1
|
Cheung C, Tu S, Feng Y, Wan C, Ai H, Chen Z. Mitochondrial quality control dysfunction in osteoarthritis: Mechanisms, therapeutic strategies & future prospects. Arch Gerontol Geriatr 2024; 125:105522. [PMID: 38861889 DOI: 10.1016/j.archger.2024.105522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
Osteoarthritis (OA) is a prevalent chronic joint disease characterized by articular cartilage degeneration, pain, and disability. Emerging evidence indicates that mitochondrial quality control dysfunction contributes to OA pathogenesis. Mitochondria are essential organelles to generate cellular energy via oxidative phosphorylation and regulate vital processes. Impaired mitochondria can negatively impact cellular metabolism and result in the generation of harmful reactive oxygen species (ROS). Dysfunction in mitochondrial quality control mechanisms has been increasingly linked to OA onset and progression. This review summarizes current knowledge on the role of mitochondrial quality control disruption in OA, highlighting disturbed mitochondrial dynamics, impaired mitochondrial biogenesis, antioxidant defenses and mitophagy. The review also discusses potential therapeutic strategies targeting mitochondrial Quality Control in OA, offering future perspectives on advancing OA therapeutic strategies.
Collapse
Affiliation(s)
- Chiyuen Cheung
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Shaoqin Tu
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Yi Feng
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Chuiming Wan
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Hong Ai
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Zheng Chen
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
2
|
Emami S, Hemmati Z, Yaqoubi S, Hamishehkar H, Alvani A. Nanocrystal Agglomerates of Curcumin Prepared by Electrospray Drying as an Excipient-Free Dry Powder for Inhalation. Adv Pharmacol Pharm Sci 2024; 2024:6288621. [PMID: 39281030 PMCID: PMC11398964 DOI: 10.1155/2024/6288621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/27/2024] [Accepted: 08/24/2024] [Indexed: 09/18/2024] Open
Abstract
Curcumin has shown beneficial effects on pulmonary diseases with chronic inflammation or abnormal inflammatory responses, including chronic obstructive pulmonary disease, asthma, and pulmonary fibrosis. Clinical applications of curcumin are limited due to its chemical instability in solution, low water solubility, poor oral bioavailability, and intestinal and liver first-pass metabolism. Pulmonary delivery of curcumin can address these challenges and provide a high concentration in lung tissues. The purpose of the current work was to prepare a novel inhalable dry powder of curcumin nanocrystals without added excipients using electrospray drying (ED) with improved dissolution and aerosolization properties. ED of curcumin was performed at 2 and 4% w/v concentrations in acetone. Physicochemical properties of the formulated powders were evaluated by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), density and powder flow measurements, and in vitro dissolution. The in vitro deposition studies were conducted using next-generation impactor (NGI) and aerosol performance and aerodynamic particle size parameters were calculated for prepared formulations. ED could produce agglomerates of nanocrystals with a size of about 500 nm at an acceptable yield of about 50%. PXRD and FTIR data revealed that prepared nanocrystals were in a stable crystalline state. The bulk and tapped density of prepared agglomerates were in the range appropriate for pulmonary delivery. Formed nanocrystals could significantly improve the dissolution rate of water-insoluble curcumin. The optimized formulation exhibited acceptable recovered dose percentage, high emitted dose percentage, optimum mean mass median aerodynamic diameter, small geometric standard deviation, and high fine-particle fraction that favors delivery of curcumin to the deep lung regions. The ED proved to be an efficient technique to prepare curcumin nanocrystals for pulmonary delivery in a single step, at a mild condition, and with no surfactant.
Collapse
Affiliation(s)
- Shahram Emami
- Department of Pharmaceutics School of Pharmacy Urmia University of Medical Sciences, Urmia, Iran
| | - Zahra Hemmati
- Student Research Committee School of Pharmacy Urmia University of Medical Sciences, Urmia, Iran
| | - Shadi Yaqoubi
- Drug Applied Research Center Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Alvani
- Student Research Committee Faculty of Pharmacy Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Kim MB, Lee J, Lee JY. Targeting Mitochondrial Dysfunction for the Prevention and Treatment of Metabolic Disease by Bioactive Food Components. J Lipid Atheroscler 2024; 13:306-327. [PMID: 39355406 PMCID: PMC11439752 DOI: 10.12997/jla.2024.13.3.306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/21/2024] [Accepted: 05/13/2024] [Indexed: 10/03/2024] Open
Abstract
Dysfunctional mitochondria have been linked to the pathogenesis of obesity-associated metabolic diseases. Excessive energy intake impairs mitochondrial biogenesis and function, decreasing adenosine-5'-triphosphate production and negatively impacting metabolically active tissues such as adipose tissue, skeletal muscle, and the liver. Compromised mitochondrial function disturbs lipid metabolism and increases reactive oxygen species production in these tissues, contributing to the development of insulin resistance, type 2 diabetes, and non-alcoholic fatty liver disease. Recent studies have demonstrated the therapeutic potential of bioactive food components, such as resveratrol, quercetin, coenzyme Q10, curcumin, and astaxanthin, by enhancing mitochondrial function. This review provides an overview of the current understanding of how these bioactive compounds ameliorate mitochondrial dysfunction to mitigate obesity-associated metabolic diseases.
Collapse
Affiliation(s)
- Mi-Bo Kim
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Jaeeun Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
4
|
Jebarani AH, Rasal RK, Badsha I, Nallathambi G, Devasena T. Fabrication and optimization of curcumin-multiwalled carbon nanotube (C-MWCNT) conjugate reinforced electrospun polyacrylonitrile membrane for water treatment applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46652-46668. [PMID: 37936040 DOI: 10.1007/s11356-023-30715-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023]
Abstract
In the recent times, one of the most crucial tasks related to water resources is the treatment of polluted water. This study reports the development of a functionalized nanofibrous membrane with enhanced filtration performance, heavy metal removal, and photocatalytic dye degradation for the effective treatment of contaminated water. The nanofibrous mats were developed by the process of electrospinning using a polymeric solution of polyacrylonitrile (PAN) reinforced with curcumin-multiwalled carbon nanotube (C-MWCNT) conjugate. The experimental trials for membrane fabrication were adapted based on the design of experiments (DoE) approach by making use of the Box-Behnken design (BBD) for a three-variable system, a component of response surface methodology (RSM). The three variable parameters selected for optimization of the electrospinning process were the dopant concentration (in weight percentage), the flow rate (in millilitre per hour), and the spinning time (in hours), respectively, and a total of 15 fibrous membranes were fabricated. The SEM analysis of the fabricated membranes revealed alterations in the surface morphology of the fibrous mats with variations in the electrospinning parameters. The infrared spectrum of the fibrous mats, validated the incorporation C-MWCNT conjugate in PAN, thereby confirming the formation of PAN/C-MWNCNT membrane. The mean flow pore size and breaking force of the PAN/C-MWCNT membranes was also obtained using a universal testing machine (UTM) and porometer, respectively. To choose the best membrane for efficient filtration experiments, the performance of each of the prepared membranes was assessed in terms of solute rejection percentage (SR%), permeate flux (PF), and pure water flux (PWF). The statistical analysis of the assessed parameters in accordance with the membranes prepared was done using the MINITAB software, and the three-dimensional (3D) surface plots were constructed using the STATISTICA software to visualize and validate the relation between each of the electrospinning parameters and the corresponding membrane performance characteristics. Similarly, the potential of the electrospun membranes for efficient heavy metal ion removal and photocatalysis were also tested independently and the optimal electrospinning parameters were determined for the same. Based on the results, it was observed that the PAN/C-MWCNT membranes could serve as potential candidates for the treatment of polluted water.
Collapse
Affiliation(s)
| | - Renjith Kumar Rasal
- Centre for Nanoscience and Technology, Anna University, Chennai, 600025, India
| | - Iffath Badsha
- Centre for Nanoscience and Technology, Anna University, Chennai, 600025, India
| | - Gobi Nallathambi
- Department of Textile Technology, Anna University, Chennai, 600025, India
| | | |
Collapse
|
5
|
Bhole RP, Chikhale RV, Rathi KM. Current biomarkers and treatment strategies in Alzheimer disease: An overview and future perspectives. IBRO Neurosci Rep 2024; 16:8-42. [PMID: 38169888 PMCID: PMC10758887 DOI: 10.1016/j.ibneur.2023.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024] Open
Abstract
Alzheimer's disease (AD), a progressive degenerative disorder first identified by Alois Alzheimer in 1907, poses a significant public health challenge. Despite its prevalence and impact, there is currently no definitive ante mortem diagnosis for AD pathogenesis. By 2050, the United States may face a staggering 13.8 million AD patients. This review provides a concise summary of current AD biomarkers, available treatments, and potential future therapeutic approaches. The review begins by outlining existing drug targets and mechanisms in AD, along with a discussion of current treatment options. We explore various approaches targeting Amyloid β (Aβ), Tau Protein aggregation, Tau Kinases, Glycogen Synthase kinase-3β, CDK-5 inhibitors, Heat Shock Proteins (HSP), oxidative stress, inflammation, metals, Apolipoprotein E (ApoE) modulators, and Notch signaling. Additionally, we examine the historical use of Estradiol (E2) as an AD therapy, as well as the outcomes of Randomized Controlled Trials (RCTs) that evaluated antioxidants (e.g., vitamin E) and omega-3 polyunsaturated fatty acids as alternative treatment options. Notably, positive effects of docosahexaenoic acid nutriment in older adults with cognitive impairment or AD are highlighted. Furthermore, this review offers insights into ongoing clinical trials and potential therapies, shedding light on the dynamic research landscape in AD treatment.
Collapse
Affiliation(s)
- Ritesh P. Bhole
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil institute of Pharmaceutical Sciences & Research, Pimpri, Pune, India
- Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018, India
| | | | - Karishma M. Rathi
- Department of Pharmacy Practice, Dr. D. Y. Patil institute of Pharmaceutical Sciences & Research, Pimpri, Pune, India
| |
Collapse
|
6
|
Lou S, Gong D, Yang M, Qiu Q, Luo J, Chen T. Curcumin Improves Neurogenesis in Alzheimer's Disease Mice via the Upregulation of Wnt/β-Catenin and BDNF. Int J Mol Sci 2024; 25:5123. [PMID: 38791161 PMCID: PMC11120842 DOI: 10.3390/ijms25105123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Adult neurogenesis in the dentate gyrus (DG) is impaired during Alzheimer's disease (AD) progression. Curcumin has been reported to reduce cell apoptosis and stimulate neurogenesis. This study aimed to investigate the influence of curcumin on adult neurogenesis in AD mice and its potential mechanism. Two-month-old male C57BL/6J mice were injected with soluble β-amyloid (Aβ1-42) using lateral ventricle stereolocalization to establish AD models. An immunofluorescence assay, including bromodeoxyuridine (BrdU), doublecortin (DCX), and neuron-specific nuclear antigen (NeuN), was used to detect hippocampal neurogenesis. Western blot and an enzyme-linked immunosorbent assay (ELISA) were used to test the expression of related proteins and the secretion of brain-derived neurotrophic factor (BDNF). A Morris water maze was used to detect the cognitive function of the mice. Our results showed that curcumin administration (100 mg/kg) rescued the impaired neurogenesis of Aβ1-42 mice, shown as enhanced BrdU+/DCX+ and BrdU+/NeuN+ cells in DG. In addition, curcumin regulated the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) -mediated glycogen synthase kinase-3β (GSK3β) /Wingless/Integrated (Wnt)/β-catenin pathway and cyclic adenosine monophosphate response element-binding protein (CREB)/BDNF in Aβ1-42 mice. Inhibiting Wnt/β-catenin and depriving BDNF could reverse both the upregulated neurogenesis and cognitive function of curcumin-treated Aβ1-42 mice. In conclusion, our study indicates that curcumin, through targeting PI3K/Akt, regulates GSK3β/Wnt/β-catenin and CREB/BDNF pathways, improving the adult neurogenesis of AD mice.
