1
|
Singha S, Pandey M, Jaiswal L, Dash S, Fernandes A, Kumaresan A, Maharana BR, Lathwal SS, Sarath T, Datta TK, Mohanty TK, Baithalu RK. Salivary cell-free HSD17B1 and HSPA1A transcripts as potential biomarkers for estrus identification in buffaloes ( Bubalus bubalis). Anim Biotechnol 2023; 34:2554-2564. [PMID: 35913775 DOI: 10.1080/10495398.2022.2105228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Estrus detection is a major problem in buffaloes because of the poor expression of estrus signs leading to low reproductive efficiency. Salivary transcripts analysis is a promising tool to identify biomarkers; therefore, the present study was carried out to evaluate their potential as estrus biomarkers. The levels of HSD17B1, INHBA, HSPA1A, TES transcripts were compared in saliva during estrous cycle stages [early proestrus (day -2, EP), late proestrus (day-1, LP), estrus (E), metestrus (ME) and diestrus (DE)] of cyclic heifers (n = 8) and pluriparous (n = 8) buffaloes by employing quantitative real-time polymerase chain reaction (qRT-PCR). The levels of HSD17B1 (EP/DE 1.46-2.43 fold, LP/DE 2.49-3.06 fold; E/DE 7.21-11.9-fold p < 0.01; ME/D 1.0-1.16 fold) and HSPA1A (EP/DE 0.93-2.39 fold, LP/DE 2.68-3.23 fold; E/DE 8.52-15.18 fold p < 0.01; ME/D 0.86-1.01 fold) were significantly altered during the estrus than other estrous cycle stages in both cyclic heifers and pluriparous buffaloes. Receiver operating characteristic curve analysis revealed the ability of salivary HSD17B1 (AUC 0.96; p < 0.001) and HSPA1A (AUC 0.99; p < 0.01) to differentiate E from other stages of the estrous cycle. Significantly higher levels of HSD17B1 and HSPA1A transcripts in saliva during the estrus phase suggest their biomarkers potential for estrus detection in buffaloes.
Collapse
Affiliation(s)
- Shubham Singha
- Animal Reproduction, Gynaecology and Obstetrics, ICAR-National Dairy Research Institute, Karnal, Haryana, India
- Molecular Reproduction Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Mamta Pandey
- Molecular Reproduction Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Latika Jaiswal
- Molecular Reproduction Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Sangram Dash
- Animal Reproduction, Gynaecology and Obstetrics, ICAR-National Dairy Research Institute, Karnal, Haryana, India
- Molecular Reproduction Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Abhijeet Fernandes
- Animal Reproduction, Gynaecology and Obstetrics, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Arumugan Kumaresan
- SRS-Bengaluru, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Biswa Ranjan Maharana
- Regional Research Centre, Lala Lajpat Rai University of Veterinary and Animal Science, LUVAS, Karnal, Haryana, India
| | - Surender Singh Lathwal
- Livestock Production Management, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Thulasiraman Sarath
- Department of Clinics, Madras Veterinary College, TANUVAS, Vepery, Tamil Nadu, India
| | - Tirtha K Datta
- Genomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
- ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, India
| | - Tushar K Mohanty
- Animal Reproduction, Gynaecology and Obstetrics, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Rubina Kumari Baithalu
- Animal Reproduction, Gynaecology and Obstetrics, ICAR-National Dairy Research Institute, Karnal, Haryana, India
- Molecular Reproduction Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
2
|
Milara J, Morell A, Roger I, Montero P, Cortijo J. Mechanisms underlying corticosteroid resistance in patients with asthma: a review of current knowledge. Expert Rev Respir Med 2023; 17:701-715. [PMID: 37658478 DOI: 10.1080/17476348.2023.2255124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 09/03/2023]
Abstract
INTRODUCTION Corticosteroids are the most cost-effective anti-inflammatory drugs available for the treatment of asthma. Despite their effectiveness, several asthmatic patients have corticosteroid resistance or insensitivity and exhibit a poor response. Corticosteroid insensitivity implies a poor prognosis due to challenges in finding alternative therapeutic options for asthma. AREAS COVERED In this review, we describe asthma phenotypes and endotypes, as well as their differential responsiveness to corticosteroids. In addition, we describe the mechanism of action of corticosteroids underlying their regulation of the expression of glucocorticoid receptors (GRs) and their anti-inflammatory effects. Furthermore, we summarize the mechanistic evidence underlying corticosteroid-insensitive asthma, which is mainly related to changes in GR gene expression, structure, and post-transcriptional modifications. Finally, various pharmacological strategies designed to reverse corticosteroid insensitivity are discussed. EXPERT OPINION Corticosteroid insensitivity is influenced by the asthma phenotype, endotype, and severity, and serves as an indication for biological therapy. The molecular mechanisms underlying corticosteroid-insensitive asthma have been used to develop targeted therapeutic strategies. However, the lack of clinical trials prevents the clinical application of these treatments.
Collapse
Affiliation(s)
- Javier Milara
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Pharmacy department, University General Hospital of Valencia, Valencia, Spain
- CIBERES, Health Institute Carlos III, Valencia, Spain
| | - Anselm Morell
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Inés Roger
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- CIBERES, Health Institute Carlos III, Valencia, Spain
| | - Paula Montero
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Pharmacy department, University General Hospital of Valencia, Valencia, Spain
| | - Julio Cortijo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- CIBERES, Health Institute Carlos III, Valencia, Spain
| |
Collapse
|
3
|
Lehmann M, Haury K, Oster H, Astiz M. Circadian glucocorticoids throughout development. Front Neurosci 2023; 17:1165230. [PMID: 37179561 PMCID: PMC10166844 DOI: 10.3389/fnins.2023.1165230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/06/2023] [Indexed: 05/15/2023] Open
Abstract
Glucocorticoids (GCs) are essential drivers of mammalian tissue growth and maturation during one of the most critical developmental windows, the perinatal period. The developing circadian clock is shaped by maternal GCs. GC deficits, excess, or exposure at the wrong time of day leads to persisting effects later in life. During adulthood, GCs are one of the main hormonal outputs of the circadian system, peaking at the beginning of the active phase (i.e., the morning in humans and the evening in nocturnal rodents) and contributing to the coordination of complex functions such as energy metabolism and behavior, across the day. Our article discusses the current knowledge on the development of the circadian system with a focus on the role of GC rhythm. We explore the bidirectional interaction between GCs and clocks at the molecular and systemic levels, discuss the evidence of GC influence on the master clock in the suprachiasmatic nuclei (SCN) of the hypothalamus during development and in the adult system.
Collapse
Affiliation(s)
- Marianne Lehmann
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| | - Katharina Haury
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| | - Mariana Astiz
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
4
|
Sanford A, Kiriakov S, Khalil AS. A Toolkit for Precise, Multigene Control in Saccharomyces cerevisiae. ACS Synth Biol 2022; 11:3912-3920. [PMID: 36367334 PMCID: PMC9764411 DOI: 10.1021/acssynbio.2c00423] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Systems that allow researchers to precisely control the expression of genes are fundamental to biological research, biotechnology, and synthetic biology. However, few inducible gene expression systems exist that can enable simultaneous multigene control under common nutritionally favorable conditions in the important model organism and chassis Saccharomyces cerevisiae. Here we repurposed ligand binding domains from mammalian type I nuclear receptors to establish a family of up to five orthogonal synthetic gene expression systems in yeast. Our systems enable tight, independent, multigene control through addition of inert hormones and are capable of driving robust and rapid gene expression outputs, in some cases achieving up to 600-fold induction. As a proof of principle, we placed expression of four enzymes from the violacein biosynthetic pathway under independent expression control to selectively route pathway flux by addition of specific inducer combinations. Our results establish a modular, versatile, and potentially expandable toolkit for multidimensional control of gene expression in yeast that can be used to construct and control naturally occurring and synthetic gene networks.
Collapse
Affiliation(s)
- Adam Sanford
- Biological
Design Center, Boston University, Boston, Massachusetts 02215, United States,Department
of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Szilvia Kiriakov
- Biological
Design Center, Boston University, Boston, Massachusetts 02215, United States,Program
in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Ahmad S. Khalil
- Biological
Design Center, Boston University, Boston, Massachusetts 02215, United States,Department
of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States,Program
in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, Massachusetts 02215, United States,Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States,
| |
Collapse
|
5
|
Törner R, Kupreichyk T, Hoyer W, Boisbouvier J. The role of heat shock proteins in preventing amyloid toxicity. Front Mol Biosci 2022; 9:1045616. [PMID: 36589244 PMCID: PMC9798239 DOI: 10.3389/fmolb.2022.1045616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
The oligomerization of monomeric proteins into large, elongated, β-sheet-rich fibril structures (amyloid), which results in toxicity to impacted cells, is highly correlated to increased age. The concomitant decrease of the quality control system, composed of chaperones, ubiquitin-proteasome system and autophagy-lysosomal pathway, has been shown to play an important role in disease development. In the last years an increasing number of studies has been published which focus on chaperones, modulators of protein conformational states, and their effects on preventing amyloid toxicity. Here, we give a comprehensive overview of the current understanding of chaperones and amyloidogenic proteins and summarize the advances made in elucidating the impact of these two classes of proteins on each other, whilst also highlighting challenges and remaining open questions. The focus of this review is on structural and mechanistic studies and its aim is to bring novices of this field "up to speed" by providing insight into all the relevant processes and presenting seminal structural and functional investigations.
Collapse
Affiliation(s)
- Ricarda Törner
- University Grenoble Alpes, CNRS CEA Institut de Biologie Structurale (IBS), Grenoble, France,*Correspondence: Ricarda Törner, ; Jerome Boisbouvier,
| | - Tatsiana Kupreichyk
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Wolfgang Hoyer
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Jerome Boisbouvier
- University Grenoble Alpes, CNRS CEA Institut de Biologie Structurale (IBS), Grenoble, France,*Correspondence: Ricarda Törner, ; Jerome Boisbouvier,
| |
Collapse
|
6
|
Panteli N, Demertzioglou M, Feidantsis K, Karapanagiotis S, Tsele N, Tsakoniti K, Gkagkavouzis K, Mylonas CC, Kormas KA, Mente E, Antonopoulou E. Advances in understanding the mitogenic, metabolic, and cell death signaling in teleost development: the case of greater amberjack (Seriola dumerili, Risso 1810). FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1665-1684. [PMID: 36459361 DOI: 10.1007/s10695-022-01146-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Cell growth and differentiation signals of insulin-like growth factor-1 (IGF-1), a key regulator in embryonic and postnatal development, are mediated through the IGF-1 receptor (IGF-1R), which activates several downstream pathways. The present study aims to address crucial organogenesis and development pathways including Akt, MAPKs, heat shock response, apoptotic and autophagic machinery, and energy metabolism in relation to IGF-1R activation during five developmental stages of reared Seriola dumerili: 1 day prior to hatching fertilized eggs (D-1), hatching day (D0), 3 days post-hatching larvae (D3), 33 (D33) and 46 (D46) days post-hatching juveniles. During both the fertilized eggs stage and larval-to-juvenile transition, IGF-1R/Akt pathway activation may mediate the hypertrophic signaling, while p44/42 MAPK phosphorylation was apparent at S. dumerili post-hatching processes and juvenile organs completion. On the contrary, apoptosis was induced during embryogenesis and autophagy at hatching day indicating a potential involvement in morphogenetic rearrangements and yolk-sac reserves depletion. Larvae morphogenesis was accompanied by a metabolic turnover with increased substantial energy consumption. The findings of the present study demonstrate the developmental stages-specific shift in critical signaling pathways during the ontogeny of reared S. dumerili.
Collapse
Affiliation(s)
- Nikolas Panteli
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Maria Demertzioglou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | | | | | | | - Konstantinos Gkagkavouzis
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
- Genomics and Epigenomics Translational Research (GENeTres), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Buildings A & B 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001, Thessaloniki, Greece
| | - Constantinos C Mylonas
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, P.O. Box 2214, 71003, Heraklion, Crete, Greece
| | - Konstantinos Ar Kormas
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, 38446, Volos, Greece
| | - Eleni Mente
- School of Veterinary Medicine, Laboratory of Ichthyology-Culture and Pathology of Aquatic Animals, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Efthimia Antonopoulou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
7
|
Fan L, Kishore A, Jansen-Olliges L, Wang D, Stahl F, Psathaki OE, Harre J, Warnecke A, Weder J, Preller M, Zeilinger C. Identification of a Thyroid Hormone Binding Site in Hsp90 with Implications for Its Interaction with Thyroid Hormone Receptor Beta. ACS OMEGA 2022; 7:28932-28945. [PMID: 36033668 PMCID: PMC9404468 DOI: 10.1021/acsomega.2c02331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
While many proteins are known clients of heat shock protein 90 (Hsp90), it is unclear whether the transcription factor, thyroid hormone receptor beta (TRb), interacts with Hsp90 to control hormonal perception and signaling. Higher Hsp90 expression in mouse fibroblasts was elicited by the addition of triiodothyronine (T3). T3 bound to Hsp90 and enhanced adenosine triphosphate (ATP) binding of Hsp90 due to a specific binding site for T3, as identified by molecular docking experiments. The binding of TRb to Hsp90 was prevented by T3 or by the thyroid mimetic sobetirome. Purified recombinant TRb trapped Hsp90 from cell lysate or purified Hsp90 in pull-down experiments. The affinity of Hsp90 for TRb was 124 nM. Furthermore, T3 induced the release of bound TRb from Hsp90, which was shown by streptavidin-conjugated quantum dot (SAv-QD) masking assay. The data indicate that the T3 interaction with TRb and Hsp90 may be an amplifier of the cellular stress response by blocking Hsp90 activity.
