1
|
Roessner C, Griep S, Becker A. A land plant phylogenetic framework for GLABROUS INFLORESCENCE STEMS (GIS), SUPERMAN, JAGGED and allies plus their TOPLESS co-repressor. Mol Phylogenet Evol 2024; 201:108195. [PMID: 39260627 DOI: 10.1016/j.ympev.2024.108195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/27/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Members of the plant specific family of C1-1i zincfinger transcriptionfactors (ZF-TFs), such as SUPERMAN, JAGGED, KNUCKLES or GIS,regulatediversedevelopmental processes including sexual reproduction. C1-1is consist of one zinc-finger and one to two EAR domains, connected by large intrinsically disordered regions (IDR). While the role of C1-i1 ZF-TFs in development processes is well known for some genes in Arabidopsis, rice or tomatoa comprehensive and broadphylogenetic background is lacking, yet knowledge of orthology is a requirement for a better understanding of C1-1i-Zf-TFs diverse roles in plants. Here, we provide a fine-grained and land plant wide classification of C1-1i sub-families and their known co-repressors TOPLESS and TOPLESS RELATED. Our work combines the identification of orthologous groups with Maximum-Likelihood phylogeny reconstructions and digital gene expression analyses mining high quality land plant genomes and transcriptomes to generate a comprehensive framework of C1-1i ZF-TF evolution. We show that C1-1i's are low to moderate copy genesand that orthologous genesonly partiallyhaveconserved sub-family and life cycle stage dependent expression pattern across land plants while others are highly diverged. Our workprovides the phylogenetic framework for C1-1i ZF-TFs, s and strengthen C1-1 ZF-TFs as a potential model for IDR-research in plants.
Collapse
Affiliation(s)
| | - Sven Griep
- Bioinformatics and Systems Biology, Justus-Liebig-University, Giessen, Germany
| | - Annette Becker
- Institute of Botany, Justus-Liebig-University, Giessen, Germany.
| |
Collapse
|
2
|
Pabón-Mora N, González F. The gynostemium: More than the sum of its parts with emerging floral complexities. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102609. [PMID: 39083986 DOI: 10.1016/j.pbi.2024.102609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024]
Abstract
Partial or complete floral organ fusion, which occurs in most angiosperm lineages, promotes integration of whorls leading to specialization and complexity. One of the most remarkable floral organ fusions occurs in the gynostemium, a highly specialized structure formed by the congenital fusion of the androecium and the upper portion of the gynoecium. Here we review the gynostemia evolution across flowering plants, the morphological requirements for the synorganization of the two fertile floral whorls, and the molecular basis most likely responsible for such intimate fusion process.
Collapse
Affiliation(s)
| | - Favio González
- Universidad Nacional de Colombia, Facultad de Ciencias, Instituto de Ciencias Naturales, Sede Bogotá, Colombia
| |
Collapse
|
3
|
Lv Y, Li J, Wang Z, Liu Y, Jiang Y, Li Y, Lv Z, Huang X, Peng X, Cao Y, Yang H. Polycomb proteins RING1A/B promote H2A monoubiquitination to regulate female gametophyte development in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4822-4836. [PMID: 38717070 DOI: 10.1093/jxb/erae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/07/2024] [Indexed: 08/29/2024]
Abstract
A functional female gametophyte is the basis of successful sexual reproduction in flowering plants. During female gametophyte development, the megaspore mother cell (MMC), which differentiates from a single subepidermal somatic cell in the nucellus, undergoes meiosis to produce four megaspores; only the one at the chalazal end, referred to as the functional megaspore (FM), then undergoes three rounds of mitosis and develops into a mature embryo sac. Here, we report that RING1A and RING1B (RING1A/B), two functionally redundant Polycomb proteins in Arabidopsis, are critical for female gametophyte development. Mutations of RING1A/B resulted in defects in the specification of the MMC and the FM, and in the subsequent mitosis of the FM, thereby leading to aborted ovules. Detailed analysis revealed that several genes essential for female gametophyte development were ectopically expressed in the ring1a ring1b mutant, including Argonaute (AGO) family genes and critical transcription factors. Furthermore, RING1A/B bound to some of these genes to promote H2A monoubiquitination (H2Aub). Taken together, our study shows that RING1A/B promote H2Aub modification at key genes for female gametophyte development, suppressing their expression to ensure that the development progresses correctly.
Collapse
Affiliation(s)
- Yanfang Lv
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jian Li
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Zheng Wang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Yue Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yili Jiang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yanzhuo Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Zhaopeng Lv
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiaoyi Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiongbo Peng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Ying Cao
- College of Life Sciences, RNA Center, Capital Normal University, Beijing 100048, China
| | - Hongchun Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- RNA Institute, Wuhan University, Wuhan 430072, China
| |
Collapse
|
4
|
Zhu Y, Liu C, Zhao M, Duan Y, Xie J, Wang C. Transcriptome profiling reveals key regulatory factors and metabolic pathways associated with curd formation and development in broccoli. FRONTIERS IN PLANT SCIENCE 2024; 15:1418319. [PMID: 39070909 PMCID: PMC11273133 DOI: 10.3389/fpls.2024.1418319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024]
Abstract
Broccoli, a cruciferous vegetable, has a unique indeterminate inflorescence structure known as curds. It is the main edible organ of broccoli and has a rich nutritional value and health benefits. However, the formation and development mechanism of the curd is still not well understood. In the present study, the shoot apical meristem (SAM) stage and three different development stages of curd (formation stage (FS), expansion stage (ES), and maturation stage (MS)) were identified and subjected to transcriptome sequencing to uncover the potential genes and regulatory networks involved in curd formation and development. The results indicated that the genes associated with the development of SAM such as BolAP1A, BolAP1C, BolCAL, and BolAGL6 play an important role in the abnormal differentiation of the curd apical buds. The genes, BolFRI, BolbHLH89, BolKAN4, BolAGL12, and BolAGL24, displayed significantly differential expression patterns in curd development may function in the regulation of the transition from inflorescence meristem (IM) to floral meristem (FM). Moreover, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the differentially expressed genes (DEGs) indicate that phytohormones, such as auxin (AUX), gibberellins (GA), and abscisic acid (ABA) also play an important role in SAM proliferation and the transition from SAM to IM. In addition, the genes regulating photosynthetic reaction (BolLHCA1, BolLHCB1, BolPsbO, etc.) have a key involvement in the differentiation of secondary IMs during curd expansion. The genes associated with the metabolism of starch and sucrose (e.g., BolSPS4, BolBAM4) were significantly upregulated at the MS should contribute to the maturation of the curd. These findings provide new insights into the potential key regulatory factors and metabolic pathways involved in the formation and development of broccoli curds.
Collapse
Affiliation(s)
- Yinxia Zhu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Ce Liu
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, China
- State Key Laboratory of Vegetable Biobreeding, Tianjin, China
| | - Mengyao Zhao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yuxuan Duan
- College of Life Sciences, Nankai University, Tianjin, China
| | - Jingjing Xie
- College of Life Sciences, Nankai University, Tianjin, China
| | - Chunguo Wang
- College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
5
|
Liu H, Liu Y, Liu F, Zeng L, Xu Y, Jin Q, Wang Y. Genome-wide identification of the Q-type C2H2 zinc finger protein gene family and expression analysis under abiotic stress in lotus (Nelumbo nucifera G.). BMC Genomics 2024; 25:648. [PMID: 38943098 PMCID: PMC11214253 DOI: 10.1186/s12864-024-10546-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/21/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Lotus (Nelumbo nucifera G.) is an important aquatic plant with high ornamental, economic, cultural and ecological values, but abiotic stresses seriously affect its growth and distribution. Q-type C2H2 zinc finger proteins (ZFPs) play an important role in plant growth development and environmental stress responses. Although the Q-type C2H2 gene family has been identified in some plants, limited reports has been carried out it in lotus. RESULTS In this study, we identified 45 Q-type NnZFP members in lotus. Based on the phylogenetic tree, these Q-type NnZFP gene family members were divided into 4 groups, including C1-1i, C1-2i, C1-3i and C1-4i. Promoter cis-acting elements analysis indicated that most Q-type NnZFP gene family members in lotus were associated with response to abiotic stresses. Through collinearity analyses, no tandem duplication gene pairs and 14 segmental duplication gene pairs were identified, which showed that duplication events might play a key role in the expansion of the Q-type NnZFP gene family. The synteny results suggested that 54 and 28 Q-type NnZFP genes were orthologous to Arabidopsis and rice, respectively. The expression patterns of these Q-type NnZFP genes revealed that 30 Q-type NnZFP genes were expressed in at least one lotus tissue. Nn5g30550 showed relatively higher expression levels in all tested tissues. 12 genes were randomly selected with at least one gene from each phylogenetic clade, and the expression of these selected genes were confirmed by qRT-PCR (quantitative real-time polymerase chain reaction). The results indicated that Q-type NnZFP genes were extensively involved in cadmium, drought, salt and cold stresses responses. Among them, 11 genes responded to at least three different stress treatments, especially Nn2g12894, which induced by all four treatments. CONCLUSIONS These results could increase our understanding of the characterization of the Q-type NnZFP gene family and provide relevant information for further functional analysis of Q-type NnZFP genes in plant development, and abiotic stress tolerance in lotus.
Collapse
Affiliation(s)
- Huan Liu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Jiangsu Province, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, People's Republic of China
| | - Yidan Liu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Jiangsu Province, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, People's Republic of China
| | - Fangyu Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lihong Zeng
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Jiangsu Province, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, People's Republic of China
| | - Yingchun Xu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Jiangsu Province, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, People's Republic of China
| | - Qijiang Jin
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Jiangsu Province, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, People's Republic of China
| | - Yanjie Wang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Jiangsu Province, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
6
|
Wang D, Dong X, Zhong MC, Jiang XD, Cui WH, Bendahmane M, Hu JY. Molecular and genetic regulation of petal number variation. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3233-3247. [PMID: 38546444 DOI: 10.1093/jxb/erae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/26/2024] [Indexed: 06/11/2024]
Abstract
Floral forms with an increased number of petals, also known as double-flower phenotypes, have been selected and conserved in many domesticated plants, particularly in ornamentals, because of their great economic value. The molecular and genetic mechanisms that control this trait are therefore of great interest, not only for scientists, but also for breeders. In this review, we summarize current knowledge of the gene regulatory networks of flower initiation and development and known mutations that lead to variation of petal number in many species. In addition to the well-accepted miR172/AP2-like module, for which many questions remain unanswered, we also discuss other pathways in which mutations also lead to the formation of extra petals, such as those involved in meristem maintenance, hormone signalling, epigenetic regulation, and responses to environmental signals. We discuss how the concept of 'natural mutants' and recent advances in genomics and genome editing make it possible to explore the molecular mechanisms underlying double-flower formation, and how such knowledge could contribute to the future breeding and selection of this trait in more crops.
Collapse
Affiliation(s)
- Dan Wang
- Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, 650204 Kunming, Yunnan, China
| | - Xue Dong
- Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, Yunnan, China
| | - Mi-Cai Zhong
- Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiao-Dong Jiang
- Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Wei-Hua Cui
- Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Mohammed Bendahmane
- Laboratoire Reproduction et Développement des Plantes, INRAE-CNRS-Lyon1-ENS, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Jin-Yong Hu
- Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
7
|
Zhuang H, Li YH, Zhao XY, Zhi JY, Chen H, Lan JS, Luo ZJ, Qu YR, Tang J, Peng HP, Li TY, Zhu SY, Jiang T, He GH, Li YF. STAMENLESS1 activates SUPERWOMAN 1 and FLORAL ORGAN NUMBER 1 to control floral organ identities and meristem fate in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:802-822. [PMID: 38305492 DOI: 10.1111/tpj.16637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/13/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024]
Abstract
Floral patterns are unique to rice and contribute significantly to its reproductive success. SL1 encodes a C2H2 transcription factor that plays a critical role in flower development in rice, but the molecular mechanism regulated by it remains poorly understood. Here, we describe interactions of the SL1 with floral homeotic genes, SPW1, and DL in specifying floral organ identities and floral meristem fate. First, the sl1 spw1 double mutant exhibited a stamen-to-pistil transition similar to that of sl1, spw1, suggesting that SL1 and SPW1 may located in the same pathway regulating stamen development. Expression analysis revealed that SL1 is located upstream of SPW1 to maintain its high level of expression and that SPW1, in turn, activates the B-class genes OsMADS2 and OsMADS4 to suppress DL expression indirectly. Secondly, sl1 dl displayed a severe loss of floral meristem determinacy and produced amorphous tissues in the third/fourth whorl. Expression analysis revealed that the meristem identity gene OSH1 was ectopically expressed in sl1 dl in the fourth whorl, suggesting that SL1 and DL synergistically terminate the floral meristem fate. Another meristem identity gene, FON1, was significantly decreased in expression in sl1 background mutants, suggesting that SL1 may directly activate its expression to regulate floral meristem fate. Finally, molecular evidence supported the direct genomic binding of SL1 to SPW1 and FON1 and the subsequent activation of their expression. In conclusion, we present a model to illustrate the roles of SL1, SPW1, and DL in floral organ specification and regulation of floral meristem fate in rice.