Collapse
Affiliation(s)
| | | | | | | | - Jialie Luo
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China; (S.L.); (D.G.); (M.Y.); (Q.Q.)
| | - Tingting Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China; (S.L.); (D.G.); (M.Y.); (Q.Q.)
| |
Collapse
|
7
|
Atwan QS, Al-Ogaidi I. Enhancing the therapeutic potential of curcumin: a novel nanoformulation for targeted anticancer therapy to colorectal cancer with reduced miR20a and miR21 expression. Biomed Mater 2024; 19:025020. [PMID: 38215475 DOI: 10.1088/1748-605x/ad1dfc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/12/2024] [Indexed: 01/14/2024]
Abstract
Curcumin (Cur) possesses remarkable pharmacological properties, including cardioprotective, neuroprotective, antimicrobial, and anticancer activities. However, the utilization of Cur in pharmaceuticals faces constraints owing to its inadequate water solubility and limited bioavailability. To overcome these hurdles, there has been notable focus on exploring innovative formulations, with nanobiotechnology emerging as a promising avenue to enhance the therapeutic effectiveness of these complex compounds. We report a novel safe, effective method for improving the incorporation of anticancer curcumin to induce apoptosis by reducing the expression levels of miR20a and miR21. The established method features three aspects that, to our knowledge, have not been formally verified: (1) use of a novel formula to incorporate curcumin, (2) use of all biocompatible biodegradable materials to produce this formula without leaving harmful residues, and (3) an incorporation process at temperatures of approximately 50 °C. The formula was prepared from lecithin (LE), and chitosan (CH) with an eco-friendly emulsifying agent and olive oil as the curcumin solvent. The formula was converted to nanoscale through ultrasonication and probe sonication at a frequency of 20 kHz. Transmission electron microscopy showed that the nano formula was spherical in shape with sizes ranging between 49.7 nm in diameter and negative zeta potentials ranging from 28 to 34 mV. Primers miR20a and miR21 were designed for molecular studies. Nearly complete curcumin with an encapsulation efficiency of 91.1% was established using a straight-line equation. The nano formula incorporated with curcumin was used to prepare formulations that exhibited anticancer activities. The apoptosis pathway in cancer cells was activated by the minimum inhibitory concentration of the nano formula. These findings suggest the potential of this nanoformulation as an effective and selective cancer treatment that does not affect the normal cells.
Collapse
Affiliation(s)
- Qusay S Atwan
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
| | - Israa Al-Ogaidi
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
8
|
Du Q, Shen W. Research progress of plant-derived natural products in thyroid carcinoma. Front Chem 2024; 11:1279384. [PMID: 38268761 PMCID: PMC10806030 DOI: 10.3389/fchem.2023.1279384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
Thyroid carcinoma (TC) is a prevalent malignancy of the endocrine system, with a notable rise in its detection rate in recent decades. The primary therapeutic approaches for TC now encompass thyroidectomy and radioactive iodine therapy, yielding favorable prognoses for the majority of patients. TC survivors may necessitate ongoing surveillance, remedial treatment, and thyroid hormone supplementation, while also enduring the adverse consequences of thyroid hormone fluctuations, surgical complications, or side effects linked to radioactive iodine administration, and encountering enduring physical, psychosocial, and economic hardships. In vitro and in vivo studies of natural products against TC are demonstrating the potential of these natural products as alternatives to the treatment of thyroid cancer. This therapy may offer greater convenience, affordability, and acceptability than traditional therapies. In the early screening of natural products, we mainly use a combination of database prediction and literature search. The pharmacological effects on TC of selected natural products (quercetin, genistein, apigenin, luteolin, chrysin, myricetin, resveratrol, curcumin and nobiletin), which hold promise for therapeutic applications in TC, are reviewed in detail in this article through most of the cell-level evidence, animal-level evidence, and a small amount of human-level evidence. In addition, this article explores possible issues, such as bioavailability, drug safety.
Collapse
Affiliation(s)
- Qiujing Du
- The Affiliated Jiangyin People’s Hospital of Nantong University, Jiangyin, China
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Weidong Shen
- The Affiliated Jiangyin People’s Hospital of Nantong University, Jiangyin, China
| |
Collapse
|
9
|
Atwan QS, Al-Ogaidi I. Improving the targeted delivery of curcumin to esophageal cancer cells via a novel formulation of biodegradable lecithin/chitosan nanoparticles with downregulated miR-20a and miR-21 expression. NANOTECHNOLOGY 2024; 35:135103. [PMID: 38096580 DOI: 10.1088/1361-6528/ad15b9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
Nanoencapsulation, employing safe materials, holds substantial promise for enhancing bioactive compounds' delivery, stability, and bioactivity. In this study, we present an innovative and safe methodology for augmenting the incorporation of the anticancer agent, curcumin, thereby inducing apoptosis by downregulating miR20a and miR21 expression. Our established methodology introduces three pivotal elements that, to our knowledge, have not undergone formal validation: (1) Novel formulation: We introduce a unique formula for curcumin incorporation. (2) Biocompatibility and biodegradability: our formulation exclusively consists of biocompatible and biodegradable constituents, ensuring the absence of detrimental residues or undesirable reactions under varying conditions. (3) Low-temperature incorporation: Curcumin is incorporated into the formulation at temperatures approximating 50 °C. The formulation comprises lecithin (LE), chitosan (CH), an eco-friendly emulsifying agent, and olive oil as the solvent for curcumin. Nanoscale conversion is achieved through ultrasonication and probe sonication (20 kHz). Transmission electron microscopy (TEM) reveals spherical nanoparticles with diameters ranging from 29.33 nm and negative zeta potentials within the -28 to -34 mV range. Molecular studies involve the design of primers for miR20a and miR21. Our findings showcase a remarkable encapsulation efficiency of 91.1% for curcumin, as determined through a linear equation. The curcumin-loaded nanoformulation demonstrates potent anticancer activity, effectively activating the apoptosis pathway in cancer cells at the minimum inhibitory concentration. These results underscore the potential of our nanoformulation as a compelling, cancer-selective treatment strategy, preserving the integrity of normal cells, and thus, warranting further exploration in the field of cancer therapy.
Collapse
Affiliation(s)
- Qusay S Atwan
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
| | - Israa Al-Ogaidi
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
10
|
Prabhakar PK. Combination Therapy: A New Tool for the Management of Obesity. Endocr Metab Immune Disord Drug Targets 2024; 24:402-417. [PMID: 37641995 DOI: 10.2174/1871530323666230825140808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/19/2023] [Accepted: 07/20/2023] [Indexed: 08/31/2023]
Abstract
Obesity is a chronic lifestyle issue with devastating results. Behavioral changes are one of the initial lines of management strategies for obesity, but they are not very efficient management strategies. Many people also use surgical intervention to maintain a healthy weight, now considered to be the most common and effective obesity management. Chemically synthesized medicines fill the gap between lifestyle interventions and minimally invasive surgical management of obesity. The most common issue associated with monotherapy without side effects is its moderate effectiveness and higher dose requirement. Combination therapy is already used for many serious and complicated disease treatments and management and has shown efficacy as well. Generally, we use two or more medicines with different mechanisms of action for a better effect. The commonly used combination therapy for obesity management includes low-dose phentermine and prolonged and slow-releasing mechanism topiramate; naltrexone, and bupropion. Phentermine with inhibitors of Na-glucose cotransporter-2 or glucagon-like peptide-1 (GLP-1) agonists with gastric hormone or Na-glucose cotransporter-2 are two more viable combo therapy. This combination strategy aims to achieve success in bariatric surgery and the scientific community is working in this direction.
Collapse
Affiliation(s)
- Pranav Kumar Prabhakar
- Department of Research Impact and Outcome, Lovely Professional University, Punjab, 144411, India
| |
Collapse
|
11
|
Bapat RA, Bedia SV, Bedia AS, Yang HJ, Dharmadhikari S, Abdulla AM, Chaubal TV, Bapat PR, Abullais SS, Wahab S, Kesharwani P. Current appraises of therapeutic applications of nanocurcumin: A novel drug delivery approach for biomaterials in dentistry. ENVIRONMENTAL RESEARCH 2023; 238:116971. [PMID: 37717805 DOI: 10.1016/j.envres.2023.116971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023]
Abstract
Curcumin is a natural herb and polyphenol that is obtained from the medicinal plant Curcuma longa. It's anti-bacterial, anti-inflammatory, anti-cancer, anti-mutagenic, antioxidant and antifungal properties can be leveraged to treat a myriad of oral and systemic diseases. However, natural curcumin has weak solubility, limited bioavailability and undergoes rapid degradation, which severely limits its therapeutic potential. To overcome these drawbacks, nanocurcumin (nCur) formulations have been developed for improved biomaterial delivery and enhanced treatment outcomes. This novel biomaterial holds tremendous promise for the treatment of various oral diseases, the majority of which are caused by dental biofilm. These include dental caries, periodontal disease, root canal infection and peri-implant diseases, as well as other non-biofilm mediated oral diseases such as oral cancer and oral lichen planus. A number of in-vitro studies have demonstrated the antibacterial efficacy of nCur in various formulations against common oral pathogens such as S. mutans, P. gingivalis and E. faecalis, which are strongly associated with dental caries, periodontitis and root canal infection, respectively. In addition, some clinical studies were suggestive of the notion that nCur can indeed enhance the clinical outcomes of oral diseases such as periodontitis and oral lichen planus, but the level of evidence was very low due to the small number of studies and the methodological limitations of the available studies. The versatility of nCur to treat a diverse range of oral diseases augurs well for its future in dentistry, as reflected by rapid pace in which studies pertaining to this topic are published in the scientific literature. In order to keep abreast of the latest development of nCur in dentistry, this narrative review was undertaken. The aim of this narrative review is to provide a contemporaneous update of the chemistry, properties, mechanism of action, and scientific evidence behind the usage of nCur in dentistry.
Collapse
Affiliation(s)
- Ranjeet A Bapat
- Division of Restorative Dentistry, School of Dentistry, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Sumit V Bedia
- Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital Navi Mumbai, Maharashtra, 400614, India
| | - Aarti S Bedia
- Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital Navi Mumbai, Maharashtra, 400614, India
| | - Ho Jan Yang
- Oral Health Division, Ministry of Health, Malaysia
| | - Suyog Dharmadhikari
- D Y Patil Deemed to Be University School of Dentistry, Nerul, Navi-mumbai, 400706, India
| | - Anshad Mohamed Abdulla
- Department of Pediatric dentistry and Orthodontic Sciences, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Tanay V Chaubal
- Division of Restorative Dentistry, School of Dentistry, International Medical University, Kuala Lumpur, 57000, Malaysia
| | | | - Shahabe Saquib Abullais
- Department of Periodontics and Community Dental Sciences, College of Dentistry, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 61421, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India.
| |
Collapse
|
12
|
Bose S, Sarkar N, Majumdar U. Micelle encapsulated curcumin and piperine-laden 3D printed calcium phosphate scaffolds enhance in vitro biological properties. Colloids Surf B Biointerfaces 2023; 231:113563. [PMID: 37832173 PMCID: PMC11164291 DOI: 10.1016/j.colsurfb.2023.113563] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/03/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023]
Abstract
Limitations in the current clinical management of critical-sized osseous defects have driven the need for multifunctional bone constructs. The ideal bone scaffold should possess advanced microarchitecture, well-defined pore interconnectivity, and supply biological signals, which actively guide and control tissue regeneration while simultaneously preventing post-implantation complications. Here, a natural medicine-based localized drug delivery from 3D printed scaffold is presented, which offers controlled release of curcumin, piperine from nano-sized polymeric micelles, and burst release of antibacterial carvacrol from the coating endowing the scaffold with their distinct, individual biological properties. This functionalized scaffold exhibits improved osteoblast (hFOB) cell attachment, 4-folds higher hFOB proliferation, and 73% increased hFOB differentiation while simultaneously providing cytotoxicity towards osteosarcoma cells with 61% lesser viability compared to control. In vitro, early tube formation (p < 0.001) indicates that the scaffolds can modulate the endothelial cellular network, critical for faster wound healing. The scaffold also exhibits 94% enhanced antibacterial efficacy (p < 0.001) against gram-positive Staphylococcus aureus, the main causative bacteria for osteomyelitis. Together, the multifunctional scaffolds provide controlled delivery of natural biomolecules from the nano-sized micelle-loaded 3D printed matrix for significant improvement in osteoblast proliferation, endothelial formation, osteosarcoma, and bacterial inhibition, guiding better bone regeneration for post-traumatic defect repair.