Collapse
Affiliation(s)
- Lu Fan
- BMWZ
(Zentrum für Biomolekulare Wirkstoffe), Gottfried-Wilhelm-Leibniz University of Hannover, Hannover 30167, Germany
- Clinic
for Otorhinolaryngology Surgery, Hannover
Medical School (MHH), Hannover 30625, Germany
| | - Anusha Kishore
- BMWZ
(Zentrum für Biomolekulare Wirkstoffe), Gottfried-Wilhelm-Leibniz University of Hannover, Hannover 30167, Germany
| | - Linda Jansen-Olliges
- BMWZ
(Zentrum für Biomolekulare Wirkstoffe), Gottfried-Wilhelm-Leibniz University of Hannover, Hannover 30167, Germany
| | - Dahua Wang
- BMWZ
(Zentrum für Biomolekulare Wirkstoffe), Gottfried-Wilhelm-Leibniz University of Hannover, Hannover 30167, Germany
- Clinic
for Otorhinolaryngology Surgery, Hannover
Medical School (MHH), Hannover 30625, Germany
| | - Frank Stahl
- Institut
für Technische Chemie, Gottfried-Wilhelm-Leibniz
University of Hannover, Hannover 30167, Germany
| | - Olympia Ekaterini Psathaki
- Center
of Cellular Nanoanalytics, Integrated Bioimaging Facility, University of Osnabrück, Osnabrück 49076, Germany
| | - Jennifer Harre
- Clinic
for Otorhinolaryngology Surgery, Hannover
Medical School (MHH), Hannover 30625, Germany
| | - Athanasia Warnecke
- Clinic
for Otorhinolaryngology Surgery, Hannover
Medical School (MHH), Hannover 30625, Germany
| | - Julia Weder
- Institute
for Biophysical Chemistry, Hannover Medical
School, Carl-Neuberg-Straβe
1, Hannover 30625, Germany
- Institute
for Functional Gene Analytics (IFGA), Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg, Von-Liebig-Str. 20, Rheinbach 53359, Germany
| | - Matthias Preller
- Institute
for Biophysical Chemistry, Hannover Medical
School, Carl-Neuberg-Straβe
1, Hannover 30625, Germany
- Institute
for Functional Gene Analytics (IFGA), Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg, Von-Liebig-Str. 20, Rheinbach 53359, Germany
| | - Carsten Zeilinger
- BMWZ
(Zentrum für Biomolekulare Wirkstoffe), Gottfried-Wilhelm-Leibniz University of Hannover, Hannover 30167, Germany
| |
Collapse
|
8
|
Ernst K. Requirement of Peptidyl-Prolyl Cis/Trans isomerases and chaperones for cellular uptake of bacterial AB-type toxins. Front Cell Infect Microbiol 2022; 12:938015. [PMID: 35992160 PMCID: PMC9387773 DOI: 10.3389/fcimb.2022.938015] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022] Open
Abstract
Bacterial AB-type toxins are proteins released by the producing bacteria and are the causative agents for several severe diseases including cholera, whooping cough, diphtheria or enteric diseases. Their unique AB-type structure enables their uptake into mammalian cells via sophisticated mechanisms exploiting cellular uptake and transport pathways. The binding/translocation B-subunit facilitates binding of the toxin to a specific receptor on the cell surface. This is followed by receptor-mediated endocytosis. Then the enzymatically active A-subunit either escapes from endosomes in a pH-dependent manner or the toxin is further transported through the Golgi to the endoplasmic reticulum from where the A-subunit translocates into the cytosol. In the cytosol, the A-subunits enzymatically modify a specific substrate which leads to cellular reactions resulting in clinical symptoms that can be life-threatening. Both intracellular uptake routes require the A-subunit to unfold to either fit through a pore formed by the B-subunit into the endosomal membrane or to be recognized by the ER-associated degradation pathway. This led to the hypothesis that folding helper enzymes such as chaperones and peptidyl-prolyl cis/trans isomerases are required to assist the translocation of the A-subunit into the cytosol and/or facilitate their refolding into an enzymatically active conformation. This review article gives an overview about the role of heat shock proteins Hsp90 and Hsp70 as well as of peptidyl-prolyl cis/trans isomerases of the cyclophilin and FK506 binding protein families during uptake of bacterial AB-type toxins with a focus on clostridial binary toxins Clostridium botulinum C2 toxin, Clostridium perfringens iota toxin, Clostridioides difficile CDT toxin, as well as diphtheria toxin, pertussis toxin and cholera toxin.
Collapse
|
9
|
Shi Y, Cao S, Ni D, Fan J, Lu S, Xue M. The Role of Conformational Dynamics and Allostery in the Control of Distinct Efficacies of Agonists to the Glucocorticoid Receptor. Front Mol Biosci 2022; 9:933676. [PMID: 35874618 PMCID: PMC9300934 DOI: 10.3389/fmolb.2022.933676] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Glucocorticoid receptor (GR) regulates various cellular functions. Given its broad influence on metabolic activities, it has been the target of drug discovery for decades. However, how drugs induce conformational changes in GR has remained elusive. Herein, we used five GR agonists (dex, AZ938, pred, cor, and dibC) with different efficacies to investigate which aspect of the ligand induced the differences in efficacy. We performed molecular dynamics simulations on the five systems (dex-, AZ938-, pred-, cor-, and dibC-bound systems) and observed a distinct discrepancy in the conformation of the cofactor TIF2. Moreover, we discovered ligand-induced differences regarding the level of conformational changes posed by the binding of cofactor TIF2 and identified a pair of essential residues D590 and T39. We further found a positive correlation between the efficacies of ligands and the interaction of the two binding pockets' domains, where D590 and T739 were involved, implying their significance in the participation of allosteric communication. Using community network analysis, two essential communities containing D590 and T739 were identified with their connectivity correlating to the efficacy of ligands. The potential communication pathways between these two residues were revealed. These results revealed the underlying mechanism of allosteric communication between the ligand-binding and cofactor-binding pockets and identified a pair of important residues in the allosteric communication pathway, which can serve as a guide for future drug discovery.
Collapse
Affiliation(s)
- Yuxin Shi
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu Cao
- Department of Urology, Ezhou Central Hospital, Hubei, China
| | - Duan Ni
- The Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Jigang Fan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mintao Xue
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
10
|
Regazzo D, Mondin A, Scaroni C, Occhi G, Barbot M. The Role of Glucocorticoid Receptor in the Pathophysiology of Pituitary Corticotroph Adenomas. Int J Mol Sci 2022; 23:ijms23126469. [PMID: 35742910 PMCID: PMC9224504 DOI: 10.3390/ijms23126469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
Adrenocorticotropic Hormone (ACTH)-secreting pituitary adenomas are rare tumors characterized by autonomous ACTH secretion with a consequent increase in circulating cortisol levels. The resulting clinical picture is called Cushing’s disease (CD), a severe condition burdened with high morbidity and mortality. Apart from increased cortisol levels, CD patients exhibit a partial resistance to the negative glucocorticoid (GC) feedback, which is of paramount clinical utility, as the lack of suppression after dexamethasone administration is one of the mainstays for the differential diagnosis of CD. Since the glucocorticoid receptor (GR) is the main regulator of negative feedback of the hypothalamic–pituitary–adrenal axis in normal conditions, its implication in the pathophysiology of ACTH-secreting pituitary tumors is highly plausible. In this paper, we review GR function and structure and the mechanisms of GC resistance in ACTH-secreting pituitary tumors and assess the effects of the available medical therapies targeting GR on tumor growth.
Collapse
Affiliation(s)
- Daniela Regazzo
- Endocrinology Unit, Department of Medicine-DIMED, University Hospital of Padova, 35128 Padova, Italy; (D.R.); (A.M.); (C.S.)
| | - Alessandro Mondin
- Endocrinology Unit, Department of Medicine-DIMED, University Hospital of Padova, 35128 Padova, Italy; (D.R.); (A.M.); (C.S.)
| | - Carla Scaroni
- Endocrinology Unit, Department of Medicine-DIMED, University Hospital of Padova, 35128 Padova, Italy; (D.R.); (A.M.); (C.S.)
| | - Gianluca Occhi
- Department of Biology, University of Padova, 35128 Padova, Italy;
| | - Mattia Barbot
- Endocrinology Unit, Department of Medicine-DIMED, University Hospital of Padova, 35128 Padova, Italy; (D.R.); (A.M.); (C.S.)
- Correspondence:
| |
Collapse
|
11
|
Liman N, Kuzkale M. Heat shock proteins exhibit distinct spatiotemporal expression patterns in the domestic cat ( Felis catus) ovary during the oestrous cycle. Reprod Fertil Dev 2022; 34:498-515. [PMID: 35115081 DOI: 10.1071/rd21155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 12/12/2021] [Indexed: 11/23/2022] Open
Abstract
Heat shock proteins (HSP) are significant regulators of cell proliferation, differentiation and apoptosis. HSP participate in ovarian physiology through proliferative and apoptotic mechanisms and the modulation of sex steroid receptor functions. We investigated whether the expression and localisation patterns of HSP in the domestic cat ovary vary with the oestrous cycle stage. Immunohistochemical analysis revealed cell type-specific localisation patterns of HSPD1/HSP60, HSPA/HSP70, HSPC/HSP90 and HSPH/HSP105 in several ovarian cells of the domestic cat, including oocytes, follicular (granulosa and theca cells) and luteal cells, stromal and thecal interstitial cells, stromal cells, and vascular endothelial and smooth muscle cells during the anoestrous, follicular and luteal phases of the oestrous cycle. Western blot results showed that the expression of three HSP (HSPD1/HSP60, HSPA/HSP70 and HSPH/HSP105) varied with the oestrous cycle stage. While the maximal expression of HSPD1/HSP60 and HSPH/HSP105 occurred during the luteal phase, the expression of HSPA/HSP70 was minimal. The expressions of HSPA/HSP70 and HSPH/HSP105 were low during the follicular phase compared to the anoestrous phase. In conclusion, the alterations that occur in the expression of HSP in the domestic cat ovary during the different stages of the oestrous cycle imply that these proteins participate in the regulation of ovarian function under different physiological conditions.
Collapse
Affiliation(s)
- Narin Liman
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Erciyes, 38039, Kayseri, Turkey
| | - Murat Kuzkale
- Republic of Turkey Minister of Agriculture and Forestry, Afyonkarahisar Food Control Laboratory Directorate, 03100, Afyonkarahisar, Turkey
| |
Collapse
|
12
|
Aspesi D, Choleris E. Neuroendocrine underpinning of social recognition in males and females. J Neuroendocrinol 2022; 34:e13070. [PMID: 34927288 DOI: 10.1111/jne.13070] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 11/14/2021] [Accepted: 11/24/2021] [Indexed: 12/28/2022]
Abstract
Social recognition is an essential skill for the expression of appropriate behaviors towards conspecifics in most social species. Several studies point to oxytocin (OT) and arginine vasopressin (AVP) as key mediators of social recognition in males and females. However, sex differences in social cognitive behaviors highlight an important interplay between OT, AVP and the sex steroids. Estrogens facilitate social recognition by regulating OT action in the hypothalamus and that of OT receptor in the medial amygdala. The role of OT in these brain regions appears to be essential for social recognition in both males and females. Conversely, social recognition in male rats and mice is more dependent on AVP release in the lateral septum than in females. The AVP system comprises a series of highly sexually dimorphic brain nuclei, including the bed nucleus of the stria terminalis, the amygdala and the lateral septum. Various studies suggest that testosterone and its metabolites, including estradiol, influence social recognition in males by modulating the activity of the AVP at V1a receptor. Intriguingly, both estrogens and androgens can affect social recognition very rapidly, through non-genomic mechanisms. In addition, the androgen metabolites, namely 3α-diol and 3β-diol, may also have an impact on social behaviors either by interacting with the estrogen receptors or through other mechanisms. Overall, the regulation of OT and AVP by sex steroids fine tunes social recognition and the behaviors that depend upon it (e.g., social bond, hierarchical organization, aggression) in a sex-dependent manner. Elucidating the sex-dependent interaction between sex steroids and neuroendocrine systems is essential for understanding sex differences in the normal and abnormal expression of social behaviors.
