqing University School of Medicine, Chongqing, China
| |
Collapse
|
9
|
Sheth J, Nair A. Treatment for Lysosomal Storage Disorders. Curr Pharm Des 2021; 26:5110-5118. [PMID: 33059565 DOI: 10.2174/1381612826666201015154932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/22/2020] [Indexed: 12/31/2022]
Abstract
Lysosomal storage disorders comprise a group of approximately 70 types of inherited diseases resulting due to lysosomal gene defects. The outcome of the defect is a deficiency in either of the three: namely, lysosomal enzymes, activator protein, or transmembrane protein, as a result of which there is an unwanted accumulation of biomolecules inside the lysosomes. The pathophysiology of these conditions is complex affecting several organ systems and nervous system involvement in a majority of cases. Several research studies have well elucidated the mechanism underlying the disease condition leading to the development in devising the treatment strategies for the same. Currently, these approaches aim to reduce the severity of symptoms or delay the disease progression but do not provide a complete cure. The main treatment methods include Enzyme replacement therapy, Bone marrow transplantation, Substrate reduction therapy, use of molecular chaperones, and Gene therapy. This review article presents an elaborate description of these strategies and discusses the ongoing studies for the same.
Collapse
Affiliation(s)
- Jayesh Sheth
- Foundation for Research in Genetics and Endocrinology, Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, Gujarat, India
| | - Aadhira Nair
- Foundation for Research in Genetics and Endocrinology, Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, Gujarat, India
| |
Collapse
|
10
|
Holzmann C, Witt M, Rolfs A, Antipova V, Wree A. Gender-Specific Effects of Two Treatment Strategies in a Mouse Model of Niemann-Pick Disease Type C1. Int J Mol Sci 2021; 22:ijms22052539. [PMID: 33802605 PMCID: PMC7962008 DOI: 10.3390/ijms22052539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
In a mouse model of Niemann-Pick disease type C1 (NPC1), a combination therapy (COMBI) of miglustat (MIGLU), the neurosteroid allopregnanolone (ALLO) and the cyclic oligosaccharide 2-hydroxypropyl-β-cyclodextrin (HPßCD) has previously resulted in, among other things, significantly improved motor function. The present study was designed to compare the therapeutic effects of the COMBI therapy with that of MIGLU or HPßCD alone on body and brain weight and the behavior of NPC1−/− mice in a larger cohort, with special reference to gender differences. A total of 117 NPC1−/− and 123 NPC1+/+ mice underwent either COMBI, MIGLU only, HPßCD only, or vehicle treatment (Sham), or received no treatment at all (None). In male and female NPC1−/− mice, all treatments led to decreased loss of body weight and, partly, brain weight. Concerning motor coordination, as revealed by the accelerod test, male NPC1−/− mice benefited from COMBI treatment, whereas female mice benefited from COMBI, MIGLU, and HPßCD treatment. As seen in the open field test, the reduced locomotor activity of male and female NPC1−/− mice was not significantly ameliorated in either treatment group. Our results suggest that in NPC1−/− mice, each drug treatment scheme had a beneficial effect on at least some of the parameters evaluated compared with Sham-treated mice. Only in COMBI-treated male and female NPC+/+ mice were drug effects seen in reduced body and brain weights. Upon COMBI treatment, the increased dosage of drugs necessary for anesthesia in Sham-treated male and female NPC1−/− mice was almost completely reduced only in the female groups.
Collapse
Affiliation(s)
- Carsten Holzmann
- Institute of Medical Genetics, Rostock University Medical Center, D-18057 Rostock, Germany;
- Centre of Transdisciplinary Neuroscience Rostock, D-18147 Rostock, Germany;
| | - Martin Witt
- Centre of Transdisciplinary Neuroscience Rostock, D-18147 Rostock, Germany;
- Institute of Anatomy, Rostock University Medical Center, D-18057 Rostock, Germany;
| | - Arndt Rolfs
- Centogene AG, Rostock, Am Strande 7, 18055 Rostock, Germany;
- University of Rostock, 18055 Rostock, Germany
| | - Veronica Antipova
- Institute of Anatomy, Rostock University Medical Center, D-18057 Rostock, Germany;
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Macroscopic and Clinical Anatomy, Medical University of Graz, A-8010 Graz, Austria
| | - Andreas Wree
- Centre of Transdisciplinary Neuroscience Rostock, D-18147 Rostock, Germany;
- Institute of Anatomy, Rostock University Medical Center, D-18057 Rostock, Germany;
- Correspondence: ; Tel.: +49-381-494-8429
| |
Collapse
|
11
|
Biomarker analysis of Niemann-Pick disease type C using chromatography and mass spectrometry. J Pharm Biomed Anal 2020; 191:113622. [PMID: 32998104 DOI: 10.1016/j.jpba.2020.113622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/26/2020] [Accepted: 09/07/2020] [Indexed: 12/26/2022]
Abstract
Niemann-Pick disease type C (NPC) is an autosomal recessive disorder with progressive degradation of central nervous system. The age of the onset varies from perinatal to adulthood. Patients with NPC are affected in the central nervous system, peripheral nerves, and systemic organs. From these background, it is extremely difficult to discover NPC clinically and diagnose it correctly. The procedure of the conventional laboratory methods are complicated and it takes long time to obtain the result. Because of the importance of early treatments and the shortcomings of conventional diagnostic methods for NPC, remarkable attention has been paid to biomarkers and chemical diagnoses. In the last decade, many NPC biomarkers have been reported. They are classified as cholesterol-related metabolites, sphingolipid metabolites, and novel phospholipid metabolites, respectively. Therefore, these are all lipid metabolites. Various chemical analysis methods have been used for their identification. In addition, chromatography and mass spectrometry are mainly used for their quantification. This review article outlines NPC biomarkers reported in the last decade and their analytical methods.
Collapse
|
12
|
Patterson MC, Garver WS, Giugliani R, Imrie J, Jahnova H, Meaney FJ, Nadjar Y, Vanier MT, Moneuse P, Morand O, Rosenberg D, Schwierin B, Héron B. Long-term survival outcomes of patients with Niemann-Pick disease type C receiving miglustat treatment: A large retrospective observational study. J Inherit Metab Dis 2020; 43:1060-1069. [PMID: 32324281 PMCID: PMC7540716 DOI: 10.1002/jimd.12245] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/20/2020] [Accepted: 04/17/2020] [Indexed: 12/29/2022]
Abstract
Miglustat has been indicated for the treatment of Niemann-Pick disease type C (NP-C) since 2009. The aim of this observational study was to assess the effect of miglustat on long-term survival of patients with NP-C. Data for 789 patients from five large national cohorts and from the NPC Registry were collected and combined. Miglustat-treated and untreated patients overall and within sub-groups according to age-at-neurological-onset, that is, early infantile-onset (<2 years), late infantile-onset (2 to <6 years), juvenile-onset (6 to <15 years), and adolescent/adult-onset (≥15 years) were analysed and compared. Survival was analysed from the time of first neurological manifestation (Neurological onset group, comprising 669 patients) and from diagnosis (Diagnosis group, comprising 590 patients) using a Cox proportional hazard model adjusted for various covariates. Overall, 384 (57.4%) patients in the Neurological onset group and 329 (55.8%) in the Diagnosis group were treated with miglustat. Miglustat treatment was associated with a significant reduction in risk of mortality in both groups (entire Neurological onset group, Hazard ratio [HR] = 0.51; entire Diagnosis group, HR = 0.44; both P < .001). The effect was observed consistently in all age-at-neurological-onset sub-groups (HRs = 0.3 to 0.7) and was statistically significant for late infantile-onset patients in both groups (Neurological onset group, HR = 0.36, P < .05; Diagnosis group, HR = 0.32, P < .01), and juvenile-onset patients in the Diagnosis group only (HR = 0.30, P < .05). Despite the limitations of the data that urge cautious interpretation, the findings are consistent with a beneficial effect of miglustat on survival in patients with NP-C.
Collapse
Affiliation(s)
- Marc C. Patterson
- Division of Child and Adolescent Neurology, Departments of Neurology, Pediatrics and Medical GeneticsMayo ClinicRochesterMinnesotaUSA
| | - William S. Garver
- Department of Chemistry and Chemical BiologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Robert Giugliani
- Medical Genetics ServicePorto AlegreBrazil
- Department of GeneticsUFRGSPorto AlegreBrazil
| | | | - Helena Jahnova
- Department of Institute of Inherited Metabolic DisordersCharles UniversityPragueCzech Republic
| | - F John Meaney
- Department of PediatricsUniversity of ArizonaTucsonArizonaUSA
| | - Yann Nadjar
- Department of NeurologyReference Center for Lysosomal Diseases (CRML), Hôpital de la Pitié‐SalpêtrièreParisFrance
| | | | - Patrick Moneuse
- Global Business and Science AffairsActelion Pharmaceuticals Ltd.AllschwilSwitzerland
| | - Olivier Morand
- Global Business and Science AffairsActelion Pharmaceuticals Ltd.AllschwilSwitzerland
- Present address:
Azafaros B.VLeidenThe Netherlands
| | - Daniel Rosenberg
- Epidemiology and Observational Studies, Actelion Pharmaceuticals Ltd., AllschwilSwitzerland
| | - Barbara Schwierin
- Azafaros B.V, LeidenThe Netherlands
- Sorbonne UniversiteParisFrance
- Present address:
Idorsia Pharmaceuticals Ltd.AllschwilSwitzerland
| | - Benedicte Héron
- Idorsia Pharmaceuticals Ltd.AllschwilSwitzerland
- Department of Neuropediatrics, CRML, Hopital Armand‐TrousseauParisFrance
| |
Collapse
|
13
|
Yang CY, Lai RY, Amokrane N, Lin CY, Figueroa KP, Pulst SM, Perlman S, Wilmot G, Gomez CM, Schmahmann JD, Paulson H, Shakkottai VG, Rosenthal LS, Ying SH, Zesiewicz T, Bushara K, Geschwind M, Xia G, Subramony S, Ashizawa T, Troche MS, Kuo SH. Dysphagia in spinocerebellar ataxias type 1, 2, 3 and 6. J Neurol Sci 2020; 415:116878. [PMID: 32454319 PMCID: PMC10150947 DOI: 10.1016/j.jns.2020.116878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Dysphagia is a common symptom and may be a cause of death in patients with spinocerebellar ataxias (SCAs). However, little is known about at which disease stage dysphagia becomes clinically relevant. Therefore, our study aims to investigate the prevalence of dysphagia in different disease stages of SCA 1, 2, 3 and 6. METHODS We studied 237 genetically confirmed patients with SCA 1, 2, 3, 6 from the Clinical Research Consortium for SCAs and investigated the prevalence of self-reported dysphagia and the association between dysphagia and other clinical characteristics. We further stratified ataxia severity and studied the prevalence of dysphagia at each disease stage. RESULTS Dysphagia was present in 59.9% of SCA patients. Patients with dysphagia had a longer disease duration and more severe ataxia than patients without dysphagia (patients with dysphagia vs. without dysphagia, disease duration (years): 14.51 ± 8.91 vs. 11.22 ± 7.82, p = .001, scale for the assessment and rating of ataxia [SARA]: 17.90 ± 7.74 vs. 13.04 ± 7.51, p = .000). Dysphagia was most common in SCA1, followed by SCA3, SCA 6, and SCA 2. Dysphagia in SCA1 and 3 was associated robustly with ataxia severity, whereas this association was less obvious in SCA2 and 6, demonstrating genotype-specific clinical variation. CONCLUSION Dysphagia is a common clinical symptom in SCAs, especially in the severe disease stage. Understanding dysphagia in SCA patients can improve the care of these patients and advance knowledge on the roles of the cerebellum and brainstem control in swallowing.