Collapse
Affiliation(s)
- Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, United States.
| | - Naboneeta Sarkar
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, United States
| | - Ujjayan Majumdar
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, United States
| |
Collapse
|
13
|
Thouaye M, Yalcin I. Neuropathic pain: From actual pharmacological treatments to new therapeutic horizons. Pharmacol Ther 2023; 251:108546. [PMID: 37832728 DOI: 10.1016/j.pharmthera.2023.108546] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 09/07/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
Neuropathic pain, caused by a lesion or disease affecting the somatosensory system, affects between 3 and 17% of the general population. The treatment of neuropathic pain is challenging due to its heterogeneous etiologies, lack of objective diagnostic tools and resistance to classical analgesic drugs. First-line treatments recommended by the Special Interest Group on Neuropathic Pain (NeuPSIG) and European Federation of Neurological Societies (EFNS) include gabapentinoids, tricyclic antidepressants (TCAs) and selective serotonin noradrenaline reuptake inhibitors (SNRIs). Nevertheless these treatments have modest efficacy or dose limiting side effects. There is therefore a growing number of preclinical and clinical studies aim at developing new treatment strategies to treat neuropathic pain with better efficacy, selectivity, and less side effects. In this review, after a brief description of the mechanisms of action, efficacy, and limitations of current therapeutic drugs, we reviewed new preclinical and clinical targets currently under investigation, as well as promising non-pharmacological alternatives and their potential co-use with pharmacological treatments.
Collapse
Affiliation(s)
- Maxime Thouaye
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Ipek Yalcin
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France; Department of Psychiatry and Neuroscience, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
14
|
Yang S, Sun Y, Kapilevich L, Zhang X, Huang Y. Protective effects of curcumin against osteoporosis and its molecular mechanisms: a recent review in preclinical trials. Front Pharmacol 2023; 14:1249418. [PMID: 37790808 PMCID: PMC10544586 DOI: 10.3389/fphar.2023.1249418] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/04/2023] [Indexed: 10/05/2023] Open
Abstract
Osteoporosis (OP) is one of the most common metabolic skeletal disorders and is commonly seen in the elderly population and postmenopausal women. It is mainly associated with progressive loss of bone mineral density, persistent deterioration of bone microarchitecture, and increased fracture risk. To date, drug therapy is the primary method used to prevent and treat osteoporosis. However, long-term drug therapy inevitably leads to drug resistance and specific side effects. Therefore, researchers are constantly searching for new monomer compounds from natural plants. As a candidate for the treatment of osteoporosis, curcumin (CUR) is a natural phenolic compound with various pharmacological and biological activities, including antioxidant, anti-apoptotic, and anti-inflammatory. This compound has gained research attention for maintaining bone health in various osteoporosis models. We reviewed preclinical and clinical studies of curcumin in preventing and alleviating osteoporosis. These results suggest that if subjected to rigorous pharmacological and clinical trials, naturally-derived curcumin could be used as a complementary and alternative medicine for the treatment of osteoporosis by targeting osteoporosis-related mechanistic pathways. This review summarizes the mechanisms of action and potential therapeutic applications of curcumin in the prevention and mitigation of osteoporosis and provides reference for further research and development of curcumin.
Collapse
Affiliation(s)
- Shenglei Yang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Yuying Sun
- School of Stomatology, Binzhou Medical College, Yantai, China
| | - Leonid Kapilevich
- Faculty of Physical Education, Nаtionаl Reseаrch Tomsk Stаte University, Tomsk, Russiа
| | - Xin’an Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Yue Huang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| |
Collapse
|
15
|
Chang R, Chen L, Qamar M, Wen Y, Li L, Zhang J, Li X, Assadpour E, Esatbeyoglu T, Kharazmi MS, Li Y, Jafari SM. The bioavailability, metabolism and microbial modulation of curcumin-loaded nanodelivery systems. Adv Colloid Interface Sci 2023; 318:102933. [PMID: 37301064 DOI: 10.1016/j.cis.2023.102933] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/01/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Curcumin (Cur), the major bioactive component of turmeric (Curcuma longa) possesses many health benefits. However, low solubility, stability and bioavailability restricts its applications in food. Recently, nanocarriers such as complex coacervates, nanocapsules, liposomes, nanoparticles, nanomicelles, have been used as novel strategies to solve these problems. In this review, we have focused on the delivery systems responsive to the environmental stimuli such as pH-responsive, enzyme-responsive, targeted-to-specific cells or tissues, mucus-penetrating and mucoadhesive carriers. Besides, the metabolites and their biodistribution of Cur and Cur delivery systems are discussed. Most importantly, the interaction between Cur and their carriers with gut microbiota and their effects of modulating the gut health synergistically were discussed comprehensively. In the end, the biocompatibility of Cur delivery systems and the feasibility of their application in food industry is discussed. This review provided a comprehensive review of Cur nanodelivery systems, the health impacts of Cur nanocarriers and an insight into the application of Cur nanocarriers in food industry.
Collapse
Affiliation(s)
- Ruxin Chang
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Liran Chen
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Muhammad Qamar
- Faculty of Food science and Nutrition, Department of Food Science and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Yanjun Wen
- Henan Provincial Key Laboratory of Natural Pigments, Henan Zhongda Hengyuan Biotechnology Stock Company Limited, Luohe 462600, PR China
| | - Linzheng Li
- Henan Provincial Key Laboratory of Natural Pigments, Henan Zhongda Hengyuan Biotechnology Stock Company Limited, Luohe 462600, PR China
| | - Jiayin Zhang
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Xing Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Tuba Esatbeyoglu
- Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany
| | | | - Yuan Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
16
|
Pasdaran A, Hassani B, Tavakoli A, Kozuharova E, Hamedi A. A Review of the Potential Benefits of Herbal Medicines, Small Molecules of Natural Sources, and Supplements for Health Promotion in Lupus Conditions. Life (Basel) 2023; 13:1589. [PMID: 37511964 PMCID: PMC10416186 DOI: 10.3390/life13071589] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The Latin word lupus, meaning wolf, was in the medical literature prior to the 1200s to describe skin lesions that devour flesh, and the resources available to physicians to help people were limited. The present text reviews the ethnobotanical and pharmacological aspects of medicinal plants and purified molecules from natural sources with efficacy against lupus conditions. Among these molecules are artemisinin and its derivatives, antroquinonol, baicalin, curcumin, emodin, mangiferin, salvianolic acid A, triptolide, the total glycosides of paeony (TGP), and other supplements such as fatty acids and vitamins. In addition, medicinal plants, herbal remedies, mushrooms, and fungi that have been investigated for their effects on different lupus conditions through clinical trials, in vivo, in vitro, or in silico studies are reviewed. A special emphasis was placed on clinical trials, active phytochemicals, and their mechanisms of action. This review can be helpful for researchers in designing new goal-oriented studies. It can also help practitioners gain insight into recent updates on supplements that might help patients suffering from lupus conditions.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Bahareh Hassani
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Ali Tavakoli
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Ekaterina Kozuharova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Azadeh Hamedi
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| |
Collapse
|
17
|
Almalki E, Al-Amri A, Alrashed R, Al-Zharani M, Semlali A. The Curcumin Analog PAC Is a Potential Solution for the Treatment of Triple-Negative Breast Cancer by Modulating the Gene Expression of DNA Repair Pathways. Int J Mol Sci 2023; 24:ijms24119649. [PMID: 37298600 DOI: 10.3390/ijms24119649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Breast Cancer (BC) is one of the most common and challenging cancers among females worldwide. Conventional treatments for oral cancer rely on the use of radiology and surgery accompanied by chemotherapy. Chemotherapy presents many side effects, and the cells often develop resistance to this chemotherapy. It will be urgent to adopt alternative or complementary treatment strategies that are new and more effective without these negative effects to improve the well-being of patients. A substantial number of epidemiological and experimental studies reported that many compounds are derived from natural products such as curcumin and their analogs, which have a great deal of beneficial anti-BC activity by inducing apoptosis, inhibiting cell proliferation, migration, and metastasis, modulating cancer-related pathways, and sensitizing cells to radiotherapy and chemotherapy. In the present study, we investigated the effect of the curcumin-analog PAC on DNA repair pathways in MCF-7 and MDA-MB-231 human breast-cancer cell lines. These pathways are crucial for genome maintenance and cancer prevention. MCF-7 and MDA-MB-231 cells were exposed to PAC at 10 µM. MTT and LDH assays were conducted to evaluate the effects of PAC on cell proliferation and cytotoxicity. Apoptosis was assessed in breast cancer cell lines using flow cytometry with annexin/Pi assay. The expression of proapoptotic and antiapoptotic genes was determined by RT-PCR to see if PAC is active in programming cell death. Additionally, DNA repair signaling pathways were analyzed by PCR arrays focusing on genes being related and confirmed by quantitative PCR. PAC significantly inhibited breast-cancer cell proliferation in a time-dependent manner, more on MDA-MB-231 triple-negative breast cancer cells. The flow cytometry results showed an increase in apoptotic activity. These data have been established by the gene expression and indicate that PAC-induced apoptosis by an increased Bax and decreased Bcl-2 expression. Moreover, PAC affected multiple genes involved in the DNA repair pathways occurring in both cell lines (MCF-7 and MDA-MB231). In addition, our results suggest that PAC upregulated more than twice 16 genes (ERCC1, ERCC2, PNKP, POLL, MPG, NEIL2, NTHL1, SMUG1, RAD51D, RAD54L, RFC1, TOP3A, XRCC3, XRCC6BP1, FEN1, and TREX1) in MDA-MB-231, 6 genes (ERCC1, LIG1, PNKP, UNG, MPG, and RAD54L) in MCF-7, and 4 genes (ERCC1, PNKP, MPG, and RAD54L) in the two cell lines. In silico analysis of gene-gene interaction shows that there are common genes between MCF-7 and MDA-MB-321 having direct and indirect effects, among them via coexpression, genetic interactions, pathways, predicted and physical interactions, and shared protein domains with predicted associated genes indicating they are more likely to be functionally related. Our data show that PAC increases involvement of multiple genes in a DNA repair pathway, this certainly can open a new perspective in breast-cancer treatment.