Collapse
Affiliation(s)
- Dario Aspesi
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
13
|
Heat Shock Proteins in Benign Prostatic Hyperplasia and Prostate Cancer. Int J Mol Sci 2022; 23:ijms23020897. [PMID: 35055079 PMCID: PMC8779911 DOI: 10.3390/ijms23020897] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
Two out of three diseases of the prostate gland affect aging men worldwide. Benign prostatic hyperplasia (BPH) is a noncancerous enlargement affecting millions of men. Prostate cancer (PCa) in turn is the second leading cause of cancer death. The factors influencing the occurrence of BPH and PCa are different; however, in the course of these two diseases, the overexpression of heat shock proteins is observed. Heat shock proteins (HSPs), chaperone proteins, are known to be one of the main proteins playing a role in maintaining cell homeostasis. HSPs take part in the process of the proper folding of newly formed proteins, and participate in the renaturation of damaged proteins. In addition, they are involved in the transport of specific proteins to the appropriate cell organelles and directing damaged proteins to proteasomes or lysosomes. Their function is to protect the proteins against degradation factors that are produced during cellular stress. HSPs are also involved in modulating the immune response and the process of apoptosis. One well-known factor affecting HSPs is the androgen receptor (AR)—a main player involved in the development of BPH and the progression of prostate cancer. HSPs play a cytoprotective role and determine the survival of cancer cells. These chaperones are often upregulated in malignancies and play an indispensable role in tumor progression. Therefore, HSPs are considered as one of the therapeutic targets in anti-cancer therapies. In this review article, we discuss the role of different HSPs in prostate diseases, and their potential as therapeutic targets.
Collapse
|
14
|
Vydra N, Janus P, Kuś P, Stokowy T, Mrowiec K, Toma-Jonik A, Krzywon A, Cortez AJ, Wojtaś B, Gielniewski B, Jaksik R, Kimmel M, Widlak W. Heat Shock Factor 1 (HSF1) cooperates with estrogen receptor α (ERα) in the regulation of estrogen action in breast cancer cells. eLife 2021; 10:69843. [PMID: 34783649 PMCID: PMC8709578 DOI: 10.7554/elife.69843] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 11/15/2021] [Indexed: 11/29/2022] Open
Abstract
Heat shock factor 1 (HSF1), a key regulator of transcriptional responses to proteotoxic stress, was linked to estrogen (E2) signaling through estrogen receptor α (ERα). We found that an HSF1 deficiency may decrease ERα level, attenuate the mitogenic action of E2, counteract E2-stimulated cell scattering, and reduce adhesion to collagens and cell motility in ER-positive breast cancer cells. The stimulatory effect of E2 on the transcriptome is largely weaker in HSF1-deficient cells, in part due to the higher basal expression of E2-dependent genes, which correlates with the enhanced binding of unliganded ERα to chromatin in such cells. HSF1 and ERα can cooperate directly in E2-stimulated regulation of transcription, and HSF1 potentiates the action of ERα through a mechanism involving chromatin reorganization. Furthermore, HSF1 deficiency may increase the sensitivity to hormonal therapy (4-hydroxytamoxifen) or CDK4/6 inhibitors (palbociclib). Analyses of data from The Cancer Genome Atlas database indicate that HSF1 increases the transcriptome disparity in ER-positive breast cancer and can enhance the genomic action of ERα. Moreover, only in ER-positive cancers an elevated HSF1 level is associated with metastatic disease. About 70% of breast cancers rely on supplies of a hormone called estrogen – which is the main hormone responsible for female physical characteristics – to grow. Breast cancer cells that are sensitive to estrogen possess proteins known as estrogen receptors and are classified as estrogen-receptor positive. When estrogen interacts with its receptor in a cancer cell, it stimulates the cell to grow and migrate to other parts of the body. Therefore, therapies that decrease the amount of estrogen the body produces, or inhibit the receptor itself, are widely used to treat patients with estrogen receptor-positive breast cancers. When estrogen interacts with an estrogen receptor known as ERα it can also activate a protein called HSF1, which helps cells to survive under stress. In turn, HSF1 regulates several other proteins that are necessary for ERα and other estrogen receptors to work properly. Previous studies have suggested that high levels of HSF1 may worsen the outcomes for patients with estrogen receptor-positive breast cancers, but it remains unclear how HSF1 acts in breast cancer cells. Vydra, Janus, Kuś et al. used genetics and bioinformatics approaches to study HSF1 in human breast cancer cells. The experiments revealed that breast cancer cells with lower levels of HSF1 also had lower levels of ERα and responded less well to estrogen than cells with higher levels of HSF1. Further experiments suggested that in the absence of estrogen, HSF1 helps to keep ERα inactive. However, when estrogen is present, HSF1 cooperates with ERα and enhances its activity to help cells grow and migrate. Vydra, Janus, Kuś et al. also found that cells with higher levels of HSF1 were less sensitive to two drug therapies that are commonly used to treat estrogen receptor-positive breast cancers. These findings reveal that the effect HSF1 has on ERα activity depends on the presence of estrogen. Therefore, cancer therapies that decrease the amount of estrogen a patient produces may have a different effect on estrogen receptor-positive tumors with high HSF1 levels than tumors with low HSF1 levels.
Collapse
Affiliation(s)
- Natalia Vydra
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Patryk Janus
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Paweł Kuś
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Tomasz Stokowy
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Katarzyna Mrowiec
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Agnieszka Toma-Jonik
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Aleksandra Krzywon
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Alexander Jorge Cortez
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Bartosz Wojtaś
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Bartłomiej Gielniewski
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Roman Jaksik
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Marek Kimmel
- Department of Statistics, Rice University, Houston, United States
| | - Wieslawa Widlak
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| |
Collapse
|
15
|
Nicolaides NC, Charmandari E. Primary Generalized Glucocorticoid Resistance and Hypersensitivity Syndromes: A 2021 Update. Int J Mol Sci 2021; 22:ijms221910839. [PMID: 34639183 PMCID: PMC8509180 DOI: 10.3390/ijms221910839] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022] Open
Abstract
Glucocorticoids are the final products of the neuroendocrine hypothalamic-pituitary-adrenal axis, and play an important role in the stress response to re-establish homeostasis when it is threatened, or perceived as threatened. These steroid hormones have pleiotropic actions through binding to their cognate receptor, the human glucocorticoid receptor, which functions as a ligand-bound transcription factor inducing or repressing the expression of a large number of target genes. To achieve homeostasis, glucocorticoid signaling should have an optimal effect on all tissues. Indeed, any inappropriate glucocorticoid effect in terms of quantity or quality has been associated with pathologic conditions, which are characterized by short-term or long-lasting detrimental effects. Two such conditions, the primary generalized glucocorticoid resistance and hypersensitivity syndromes, are discussed in this review article. Undoubtedly, the tremendous progress of structural, molecular, and cellular biology, in association with the continued progress of biotechnology, has led to a better and more in-depth understanding of these rare endocrinologic conditions, as well as more effective therapeutic management.
Collapse
Affiliation(s)
- Nicolas C. Nicolaides
- First Department of Pediatrics, Division of Endocrinology, Metabolism and Diabetes, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
- Center of Clinical, Experimental Surgery and Translational Research, Division of Endocrinology and Metabolism, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- University Research Institute of Maternal and Child Health and Precision Medicine, University of Athens, 11527 Athens, Greece
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
- Correspondence:
| | - Evangelia Charmandari
- First Department of Pediatrics, Division of Endocrinology, Metabolism and Diabetes, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
- Center of Clinical, Experimental Surgery and Translational Research, Division of Endocrinology and Metabolism, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
16
|
Chalfun G, Reis MM, de Oliveira MBG, de Araújo Brasil A, Dos Santos Salú M, da Cunha AJLA, Prata-Barbosa A, de Magalhães-Barbosa MC. Perinatal stress and methylation of the NR3C1 gene in newborns: systematic review. Epigenetics 2021; 17:1003-1019. [PMID: 34519616 DOI: 10.1080/15592294.2021.1980691] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Adverse experiences in the perinatal period have been associated with the methylation of the human glucocorticoid receptor gene (NR3C1) and long-term diseases. We conducted a systematic review on the association between adversities in the perinatal period and DNA methylation in the 1 F region of the NR3C1 gene in newborns. We explored the MEDLINE, Web of Science, Scopus, Scielo, and Lilacs databases without time or language limitations. Two independent reviewers performed the selection of articles and data extraction. A third participated in the methodological quality assessment and consensus meetings at all stages. Finally, ten studies were selected. Methodological quality was considered moderate in six and low in four. Methylation changes were reported in 41 of the 47 CpG sites of exon 1 F. Six studies addressed maternal conditions during pregnancy: two reported methylation changes at the same sites (CpG 10, 13, 20, 21 and 47), and four at one or more sites from CpG 35 to 39. Four studies addressed neonatal parameters and morbidities: methylation changes at the same sites 4, 8, 10, 16, 25, and 35 were reported in two. Hypermethylation associated with stressful conditions prevailed. Hypomethylation was more often associated with protective conditions (maternal-foetal attachment during pregnancy, breast milk intake, higher birth weight or Apgar). In conclusion, methylation changes in several sites of the 1 F region of the NR3C1 gene in newborns and very young infants were associated with perinatal stress, but more robust and comparable results are needed to corroborate site-specific associations.
Collapse
Affiliation(s)
- Georgia Chalfun
- Department of Pediatrics, D'Or Institute for Research and Education (Idor), Rio de Janeiro, RJ, Brazil.,Federal University of Rio de Janeiro (Ufrj), Rio De Janeiro, RJ, Brazil
| | - Marcelo Martins Reis
- Department of Pediatrics, D'Or Institute for Research and Education (Idor), Rio de Janeiro, RJ, Brazil
| | | | - Aline de Araújo Brasil
- Department of Pediatrics, D'Or Institute for Research and Education (Idor), Rio de Janeiro, RJ, Brazil
| | - Margarida Dos Santos Salú
- Department of Pediatrics, D'Or Institute for Research and Education (Idor), Rio de Janeiro, RJ, Brazil
| | - Antônio José Ledo Alves da Cunha
- Department of Pediatrics, D'Or Institute for Research and Education (Idor), Rio de Janeiro, RJ, Brazil.,Federal University of Rio de Janeiro (Ufrj), Rio De Janeiro, RJ, Brazil
| | - Arnaldo Prata-Barbosa
- Department of Pediatrics, D'Or Institute for Research and Education (Idor), Rio de Janeiro, RJ, Brazil.,Federal University of Rio de Janeiro (Ufrj), Rio De Janeiro, RJ, Brazil
| | | |
Collapse
|
17
|
Birbo B, Madu EE, Madu CO, Jain A, Lu Y. Role of HSP90 in Cancer. Int J Mol Sci 2021; 22:ijms221910317. [PMID: 34638658 PMCID: PMC8508648 DOI: 10.3390/ijms221910317] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 11/25/2022] Open
Abstract
HSP90 is a vital chaperone protein conserved across all organisms. As a chaperone protein, it correctly folds client proteins. Structurally, this protein is a dimer with monomer subunits that consist of three main conserved domains known as the N-terminal domain, middle domain, and the C-terminal domain. Multiple isoforms of HSP90 exist, and these isoforms share high homology. These isoforms are present both within the cell and outside the cell. Isoforms HSP90α and HSP90β are present in the cytoplasm; TRAP1 is present in the mitochondria; and GRP94 is present in the endoplasmic reticulum and is likely secreted due to post-translational modifications (PTM). HSP90 is also secreted into an extracellular environment via an exosome pathway that differs from the classic secretion pathway. Various co-chaperones are necessary for HSP90 to function. Elevated levels of HSP90 have been observed in patients with cancer. Despite this observation, the possible role of HSP90 in cancer was overlooked because the chaperone was also present in extreme amounts in normal cells and was vital to normal cell function, as observed when the drastic adverse effects resulting from gene knockout inhibited the production of this protein. Differences between normal HSP90 and HSP90 of the tumor phenotype have been better understood and have aided in making the chaperone protein a target for cancer drugs. One difference is in the conformation: HSP90 of the tumor phenotype is more susceptible to inhibitors. Since overexpression of HSP90 is a factor in tumorigenesis, HSP90 inhibitors have been studied to combat the adverse effects of HSP90 overexpression. Monotherapies using HSP90 inhibitors have shown some success; however, combination therapies have shown better results and are thus being studied for a more effective cancer treatment.