Collapse
|
14
|
Seker Yilmaz B, Baruteau J, Rahim AA, Gissen P. Clinical and Molecular Features of Early Infantile Niemann Pick Type C Disease. Int J Mol Sci 2020; 21:E5059. [PMID: 32709131 PMCID: PMC7404201 DOI: 10.3390/ijms21145059] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/22/2022] Open
Abstract
Niemann Pick disease type C (NPC) is a neurovisceral disorder due to mutations in NPC1 or NPC2. This review focuses on poorly characterized clinical and molecular features of early infantile form of NPC (EIF) and identified 89 cases caused by NPC1 (NPC1) and 16 by NPC2 (NPC2) mutations. Extra-neuronal features were common; visceromegaly reported in 80/89 NPC1 and in 15/16 NPC2, prolonged jaundice in 30/89 NPC1 and 7/16 NPC2. Early lung involvement was present in 12/16 NPC2 cases. Median age of neurological onset was 12 (0-24) and 7.5 (0-24) months in NPC1 and NPC2 groups, respectively. Developmental delay and hypotonia were the commonest first detected neurological symptoms reported in 39/89 and 18/89 NPC1, and in 8/16 and 10/16 NPC2, respectively. Additional neurological symptoms included vertical supranuclear gaze palsy, dysarthria, cataplexy, dysphagia, seizures, dystonia, and spasticity. The following mutations in homozygous state conferred EIF: deletion of exon 1+promoter, c.3578_3591 + 9del, c.385delT, p.C63fsX75, IVS21-2delATGC, c. 2740T>A (p.C914S), c.3584G>T (p.G1195V), c.3478-6T>A, c.960_961dup (p.A321Gfs*16) in NPC1 and c.434T>A (p.V145E), c.199T>C (p.S67P), c.133C>T (p.Q45X), c.141C>A (p.C47X) in NPC2. This comprehensive analysis of the EIF type of NPC will benefit clinical patient management, genetic counselling, and assist design of novel therapy trials.
Collapse
Affiliation(s)
- Berna Seker Yilmaz
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (J.B.); (P.G.)
- Department of Paediatric Metabolic Medicine, Mersin University, Mersin 33110, Turkey
| | - Julien Baruteau
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (J.B.); (P.G.)
- National Institute of Health Research Great Ormond Street Biomedical Research Centre, London WC1N 1EH, UK
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Ahad A. Rahim
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK;
| | - Paul Gissen
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (J.B.); (P.G.)
- National Institute of Health Research Great Ormond Street Biomedical Research Centre, London WC1N 1EH, UK
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| |
Collapse
|
15
|
Lewis C, Keage M, Watanabe M, Schubiger D, Velakoulis D, Walterfang M, Vogel AP. Characterization of Dysphagia and Longitudinal Changes in Swallowing Function in Adults with Niemann-Pick Disease Type C Treated with Miglustat. Dysphagia 2020; 36:362-373. [PMID: 32562141 DOI: 10.1007/s00455-020-10145-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 06/06/2020] [Indexed: 11/26/2022]
Abstract
Niemann-Pick disease type C (NPC) is a rare, autosomal recessive neurodegenerative disease, characterized by progressive psychiatric and neurological deficits. Neurological symptoms include cognitive decline and dysphagia. Aspiration pneumonia secondary to dysphagia is a leading cause of death in NPC. Miglustat is currently the only approved disease-specific treatment shown to be effective in stabilizing neurological symptoms. Miglustat has previously been reported to halt or improve early dysphagia and cognitive symptoms. Here we examine the characteristics of dysphagia, the relationship between dysphagia and the presence of cognitive impairment, and longitudinal changes in swallowing function during miglustat treatment in adult-and-adolescent-onset NPC. Retrospective analysis of videofluoroscopic swallow studies (VFSS) was completed for ten adults with NPC (mean age 28.44 years ± 9.34 years). Participants were recruited through the Royal Melbourne Hospital in Australia between 2008 and 2015. The Bethlehem Swallowing Scale and the Penetration-Aspiration Scale were used to quantify VFSS data. Dysphagia was present in 90% of participants at baseline with reduced lingual function and a delayed swallowing reflex as the most common symptoms. Swallow impairment appeared to stabilize during miglustat therapy for periods up to 66 months, with no significant changes in scores (p > 0.05). Data were in accordance with the literature and support the use of miglustat as an efficacious treatment for reducing swallowing impairment and stabilizing cognitive function. Findings provide detailed information on the impairments experienced by patients, give context to events leading to aspiration in NPC and, importantly, inform how management of dysphagia can complement pharmaceutical treatment.
Collapse
Affiliation(s)
- Courtney Lewis
- Centre for Neuroscience of Speech, The University of Melbourne, 550 Swanston Street, Parkville, Melbourne, VIC, 3010, Australia
| | - Megan Keage
- Centre for Neuroscience of Speech, The University of Melbourne, 550 Swanston Street, Parkville, Melbourne, VIC, 3010, Australia
| | - Miyuki Watanabe
- Centre for Neuroscience of Speech, The University of Melbourne, 550 Swanston Street, Parkville, Melbourne, VIC, 3010, Australia
| | | | - Dennis Velakoulis
- Neuropsychiatry Unit, Royal Melbourne Hospital, Parkville, Australia
- Melbourne Neuropsychiatry Centre, University of Melbourne, Melbourne, Australia
| | - Mark Walterfang
- Neuropsychiatry Unit, Royal Melbourne Hospital, Parkville, Australia
- Melbourne Neuropsychiatry Centre, University of Melbourne, Melbourne, Australia
- Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Adam P Vogel
- Centre for Neuroscience of Speech, The University of Melbourne, 550 Swanston Street, Parkville, Melbourne, VIC, 3010, Australia.
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
- Redenlab, Melbourne, Australia.
| |
Collapse
|
16
|
Kusunoki-Ii M, Kohama H, Kato K, Nomura Y, Nagashima K, Ninomiya H, Kato M, Kato S. Ultrastructure of spinal anterior horn cells in human Niemann-Pick type C (NPC) patient and mouse model of NPC with retroposon insertion in NPC1 genes. Pathol Int 2020; 70:422-432. [PMID: 32342600 DOI: 10.1111/pin.12934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/13/2020] [Accepted: 03/26/2020] [Indexed: 11/29/2022]
Abstract
Niemann-Pick disease type C (NPC) is a neurovisceral lipid-storage disease. Although NPC patients show lipid storage in anterior horn cells of the spinal cord, little information is available regarding the electron microscopic analyses of the morphologies of intra-endosomal lipid like-materials in the anterior horn cells of NPC patients. In this study, we elucidated the intra-endosomal ultrastructures in spinal anterior horn cells in an NPC patient, as well as in mutant BALB/c NPC1-/- mice with a retroposon insertion in the NPC1 gene. These morphologies were classified into four types: vesicle, multiple concentric sphere (MCS), membrane, and rose flower. The percentages of the composition in the NPC patient and NPC1-/- mice were: vesicle (55.5% and 14.9%), MCS (15.7% and 3.4%), membrane (23.6% and 57.1%), and rose flower (5.2% and 24.6%), respectively. Formation of the intra-endosomal structures could proceed as follows: (i) a vesicle or MCS buds off the endosome into the lumen; (ii) when a vesicle breaks down, a membrane is formed; and (iii) after an MCS breaks down, a rose flower structure is formed. Our new finding in this study is that ultrastructural morphology is the same between the NPC patient and NPC1-/- mice, although there are differences in the composition.
Collapse
Affiliation(s)
- Masahiro Kusunoki-Ii
- Division of Neuropathology, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Hiroshi Kohama
- Division of Neuropathology, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Kiyota Kato
- School of Medicine, Hiroshima University, Hiroshima, Japan
| | - Yoshiko Nomura
- Yoshiko Nomura Neurological Clinic for Children, Tokyo, Japan
| | - Kazuo Nagashima
- Division of Pathology, Sapporo Higashi Tokushukai Hospital, Hokkaido, Japan
| | - Haruaki Ninomiya
- Department of Biological Regulation, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Masako Kato
- Division of Pathology, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Shinsuke Kato
- Division of Neuropathology, Faculty of Medicine, Tottori University, Tottori, Japan
| |
Collapse
|
17
|
MAEKAWA M, MANO N. Identification and Evaluation of Biomarkers for Niemann-Pick Disease Type C Based on Chemical Analysis Techniques. CHROMATOGRAPHY 2020. [DOI: 10.15583/jpchrom.2020.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | - Nariyasu MANO
- Department of Pharmaceutical Sciences, Tohoku University Hospital
| |
Collapse
|
18
|
Galosi S, Nardecchia F, Leuzzi V. Treatable Inherited Movement Disorders in Children: Spotlight on Clinical and Biochemical Features. Mov Disord Clin Pract 2020; 7:154-166. [PMID: 32071932 DOI: 10.1002/mdc3.12897] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 12/15/2019] [Accepted: 01/01/2020] [Indexed: 12/26/2022] Open
Abstract
Background About 80% of monogenic metabolic diseases causing movement disorders (MDs) emerges during the first 2 decades of life, and a number of these conditions offers the opportunity of a disease-modifying treatment. The implementation of enlarged neonatal screening programs and the impressive rapid increase of the identification of new conditions are enhancing our potential to recognize and treat several diseases causing MDs, changing their outcome and phenotypic spectrum. Methods and Findings A literature review of monogenic disorders causing MDs amenable to treatment was conducted focusing on early clinical signs and diagnostic biomarkers. A classification in 3 broad categories based on the therapeutic approach has been proposed. Some disorders result in irreversible neurotoxic lesions that can only be prevented if treated in a presymptomatic stage, and others present with a progressive neurological impairment that a timely diagnosis and treatment may reverse or improve. Some MDs are the result of the failure of intracellular energy supply or altered glucose transport. The treatment in these conditions includes vitamins or a metabolic shift from a carbohydrate to a fatty acid catabolism, respectively. Finally, a group of highly treatable MDs are the result of defects of neurotransmitter metabolism. In these disorders, the supplementation of precursors or mimetics of neurotransmitters can deeply change the disease natural history. Conclusions To prevent serious and irreversible neurological impairment, the diagnostic work-up of MDs in children should consider a number of clinical red flags and biomarkers denoting specifically treatable diseases.
Collapse
Affiliation(s)
- Serena Galosi
- Department of Human Neuroscience Sapienza University Rome Italy
| | | | - Vincenzo Leuzzi
- Department of Human Neuroscience Sapienza University Rome Italy
| |
Collapse
|
19
|
NPC1 Deficiency in Mice is Associated with Fetal Growth Restriction, Neonatal Lethality and Abnormal Lung Pathology. J Clin Med 2019; 9:jcm9010012. [PMID: 31861571 PMCID: PMC7019814 DOI: 10.3390/jcm9010012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/11/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022] Open
Abstract
The rare lysosomal storage disorder Niemann-Pick disease type C1 (NPC1) arises from mutation of NPC1, which encodes a lysosomal transmembrane protein essential for normal transport and trafficking of cholesterol and sphingolipids. NPC1 is highly heterogeneous in both clinical phenotypes and age of onset. Previous studies have reported sub-Mendelian survival rates for mice homozygous for various Npc1 mutant alleles but have not studied the potential mechanisms underlying this phenotype. We performed the first developmental analysis of a Npc1 mouse model, Npc1em1Pav, and discovered significant fetal growth restriction in homozygous mutants beginning at E16.5. Npc1em1Pav/em1Pav mice also exhibited cyanosis, increased respiratory effort, and over 50% lethality at birth. Analysis of neonatal lung tissues revealed lipid accumulation, notable abnormalities in surfactant, and enlarged alveolar macrophages, suggesting that lung abnormalities may be associated with neonatal lethality in Npc1em1Pav/em1Pav mice. The phenotypic severity of the Npc1em1Pav model facilitated this first analysis of perinatal lethality and lung pathology in an NPC1 model organism, and this model may serve as a useful resource for developing treatments for respiratory complications seen in NPC1 patients.