Collapse
Affiliation(s)
- Esraa Almalki
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah Al-Amri
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Reem Alrashed
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Al-Zharani
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Abdelhabib Semlali
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
18
|
Svolacchia F, Brongo S, Catalano A, Ceccarini A, Svolacchia L, Santarsiere A, Scieuzo C, Salvia R, Finelli F, Milella L, Saturnino C, Sinicropi MS, Fabrizio T, Giuzio F. Natural Products for the Prevention, Treatment and Progression of Breast Cancer. Cancers (Basel) 2023; 15:cancers15112981. [PMID: 37296944 DOI: 10.3390/cancers15112981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
In this review, we summarize the most used natural products as useful adjuvants in BC by clarifying how these products may play a critical role in the prevention, treatment and progression of this disease. BC is the leading cancer, in terms of incidence, that affects women. The epidemiology and pathophysiology of BC were widely reported. Inflammation and cancer are known to influence each other in several tumors. In the case of BC, the inflammatory component precedes the development of the neoplasm through a slowly increasing and prolonged inflammation that also favors its growth. BC therapy involves a multidisciplinary approach comprising surgery, radiotherapy and chemotherapy. There are numerous observations that showed that the effects of some natural substances, which, in integration with the classic protocols, can be used not only for prevention or integration in order to prevent recurrences and induce a state of chemoquiescence but also as chemo- and radiosensitizers during classic therapy.
Collapse
Affiliation(s)
- Fabiano Svolacchia
- Department of Medical-Surgical Sciences and Biotechnologies, La Sapienza University, 00118 Rome, Italy
- Department of Medical Sciences, Policlinic Foundation Tor Vergata University, 00133 Rome, Italy
| | - Sergio Brongo
- Department of Plastic Surgery, University of Salerno, 84131 Campania, Italy
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70126 Bari, Italy
| | - Agostino Ceccarini
- U.O.C. Primary Care and Territorial Health, Social and Health Department, State Hospital, 47893 San Marino, San Marino
| | - Lorenzo Svolacchia
- Department of Medical-Surgical Sciences and Biotechnologies, La Sapienza University, 00118 Rome, Italy
| | - Alessandro Santarsiere
- Department of Science, University of Basilicata, 85100 Potenza, Italy
- CNRS, UMR 7042-LIMA, ECPM, Université de Strasbourg, Université de Haute-Alsace, 67000 Strasbourg, France
| | - Carmen Scieuzo
- Department of Science, University of Basilicata, 85100 Potenza, Italy
- Spinoff XFlies s.r.l., University of Basilicata, 85100 Potenza, Italy
| | - Rosanna Salvia
- Department of Science, University of Basilicata, 85100 Potenza, Italy
- Spinoff XFlies s.r.l., University of Basilicata, 85100 Potenza, Italy
| | | | - Luigi Milella
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Tommaso Fabrizio
- Department of Plastic Surgery, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
| | - Federica Giuzio
- U.O.C. Primary Care and Territorial Health, Social and Health Department, State Hospital, 47893 San Marino, San Marino
- Department of Science, University of Basilicata, 85100 Potenza, Italy
- Spinoff TNcKILLERS s.r.l., University of Basilicata, 85100 Potenza, Italy
| |
Collapse
|
19
|
Saud Gany SL, Chin KY, Tan JK, Aminuddin A, Makpol S. Curcumin as a Therapeutic Agent for Sarcopenia. Nutrients 2023; 15:nu15112526. [PMID: 37299489 DOI: 10.3390/nu15112526] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Sarcopenia is the progressive loss of muscle mass, strength, and functions as we age. The pathogenesis of sarcopenia is underlined by oxidative stress and inflammation. As such, it is reasonable to suggest that a natural compound with both antioxidant and anti-inflammatory activities could prevent sarcopenia. Curcumin, a natural compound derived from turmeric with both properties, could benefit muscle health. This review aims to summarise the therapeutic effects of curcumin on cellular, animal, and human studies. The available evidence found in the literature showed that curcumin prevents muscle degeneration by upregulating the expression of genes related to protein synthesis and suppressing genes related to muscle degradation. It also protects muscle health by maintaining satellite cell number and function, protecting the mitochondrial function of muscle cells, and suppressing inflammation and oxidative stress. However, it is noted that most studies are preclinical. Evidence from randomised control trials in humans is lacking. In conclusion, curcumin has the potential to be utilised to manage muscle wasting and injury, pending more evidence from carefully planned human clinical trials.
Collapse
Affiliation(s)
- Siti Liyana Saud Gany
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Amilia Aminuddin
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
20
|
Wang J, Tang J, Li X, Ning X, Sun C, Zhang N, Zhang S. Curcumin alleviates spleen immunotoxicity induced by decabrominated diphenyl ethers (BDE-209) by improving immune function and inhibiting inflammation and apoptosis in broilers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115048. [PMID: 37224787 DOI: 10.1016/j.ecoenv.2023.115048] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/21/2023] [Accepted: 05/19/2023] [Indexed: 05/26/2023]
Abstract
This study was conducted to assess the mitigating effects of curcumin (Cur) on immunotoxicity in the spleen of broilers induced by the polybrominated diphenyl ether BDE-209. Eighty one-day-old broilers were allocated to the following four groups: control group, BDE-209 (0.4 g/kg) group, BDE-209 (0.4 g/kg) + Cur (0.3 mg/kg) group, and Cur (0.3 mg/kg) group. Growth performance, immunological function, inflammation, and apoptosis were assessed after 42 days of treatment. The findings demonstrate that firstly, Cur restored spleen damage caused by BDE-209 by increasing body weight, decreasing feed-to-gain ratio, correcting the spleen index, and improving the histopathological structure of the spleen. Secondly, Cur relieved BDE-209-induced immunosuppression by increasing the levels of the immunoglobulins IgG, IgM, and IgA in the serum, as well as the levels of white blood cells and lymphocytes. The levels at which GATA binding protein 3, T-box expressed in T cells, interferon-γ, and interleukin (IL)- 4 are expressed were controlled. The ratio of T helper (Th) type 1 (Th1) to Th2 cells in the spleen of broilers was also controlled. Thirdly, Cur reduced the expression of Toll like receptor (TLR) 2, TLR4, nuclear factor (NF)-κB, IL-8, IL-6, and IL-1β, which alleviated BDE-209-induced inflammation in broilers. Cur reduced BDE-209-induced apoptosis by increasing the expression of the bcl-2 protein, decreasing the expression of cleaved caspase-3 and bax proteins, decreasing the bax/bcl-2 protein ratio, and decreasing the mean optical density of TUNEL. These results suggest that Cur protects broiler spleens from BDE-209-induced immunotoxicity via modulating humoral immunity, the equilibrium between Th1 and Th2 cells, the TLRs/NF-κB inflammatory pathway, and the apoptotic pathway.
Collapse
Affiliation(s)
- Jiaqi Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, PR China
| | - Jilang Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China.
| | - Xueqin Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, PR China
| | - Xiaqing Ning
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, PR China
| | - Chen Sun
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, PR China
| | - Nuannuan Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, PR China
| | - Shixia Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, PR China.
| |
Collapse
|
21
|
Kunnumakkara AB, Hegde M, Parama D, Girisa S, Kumar A, Daimary UD, Garodia P, Yenisetti SC, Oommen OV, Aggarwal BB. Role of Turmeric and Curcumin in Prevention and Treatment of Chronic Diseases: Lessons Learned from Clinical Trials. ACS Pharmacol Transl Sci 2023; 6:447-518. [PMID: 37082752 PMCID: PMC10111629 DOI: 10.1021/acsptsci.2c00012] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Indexed: 03/08/2023]
Abstract
Turmeric (Curcuma longa) has been used for thousands of years for the prevention and treatment of various chronic diseases. Curcumin is just one of >200 ingredients in turmeric. Almost 7000 scientific papers on turmeric and almost 20,000 on curcumin have been published in PubMed. Scientific reports based on cell culture or animal studies are often not reproducible in humans. Therefore, human clinical trials are the best indicators for the prevention and treatment of a disease using a given agent/drug. Herein, we conducted an extensive literature survey on PubMed and Scopus following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The keywords "turmeric and clinical trials" and "curcumin and clinical trials" were considered for data mining. A total of 148 references were found to be relevant for the key term "turmeric and clinical trials", of which 70 were common in both PubMed and Scopus, 44 were unique to PubMed, and 34 were unique to Scopus. Similarly, for the search term "curcumin and clinical trials", 440 references were found to be relevant, of which 70 were unique to PubMed, 110 were unique to Scopus, and 260 were common to both databases. These studies show that the golden spice has enormous health and medicinal benefits for humans. This Review will extract and summarize the lessons learned about turmeric and curcumin in the prevention and treatment of chronic diseases based on clinical trials.
Collapse
Affiliation(s)
- Ajaikumar B. Kunnumakkara
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Mangala Hegde
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Dey Parama
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Sosmitha Girisa
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Aviral Kumar
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Uzini Devi Daimary
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Prachi Garodia
- Integrative
Research Center, Miami, Florida 33125, United States
| | - Sarat Chandra Yenisetti
- Department
of Zoology, Drosophila Neurobiology Laboratory, Nagaland University (Central), Lumami, Nagaland-798627, India
| | - Oommen V. Oommen
- Department
of Computational Biology and Bioinformatics, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala-695581, India
| | - Bharat B. Aggarwal
- Inflammation
Research Center, San Diego, California 92109, United States
| |
Collapse
|
22
|
Liao J, Lu Q, Li Z, Li J, Zhao Q, Li J. Acetaminophen-induced liver injury: Molecular mechanism and treatments from natural products. Front Pharmacol 2023; 14:1122632. [PMID: 37050900 PMCID: PMC10083499 DOI: 10.3389/fphar.2023.1122632] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Acetaminophen (APAP) is a widely used analgesic and antipyretic over-the-counter medicine worldwide. Hepatotoxicity caused by APAP overdose is one of the leading causes of acute liver failure (ALF) in the US and in some parts of Europe, limiting its clinical application. Excessive APAP metabolism depletes glutathione and increases N-acetyl-p-benzoquinoneimide (NAPQI) levels, leading to oxidative stress, DNA damage, and cell necrosis in the liver, which in turn leads to liver damage. Studies have shown that natural products such as polyphenols, terpenes, anthraquinones, and sulforaphane can activate the hepatocyte antioxidant defense system with Nrf2 as the core player, reduce oxidative stress damage, and protect the liver. As the key enzyme metabolizing APAP into NAPQI, cytochrome P450 enzymes are also considered to be intriguing target for the treatment of APAP-induced liver injury. Here, we systematically review the hepatoprotective activity and molecular mechanisms of the natural products that are found to counteract the hepatotoxicity caused by APAP, providing reference information for future preclinical and clinical trials of such natural products.