Collapse
Affiliation(s)
- Hui Zhuang
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Yu-Huan Li
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Xiao-Yu Zhao
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Jing-Ya Zhi
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Hao Chen
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Jin-Song Lan
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Ze-Jiang Luo
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Yan-Rong Qu
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Jun Tang
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Han-Ping Peng
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Tian-Ye Li
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Si-Ying Zhu
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Tao Jiang
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Guang-Hua He
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Yun-Feng Li
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
8
|
Thiaw MRN, Gantet P. The emerging functions of mini zinc finger (MIF) microproteins in seed plants: A minireview. Biochimie 2024; 218:69-75. [PMID: 37722501 DOI: 10.1016/j.biochi.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/20/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
Mini zinc fingers constitute a class of microproteins that appeared early in evolution and expanded in seeds plants. In this review, the phylogenetic history, the functions and the mode of action of Mini zinc fingers in plants are reported and discussed. It appears that mini zinc fingers play an important role in the control of plant development. They are involved in the control of cell division and expansion, in the switch between the determinate/indeterminate state of the meristems and in the regulation of vegetative growth and floral organ development. Their biochemical mode of action seems to be diverse. In some studies, it has been reported that mini zinc fingers can directly bind to DNA and activate target gene expression, whereas other studies have shown that they can interact with and inhibit the activity of specific zinc finger homeodomain transcription factors or act as adaptor proteins necessary to aggregate polymeric protein complexes corresponding to chromatin remodelling factors negatively regulating the expression of specific genes. The diversity of mode of action for mini zinc finger microproteins suggests a wider range of biological functions than what has been that described in the literature thus far, and their involvement in the response to biotic and abiotic stresses should be further investigated in future studies.
Collapse
Affiliation(s)
- Marie Rose Ndella Thiaw
- UMR DIADE, Université de Montpellier, IRD, 911 Avenue Agropolis, 34394, cedex 5, Montpellier, France.
| | - Pascal Gantet
- UMR DIADE, Université de Montpellier, IRD, 911 Avenue Agropolis, 34394, cedex 5, Montpellier, France.
| |
Collapse
|
9
|
Wiese AJ, Torutaeva E, Honys D. The transcription factors and pathways underpinning male reproductive development in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2024; 15:1354418. [PMID: 38390292 PMCID: PMC10882072 DOI: 10.3389/fpls.2024.1354418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/15/2024] [Indexed: 02/24/2024]
Abstract
As Arabidopsis flowers mature, specialized cells within the anthers undergo meiosis, leading to the production of haploid microspores that differentiate into mature pollen grains, each containing two sperm cells for double fertilization. During pollination, the pollen grains are dispersed from the anthers to the stigma for subsequent fertilization. Transcriptomic studies have identified a large number of genes expressed over the course of male reproductive development and subsequent functional characterization of some have revealed their involvement in floral meristem establishment, floral organ growth, sporogenesis, meiosis, microsporogenesis, and pollen maturation. These genes encode a plethora of proteins, ranging from transcriptional regulators to enzymes. This review will focus on the regulatory networks that control male reproductive development, starting from flower development and ending with anther dehiscence, with a focus on transcription factors and some of their notable target genes.
Collapse
Affiliation(s)
- Anna Johanna Wiese
- Laboratory of Pollen Biology, Institute for Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Elnura Torutaeva
- Laboratory of Pollen Biology, Institute for Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - David Honys
- Laboratory of Pollen Biology, Institute for Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
10
|
Duan SF, Zhao Y, Yu JC, Xiang GS, Xiao L, Cui R, Hu QQ, Baldwin TC, Lu YC, Liang YL. Genome-wide identification and expression analysis of the C2H2-zinc finger transcription factor gene family and screening of candidate genes involved in floral development in Coptis teeta Wall. (Ranunculaceae). Front Genet 2024; 15:1349673. [PMID: 38317660 PMCID: PMC10839097 DOI: 10.3389/fgene.2024.1349673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Background: C2H2-zinc finger transcription factors comprise one of the largest and most diverse gene superfamilies and are involved in the transcriptional regulation of flowering. Although a large number of C2H2 zinc-finger proteins (C2H2-ZFPs) have been well characterized in a number of model plant species, little is known about their expression and function in Coptis teeta. C. teeta displays two floral phenotypes (herkogamy phenotypes). It has been proposed that the C2H2-zinc finger transcription factor family may play a crucial role in the formation of floral development and herkogamy observed in C. teeta. As such, we performed a genome-wide analysis of the C2H2-ZFP gene family in C. teeta. Results: The complexity and diversity of C. teeta C2H2 zinc finger proteins were established by evaluation of their physicochemical properties, phylogenetic relationships, exon-intron structure, and conserved motifs. Chromosome localization showed that 95 members of the C2H2 zinc-finger genes were unevenly distributed across the nine chromosomes of C. teeta, and that these genes were replicated in tandem and segmentally and had undergone purifying selection. Analysis of cis-acting regulatory elements revealed a possible involvement of C2H2 zinc-finger proteins in the regulation of phytohormones. Transcriptome data was then used to compare the expression levels of these genes during the growth and development of the two floral phenotypes (F-type and M-type). These data demonstrate that in groups A and B, the expression levels of 23 genes were higher in F-type flowers, while 15 genes showed higher expressions in M-type flowers. qRT-PCR analysis further revealed that the relative expression was highly consistent with the transcriptome data. Conclusion: These data provide a solid basis for further in-depth studies of the C2H2 zinc finger transcription factor gene family in this species and provide preliminary information on which to base further research into the role of the C2H2 ZFPs gene family in floral development in C. teeta.
Collapse
Affiliation(s)
- Shao-Feng Duan
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Gemplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yan Zhao
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Gemplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Ji-Chen Yu
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Gemplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Gui-Sheng Xiang
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Gemplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Lin Xiao
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Gemplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Rui Cui
- Yunnan Land and Resources Vocational College, Kunming, Yunnan, China
| | - Qian-Qian Hu
- Zhongshan Zhongzhi Pharmaceutical Group Co., Ltd., Zhongshan, Guangdong, China
| | - Timothy Charles Baldwin
- Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom
| | - Ying-Chun Lu
- Yunnan Agricultural University College of Education and Vocational Education, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yan-Li Liang
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Gemplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
11
|
Nakano Y, Kawai M, Arai M, Fujiwara S. Genome editing and molecular analyses of an Arabidopsis transcription factor, LATE FLOWERING. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:337-344. [PMID: 38434115 PMCID: PMC10905564 DOI: 10.5511/plantbiotechnology.23.0920a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/20/2023] [Indexed: 03/05/2024]
Abstract
Correct flower organ formation at the right timing is one of the most important strategies for plants to achieve reproductive success. Ectopic overexpression of LATE FLOWERING (LATE) is known to induce late flowering, partly through suppressing expression of the florigen-encoding gene FLOWERING LOCUS T (FT) in Arabidopsis. LATE is one of the C2H2 zinc finger transcription factors, and it has a canonical transcriptional repression domain called the ethylene-responsive element-binding factor-associated amphiphilic repression (EAR) motif at the end of its C terminus. Therefore, LATE is considered a transcriptional repressor, but its molecular function remains unclear. Our genome-edited late mutants exhibited no distinct phenotype, even in flowering, indicating the presence of redundancy from other factors. To reveal the molecular function of LATE and factors working with it, we investigated its transcriptional activity and interactions with other proteins. Transactivation activity assay showed that LATE possesses transcriptional repression ability, which appears to be attributable to both the EAR motif and other sequences. Yeast two-hybrid assay showed the EAR motif-mediated interaction of LATE with TOPLESS, a transcriptional corepressor. Moreover, LATE could also interact with CRABS CLAW (CRC), one of the most important regulators of floral meristem determinacy, through sequences in LATE other than the EAR motif. Our findings demonstrated the possibility that LATE can form a transcriptional repression complex with CRC for floral meristem determinacy.
Collapse
Affiliation(s)
- Yoshimi Nakano
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Maki Kawai
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Moeca Arai
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Sumire Fujiwara
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
12
|
Garg V, Khan AW, Fengler K, Llaca V, Yuan Y, Vuong TD, Harris C, Chan TF, Lam HM, Varshney RK, Nguyen HT. Near-gapless genome assemblies of Williams 82 and Lee cultivars for accelerating global soybean research. THE PLANT GENOME 2023; 16:e20382. [PMID: 37749941 DOI: 10.1002/tpg2.20382] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 09/27/2023]
Abstract
Complete, gapless telomere-to-telomere chromosome assemblies are a prerequisite for comprehensively investigating the architecture of complex regions, like centromeres or telomeres and removing uncertainties in the order, spacing, and orientation of genes. Using complementary genomics technologies and assembly algorithms, we developed highly contiguous, nearly gapless, genome assemblies for two economically important soybean [Glycine max (L.) Merr] cultivars (Williams 82 and Lee). The centromeres were distinctly annotated on all the chromosomes of both assemblies. We further found that the canonical telomeric repeats were present at the telomeres of all chromosomes of both Williams 82 and Lee genomes. A total of 10 chromosomes in Williams 82 and eight in Lee were entirely reconstructed in single contigs without any gap. Using the combination of ab initio prediction, protein homology, and transcriptome evidence, we identified 58,287 and 56,725 protein-coding genes in Williams 82 and Lee, respectively. The genome assemblies and annotations will serve as a valuable resource for studying soybean genomics and genetics and accelerating soybean improvement.
Collapse
Affiliation(s)
- Vanika Garg
- Murdoch's Centre for Crop & Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Aamir W Khan
- Division of Plant Sciences and Technology, University of Missouri, Columbia, Missouri, USA
| | - Kevin Fengler
- Research and Development, Corteva Agriscience, Johnston, Iowa, USA
| | - Victor Llaca
- Research and Development, Corteva Agriscience, Johnston, Iowa, USA
| | - Yuxuan Yuan
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Tri D Vuong
- Division of Plant Sciences and Technology, University of Missouri, Columbia, Missouri, USA
| | - Charlotte Harris
- Research and Development, Corteva Agriscience, Johnston, Iowa, USA
| | - Ting-Fung Chan
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Hon Ming Lam
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Rajeev K Varshney
- Murdoch's Centre for Crop & Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Henry T Nguyen
- Division of Plant Sciences and Technology, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
13
|
Siena LA, Michaud C, Selles B, Vega JM, Pessino SC, Ingouff M, Ortiz JPA, Leblanc O. TRIMETHYLGUANOSINE SYNTHASE1 mutations decanalize female germline development in Arabidopsis. THE NEW PHYTOLOGIST 2023; 240:597-612. [PMID: 37548040 DOI: 10.1111/nph.19179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/14/2023] [Indexed: 08/08/2023]
Abstract
Here, we report the characterization of a plant RNA methyltransferase, orthologous to yeast trimethylguanosine synthase1 (Tgs1p) and whose downregulation was associated with apomixis in Paspalum grasses. Using phylogenetic analyses and yeast complementation, we determined that land plant genomes all encode a conserved, specific TGS1 protein. Next, we studied the role of TGS1 in female reproduction using reporter lines and loss-of-function mutants in Arabidopsis thaliana. pAtTGS1:AtTGS1 reporters showed a dynamic expression pattern. They were highly active in the placenta and ovule primordia at emergence but, subsequently, showed weak signals in the nucellus. Although expressed throughout gametophyte development, activity became restricted to the female gamete and was also detected after fertilization during embryogenesis. TGS1 depletion altered the specification of the precursor cells that give rise to the female gametophytic generation and to the sporophyte, resulting in the formation of a functional aposporous-like lineage. Our results indicate that TGS1 participates in the mechanisms restricting cell fate acquisition to a single cell at critical transitions throughout the female reproductive lineage and, thus, expand our current knowledge of the mechanisms governing female reproductive fate in plants.