Collapse
|
20
|
Sitarska D, Ługowska A. Laboratory diagnosis of the Niemann-Pick type C disease: an inherited neurodegenerative disorder of cholesterol metabolism. Metab Brain Dis 2019; 34:1253-1260. [PMID: 31197681 PMCID: PMC6744384 DOI: 10.1007/s11011-019-00445-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/28/2019] [Indexed: 01/08/2023]
Abstract
Niemann-Pick type C disease (NPC) is a genetically determined neurodegenerative metabolic disease resulting from the mutations in the NPC1 or NPC2 genes. It belongs to the lysosomal storage diseases and its main cause is impaired cholesterol transport in late endosomes or lysosomes. NPC is inherited in an autosomal recessive trait. Due to the wide range in age of onset, often unspecific clinical picture and varying dynamics of disease progression, the diagnosis is very difficult and long-lasting. The most characteristic visceral symptoms are hepato- or hepatosplenomegaly, which may appear independently of neurological or psychiatric symptoms at various stages of the disease. Available biochemical biomarkers should be tested as early as possible in patients presenting with hepato- or hepatosplenomegaly, long-lasting cholestatic jaundice in neonates or infantile patients, as well as in individuals at any age with: vertical supranuclear gaze palsy (VSGP), ataxia, dystonia, frontotemporal dementia and untreatable schizophrenia or psychosis. Research on biomarkers which can detect NPC patients (Cholestan-3β, 5α, 6β-triol, 7-ketocholesterol, lysosphingomyelin isoforms and bile acid metabolites) is still ongoing, although they are not specific for the NPC disease only. This mini review describes currently used diagnostic methods.
Collapse
Affiliation(s)
- Dominika Sitarska
- Department of Genetics, Institute of Psychiatry and Neurology, Al. Sobieskiego 9, 02-957, Warsaw, Poland
| | - Agnieszka Ługowska
- Department of Genetics, Institute of Psychiatry and Neurology, Al. Sobieskiego 9, 02-957, Warsaw, Poland.
| |
Collapse
|
21
|
Bonnot O, Gama CS, Mengel E, Pineda M, Vanier MT, Watson L, Watissée M, Schwierin B, Patterson MC. Psychiatric and neurological symptoms in patients with Niemann-Pick disease type C (NP-C): Findings from the International NPC Registry. World J Biol Psychiatry 2019; 20:310-319. [PMID: 28914127 DOI: 10.1080/15622975.2017.1379610] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Objectives: Niemann-Pick disease type C (NP-C) is a rare inherited neurovisceral disease that should be recognised by psychiatrists as a possible underlying cause of psychiatric abnormalities. This study describes NP-C patients who had psychiatric manifestations at enrolment in the international NPC Registry, a unique multicentre, prospective, observational disease registry. Methods: Treating physicians' data entries describing psychiatric manifestations in NPC patients were coded and grouped by expert psychiatrists. Results: Out of 386 NP-C patients included in the registry as of October 2015, psychiatric abnormalities were reported to be present in 34% (94/280) of those with available data. Forty-four patients were confirmed to have identifiable psychiatric manifestations, with text describing these psychiatric manifestations. In these 44 patients, the median (range) age at onset of psychiatric manifestations was 17.9 years (2.5-67.9; n = 15), while the median (range) age at NP-C diagnosis was 23.7 years (0.2-69.8; n = 34). Almost all patients (43/44; 98%) had an occurrence of ≥1 neurological manifestation at enrolment. Conclusions: These data show that substantial delays in diagnosis of NP-C are long among patients with psychiatric symptoms and, moreover, patients presenting with psychiatric features and at least one of cognitive impairment, neurological manifestations, and/or visceral symptoms should be screened for NP-C.
Collapse
Affiliation(s)
- Olivier Bonnot
- a Department of Child and Adolescent Psychiatry , University and CHU of Nantes , Nantes , France
| | - Clarissa S Gama
- b Laboratory of Molecular Psychiatry , Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul , Porto Alegre , Brazil
| | - Eugen Mengel
- c Paediatric and Adolescent Medical Centre , Johannes Gutenberg University , Mainz , Germany
| | - Mercè Pineda
- d Department of Neuropediatrica , Fundacio Hospital Sant Joan de Déu , Barcelona , Spain
| | - Marie T Vanier
- e Metabolomic and Metabolic Diseases , INSERM Unit 820 , Lyon , France
| | | | - Marie Watissée
- g Actelion Pharmaceuticals Ltd , Allschwil , Switzerland
| | | | - Marc C Patterson
- h Pediatric and Adolescent Medicine , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
22
|
Bonnot O, Klünemann HH, Velten C, Torres Martin JV, Walterfang M. Systematic review of psychiatric signs in Niemann-Pick disease type C. World J Biol Psychiatry 2019; 20:320-332. [PMID: 29457916 DOI: 10.1080/15622975.2018.1441548] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Objectives: We conducted the first systematic literature review and analysis of psychiatric manifestations in Niemann-Pick disease type C (NPC) to describe: (1) time of occurrence of psychiatric manifestations relative to other disease manifestations; and (2) frequent combinations of psychiatric, neurological and visceral disease manifestations. Methods: A systematic EMBase literature search was conducted to identify, collate and analyze published data from patients with NPC associated with psychiatric symptoms, published between January 1967 and November 2015. Results: Of 152 identified publications 40 were included after screening that contained useable data from 58 NPC patients (mean [SD] age at diagnosis of NPC 27.8 [15.1] years). Among patients with available data, cognitive, memory and instrumental impairments were most frequent (90% of patients), followed by psychosis (62%), altered behavior (52%) and mood disorders (38%). Psychiatric manifestations were reported before or at neurological disease onset in 41 (76%) patients; organic signs (e.g., hepatosplenomegaly, hearing problems) were reported before psychiatric manifestations in 12 (22%). Substantial delays to diagnosis were observed (5-6 years between psychiatric presentation and NPC diagnosis). Conclusions: NPC should be considered as a possible cause of psychiatric manifestations in patients with an atypical disease course, acute-onset psychosis, treatment failure, and/or certain combinations of psychiatric/neurological/visceral symptoms.
Collapse
Affiliation(s)
- Olivier Bonnot
- a Child and Adolescent Psychiatry Department , CHU and University of Nantes , Nantes , France
| | - Hans-Hermann Klünemann
- b University Clinic for Psychiatry and Psychotherapy, Regensburg University , Regensburg , Germany
| | | | | | | |
Collapse
|
23
|
Bianconi SE, Hammond DI, Farhat NY, Dang Do A, Jenkins K, Cougnoux A, Martin K, Porter FD. Evaluation of age of death in Niemann-Pick disease, type C: Utility of disease support group websites to understand natural history. Mol Genet Metab 2019; 126:466-469. [PMID: 30850267 PMCID: PMC6535124 DOI: 10.1016/j.ymgme.2019.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 11/26/2022]
Abstract
Niemann-Pick disease, type C (NPC) is a neurodegenerative lysosomal storage disease affecting the visceral organs and the central nervous system. The age of initial presentation varies from fetal to adult onset, although childhood onset is most common. The life expectancy for the full spectrum of NPC patients is not well defined, and it is unknown if current supportive care impacts the natural history. In order to assess age of death for a large cohort of NPC patients, we "crowd-sourced" age and year of death from information posted on disease support group website memorial walls. We analyzed data from 338 individuals who died between 1968 and 2018. In addition to age of death, gender can be inferred from given names and photographs. The median age of death was 13 years with a range from 0.1-69 years. Although sex significantly affects survival of NPC1 mutant mice, we did not observe a gender dependent survival difference in NPC patients. Median age of survival across time increased between the earliest patients and the most recently deceased patient; however, we found no significant change in survival over the last 20 years. These data suggest that supportive medical care has not impacted survival in the recent past and provides support for the use of historic controls in evaluating therapeutic interventions.
Collapse
Affiliation(s)
- Simona E Bianconi
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Dylan I Hammond
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Nicole Y Farhat
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - An Dang Do
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Kisha Jenkins
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Antony Cougnoux
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Kyle Martin
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Forbes D Porter
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, DHHS, Bethesda, MD, USA.
| |
Collapse
|
24
|
Hughes MP, Smith DA, Morris L, Fletcher C, Colaco A, Huebecker M, Tordo J, Palomar N, Massaro G, Henckaerts E, Waddington SN, Platt FM, Rahim AA. AAV9 intracerebroventricular gene therapy improves lifespan, locomotor function and pathology in a mouse model of Niemann-Pick type C1 disease. Hum Mol Genet 2019; 27:3079-3098. [PMID: 29878115 PMCID: PMC6097154 DOI: 10.1093/hmg/ddy212] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/29/2018] [Indexed: 01/04/2023] Open
Abstract
Niemann-Pick type C disease (NP-C) is a fatal neurodegenerative lysosomal storage disorder. It is caused in 95% of cases by a mutation in the NPC1 gene that encodes NPC1, an integral transmembrane protein localized to the limiting membrane of the lysosome. There is no cure for NP-C but there is a disease-modifying drug (miglustat) that slows disease progression but with associated side effects. Here, we demonstrate in a well-characterized mouse model of NP-C that a single administration of AAV-mediated gene therapy to the brain can significantly extend lifespan, improve quality of life, prevent or ameliorate neurodegeneration, reduce biochemical pathology and normalize or improve various indices of motor function. Over-expression of human NPC1 does not cause adverse effects in the brain and correctly localizes to late endosomal/lysosomal compartments. Furthermore, we directly compare gene therapy to licensed miglustat. Even at a low dose, gene therapy has all the benefits of miglustat but without adverse effects. On the basis of these findings and on-going ascendency of the field, we propose intracerebroventricular gene therapy as a potential therapeutic option for clinical use in NP-C.
Collapse
Affiliation(s)
- Michael P Hughes
- Department of Pharmacology, UCL School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Dave A Smith
- Department of Pharmacology, University of Oxford, Oxford OX13QT, UK
| | - Lauren Morris
- Department of Pharmacology, University of Oxford, Oxford OX13QT, UK
| | - Claire Fletcher
- Department of Pharmacology, University of Oxford, Oxford OX13QT, UK
| | | | - Mylene Huebecker
- Department of Pharmacology, University of Oxford, Oxford OX13QT, UK
| | - Julie Tordo
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London SE19RT, UK
| | - Nuria Palomar
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London SE19RT, UK
| | - Giulia Massaro
- Department of Pharmacology, UCL School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Els Henckaerts
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London SE19RT, UK
| | - Simon N Waddington
- Gene Transfer Technology Group, UCL Institute for Women's Health, University College London, London WC1E 6HX, UK
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford OX13QT, UK
| | - Ahad A Rahim
- Department of Pharmacology, UCL School of Pharmacy, University College London, London WC1N 1AX, UK
| |
Collapse
|
25
|
Houben T, Magro Dos Reis I, Oligschlaeger Y, Steinbusch H, Gijbels MJJ, Hendrikx T, Binder CJ, Cassiman D, Westerterp M, Prickaerts J, Shiri-Sverdlov R. Pneumococcal Immunization Reduces Neurological and Hepatic Symptoms in a Mouse Model for Niemann-Pick Type C1 Disease. Front Immunol 2019; 9:3089. [PMID: 30666257 PMCID: PMC6330339 DOI: 10.3389/fimmu.2018.03089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/13/2018] [Indexed: 11/13/2022] Open
Abstract
Niemann-Pick type C1 (NPC1) disease is caused by a deleterious mutation in the Npc1 gene, causing lysosomal accumulation of unesterified cholesterol and sphingolipids. Consequently, NPC1 disease patients suffer from severe neurovisceral symptoms which, in the absence of effective treatments, result in premature death. NPC1 disease patients display increased plasma levels of cholesterol oxidation products such as those enriched in oxidized low-density lipoprotein (oxLDL), a pro-inflammatory mediator. While it has been shown that inflammation precedes and exacerbates symptom severity in NPC1 disease, it is unclear whether oxLDL contributes to NPC1 disease progression. In this study, we investigated the effects of increasing anti-oxLDL IgM autoantibodies on systemic and neurological symptoms in an NPC1 disease mouse model. For this purpose, Npc1nih mice were immunized with heat-inactivated S. pneumoniae, an immunogen which elicits an IgM autoantibody-mediated immune response against oxLDL. Npc1nih mice injected with heat-inactivated pneumococci displayed an improved hepatic phenotype, including liver lipid accumulation and inflammation. In addition, regression of motor skills was delayed in immunized Npc1nih. In line with these results, brain analyses showed an improved cerebellar phenotype and neuroinflammation in comparison with control-treated subjects. This study highlights the potential of the pneumococcal immunization as a novel therapeutical approach in NPC1 disease. Future research should investigate whether implementation of this therapy can improve life span and quality of life of NPC1 disease patients.