Collapse
Affiliation(s)
- Jiaqing Liao
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
- School of Pharmacy, Chengdu University, Chengdu, China
| | - Qiuxia Lu
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Zhiqi Li
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Jintao Li
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
- School of Pharmacy, Chengdu University, Chengdu, China
| | - Qi Zhao
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
- *Correspondence: Qi Zhao, ; Jian Li,
| | - Jian Li
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
- *Correspondence: Qi Zhao, ; Jian Li,
| |
Collapse
|
23
|
Zhou L, Yang H, Wang J, Liu Y, Xu Y, Xu H, Feng Y, Ge W. The Therapeutic Potential of Antioxidants in Chemotherapy-Induced Peripheral Neuropathy: Evidence from Preclinical and Clinical Studies. Neurotherapeutics 2023; 20:339-358. [PMID: 36735180 PMCID: PMC10121987 DOI: 10.1007/s13311-023-01346-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
As cancer therapies advance and patient survival improves, there has been growing concern about the long-term adverse effects that patients may experience following treatment, and concerns have been raised about such persistent, progressive, and often irreversible adverse effects. Chemotherapy is a potentially life-extending treatment, and chemotherapy-induced peripheral neuropathy (CIPN) is one of its most common long-term toxicities. At present, strategies for the prevention and treatment of CIPN are still an open problem faced by medicine, and there has been a large amount of previous evidence that oxidative damage is involved in the process of CIPN. In this review, we focus on the lines of defense involving antioxidants that exert the effect of inhibiting CIPN. We also provide an update on the targets and clinical prospects of different antioxidants (melatonin, N-acetylcysteine, vitamins, α-lipoic acid, mineral elements, phytochemicals, nutritional antioxidants, cytoprotectants and synthetic compounds) in the treatment of CIPN with the help of preclinical and clinical studies, emphasizing the great potential of antioxidants as adjuvant strategies to mitigate CIPN.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Hui Yang
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Jing Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Yunxing Liu
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Yinqiu Xu
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Hang Xu
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Yong Feng
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, #42 Baizi Ting Road, Nanjing, 210009, Jiangsu, China.
| | - Weihong Ge
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
24
|
Lu KH, Lu PWA, Lin CW, Yang SF. Curcumin in human osteosarcoma: From analogs to carriers. Drug Discov Today 2023; 28:103437. [PMID: 36372327 DOI: 10.1016/j.drudis.2022.103437] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/11/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Osteosarcoma (osteogenic sarcoma), the most prevalent primary malignant bone tumor in adolescents, confers low survival rates in patients with metastatic disease. Dietary curcumin has a number of anticancer properties but has poor bioavailability. To improve the clinical applications of curcumin, several potential curcumin analogs and nanobased curcumin delivery systems have been developed. In this critical review, we address the biological and pharmacological characteristics of curcumin and its analogs, with an emphasis on strategies to improve the bioactivity and bioavailability of curcumin analogs that may increase their application in the treatment of potent human metastatic osteosarcoma. We highlight promising current multifunctional nanoformulations and three-dimensional printed scaffold systems utilized for the targeting and delivery of curcumin in human osteosarcoma cells. Our purpose is to drive further research on curcumin analogs and carriers to improve their bioavailability and anti-osteosarcoma bioactivity.
Collapse
Affiliation(s)
- Ko-Hsiu Lu
- Department of Orthopedics, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | | | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
25
|
Balcıoğlu E, Göktepe Ö, Tan FC, Bilgici P, Yakan B, Özdamar S. The role of cur ole of curcumin against paclitax cumin against paclitaxel-induced o el-induced oxidativ xidative stress and DNA damage in testes of adult male rats. Turk J Med Sci 2023; 53:40-50. [PMID: 36945945 PMCID: PMC10387907 DOI: 10.55730/1300-0144.5556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 10/10/2022] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Paclitaxel is a widely used drug for the treatment of cancer, but it possesses toxic effects on male reproductive system. Administering paclitaxel with an antioxidant has become a strategy for preventing the side effects of paclitaxel. Although curcumin is an antioxidant, data concerning the effect of curcumin on paclitaxel-induced testis tissue are lacking. The present study was established to examine the protective impact of curcumin against testicular damage induced by paclitaxel. METHODS In the study, 40 Wistar albino male rats were used and randomly divided into 4 groups (n:10). The control group received only saline solution; the curcumin group received curcumin throughout the experiment; the paclitaxel group received a total of four doses of paclitaxel on days 1, 7, 14, and 21 of the experiment; curcumin + paclitaxel group received curcumin throughout the experiment and a total of four doses of paclitaxel on days 1, 7, 14, and 21 of the experiment. At the end of the experiment, the rats were decapitated under xylazine and ketamine anesthesia and their testicles were removed. The sections obtained from the testicles were stained with Hematoxylin & Eosin and histopathological damage was evaluated. The TUNEL method was applied to determine apoptotic cells. Testosterone levels were measured in the blood serum. The Johnsen testicular biopsy score (JTBS) was used to evaluate testicular tubules. DNA damage was evaluated in sperm samples taken from the ductus epididymis using the comet assay technique. RESULTS Testicular tissue was severely damaged in the paclitaxel group. In the curcumin + paclitaxel group, it was determined that the administration of curcumin with paclitaxel reduced the histological damage in the testicular tissue. Moreover, according to the JTBS, the value was significantly higher in the testicular tubules (p < 0.05). Testosterone levels were higher in curcumin + paclitaxel group than in paclitaxel group. DNA damage also decreased significantly in curcumin + paclitaxel group when compared to paclitaxel group (p < 0.05). DISCUSSION The results showed that curcumin may be protective against damage caused by paclitaxel in the testicles of rats.
Collapse
Affiliation(s)
- Esra Balcıoğlu
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Özge Göktepe
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Fazile Cantürk Tan
- Department of Biophysics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Pinar Bilgici
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Birkan Yakan
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Saim Özdamar
- Department of Histology and Embryology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| |
Collapse
|
26
|
Is Curcumine Useful in the Treatment and Prevention of the Tendinopathy and Myotendinous Junction Injury? A Scoping Review. Nutrients 2023; 15:nu15020384. [PMID: 36678255 PMCID: PMC9860696 DOI: 10.3390/nu15020384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Physical activity in general and sports in particular, is a mechanism that produces stress and generates great force in the tendon and in the muscle-tendon unit, which increases the risk of injury (tendinopathies). Eccentric and repetitive contraction of the muscle precipitates persistent microtraumatism in the tendon unit. In the development of tendinopathies, the cellular process includes inflammation, apoptosis, vascular, and neuronal changes. Currently, treatments with oral supplements are frequently used. Curcumin seems to preserve, and even repair, damaged tendons. In this systematic review, we focus more especially on the benefits of curcumin. The biological actions of curcumin are diverse, but act around three systems: (a) inflammatory, (b) nuclear factor B (NF-κB) related apoptosis pathways, and (c) oxidative stress systems. A bibliographic search is conducted under the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) as a basis for reporting reliable systematic reviews to perform a Scoping review. After analysing the manuscripts, we can conclude that curcumin is a product that demonstrates a significant biological antialgic, anti-inflammatory, and antioxidant power. Therefore, supplementation has a positive effect on the inflammatory and regenerative response in tendinopathies. In addition, curcumin decreases and modulates the cell infiltration, activation, and maturation of leukocytes, as well as the production of pro-inflammatory mediators at the site of inflammation.
Collapse
|
27
|
Bertoncini-Silva C, Zingg JM, Fassini PG, Suen VMM. Bioactive dietary components-Anti-obesity effects related to energy metabolism and inflammation. Biofactors 2022; 49:297-321. [PMID: 36468445 DOI: 10.1002/biof.1921] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/18/2022] [Indexed: 12/10/2022]
Abstract
Obesity is the result of the long-term energy imbalance between the excess calories consumed and the few calories expended. Reducing the intake of energy dense foods (fats, sugars), and strategies such as fasting and caloric restriction can promote body weight loss. Not only energy in terms of calories, but also the specific composition of the diet can affect the way the food is absorbed and how its energy is stored, used or dissipated. Recent research has shown that bioactive components of food, such as polyphenols and vitamins, can influence obesity and its pathologic complications such as insulin resistance, inflammation and metabolic syndrome. Individual micronutrients can influence lipid turnover but for long-term effects on weight stability, dietary patterns containing several micronutrients may be required. At the molecular level, these molecules modulate signaling and the expression of genes that are involved in the regulation of energy intake, lipid metabolism, adipogenesis into white, beige and brown adipose tissue, thermogenesis, lipotoxicity, adipo/cytokine synthesis, and inflammation. Higher concentrations of these molecules can be reached in the intestine, where they can modulate the composition and action of the microbiome. In this review, the molecular mechanisms by which bioactive compounds and vitamins modulate energy metabolism, inflammation and obesity are discussed.
Collapse
Affiliation(s)
- Caroline Bertoncini-Silva
- Department of Internal Medicine, Division of Nutrology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Jean-Marc Zingg
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Priscila Giacomo Fassini
- Department of Internal Medicine, Division of Nutrology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Vivian Marques Miguel Suen
- Department of Internal Medicine, Division of Nutrology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
28
|
Islamov II, Yusupova AV, D’yakonov VA, Dzhemilev UM. Synthesis of New Hybrid Molecules Based on Isomerically Pure 5Z,9Z-Alkadienoic Acids and Monocarbonyl Curcumin Analog. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022120272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
29
|
Alvi M, Yaqoob A, Rehman K, Shoaib SM, Akash MSH. PLGA-based nanoparticles for the treatment of cancer: current strategies and perspectives. AAPS OPEN 2022. [DOI: 10.1186/s41120-022-00060-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AbstractResearch on cancer treatment is always of great importance because of the extensive and difficult treatment options and side effects of chemotherapeutic agents. Due to this, novel techniques for cancer treatment are the need of the day. Nowadays, nanotechnology is of great interest for its applications as diagnostic tools, theragnostic, contrasting agents, and vehicles for delivering drugs. Nanoparticles (NPs) are made up of biocompatible and biodegradable polymers that improve the pharmacokinetic and pharmacodynamic properties of drugs, reduce side effects, improve stability, prolong the release of drug, and reduce the dosing frequency. Poly (lactic-co-glycolic acid) (PLGA) is FDA-approved synthetic polymer which can be used to formulate NPs that can be targeted to a specific site for the safe and effective delivery of drugs. PLGA-based NPs can be used for a variety of cancer therapies including tumor-targeted drug delivery, gene therapy, hyperthermia, and photodynamic therapy. This article discusses the method of preparation, characterization, encapsulation of chemotherapeutic drugs, effect of physicochemical properties of PLGA- based NPs, and how we can exploit these aspects through various methods of preparation for drug loading, biodistribution, target specificity, and their use in cancer treatment. Along with these targeting strategies, gene therapy, cancer immunotherapy, and various applications have also been discussed. This article also aims to discuss the incorporation of diagnostic tools and therapeutic moiety in one versatile formulation of PLGA-NPs and the difficulties faced in translating this promising tool to clinical use.
Collapse
|
30
|
Saleem U, Khalid S, Chauhdary Z, Anwar F, Shah MA, Alsharif I, Babalghith AO, Khayat RO, Albalawi AE, Baokbah TAS, Farrukh M, Vargas-De-La-Cruz C, Panichayupakaranant P. The curative and mechanistic acumen of curcuminoids formulations against haloperidol induced Parkinson's disease animal model. Metab Brain Dis 2022; 38:1051-1066. [PMID: 36437394 DOI: 10.1007/s11011-022-01122-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/28/2022] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) is slowly developing neurodegenerative disorder associated with gradual decline in cerebration and laboriousness to perform routine piece of work. PD imposed a social burden on society through higher medical cost and by loss of social productivity in current era. The available treatment options are expensive and associated with serious adverse effect after long term use. Therefore, there is a critical clinical need to develop alternative pharmacotherapies from natural sources to prevent and cure the pathological hall marks of PD with minimal cost. Our study aimed to scrutinize the antiparkinsonian potential of curcuminoids-rich extract and its binary and ternary inclusion complexes. In healthy rats, 1 mg/kg haloperidol daily intraperitoneally, for 3 weeks was used to provoke Parkinsonism like symptoms except control group. Curcuminoids rich extract, binary and ternary inclusion complexes formulations 15-30 mg/kg, L-dopa and carbidopa (100 + 25 mg/kg) were orally administered on each day for 3 weeks. Biochemical, histopathological and RT-qPCR analyses were conducted after neurobehavioral observations. Findings of current study indicated that all curcuminoids formulations markedly mitigated the behavioral abnormalities, recovered the level of antioxidant enzymes, acetylcholinesterase inhibitory activity and neurotransmitters. Histological analysis revealed that curcuminoids supplements stabilized the neuronal loss, pigmentation and Lewy bodies' formation. The mRNA expressions of neuro-inflammatory and specific PD pathological biomarkers were downregulated by treatment with curcuminoids formulations. Therefore, it is suggested that these curcuminoids rich extract, binary and ternary supplements should be considered as promising therapeutic agents in development of modern anti-Parkinson's disease medications.