Collapse
Affiliation(s)
- Bereket Birbo
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Elechi E. Madu
- Departments of Biological Sciences, University of Memphis, Memphis, TN 38152, USA; (E.E.M.); (C.O.M.); (A.J.)
| | - Chikezie O. Madu
- Departments of Biological Sciences, University of Memphis, Memphis, TN 38152, USA; (E.E.M.); (C.O.M.); (A.J.)
| | - Aayush Jain
- Departments of Biological Sciences, University of Memphis, Memphis, TN 38152, USA; (E.E.M.); (C.O.M.); (A.J.)
| | - Yi Lu
- Health Science Center, Department of Pathology and Laboratory Medicine, University of Tennessee, Memphis, TN 38163, USA
- Correspondence: ; Tel.: +1-(901)-448-5436; Fax: +1-(901)-448-5496
| |
Collapse
|
18
|
Kowalczyk W, Waliszczak G, Jach R, Dulińska-Litewka J. Steroid Receptors in Breast Cancer: Understanding of Molecular Function as a Basis for Effective Therapy Development. Cancers (Basel) 2021; 13:4779. [PMID: 34638264 PMCID: PMC8507808 DOI: 10.3390/cancers13194779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 12/21/2022] Open
Abstract
Breast cancer remains one of the most important health problems worldwide. The family of steroid receptors (SRs), which comprise estrogen (ER), progesterone (PR), androgen (AR), glucocorticoid (GR) and mineralocorticoid (MR) receptors, along with a receptor for a secosteroid-vitamin D, play a crucial role in the pathogenesis of the disease. They function predominantly as nuclear receptors to regulate gene expression, however, their full spectrum of action reaches far beyond this basic mechanism. SRs are involved in a vast variety of interactions with other proteins, including extensive crosstalk with each other. How they affect the biology of a breast cell depends on such factors as post-translational modifications, expression of coregulators, or which SR isoform is predominantly synthesized in a given cellular context. Although ER has been successfully utilized as a breast cancer therapy target for years, research on therapeutic application of other SRs is still ongoing. Designing effective hormone therapies requires thorough understanding of the molecular function of the SRs. Over the past decades, huge amount of data was obtained in multiple studies exploring this field, therefore in this review we attempt to summarize the current knowledge in a comprehensive way.
Collapse
Affiliation(s)
- Wojciech Kowalczyk
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Kraków, Poland; (W.K.); (G.W.)
| | - Grzegorz Waliszczak
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Kraków, Poland; (W.K.); (G.W.)
| | - Robert Jach
- Department of Gynecology and Obstetrics, Jagiellonian University Medical College, 23 Kopernika St., 31-501 Kraków, Poland;
| | - Joanna Dulińska-Litewka
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Kraków, Poland; (W.K.); (G.W.)
| |
Collapse
|
19
|
Keijser R, Olofsdotter S, Nilsson KW, Åslund C. Three-way interaction effects of early life stress, positive parenting and FKBP5 in the development of depressive symptoms in a general population. J Neural Transm (Vienna) 2021; 128:1409-1424. [PMID: 34423378 PMCID: PMC8423649 DOI: 10.1007/s00702-021-02405-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022]
Abstract
FKBP5 gene–environment interaction (cG × E) studies have shown diverse results, some indicating significant interaction effects between the gene and environmental stressors on depression, while others lack such results. Moreover, FKBP5 has a potential role in the diathesis stress and differential susceptibility theorem. The aim of the present study was to evaluate whether a cG × E interaction effect of FKBP5 single-nucleotide polymorphisms (SNPs) or haplotype and early life stress (ELS) on depressive symptoms among young adults was moderated by a positive parenting style (PASCQpos), through the frameworks of the diathesis stress and differential susceptibility theorem. Data were obtained from the Survey of Adolescent Life in Västmanland Cohort Study, including 1006 participants and their guardians. Data were collected during 2012, when the participants were 13 and 15 years old (Wave I: DNA), 2015, when participants were 16 and 18 years old (Wave II: PASCQpos, depressive symptomology and ELS) and 2018, when participants were 19 and 21 years old (Wave III: depressive symptomology). Significant three-way interactions were found for the FKBP5 SNPs rs1360780, rs4713916, rs7748266 and rs9394309, moderated by ELS and PASCQpos, on depressive symptoms among young adults. Diathesis stress patterns of interaction were observed for the FKBP5 SNPs rs1360780, rs4713916 and rs9394309, and differential susceptibility patterns of interaction were observed for the FKBP5 SNP rs7748266. Findings emphasize the possible role of FKBP5 in the development of depressive symptoms among young adults and contribute to the understanding of possible differential susceptibility effects of FKBP5.
Collapse
Affiliation(s)
- Rebecka Keijser
- Department of Neuroscience, Uppsala University, Uppsala, Sweden. .,Centre for Clinical Research, Uppsala University, Västmanland County Hospital Västerås, 721 89, Västerås, Sweden. .,School of Health, Care and Social Welfare, Mälardalen University, Västerås, Sweden.
| | - Susanne Olofsdotter
- Centre for Clinical Research, Uppsala University, Västmanland County Hospital Västerås, 721 89, Västerås, Sweden
| | - Kent W Nilsson
- Department of Neuroscience, Uppsala University, Uppsala, Sweden.,Centre for Clinical Research, Uppsala University, Västmanland County Hospital Västerås, 721 89, Västerås, Sweden.,School of Health, Care and Social Welfare, Mälardalen University, Västerås, Sweden
| | - Cecilia Åslund
- Centre for Clinical Research, Uppsala University, Västmanland County Hospital Västerås, 721 89, Västerås, Sweden.,Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
20
|
Ishii S. The Role of Histone Deacetylase 3 Complex in Nuclear Hormone Receptor Action. Int J Mol Sci 2021; 22:ijms22179138. [PMID: 34502048 PMCID: PMC8431225 DOI: 10.3390/ijms22179138] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Nuclear hormone receptors (NRs) regulate transcription of the target genes in a ligand-dependent manner in either a positive or negative direction, depending on the case. Deacetylation of histone tails is associated with transcriptional repression. A nuclear receptor corepressor (N-CoR) and a silencing mediator for retinoid and thyroid hormone receptors (SMRT) are the main corepressors responsible for gene suppression mediated by NRs. Among numerous histone deacetylases (HDACs), HDAC3 is the core component of the N-CoR/SMRT complex, and plays a central role in NR-dependent repression. Here, the roles of HDAC3 in ligand-independent repression, gene repression by orphan NRs, NRs antagonist action, ligand-induced repression, and the activation of a transcriptional coactivator are reviewed. In addition, some perspectives regarding the non-canonical mechanisms of HDAC3 action are discussed.
Collapse
Affiliation(s)
- Sumiyasu Ishii
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi 371-8501, Japan
| |
Collapse
|
21
|
Pan C, Kang J, Hwang JS, Li J, Boese AC, Wang X, Yang L, Boggon TJ, Chen GZ, Saba NF, Shin DM, Magliocca KR, Jin L, Kang S. Cisplatin-mediated activation of glucocorticoid receptor induces platinum resistance via MAST1. Nat Commun 2021; 12:4960. [PMID: 34400618 PMCID: PMC8368102 DOI: 10.1038/s41467-021-24845-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 07/06/2021] [Indexed: 02/04/2023] Open
Abstract
Agonists of glucocorticoid receptor (GR) are frequently given to cancer patients with platinum-containing chemotherapy to reduce inflammation, but how GR influences tumor growth in response to platinum-based chemotherapy such as cisplatin through inflammation-independent signaling remains largely unclear. Combined genomics and transcription factor profiling reveal that MAST1, a critical platinum resistance factor that reprograms the MAPK pathway, is upregulated upon cisplatin exposure through activated transcription factor GR. Mechanistically, cisplatin binds to C622 in GR and recruits GR to the nucleus for its activation, which induces MAST1 expression and consequently reactivates MEK signaling. GR nuclear translocation and MAST1 upregulation coordinately occur in patient tumors collected after platinum treatment, and align with patient treatment resistance. Co-treatment with dexamethasone and cisplatin restores cisplatin-resistant tumor growth, whereas addition of the MAST1 inhibitor lestaurtinib abrogates tumor growth while preserving the inhibitory effect of dexamethasone on inflammation in vivo. These findings not only provide insights into the underlying mechanism of GR in cisplatin resistance but also offer an effective alternative therapeutic strategy to improve the clinical outcome of patients receiving platinum-based chemotherapy with GR agonists.
Collapse
Affiliation(s)
- Chaoyun Pan
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA, USA
| | - JiHoon Kang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA, USA
| | - Jung Seok Hwang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA, USA
| | - Jie Li
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA, USA
| | - Austin C Boese
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA, USA
| | - Xu Wang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA, USA
| | - Likun Yang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA, USA
| | - Titus J Boggon
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Georgia Z Chen
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA, USA
| | - Nabil F Saba
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA, USA
| | - Dong M Shin
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA, USA
| | - Kelly R Magliocca
- Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Lingtao Jin
- Department of Anatomy and Cell Biology, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Sumin Kang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
22
|
Womersley JS, Nothling J, Toikumo S, Malan-Müller S, van den Heuvel LL, McGregor NW, Seedat S, Hemmings SMJ. Childhood trauma, the stress response and metabolic syndrome: A focus on DNA methylation. Eur J Neurosci 2021; 55:2253-2296. [PMID: 34169602 DOI: 10.1111/ejn.15370] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 05/13/2021] [Accepted: 06/12/2021] [Indexed: 12/12/2022]
Abstract
Childhood trauma (CT) is well established as a potent risk factor for the development of mental disorders. However, the potential of adverse early experiences to exert chronic and profound effects on physical health, including aberrant metabolic phenotypes, has only been more recently explored. Among these consequences is metabolic syndrome (MetS), which is characterised by at least three of five related cardiometabolic traits: hypertension, insulin resistance/hyperglycaemia, raised triglycerides, low high-density lipoprotein and central obesity. The deleterious effects of CT on health outcomes may be partially attributable to dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, which coordinates the response to stress, and the consequent fostering of a pro-inflammatory environment. Epigenetic tags, such as DNA methylation, which are sensitive to environmental influences provide a means whereby the effects of CT can be biologically embedded and persist into adulthood to affect health and well-being. The methylome regulates the transcription of genes involved in the stress response, metabolism and inflammation. This narrative review examines the evidence for DNA methylation in CT and MetS in order to identify shared neuroendocrine and immune correlates that may mediate the increased risk of MetS following CT exposure. Our review specifically highlights differential methylation of FKBP5, the gene that encodes FK506-binding protein 51 and has pleiotropic effects on stress responding, inflammation and energy metabolism, as a central candidate to understand the molecular aetiology underlying CT-associated MetS risk.
Collapse
Affiliation(s)
- Jacqueline S Womersley
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jani Nothling
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,Gender and Health Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Sylvanus Toikumo
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Stefanie Malan-Müller
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Leigh L van den Heuvel
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nathaniel W McGregor
- Systems Genetics Working Group, Department of Genetics, Faculty of Agriculture, Stellenbosch University, Stellenbosch, South Africa
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Sîan M J Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
23
|
Ohhara Y, Hoshino G, Imahori K, Matsuyuki T, Yamakawa-Kobayashi K. The Nutrient-Responsive Molecular Chaperone Hsp90 Supports Growth and Development in Drosophila. Front Physiol 2021; 12:690564. [PMID: 34239451 PMCID: PMC8258382 DOI: 10.3389/fphys.2021.690564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/27/2021] [Indexed: 01/09/2023] Open
Abstract
Animals can sense internal nutrients, such as amino acids/proteins, and are able to modify their developmental programs in accordance with their nutrient status. In the fruit fly, Drosophila melanogaster, amino acid/protein is sensed by the fat body, an insect adipose tissue, through a nutrient sensor, target of rapamycin (TOR) complex 1 (TORC1). TORC1 promotes the secretion of various peptide hormones from the fat body in an amino acid/protein-dependent manner. Fat-body-derived peptide hormones stimulate the release of insulin-like peptides, which are essential growth-promoting anabolic hormones, from neuroendocrine cells called insulin-producing cells (IPCs). Although the importance of TORC1 and the fat body-IPC axis has been elucidated, the mechanism by which TORC1 regulates the expression of insulinotropic signal peptides remains unclear. Here, we show that an evolutionarily conserved molecular chaperone, heat shock protein 90 (Hsp90), promotes the expression of insulinotropic signal peptides. Fat-body-selective Hsp90 knockdown caused the transcriptional downregulation of insulinotropic signal peptides. IPC activity and systemic growth were also impaired in fat-body-selective Hsp90 knockdown animals. Furthermore, Hsp90 expression depended on protein/amino acid availability and TORC1 signaling. These results strongly suggest that Hsp90 serves as a nutrient-responsive gene that upregulates the fat body-IPC axis and systemic growth. We propose that Hsp90 is induced in a nutrient-dependent manner to support anabolic metabolism during the juvenile growth period.
Collapse
Affiliation(s)
- Yuya Ohhara
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Genki Hoshino
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kyosuke Imahori
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Tomoya Matsuyuki
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kimiko Yamakawa-Kobayashi
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
24
|
Pauletto E, Eickhoff N, Padrão NA, Blattner C, Zwart W. TRIMming Down Hormone-Driven Cancers: The Biological Impact of TRIM Proteins on Tumor Development, Progression and Prognostication. Cells 2021; 10:1517. [PMID: 34208621 PMCID: PMC8234875 DOI: 10.3390/cells10061517] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/08/2021] [Accepted: 06/12/2021] [Indexed: 02/06/2023] Open
Abstract
The tripartite motif (TRIM) protein family is attracting increasing interest in oncology. As a protein family based on structure rather than function, a plethora of biological activities are described for TRIM proteins, which are implicated in multiple diseases including cancer. With hormone-driven cancers being among the leading causes of cancer-related death, TRIM proteins have been described to portrait tumor suppressive or oncogenic activities in these tumor types. This review describes the biological impact of TRIM proteins in relation to hormone receptor biology, as well as hormone-independent mechanisms that contribute to tumor cell biology in prostate, breast, ovarian and endometrial cancer. Furthermore, we point out common functions of TRIM proteins throughout the group of hormone-driven cancers. An improved understanding of the biological impact of TRIM proteins in cancer may pave the way for improved prognostication and novel therapeutics, ultimately improving cancer care for patients with hormone-driven cancers.