Collapse
Affiliation(s)
- Tom Houben
- Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Inês Magro Dos Reis
- Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Yvonne Oligschlaeger
- Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Hellen Steinbusch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Marion J J Gijbels
- Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Tim Hendrikx
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.,Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.,Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria
| | - David Cassiman
- Liver Research Unit, University of Leuven, Leuven, Belgium.,Department of Gastroenterology-Hepatology and Metabolic Center, University Hospitals Leuven, Leuven, Belgium
| | - Marit Westerterp
- Section Molecular Genetics, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Ronit Shiri-Sverdlov
- Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
26
|
Nadjar Y, Hütter-Moncada AL, Latour P, Ayrignac X, Kaphan E, Tranchant C, Cintas P, Degardin A, Goizet C, Laurencin C, Martzolff L, Tilikete C, Anheim M, Audoin B, Deramecourt V, De Gaillarbois TD, Roze E, Lamari F, Vanier MT, Héron B. Adult Niemann-Pick disease type C in France: clinical phenotypes and long-term miglustat treatment effect. Orphanet J Rare Dis 2018; 13:175. [PMID: 30285904 PMCID: PMC6167825 DOI: 10.1186/s13023-018-0913-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/12/2018] [Indexed: 12/18/2022] Open
Abstract
Background Niemann-Pick disease type C (NP-C) is a neurodegenerative lysosomal lipid storage disease caused by autosomal recessive mutations in the NPC1 or NPC2 genes. The clinical presentation and evolution of NP-C and the effect of miglustat treatment are described in the largest cohort of patients with adolescent/adult-onset NP-C studied to date. Methods Observational study based on clinical chart data from adult patients with NP-C (> 18 year old) diagnosed in France between 1990 and 2015. Retrospective data from patients at diagnosis, onset of miglustat therapy (if applicable), and last follow up were analysed. Results In France, patients with an adolescent-adult neurological form constituted approximately 25% of all NP-C cases diagnosed during the study period. Forty-seven patients (46 with NP-C1 and one with NP-C2; 53% female) were included. Mean ± SD (range) ages at neurological onset and diagnosis were 23.9 ± 12.5 (8–56) years and 34 ± 13.5 (15–65) years, respectively. At presentation, patients mainly had 1) impaired gait due to cerebellar ataxia and/or dystonia, 2) and/or cognitive/behavioural manifestations, 3) and/or psychotic signs. Initially, almost half of patients had only one of the above three neuro-psychiatric manifestations. Vertical supranuclear gaze palsy, usually occurring without patient complaint, was only detected on careful clinical examination and was recorded in most patients (93%) at the time of diagnosis, several years after neurological onset. Thirty-seven patients (79%) received miglustat, among whom seventeen (46%) continued beyond 2 years (at last follow up) to a maximum of 9.8 years. Eight patients (22%) discontinued treatment early due to side effects (n = 3) or perceived lack of efficacy (n = 5).Miglustat treatment duration correlated significantly with reduced neurological worsening (p < 0.001). Treatment for≥2 years was associated with improved patient survival (p = 0.029). Good responses to miglustat were associated with less severe neurological disability at the start of miglustat treatment (p = 0.02). Conclusion The proportion of adolescent/adult-onset NP-C cases diagnosed in France increased 2.5-fold since 2009 compared with the 2000–2008 period due to improved awareness. Adolescent/adult-onset NP-C frequently presented initially with a non-specific isolated neuro-psychiatric manifestation (motor, cognitive or psychotic). Patients with less severe neurological disability responded better to miglustat therapy. Electronic supplementary material The online version of this article (10.1186/s13023-018-0913-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yann Nadjar
- Department of Neurology, Reference Center for Lysosomal Diseases (CRLM), UF Neuro-Genetics and Metabolism, Hôpital Pitié-Salpêtrière, 47-87, Boulevard de l'Hôpital, 75013, Paris, France.
| | | | - Philippe Latour
- Neurologic/Cardiologic Diseases Unit, Lyon East Biochemistry/Molecular Biology Department, CBPE,Hospices Civils de Lyon, Lyon, France
| | - Xavier Ayrignac
- Department of Neurology, Montpellier CHU, Gui De Chauliac Hospital, Montpellier, France
| | - Elsa Kaphan
- Clinical Neurosciences, Timone CHU, Marseille Hospital, Marseille, France
| | - Christine Tranchant
- Department of Neurology, Hautepierre Hospital, Strasbourg, France.,Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM-U964, Strasbourg University, Illkirch, France.,Strasbourg Federation of Translational Medicine (FMTS), Strasbourg University, Strasbourg, France
| | - Pascal Cintas
- Reference Centre for Neuromuscular Pathologies, Toulouse CHU, Pierre Paul Riquet Hospital, Toulouse, France
| | - Adrian Degardin
- Department of Neurology and Movement Disorders, Roger Salengro Hospital, Lille, France
| | - Cyril Goizet
- Centre de Référence Neurogénétique, Service de Génétique, Hôpital Pellegrin, University Hospital of Bordeaux and Laboratoire MRGM, INSERM U1211, University of Bordeaux, Bordeaux, France
| | - Chloe Laurencin
- Department of Neurology, Pierre Wertheimer Neurology Hospital, Lyon, France
| | - Lionel Martzolff
- Department of Internal Medicine, Hôpital Emile Muller, Mulhouse and South Alsace Regional Hospital Group, Mulhouse, France
| | - Caroline Tilikete
- Hospices Civils de Lyon, Neuro-Ophthalmology and Neurocognition, Hôpital Neurologique Pierre Wertheimer, Lyon I University, and CRNL INSERM U1028 CNRS UMR5292, ImpAct Team, F-69676, Bron, France
| | - Mathieu Anheim
- Department of Neurology, Hautepierre Hospital, Strasbourg, France.,Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM-U964, Strasbourg University, Illkirch, France.,Strasbourg Federation of Translational Medicine (FMTS), Strasbourg University, Strasbourg, France
| | - Bertrand Audoin
- CRMBM UMR 7339, CNRS, Aix-Marseille Université, Marseille, France.,APHM, Hôpital de la Timone, Clinical Neurosciences, Department of Neurology, Marseille, France
| | - Vincent Deramecourt
- University of Lille, INSERM, CHU Lille, Degenerative & Vascular Cognitive Disorders, Lille, France
| | | | - Emmanuel Roze
- Department of Neurology, Reference Center for Lysosomal Diseases (CRLM), UF Neuro-Genetics and Metabolism, Hôpital Pitié-Salpêtrière, 47-87, Boulevard de l'Hôpital, 75013, Paris, France.,Sorbonne UPMC University, INSERM U 1127, and the Institute for the Brain and Spinal Cord, Paris, France
| | - Foudil Lamari
- Department Metabolic Biochemistry and GRC 13-Neurometabolism-UPMC, Hôpital Pitié-Salpêtrière, Paris, France
| | - Marie T Vanier
- INSERM U820, Lyon, France.,Laboratoire Gillet-Mérieux, CBPE, Hospices Civils de Lyon, Lyon, France
| | - Bénédicte Héron
- Reference Centre for Lysosomal Diseases (CRML), Department of Pediatric Neurology, and Sorbonne Université, GRC n°19, Pathologies Congénitales du Cervelet-LeucoDystrophies, AP-HP, Hôpital Armand Trousseau, F-75012, Paris, France
| |
Collapse
|
27
|
Platt FM, d'Azzo A, Davidson BL, Neufeld EF, Tifft CJ. Lysosomal storage diseases. Nat Rev Dis Primers 2018. [PMID: 30275469 DOI: 10.1038/s41572-018-0025-4]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lysosomal storage diseases (LSDs) are a group of over 70 diseases that are characterized by lysosomal dysfunction, most of which are inherited as autosomal recessive traits. These disorders are individually rare but collectively affect 1 in 5,000 live births. LSDs typically present in infancy and childhood, although adult-onset forms also occur. Most LSDs have a progressive neurodegenerative clinical course, although symptoms in other organ systems are frequent. LSD-associated genes encode different lysosomal proteins, including lysosomal enzymes and lysosomal membrane proteins. The lysosome is the key cellular hub for macromolecule catabolism, recycling and signalling, and defects that impair any of these functions cause the accumulation of undigested or partially digested macromolecules in lysosomes (that is, 'storage') or impair the transport of molecules, which can result in cellular damage. Consequently, the cellular pathogenesis of these diseases is complex and is currently incompletely understood. Several LSDs can be treated with approved, disease-specific therapies that are mostly based on enzyme replacement. However, small-molecule therapies, including substrate reduction and chaperone therapies, have also been developed and are approved for some LSDs, whereas gene therapy and genome editing are at advanced preclinical stages and, for a few disorders, have already progressed to the clinic.
Collapse
Affiliation(s)
- Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, UK.
| | - Alessandra d'Azzo
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Beverly L Davidson
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth F Neufeld
- Department of Biological Chemistry, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| | - Cynthia J Tifft
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
28
|
Abstract
Lysosomal storage diseases (LSDs) are a group of over 70 diseases that are characterized by lysosomal dysfunction, most of which are inherited as autosomal recessive traits. These disorders are individually rare but collectively affect 1 in 5,000 live births. LSDs typically present in infancy and childhood, although adult-onset forms also occur. Most LSDs have a progressive neurodegenerative clinical course, although symptoms in other organ systems are frequent. LSD-associated genes encode different lysosomal proteins, including lysosomal enzymes and lysosomal membrane proteins. The lysosome is the key cellular hub for macromolecule catabolism, recycling and signalling, and defects that impair any of these functions cause the accumulation of undigested or partially digested macromolecules in lysosomes (that is, 'storage') or impair the transport of molecules, which can result in cellular damage. Consequently, the cellular pathogenesis of these diseases is complex and is currently incompletely understood. Several LSDs can be treated with approved, disease-specific therapies that are mostly based on enzyme replacement. However, small-molecule therapies, including substrate reduction and chaperone therapies, have also been developed and are approved for some LSDs, whereas gene therapy and genome editing are at advanced preclinical stages and, for a few disorders, have already progressed to the clinic.
Collapse
|
29
|
Cortina-Borja M, te Vruchte D, Mengel E, Amraoui Y, Imrie J, Jones SA, i Dali C, Fineran P, Kirkegaard T, Runz H, Lachmann R, Bremova-Ertl T, Strupp M, Platt FM. Annual severity increment score as a tool for stratifying patients with Niemann-Pick disease type C and for recruitment to clinical trials. Orphanet J Rare Dis 2018; 13:143. [PMID: 30115089 PMCID: PMC6097294 DOI: 10.1186/s13023-018-0880-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 07/29/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Niemann-Pick disease type C (NPC) is a lysosomal storage disease with a heterogeneous neurodegenerative clinical course. Multiple therapies are in clinical trials and inclusion criteria are currently mainly based on age and neurological signs, not taking into consideration differential individual rates of disease progression. RESULTS In this study, we have evaluated a simple metric, denoted annual severity increment score (ASIS), that measures rate of disease progression and could easily be used in clinical practice. We show that ASIS is stable over several years and can be used to stratify patients for clinical trials. It achieves greater homogeneity of the study cohort relative to age-based inclusion and provides an evidence-based approach for establishing inclusion/exclusion criteria. In addition, we show that ASIS has prognostic value and demonstrate that treatment with an experimental therapy - acetyl-DL-leucine - is associated with a reduction in ASIS scores. CONCLUSION ASIS has the potential to be a useful metric for clinical monitoring, trial recruitment, for prognosis and measuring response to therapy.