Collapse
Affiliation(s)
- Lorena A Siena
- Instituto de Investigaciones en Ciencias Agrarias de Rosario, CONICET-Universidad Nacional de Rosario, S2125ZAA, Zavalla, Argentina
| | | | - Benjamin Selles
- DIADE, Univ Montpellier, IRD, CIRAD, 34394, Montpellier, France
| | - Juan Manuel Vega
- Instituto de Investigaciones en Ciencias Agrarias de Rosario, CONICET-Universidad Nacional de Rosario, S2125ZAA, Zavalla, Argentina
| | - Silvina C Pessino
- Instituto de Investigaciones en Ciencias Agrarias de Rosario, CONICET-Universidad Nacional de Rosario, S2125ZAA, Zavalla, Argentina
| | - Mathieu Ingouff
- DIADE, Univ Montpellier, IRD, CIRAD, 34394, Montpellier, France
| | - Juan Pablo A Ortiz
- Instituto de Investigaciones en Ciencias Agrarias de Rosario, CONICET-Universidad Nacional de Rosario, S2125ZAA, Zavalla, Argentina
| | - Olivier Leblanc
- DIADE, Univ Montpellier, IRD, CIRAD, 34394, Montpellier, France
| |
Collapse
|
14
|
Cai H, Liu L, Ma S, Aslam M, Qin Y. Insights into the role of phytohormones in plant female germline cell specification. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102439. [PMID: 37604069 DOI: 10.1016/j.pbi.2023.102439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/16/2023] [Accepted: 07/31/2023] [Indexed: 08/23/2023]
Abstract
Germline specification is a fundamental process in plant reproduction, and the Megaspore Mother Cell (MMC), is a critical cell that differentiates and develops into the female gametophyte. While numerous studies have investigated the molecular mechanisms underlying female germline specification, previous reviews have mainly focused on gene regulatory networks, epigenetic pathways, and small RNAs, neglecting the potential contribution of phytohormones to this process. This review aims to address this gap by highlighting recent advances in MMC formation and discussing the roles of specific phytohormones in female germline specialization. Here, we provide a comprehensive overview of the functions of phytohormones in the formation of MMC and their effects on female gametophyte development. Specifically, it examines the roles of gibberellins (GAs), brassinosteroids (BRs), auxins, and cytokinin, in MMC development. Understanding the function of phytohormones in MMC development is essential for comprehending the complex mechanisms underlying plant reproduction. This review adds valuable insights to the existing knowledge on MMC development, providing a new perspective for future research in the field of plant reproduction.
Collapse
Affiliation(s)
- Hanyang Cai
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liping Liu
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Suzhuo Ma
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mohammad Aslam
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuan Qin
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
15
|
Saavedra Núñez G, González-Villanueva E, Ramos P. Floral Development on Vitis vinifera Is Associated with MADS-Box Transcription Factors through the Transcriptional Regulation of VviZIP3. PLANTS (BASEL, SWITZERLAND) 2023; 12:3322. [PMID: 37765487 PMCID: PMC10535425 DOI: 10.3390/plants12183322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Several grapevine (Vitis vinifera L.) cultivars show a tendency to develop parthenocarpic seedless grapes, affecting fruit yield and quality. This reproductive disorder originates in defective ovule fertilization due to a failure in pollen tube growth. Zinc (Zn) is a crucial trace element, playing a vital role in various physiological and metabolic processes. It is particularly essential for the healthy growth of flowers and fruits. Insufficient zinc has been suggested as a potential reason for issues in this development process. This microelement is taken up through a mechanism that involves transporters, including the ZRT-IRT-like protein (ZIP) gene family, associated with the influx of Zn into the cell. In grapevines, 20 genes for ZIP-type transporters have been described. In this study, we analyzed the expression pattern of VviZIP3 during flower development and employ transgenic methods to assess its transcriptional regulation. Furthermore, through computational examination of the promoter region, we identified two CArG boxes, recognized as responsive elements to MADS transcription factors. These factors play a key role in shaping various components of a flower, such as pollen. Our investigation of the VviZIP3 promoter confirms the functionality of these CArG boxes. Overall, our results suggest that the increased expression of VviZIP3 during flowering is likely under the influence of MADS transcription factors.
Collapse
Affiliation(s)
- Germán Saavedra Núñez
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460787, Chile; (G.S.N.); (E.G.-V.)
| | | | - Patricio Ramos
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460787, Chile; (G.S.N.); (E.G.-V.)
- Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3480112, Chile
| |
Collapse
|
16
|
Pelayo MA, Morishita F, Sawada H, Matsushita K, Iimura H, He Z, Looi LS, Katagiri N, Nagamori A, Suzuki T, Širl M, Soukup A, Satake A, Ito T, Yamaguchi N. AGAMOUS regulates various target genes via cell cycle-coupled H3K27me3 dilution in floral meristems and stamens. THE PLANT CELL 2023; 35:2821-2847. [PMID: 37144857 PMCID: PMC10396370 DOI: 10.1093/plcell/koad123] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/08/2023] [Accepted: 04/09/2023] [Indexed: 05/06/2023]
Abstract
The MADS domain transcription factor AGAMOUS (AG) regulates floral meristem termination by preventing maintenance of the histone modification lysine 27 of histone H3 (H3K27me3) along the KNUCKLES (KNU) coding sequence. At 2 d after AG binding, cell division has diluted the repressive mark H3K27me3, allowing activation of KNU transcription prior to floral meristem termination. However, how many other downstream genes are temporally regulated by this intrinsic epigenetic timer and what their functions are remain unknown. Here, we identify direct AG targets regulated through cell cycle-coupled H3K27me3 dilution in Arabidopsis thaliana. Expression of the targets KNU, AT HOOK MOTIF NUCLEAR LOCALIZED PROTEIN18 (AHL18), and PLATZ10 occurred later in plants with longer H3K27me3-marked regions. We established a mathematical model to predict timing of gene expression and manipulated temporal gene expression using the H3K27me3-marked del region from the KNU coding sequence. Increasing the number of del copies delayed and reduced KNU expression in a polycomb repressive complex 2- and cell cycle-dependent manner. Furthermore, AHL18 was specifically expressed in stamens and caused developmental defects when misexpressed. Finally, AHL18 bound to genes important for stamen growth. Our results suggest that AG controls the timing of expression of various target genes via cell cycle-coupled dilution of H3K27me3 for proper floral meristem termination and stamen development.
Collapse
Affiliation(s)
- Margaret Anne Pelayo
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Fumi Morishita
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Haruka Sawada
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Kasumi Matsushita
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Hideaki Iimura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Zemiao He
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Liang Sheng Looi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Naoya Katagiri
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Asumi Nagamori
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Japan
| | - Marek Širl
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague 12844, Czech Republic
| | - Aleš Soukup
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague 12844, Czech Republic
| | - Akiko Satake
- Department of Biology, Faculty of Science, Kyushu University, Nishi-ku 819-0395, Japan
| | - Toshiro Ito
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Nobutoshi Yamaguchi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| |
Collapse
|
17
|
Chen J, Zhang S, Li B, Zhuo C, Hu K, Wen J, Yi B, Ma C, Shen J, Fu T, Tu J. Fine mapping of BnDM1-the gene regulating indeterminate inflorescence in Brassica napus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:151. [PMID: 37302112 DOI: 10.1007/s00122-023-04384-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 05/09/2023] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE A candidate gene Bndm1 related to determinate inflorescence was mapped to a 128-kb interval on C02 in Brassica napus. Brassica napus plants with determinate inflorescence exhibit improved traits in field production, such as lower plant height, improved lodging resistance, and consistent maturity. Compared to plants with indeterminate inflorescence, such features are favorable for mechanized harvesting techniques. Here, using a natural mutant 6138 with determinate inflorescence, it is demonstrated that determinate inflorescence reduces plant height significantly without affecting thousand-grain weight and yield per plant. Determinacy was regulated by a single recessive gene, Bndm1. Using a combination of SNP arrays and map-based cloning, we mapped the locus of determinacy to a 128-kb region on C02. Based on sequence comparisons and the reported functions of candidate genes in this region, we predicted BnaC02.knu (a homolog of KNU in Arabidopsis) as a possible candidate gene of Bndm1 for controlling determinate inflorescence. We found a 623-bp deletion in a region upstream of the KNU promoter in the mutant. This deletion led to the significant overexpression of BnaC02.knu in the mutant compared to that in the ZS11 line. The correlation between this deletion and determinate inflorescence was examined in natural populations. The results indicated that the deletion affected the normal transcription of BnaC02.knu in the plants with determinate inflorescence and played an important role in maintaining flower development. This study presents as a new material for optimizing plant architecture and breeding novel canola varieties suitable for mechanized production. Moreover, our findings provide a theoretical basis for analyzing the molecular mechanisms underlying the formation of determinate inflorescence in B. napus.
Collapse
Affiliation(s)
- Jiao Chen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sihao Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bao Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chenjian Zhuo
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kaining Hu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
18
|
Feng Y, Zhang S, Li J, Pei R, Tian L, Qi J, Azam M, Agyenim-Boateng KG, Shaibu AS, Liu Y, Zhu Z, Li B, Sun J. Dual-function C2H2-type zinc-finger transcription factor GmZFP7 contributes to isoflavone accumulation in soybean. THE NEW PHYTOLOGIST 2023; 237:1794-1809. [PMID: 36352516 DOI: 10.1111/nph.18610] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Isoflavones are a class of secondary metabolites produced by legumes and play important roles in human health and plant stress tolerance. The C2H2 zinc-finger transcription factor (TF) functions in plant stress tolerance, but little is known about its function in isoflavone regulation in soybean (Glycine max). Here, we report a C2H2 zinc-finger TF gene, GmZFP7, which regulates isoflavone accumulation in soybean. Overexpressing GmZFP7 increased the isoflavone concentration in both transgenic hairy roots and plants. By contrast, silencing GmZFP7 expression significantly reduced isoflavone levels. Metabolomic and qRT-PCR analysis revealed that GmZFP7 can increase the flux of the phenylpropanoid pathway. Furthermore, dual-luciferase and electrophoretic mobility shift assays showed that GmZFP7 regulates isoflavone accumulation by influencing the expression of Isoflavone synthase 2 (GmIFS2) and Flavanone 3 β-hydroxylase 1 (GmF3H1). In this study, we demonstrate that GmZFP7 contributes to isoflavone accumulation by regulating the expression of the gateway enzymes (GmIFS2 and GmF3H1) of competing phenylpropanoid pathway branches to direct the metabolic flux into isoflavone. A haplotype analysis indicated that important natural variations were present in GmZFP7 promoters, with P-Hap1 and P-Hap3 being the elite haplotypes. Our findings provide insight into how GmZFP7 regulates the phenylpropanoid pathway and enhances soybean isoflavone content.
Collapse
Affiliation(s)
- Yue Feng
- The National Engineering Research Center for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Shengrui Zhang
- The National Engineering Research Center for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Jing Li
- The National Engineering Research Center for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Ruili Pei
- The National Engineering Research Center for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Ling Tian
- The National Engineering Research Center for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Jie Qi
- The National Engineering Research Center for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Muhammad Azam
- The National Engineering Research Center for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Kwadwo Gyapong Agyenim-Boateng
- The National Engineering Research Center for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Abdulwahab S Shaibu
- The National Engineering Research Center for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yitian Liu
- The National Engineering Research Center for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Zuofeng Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Bin Li
- The National Engineering Research Center for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Junming Sun
- The National Engineering Research Center for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| |
Collapse
|
19
|
Bird DC, Ma C, Pinto S, Leong WH, Tucker MR. Genetic and Phenotypic Analysis of Ovule Development in Arabidopsis. Methods Mol Biol 2023; 2686:261-281. [PMID: 37540362 DOI: 10.1007/978-1-0716-3299-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The plant seed is a remarkable structure that represents the single most important energy source in global diets. The stages of reproductive growth preceding seed formation are particularly important since they influence the number, size, and quality of seed produced. The progenitor of the seed is the ovule, a multicellular organ that produces a female gametophyte while maintaining a range of somatic ovule cells to protect the seed and ensure it receives maternal nourishment. Ovule development has been well characterized in Arabidopsis using a range of molecular, genetic, and cytological assays. These can provide insight into the mechanistic basis for ovule development, and opportunities to explore its evolutionary conservation. In this chapter, we describe some of these methods and tools that can be used to investigate early ovule development and cell differentiation.