Collapse
Affiliation(s)
- Eleonora Pauletto
- Institute of Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of Technology, PO-Box 3640, 76021 Karlsruhe, Germany;
| | - Nils Eickhoff
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands; (N.E.); (N.A.P.)
| | - Nuno A. Padrão
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands; (N.E.); (N.A.P.)
| | - Christine Blattner
- Institute of Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of Technology, PO-Box 3640, 76021 Karlsruhe, Germany;
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands; (N.E.); (N.A.P.)
| |
Collapse
|
25
|
Noureddine LM, Trédan O, Hussein N, Badran B, Le Romancer M, Poulard C. Glucocorticoid Receptor: A Multifaceted Actor in Breast Cancer. Int J Mol Sci 2021; 22:ijms22094446. [PMID: 33923160 PMCID: PMC8123001 DOI: 10.3390/ijms22094446] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is one of the most common cancers in women worldwide. Even though the role of estrogen receptor alpha (ERα) is extensively documented in the development of breast tumors, other members of the nuclear receptor family have emerged as important players. Synthetic glucocorticoids (GCs) such as dexamethasone (dex) are commonly used in BC for their antiemetic, anti-inflammatory, as well as energy and appetite stimulating properties, and to manage the side effects of chemotherapy. However, dex triggers different effects depending on the BC subtype. The glucocorticoid receptor (GR) is also an important marker in BC, as high GR expression is correlated with a poor and good prognosis in ERα-negative and ERα-positive BCs, respectively. Indeed, though it drives the expression of pro-tumorigenic genes in ERα-negative BCs and is involved in resistance to chemotherapy and metastasis formation, dex inhibits estrogen-mediated cell proliferation in ERα-positive BCs. Recently, a new natural ligand for GR called OCDO was identified. OCDO is a cholesterol metabolite with oncogenic properties, triggering mammary cell proliferation in vitro and in vivo. In this review, we summarize recent data on GR signaling and its involvement in tumoral breast tissue, via its different ligands.
Collapse
Affiliation(s)
- Lara Malik Noureddine
- Université de Lyon, F-69000 Lyon, France; (L.M.N.); (O.T.); (M.L.R.)
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences, Lebanese University, Hadat-Beirut 90656, Lebanon; (N.H.); (B.B.)
| | - Olivier Trédan
- Université de Lyon, F-69000 Lyon, France; (L.M.N.); (O.T.); (M.L.R.)
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- Centre Leon Bérard, Oncology Department, F-69000 Lyon, France
| | - Nader Hussein
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences, Lebanese University, Hadat-Beirut 90656, Lebanon; (N.H.); (B.B.)
| | - Bassam Badran
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences, Lebanese University, Hadat-Beirut 90656, Lebanon; (N.H.); (B.B.)
| | - Muriel Le Romancer
- Université de Lyon, F-69000 Lyon, France; (L.M.N.); (O.T.); (M.L.R.)
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Coralie Poulard
- Université de Lyon, F-69000 Lyon, France; (L.M.N.); (O.T.); (M.L.R.)
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- Correspondence: ; Tel.: +33-478-786-663; Fax: +33-478-782-720
| |
Collapse
|
26
|
Maurya VK, DeMayo FJ, Lydon JP. Illuminating the "Black Box" of Progesterone-Dependent Embryo Implantation Using Engineered Mice. Front Cell Dev Biol 2021; 9:640907. [PMID: 33898429 PMCID: PMC8058370 DOI: 10.3389/fcell.2021.640907] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/11/2021] [Indexed: 02/04/2023] Open
Abstract
Synchrony between progesterone-driven endometrial receptivity and the arrival of a euploid blastocyst is essential for embryo implantation, a prerequisite event in the establishment of a successful pregnancy. Advancement of embryo implantation within the uterus also requires stromal fibroblasts of the endometrium to transform into epithelioid decidual cells, a progesterone-dependent cellular transformation process termed decidualization. Although progesterone is indispensable for these cellular processes, the molecular underpinnings are not fully understood. Because human studies are restricted, much of our fundamental understanding of progesterone signaling in endometrial periimplantation biology comes from in vitro and in vivo experimental systems. In this review, we focus on the tremendous progress attained with the use of engineered mouse models together with high throughput genome-scale analysis in disclosing key signals, pathways and networks that are required for normal endometrial responses to progesterone during the periimplantation period. Many molecular mediators and modifiers of the progesterone response are implicated in cross talk signaling between epithelial and stromal cells of the endometrium, an intercellular communication system that is critical for the ordered spatiotemporal control of embryo invasion within the maternal compartment. Accordingly, derailment of these signaling systems is causally linked with infertility, early embryo miscarriage and gestational complications that symptomatically manifest later in pregnancy. Such aberrant progesterone molecular responses also contribute to endometrial pathologies such as endometriosis, endometrial hyperplasia and cancer. Therefore, our review makes the case that further identification and functional analysis of key molecular mediators and modifiers of the endometrial response to progesterone will not only provide much-needed molecular insight into the early endometrial cellular changes that promote pregnancy establishment but lend credible hope for the development of more effective mechanism-based molecular diagnostics and precision therapies in the clinical management of female infertility, subfertility and a subset of gynecological morbidities.
Collapse
Affiliation(s)
- Vineet K Maurya
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, United States
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, United States
| |
Collapse
|
27
|
Matsumoto D, Nomura W. Molecular Switch Engineering for Precise Genome Editing. Bioconjug Chem 2021; 32:639-648. [PMID: 33825445 DOI: 10.1021/acs.bioconjchem.1c00088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Genome editing technology commenced in 1996 with the discovery of the first zinc-finger nuclease. Application of Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) associated protein 9 (Cas9) technology to genome editing of mammalian cells allowed researchers to use genome editing more easily and cost-effectively. However, one of the technological problems that remains to be solved is "off-target effects", which are unexpected mutations in nontarget DNA. One significant improvement in genome editing technology has been achieved with molecular/protein engineering. The key to this engineering is a "switch" to control function. In this review, we discuss recent efforts to design novel "switching" systems for precise editing using genome editing tools.
Collapse
Affiliation(s)
- Daisuke Matsumoto
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan
| | - Wataru Nomura
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan
| |
Collapse
|
28
|
Liu L, Cheng J, Wei F, Pang L, Zhi Z, Yang W, Tan W. The Influence Mechanism of Abnormal Immunophilin FKBP52 on the Expression Levels of PR-A and PR-B in Endometriosis Based on Endometrial Stromal Cell Model in Vitro. Organogenesis 2021; 17:1-13. [PMID: 33464989 PMCID: PMC8162255 DOI: 10.1080/15476278.2020.1860424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/10/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022] Open
Abstract
As a chaperone protein of progesterone receptor (PR), FK-506 Binding Protein 52 (FKBP52) can enhance the activity of PR, but the mechanism of FKBP52 affecting PR expression levels is difficult to clarify. Here, we report a novel in vitro model of ectopic endometrial stromal cells (ESCM) established through the primary culture method of endometrial stromal cells, which is used to study the details of relationship between FKBP52 abnormality and PR expression level in endometriosis (Ems). At the same time, the clinical study of the relationship between FKBP52 and PR expression levels in endometriosis patients was used to verify our conclusions. The results showed that the expression levels of PR-A mRNA and protein in endometriosis are positively correlated with FKBP52 and the abnormality of FKBP52 leads to the decrease of PR-B mRNA and protein expression. When FKBP52 was deleted or reduced, the expression levels of m RNA and protein of PR-A and PR-B have decreased leading to the proliferation of ectopic endometrium cells (ESC) and the occurrence of endometriosis, which is consistent with the expression levels of clinical endometriosis patients and fully confirms our conclusions and reliability of the model, and has great guiding significance for the research of Ems disease occurrence mechanism and clinical treatment.
Collapse
Affiliation(s)
- Liling Liu
- Department of Reproductive Medicine and Genetics Center, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, P. R. China
| | - Junping Cheng
- Department of Reproductive Medicine and Genetics Center, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, P. R. China
| | - Fu Wei
- Department of Reproductive Medicine and Genetics Center, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, P. R. China
| | - Lihong Pang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of GuangXi Medical University, Nanning, P. R. China
| | - Zhifu Zhi
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of GuangXi Medical University, Nanning, P. R. China
| | - Wenmei Yang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of GuangXi Medical University, Nanning, P. R. China
| | - Weihong Tan
- Department of Reproductive Medicine and Genetics Center, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, P. R. China
| |
Collapse
|
29
|
Calaf GM, Bleak TC, Roy D. Signs of carcinogenicity induced by parathion, malathion, and estrogen in human breast epithelial cells (Review). Oncol Rep 2021; 45:24. [PMID: 33649804 PMCID: PMC7905528 DOI: 10.3892/or.2021.7975] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer development is a multistep process that may be induced by a variety of compounds. Environmental substances, such as pesticides, have been associated with different human diseases. Organophosphorus pesticides (OPs) are among the most commonly used insecticides. Despite the fact that organophosphorus has been associated with an increased risk of cancer, particularly hormone-mediated cancer, few prospective studies have examined the use of individual insecticides. Reported results have demonstrated that OPs and estrogen induce a cascade of events indicative of the transformation of human breast epithelial cells. In vitro studies analyzing an immortalized non-tumorigenic human breast epithelial cell line may provide us with an approach to analyzing cell transformation under the effects of OPs in the presence of estrogen. The results suggested hormone-mediated effects of these insecticides on the risk of cancer among women. It can be concluded that, through experimental models, the initiation of cancer can be studied by analyzing the steps that transform normal breast cells to malignant ones through certain substances, such as pesticides and estrogen. Such substances cause genomic instability, and therefore tumor formation in the animal, and signs of carcinogenesis in vitro. Cancer initiation has been associated with an increase in genomic instability, indicated by the inactivation of tumor-suppressor genes and activation of oncogenes in the presence of malathion, parathion, and estrogen. In the present study, a comprehensive summary of the impact of OPs in human and rat breast cancer, specifically their effects on the cell cycle, signaling pathways linked to epidermal growth factor, drug metabolism, and genomic instability in an MCF-10F estrogen receptor-negative breast cell line is provided.
Collapse
Affiliation(s)
- Gloria M Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| | - Tammy C Bleak
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| | - Debasish Roy
- Department of Natural Sciences, Hostos Community College of The City University of New York, Bronx, NY 10451, USA
| |
Collapse
|
30
|
Dean ME, Johnson JL. Human Hsp90 cochaperones: perspectives on tissue-specific expression and identification of cochaperones with similar in vivo functions. Cell Stress Chaperones 2021; 26:3-13. [PMID: 33037995 PMCID: PMC7736379 DOI: 10.1007/s12192-020-01167-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
The Hsp90 molecular chaperone is required for the function of hundreds of different cellular proteins. Hsp90 and a cohort of interacting proteins called cochaperones interact with clients in an ATP-dependent cycle. Cochaperone functions include targeting clients to Hsp90, regulating Hsp90 ATPase activity, and/or promoting Hsp90 conformational changes as it progresses through the cycle. Over the last 20 years, the list of cochaperones identified in human cells has grown from the initial six identified in complex with steroid hormone receptors and protein kinases to about fifty different cochaperones found in Hsp90-client complexes. These cochaperones may be placed into three groups based on shared Hsp90 interaction domains. Available evidence indicates that cochaperones vary in client specificity, abundance, and tissue distribution. Many of the cochaperones have critical roles in regulation of cancer and neurodegeneration. A more limited set of cochaperones have cellular functions that may be limited to tissues such as muscle and testis. It is likely that a small set of cochaperones are part of the core Hsp90 machinery required for the folding of a wide range of clients. The presence of more selective cochaperones may allow greater control of Hsp90 activities across different tissues or during development.
Collapse
Affiliation(s)
- Marissa E Dean
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844-3051, USA
| | - Jill L Johnson
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844-3051, USA.