Collapse
Affiliation(s)
- Mario Cortina-Borja
- Population, Policy and Practice Programme, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH UK
| | | | - Eugen Mengel
- Children’s Hospital, University of Mainz Medical Centre, D-55131 Mainz, Germany
| | - Yasmin Amraoui
- Children’s Hospital, University of Mainz Medical Centre, D-55131 Mainz, Germany
| | - Jackie Imrie
- NPUK, Vermont House, Concord, Washington, Tyne and Wear, NE13 2SQ UK
| | - Simon A. Jones
- Manchester Centre for Genomic Medicine, Saint Mary’s Hospital, Manchester, M13 9WL UK
| | | | - Paul Fineran
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT UK
| | | | | | - Robin Lachmann
- National Hospital for Neurology and Neurosurgery, London, WC1N 3BG UK
| | - Tatiana Bremova-Ertl
- Department of Neurology and German Center for Vertigo and Balance Disorders, Ludwig-Maximilians-University Hospital Munich, Campus Großhadern, Marchioninistr. 15, 81377 Munich, Germany
| | - Michael Strupp
- Department of Neurology and German Center for Vertigo and Balance Disorders, Ludwig-Maximilians-University Hospital Munich, Campus Großhadern, Marchioninistr. 15, 81377 Munich, Germany
| | - Frances M. Platt
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT UK
| |
Collapse
|
30
|
Pineda M, Walterfang M, Patterson MC. Miglustat in Niemann-Pick disease type C patients: a review. Orphanet J Rare Dis 2018; 13:140. [PMID: 30111334 PMCID: PMC6094874 DOI: 10.1186/s13023-018-0844-0] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/14/2018] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Niemann-Pick disease type C (NP-C) is a rare, autosomal recessive, neurodegenerative disease associated with a wide variety of progressive neurological manifestations. Miglustat is indicated for the treatment of progressive neurological manifestations in both adults and children. Since approval in 2009 there has been a vast growth in clinical experience with miglustat. The effectiveness of miglustat has been assessed using a range of measures. METHODS Comprehensive review of published data from studies of cellular neuropathological markers and structural neurological indices in the brain, clinical impairment/disability, specific clinical neurological manifestations, and patient survival. RESULTS Cranial diffusion tensor imaging and magnetic resonance spectroscopy studies have shown reduced levels of choline (a neurodegeneration marker), and choline/N-acetyl aspartate ratio (indicating increased neuronal viability) in the brain during up to 5 years of miglustat therapy, as well as a slowing of reductions in fractional anisotropy (an axonal/myelin integrity marker). A 2-year immunoassay study showed significant reductions in CSF-calbindin during treatment, indicating reduced cerebellar Purkinje cell loss. Magnetic resonance imaging studies have demonstrated a protective effect of miglustat on cerebellar and subcortical structure that correlated with clinical symptom severity. Numerous cohort studies assessing core neurological manifestations (impaired ambulation, manipulation, speech, swallowing, other) using NP-C disability scales indicate neurological stabilization over 2-8 years, with a trend for greater benefits in patients with older (non-infantile) age at neurological onset. A randomized controlled trial and several cohort studies have reported improvements or stabilization of saccadic eye movements during 1-5 years of therapy. Swallowing was also shown to improve/remain stable during the randomized trial (up to 2 years), as well as in long-term observational cohorts (up to 6 years). A meta-analysis of dysphagia - a potent risk factor for aspiration pneumonia and premature death in NP-C - demonstrated a survival benefit with miglustat due to improved/stabilized swallowing function. CONCLUSIONS The effects of miglustat on neurological NP-C manifestations has been assessed using a range of approaches, with benefits ranging from cellular changes in the brain through to visible clinical improvements and improved survival.
Collapse
Affiliation(s)
- Mercè Pineda
- Fundacio Hospital Sant Joan de Déu, Barcelona, Spain. .,Hospital Sant Joan de Déu, Passeig de Sant Joan de Déu No. 2, Esplugues, 8950, Barcelona, Spain.
| | - Mark Walterfang
- Florey Institute of Neuroscience and Mental Health, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| | | |
Collapse
|
31
|
Schwerd T, Pandey S, Yang HT, Bagola K, Jameson E, Jung J, Lachmann RH, Shah N, Patel SY, Booth C, Runz H, Düker G, Bettels R, Rohrbach M, Kugathasan S, Chapel H, Keshav S, Elkadri A, Platt N, Muise AM, Koletzko S, Xavier RJ, Marquardt T, Powrie F, Wraith JE, Gyrd-Hansen M, Platt FM, Uhlig HH. Impaired antibacterial autophagy links granulomatous intestinal inflammation in Niemann-Pick disease type C1 and XIAP deficiency with NOD2 variants in Crohn's disease. Gut 2017; 66:1060-1073. [PMID: 26953272 PMCID: PMC5532464 DOI: 10.1136/gutjnl-2015-310382] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 01/06/2016] [Accepted: 01/14/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Patients with Niemann-Pick disease type C1 (NPC1), a lysosomal lipid storage disorder that causes neurodegeneration and liver damage, can present with IBD, but neither the significance nor the functional mechanism of this association is clear. We studied bacterial handling and antibacterial autophagy in patients with NPC1. DESIGN We characterised intestinal inflammation in 14 patients with NPC1 who developed IBD. We investigated bacterial handling and cytokine production of NPC1 monocytes or macrophages in vitro and compared NPC1-associated functional defects to those caused by IBD-associated nucleotide-binding oligomerization domain-containing protein 2 (NOD2) variants or mutations in X-linked inhibitor of apoptosis (XIAP). RESULTS Patients with the lysosomal lipid storage disorder NPC1 have increased susceptibility to early-onset fistulising colitis with granuloma formation, reminiscent of Crohn's disease (CD). Mutations in NPC1 cause impaired autophagy due to defective autophagosome function that abolishes NOD2-mediated bacterial handling in vitro similar to variants in NOD2 or XIAP deficiency. In contrast to genetic NOD2 and XIAP variants, NPC1 mutations do not impair NOD2-receptor-interacting kinase 2 (RIPK2)-XIAP-dependent cytokine production. Pharmacological activation of autophagy can rescue bacterial clearance in macrophages in vitro by increasing the autophagic flux and bypassing defects in NPC1. CONCLUSIONS NPC1 confers increased risk of early-onset severe CD. Our data support the concept that genetic defects at different checkpoints of selective autophagy cause a shared outcome of CD-like immunopathology linking monogenic and polygenic forms of IBD. Muramyl dipeptide-driven cytokine responses and antibacterial autophagy induction are parallel and independent signalling cascades downstream of the NOD2-RIPK2-XIAP complex.
Collapse
Affiliation(s)
- Tobias Schwerd
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Sumeet Pandey
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Huei-Ting Yang
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Katrin Bagola
- Nuffield Department of Clinical Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Elisabeth Jameson
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester, UK
| | - Jonathan Jung
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | | | - Neil Shah
- Great Ormond Street Hospital, London, UK
| | - Smita Y Patel
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Claire Booth
- Department of Clinical Immunology, Great Ormond Street Hospital, London, UK
| | - Heiko Runz
- University of Heidelberg, Heidelberg, Germany
| | - Gesche Düker
- University Children's Hospital Bonn, Bonn, Germany
| | | | - Marianne Rohrbach
- Children's Research Centre Zurich, University Children's Hospital, Zurich, Switzerland
| | - Subra Kugathasan
- Division of Pediatric Gastroenterology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Helen Chapel
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Satish Keshav
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Abdul Elkadri
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada,Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Nick Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Alexio M Muise
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada,Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Sibylle Koletzko
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Ramnik J Xavier
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Fiona Powrie
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK,Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - James E Wraith
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester, UK
| | - Mads Gyrd-Hansen
- Nuffield Department of Clinical Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Holm H Uhlig
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK,Department of Pediatrics, University of Oxford, Oxford, UK
| |
Collapse
|
32
|
Catelani G, D'Andrea F, Guazzelli L, Griselli A, Testi N, Chiacchio MA, Legnani L, Toma L. Synthesis and conformational analysis of a simplified inositol-model of the Streptococcus pneumoniae 19F capsular polysaccharide repeating unit. Carbohydr Res 2017; 443-444:29-36. [PMID: 28324771 DOI: 10.1016/j.carres.2017.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/13/2017] [Accepted: 03/13/2017] [Indexed: 12/27/2022]
Abstract
Carbohydrate mimics have been studied for a long time as useful sugar substitutes, both in the investigation of biological events and in the treatment of sugar-related diseases. Here we report further evaluation of the capabilities of inositols as carbohydrate substitutes. The conformational features of an inositol-model of a simplified repeating unit corresponding to the capsular polysaccharide of Streptococcus pneumoniae 19F has been evaluated by computational analysis, and compared to the native repeating unit. The inositol mimic was synthesized, and its experimental spectroscopic data allowed for verification of the theoretical results.
Collapse
Affiliation(s)
- Giorgio Catelani
- Università di Pisa, Dipartimento di Farmacia, Via Bonanno 33, 56126 Pisa, Italy
| | - Felicia D'Andrea
- Università di Pisa, Dipartimento di Farmacia, Via Bonanno 33, 56126 Pisa, Italy
| | - Lorenzo Guazzelli
- Università di Pisa, Dipartimento di Farmacia, Via Bonanno 33, 56126 Pisa, Italy.
| | - Alessio Griselli
- Università di Pisa, Dipartimento di Farmacia, Via Bonanno 33, 56126 Pisa, Italy
| | - Nicola Testi
- Università di Pisa, Dipartimento di Farmacia, Via Bonanno 33, 56126 Pisa, Italy
| | - Maria Assunta Chiacchio
- Università di Catania, Dipartimento di Scienze del Farmaco, V.le A. Doria 6, 95125 Catania, Italy; Università di Pavia, Dipartimento di Chimica, Via Taramelli 12, 27100 Pavia, Italy
| | - Laura Legnani
- Università di Catania, Dipartimento di Scienze del Farmaco, V.le A. Doria 6, 95125 Catania, Italy; Università di Pavia, Dipartimento di Chimica, Via Taramelli 12, 27100 Pavia, Italy
| | - Lucio Toma
- Università di Pavia, Dipartimento di Chimica, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
33
|
Mazzacuva F, Mills P, Mills K, Camuzeaux S, Gissen P, Nicoli ER, Wassif C, Te Vruchte D, Porter FD, Maekawa M, Mano N, Iida T, Platt F, Clayton PT. Identification of novel bile acids as biomarkers for the early diagnosis of Niemann-Pick C disease. FEBS Lett 2016; 590:1651-62. [PMID: 27139891 PMCID: PMC5089630 DOI: 10.1002/1873-3468.12196] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 04/18/2016] [Indexed: 11/12/2022]
Abstract
This article describes a rapid UPLC-MS/MS method to quantitate novel bile acids in biological fluids and the evaluation of their diagnostic potential in Niemann-Pick C (NPC). Two new compounds, NPCBA1 (3β-hydroxy,7β-N-acetylglucosaminyl-5-cholenoic acid) and NPCBA2 (probably 3β,5α,6β-trihydroxycholanoyl-glycine), were observed to accumulate preferentially in NPC patients: median plasma concentrations of NPCBA1 and NPCBA2 were 40- and 10-fold higher in patients than in controls. However, NPCBA1 concentrations were normal in some patients because they carried a common mutation inactivating the GlcNAc transferase required for the synthesis of this bile acid. NPCBA2, not containing a GlcNAc moiety, is thus a better NPC biomarker.