Collapse
Affiliation(s)
- Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan.
| | - Sundas Khalid
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Zunera Chauhdary
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Raiwind Road, Lahore, Pakistan
| | | | - Ifat Alsharif
- Department of Biology, Jamoum University College, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Ahmad O Babalghith
- Department of Medical Genetics, College of Medicine, Umm Al-Qura University, , Makkah, Saudi Arabia
| | - Rana O Khayat
- Biology Department, College of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Aishah E Albalawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 47913, Saudi Arabia
| | - Tourki A S Baokbah
- Department of Medical Emergency Services, College of Health Sciences-AlQunfudah, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Maryam Farrukh
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Celia Vargas-De-La-Cruz
- Department of Pharmacology, Bromatology, Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Jr. Puno 1002, 15001, Lima, Peru
- E-Health Research Center, Universidad de Ciencias Y Humanidades, 15001, Lima, Peru
| | - Pharkphoom Panichayupakaranant
- Department of Pharmacognosy & Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Thailand.
| |
Collapse
|
31
|
Exosomes as Novel Delivery Systems for Application in Traditional Chinese Medicine. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227789. [PMID: 36431890 PMCID: PMC9695524 DOI: 10.3390/molecules27227789] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Exosomes, as gifts of nature derived from various cell types with a size range from ~40 to 160 nm in diameter, have gained attention recently. They are composed of a lipid membrane bilayer structure containing different constituents, such as surface ligands and receptors, from the parental cells. Originating from a variety of sources, exosomes have the ability to participate in a diverse range of biological processes, including the regulation of cellular communication. On account of their ideal native structure and characteristics, exosomes are taken into account as drug delivery systems (DDSs). They can provide profound effects on conveying therapeutic agents with great advantages, including specific targeting, high biocompatibility, and non-toxicity. Further, they can also be considered to ameliorate natural compounds, the main constituents of traditional Chinese medicine (TCM), which are usually ignored due to the complexity of their structures, poor stability, and unclear mechanisms of action. This review summarizes the classification of exosomes as well as the research progress on exosome-based DDSs for the treatment of different diseases in TCM. Furthermore, this review discusses the advantages and challenges faced by exosomes to contribute to their further investigation and application.
Collapse
|
32
|
Nowowiejska J, Baran A, Flisiak I. Psoriasis and neurodegenerative diseases—a review. Front Mol Neurosci 2022; 15:917751. [PMID: 36226313 PMCID: PMC9549431 DOI: 10.3389/fnmol.2022.917751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/31/2022] [Indexed: 11/26/2022] Open
Abstract
Psoriasis is a chronic skin disease with underlying genetic, inflammatory and immunological background, which is a great medical problem, currently regarded as a systemic condition. Neurodegenerative diseases (NDs) are characterized by a progressive loss of nervous tissue, which affects elderly people more frequently; therefore, it is suspected that, due to society's aging, morbidity is going to increase. We performed a thorough review in order to investigate for the first time whether psoriasis may predispose to different particular neurodegenerative diseases—Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). PubMed search resulted in the retrieval of 833 records, of which 77 eligible were included in the review. Our thorough analysis revealed there are some potential links between psoriasis and NDs (inflammation, oxidative stress, genetics, cardiometabolic disorders), but there is no strong evidence that psoriasis may predispose to NDs. Based on the evidence, it seems that the risk of PD in psoriatics is not increased, and the evidence for increased risk of AD slightly prevails the data that state the opposite. ALS risk does not seem to be increased in psoriatics. The paucity of original studies does not allow for the formulation of definitive conclusions but encourages to perform further investigations.
Collapse
|
33
|
Efficacy and Safety of TurmXTRA® 60N in Delayed Onset Muscle Soreness in Healthy, Recreationally Active Subjects: A Randomized, Double-Blind, Placebo-Controlled Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9110414. [PMID: 35966736 PMCID: PMC9374544 DOI: 10.1155/2022/9110414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/13/2022] [Indexed: 12/04/2022]
Abstract
Background Delayed onset of muscle soreness (DOMS) and its physiological consequences influenced an individual's adherence to an exercise routine. Objective This study aimed to evaluate the efficacy, safety, and tolerability of TurmXTRA® 60N (WDTE60N) on DOMS compared to placebo in recreationally active healthy subjects. Methods This randomized, double-blind, placebo-controlled parallel-group study enrolled 30 healthy and recreationally active subjects (average age: 28.23 ± 4.20 years) and randomized them to receive WDTE60N (WDTE60N group; n = 15) or placebo (placebo group; n = 15). Study treatments were initiated 29 days before the eccentric exercise and were continued for 4 days after the exercise. The primary endpoint was the change in pain intensity measured by the visual analog scale (VAS) at the end of study treatment (at 96 hours after eccentric exercise) from baseline (measured immediately after exercise). Results The VAS score indicated that subjects from the WDTE60N group reported significantly less pain after eccentric exercise compared to the placebo group (AUC0–96h: 286.8 ± 46.7 vs. 460 ± 40.5, respectively; p < 0.0001). Well-being status was assessed using the adapted version of the Hooper and MacKinnon questionnaire and was calculated as individual and cumulative scores of the domains (fatigue, mood, general muscle soreness, sleep quality, and stress) that demonstrated improvement in all domains and in overall well-being in the WDTE60N group compared to the placebo group (p < 0.0001). Serum lactate dehydrogenase (LDH) was significantly lower in the WDTE60N group compared to the placebo group (AUC0–96h: 23623.7 ± 2532.0 vs. 26138.6 ± 3669.5, respectively; p=0.0446). Conclusion Intake of WDTE60N before and after eccentric exercise significantly reduced subjective perception of muscle soreness and serum LDH activity and increased the psychological well-being in recreationally active subjects.
Collapse
|
34
|
Shah MA, Haris M, Faheem HI, Hamid A, Yousaf R, Rasul A, Shah GM, Khalil AAK, Wahab A, Khan H, Alhasani RH, Althobaiti NA. Cross-Talk between Obesity and Diabetes: Introducing Polyphenols as an Effective Phytomedicine to Combat the Dual Sword Diabesity. Curr Pharm Des 2022; 28:1523-1542. [PMID: 35762558 DOI: 10.2174/1381612828666220628123224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/06/2022] [Indexed: 12/15/2022]
Abstract
: Obesity-associated diabetes mellitus, a chronic metabolic affliction accounting for 90% of all diabetic patients, has been affecting humanity extremely badly and escalating the risk of developing other serious disorders. It is observed that 0.4 billion people globally have diabetes, whose major cause is obesity. Currently, innumerable synthetic drugs like alogliptin and rosiglitazone are being used to get through diabetes, but they have certain complications, restrictions with severe side effects, and toxicity issues. Recently, the frequency of plant-derived phytochemicals as advantageous substitutes against diabesity is increasing progressively due to their unparalleled benefit of producing less side effects and toxicity. Of these phytochemicals, dietary polyphenols have been accepted as potent agents against the dual sword "diabesity". These polyphenols target certain genes and molecular pathways through dual mechanisms such as adiponectin upregulation, cannabinoid receptor antagonism, free fatty acid oxidation, ghrelin antagonism, glucocorticoid inhibition, sodium-glucose cotransporter inhibition, oxidative stress and inflammation inhibition etc. which sequentially help to combat both diabetes and obesity. In this review, we have summarized the most beneficial natural polyphenols along with their complex molecular pathways during diabesity.
Collapse
Affiliation(s)
| | - Muhammad Haris
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Hafiza Ishmal Faheem
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Ayesha Hamid
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Rimsha Yousaf
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Ghulam Mujtaba Shah
- Department of Pharmacy, Hazara University, Mansehra, Pakistan.,Department of Botany, Hazara University, Mansehra, Pakistan
| | - Atif Ali Khan Khalil
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Abdul Wahab
- Department of Pharmacy, Kohat University of Science & Technology, Kohat, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Reem Hasaballah Alhasani
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, 21961 Makkah, Saudi Arabia
| | - Nora A Althobaiti
- Department of Biology, College of Science and Humanities-Al Quwaiiyah, Shaqra University, Al Quwaiiyah, Saudi Arabia
| |
Collapse
|
35
|
Shen CL, Castro L, Fang CY, Castro M, Sherali S, White S, Wang R, Neugebauer V. Bioactive compounds for neuropathic pain: An update on preclinical studies and future perspectives. J Nutr Biochem 2022; 104:108979. [PMID: 35245654 DOI: 10.1016/j.jnutbio.2022.108979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/21/2022] [Accepted: 02/21/2022] [Indexed: 12/19/2022]
Abstract
Among different types of chronic pain, neuropathic pain (NP), arising from damage to the nervous system, including peripheral fibers and central neurons, is notoriously difficult to treat and affects 7-10% of the general population. Currently available treatment options for NP are limited and opioid analgesics have severe side effects and can result in opioid use disorder. Recent studies have exhibited the role of dietary bioactive compounds in the mitigation of NP. Here, we assessed the effects of commonly consumed bioactive compounds (ginger, curcumin, omega-3 polyunsaturated fatty acids, epigallocatechin gallate, resveratrol, soy isoflavones, lycopene, and naringin) on NP and NP-related neuroinflammation. Cellular studies demonstrated that these bioactive compounds reduce inflammation via suppression of NF-κB and MAPK signaling pathways that regulate apoptosis/cell survival, antioxidant, and anti-inflammatory responses. Animal studies strongly suggest that these regularly consumed bioactive compounds have a pronounced anti-NP effect as shown by decreased mechanical allodynia, mechanical hyperalgesia, thermal hyperalgesia, and cold hyperalgesia. The proposed molecular mechanisms include (1) the enhancement of neuron survival, (2) the reduction of neuronal hyperexcitability by activation of antinociceptive cannabinoid 1 receptors and opioid receptors, (3) the suppression of sodium channel current, and (4) enhancing a potassium outward current in NP-affected animals, triggering a cascade of chemical changes within, and between neurons for pain relief. Human studies administered in this area have been limited. Future randomized controlled trials are warranted to confirm the findings of preclinical efficacies using bioactive compounds in patients with NP.