Collapse
Affiliation(s)
- Dayton C Bird
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Chao Ma
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Sara Pinto
- LAQV REQUIMTE, Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Weng Herng Leong
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Matthew R Tucker
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia.
| |
Collapse
|
20
|
Zhang S, Tan FQ, Chung CH, Slavkovic F, Devani RS, Troadec C, Marcel F, Morin H, Camps C, Gomez Roldan MV, Benhamed M, Dogimont C, Boualem A, Bendahmane A. The control of carpel determinacy pathway leads to sex determination
in cucurbits. Science 2022; 378:543-549. [DOI: 10.1126/science.add4250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Male and female unisexual flowers evolved from hermaphroditic ancestors, and control of flower sex is useful for plant breeding. We isolated a female-to-male sex transition mutant in melon and identified the causal gene as the carpel identity gene
CRABS CLAW (CRC)
. We show that the master regulator of sex determination in cucurbits, the transcription factor
WIP1
whose expression orchestrates male flower development, recruits the corepressor TOPLESS to the
CRC
promoter to suppress its expression through histone deacetylation. Impairing TOPLESS-WIP1 physical interaction leads to
CRC
expression, carpel determination, and consequently the expression of the stamina inhibitor, the aminocyclopropane-1-carboxylic acid synthase 7 (
CmACS7
), leading to female flower development. Our findings suggest that sex genes evolved to interfere with flower meristematic function, leading to unisexual flower development.
Collapse
Affiliation(s)
- Siqi Zhang
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2); 91190 Gif sur Yvette, France
| | - Feng-Quan Tan
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2); 91190 Gif sur Yvette, France
| | - Ching-Hui Chung
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2); 91190 Gif sur Yvette, France
| | - Filip Slavkovic
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2); 91190 Gif sur Yvette, France
| | - Ravi Sureshbhai Devani
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2); 91190 Gif sur Yvette, France
| | - Christelle Troadec
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2); 91190 Gif sur Yvette, France
| | - Fabien Marcel
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2); 91190 Gif sur Yvette, France
| | - Halima Morin
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2); 91190 Gif sur Yvette, France
| | - Céline Camps
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2); 91190 Gif sur Yvette, France
| | - Maria Victoria Gomez Roldan
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2); 91190 Gif sur Yvette, France
| | - Moussa Benhamed
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2); 91190 Gif sur Yvette, France
| | - Catherine Dogimont
- INRAE, Génétique et Amélioration des Fruits et Légumes (GAFL), 84143 Montfavet, France
| | - Adnane Boualem
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2); 91190 Gif sur Yvette, France
| | - Abdelhafid Bendahmane
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2); 91190 Gif sur Yvette, France
| |
Collapse
|
21
|
Song S, Huang B, Pan Z, Zhong Q, Yang Y, Chen D, Zhu L, Hu G, He M, Wu C, Zouine M, Chen R, Bouzayen M, Hao Y. The SlTPL3-SlWUS module regulates multi-locule formation in tomato by modulating auxin and gibberellin levels in the shoot apical meristem. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2150-2167. [PMID: 35980297 DOI: 10.1111/jipb.13347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Malformed fruits depreciate a plant's market value. In tomato (Solanum lycopersicum), fruit malformation is associated with the multi-locule trait, which involves genes regulating shoot apical meristem (SAM) development. The expression pattern of TOPLESS3 (SlTPL3) throughout SAM development prompted us to investigate its functional significance via RNA interference (RNAi) and clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease 9 (Cas9)-mediated gene editing. Lower SlTPL3 transcript levels resulted in larger fruits with more locules and larger SAMs at the 5 d after germination (DAG5) stage. Differentially expressed genes in the SAM of wild-type (WT) and SlTPL3-RNAi plants, identified by transcriptome deep sequencing (RNA-seq), were enriched in the gibberellin (GA) biosynthesis and plant hormone signaling pathways. Moreover, exogenous auxin and paclobutrazol treatments rescued the multi-locule phenotype, indicating that SlTPL3 affects SAM size by mediating auxin and GA levels in the SAM. Furthermore, SlTPL3 interacted with WUSCHEL (SlWUS), which plays an important role in SAM size maintenance. We conducted RNA-seq and DNA affinity purification followed by sequencing (DAP-seq) analyses to identify the genes regulated by SlTPL3 and SlWUS in the SAM and to determine how they regulate SAM size. We detected 24 overlapping genes regulated by SlTPL3 and SlWUS and harboring an SlWUS-binding motif in their promoters. Furthermore, functional annotation revealed a notable enrichment for functions in auxin transport, auxin signal transduction, and GA biosynthesis. Dual-luciferase assays also revealed that SlTPL3 enhances SlWUS-mediated regulation (repression and activation) of SlPIN3 and SlGA2ox4 transcription, indicating that the SlTPL3-SlWUS module regulates SAM size by mediating auxin distribution and GA levels, and perturbations of this module result in enlarged SAM. These results provide novel insights into the molecular mechanism of SAM maintenance and locule formation in tomato and highlight the SlTPL3-SlWUS module as a key regulator.
Collapse
Affiliation(s)
- Shiwei Song
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Binbin Huang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Zanlin Pan
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Qiuxiang Zhong
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yinghua Yang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Da Chen
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Lisha Zhu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Guojian Hu
- Laboratory of Genomics and Biotechnology of Fruits, INRA, Toulouse INP, University of Toulouse, Castanet Tolosan, F-31326, France
| | - Mi He
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Caiyu Wu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Mohammed Zouine
- Laboratory of Genomics and Biotechnology of Fruits, INRA, Toulouse INP, University of Toulouse, Castanet Tolosan, F-31326, France
| | - Riyuan Chen
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Mondher Bouzayen
- Laboratory of Genomics and Biotechnology of Fruits, INRA, Toulouse INP, University of Toulouse, Castanet Tolosan, F-31326, France
| | - Yanwei Hao
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
22
|
Min Y, Ballerini ES, Edwards MB, Hodges SA, Kramer EM. Genetic architecture underlying variation in floral meristem termination in Aquilegia. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6241-6254. [PMID: 35731618 PMCID: PMC9756955 DOI: 10.1093/jxb/erac277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Floral organs are produced by floral meristems (FMs), which harbor stem cells in their centers. Since each flower only has a finite number of organs, the stem cell activity of an FM will always terminate at a specific time point, a process termed floral meristem termination (FMT). Variation in the timing of FMT can give rise to floral morphological diversity, but how this process is fine-tuned at a developmental and evolutionary level is poorly understood. Flowers from the genus Aquilegia share identical floral organ arrangement except for stamen whorl number (SWN), making Aquilegia a well-suited system for investigation of this process: differences in SWN between species represent differences in the timing of FMT. By crossing A. canadensis and A. brevistyla, quantitative trait locus (QTL) mapping has revealed a complex genetic architecture with seven QTL. We explored potential candidate genes under each QTL and characterized novel expression patterns of select loci of interest using in situ hybridization. To our knowledge, this is the first attempt to dissect the genetic basis of how natural variation in the timing of FMT is regulated, and our results provide insight into how floral morphological diversity can be generated at the meristematic level.
Collapse
Affiliation(s)
| | - Evangeline S Ballerini
- Department of Biological Sciences, California State University, Sacramento, Sacramento, CA, USA
| | - Molly B Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Scott A Hodges
- Department of Ecology & Marine Biology, University of California, Santa Barbara, CA, USA
| | | |
Collapse
|
23
|
Variation in the fruit development gene POINTED TIP regulates protuberance of tomato fruit tip. Nat Commun 2022; 13:5940. [PMID: 36209204 PMCID: PMC9547884 DOI: 10.1038/s41467-022-33648-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 09/27/2022] [Indexed: 11/09/2022] Open
Abstract
The domestication of tomato has led to striking variations in fruit morphology. Here, we show a genome-wide association study (GWAS) to understand the development of the fruit tip and describe a POINTED TIP (PT) gene that encodes a C2H2-type zinc finger transcription factor. A single nucleotide polymorphism is found to change a histidine (H) to an arginine (R) in the C2H2 domain of PT and the two alleles are referred to as PTH and PTR. Knocking out PTH leads to development of pointed tip fruit. PTH functions to suppress pointed tip formation by downregulating the transcription of FRUTFULL 2 (FUL2), which alters the auxin transport. Our evolutionary analysis and previous studies by others suggest that the PTR allele likely hitch-hiked along with other selected loci during the domestication process. This study uncovers variation in PT and molecular mechanism underlying fruit tip development in tomato. While auxin has been implicated in the development of tomato fruit with pointed tips, the mechanism are largely unknown. Here, the authors report variation of a C2H2-type zinc finger transcription factor affects transcription of FUL2, which consequently regulates auxin transport and distribution to determine tomato fruit shape.
Collapse
|
24
|
Abiri N, Sinjushin A, Tekdal D, Cetiner S. Evaluation of the Possible Contribution of Various Regulatory Genes to Determination of Carpel Number as a Potential Mechanism for Optimal Agricultural Yield. Int J Mol Sci 2022; 23:ijms23179723. [PMID: 36077121 PMCID: PMC9456115 DOI: 10.3390/ijms23179723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Various regulatory genes encoding transcription factors and miRNAs regulate carpel number. Multicarpelly is normally associated with increased size of the floral meristem, and several genetic factors have been discovered that influence this characteristic. A fundamental understanding of the regulatory genes affecting carpel number can facilitate strategies for agricultural yield improvement, which is crucial, given that the global population is growing rapidly. A multicarpellate plant may provide a significantly higher yield than a plant bearing fewer carpels. Higher yields can be achieved via various means; in this review, we provide an overview of the current knowledge of the various regulatory factors that contribute to multicarpelly and the potential of increasing carpel number to achieve an increased yield.
Collapse
Affiliation(s)
- Naghmeh Abiri
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey
- Correspondence: ; Tel.: +90-5457874622
| | - Andrey Sinjushin
- Department of Genetics, Biological Faculty, Lomonosov Moscow State University, Leninskie Gory, 1-12, 119234 Moscow, Russia
| | - Dilek Tekdal
- Faculty of Science and Letters, Department of Biotechnology, Mersin University, 33343 Mersin, Turkey
| | - Selim Cetiner
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey
| |
Collapse
|
25
|
Bollier N, Gonzalez N, Chevalier C, Hernould M. Zinc Finger-Homeodomain and Mini Zinc Finger proteins are key players in plant growth and responses to environmental stresses. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4662-4673. [PMID: 35536651 DOI: 10.1093/jxb/erac194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/06/2022] [Indexed: 06/14/2023]
Abstract
The ZINC FINGER-HOMEODOMAIN (ZHD) protein family is a plant-specific family of transcription factors containing two conserved motifs: a non-canonical C5H3 zinc finger domain (ZF) and a DNA-binding homeodomain (HD). The MINI ZINC FINGER (MIF) proteins belong to this family, but were possibly derived from the ZHDs by losing the HD. Information regarding the function of ZHD and MIF proteins is scarce. However, different studies have shown that ZHD/MIF proteins play important roles not only in plant growth and development, but also in response to environmental stresses, including drought and pathogen attack. Here we review recent advances relative to ZHD/MIF functions in multiple species, to provide new insights into the diverse roles of these transcription factors in plants. Their mechanism of action in relation to their ability to interact with other proteins and DNA is also discussed. We then propose directions for future studies to understand better their important roles and pinpoint strategies for potential applications in crop improvement.