- Center for Reproductive Biology, University of Idaho, Moscow, ID, 83844-3051, USA.
| |
Collapse
|
31
|
Cardaci TD, Machek SB, Wilburn DT, Heileson JL, Willoughby DS. High-Load Resistance Exercise Augments Androgen Receptor-DNA Binding and Wnt/β-Catenin Signaling without Increases in Serum/Muscle Androgens or Androgen Receptor Content. Nutrients 2020; 12:E3829. [PMID: 33333818 PMCID: PMC7765240 DOI: 10.3390/nu12123829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 12/21/2022] Open
Abstract
The purpose of this study was (1) to determine the effect of single bouts of volume- and intensity-equated low- (LL) and high-load (HL) full-body resistance exercise (RE) on AR-DNA binding, serum/muscle testosterone and dihydrotestosterone, muscle androgen receptor (AR), and AR-DNA binding; and, (2) to determine the effect of RE on sarcoplasmic and nucleoplasmic β-catenin concentrations in order to determine their impact on mediating AR-DNA binding in the absence/presence of serum/muscle androgen and AR protein. In a cross-over design, 10 resistance-trained males completed volume- and intensity-equated LL and HL full-body RE. Blood and muscle samples were collected at pre-, 3 h-, and 24 h post-exercise. Separate 2 × 3 factorial analyses of variance (ANOVAs) with repeated measures and pairwise comparisons with a Bonferroni adjustment were used to analyze the main effects. No significant differences were observed in muscle AR, testosterone, dihydrotestosterone, or serum total testosterone in either condition (p > 0.05). Serum-free testosterone was significantly decreased 3 h post-exercise and remained significantly less than baseline 24 h post-exercise in both conditions (p < 0.05). In response to HL, AR-DNA binding significantly increased at 3 h post-exercise (p < 0.05), whereas no significant differences were observed at any time in response to LL (p > 0.05). Moreover, sarcoplasmic β-catenin was significantly greater in HL (p < 0.05) without significant changes in nucleoplasmic β-catenin (p > 0.05). In conclusion, increases in AR-DNA binding in response to HL RE indicate AR signaling may be load-dependent. Furthermore, despite the lack of increase in serum and muscle androgens or AR content following HL RE, elevations in AR-DNA binding with elevated sarcoplasmic β-catenin suggests β-catenin may be facilitating this response.
Collapse
Affiliation(s)
- Thomas D. Cardaci
- Department of Health, Human Performance and Recreation, Robbins College of Health and Human Sciences, Baylor University, Waco, TX 76706, USA; (T.D.C.); (S.B.M.); (D.T.W.); (J.L.H.)
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Steven B. Machek
- Department of Health, Human Performance and Recreation, Robbins College of Health and Human Sciences, Baylor University, Waco, TX 76706, USA; (T.D.C.); (S.B.M.); (D.T.W.); (J.L.H.)
| | - Dylan T. Wilburn
- Department of Health, Human Performance and Recreation, Robbins College of Health and Human Sciences, Baylor University, Waco, TX 76706, USA; (T.D.C.); (S.B.M.); (D.T.W.); (J.L.H.)
| | - Jeffery L. Heileson
- Department of Health, Human Performance and Recreation, Robbins College of Health and Human Sciences, Baylor University, Waco, TX 76706, USA; (T.D.C.); (S.B.M.); (D.T.W.); (J.L.H.)
| | - Darryn S. Willoughby
- Department of Health, Human Performance and Recreation, Robbins College of Health and Human Sciences, Baylor University, Waco, TX 76706, USA; (T.D.C.); (S.B.M.); (D.T.W.); (J.L.H.)
- School of Exercise and Sport Science, Mayborn College of Health Sciences, University of Mary Hardin-Baylor, Belton, TX 76513, USA
| |
Collapse
|
32
|
Mal R, Magner A, David J, Datta J, Vallabhaneni M, Kassem M, Manouchehri J, Willingham N, Stover D, Vandeusen J, Sardesai S, Williams N, Wesolowski R, Lustberg M, Ganju RK, Ramaswamy B, Cherian MA. Estrogen Receptor Beta (ERβ): A Ligand Activated Tumor Suppressor. Front Oncol 2020; 10:587386. [PMID: 33194742 PMCID: PMC7645238 DOI: 10.3389/fonc.2020.587386] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
Estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ) belong to a superfamily of nuclear receptors called steroid hormone receptors, which, upon binding ligand, dimerize and translocate to the nucleus where they activate or repress the transcription of a large number of genes, thus modulating critical physiologic processes. ERβ has multiple isoforms that show differing association with prognosis. Expression levels of the full length ERβ1 isoform are often lower in aggressive cancers as compared to normal tissue. High ERβ1 expression is associated with improved overall survival in women with breast cancer. The promise of ERβ activation, as a potential targeted therapy, is based on concurrent activation of multiple tumor suppressor pathways with few side effects compared to chemotherapy. Thus, ERβ is a nuclear receptor with broad-spectrum tumor suppressor activity, which could serve as a potential treatment target in a variety of human cancers including breast cancer. Further development of highly selective agonists that lack ERα agonist activity, will be necessary to fully harness the potential of ERβ.
Collapse
Affiliation(s)
- Rahul Mal
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Alexa Magner
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Joel David
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Jharna Datta
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Meghna Vallabhaneni
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Mahmoud Kassem
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| | - Jasmine Manouchehri
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Natalie Willingham
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Daniel Stover
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| | - Jeffery Vandeusen
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| | - Sagar Sardesai
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| | - Nicole Williams
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| | - Robert Wesolowski
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| | - Maryam Lustberg
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| | - Ramesh K Ganju
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Bhuvaneswari Ramaswamy
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| | - Mathew A Cherian
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
33
|
Wang L, Xu X, Jiang Z, You Q. Modulation of protein fate decision by small molecules: targeting molecular chaperone machinery. Acta Pharm Sin B 2020; 10:1904-1925. [PMID: 33163343 PMCID: PMC7606112 DOI: 10.1016/j.apsb.2020.01.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/10/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022] Open
Abstract
Modulation of protein fate decision and protein homeostasis plays a significant role in altering the protein level, which acts as an orientation to develop drugs with new mechanisms. The molecular chaperones exert significant biological functions on modulation of protein fate decision and protein homeostasis under constantly changing environmental conditions through extensive protein–protein interactions (PPIs) with their client proteins. With the help of molecular chaperone machinery, the processes of protein folding, trafficking, quality control and degradation of client proteins could be arranged properly. The core members of molecular chaperones, including heat shock proteins (HSPs) family and their co-chaperones, are emerging as potential drug targets since they are involved in numerous disease conditions. Development of small molecule modulators targeting not only chaperones themselves but also the PPIs among chaperones, co-chaperones and clients is attracting more and more attention. These modulators are widely used as chemical tools to study chaperone networks as well as potential drug candidates for a broader set of diseases. Here, we reviewed the key checkpoints of molecular chaperone machinery HSPs as well as their co-chaperones to discuss the small molecules targeting on them for modulation of protein fate decision.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoli Xu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhengyu Jiang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Corresponding authors. Tel./fax: +86 25 83271351.
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Corresponding authors. Tel./fax: +86 25 83271351.
| |
Collapse
|
34
|
Abstract
Nuclear receptors have a broad spectrum of biological functions in normal physiology and in the pathology of various diseases, including glomerular disease. The primary therapies for many glomerular diseases are glucocorticoids, which exert their immunosuppressive and direct podocyte protective effects via the glucocorticoid receptor (GR). As glucocorticoids are associated with important adverse effects and a substantial proportion of patients show resistance to these therapies, the beneficial effects of selective GR modulators are now being explored. Peroxisome proliferator-activated receptor-γ (PPARγ) agonism using thiazolidinediones has potent podocyte cytoprotective and nephroprotective effects. Repurposing of thiazolidinediones or identification of novel PPARγ modulators are potential strategies to treat non-diabetic glomerular disease. Retinoic acid receptor-α is the key mediator of the renal protective effects of retinoic acid, and repair of the endogenous retinoic acid pathway offers another potential therapeutic strategy for glomerular disease. Vitamin D receptor, oestrogen receptor and mineralocorticoid receptor modulators regulate podocyte injury in experimental models. Further studies are needed to better understand the mechanisms of these nuclear receptors, evaluate their synergistic pathways and identify their novel modulators. Here, we focus on the role of nuclear receptors in podocyte biology and non-diabetic glomerular disease.
Collapse
|
35
|
Severinova E, Alikunju S, Deng W, Dhawan P, Sayed N, Sayed D. Glucocorticoid Receptor-Binding and Transcriptome Signature in Cardiomyocytes. J Am Heart Assoc 2020; 8:e011484. [PMID: 30866692 PMCID: PMC6475044 DOI: 10.1161/jaha.118.011484] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Background An increase in serum cortisol has been identified as a risk factor for cardiac failure, which highlights the impact of glucocorticoid signaling in cardiomyocytes and its influence in the progression of failure. Dexamethasone, a synthetic glucocorticoid, is sufficient for induction of cardiomyocyte hypertrophy, but little is known of the glucocorticoid receptor (GR) genome‐binding and ‐dependent transcriptional changes that mediate this phenotype. Methods and Results In this study using high‐resolution sequencing, we identified genomic targets of GR and associated change in the transcriptome after 1 and 24 hours of dexamethasone treatment. We showed that GR associates with 6482 genes in the cardiac genome, with differential regulation of 738 genes. Interestingly, alignment of the chromatin immunoprecipitation and RNA sequencing data show that, after 1 hour, 69% of differentially regulated genes are associated with GR and identify as regulators of RNA pol II–dependent transcription. Conversely, after 24 hours only 45% of regulated genes are associated with GR and involved in dilated and hypertrophic cardiomyopathies as well as other growth‐related pathways. In addition, our data also reveal that a majority of genes (76.42%) associated with GR show incremental changes in transcript abundance and are genes involved in basic cellular processes that might be regulated by the dynamics of promoter‐paused RNA pol II, as seen in hearts undergoing hypertrophy. In vivo administration of dexamethasone resulted in similar changes in the cardiac transcriptome, as seen in isolated cardiomyocytes. Conclusions Our data reveal genome‐wide GR binding sites in cardiomyocytes, identify novel targets and GR‐dependent change in the transcriptome that induces and contributes to cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Elena Severinova
- 1 Department of Cell Biology and Molecular Medicine Rutgers New Jersey Medical School Newark NJ
| | - Saleena Alikunju
- 1 Department of Cell Biology and Molecular Medicine Rutgers New Jersey Medical School Newark NJ
| | - Wei Deng
- 1 Department of Cell Biology and Molecular Medicine Rutgers New Jersey Medical School Newark NJ
| | - Puneet Dhawan
- 2 Genomics Center Department of Microbiology Biochemistry and Molecular Genetics Rutgers New Jersey Medical School Newark NJ
| | - Nazish Sayed
- 3 Cardiovascular Institute Stanford University Stanford CA
| | - Danish Sayed
- 1 Department of Cell Biology and Molecular Medicine Rutgers New Jersey Medical School Newark NJ
| |
Collapse
|
36
|
Mazaira GI, Echeverria PC, Galigniana MD. Nucleocytoplasmic shuttling of the glucocorticoid receptor is influenced by tetratricopeptide repeat-containing proteins. J Cell Sci 2020; 133:jcs238873. [PMID: 32467326 DOI: 10.1242/jcs.238873] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 04/07/2020] [Indexed: 08/31/2023] Open
Abstract
It has been demonstrated that tetratricopeptide-repeat (TPR) domain proteins regulate the subcellular localization of glucocorticoid receptor (GR). This study analyses the influence of the TPR domain of high molecular weight immunophilins in the retrograde transport and nuclear retention of GR. Overexpression of the TPR peptide prevented efficient nuclear accumulation of the GR by disrupting the formation of complexes with the dynein-associated immunophilin FKBP52 (also known as FKBP4), the adaptor transporter importin-β1 (KPNB1), the nuclear pore-associated glycoprotein Nup62 and nuclear matrix-associated structures. We also show that nuclear import of GR was impaired, whereas GR nuclear export was enhanced. Interestingly, the CRM1 (exportin-1) inhibitor leptomycin-B abolished the effects of TPR peptide overexpression, although the drug did not inhibit GR nuclear export itself. This indicates the existence of a TPR-domain-dependent mechanism for the export of nuclear proteins. The expression balance of those TPR domain proteins bound to the GR-Hsp90 complex may determine the subcellular localization and nucleocytoplasmic properties of the receptor, and thereby its pleiotropic biological properties in different tissues and cell types.
Collapse
Affiliation(s)
- Gisela I Mazaira
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Pablo C Echeverria
- Département de Biologie Cellulaire, Université de Genève, Sciences III, Genève 1211, Switzerland
| | - Mario D Galigniana
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
- Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires 1428, Argentina
| |
Collapse
|
37
|
Yorio T, Patel GC, Clark AF. Glucocorticoid-Induced Ocular Hypertension: Origins and New Approaches to Minimize. EXPERT REVIEW OF OPHTHALMOLOGY 2020; 15:145-157. [PMID: 38274668 PMCID: PMC10810227 DOI: 10.1080/17469899.2020.1762488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 04/27/2020] [Indexed: 10/24/2022]
Abstract
Introduction Glucocorticoids (GCs) have unique actions in their combined anti-inflammatory and immunosuppressive activities and are among the most commonly-prescribed drugs, particularly for inflammatory conditions. They are often used clinically to treat inflammatory eye diseases like uveitis, optic neuritis, conjunctivitis, keratitis and others, but are often accompanied by side effects, like ocular hypertension that can be vision threatening. Areas covered The review will focus on the complex molecular mechanism of action of GCs that involve both transactivation and transrepression and their use therapeutically that can cause significant systemic side effects, particularly ocular hypertension that can lead to glaucoma. Expert Opinion While we are still unclear as to all the mechanisms responsible for GC-induced ocular hypertension, however, there are potential novel therapies that are in development that can separate some of the anti-inflammatory therapeutic efficacy from their ocular hypertension side effect. This review provides some insight into these approaches.