Collapse
Affiliation(s)
- Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA; Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, Texas, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.
| | - Luis Castro
- School of Medicine, Texas Tech University Health Sciences, Lubbock, Texas, USA
| | - Chih-Yu Fang
- School of Medicine, Texas Tech University Health Sciences, Lubbock, Texas, USA
| | - Maribel Castro
- School of Medicine, Texas Tech University Health Sciences, Lubbock, Texas, USA
| | - Samir Sherali
- School of Medicine, Texas Tech University Health Sciences, Lubbock, Texas, USA
| | - Steely White
- Department of Microbiology, Texas Tech University, Lubbock, Texas, USA
| | - Rui Wang
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Volker Neugebauer
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, Texas, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, Texas, USA; Department of Pharmacology & Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas, USA; Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| |
Collapse
|
36
|
Li KX, Wang ZC, Machuki JO, Li MZ, Wu YJ, Niu MK, Yu KY, Lu QB, Sun HJ. Benefits of Curcumin in the Vasculature: A Therapeutic Candidate for Vascular Remodeling in Arterial Hypertension and Pulmonary Arterial Hypertension? Front Physiol 2022; 13:848867. [PMID: 35530510 PMCID: PMC9075737 DOI: 10.3389/fphys.2022.848867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/03/2022] [Indexed: 01/14/2023] Open
Abstract
Growing evidence suggests that hypertension is one of the leading causes of cardiovascular morbidity and mortality since uncontrolled high blood pressure increases the risk of myocardial infarction, aortic dissection, hemorrhagic stroke, and chronic kidney disease. Impaired vascular homeostasis plays a critical role in the development of hypertension-induced vascular remodeling. Abnormal behaviors of vascular cells are not only a pathological hallmark of hypertensive vascular remodeling, but also an important pathological basis for maintaining reduced vascular compliance in hypertension. Targeting vascular remodeling represents a novel therapeutic approach in hypertension and its cardiovascular complications. Phytochemicals are emerging as candidates with therapeutic effects on numerous pathologies, including hypertension. An increasing number of studies have found that curcumin, a polyphenolic compound derived from dietary spice turmeric, holds a broad spectrum of pharmacological actions, such as antiplatelet, anticancer, anti-inflammatory, antioxidant, and antiangiogenic effects. Curcumin has been shown to prevent or treat vascular remodeling in hypertensive rodents by modulating various signaling pathways. In the present review, we attempt to focus on the current findings and molecular mechanisms of curcumin in the treatment of hypertensive vascular remodeling. In particular, adverse and inconsistent effects of curcumin, as well as some favorable pharmacokinetics or pharmacodynamics profiles in arterial hypertension will be discussed. Moreover, the recent progress in the preparation of nano-curcumins and their therapeutic potential in hypertension will be briefly recapped. The future research directions and challenges of curcumin in hypertension-related vascular remodeling are also proposed. It is foreseeable that curcumin is likely to be a therapeutic agent for hypertension and vascular remodeling going forwards.
Collapse
Affiliation(s)
- Ke-Xue Li
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Zi-Chao Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | | | - Meng-Zhen Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yu-Jie Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ming-Kai Niu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kang-Ying Yu
- Nursing School of Wuxi Taihu University, Wuxi, China
| | - Qing-Bo Lu
- School of Medicine, Southeast University, Nanjing, China
| | - Hai-Jian Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
37
|
Razavi MS, Ebrahimnejad P, Fatahi Y, D’Emanuele A, Dinarvand R. Recent Developments of Nanostructures for the Ocular Delivery of Natural Compounds. Front Chem 2022; 10:850757. [PMID: 35494641 PMCID: PMC9043530 DOI: 10.3389/fchem.2022.850757] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Ocular disorders comprising various diseases of the anterior and posterior segments are considered as the main reasons for blindness. Natural products have been identified as potential treatments for ocular diseases due to their anti-oxidative, antiangiogenic, and anti-inflammatory effects. Unfortunately, most of these beneficial compounds are characterised by low solubility which results in low bioavailability and rapid systemic clearance thus requiring frequent administration or requiring high doses, which hinders their therapeutic applications. Additionally, the therapeutic efficiency of ocular drug delivery as a popular route of drug administration for the treatment of ocular diseases is restricted by various anatomical and physiological barriers. Recently, nanotechnology-based strategies including polymeric nanoparticles, micelles, nanofibers, dendrimers, lipid nanoparticles, liposomes, and niosomes have emerged as promising approaches to overcome limitations and enhance ocular drug bioavailability by effective delivery to the target sites. This review provides an overview of nano-drug delivery systems of natural compounds such as thymoquinone, catechin, epigallocatechin gallate, curcumin, berberine, pilocarpine, genistein, resveratrol, quercetin, naringenin, lutein, kaempferol, baicalin, and tetrandrine for ocular applications. This approach involves increasing drug concentration in the carriers to enhance drug movement into and through the ocular barriers.
Collapse
Affiliation(s)
- Malihe Sadat Razavi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Pharmaceutical Science Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Yousef Fatahi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Antony D’Emanuele
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| | - Rassoul Dinarvand
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| |
Collapse
|
38
|
Vadukoot AK, Mottemmal S, Vekaria PH. Curcumin as a Potential Therapeutic Agent in Certain Cancer Types. Cureus 2022; 14:e22825. [PMID: 35399416 PMCID: PMC8980239 DOI: 10.7759/cureus.22825] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2022] [Indexed: 12/17/2022] Open
Abstract
Cancer is a devastating disease condition and is the second most common etiology of death globally. After decades of research in the field of hematological malignancies and cellular therapeutics, we are still looking for therapeutic agents with the most efficacies and least toxicities. Curcumin is one of the cancer therapeutic agents that is derived from the Curcuma longa (turmeric) plant, and still in vitro and in vivo research is going on to find its beneficial effects on various cancers. Due to its potency to affect multiple targets of different cellular pathways, it is considered a promising agent to tackle various cancers alone or in combination with the existing chemotherapies. This review covers basic properties, mechanism of action, potential targets (molecules and cell-signaling pathways) of curcumin, as well as its effect on various solid and hematological malignancies.
Collapse
|
39
|
Karan T, Erenler R, Moran Bozer B. Synthesis and characterization of silver nanoparticles using curcumin: cytotoxic, apoptotic, and necrotic effects on various cell lines. Z NATURFORSCH C 2022; 77:343-350. [PMID: 35212493 DOI: 10.1515/znc-2021-0298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/04/2022] [Indexed: 11/15/2022]
Abstract
Nanostructures have distinctive chemical and physical features owing to their surface area and nanoscale size. In this study, silver nanoparticles were synthesized using curcumin, a medicinally valuable natural product. The structure of curcumin-mediated silver nanoparticles (c-AgNPs) was identified by extensive spectroscopic techniques. The maximum absorption was observed at 430 nm in UV-Vis spectrum. The crystal structure of c-AgNPs was identified by XRD. The morphology of the structure was determined by SEM image. The particle size was found as 51.13 nm. The functional groups of curcumin and c-AgNPs were established by FTIR spectroscopy. Cytotoxic activity of c-AgNPs was carried out using A549, DLD-1, and L929 with MTT assay. c-AgNPs revealed excellent activity on DLD-1 cell lines and A549 cell lines at 1.0 mg/mL concentration with the lethal effect of 80%. However, nanoparticles did not show the considerable effect on L929. Moreover, they induced apoptosis. Consequently, c-AgNPs are a promising material for anticancer drugs candidate.
Collapse
Affiliation(s)
- Tunay Karan
- Department of Animal Nutrition and Zootechnics, Faculty of Veterinary Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Ramazan Erenler
- Department of Chemistry, Faculty of Arts and Sciences, Tokat Gaziosmanpasa University, 60240 Tokat, Turkey
| | - Busra Moran Bozer
- Scientific Technical Research and Application Center, Hitit University, Corum, Turkey
| |
Collapse
|
40
|
Danafar H, Salehiabar M, Barsbay M, Rahimi H, Ghaffarlou M, Arbabi Zaboli K, Faghfoori MH, Kaboli S, Nosrati H, Faghfoori Z. Curcumin delivery by modified biosourced carbon-based nanoparticles. Nanomedicine (Lond) 2022; 17:95-105. [PMID: 35000461 DOI: 10.2217/nnm-2021-0225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Aim: To prepare a novel hybrid system for the controlled release and delivery of curcumin (CUR). Methods: A method for the ultrasound-assisted fabrication of protein-modified nanosized graphene oxide-like carbon-based nanoparticles (CBNPs) was developed. After being modified with bovine serum albumin (BSA), CUR was loaded onto the synthesized hybrid (labeled CBNPs@BSA-CUR). The structure and properties of the synthesized nanoparticles were elucidated using transmission electron microscopy (TEM), atomic force microscopy (AFM), ultraviolet-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR) and x-ray photoelectron spectroscopy (XPS) methods. Results: CBNPs@BSA-CUR showed pH sensitivity and were calculated as controlled CUR release behavior. The drug-free system exhibited good biocompatibility and was nontoxic. However, CBNPs@BSA-CUR showed acceptable antiproliferative ability against MCF-7 breast cancer cells. Conclusion: CBNPs@BSA-CUR could be considered a highly promising nontoxic nanocarrier for the delivery of CUR with good biosafety.
Collapse
Affiliation(s)
- Hossein Danafar
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Marziyeh Salehiabar
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Murat Barsbay
- Department of Chemistry, Hacettepe University, Beytepe, Ankara, 06800, Turkey
| | - Hossein Rahimi
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Kasra Arbabi Zaboli
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad Hasan Faghfoori
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Saeed Kaboli
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hamed Nosrati
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Zeinab Faghfoori
- Food Safety Research Center (SALT), Semnan University of Medical Sciences, Semnan, Iran.,Department of Nutrition, School of Nutrition & Food Sciences, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
41
|
Alinejad S, Khademvatan S, Amani S, Asadi N, Tappeh KH, Yousefi E, Miandoabi T. The Effect of Curcumin on the Expression of INFγ, TNF-α, and iNOS Genes in PBMCs Infected with Leishmania major [MRHO/IR/75/ER]. Infect Disord Drug Targets 2022; 22:83-89. [PMID: 35379161 DOI: 10.2174/1871526522666220404083220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/27/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Leishmaniasis, caused by the Leishmania parasite, is one of the most important tropical neglected diseases. The urgent search for effective, inexpensive, and preferably herbal anti-leishmanial agents, is needed. OBJECTIVE Curcumin is a natural polyphenolic compound derived from turmeric that is well known for its antioxidant, anti-inflammatory, anti-tumor, and anti-cancer activity. METHODS The present work evaluates the anti-leishmanial [Leishmania major] activity of curcumin. The infected PBMCs were treated with curcumin. The ROS level at 6, 12, 24 h and gene expression levels at 24, 48, and 72 h of PBMCs after treatment with curcumin were determined. RESULTS Based on the results, the curcumin concentrations of 268 μM [24 h] and 181.2 μM [72 h] were defined as IC50 against L. major promastigotes. Treatment of L. major infected-peripheral blood mononuclear cells [PBMCs] with IC50 concentrations of curcumin, depending on exposure time, significantly induced the reactive oxygen species [ROS] generation and increased the expression levels of interferongamma [IFN-γ], tumor necrosis factor-alpha [TNF-α], and nitric oxide synthase [iNOS] genes. CONCLUSION These findings suggest the potential of curcumin against Leishmaniasis.
Collapse
Affiliation(s)
- Soheila Alinejad
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute & Department of Medical Parasitology and Mycology, Urmia University of Medical Sciences, Urmia, Iran
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Shahram Khademvatan
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute & Department of Medical Parasitology and Mycology, Urmia University of Medical Sciences, Urmia, Iran
| | - Shahla Amani
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute & Department of Medical Parasitology and Mycology, Urmia University of Medical Sciences, Urmia, Iran
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Negar Asadi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute & Department of Medical Parasitology and Mycology, Urmia University of Medical Sciences, Urmia, Iran
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Khosrow Hazrati Tappeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute & Department of Medical Parasitology and Mycology, Urmia University of Medical Sciences, Urmia, Iran
| | - Elham Yousefi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute & Department of Medical Parasitology and Mycology, Urmia University of Medical Sciences, Urmia, Iran
| | - Touraj Miandoabi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute & Department of Medical Parasitology and Mycology, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
42
|
Taavoni S, Baghersad MH. Synthesis and Evaluation of Radical Scavenging Activity of (Pyrazole-3,5-Diyl)Bis(Ethene-2,1-Diyl))Bis(2-Methoxyphenol) Derivatives. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.2022725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Shoeib Taavoni
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Baghersad
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Shumail H, Khalid S, Alqahtani T, Algahtany M, Azhar Ud Din M, Alqahtani A. An overview on therapeutic role of Diferuloylmethane (Curcumin) in Azheimer’s disease and sleep disorders. MAIN GROUP CHEMISTRY 2021. [DOI: 10.3233/mgc-210075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Curcumin is widely used in spices in Asia. It has been widely explored for various diseases as therapeutic agent. Alzheimer’s disease (AD) is a neurodegenerative disease associated with dementia and cognitive disabilities. With the progression of disease, various changes appear in the brain cells that greatly affect the daily routine of the patient including sleep-wake disturbances. In the last few decades, extensive research has been carried out on this disease suggesting the development of non-steroidal anti-inflammatory drugs for its treatment. Since long, turmeric has been used in Asian countries as a home remedy for treating various ailments. Curcumin is an active ingredient isolated from the turmeric plant and is composed of curcuminoids. Because of its anti-inflammatory, antioxidant, anti-apoptotic and neuroprotective properties, curcumin can be safely administered to stop the progression of dementia and can be used for the development of such drugs that can reverse the neurotic damage caused by AD. This review article provides a comprehensive overview on the research carried out for AD using curcumin as active model drug.