Collapse
Affiliation(s)
- Norbert Bollier
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33882 Villenave d'Ornon, France
| | - Nathalie Gonzalez
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33882 Villenave d'Ornon, France
| | - Christian Chevalier
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33882 Villenave d'Ornon, France
| | - Michel Hernould
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33882 Villenave d'Ornon, France
| |
Collapse
|
26
|
Puentes-Romero AC, González SA, González-Villanueva E, Figueroa CR, Ruiz-Lara S. AtZAT4, a C 2H 2-Type Zinc Finger Transcription Factor from Arabidopsis thaliana, Is Involved in Pollen and Seed Development. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11151974. [PMID: 35956451 PMCID: PMC9370812 DOI: 10.3390/plants11151974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/16/2022] [Accepted: 07/27/2022] [Indexed: 06/01/2023]
Abstract
Pollen plays an essential role in plant fertility by delivering the male gametes to the embryo sac before double fertilization. In several plant species, including Arabidopsis, C2H2-type zinc-finger transcription factors (TFs) have been involved in different stages of pollen development and maturation. ZINC FINGER of Arabidopsis thaliana 4 (AtZAT4) is homologous to such TFs and subcellular localization analysis has revealed that AtZAT4 is located in the nucleus. Moreover, analysis of AtZAT4 expression revealed strong levels of it in flowers and siliques, suggesting a role of the encoded protein in the regulation of genes that are associated with reproductive development. We characterized a T-DNA insertional heterozygous mutant Atzat4 (+/−). The relative gene expression analysis of Atzat4 (+/−) showed significant transcript reductions in flowers and siliques. Furthermore, the Atzat4 (+/−) phenotypic characterization revealed defects in the male germline, showing a reduction in pollen tube germination and elongation. Atzat4 (+/−) presented reduced fertility, characterized by a smaller silique size compared to the wild type (WT), and a lower number of seeds per silique. Additionally, seeds displayed lower viability and germination. Altogether, our data suggest a role for AtZAT4 in fertilization and seed viability, through the regulation of gene expression associated with reproductive development.
Collapse
Affiliation(s)
- A. Carolina Puentes-Romero
- Laboratorio de Genómica Funcional, Institute of Biological Sciences, Universidad de Talca, Talca 3460000, Chile; (A.C.P.-R.); (S.A.G.); (E.G.-V.)
- Millenium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8340755, Chile;
| | - Sebastián A. González
- Laboratorio de Genómica Funcional, Institute of Biological Sciences, Universidad de Talca, Talca 3460000, Chile; (A.C.P.-R.); (S.A.G.); (E.G.-V.)
| | - Enrique González-Villanueva
- Laboratorio de Genómica Funcional, Institute of Biological Sciences, Universidad de Talca, Talca 3460000, Chile; (A.C.P.-R.); (S.A.G.); (E.G.-V.)
| | - Carlos R. Figueroa
- Millenium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8340755, Chile;
- Laboratory of Plant Molecular Physiology, Institute of Biological Sciences, Universidad de Talca, Talca 3460000, Chile
| | - Simón Ruiz-Lara
- Laboratorio de Genómica Funcional, Institute of Biological Sciences, Universidad de Talca, Talca 3460000, Chile; (A.C.P.-R.); (S.A.G.); (E.G.-V.)
- Millenium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8340755, Chile;
| |
Collapse
|
27
|
Schubert J, Li Y, Mendes MA, Fei D, Dickinson H, Moore I, Baroux C. A procedure for Dex-induced gene transactivation in Arabidopsis ovules. PLANT METHODS 2022; 18:41. [PMID: 35351175 PMCID: PMC8962214 DOI: 10.1186/s13007-022-00879-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Elucidating the genetic and molecular control of plant reproduction often requires the deployment of functional approaches based on reverse or forward genetic screens. The loss-of-function of essential genes, however, may lead to plant lethality prior to reproductive development or to the formation of sterile structures before the organ-of-interest can be analyzed. In these cases, inducible approaches that enable a spatial and temporal control of the genetic perturbation are extremely valuable. Genetic induction in reproductive organs, such as the ovule, deeply embedded in the flower, is a delicate procedure that requires both optimization and validation. RESULTS Here we report on a streamlined procedure enabling reliable induction of gene expression in Arabidopsis ovule and anther tissues using the popular pOP/LhGR Dex-inducible system. We demonstrate its efficiency and reliability using fluorescent reporter proteins and histochemical detection of the GUS reporter gene. CONCLUSION The pOP/LhGR system allows for a rapid, efficient, and reliable induction of transgenes in developing ovules without compromising developmental progression. This approach opens new possibilities for the functional analysis of candidate regulators in sporogenesis and gametogenesis, which is otherwise affected by early lethality in conventional, stable mutants.
Collapse
Affiliation(s)
- Jasmin Schubert
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Yanru Li
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Marta A Mendes
- Dipartimento di Bioscienze, Universitá degli Studi di Milano, 20133, Milan, Italy
| | - Danli Fei
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Hugh Dickinson
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Ian Moore
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Célia Baroux
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, 8008, Zurich, Switzerland.
| |
Collapse
|
28
|
The Genetic and Hormonal Inducers of Continuous Flowering in Orchids: An Emerging View. Cells 2022; 11:cells11040657. [PMID: 35203310 PMCID: PMC8870070 DOI: 10.3390/cells11040657] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/07/2023] Open
Abstract
Orchids are the flowers of magnetic beauty. Vivid and attractive flowers with magnificent shapes make them the king of the floriculture industry. However, the long-awaited flowering is a drawback to their market success, and therefore, flowering time regulation is the key to studies about orchid flower development. Although there are some rare orchids with a continuous flowering pattern, the molecular regulatory mechanisms are yet to be elucidated to find applicable solutions to other orchid species. Multiple regulatory pathways, such as photoperiod, vernalization, circadian clock, temperature and hormonal pathways are thought to signalize flower timing using a group of floral integrators. This mini review, thus, organizes the current knowledge of floral time regulators to suggest future perspectives on the continuous flowering mechanism that may help to plan functional studies to induce flowering revolution in precious orchid species.
Collapse
|
29
|
Jiang T, Zheng B. Epigenetic Regulation of Megaspore Mother Cell Formation. FRONTIERS IN PLANT SCIENCE 2022; 12:826871. [PMID: 35185968 PMCID: PMC8850924 DOI: 10.3389/fpls.2021.826871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/31/2021] [Indexed: 05/31/2023]
Abstract
In flowering plants, the female gametophyte (FG) initiates from the formation of the megaspore mother cell (MMC). Among a pool of the somatic cells in the ovule primordium, only one hypodermal cell undergoes a transition of cell fate to become the MMC. Subsequently, the MMC undergoes a series of meiosis and mitosis to form the mature FG harboring seven cells with eight nuclei. Although SPL/NZZ, the core transcription factor for MMC formation, was identified several decades ago, which and why only one somatic cell is chosen as the MMC have long remained mysterious. A growing body of evidence reveal that MMC formation is associated with epigenetic regulation at multiple layers, including dynamic distribution of histone variants and histone modifications, small RNAs, and DNA methylation. In this review, we summarize the progress of epigenetic regulation in the MMC formation, emphasizing the roles of chromosome condensation, histone variants, histone methylation, small RNAs, and DNA methylation.
Collapse
|
30
|
Xu W, Zhu W, Yang L, Liang W, Li H, Yang L, Chen M, Luo Z, Huang G, Duan L, Dreni L, Zhang D. SMALL REPRODUCTIVE ORGANS, a SUPERMAN-like transcription factor, regulates stamen and pistil growth in rice. THE NEW PHYTOLOGIST 2022; 233:1701-1718. [PMID: 34761379 DOI: 10.1111/nph.17849] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Organ size is determined mainly by cell division and cell expansion. Several genetic factors regulating development of plant lateral organs have been characterized, but those involved in determining reproductive organ size and separation in rice (Oryza sativa) remain unknown. We have isolated the rice gene SMALL REPRODUCTIVE ORGANS (SRO) encoding a nucleus-localized Cys2His2 (C2 H2 ) zinc finger protein orthologous to Arabidopsis transcription factor (TF) SUPERMAN (SUP). Combined developmental, genetic, histological and transcriptomic analyses were used to determine the function of SRO in regulating reproductive organ size. SRO affects genes involved in cell division, cell expansion and phytohormone signalling in the rice flower. SRO is specifically expressed in the first stages of stamen filament development to regulate their correct formation and separation. In addition, SRO noncell-autonomously regulates the size and functionality of male and female reproductive organs. The B-class MADS-box gene OsMADS16/SPW1 is epistatic to SRO, whereas SRO regulates reproductive organ specification and floral meristem determinacy synergistically with C-class genes OsMADS3 and OsMADS58. These findings provide insights into how an evolutionarily conserved TF has a pivotal role in reproductive organ development in core eudicots and monocots, through partially conserved expression, function and regulatory network.
Collapse
Affiliation(s)
- Wei Xu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wanwan Zhu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liu Yang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hui Li
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, 200032, China
| | - Li Yang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mingjiao Chen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhijing Luo
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guoqiang Huang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lei Duan
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ludovico Dreni
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| |
Collapse
|
31
|
Genome-Wide Identification of the Q-type C2H2 Transcription Factor Family in Alfalfa ( Medicago sativa) and Expression Analysis under Different Abiotic Stresses. Genes (Basel) 2021; 12:genes12121906. [PMID: 34946855 PMCID: PMC8701282 DOI: 10.3390/genes12121906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 02/02/2023] Open
Abstract
Q-type C2H2 zinc-finger protein (C2H2-ZFP) transcription factors are associated with many plant growth development and environmental stress responses. To date, there have been few analyses of the Q-type C2H2-ZFP gene family in alfalfa (Medicago sativa subsp. sativa). In this study, we identified 58 Q-type C2H2-ZFPs across the entire alfalfa genome, and the gene structure, motif composition, chromosomal mapping, and cis-regulatory elements were explored, as well as the expression profiles of specific tissues and the response under different abiotic stresses. According to their phylogenetic features, these 58 MsZFPs were divided into 12 subgroups. Synteny analysis showed that duplication events play a vital role in the expansion of the MsZFP gene family. The collinearity results showed that a total of 26 and 42 of the 58 MsZFP genes were homologous with Arabidopsis and M. truncatula, respectively. The expression profiles showed that C2H2-ZFP genes played various roles in different tissues and abiotic stresses. The results of subsequent quantitative real-time polymerase chain reaction (qRT-PCR) showed that the nine selected MsZFP genes were rapidly induced under different abiotic stresses, indicating that C2H2-ZFP genes are closely related to abiotic stress. This study provides results on MsZFP genes, their response to various abiotic stresses, and new information on the C2H2 family in alfalfa.
Collapse
|
32
|
Chun JI, Kim SM, Kim H, Cho JY, Kwon HW, Kim JI, Seo JK, Jung C, Kang JH. SlHair2 Regulates the Initiation and Elongation of Type I Trichomes on Tomato Leaves and Stems. PLANT & CELL PHYSIOLOGY 2021; 62:1446-1459. [PMID: 34155514 DOI: 10.1093/pcp/pcab090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/18/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Trichomes are hair-like structures that are essential for abiotic and biotic stress responses. Tomato Hair (H), encoding a C2H2 zinc finger protein, was found to regulate the multicellular trichomes on stems. Here, we characterized Solyc10g078990 (hereafter Hair2, H2), its closest homolog, to examine whether it was involved in trichome development. The H2 gene was highly expressed in the leaves, and its protein contained a single C2H2 domain and was localized to the nucleus. The number and length of type I trichomes on the leaves and stems of knock-out h2 plants were reduced when compared to the wild-type, while overexpression increased their number and length. An auto-activation test with various truncated forms of H2 using yeast two-hybrid (Y2H) suggested that H2 acts as a transcriptional regulator or co-activator and that its N-terminal region is important for auto-activation. Y2H and pull-down analyses showed that H2 interacts with Woolly (Wo), which regulates the development of type I trichomes in tomato. Luciferase complementation imaging assays confirmed that they had direct interactions, implying that H2 and Wo function together to regulate the development of trichomes. These results suggest that H2 has a role in the initiation and elongation of type I trichomes in tomato.