Collapse
Affiliation(s)
- Thomas Yorio
- Department of Pharmacology & Neuroscience, UNTHSC
- North Texas Eye Research, Institute, UNTHSC
| | | | - Abbot F. Clark
- Department of Pharmacology & Neuroscience, UNTHSC
- North Texas Eye Research, Institute, UNTHSC
| |
Collapse
|
38
|
Palumbo MC, Dominguez S, Dong H. Sex differences in hypothalamic-pituitary-adrenal axis regulation after chronic unpredictable stress. Brain Behav 2020; 10:e01586. [PMID: 32154650 PMCID: PMC7177572 DOI: 10.1002/brb3.1586] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/06/2020] [Accepted: 02/10/2020] [Indexed: 02/02/2023] Open
Abstract
INTRODUCTION Exposure to stress, mediated through the hypothalamic-pituitary-adrenal (HPA) axis, elicits sex differences in endocrine, neurological, and behavioral responses. However, the sex-specific factors that confer resilience or vulnerability to stress and stress-associated psychiatric disorders remain largely unknown. The evident sex differences in stress-related disease prevalence suggest the underlying differences in the neurobiological underpinnings of HPA axis regulation. METHOD Here, we used a chronic unpredictable stress (CUS) model to investigate the behavioral and biochemical responses of the HPA axis in C57BL/6 mice. Animals were tested in the open field and forced swim test to examine anxiety-like and depressive-like behaviors. Plasma corticosterone levels were measured after behavior and CUS, and glucocorticoid receptor (GR) expression and cytosolic and nuclear fractions of binding protein FKBP51 expression were taken to measure function and regulation of the stress response. RESULTS Our results indicate increased depressive-like behavior in males and females which correlated with increased corticosterone levels following CUS. However, females displayed more anxiety-like behaviors with and without CUS. Interestingly, we found trends toward dysregulation of GR protein expression in CUS females, and an increase in the GR inhibitory protein, FKBP51, in the cytosol of CUS males but not females. CONCLUSION These results suggest biochemical alterations to the HPA axis regulation which may elicit a glucocorticoid resistance in females after chronic stress and may contribute to the sex-biased vulnerability to stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Michelle C Palumbo
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sky Dominguez
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
39
|
Jung JA, Yoon YJ. Development of Non-Immunosuppressive FK506 Derivatives as Antifungal and Neurotrophic Agents. J Microbiol Biotechnol 2020; 30:1-10. [PMID: 31752059 PMCID: PMC9728173 DOI: 10.4014/jmb.1911.11008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
FK506, also known as tacrolimus, is a clinically important immunosuppressant drug and has promising therapeutic potentials owing to its antifungal, neuroprotective, and neuroregenerative activities. To generate various FK506 derivatives, the structure of FK506 has been modified by chemical methods or biosynthetic pathway engineering. Herein, we describe the mode of the antifungal action of FK506 and the structure-activity relationship of FK506 derivatives in the context of immunosuppressive and antifungal activities. In addition, we discuss the neurotrophic mechanism of FK506 known to date, along with the neurotrophic FK506 derivatives with significantly reduced immunosuppressive activity. This review suggests the possibility to generate novel FK506 derivatives as antifungal as well as neuroregenerative/neuroprotective agents.
Collapse
Affiliation(s)
- Jin A Jung
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yeo Joon Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea,Corresponding author Phone: +82-2-3277-4082 Fax: +82-2-3277-3419 E-mail:
| |
Collapse
|
40
|
Ambrocio-Ortiz E, Pérez-Rubio G, Ramírez-Venegas A, Hernández-Zenteno R, Del Angel-Pablo AD, Pérez-Rodríguez ME, Salazar AM, Abarca-Rojano E, Falfán-Valencia R. Effect of SNPs in HSP Family Genes, Variation in the mRNA and Intracellular Hsp Levels in COPD Secondary to Tobacco Smoking and Biomass-Burning Smoke. Front Genet 2020; 10:1307. [PMID: 31993068 PMCID: PMC6962328 DOI: 10.3389/fgene.2019.01307] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022] Open
Abstract
Heat shock proteins (HSP) genes are a superfamily responsible for encoding highly conserved proteins that are important for antigen presentation, immune response regulation, and cellular housekeeping processes. These proteins can be increased by cellular stress related to pollution, for example, smoke from biomass burning and/or tobacco smoking. Single nucleotide polymorphisms (SNPs) in these genes could affect the levels of their proteins, as well as the susceptibility to developing lung diseases, such as chronic obstructive pulmonary disease (COPD), related to the exposure to environmental factors. Methods: The subjects included were organized into two comparison groups: 1,103 smokers (COPD patients, COPD-S = 360; smokers without COPD, SWOC = 743) and 442 never-smokers who were chronically exposed to biomass smoke (COPD patients, COPD-BS = 244; exposed without COPD, BBES = 198). Eight SNPs in three HSP genes were selected and genotyped: four in HSPA1A, two in HSPA1B, and two in HSPA1L. Sputum expectoration was induced to obtain pulmonary cells and relative quantification of mRNA expression. Subsequently, the intracellular protein levels of total Hsp27, phosphorylated Hsp27 (Hsp27p), Hsp60, and Hsp70 were measured in a sample of 148 individuals selected based on genotypes. Results: In the smokers’ group, by a dominant model analysis, we found associations between rs1008438 (CA+AA; p = 0.006, OR = 1.52), rs6457452 (CT+TT; p = 0.000015, OR = 1.99), and rs2763979 (CT+TT; p = 0.007, OR = 1.60) and the risk to COPD. Among those exposed to biomass-burning smoke, only rs1008438 (CA+AA; p < 0.01, OR = 2.84) was associated. Additionally, rs1008438 was associated with disease severity in the COPD-S group (AA; p = 0.02, OR = 2.09). An increase in the relative expression level of HSPA1A was found (12-fold change) in the COPD-BS over the BBES group. Differences in Hsp27 and Hsp60 proteins levels were found (p < 0.05) in the comparison of COPD-S vs. SWOC. Among biomass-burning smoke-exposed subjects, differences in the levels of all proteins (p < 0.05) were detected. Conclusion: SNPs in HSP genes are associated with the risk of COPD and severe forms of the disease. Differences in the intracellular Hsp levels are altered depending on the exposition source.
Collapse
Affiliation(s)
- Enrique Ambrocio-Ortiz
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Alejandra Ramírez-Venegas
- Tobacco Smoking and COPD Research Department, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Rafael Hernández-Zenteno
- Tobacco Smoking and COPD Research Department, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Alma D Del Angel-Pablo
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Martha E Pérez-Rodríguez
- Unit of Medical Research in Immunology CMN S-XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Ana M Salazar
- Department of Genomic Medicine and Environmental Toxicology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Edgar Abarca-Rojano
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
41
|
Cruz-Topete D, Oakley RH, Cidlowski JA. Glucocorticoid Signaling and the Aging Heart. Front Endocrinol (Lausanne) 2020; 11:347. [PMID: 32528419 PMCID: PMC7266971 DOI: 10.3389/fendo.2020.00347] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/04/2020] [Indexed: 01/12/2023] Open
Abstract
A decline in normal physiological functions characterizes the aging process. While some of these changes are benign, the decrease in the function of the cardiovascular system that occurs during aging leads to the activation of pathological processes associated with an increased risk for heart disease and its complications. Imbalances in endocrine function are also common occurrences during the aging process. Glucocorticoids are primary stress hormones and are critical regulators of energy metabolism, inflammation, and cardiac function. Glucocorticoids exert their actions by binding the glucocorticoid receptor (GR) and, in some instances, to the mineralocorticoid receptor (MR). GR and MR are members of the nuclear receptor family of ligand-activated transcription factors. There is strong evidence that imbalances in GR and MR signaling in the heart have a causal role in cardiac disease. The extent to which glucocorticoids play a role in the aging heart, however, remains unclear. This review will summarize the positive and negative direct and indirect effects of glucocorticoids on the heart and the latest molecular and physiological evidence on how alterations in glucocorticoid signaling lead to changes in cardiac structure and function. We also briefly discuss the effects of other hormones systems such as estrogens and GH/IGF-1 on different cardiovascular cells during aging. We will also review the link between imbalances in glucocorticoid levels and the molecular processes responsible for promoting cardiomyocyte dysfunction in aging. Finally, we will discuss the potential for selectively manipulating glucocorticoid signaling in cardiomyocytes, which may represent an improved therapeutic approach for preventing and treating age-related heart disease.
Collapse
Affiliation(s)
- Diana Cruz-Topete
- Department of Molecular and Cellular Physiology, Center for Cardiovascular Diseases and Sciences, LSU Health Sciences Center, Shreveport, LA, United States
- *Correspondence: Diana Cruz-Topete
| | - Robert H. Oakley
- Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - John A. Cidlowski
- Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
- John A. Cidlowski
| |
Collapse
|
42
|
Cheng D, Liu H, Zhang H, Tan K, Ye T, Ma H, Li S, Zheng H. Effects of thermal stress on mortality and HSP90 expression levels in the noble scallops Chlamys nobilis with different total carotenoid content. Cell Stress Chaperones 2020; 25:105-117. [PMID: 31768900 PMCID: PMC6985358 DOI: 10.1007/s12192-019-01052-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 11/04/2019] [Accepted: 11/10/2019] [Indexed: 12/21/2022] Open
Abstract
The noble scallop Chlamys nobilis is an economically important marine bivalve cultivated in the southern sea of China since the 1980s. Unfortunately, mass mortality of this scallop species often occurs in summer. The present study was conducted to investigate whether the expression of heat shock protein 90 (HSP90) and level of carotenoids could enhance high-temperature stress resistance in scallop. First, the HSP90 homolog of C. nobilis (designated CnHSP90) was identified and cloned. The complete cDNA sequence of CnHSP90 was 2631 bp, including a 2181-bp open reading frame (ORF) encoding a 726 amino acid polypeptide with five HSP90 family signatures, and sharing high homology with members of the HSP90 family. CnHSP90 was ubiquitously expressed in all examined tissues including the intestine, kidney, adductor, mantle, gill, and gonad, with the highest in the gonad. Golden and brown scallops, which contain significantly different total carotenoid content (TCC), were subjected to acute thermal challenge, and the LTE50 (semi-lethal temperature at 36 h heat shock) and LTI50 (semi-lethal time after heat shock) as well as the correlation between CnHSP90 gene expression and TCC were determined. The LTE50 of golden scallop (32.14 °C) was higher than that of brown scallops (31.19 °C), with longer LTI50 at all tested temperatures, indicating that golden scallops were more resistant to thermal stress than brown scallops. Similarly, the mRNA expression levels of CnHSP90 in gill of golden scallops were significantly higher (P < 0.05) than that of brown scallops at 6, 12, 24, and 36 h, with a strong positive correlation between CnHSP90 expression level and TCC. This suggests that both carotenoids and HSP90 levels could improve thermal resistance in the noble scallops.
Collapse
Affiliation(s)
- Dewei Cheng
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China
- Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Hongxing Liu
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China
- Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Hongkuan Zhang
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China
- Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Karsoon Tan
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China
- Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Ting Ye
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China
- Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Hongyu Ma
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China
- Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Shengkang Li
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China
- Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Huaiping Zheng
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China.
- Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China.
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China.
| |
Collapse
|
43
|
Guo H, Liu M, Zhang L, Wang L, Hou W, Ma Y, Ma Y. The Critical Period for Neuroprotection by Estrogen Replacement Therapy and the Potential Underlying Mechanisms. Curr Neuropharmacol 2020; 18:485-500. [PMID: 31976839 PMCID: PMC7457406 DOI: 10.2174/1570159x18666200123165652] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 12/03/2019] [Accepted: 01/14/2020] [Indexed: 01/13/2023] Open
Abstract
17β-Estradiol (estradiol or E2) is a steroid hormone that has been broadly applied as a neuroprotective therapy for a variety of neurodegenerative and cerebrovascular disorders such as ischemic stroke, Alzheimer's disease, and Parkinson's disease. Several laboratory and clinical studies have reported that Estrogen Replacement Therapy (ERT) had no effect against these diseases in elderly postmenopausal women, and at worst, increased their risk of onset and mortality. This review focuses on the growing body of data from in vitro and animal models characterizing the potential underlying mechanisms and signaling pathways that govern successful neuroprotection by ERT, including the roles of E2 receptors in mediating neuroprotection, E2 genomic regulation of apoptosis- related pathways, membrane-bound receptor-mediated non-genomic signaling pathways, and the antioxidant mechanisms of E2. Also discussed is the current evidence for a critical period of effective treatment with estrogen following natural or surgical menopause and the outcomes of E2 administration within an advantageous time period. The known mechanisms governing the duration of the critical period include depletion of E2 receptors, the switch to a ketogenic metabolic profile by neuronal mitochondria, and a decrease in acetylcholine that accompanies E2 deficiency. Also the major clinical trials and observational studies concerning postmenopausal Hormone Therapy (HT) are summarized to compare their outcomes with respect to neurological disease and discuss their relevance to the critical period hypothesis. Finally, potential controversies and future directions for this field are discussed throughout the review.
