1
|
Abstract
Cardiovascular disease is the leading cause of death worldwide, and it commonly results from atherosclerotic plaque progression. One of the increasingly recognized drivers of atherosclerosis is dysfunctional efferocytosis, a homeostatic mechanism responsible for the clearance of dead cells and the resolution of inflammation. In atherosclerosis, the capacity of phagocytes to participate in efferocytosis is hampered, leading to the accumulation of apoptotic and necrotic tissue within the plaque, which results in enlargement of the necrotic core, increased luminal stenosis and plaque inflammation, and predisposition to plaque rupture or erosion. In this Review, we describe the different forms of programmed cell death that can occur in the atherosclerotic plaque and highlight the efferocytic machinery that is normally implicated in cardiovascular physiology. We then discuss the mechanisms by which efferocytosis fails in atherosclerosis and other cardiovascular and cardiometabolic diseases, including myocardial infarction and diabetes mellitus, and discuss therapeutic approaches that might reverse this pathological process.
Collapse
Affiliation(s)
- Shaunak S Adkar
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Nicholas J Leeper
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford, CA, USA.
| |
Collapse
|
2
|
Das P, Murthy S, Abbas E, White K, Arya R. The Hox Gene, abdominal A controls timely mitotic entry of neural stem cell and their growth during CNS development in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611161. [PMID: 39282366 PMCID: PMC11398374 DOI: 10.1101/2024.09.04.611161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
The size of a cell is important for its function and physiology. Interestingly, size variation can be easily observed in clonally derived embryonic and hematopoietic stem cells. Here, we investigated the regulation of stem cell growth and its association with cell fate. We observed heterogeneous sizes of neuroblasts or neural stem cells (NSCs) in the Drosophila ventral nerve cord (VNC). Specifically, thoracic NSCs were larger than those in the abdominal region of the VNC. Our research uncovered a significant role of the Hox gene abdominal A (abdA) in the regulation of abdominal NSC growth. Developmental expression of AbdA retards their growth and delays mitotic entry compared to thoracic NSCs. The targeted loss of abdA enhanced their growth and caused an earlier entry into mitosis with a faster cycling rate. Furthermore, ectopic expression of abdA reduced the size of thoracic NSCs and delayed their entry into mitosis. We suggest that abdA plays an instructive role in regulating NSC size and exit from quiescence. This study demonstrates for the first time the involvement of abdA in NSC fate determination by regulating their growth, entry into mitosis and proliferation rate, and thus their potential to make appropriate number of progeny for CNS patterning.
Collapse
Affiliation(s)
- Papri Das
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005
| | | | - Eshan Abbas
- ADP Road, Christianpatty, Nagaon, Assam- 782003, India
| | - Kristin White
- MGH/Harvard Medical School,CBRC, Bldg 149, 13th St, Charlestown, MA 02129
| | - Richa Arya
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005
| |
Collapse
|
3
|
Yang B, Sun L, Peng Z, Zhang Q, Lin M, Peng Z, Zheng L. Developmental Toxicity and Apoptosis in Zebrafish: The Impact of Lithium Hexafluorophosphate (LiPF 6) from Lithium-Ion Battery Electrolytes. Int J Mol Sci 2024; 25:9307. [PMID: 39273255 PMCID: PMC11395654 DOI: 10.3390/ijms25179307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
With the growing dependence on lithium-ion batteries, there is an urgent need to understand the potential developmental toxicity of LiPF6, a key component of these batteries. Although lithium's toxicity is well-established, the biological toxicity of LiPF6 has been minimally explored. This study leverages the zebrafish model to investigate the developmental impact of LiPF6 exposure. We observed morphological abnormalities, reduced spontaneous movement, and decreased hatching and swim bladder inflation rates in zebrafish embryos, effects that intensified with higher LiPF6 concentrations. Whole-mount in situ hybridization demonstrated that the specific expression of the swim bladder outer mesothelium marker anxa5b was suppressed in the swim bladder region under LiPF6 exposure. Transcriptomic analysis disclosed an upregulation of apoptosis-related gene sets. Acridine orange staining further supported significant induction of apoptosis. These findings underscore the environmental and health risks of LiPF6 exposure and highlight the necessity for improved waste management strategies for lithium-ion batteries.
Collapse
Affiliation(s)
- Boyu Yang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, China
| | - Luning Sun
- College of Fisheries, Hunan Agricultural University, Changsha 410128, China
| | - Zheng Peng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, China
| | - Qing Zhang
- The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Mei Lin
- The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Zhilin Peng
- The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, China
| |
Collapse
|
4
|
Chechenova M, McLendon L, Dallas B, Stratton H, Kiani K, Gerberich E, Alekseyenko A, Tamba N, An S, Castillo L, Czajkowski E, Talley C, Brown A, Bryantsev AL. Muscle degeneration in aging Drosophila flies: the role of mechanical stress. Skelet Muscle 2024; 14:20. [PMID: 39164781 PMCID: PMC11334408 DOI: 10.1186/s13395-024-00352-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
Muscle wasting is a universal hallmark of aging which is displayed by a wide range of organisms, although the causes and mechanisms of this phenomenon are not fully understood. We used Drosophila to characterize the phenomenon of spontaneous muscle fiber degeneration (SMFD) during aging. We found that SMFD occurs across diverse types of somatic muscles, progresses with chronological age, and positively correlates with functional muscle decline. Data from vital dyes and morphological markers imply that degenerative fibers most likely die by necrosis. Mechanistically, SMFD is driven by the damage resulting from muscle contractions, and the nervous system may play a significant role in this process. Our quantitative model of SMFD assessment can be useful in identifying and validating novel genetic factors that influence aging-related muscle wasting.