Collapse
Affiliation(s)
- Jae-In Chun
- Department of Agriculture, Forestry and Bioresources and Integrated Major in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Institutes of Green-bio Science & Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Seong-Min Kim
- Department of Agriculture, Forestry and Bioresources and Integrated Major in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Institutes of Green-bio Science & Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Heejin Kim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Gyeongbuk, Republic of Korea
| | - Jae-Yong Cho
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyun-Woo Kwon
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jeong-Il Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jang-Kyun Seo
- Institutes of Green-bio Science & Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Choonkyun Jung
- Department of Agriculture, Forestry and Bioresources and Integrated Major in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Institutes of Green-bio Science & Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Jin-Ho Kang
- Department of Agriculture, Forestry and Bioresources and Integrated Major in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Institutes of Green-bio Science & Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| |
Collapse
|
33
|
Wang L, Liu Y, Aslam M, Jakada BH, Qin Y, Cai H. The Glycine-Rich Domain Protein GRDP2 Regulates Ovule Development via the Auxin Pathway in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:698487. [PMID: 34777406 PMCID: PMC8585784 DOI: 10.3389/fpls.2021.698487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/11/2021] [Indexed: 05/22/2023]
Abstract
The glycine-rich domain proteins (GRDP) have been functionally implicated in the cell wall structure, biotic, and abiotic stress responses. However, little is known about GRDP genes in female gametophyte development of Arabidopsis. This study shows that GRDP2, a GRDP, plays a crucial role in female gametophyte development. In GRDP2 overexpression lines, grdp2-3, the embryo sacs were arrested at FG1 and no nucleus stages. Furthermore, callose staining shows that cell plate formation during megasporogenesis is disturbed in grdp2-3. In contrast, the pollen development is not affected in grdp2-3. The expression patterns of auxin-specific marker lines in female gametophytes showed that the auxin distribution and transport were significantly changed during megagametogenesis in grdp2-3. In addition, compared with the membrane-localized pattern of PIN1, PIN2, and PIN7 in WT, the signals were detected in the cytoplasm in grdp2-3. Together, our data suggest that GRDP2 plays an essential role in auxin-mediated female gametophyte development.
Collapse
Affiliation(s)
- Lulu Wang
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Yanhui Liu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohammad Aslam
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Bello Hassan Jakada
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Qin
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hanyang Cai
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
34
|
Yang X, Tucker MR. Establishing a regulatory blueprint for ovule number and function during plant development. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102095. [PMID: 34428719 DOI: 10.1016/j.pbi.2021.102095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
The plant ovule is a fundamentally important organ that is the direct progenitor of the seed. It is one of the last structures to form in the flower and contains relatively few tissues, but undergoes complex developmental transitions that are essential for reproduction. Ovule number and flower fertility are important factors influencing yield, yet studies have identified challenges in trying to increase one without compromising the other. Recent findings in Arabidopsis and cereal crops highlight regulatory pathways that contribute to this yield constraint. Here, we consider the basis for variation in ovule number and development, with a particular focus on hormones and transcriptional regulators that constitute promising targets for the optimisation of reproductive traits and yield.
Collapse
Affiliation(s)
- Xiujuan Yang
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Matthew R Tucker
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia.
| |
Collapse
|
35
|
Hou Z, Liu Y, Zhang M, Zhao L, Jin X, Liu L, Su Z, Cai H, Qin Y. High-throughput single-cell transcriptomics reveals the female germline differentiation trajectory in Arabidopsis thaliana. Commun Biol 2021; 4:1149. [PMID: 34599277 PMCID: PMC8486858 DOI: 10.1038/s42003-021-02676-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 09/15/2021] [Indexed: 12/20/2022] Open
Abstract
Female germline cells in flowering plants differentiate from somatic cells to produce specialized reproductive organs, called ovules, embedded deep inside the flowers. We investigated the molecular basis of this distinctive developmental program by performing single-cell RNA sequencing (scRNA-seq) of 16,872 single cells of Arabidopsis thaliana ovule primordia at three developmental time points during female germline differentiation. This allowed us to identify the characteristic expression patterns of the main cell types, including the female germline and its surrounding nucellus. We then reconstructed the continuous trajectory of female germline differentiation and observed dynamic waves of gene expression along the developmental trajectory. A focused analysis revealed transcriptional cascades and identified key transcriptional factors that showed distinct expression patterns along the germline differentiation trajectory. Our study provides a valuable reference dataset of the transcriptional process during female germline differentiation at single-cell resolution, shedding light on the mechanisms underlying germline cell fate determination. Zhimin Hou, Yanhui Liu et al. used single cell RNA-seq to analyze the model organism, Arabidopsis thaliana, at three stages during female germline differentiation. They reconstructed the continuous trajectory of female germline differentiation, providing a valuable reference for future investigation of germline cell fate determination in A. thaliana.
Collapse
Affiliation(s)
- Zhimin Hou
- College of Life Sciences, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Yanhui Liu
- College of Life Sciences, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Man Zhang
- College of Life Sciences, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Lihua Zhao
- College of Life Sciences, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Xingyue Jin
- College of Life Sciences, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Liping Liu
- College of Life Sciences, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Zhenxia Su
- College of Life Sciences, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Hanyang Cai
- College of Life Sciences, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Yuan Qin
- College of Life Sciences, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, 350002, Fuzhou, China. .,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, 530004, Nanning, China.
| |
Collapse
|
36
|
Robust control of floral meristem determinacy by position-specific multifunctions of KNUCKLES. Proc Natl Acad Sci U S A 2021; 118:2102826118. [PMID: 34462349 DOI: 10.1073/pnas.2102826118] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Floral organs are properly developed on the basis of timed floral meristem (FM) termination in Arabidopsis In this process, two known regulatory pathways are involved. The WUSCHEL (WUS)-CLAVATA3 (CLV3) feedback loop is vital for the spatial establishment and maintenance of the FM, while AGAMOUS (AG)-WUS transcriptional cascades temporally repress FM. At stage 6 of flower development, a C2H2-type zinc finger repressor that is a target of AG, KNUCKLES (KNU), directly represses the stem cell identity gene WUS in the organizing center for FM termination. However, how the robust FM activity is fully quenched within a limited time frame to secure carpel development is not fully understood. Here, we demonstrate that KNU directly binds to the CLV1 locus and the cis-regulatory element on CLV3 promoter and represses their expression during FM determinacy control. Furthermore, KNU physically interacts with WUS, and this interaction inhibits WUS from sustaining CLV3 in the central zone. The KNU-WUS interaction also interrupts the formation of WUS homodimers and WUS-HAIRYMERISTEM 1 heterodimers, both of which are required for FM maintenance. Overall, our findings describe a regulatory framework in which KNU plays a position-specific multifunctional role for the tightly controlled FM determinacy.
Collapse
|
37
|
Kwaśniewska K, Breathnach C, Fitzsimons C, Goslin K, Thomson B, Beegan J, Finocchio A, Prunet N, Ó’Maoiléidigh DS, Wellmer F. Expression of KNUCKLES in the Stem Cell Domain Is Required for Its Function in the Control of Floral Meristem Activity in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:704351. [PMID: 34367223 PMCID: PMC8336581 DOI: 10.3389/fpls.2021.704351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 06/24/2021] [Indexed: 05/27/2023]
Abstract
In the model plant Arabidopsis thaliana, the zinc-finger transcription factor KNUCKLES (KNU) plays an important role in the termination of floral meristem activity, a process that is crucial for preventing the overgrowth of flowers. The KNU gene is activated in floral meristems by the floral organ identity factor AGAMOUS (AG), and it has been shown that both AG and KNU act in floral meristem control by directly repressing the stem cell regulator WUSCHEL (WUS), which leads to a loss of stem cell activity. When we re-examined the expression pattern of KNU in floral meristems, we found that KNU is expressed throughout the center of floral meristems, which includes, but is considerably broader than the WUS expression domain. We therefore hypothesized that KNU may have additional functions in the control of floral meristem activity. To test this, we employed a gene perturbation approach and knocked down KNU activity at different times and in different domains of the floral meristem. In these experiments we found that early expression in the stem cell domain, which is characterized by the expression of the key meristem regulatory gene CLAVATA3 (CLV3), is crucial for the establishment of KNU expression. The results of additional genetic and molecular analyses suggest that KNU represses floral meristem activity to a large extent by acting on CLV3. Thus, KNU might need to suppress the expression of several meristem regulators to terminate floral meristem activity efficiently.
Collapse
Affiliation(s)
| | | | | | - Kevin Goslin
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Bennett Thomson
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Joseph Beegan
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Andrea Finocchio
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Nathanaël Prunet
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Diarmuid S. Ó’Maoiléidigh
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Frank Wellmer
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
38
|
Pelayo MA, Yamaguchi N, Ito T. One factor, many systems: the floral homeotic protein AGAMOUS and its epigenetic regulatory mechanisms. CURRENT OPINION IN PLANT BIOLOGY 2021; 61:102009. [PMID: 33640614 DOI: 10.1016/j.pbi.2021.102009] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 05/15/2023]
Abstract
Tissue-specific transcription factors allow cells to specify new fates by exerting control over gene regulatory networks and the epigenetic landscape of a cell. However, our knowledge of the molecular mechanisms underlying cell fate decisions is limited. In Arabidopsis, the MADS-box transcription factor AGAMOUS (AG) plays a central role in regulating reproductive organ identity and meristem determinacy during flower development. During the vegetative phase, AG transcription is repressed by Polycomb complexes and intronic noncoding RNA. Once AG is transcribed in a spatiotemporally regulated manner during the reproductive phase, AG functions with chromatin regulators to change the chromatin structure at key target gene loci. The concerted actions of AG and the transcription factors functioning downstream of AG recruit general transcription machinery for proper cell fate decision. In this review, we describe progress in AG research that has provided important insights into the regulatory and epigenetic mechanisms underlying cell fate determination in plants.
Collapse
Affiliation(s)
- Margaret Anne Pelayo
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
| | - Nobutoshi Yamaguchi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan.
| | - Toshiro Ito
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
39
|
Umeda M, Ikeuchi M, Ishikawa M, Ito T, Nishihama R, Kyozuka J, Torii KU, Satake A, Goshima G, Sakakibara H. Plant stem cell research is uncovering the secrets of longevity and persistent growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:326-335. [PMID: 33533118 PMCID: PMC8252613 DOI: 10.1111/tpj.15184] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 05/07/2023]
Abstract
Plant stem cells have several extraordinary features: they are generated de novo during development and regeneration, maintain their pluripotency, and produce another stem cell niche in an orderly manner. This enables plants to survive for an extended period and to continuously make new organs, representing a clear difference in their developmental program from animals. To uncover regulatory principles governing plant stem cell characteristics, our research project 'Principles of pluripotent stem cells underlying plant vitality' was launched in 2017, supported by a Grant-in-Aid for Scientific Research on Innovative Areas from the Japanese government. Through a collaboration involving 28 research groups, we aim to identify key factors that trigger epigenetic reprogramming and global changes in gene networks, and thereby contribute to stem cell generation. Pluripotent stem cells in the shoot apical meristem are controlled by cytokinin and auxin, which also play a crucial role in terminating stem cell activity in the floral meristem; therefore, we are focusing on biosynthesis, metabolism, transport, perception, and signaling of these hormones. Besides, we are uncovering the mechanisms of asymmetric cell division and of stem cell death and replenishment under DNA stress, which will illuminate plant-specific features in preserving stemness. Our technology support groups expand single-cell omics to describe stem cell behavior in a spatiotemporal context, and provide correlative light and electron microscopic technology to enable live imaging of cell and subcellular dynamics at high spatiotemporal resolution. In this perspective, we discuss future directions of our ongoing projects and related research fields.