Collapse
Affiliation(s)
| | | | | | | | | | - Yaqun Ma
- Address correspondence to these authors at the Anesthesia and Operation Center, The First Medical Center to Chinese PLA General Hospital, Beijing 100853, China; Tel: +86 010 66938152; E-mail: and Department of Anesthesiology, The Seventh Medical Center to Chinese PLA General Hospital, Beijing 100700, China; E-mail:
| | - Yulong Ma
- Address correspondence to these authors at the Anesthesia and Operation Center, The First Medical Center to Chinese PLA General Hospital, Beijing 100853, China; Tel: +86 010 66938152; E-mail: and Department of Anesthesiology, The Seventh Medical Center to Chinese PLA General Hospital, Beijing 100700, China; E-mail:
| |
Collapse
|
44
|
Kumar R. Emerging role of glucocorticoid receptor in castration resistant prostate cancer: A potential therapeutic target. J Cancer 2020; 11:696-701. [PMID: 31942193 PMCID: PMC6959034 DOI: 10.7150/jca.32497] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 09/24/2019] [Indexed: 12/15/2022] Open
Abstract
Glucocorticoids are used as co-medication with chemotherapy for solid tumors to reduce inflammation as well as cytotoxic side effects and are effective in easing symptoms related to chemotherapy. However, emerging evidence suggests that glucocorticoids may contribute to failure of chemotherapy and tumor progression of castration resistant prostate cancer (CRPC). Thus, in recent years, glucocorticoid signaling pathway has become an important therapeutic target for CRPC. Understanding the exact mechanism of GR actions in CRPC is still work in progress. There are studies suggesting that GR expression can be upregulated following antiandrogen therapy and can contribute to resistance to hormone therapies. Therefore, attempts are being made to develop selective glucocorticoid receptor modulators that specifically antagonize GR activity in CRPC, and thereby provide clinical benefit by blocking the GR mechanism for tumor growth. However, more targeted approaches are needed to understand the role of the GR-mediated target gene expressions in the CRPC that could in near future lead to better therapeutic options for patients with CRPC. This review highlights current perspectives on the actions of glucocorticoids during tumor progression and metastasis of CRPC.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Biomedical Sciences, College of Medicine, University of Houston, Houston, TX, USA
| |
Collapse
|
45
|
The shift in the balance between osteoblastogenesis and adipogenesis of mesenchymal stem cells mediated by glucocorticoid receptor. Stem Cell Res Ther 2019; 10:377. [PMID: 31805987 PMCID: PMC6896503 DOI: 10.1186/s13287-019-1498-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/09/2019] [Accepted: 11/18/2019] [Indexed: 12/31/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells capable of differentiating into several tissues, such as bone, cartilage, and fat. Glucocorticoids affect a variety of biological processes such as proliferation, differentiation, and apoptosis of various cell types, including osteoblasts, adipocytes, or chondrocytes. Glucocorticoids exert their function by binding to the glucocorticoid receptor (GR). Physiological concentrations of glucocorticoids stimulate osteoblast proliferation and promote osteogenic differentiation of MSCs. However, pharmacological concentrations of glucocorticoids can not only induce apoptosis of osteoblasts and osteocytes but can also reduce proliferation and inhibit the differentiation of osteoprogenitor cells. Several signaling pathways, including the Wnt, TGFβ/BMP superfamily and Notch signaling pathways, transcription factors, post-transcriptional regulators, and other regulators, regulate osteoblastogenesis and adipogenesis of MSCs mediated by GR. These signaling pathways target key transcription factors, such as Runx2 and TAZ for osteogenesis and PPARγ and C/EBPs for adipogenesis. Glucocorticoid-induced osteonecrosis and osteoporosis are caused by various factors including dysfunction of bone marrow MSCs. Transplantation of MSCs is valuable in regenerative medicine for the treatment of osteonecrosis of the femoral head, osteoporosis, osteogenesis imperfecta, and other skeletal disorders. However, the mechanism of inducing MSCs to differentiate toward the osteogenic lineage is the key to an efficient treatment. Thus, a better understanding of the molecular mechanisms behind the imbalance between GR-mediated osteoblastogenesis and adipogenesis of MSCs would not only help us to identify the pathogenic causes of glucocorticoid-induced osteonecrosis and osteoporosis but also promote future clinical applications for stem cell-based tissue engineering and regenerative medicine. Here, we primarily review the signaling mechanisms involved in adipogenesis and osteogenesis mediated by GR and discuss the factors that control the adipo-osteogenic balance.
Collapse
|
46
|
Liu K, Hao X, Wang Q, Hou J, Lai X, Dong Z, Shao C. Genome-wide identification and characterization of heat shock protein family 70 provides insight into its divergent functions on immune response and development of Paralichthys olivaceus. PeerJ 2019; 7:e7781. [PMID: 31737440 PMCID: PMC6855204 DOI: 10.7717/peerj.7781] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/28/2019] [Indexed: 01/16/2023] Open
Abstract
Flatfish undergo extreme morphological development and settle to a benthic in the adult stage, and are likely to be more susceptible to environmental stress. Heat shock proteins 70 (hsp70) are involved in embryonic development and stress response in metazoan animals. However, the evolutionary history and functions of hsp70 in flatfish are poorly understood. Here, we identified 15 hsp70 genes in the genome of Japanese flounder (Paralichthys olivaceus), a flatfish endemic to northwestern Pacific Ocean. Gene structure and motifs of the Japanese flounder hsp70 were conserved, and there were few structure variants compared to other fish species. We constructed a maximum likelihood tree to understand the evolutionary relationship of the hsp70 genes among surveyed fish. Selection pressure analysis suggested that four genes, hspa4l, hspa9, hspa13, and hyou1, showed signs of positive selection. We then extracted transcriptome data on the Japanese flounder with Edwardsiella tarda to induce stress, and found that hspa9, hspa12b, hspa4l, hspa13, and hyou1 were highly expressed, likely to protect cells from stress. Interestingly, expression patterns of hsp70 genes were divergent in different developmental stages of the Japanese flounder. We found that at least one hsp70 gene was always highly expressed at various stages of embryonic development of the Japanese flounder, thereby indicating that hsp70 genes were constitutively expressed in the Japanese flounder. Our findings provide basic and useful resources to better understand hsp70 genes in flatfish.
Collapse
Affiliation(s)
- Kaiqiang Liu
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resource, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, QingDao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, QingDao, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Huaihai Institute of Technology, Lianyungang, China
| | - Xiancai Hao
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resource, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, QingDao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, QingDao, China
| | - Qian Wang
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resource, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, QingDao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, QingDao, China
| | - Jilun Hou
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Beidaihe, China
| | - Xiaofang Lai
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Huaihai Institute of Technology, Lianyungang, China
| | - Zhiguo Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Huaihai Institute of Technology, Lianyungang, China
| | - Changwei Shao
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resource, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, QingDao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, QingDao, China
| |
Collapse
|
47
|
Patel GC, Millar JC, Clark AF. Glucocorticoid Receptor Transactivation Is Required for Glucocorticoid-Induced Ocular Hypertension and Glaucoma. Invest Ophthalmol Vis Sci 2019; 60:1967-1978. [PMID: 31050723 PMCID: PMC6890434 DOI: 10.1167/iovs.18-26383] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Purpose Glucocorticoid (GC)–induced ocular hypertension (GC-OHT) is a serious side effect of prolonged GC therapy that can lead to glaucoma and permanent vision loss. GCs cause a plethora of changes in the trabecular meshwork (TM), an ocular tissue that regulates intraocular pressure (IOP). GCs act through the glucocorticoid receptor (GR), and the GR regulates transcription both through transactivation and transrepression. Many of the anti-inflammatory properties of GCs are mediated by GR transrepression, while GR transactivation largely accounts for GC metabolic effects and side effects of GC therapy. There is no evidence showing which of the two mechanisms plays a role in GC-OHT. Methods GRdim transgenic mice (which have active transrepression and impaired transactivation) and wild-type (WT) C57BL/6J mice received weekly periocular dexamethasone acetate (DEX-Ac) injections. IOP, outflow facilities, and biochemical changes to the TM were determined. Results GRdim mice did not develop GC-OHT after continued DEX treatment, while WT mice had significantly increased IOP and decreased outflow facilities. Both TM tissue in eyes of DEX-treated GRdim mice and cultured TM cells isolated from GRdim mice had reduced or no change in the expression of fibronectin, myocilin, collagen type I, and α-smooth muscle actin (α-SMA). GRdim mouse TM (MTM) cells also had a significant reduction in DEX-induced cytoskeletal changes, which was clearly seen in WT MTM cells. Conclusions We provide the first evidence for the role of GR transactivation in regulating GC-mediated gene expression in the TM and in the development of GC-OHT. This discovery suggests a novel therapeutic approach for treating ocular inflammation without causing GC-OHT and glaucoma.
Collapse
Affiliation(s)
- Gaurang C Patel
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - J Cameron Millar
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Abbot F Clark
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| |
Collapse
|
48
|
Gvozdenov Z, Kolhe J, Freeman BC. The Nuclear and DNA-Associated Molecular Chaperone Network. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a034009. [PMID: 30745291 PMCID: PMC6771373 DOI: 10.1101/cshperspect.a034009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Maintenance of a healthy and functional proteome in all cellular compartments is critical to cell and organismal homeostasis. Yet, our understanding of the proteostasis process within the nucleus is limited. Here, we discuss the identified roles of the major molecular chaperones Hsp90, Hsp70, and Hsp60 with client proteins working in diverse DNA-associated pathways. The unique challenges facing proteins in the nucleus are considered as well as the conserved features of the molecular chaperone system in facilitating DNA-linked processes. As nuclear protein inclusions are a common feature of protein-aggregation diseases (e.g., neurodegeneration), a better understanding of nuclear proteostasis is warranted.
Collapse
Affiliation(s)
- Zlata Gvozdenov
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801.,Department Chemie, Technische Universität München, Garching 85748, Germany
| | - Janhavi Kolhe
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801
| | - Brian C Freeman
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
49
|
Biebl MM, Buchner J. Structure, Function, and Regulation of the Hsp90 Machinery. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a034017. [PMID: 30745292 DOI: 10.1101/cshperspect.a034017] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone involved in the maturation of a plethora of substrates ("clients"), including protein kinases, transcription factors, and E3 ubiquitin ligases, positioning Hsp90 as a central regulator of cellular proteostasis. Hsp90 undergoes large conformational changes during its ATPase cycle. The processing of clients by cytosolic Hsp90 is assisted by a cohort of cochaperones that affect client recruitment, Hsp90 ATPase function or conformational rearrangements in Hsp90. Because of the importance of Hsp90 in regulating central cellular pathways, strategies for the pharmacological inhibition of the Hsp90 machinery in diseases such as cancer and neurodegeneration are being developed. In this review, we summarize recent structural and mechanistic progress in defining the function of organelle-specific and cytosolic Hsp90, including the impact of individual cochaperones on the maturation of specific clients and complexes with clients as well as ways of exploiting Hsp90 as a drug target.
Collapse
Affiliation(s)
- Maximilian M Biebl
- Center for Integrated Protein Science, Department of Chemistry, Technische Universität München, D-85748 Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science, Department of Chemistry, Technische Universität München, D-85748 Garching, Germany
| |
Collapse
|
50
|
Hsp70 and Hsp40 inhibit an inter-domain interaction necessary for transcriptional activity in the androgen receptor. Nat Commun 2019; 10:3562. [PMID: 31395886 PMCID: PMC6687723 DOI: 10.1038/s41467-019-11594-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022] Open
Abstract
Molecular chaperones such as Hsp40 and Hsp70 hold the androgen receptor (AR) in an inactive conformation. They are released in the presence of androgens, enabling transactivation and causing the receptor to become aggregation-prone. Here we show that these molecular chaperones recognize a region of the AR N-terminal domain (NTD), including a FQNLF motif, that interacts with the AR ligand-binding domain (LBD) upon activation. This suggests that competition between molecular chaperones and the LBD for the FQNLF motif regulates AR activation. We also show that, while the free NTD oligomerizes, binding to Hsp70 increases its solubility. Stabilizing the NTD-Hsp70 interaction with small molecules reduces AR aggregation and promotes its degradation in cellular and mouse models of the neuromuscular disorder spinal bulbar muscular atrophy. These results help resolve the mechanisms by which molecular chaperones regulate the balance between AR aggregation, activation and quality control. Hsp chaperones stabilize the inactive conformation of androgen receptor (AR) and are released upon hormone-induced AR activation. Here, the authors locate the Hsp binding region on AR, and show that Hsp70 reduces AR aggregation and promotes AR degradation in cellular and mouse models of a neuromuscular disorder.
Collapse
|