Collapse
Affiliation(s)
- Francesca Mazzacuva
- Centre for Translational Omics, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London, UK
| | - Philippa Mills
- Centre for Translational Omics, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London, UK
| | - Kevin Mills
- Centre for Translational Omics, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London, UK
| | - Stephane Camuzeaux
- Centre for Translational Omics, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London, UK
| | - Paul Gissen
- Centre for Translational Omics, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London, UK
- Metabolic Medicine, Great Ormond Street Children's Hospital, London, UK
| | | | - Christopher Wassif
- Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | - Forbes D Porter
- Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Japan
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Japan
| | - Takashi Iida
- College of Humanities and Sciences, Nihon University, Tokyo, Japan
| | - Frances Platt
- Department of Pharmacology, University of Oxford, UK
| | - Peter T Clayton
- Centre for Translational Omics, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London, UK
- Metabolic Medicine, Great Ormond Street Children's Hospital, London, UK
| |
Collapse
|
34
|
Di Lazzaro V, Marano M, Florio L, De Santis S. Niemann–Pick type C: focus on the adolescent/adult onset form. Int J Neurosci 2016; 126:963-71. [DOI: 10.3109/00207454.2016.1161623] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
35
|
Papandreou A, Gissen P. Diagnostic workup and management of patients with suspected Niemann-Pick type C disease. Ther Adv Neurol Disord 2016; 9:216-29. [PMID: 27134677 DOI: 10.1177/1756285616635964] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Niemann-Pick type C (NP-C) disease is a neurovisceral disorder caused by mutations in the NPC1 and NPC2 genes. It is characterized by lysosomal storage of a broad range of lipids as a result of abnormal intracellular lipid trafficking. Typically patients develop neurodegeneration; however, the speed of disease progression is variable. The exact functions of NPC1 and NPC2 proteins have not been determined and therefore the molecular pathophysiology of NP-C is still not clearly understood. Due to the disease's rarity and clinical heterogeneity, delays from symptom onset to diagnosis and treatment initiation are common. Current therapeutic approaches focus on multidisciplinary symptom control and deceleration (rather than reversal) of disease progression. Thus identification of cases at early stages of disease is particularly important. Recent advances in genetic and biochemical testing have resulted in the generation of relatively non-invasive, quick and cost-effective laboratory assays that are highly sensitive and specific and have the capacity to enhance the clinicians' ability to reach a diagnosis earlier. Miglustat is a compound recently licensed in many countries for the treatment of NP-C that has been shown to decelerate neurological regression, whereas many other promising drugs are currently being trialled in preclinical models or human studies. This review summarizes key clinical, genetic and biochemical features of NP-C, suggests a simple diagnostic investigation strategy and gives an overview of available therapeutic options as well as potential novel treatments currently under development.
Collapse
Affiliation(s)
- Apostolos Papandreou
- Genetics and Genomics Medicine Unit, UCL-Institute of Child Health and UCL-MRC Laboratory of Molecular Cell Biology, Gower Street, London WC1E 6BT, UK
| | - Paul Gissen
- Genetics and Genomics Medicine Unit, UCL-Institute of Child Health and UCL-MRC Laboratory of Molecular Cell Biology, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
36
|
Abstract
Metabolic disorders comprise a large group of heterogeneous diseases ranging from very prevalent diseases such as diabetes mellitus to rare genetic disorders like Canavan Disease. Whether either of these diseases is amendable by gene therapy depends to a large degree on the knowledge of their pathomechanism, availability of the therapeutic gene, vector selection, and availability of suitable animal models. In this book chapter, we review three metabolic disorders of the central nervous system (CNS; Canavan Disease, Niemann-Pick disease and Phenylketonuria) to give examples for primary and secondary metabolic disorders of the brain and the attempts that have been made to use adeno-associated virus (AAV) based gene therapy for treatment. Finally, we highlight commonalities and obstacles in the development of gene therapy for metabolic disorders of the CNS exemplified by those three diseases.
Collapse
Affiliation(s)
- Dominic J Gessler
- University of Massachusetts Medical School, 368 Plantation Street, AS6-2049, Worcester, MA, 01605, USA
| | - Guangping Gao
- University of Massachusetts Medical School, 368 Plantation Street, AS6-2049, Worcester, MA, 01605, USA.
| |
Collapse
|
37
|
Senirli RT, Kuşçu O, Akyol U, Topçu M, Yiğit Ö, Aksoy S, Demir N. Otorhinolaryngological, audiovestibular and swallowing manifestations of patients with Niemann-Pick disease Type C. Int J Pediatr Otorhinolaryngol 2016; 80:1-4. [PMID: 26746602 DOI: 10.1016/j.ijporl.2015.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 11/11/2015] [Accepted: 11/13/2015] [Indexed: 10/22/2022]
Abstract
OBJECTIVES The aim of this study is to evaluate audiovestibular and swallowing impairment of patients with NPC. METHODS Audiovestibular and swallowing evaluation were performed on patients with Niemann-Pick disease type C (NPC) at Hacettepe University between 20013 and 2015 prospectively. Pure-tone audiometry (PTA), Auditory Brain stem response (ABR), Flexible endoscopic evaluation of swallowing (FEES) test and posturography were done. Hearing, swallowing and balance states were measured. RESULTS There were 16 patients (5 male and 11 female, with a median age of 6.5 years old). The most common ABR abnormalities observed were absent waves I and III (%70 absent I waves, %43.75 absent III waves). Twelve of sixteen patients (%75) had an ABR abnormality in at least one ear, of these, four patients had normal hearing and three of them had periferal hearing loss. 12 (75%) patients had complaint of postural imbalance. 11(69%) of patients had peripheral and one (6%) patient had central impairment. Nine of sixteen patients (56.25%) show some degree of dysphagia (either penetration or aspiration). Two patients (12.5%) showed aspiration both liquid and viscous nutrition. Three patients (18.75%) showed aspiration primarily in liquids and two of them had penetration with viscous nutrition. Three patients (18.75%) had penetration with no aspiration neither liquid nor viscous nutrition (PEN-ASP score was 3, 3, 5, respectively). CONCLUSION There is no curative treatment for this devastating and fatal disorder and hearing impairment, balance and swallowing disorders can be seen especially late onset form of disease.
Collapse
Affiliation(s)
- Rezarta Taga Senirli
- Hacettepe University School of Medicine, Department of Otorhinolaryngology, Ankara, Turkey
| | - Oğuz Kuşçu
- Hacettepe University School of Medicine, Department of Otorhinolaryngology, Ankara, Turkey.
| | - Umut Akyol
- Hacettepe University School of Medicine, Department of Otorhinolaryngology, Ankara, Turkey
| | - Meral Topçu
- Hacettepe University School of Medicine, Department of Pediatric Neurology, Ankara, Turkey
| | - Öznur Yiğit
- Hacettepe University School of Medicine, Department of Audiology, Ankara, Turkey
| | - Songül Aksoy
- Hacettepe University School of Medicine, Department of Audiology, Ankara, Turkey
| | - Numan Demir
- Hacettepe University School of Medicine, Department of Physical Therapy and Rehabilitation, Ankara, Turkey
| |
Collapse
|
38
|
Imrie J, Heptinstall L, Knight S, Strong K. Observational cohort study of the natural history of Niemann-Pick disease type C in the UK: a 5-year update from the UK clinical database. BMC Neurol 2015; 15:257. [PMID: 26666848 PMCID: PMC4678528 DOI: 10.1186/s12883-015-0511-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/28/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Niemann-Pick disease type C (NP-C) is a rare neurovisceral lipid storage disorder characterised by progressive, disabling neurological symptoms and premature death in most patients. During the last decade, national cohort studies have accrued a great deal of data on the symptomatology and natural history of NP-C. METHODS In an observational cohort study, we present a substantial update based on the clinical presentation and follow-up of all known UK-based patients with a confirmed diagnosis of NP-C who have been tracked on an electronic database at the Department of Genetic Medicine, University of Manchester, UK. Patients were stratified according to accepted age-at-neurological-onset categories. Data on patients' clinical signs and symptoms, medical history and genetic studies are summarised using descriptive methods. RESULTS A total of 146 patients with NP-C were included, representing the full known UK NP-C cohort, as observed from database information between 1999 and the end of 2011: 72 patients (49 %) were alive at the end of the observation period. Among a total of 116 patients (79 %) who possessed at least one identified, disease-causing NP-C gene mutation, 114 (98 %) had NPC1 and two (2 %) had NPC2 mutations. Overall, 53/194 (27 %) identified mutations were novel. Six patients (4 %) had an early, non-neurological neonatal onset form of NP-C. The numbers (%) of patients with accepted age-at-neurological onset forms were: 8 (5 %) early-infantile onset, 51 (35 %) late-infantile onset, 42 (29 %) juvenile onset, and 25 (17 %) adolescent/adult onset. Fourteen patients diagnosed based on visceral symptoms and/or sibling history, confirmed in most cases by genetic analysis, did not have any neurological manifestations at last follow up (11 patients with mean [SD] age at last follow up 2.5 [1.8] years: 3 with mean [SD] age at death 20.8 [15.9] years). A total of 51 patients (35 %) received miglustat therapy. The mean (SD) overall treatment duration up to the end of the observation period was 2.6 (2.3) years. CONCLUSIONS This UK cohort is the largest national NP-C cohort reported to date, and confirms the wide phenotypic variability of the disease, as reported in other countries. Further analyses are required to assess the impact of miglustat therapy on neurological disease progression.
Collapse
Affiliation(s)
- Jackie Imrie
- NPUK, Vermont House, Concord, Washington, Tyne and Wear, NE37 2SQ, UK.
| | - Lesley Heptinstall
- Department of Genetic Medicine, University of Manchester, Manchester, UK.
| | - Stephen Knight
- Department of Genetic Medicine, University of Manchester, Manchester, UK.
| | | |
Collapse
|
39
|
Vite CH, Bagel JH, Swain GP, Prociuk M, Sikora TU, Stein VM, O'Donnell P, Ruane T, Ward S, Crooks A, Li S, Mauldin E, Stellar S, De Meulder M, Kao ML, Ory DS, Davidson C, Vanier MT, Walkley SU. Intracisternal cyclodextrin prevents cerebellar dysfunction and Purkinje cell death in feline Niemann-Pick type C1 disease. Sci Transl Med 2015; 7:276ra26. [PMID: 25717099 DOI: 10.1126/scitranslmed.3010101] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Niemann-Pick type C1 (NPC) disease is a lysosomal storage disease caused by mutations in the NPC1 gene, leading to an increase in unesterified cholesterol and several sphingolipids, and resulting in hepatic disease and progressive neurological disease. We show that subcutaneous administration of the pharmaceutical excipient 2-hydroxypropyl-β-cyclodextrin (HPβCD) to cats with NPC disease ameliorated hepatic disease, but doses sufficient to reduce neurological disease resulted in pulmonary toxicity. However, direct administration of HPβCD into the cisterna magna of presymptomatic cats with NPC disease prevented the onset of cerebellar dysfunction for greater than a year and resulted in a reduction in Purkinje cell loss and near-normal concentrations of cholesterol and sphingolipids. Moreover, administration of intracisternal HPβCD to NPC cats with ongoing cerebellar dysfunction slowed disease progression, increased survival time, and decreased the accumulation of brain gangliosides. An increase in hearing threshold was identified as a potential adverse effect. These studies in a feline animal model have provided critical data on efficacy and safety of drug administration directly into the central nervous system that will be important for advancing HPβCD into clinical trials.
Collapse
Affiliation(s)
- Charles H Vite
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Jessica H Bagel
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gary P Swain
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maria Prociuk
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tracey U Sikora
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Veronika M Stein
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Patricia O'Donnell
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Therese Ruane
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah Ward
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexandra Crooks
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Su Li
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elizabeth Mauldin
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Susan Stellar
- Janssen Research & Development, LLC, Janssen Pharmaceutical Companies of Johnson and Johnson, Titusville, NJ 08560, USA
| | - Marc De Meulder
- Janssen Research & Development, a division of Janssen Pharmaceutica NV, Janssen Pharmaceutical Companies of Johnson and Johnson, Beerse, Belgium
| | - Mark L Kao
- Janssen Research & Development, LLC, Janssen Pharmaceutical Companies of Johnson and Johnson, Titusville, NJ 08560, USA
| | - Daniel S Ory
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Cristin Davidson
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Marie T Vanier
- INSERM U820; EA4611, Université Claude Bernard Lyon 1, Lyon, France
| | - Steven U Walkley
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
40
|
Patterson MC, Mengel E, Vanier MT, Schwierin B, Muller A, Cornelisse P, Pineda M. Stable or improved neurological manifestations during miglustat therapy in patients from the international disease registry for Niemann-Pick disease type C: an observational cohort study. Orphanet J Rare Dis 2015; 10:65. [PMID: 26017010 PMCID: PMC4462071 DOI: 10.1186/s13023-015-0284-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/14/2015] [Indexed: 12/02/2022] Open
Abstract
Background Niemann-Pick disease type C (NP-C) is a rare neurovisceral disease characterised by progressive neurological degeneration, where the rate of neurological disease progression varies depending on age at neurological onset. We report longitudinal data on functional disease progression and safety observations in patients in the international NPC Registry who received continuous treatment with miglustat. Methods The NPC Registry is a prospective observational cohort of NP-C patients. Enrolled patients who received ≥1 year of continuous miglustat therapy (for ≥90 % of the observation period, with no single treatment interruption >28 days) were included in this analysis. Disability was measured using a scale rating the four domains, ambulation, manipulation, language and swallowing from 0 (normal) to 1 (worst). Neurological disease progression was analysed in all patients based on: 1) annual progression rates between enrolment and last follow up, and; 2) categorical analysis with patients categorised as ‘improved/stable’ if ≥3/4 domain scores were lower/unchanged, and as ‘progressed’ if <3 scores were lower/unchanged between enrolment and last follow-up visit. Results In total, 283 patients were enrolled from 28 centers in 13 European countries, Canada and Australia between September 2009 and October 2013; 92 patients received continuous miglustat therapy. The mean (SD) miglustat exposure during the observation period (enrolment to last follow-up) was 2.0 (0.7) years. Among 84 evaluable patients, 9 (11 %) had early-infantile (<2 years), 27 (32 %) had late-infantile (2 to <6 years), 30 (36 %) had juvenile (6 to <15 years) and 18 (21 %) had adolescent/adult (≥15 years) onset of neurological manifestations. The mean (95%CI) composite disability score among all patients was 0.37 (0.32,0.42) at enrolment and 0.44 (0.38,0.50) at last follow-up visit, and the mean annual progression rate was 0.038 (0.018,0.059). Progression of composite disability scores appeared highest among patients with neurological onset during infancy or childhood and lowest in those with adolescent/adult-onset. Overall, 59/86 evaluable patients (69 %) were categorized as improved/stable and the proportion of improved/stable patients increased with age at neurological onset. Safety findings were consistent with previous data. Conclusions Disability status was improved/stable in the majority of patients who received continuous miglustat therapy for an average period of 2 years.