Collapse
Affiliation(s)
- Masaaki Umeda
- Graduate School of Science and TechnologyNara Institute of Science and TechnologyIkoma630‐0192Japan
| | - Momoko Ikeuchi
- Department of BiologyFaculty of ScienceNiigata UniversityNiigata950‐2181Japan
| | - Masaki Ishikawa
- National Institute for Basic BiologyOkazaki444‐8585Japan
- Department of Basic BiologyThe Graduate University for Advanced Studies (SOKENDAI)Okazaki444‐8585Japan
| | - Toshiro Ito
- Graduate School of Science and TechnologyNara Institute of Science and TechnologyIkoma630‐0192Japan
| | | | - Junko Kyozuka
- Graduate School of Life SciencesTohoku UniversitySendai980‐8577Japan
| | - Keiko U. Torii
- Howard Hughes Medical Institute and Department of Molecular BiosciencesThe University of Texas at AustinAustinTX78712USA
- Institute of Transformative Biomolecules (WPI‐ITbM)Nagoya UniversityNagoya464‐8601Japan
| | - Akiko Satake
- Department of BiologyFaculty of ScienceKyushu UniversityFukuoka819‐0395Japan
| | - Gohta Goshima
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoya464‐8602Japan
- Sugashima Marine Biological LaboratoryGraduate School of ScienceNagoya UniversityToba517‐0004Japan
| | - Hitoshi Sakakibara
- Graduate School of Bioagricultural SciencesNagoya UniversityNagoya464‐8601Japan
| |
Collapse
|
40
|
Shen C, Li G, Dreni L, Zhang D. Molecular Control of Carpel Development in the Grass Family. FRONTIERS IN PLANT SCIENCE 2021; 12:635500. [PMID: 33664762 PMCID: PMC7921308 DOI: 10.3389/fpls.2021.635500] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/04/2021] [Indexed: 05/26/2023]
Abstract
Carpel is the ovule-bearing female reproductive organ of flowering plants and is required to ensure its protection, an efficient fertilization, and the development of diversified types of fruits, thereby it is a vital element of most food crops. The origin and morphological changes of the carpel are key to the evolution and adaption of angiosperms. Progresses have been made in elucidating the developmental mechanisms of carpel establishment in the model eudicot plant Arabidopsis thaliana, while little and fragmentary information is known in grasses, a family that includes many important crops such as rice (Oryza sativa), maize (Zea mays), barley (Hordeum vulgare), and wheat (Triticum aestivum). Here, we highlight recent advances in understanding the mechanisms underlying potential pathways of carpel development in grasses, including carpel identity determination, morphogenesis, and floral meristem determinacy. The known role of transcription factors, hormones, and miRNAs during grass carpel formation is summarized and compared with the extensively studied eudicot model plant Arabidopsis. The genetic and molecular aspects of carpel development that are conserved or diverged between grasses and eudicots are therefore discussed.
Collapse
Affiliation(s)
- Chaoqun Shen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Gang Li
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Ludovico Dreni
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| |
Collapse
|
41
|
Osnato M, Lacchini E, Pilatone A, Dreni L, Grioni A, Chiara M, Horner D, Pelaz S, Kater MM. Transcriptome analysis reveals rice MADS13 as an important repressor of the carpel development pathway in ovules. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:398-414. [PMID: 33035313 DOI: 10.1093/jxb/eraa460] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
In angiosperms, floral homeotic genes encoding MADS-domain transcription factors regulate the development of floral organs. Specifically, members of the SEPALLATA (SEP) and AGAMOUS (AG) subfamilies form higher-order protein complexes to control floral meristem determinacy and to specify the identity of female reproductive organs. In rice, the AG subfamily gene OsMADS13 is intimately involved in the determination of ovule identity, since knock-out mutant plants develop carpel-like structures in place of ovules, resulting in female sterility. Little is known about the regulatory pathways at the base of rice gynoecium development. To investigate molecular mechanisms acting downstream of OsMADS13, we obtained transcriptomes of immature inflorescences from wild-type and Osmads13 mutant plants. Among a total of 476 differentially expressed genes (DEGs), a substantial overlap with DEGs from the SEP-family Osmads1 mutant was found, suggesting that OsMADS1 and OsMADS13 may act on a common set of target genes. Expression studies and preliminary analyses of two up-regulated genes encoding Zinc-finger transcription factors indicated that our dataset represents a valuable resource for the identification of both OsMADS13 target genes and novel players in rice ovule development. Taken together, our study suggests that OsMADS13 is an important repressor of the carpel pathway during ovule development.
Collapse
Affiliation(s)
- Michela Osnato
- Department of Biosciences, University of Milan, Milano, Italy
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain
| | - Elia Lacchini
- Department of Biosciences, University of Milan, Milano, Italy
- VIB Center for Plant System Biology, Ghent, BELGIUM
| | | | - Ludovico Dreni
- Department of Biosciences, University of Milan, Milano, Italy
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Andrea Grioni
- Department of Biosciences, University of Milan, Milano, Italy
| | - Matteo Chiara
- Department of Biosciences, University of Milan, Milano, Italy
| | - David Horner
- Department of Biosciences, University of Milan, Milano, Italy
| | - Soraya Pelaz
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain
| | - Martin M Kater
- Department of Biosciences, University of Milan, Milano, Italy
| |
Collapse
|
42
|
Yu SX, Zhou LW, Hu LQ, Jiang YT, Zhang YJ, Feng SL, Jiao Y, Xu L, Lin WH. Asynchrony of ovule primordia initiation in Arabidopsis. Development 2020; 147:226107. [PMID: 33234714 PMCID: PMC7774900 DOI: 10.1242/dev.196618] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/06/2020] [Indexed: 12/27/2022]
Abstract
Plant ovule initiation determines the maximum of ovule number and has a great impact on the seed number per fruit. The detailed processes of ovule initiation have not been accurately described, although two connected processes, gynoecium and ovule development, have been investigated. Here, we report that ovules initiate asynchronously. The first group of ovule primordia grows out, the placenta elongates, the boundaries of existing ovules enlarge and a new group of primordia initiates from the boundaries. The expression pattern of different marker genes during ovule development illustrates that this asynchronicity continues throughout whole ovule development. PIN-FORMED1 polar distribution and auxin response maxima correlate with ovule primordia asynchronous initiation. We have established computational modeling to show how auxin dynamics influence ovule primordia initiation. Brassinosteroid signaling positively regulates ovule number by promoting placentae size and ovule primordia initiation through strengthening auxin response. Transcriptomic analysis demonstrates numerous known regulators of ovule development and hormone signaling, and many new genes are identified that are involved in ovule development. Taken together, our results illustrate that the ovule primordia initiate asynchronously and the hormone signals are involved in the asynchrony. Summary: Ovule primordia initiation, which determines the maximum ovule number and subsequent seed number in Arabidopsis, is asynchronous and is regulated by PIN1 polar distribution and the auxin response.
Collapse
Affiliation(s)
- Shi-Xia Yu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lv-Wen Zhou
- Faculty of Mechanical Engineering and Mechanics, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Li-Qin Hu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu-Tong Jiang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan-Jie Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shi-Liang Feng
- Faculty of Mechanical Engineering and Mechanics, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Xu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wen-Hui Lin
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
43
|
Liang J, Guan P, Liu Z, Wang Y, Xing J, Hu J. The VvSUPERMAN-like Gene Is Differentially Expressed between Bicarpellate and Tricarpellate Florets of Vitis vinifera L. Cv. 'Xiangfei' and Its Heterologous Expression Reduces Carpel Number in Tomato. PLANT & CELL PHYSIOLOGY 2020; 61:1760-1774. [PMID: 32761091 DOI: 10.1093/pcp/pcaa103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Multicarpellate fruits are larger and produce more seeds than mono- or bicarpellate fruits, enhancing the reproductive capacity of the plant. To identify the phenotypic and molecular differences among florets of different carpel types, we studied carpel formation and fusion in the grapevine (Vitis vinifera) cultivar 'Xiangfei', which produces a high proportion of multicarpellate fruit. We also determined the function of VvSUPERMAN-like (VvSUP-like) and explored its relationship with VvWUS (VvWUSCHEL) and VvAG1 (VvAGAMOUS), which is related to the formation of carpel primordia. We showed that carpel formation and fusion were largely consistent between bicarpellate and tricarpellate ovaries, which both involve congenital fusion; rather, the differences between these ovary types arose from variation in carpel primordia number and location. Transgenic tomato (Solanum lycopersicum) plants expressing VvSUP-like produced significantly fewer carpels and other floral organs than the wild type. Moreover, transcriptome sequencing results indicate that VvSUP-like was more highly expressed in bicarpellate than in tricarpellate 'Xiangfei' florets. Luciferase reporter assays indicated that VvSUP-like inhibits the expression of VvAG1 and VvWUS by directly binding to their promoters, and VvWUS promotes VvAG1 expression by directly binding to its promoter. VvSUP-like inhibits the feedback signaling between VvWUS and VvAG1. Together, these results suggest that VvSUP-like negatively regulates the number of carpels that develop by inhibiting VvAG1 and VvWUS expression.
Collapse
Affiliation(s)
- Jinjun Liang
- College of Horticulture, China Agriculture University, Beijing 100094, China
| | - Pingyin Guan
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | - Zhenhua Liu
- College of Horticulture, China Agriculture University, Beijing 100094, China
| | - Yan Wang
- College of Horticulture, China Agriculture University, Beijing 100094, China
| | - Jiayi Xing
- Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jianfang Hu
- College of Horticulture, China Agriculture University, Beijing 100094, China
| |
Collapse
|
44
|
Yan B, Lv Y, Zhao C, Wang X. Knowing When to Silence: Roles of Polycomb-Group Proteins in SAM Maintenance, Root Development, and Developmental Phase Transition. Int J Mol Sci 2020; 21:E5871. [PMID: 32824274 PMCID: PMC7461556 DOI: 10.3390/ijms21165871] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 01/01/2023] Open
Abstract
Polycomb repressive complex 1 (PRC1) and PRC2 are the major complexes composed of polycomb-group (PcG) proteins in plants. PRC2 catalyzes trimethylation of lysine 27 on histone 3 to silence target genes. Like Heterochromatin Protein 1/Terminal Flower 2 (LHP1/TFL2) recognizes and binds to H3K27me3 generated by PRC2 activities and enrolls PRC1 complex to further silence the chromatin through depositing monoubiquitylation of lysine 119 on H2A. Mutations in PcG genes display diverse developmental defects during shoot apical meristem (SAM) maintenance and differentiation, seed development and germination, floral transition, and so on so forth. PcG proteins play essential roles in regulating plant development through repressing gene expression. In this review, we are focusing on recent discovery about the regulatory roles of PcG proteins in SAM maintenance, root development, embryo development to seedling phase transition, and vegetative to reproductive phase transition.
Collapse
Affiliation(s)
| | | | | | - Xiaoxue Wang
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China; (B.Y.); (Y.L.); (C.Z.)
| |
Collapse
|
45
|
Würschum T, Jähne F, Phillips AL, Langer SM, Longin CFH, Tucker MR, Leiser WL. Misexpression of a transcriptional repressor candidate provides a molecular mechanism for the suppression of awns by Tipped 1 in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3428-3436. [PMID: 32103263 PMCID: PMC7307850 DOI: 10.1093/jxb/eraa106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 02/24/2020] [Indexed: 05/30/2023]
Abstract
Awns are bristle-like structures formed at the tip of the lemma on the florets of some cereal grasses. Wild-type wheat is awned, but awnletted and awnless variants have been selected and nowadays all forms are cultivated. In this study, we dissected the genetic control underlying variation of this characteristic feature by association mapping in a large panel of 1110 winter wheat cultivars of worldwide origin. We identified the B1 (Tipped 1) locus on chromosome 5A as the major determinant of awnlessness globally. Using a combination of fine-mapping and expression analysis, we identified a putative C2H2 zinc finger protein with an EAR domain, characteristic of transcriptional repressors, as a likely candidate for Tipped 1. This gene was found to be up-regulated in awnless B1 compared with awned b1 plants, indicating that misexpression of this transcriptional regulator may contribute to the reduction of awn length in B1 plants. Taken together, our study provides an entry point towards a better molecular understanding of the evolution of morphological features in cereals through selection and breeding.
Collapse
Affiliation(s)
- Tobias Würschum
- State Plant Breeding Institute, University of Hohenheim, Stuttgart, Germany
| | - Felix Jähne
- State Plant Breeding Institute, University of Hohenheim, Stuttgart, Germany
| | | | - Simon M Langer
- State Plant Breeding Institute, University of Hohenheim, Stuttgart, Germany
| | | | - Matthew R Tucker
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Willmar L Leiser
- State Plant Breeding Institute, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
46
|
MacQueen AH, White JW, Lee R, Osorno JM, Schmutz J, Miklas PN, Myers J, McClean PE, Juenger TE. Genetic Associations in Four Decades of Multienvironment Trials Reveal Agronomic Trait Evolution in Common Bean. Genetics 2020; 215:267-284. [PMID: 32205398 PMCID: PMC7198278 DOI: 10.1534/genetics.120.303038] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 03/12/2020] [Indexed: 11/18/2022] Open
Abstract
Multienvironment trials (METs) are widely used to assess the performance of promising crop germplasm. Though seldom designed to elucidate genetic mechanisms, MET data sets are often much larger than could be duplicated for genetic research and, given proper interpretation, may offer valuable insights into the genetics of adaptation across time and space. The Cooperative Dry Bean Nursery (CDBN) is a MET for common bean (Phaseolus vulgaris) grown for > 70 years in the United States and Canada, consisting of 20-50 entries each year at 10-20 locations. The CDBN provides a rich source of phenotypic data across entries, years, and locations that is amenable to genetic analysis. To study stable genetic effects segregating in this MET, we conducted genome-wide association studies (GWAS) using best linear unbiased predictions derived across years and locations for 21 CDBN phenotypes and genotypic data (1.2 million SNPs) for 327 CDBN genotypes. The value of this approach was confirmed by the discovery of three candidate genes and genomic regions previously identified in balanced GWAS. Multivariate adaptive shrinkage (mash) analysis, which increased our power to detect significant correlated effects, found significant effects for all phenotypes. Mash found two large genomic regions with effects on multiple phenotypes, supporting a hypothesis of pleiotropic or linked effects that were likely selected on in pursuit of a crop ideotype. Overall, our results demonstrate that statistical genomics approaches can be used on MET phenotypic data to discover significant genetic effects and to define genomic regions associated with crop improvement.