Collapse
Affiliation(s)
- Hoor Shumail
- Department of Microbiology, Women University Mardan, Pakistan
| | - Shah Khalid
- Department of Botany, Islamia College Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Mubarak Algahtany
- Division of Neurosurgery, Department of Surgery, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - M. Azhar Ud Din
- Professor Xu Jiaping Molecular Biology Laboratory, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, PR China
| | - Ali Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
44
|
Arvapalli DM, Sheardy AT, Bang JJ, Wei J. Antiproliferative and ROS Regulation Activity of Photoluminescent Curcumin-Derived Nanodots. ACS APPLIED BIO MATERIALS 2021; 4:8477-8486. [PMID: 35005943 DOI: 10.1021/acsabm.1c00991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recently, various types of nanomaterials have been employed to design delivery vehicles for curcumin to address the problems of poor bioavailability, low aqueous solubility, and rapid metabolism. The present study focuses on a direct one-pot synthesis of curcumin-derived nanoparticles and exploits their potential therapeutic properties in cancer cells in vitro without additional delivery vehicles. The nanoparticles, named E-Curc-dots, are synthesized using three precursor molecules, ethylenediamine (EDA), curcumin, and citric acid. The structure, composition, and physichemical properties of the nanodots are characterized and identified by employing spectroscopic and microscopic techniques. The as-synthesized E-Curc-dots exhibit bright blue photoluminescence due to the incorporation of nitrogen from the EDA precursor molecule. The characterization studies show a uniform distribution of dots with an average size of 4.6 ± 1.7 nm and, notably, that the dots retain some of the major characteristics of native curcumin with much improved water solubility and bioavailability. The E-Curc-dots show antioxidation activity at low concentrations (<0.08 mg/mL) with low levels of reactive oxygen species (ROS) generation, i.e., 82% of the ROS level in cells without treatment for A549 cells; however, at high concentrations, the nanodots exhibit a pro-oxidant effect on both the cancer cells (A549) and normal cells (EA.hy926) by inducing more ROS generation and dose-dependent cytotoxicity. The E-Curc-dots demonstrate higher cytotoxicity toward cancer cells compared to native curcumin at a lower concentration. The results indicate the efficacy of E-Curc-dots as an antiproliferative and ROS regulator with the ability of cellular bioimaging.
Collapse
Affiliation(s)
- Durga M Arvapalli
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Alex T Sheardy
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - John J Bang
- Department of Environmental, Earth and Geospatial Sciences, North Carolina Central University, Durham, North Carolina 27707, United States
| | - Jianjun Wei
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| |
Collapse
|
45
|
Kocot AM, Wróblewska B. Fermented products and bioactive food compounds as a tool to activate autophagy and promote the maintenance of the intestinal barrier function. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
46
|
Smoak P, Burke SJ, Collier JJ. Botanical Interventions to Improve Glucose Control and Options for Diabetes Therapy. SN COMPREHENSIVE CLINICAL MEDICINE 2021; 3:2465-2491. [PMID: 35098034 PMCID: PMC8796700 DOI: 10.1007/s42399-021-01034-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Diabetes mellitus is a major public health problem worldwide. This endocrine disease is clustered into distinct subtypes based on the route of development, with the most common forms associated with either autoimmunity (T1DM) or obesity (T2DM). A shared hallmark of both major forms of diabetes is a reduction in function (insulin secretion) or mass (cell number) of the pancreatic islet beta-cell. Diminutions in both mass and function are often present. A wide assortment of plants have been used historically to reduce the pathological features associated with diabetes. In this review, we provide an organized viewpoint focused around the phytochemicals and herbal extracts investigated using various preclinical and clinical study designs. In some cases, crude extracts were examined directly, and in others, purified compounds were explored for their possible therapeutic efficacy. A subset of these studies compared the botanical product with standard of care prescribed drugs. Finally, we note that botanical formulations are likely suspects for future drug discovery and refinement into class(es) of compounds that have either direct or adjuvant therapeutic benefit.
Collapse
Affiliation(s)
- Peter Smoak
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - Susan J. Burke
- Immunogenetics Laboratory, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, LA 70808 Baton Rouge, USA
| | - J. Jason Collier
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| |
Collapse
|
47
|
Tagde P, Tagde P, Islam F, Tagde S, Shah M, Hussain ZD, Rahman MH, Najda A, Alanazi IS, Germoush MO, Mohamed HRH, Algandaby MM, Nasrullah MZ, Kot N, Abdel-Daim MM. The Multifaceted Role of Curcumin in Advanced Nanocurcumin Form in the Treatment and Management of Chronic Disorders. Molecules 2021; 26:7109. [PMID: 34885693 PMCID: PMC8659038 DOI: 10.3390/molecules26237109] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 12/25/2022] Open
Abstract
Curcumin is the primary polyphenol in turmeric's curcuminoid class. It has a wide range of therapeutic applications, such as anti-inflammatory, antioxidant, antidiabetic, hepatoprotective, antibacterial, and anticancer effects against various cancers, but has poor solubility and low bioavailability. Objective: To improve curcumin's bioavailability, plasma concentration, and cellular permeability processes. The nanocurcumin approach over curcumin has been proven appropriate for encapsulating or loading curcumin (nanocurcumin) to increase its therapeutic potential. Conclusion: Though incorporating curcumin into nanocurcumin form may be a viable method for overcoming its intrinsic limitations, and there are reasonable concerns regarding its toxicological safety once it enters biological pathways. This review article mainly highlights the therapeutic benefits of nanocurcumin over curcumin.
Collapse
Affiliation(s)
- Priti Tagde
- Amity Institute of Pharmacy, Amity University, Noida 201303, India
- PRISAL Foundation (Pharmaceutical Royal International Society), Bhopa l462026, India;
| | - Pooja Tagde
- Practice of Medicine Department, Government Homeopathy College, Bhopa l462016, India;
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh;
| | - Sandeep Tagde
- PRISAL Foundation (Pharmaceutical Royal International Society), Bhopa l462026, India;
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | | | - Md. Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
- Department of Global Medical Science, Graduate School, Yonsei University, Wonju 26426, Korea
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland;
| | - Ibtesam S. Alanazi
- Department of Biology, Faculty of Sciences, University of Hafr Al Batin, Hafr Al Batin 39524, Saudi Arabia;
| | - Mousa O. Germoush
- Biology Department, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia;
| | - Hanan R. H. Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Mardi M. Algandaby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohammed Z. Nasrullah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Natalia Kot
- Department of Landscape Architecture, University of Life Science in Lublin, 28 Gleboka Street, 20-612 Lublin, Poland;
| | - Mohamed M. Abdel-Daim
- Pharmacy Program, Department of Pharmaceutical Sciences, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
48
|
Levan enhanced the NF-κB suppression activity of an oral nano PLGA-curcumin formulation in breast cancer treatment. Int J Biol Macromol 2021; 189:223-231. [PMID: 34419542 DOI: 10.1016/j.ijbiomac.2021.08.115] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/23/2021] [Accepted: 08/15/2021] [Indexed: 11/21/2022]
Abstract
Chemoresistance (CR) is one of the reasons why chemotherapy agents like Gemcitabine (GMC) remain insufficient in healing breast cancer. Activation of Nuclear Factor-kappa B (NF-κB) during chemotherapy is known as an important factor in the development of CR. The hydrophobic polyphenol curcumin is shown to inhibit NF-κB and hence CR. The aim of this work was to increase the poor bioavailability of curcumin by loading it into the nano-micelles made of Poly (Lactide-co-Glycolide) (PLGA) and levan, where levan as a natural fructose homopolymer makes the nano-micelle more stable and increases its uptake using the fructose moieties. In this study, a PLGA-levan-curcumin formulation (PLC) was designed and characterized. The size was measured as 154.16 ± 1.45 nm with a 67.68% encapsulation efficiency (EE%). The incorporation between the components was approved. Levan made the nano-micelles stable for at least three months, increased their uptake, and led to a 10,000-fold increase in the solubility of curcumin. The enhanced bioavailability of curcumin reduced the NF-κB levels elevated by GMC, both in vitro and in vivo. The PLC showed a complete tumor treatment, while GMC only showed a rate of 52%. These point to the great potential of the PLC to be used simultaneously with chemotherapy.
Collapse
|
49
|
Raman N, Chandrasekar T. Metallonucleases encompassing curcumin, 2-aminobenzothiazole and o-phenylenediamine: a search for new metallonucleases. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1993256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Natarajan Raman
- Research Department of Chemistry, VHNSN College, Virudhunagar, India
| | | |
Collapse
|
50
|
Zu M, Ma Y, Cannup B, Xie D, Jung Y, Zhang J, Yang C, Gao F, Merlin D, Xiao B. Oral delivery of natural active small molecules by polymeric nanoparticles for the treatment of inflammatory bowel diseases. Adv Drug Deliv Rev 2021; 176:113887. [PMID: 34314785 DOI: 10.1016/j.addr.2021.113887] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/27/2021] [Accepted: 07/18/2021] [Indexed: 12/11/2022]
Abstract
The incidence of inflammatory bowel disease (IBD) is rapidly rising throughout the world. Although tremendous efforts have been made, limited therapeutics are available for IBD management. Natural active small molecules (NASMs), which are a gift of nature to humanity, have been widely used in the prevention and alleviation of IBD; they have numerous advantageous features, including excellent biocompatibility, pharmacological activity, and mass production potential. Oral route is the most common and acceptable approach for drug administration, but the clinical application of NASMs in IBD treatment via oral route has been seriously restricted by their inherent limitations such as high hydrophobicity, instability, and poor bioavailability. With the development of nanotechnology, polymeric nanoparticles (NPs) have provided a promising platform that can efficiently encapsulate versatile NASMs, overcome multiple drug delivery barriers, and orally deliver the loaded NASMs to targeted tissues or cells while enhancing their stability and bioavailability. Thus, NPs can enhance the preventive and therapeutic effects of NASMs against IBD. Herein, we summarize the recent knowledge about polymeric matrix-based carriers, targeting ligands for drug delivery, and NASMs. We also discuss the current challenges and future developmental directions.
Collapse
Affiliation(s)
- Menghang Zu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Ya Ma
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Brandon Cannup
- Institute for Biomedical Sciences, Digestive Disease Research Group, Georgia State University, Atlanta, Georgia 30302, United States
| | - Dengchao Xie
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China; State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Geumjeong-gu, Busan 46241, South Korea
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Chunhua Yang
- Institute for Biomedical Sciences, Digestive Disease Research Group, Georgia State University, Atlanta, Georgia 30302, United States; Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, United States
| | - Fei Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.
| | - Didier Merlin
- Institute for Biomedical Sciences, Digestive Disease Research Group, Georgia State University, Atlanta, Georgia 30302, United States; Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, United States.
| | - Bo Xiao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|