Collapse
Affiliation(s)
- Marc C Patterson
- Department of Neurology, Mayo Clinic, 200 first Street SW, Rochester, MN, 55905, USA.
| | - Eugen Mengel
- Villa Metabolica, University of Mainz, Mainz, Germany.
| | | | | | - Audrey Muller
- Actelion Pharmaceuticals Ltd, Allschwil, Switzerland.
| | | | - Mercè Pineda
- Fundació Hospital Sant Joan de Déu, CIBERER, Barcelona, Spain.
| | | |
Collapse
|
41
|
Fecarotta S, Romano A, Della Casa R, Del Giudice E, Bruschini D, Mansi G, Bembi B, Dardis A, Fiumara A, Di Rocco M, Uziel G, Ardissone A, Roccatello D, Alpa M, Bertini E, D'Amico A, Dionisi-Vici C, Deodato F, Caviglia S, Federico A, Palmeri S, Gabrielli O, Santoro L, Filla A, Russo C, Parenti G, Andria G. Long term follow-up to evaluate the efficacy of miglustat treatment in Italian patients with Niemann-Pick disease type C. Orphanet J Rare Dis 2015; 10:22. [PMID: 25888393 PMCID: PMC4359492 DOI: 10.1186/s13023-015-0240-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/12/2015] [Indexed: 12/25/2022] Open
Abstract
Background Twenty-five patients with Niemann Pick disease type C (age range: 7 months to 44 years) were enrolled in an Italian independent multicenter trial and treated with miglustat for periods from 48 to 96 months. Methods Based on the age at onset of neurological manifestations patients’ phenotypes were classified as: adult (n = 6), juvenile (n = 9), late infantile (n = 6), early infantile (n = 2). Two patients had an exclusively visceral phenotype. We clinically evaluated patients’ neurological involvement, giving a score of severity ranging from 0 (best) to 3 (worst) for gait abnormalities, dystonia, dysmetria, dysarthria, and developmental delay/cognitive impairment, and from 0 to 4 for dysphagia. We calculated a mean composite severity score transforming the original scores proportionally to range from 0 to 1 to summarize the clinical picture of patients and monitor their clinical course. Results We compared the results after 24 months of treatment in 23 patients showing neurological manifestations. Stabilization or improvement of all parameters was observed in the majority of patients. With the exception of developmental delay/cognitive impairment, these results persisted after 48–96 months in 41 – 55% of the patients (dystonia: 55%, dysarthria: 50%, gait abnormalities: 43%, dysmetria: 41%, respectively). After 24 months of therapy the majority of the evaluable patients (n = 20), demonstrated a stabilization or improvement in the ability to swallow four substances of different consistency (water: 65%, purée: 58%, little pasta: 60%, biscuit: 55%). These results persisted after 48–96 months in 40-50% of patients, with the exception of water swallowing. Stabilization or improvement of the composite severity score was detected in the majority (57%) of 7 patients who were treated early (within 3.5 years from onset) and rarely in patients who received treatment later. Conclusions The results of this study suggest that miglustat treatment can improve or stabilize neurological manifestations, at least for a period of time; the severity of clinical conditions at the beginning of treatment can influence the rate of disease progression. This conclusion applies particularly to patients with juvenile or adult onset of the disease. Trial registration EudraCT number 2006-005842-35 Electronic supplementary material The online version of this article (doi:10.1186/s13023-015-0240-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Simona Fecarotta
- Department of Translational Medicine-Section of Pediatrics, Federico II University, Naples, Italy.
| | - Alfonso Romano
- Department of Translational Medicine-Section of Pediatrics, Federico II University, Naples, Italy.
| | - Roberto Della Casa
- Department of Translational Medicine-Section of Pediatrics, Federico II University, Naples, Italy.
| | - Ennio Del Giudice
- Department of Translational Medicine-Section of Pediatrics, Federico II University, Naples, Italy.
| | - Diana Bruschini
- Department of Translational Medicine-Section of Pediatrics, Federico II University, Naples, Italy.
| | - Giuseppina Mansi
- Department of Translational Medicine-Section of Pediatrics, Federico II University, Naples, Italy.
| | - Bruno Bembi
- Regional Coordinator Centre for Rare Diseases, University Hospital "Santa Maria della Misericordia", Udine, Italy.
| | - Andrea Dardis
- Regional Coordinator Centre for Rare Diseases, University Hospital "Santa Maria della Misericordia", Udine, Italy.
| | - Agata Fiumara
- Department of Pediatrics, Regional Referral Center for Inherited Metabolic Disease, University of Catania, Catania, Italy.
| | - Maja Di Rocco
- Department of Pediatrics, Unit of Rare Diseases, Gaslini Institute, Genoa, Italy.
| | - Graziella Uziel
- Unit of Child Neurology, The Foundation "Carlo Besta" Neurological Institute (IRCCS), Milan, Italy.
| | - Anna Ardissone
- Unit of Child Neurology, The Foundation "Carlo Besta" Neurological Institute (IRCCS), Milan, Italy.
| | - Dario Roccatello
- Center of Research on Immunopathology and Rare Diseases (CMID), San Giovanni Bosco Hospital and University of Turin, Turin, Italy.
| | - Mirella Alpa
- Center of Research on Immunopathology and Rare Diseases (CMID), San Giovanni Bosco Hospital and University of Turin, Turin, Italy.
| | - Enrico Bertini
- Department of Neurosciences, Unit of Neuromuscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Adele D'Amico
- Department of Neurosciences, Unit of Neuromuscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Carlo Dionisi-Vici
- Department of Pediatric Medicine, Division of Metabolism, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Federica Deodato
- Department of Pediatric Medicine, Division of Metabolism, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Stefania Caviglia
- Department of Neurosciences, Psychology Clinic Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Antonio Federico
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy.
| | - Silvia Palmeri
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy.
| | - Orazio Gabrielli
- Department of Clinical Sciences, Polytechnic University of Marche, Ospedali Riuniti, Ancona, Italy.
| | - Lucia Santoro
- Department of Clinical Sciences, Polytechnic University of Marche, Ospedali Riuniti, Ancona, Italy.
| | - Alessandro Filla
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy.
| | - Cinzia Russo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy.
| | - Giancarlo Parenti
- Department of Translational Medicine-Section of Pediatrics, Federico II University, Naples, Italy.
| | - Generoso Andria
- Department of Translational Medicine-Section of Pediatrics, Federico II University, Naples, Italy.
| |
Collapse
|
42
|
van Karnebeek CDM, Mohammadi T, Tsao N, Sinclair G, Sirrs S, Stockler S, Marra C. Health economic evaluation of plasma oxysterol screening in the diagnosis of Niemann-Pick Type C disease among intellectually disabled using discrete event simulation. Mol Genet Metab 2015; 114:226-32. [PMID: 25095726 DOI: 10.1016/j.ymgme.2014.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 07/04/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND Recently a less invasive method of screening and diagnosing Niemann-Pick C (NP-C) disease has emerged. This approach involves the use of a metabolic screening test (oxysterol assay) instead of the current practice of clinical assessment of patients suspected of NP-C (review of medical history, family history and clinical examination for the signs and symptoms). Our objective is to compare costs and outcomes of plasma oxysterol screening versus current practice in diagnosis of NP-C disease among intellectually disabled (ID) patients using decision-analytic methods. METHODS A discrete event simulation model was conducted to follow ID patients through the diagnosis and treatment of NP-C, forecast the costs and effectiveness for a cohort of ID patients and compare the outcomes and costs in two different arms of the model: plasma oxysterol screening and routine diagnosis procedure (anno 2013) over 5 years of follow up. Data from published sources and clinical trials were used in simulation model. Unit costs and quality-adjusted life-years (QALYs) were discounted at a 3% annual rate in the base case analysis. Deterministic and probabilistic sensitivity analyses were conducted. RESULTS The outcomes of the base case model showed that using plasma oxysterol screening for diagnosis of NP-C disease among ID patients is a dominant strategy. It would result in lower total cost and would slightly improve patients' quality of life. The average amount of cost saving was $3642 CAD and the incremental QALYs per each individual ID patient in oxysterol screening arm versus current practice of diagnosis NP-C was 0.0022 QALYs. Results of sensitivity analysis demonstrated robustness of the outcomes over the wide range of changes in model inputs. CONCLUSION Whilst acknowledging the limitations of this study, we conclude that screening ID children and adolescents with oxysterol tests compared to current practice for the diagnosis of NP-C is a dominant strategy with clinical and economic benefits. The less costly, more sensitive and specific oxysterol test has potential to save costs to the healthcare system while improving patients' quality of life and may be considered as a routine tool in the NP-C diagnosis armamentarium for ID. Further research is needed to elucidate its effectiveness in patients presenting characteristics other than ID in childhood and adolescence.
Collapse
Affiliation(s)
- Clara D M van Karnebeek
- Division of Biochemical Diseases, Department of Pediatrics, B.C. Children's Hospital, Canada; Treatable Intellectual Disability Endeavour in British Columbia(1), Canada; Child and Family Research Institute, Centre for Molecular Medicine & Therapeutics, Canada; University of British Columbia, Vancouver, Canada.
| | - Tima Mohammadi
- University of British Columbia, Vancouver, Canada; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada.
| | - Nicole Tsao
- University of British Columbia, Vancouver, Canada; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada.
| | - Graham Sinclair
- Treatable Intellectual Disability Endeavour in British Columbia(1), Canada; University of British Columbia, Vancouver, Canada; Department of Pathology & Laboratory Medicine, BC Children's & Women's Hospital, Canada.
| | - Sandra Sirrs
- University of British Columbia, Vancouver, Canada; Adult Metabolic Diseases Clinic, Vancouver General Hospital, Canada.
| | - Sylvia Stockler
- Division of Biochemical Diseases, Department of Pediatrics, B.C. Children's Hospital, Canada; Treatable Intellectual Disability Endeavour in British Columbia(1), Canada; University of British Columbia, Vancouver, Canada.
| | - Carlo Marra
- University of British Columbia, Vancouver, Canada; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
43
|
Abstract
Miglustat (Zavesca®, Brazaves®), a small iminosugar molecule that reversibly inhibits glycosphingolipid synthesis, is the only disease-specific drug approved for the treatment of progressive neurological manifestations of Niemann-Pick disease type C (NP-C) in adult and paediatric patients. NP-C is a rare, autosomal-recessive lipid storage disorder characterized by impaired intracellular lipid trafficking and progressive neurological symptoms leading to premature death. In a randomized clinical trial, long-term extension studies and a retrospective observational cohort study, treatment with oral miglustat stabilized key neurological manifestations of NP-C (including horizontal saccadic eye movement peak velocity, ambulation, manipulation, language and swallowing) in paediatric and adult patients with the disease. The therapeutic effects of miglustat in stabilizing or slowing disease progression have been confirmed in other reports in the clinical experience setting. The primary tolerability issues associated with miglustat are mild to moderate gastrointestinal effects (e.g. diarrhoea, flatulence and abdominal pain/discomfort) and weight loss, which usually occur during initial therapy and are generally manageable. In the absence of a cure, miglustat is a valuable agent to reduce the progression of clinically relevant neurological symptoms in paediatric and adult patients with NP-C, which is considered a significant achievement in the treatment of this disease.