Collapse
Affiliation(s)
- Alice H MacQueen
- Integrative Biology, The University of Texas at Austin, Texas 78712
| | - Jeffrey W White
- U.S. Arid Land Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Maricopa, Arizona 85239
| | - Rian Lee
- Genomics and Bioinformatics Program, North Dakota State University, Fargo, North Dakota 58102
| | - Juan M Osorno
- Genomics and Bioinformatics Program, North Dakota State University, Fargo, North Dakota 58102
| | - Jeremy Schmutz
- Hudson-Alpha Institute for Biotechnology, Huntsville, Alabama 35806
| | - Phillip N Miklas
- Grain Legume Genetics and Physiology Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Prosser, Washington 99350
| | - Jim Myers
- Department of Horticulture, Oregon State University, Corvallis, Oregon 97331
| | - Phillip E McClean
- Genomics and Bioinformatics Program, North Dakota State University, Fargo, North Dakota 58102
| | - Thomas E Juenger
- Integrative Biology, The University of Texas at Austin, Texas 78712
| |
Collapse
|
47
|
Liu Z, Coulter JA, Li Y, Zhang X, Meng J, Zhang J, Liu Y. Genome-wide identification and analysis of the Q-type C2H2 gene family in potato (Solanum tuberosum L.). Int J Biol Macromol 2020; 153:327-340. [PMID: 32145229 DOI: 10.1016/j.ijbiomac.2020.03.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/20/2020] [Accepted: 03/03/2020] [Indexed: 10/24/2022]
Abstract
Plant Q-type C2H2 zinc finger proteins play an important role in plant tolerance to abiotic stresses. Although the Q-type C2H2 gene family has been identified in many plants, little is known about it in potato (Solanum tuberosum). In the present study, a total of 79 Q-type C2H2 proteins in potato (StZFPs) were identified and their distribution on chromosomes, gene structure, and conserved motifs was assessed. According to their protein structural and phylogenetic features, these 79 StZFPs were classified into 12 distinct subclasses. Collinearity analysis showed that tandem and segmental duplication events played a crucial role in expansion of the StZFP gene family. Synteny analysis indicated that 11 and 21 StZFP genes were orthologous to Arabidopsis and wheat (Triticum aestivum), respectively. RNA-seq data were used to analyze the tissue-specific expression and abiotic stress responses of the StZFP genes. Furthermore, we analyzed the expression of StZFP genes in drought-sensitive and drought-tolerant potato cultivars under drought stress. Subsequently, we used qPCR (Quantitative real-time-PCR) to calculate the relative expression of candidate genes in potato plantlets treated with NaCl (100 mM) and PEG 6000 (10% w/v) for 24 h. Such candidate genes could provide valuable information for abiotic stress resistance research in potato.
Collapse
Affiliation(s)
- Zhen Liu
- College of Horticulture/Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Jeffrey A Coulter
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA.
| | - Yuanming Li
- College of Horticulture/Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Xiaojing Zhang
- Dingxi Academy of Agricultural Sciences, Dingxi 743000, China
| | - Jiangang Meng
- Tianchi Agricultural Service Center, Huan County, Qingyang 745000, China
| | - Junlian Zhang
- College of Horticulture/Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Yuhui Liu
- College of Horticulture/Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
48
|
Wang D, Yu K, Jin D, Sun L, Chu J, Wu W, Xin P, Gregová E, Li X, Sun J, Yang W, Zhan K, Zhang A, Liu D. Natural variations in the promoter of Awn Length Inhibitor 1 (ALI-1) are associated with awn elongation and grain length in common wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:1075-1090. [PMID: 31628879 DOI: 10.1111/tpj.14575] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Wheat awn plays a vital role in photosynthesis, grain production, and drought tolerance. However, the systematic identification or cloning of genes controlling wheat awn development is seldom reported. Here, we conducted a genome-wide association study (GWAS) with 364 wheat accessions and identified 26 loci involved in awn length development, including previously characterized B1, B2, Hd, and several rice homologs. The dominant awn suppressor B1 was fine mapped to a 125-kb physical interval, and a C2 H2 zinc finger protein Awn Length Inhibitor 1 (ALI-1) was confirmed to be the underlying gene of the B1 locus through the functional complimentary test with native awnless allele. ALI-1 expresses predominantly in the developing spike of awnless individuals, transcriptionally suppressing downstream genes. ALI-1 reduces cytokinin content and simultaneously restrains cytokinin signal transduction, leading to a stagnation of cell proliferation and reduction of cell numbers during awn development. Polymorphisms of four single nucleotide polymorphisms (SNPs) located in ALI-1 promoter region are diagnostic for the B1/b1 genotypes, and these SNPs are associated with awn length (AL), grain length (GL) and thousand-grain weight (TGW). More importantly, ali-1 was observed to increase grain length in wheat, which is a valuable attribute of awn on grain weight, aside from photosynthesis. Therefore, ALI-1 pleiotropically regulates awn and grain development, providing an alternative for grain yield improvement and addressing future climate changes.
Collapse
Affiliation(s)
- Dongzhi Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Kang Yu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- BGI Institute of Applied Agriculture, BGI-Agro, Shenzhen, 518120, China
| | - Di Jin
- College of Agronomy/The Collaborative Innovation Center of Grain Crops in Henan, Henan Agricultural University, Zhengzhou, 450002, China
| | - Linhe Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenying Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Peiyong Xin
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Edita Gregová
- National Agricultural and Food centre, Research Institute of Plant Production, Bratislavská cesta 122, 921 68, Piešťany, Slovakia
| | - Xin Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiazhu Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenlong Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kehui Zhan
- College of Agronomy/The Collaborative Innovation Center of Grain Crops in Henan, Henan Agricultural University, Zhengzhou, 450002, China
| | - Aimin Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dongcheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing, 100024, China
| |
Collapse
|
49
|
Lyu T, Liu W, Hu Z, Xiang X, Liu T, Xiong X, Cao J. Molecular characterization and expression analysis reveal the roles of Cys 2/His 2 zinc-finger transcription factors during flower development of Brassica rapa subsp. chinensis. PLANT MOLECULAR BIOLOGY 2020; 102:123-141. [PMID: 31776846 DOI: 10.1007/s11103-019-00935-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Conserved motif, gene structure, expression and interaction analysis of C2H2-ZFPs in Brassica rapa, and identified types of genes may play essential roles in flower development, and BrZFP38 was proved to function in flower development by affecting pollen formation. Flower development plays a central role in determining the reproduction of higher plants, and Cys2/His2 zinc-finger proteins (C2H2-ZFPs) widely participate in the transcriptional regulation of flower development. C2H2-ZFPs with various structures are the most widespread DNA-binding transcription factors in plants. In this study, conserved protein motif and gene structures were analyzed to investigate systematically the molecular features of Brassica rapa C2H2-ZFP genes. Expression of B. rapa C2H2-ZFPs in multiple tissues showed that more than half of the family members with different types ZFs were expressed in flowers. The specific expression profiles of these C2H2-ZFPs in different B. rapa floral bud stages were further evaluated to identify their potential roles in flower development. Interaction networks were constructed in B. rapa based on the orthology of flower-related C2H2-ZFP genes in Arabidopsis. The putative cis-regulatory elements in the promoter regions of these C2H2-ZFP genes were thoroughly analyzed to elucidate their transcriptional regulation. Results showed that the orthologs of known-function flower-related C2H2-ZFP genes were conserved and differentiated in B. rapa. A C2H2-ZFP was proved to function in B. rapa flower development. Our study provides a systematic investigation of the molecular characteristics and expression profiles of C2H2-ZFPs in B. rapa and promotes further work in function and transcriptional regulation of flower development.
Collapse
Affiliation(s)
- Tianqi Lyu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
| | - Weimiao Liu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
| | - Ziwei Hu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
| | - Xun Xiang
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
| | - Tingting Liu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
| | - Xingpeng Xiong
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
| | - Jiashu Cao
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, 310058, China.
| |
Collapse
|
50
|
DeWitt N, Guedira M, Lauer E, Sarinelli M, Tyagi P, Fu D, Hao Q, Murphy JP, Marshall D, Akhunova A, Jordan K, Akhunov E, Brown‐Guedira G. Sequence-based mapping identifies a candidate transcription repressor underlying awn suppression at the B1 locus in wheat. THE NEW PHYTOLOGIST 2020; 225:326-339. [PMID: 31465541 PMCID: PMC6916393 DOI: 10.1111/nph.16152] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/16/2019] [Indexed: 05/27/2023]
Abstract
Awns are stiff, hair-like structures which grow from the lemmas of wheat (Triticum aestivum) and other grasses that contribute to photosynthesis and play a role in seed dispersal. Variation in awn length in domesticated wheat is controlled primarily by three major genes, most commonly the dominant awn suppressor Tipped1 (B1). This study identifies a transcription repressor responsible for awn inhibition at the B1 locus. Association mapping was combined with analysis in biparental populations to delimit B1 to a distal region of 5AL colocalized with QTL for number of spikelets per spike, kernel weight, kernel length, and test weight. Fine-mapping located B1 to a region containing only two predicted genes, including C2H2 zinc finger transcriptional repressor TraesCS5A02G542800 upregulated in developing spikes of awnless individuals. Deletions encompassing this candidate gene were present in awned mutants of an awnless wheat. Sequence polymorphisms in the B1 coding region were not observed in diverse wheat germplasm whereas a nearby polymorphism was highly predictive of awn suppression. Transcriptional repression by B1 is the major determinant of awn suppression in global wheat germplasm. It is associated with increased number of spikelets per spike and decreased kernel size.
Collapse
Affiliation(s)
- Noah DeWitt
- Department of Crop and Soil SciencesNorth Carolina State UniversityRaleighNC27695USA
| | - Mohammed Guedira
- Department of Crop and Soil SciencesNorth Carolina State UniversityRaleighNC27695USA
| | - Edwin Lauer
- Department of Crop and Soil SciencesNorth Carolina State UniversityRaleighNC27695USA
| | - Martin Sarinelli
- Department of Crop and Soil SciencesNorth Carolina State UniversityRaleighNC27695USA
| | - Priyanka Tyagi
- Department of Crop and Soil SciencesNorth Carolina State UniversityRaleighNC27695USA
| | - Daolin Fu
- Department of Plant SciencesUniversity of IdahoMoscowID83844USA
| | - QunQun Hao
- Department of Plant SciencesUniversity of IdahoMoscowID83844USA
| | - J. Paul Murphy
- Department of Crop and Soil SciencesNorth Carolina State UniversityRaleighNC27695USA
| | - David Marshall
- Department of Crop and Soil SciencesNorth Carolina State UniversityRaleighNC27695USA
- USDA‐ARS SAAPlant Science ResearchRaleighNC27695USA
| | - Alina Akhunova
- Department of Plant PathologyKansas State UniversityManhattanKS66506USA
| | - Katherine Jordan
- Department of Plant PathologyKansas State UniversityManhattanKS66506USA
| | - Eduard Akhunov
- Department of Plant PathologyKansas State UniversityManhattanKS66506USA
| | - Gina Brown‐Guedira
- Department of Crop and Soil SciencesNorth Carolina State UniversityRaleighNC27695USA
- USDA‐ARS SAAPlant Science ResearchRaleighNC27695USA
| |
Collapse
|