Collapse
|
44
|
Jahnova H, Dvorakova L, Vlaskova H, Hulkova H, Poupetova H, Hrebicek M, Jesina P. Observational, retrospective study of a large cohort of patients with Niemann-Pick disease type C in the Czech Republic: a surprisingly stable diagnostic rate spanning almost 40 years. Orphanet J Rare Dis 2014; 9:140. [PMID: 25236789 PMCID: PMC4193985 DOI: 10.1186/s13023-014-0140-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 08/25/2014] [Indexed: 11/10/2022] Open
Abstract
Background Niemann-Pick disease type C (NPC) is a rare, fatal neurovisceral disorder with autosomal recessive inheritance, and featuring striking clinical variability dependent on the age at onset of neurological symptoms. We report data from a large cohort of 56 Czech patients with NPC diagnosed over a period of 37 years. Methods An observational, retrospective analysis of historic and current clinical and laboratory information was performed among all NPC patients originating from the area of the contemporary Czech Republic and diagnosed between 1975 and 2012. All patients with ≥1 positive diagnostic test and relevant clinical information were included. Data on diagnostic methods (histopathological and/or ultrastructural; biochemical; genetic), clinical status and general information on treatment were collated. Data were examined in accordance with international guidelines for the management of NPC. Results Between 1975 and 1985 diagnoses were based exclusively on specific histopathological findings, often at autopsy. Bone marrow smear (BMS) analyses have proved to be a very specific indicator for NPC and have become an important part of our diagnostic algorithm. Filipin staining and cholesterol esterification assays became the definitive diagnostic tests after 1985 and were applied in 24 of our patients. Since 2005, more and more patients have been assessed using NPC1/NPC2 gene sequencing. Twelve patients were diagnosed with neonatal/early-infantile onset NPC, 13 with the late-infantile onset form, 20 with the juvenile onset form, and nine with the adolescent/adult onset form. Two diagnosed patients remained neurologically asymptomatic at study completion. Nineteen patients were siblings. Causal NPC1 mutations were determined in 38 patients; two identical NPC2 mutations were identified in one patient. In total, 30 different mutations were identified, 14 of which have been confirmed as novel. The frequency of individual mutated NPC1 alleles in our cohort differs compared with previous published data: the most frequent mutant NPC1 allele was p.R1186H (n = 13), followed by p.P1007A (n = 8), p.S954L (n = 8) and p.I1061T (n = 4). Conclusions These data demonstrate the evolution of the diagnostic process in NPC over the last four decades. We estimate the contemporary birth prevalence of NPC in the Czech Republic at 0.93 per 100,000.
Collapse
Affiliation(s)
- Helena Jahnova
- Institute of Inherited Metabolic Disorders, Charles University, First Faculty of Medicine, and General University Hospital in Prague, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
45
|
Guazzelli L, Catelani G, D'Andrea F, Gragnani T, Griselli A. Stereoselective Access to the β-D-N-Acetylhexosaminyl-(1→4)-1-deoxy-D-nojirimycin Disaccharide Series Avoiding the Glycosylation Reaction. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402555] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Platt FM. Sphingolipid lysosomal storage disorders. Nature 2014; 510:68-75. [PMID: 24899306 DOI: 10.1038/nature13476] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/14/2014] [Indexed: 12/18/2022]
Abstract
Lysosomal storage diseases are inborn errors of metabolism, the hallmark of which is the accumulation, or storage, of macromolecules in the late endocytic system. They are monogenic disorders that occur at a collective frequency of 1 in 5,000 live births and are caused by inherited defects in genes that mainly encode lysosomal proteins, most commonly lysosomal enzymes. A subgroup of these diseases involves the lysosomal storage of glycosphingolipids. Through our understanding of the genetics, biochemistry and, more recently, cellular aspects of sphingolipid storage disorders, we have gained insights into fundamental aspects of cell biology that would otherwise have remained opaque. In addition, study of these disorders has led to significant progress in the development of therapies, several of which are now in routine clinical use. Emerging mechanistic links with more common diseases suggest we need to rethink our current concept of disease boundaries.
Collapse
Affiliation(s)
- Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| |
Collapse
|
47
|
Yu XH, Jiang N, Yao PB, Zheng XL, Cayabyab FS, Tang CK. NPC1, intracellular cholesterol trafficking and atherosclerosis. Clin Chim Acta 2014; 429:69-75. [DOI: 10.1016/j.cca.2013.11.026] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/17/2013] [Accepted: 11/23/2013] [Indexed: 11/30/2022]
|
48
|
Ginocchio VM, D'Amico A, Bertini E, Ceravolo F, Dardis A, Verrigni D, Bembi B, Dionisi-Vici C, Deodato F. Efficacy of miglustat in Niemann-Pick C disease: a single centre experience. Mol Genet Metab 2013; 110:329-35. [PMID: 23973268 DOI: 10.1016/j.ymgme.2013.07.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 07/29/2013] [Accepted: 07/29/2013] [Indexed: 11/17/2022]
Abstract
Niemann-Pick disease type C (NPC) is a lysosomal storage disease characterized by progressive neurological degeneration. Miglustat is the first approved specific therapy and its efficacy in stabilizing or slowing disease progression has been demonstrated in previous studies. We evaluated data from 10 NPC patients treated with Miglustat in a single study centre. All disease manifestations were assessed and patients were stratified according to age at onset of neurological symptoms. Neurological data were recorded by using a modified version of the NP-C disability scale; a "composite score" and a "mean annual change" were calculated to evaluate disease progression. We observed a mean annual change of the composite score of 0.04 in our cohort, indicating slower progression of neurological symptoms if compared with the natural history of the disease. The evidence of slower disease evolution in patients treated with Miglustat suits with previous data and here it is also emphasized by the comparison between disease progression in two early-infantile onset patients receiving different Miglustat dosages. Evaluation of the mean annual change for individual subgroups of patients evidenced minor values in juvenile patients, highlighting better response in such class of patients. Among individual neurological parameters, swallowing showed the minor mean annual change (0.02), indicating better response to therapy. We underline the importance of using a standardized disability scale to quantify and compare neurological features and their evolution over time.
Collapse
Affiliation(s)
- Virginia Maria Ginocchio
- Division of Metabolism, Department of Pediatric Medicine, "Bambino Gesù" Children's Hospital, IRCCS, Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Mengel E, Klünemann HH, Lourenço CM, Hendriksz CJ, Sedel F, Walterfang M, Kolb SA. Niemann-Pick disease type C symptomatology: an expert-based clinical description. Orphanet J Rare Dis 2013; 8:166. [PMID: 24135395 PMCID: PMC3853996 DOI: 10.1186/1750-1172-8-166] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 10/01/2013] [Indexed: 11/25/2022] Open
Abstract
Niemann-Pick disease type C (NP-C) is a rare, progressive, irreversible disease leading to disabling neurological manifestations and premature death. The estimated disease incidence is 1:120,000 live births, but this likely represents an underestimate, as the disease may be under-diagnosed due to its highly heterogeneous presentation. NP-C is characterised by visceral, neurological and psychiatric manifestations that are not specific to the disease and that can be found in other conditions. The aim of this review is to provide non-specialists with an expert-based, detailed description of NP-C signs and symptoms, including how they present in patients and how they can be assessed. Early disease detection should rely on seeking a combination of signs and symptoms, rather than isolated findings. Examples of combinations which are strongly suggestive of NP-C include: splenomegaly and vertical supranuclear gaze palsy (VSGP); splenomegaly and clumsiness; splenomegaly and schizophrenia-like psychosis; psychotic symptoms and cognitive decline; and ataxia with dystonia, dysarthria/dysphagia and cognitive decline. VSGP is a hallmark of NP-C and becomes highly specific of the disease when it occurs in combination with other manifestations (e.g. splenomegaly, ataxia). In young infants (<2 years), abnormal saccades may first manifest as slowing and shortening of upward saccades, long before gaze palsy onset. While visceral manifestations tend to predominate during the perinatal and infantile period (2 months-6 years of age), neurological and psychiatric involvement is more prominent during the juvenile/adult period (>6 years of age). Psychosis in NP-C is atypical and variably responsive to treatment. Progressive cognitive decline, which always occurs in patients with NP-C, manifests as memory and executive impairment in juvenile/adult patients. Disease prognosis mainly correlates with the age at onset of the neurological signs, with early-onset forms progressing faster. Therefore, a detailed and descriptive picture of NP-C signs and symptoms may help improve disease detection and early diagnosis, so that therapy with miglustat (Zavesca(®)), the only available treatment approved to date, can be started as soon as neurological symptoms appear, in order to slow disease progression.
Collapse
Affiliation(s)
- Eugen Mengel
- Department of Lysosomal Storage Disorder, Villa Metabolica, Center for Paediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | | | - Charles M Lourenço
- Medical Genetics Service, Clinics Hospital of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Christian J Hendriksz
- Manchester Academic Health Science Centre (MAHSC), University of Manchester, Salford Royal Hospital NHS Foundation Trust, Stott Lane, Manchester M6 8HD UK
| | - Frédéric Sedel
- Department of Neurology and Reference Center for Lysosomal Diseases, Groupe Hospitalier Pitié-Salpêtrière, 75013 Paris, France
| | - Mark Walterfang
- Department of Neuropsychiatry, Royal Melbourne Hospital and Melbourne Neuropsychiatry Center, University of Melbourne, 3050 Melbourne, Australia
| | - Stefan A Kolb
- Actelion Pharmaceuticals Ltd, 4123 Allschwil, Switzerland
| |
Collapse
|
50
|
Helquist P, Maxfield FR, Wiech NL, Wiest O. Treatment of Niemann--pick type C disease by histone deacetylase inhibitors. Neurotherapeutics 2013; 10:688-97. [PMID: 24048860 PMCID: PMC3805865 DOI: 10.1007/s13311-013-0217-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Niemann-Pick type C disease (NPC) is a devastating, recessive, inherited disorder that causes accumulation of cholesterol and other lipids in late endosomes and lysosomes. Mutations in 2 genes, NPC1 and NPC2, are responsible for the disease, which affects about 1 in 120,000 live births. About 95% of patients have mutations in NPC1, a large polytopic membrane protein that is normally found in late endosomes. More than 200 missense mutations in NPC1 have been found in NPC patients. The disease is progressive, typically leading to death before the age of 20 years, although some affected individuals live well into adulthood. The disease affects peripheral organs, including the liver, spleen, and lungs, but the most severe symptoms are associated with neurological disease. There are some palliative treatments that slow progression of NPC disease. Recently, it was found that histone deacetylase (HDAC) inhibitors that are effective against HDACs 1, 2, and 3 can reduce the cholesterol accumulation in fibroblasts derived from NPC patients with mutations in NPC1. One example is vorinostat. As vorinostat is a Food and Drug Administration-approved drug for treatment of cutaneous T-cell lymphoma, this opens up the possibility that HDAC inhibitors could be repurposed for treatment of this rare disease. The mechanism of action of the HDAC inhibitors requires further study, but these drugs increase the level of the NPC1 protein. This may be due to post-translational stabilization of the NPC1 protein, allowing it to be transported out of the endoplasmic reticulum.
Collapse
Affiliation(s)
- Paul Helquist
- />Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556 5670 USA
| | | | | | - Olaf Wiest
- />Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556 5670 USA
- />Laboratory of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|