Collapse
Affiliation(s)
- Maria Chechenova
- Department of Molecular and Cellular Biology, Kennesaw State University, 105 Marietta Dr., NW, Room 4004, MD 1201, Kennesaw, GA, 30144, USA
- Present Affiliation: MNG Laboratories, A LabCorp Company, Atlanta, GA, USA
| | - Lilla McLendon
- Department of Molecular and Cellular Biology, Kennesaw State University, 105 Marietta Dr., NW, Room 4004, MD 1201, Kennesaw, GA, 30144, USA
| | - Bracey Dallas
- Department of Molecular and Cellular Biology, Kennesaw State University, 105 Marietta Dr., NW, Room 4004, MD 1201, Kennesaw, GA, 30144, USA
| | - Hannah Stratton
- Department of Molecular and Cellular Biology, Kennesaw State University, 105 Marietta Dr., NW, Room 4004, MD 1201, Kennesaw, GA, 30144, USA
| | - Kaveh Kiani
- Department of Molecular and Cellular Biology, Kennesaw State University, 105 Marietta Dr., NW, Room 4004, MD 1201, Kennesaw, GA, 30144, USA
| | - Erik Gerberich
- Department of Molecular and Cellular Biology, Kennesaw State University, 105 Marietta Dr., NW, Room 4004, MD 1201, Kennesaw, GA, 30144, USA
| | - Alesia Alekseyenko
- Department of Molecular and Cellular Biology, Kennesaw State University, 105 Marietta Dr., NW, Room 4004, MD 1201, Kennesaw, GA, 30144, USA
| | - Natasya Tamba
- Department of Molecular and Cellular Biology, Kennesaw State University, 105 Marietta Dr., NW, Room 4004, MD 1201, Kennesaw, GA, 30144, USA
| | - SooBin An
- Department of Molecular and Cellular Biology, Kennesaw State University, 105 Marietta Dr., NW, Room 4004, MD 1201, Kennesaw, GA, 30144, USA
| | - Lizzet Castillo
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Emily Czajkowski
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
- Present Affiliation: Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Christina Talley
- Department of Molecular and Cellular Biology, Kennesaw State University, 105 Marietta Dr., NW, Room 4004, MD 1201, Kennesaw, GA, 30144, USA
| | - Austin Brown
- Department of Mathematics, Kennesaw State University, Kennesaw, GA, USA
| | - Anton L Bryantsev
- Department of Molecular and Cellular Biology, Kennesaw State University, 105 Marietta Dr., NW, Room 4004, MD 1201, Kennesaw, GA, 30144, USA.
| |
Collapse
|
5
|
Nguyen TH, Vicidomini R, Choudhury SD, Han TH, Maric D, Brody T, Serpe M. scRNA-seq data from the larval Drosophila ventral cord provides a resource for studying motor systems function and development. Dev Cell 2024; 59:1210-1230.e9. [PMID: 38569548 PMCID: PMC11078614 DOI: 10.1016/j.devcel.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/05/2023] [Accepted: 03/06/2024] [Indexed: 04/05/2024]
Abstract
The Drosophila larval ventral nerve cord (VNC) shares many similarities with the spinal cord of vertebrates and has emerged as a major model for understanding the development and function of motor systems. Here, we use high-quality scRNA-seq, validated by anatomical identification, to create a comprehensive census of larval VNC cell types. We show that the neural lineages that comprise the adult VNC are already defined, but quiescent, at the larval stage. Using fluorescence-activated cell sorting (FACS)-enriched populations, we separate all motor neuron bundles and link individual neuron clusters to morphologically characterized known subtypes. We discovered a glutamate receptor subunit required for basal neurotransmission and homeostasis at the larval neuromuscular junction. We describe larval glia and endorse the general view that glia perform consistent activities throughout development. This census represents an extensive resource and a powerful platform for future discoveries of cellular and molecular mechanisms in repair, regeneration, plasticity, homeostasis, and behavioral coordination.
Collapse
Affiliation(s)
| | | | | | | | - Dragan Maric
- Flow and Imaging Cytometry Core, NINDS, NIH, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
6
|
Kaur R, McGarry A, Shropshire JD, Leigh BA, Bordenstein SR. Prophage proteins alter long noncoding RNA and DNA of developing sperm to induce a paternal-effect lethality. Science 2024; 383:1111-1117. [PMID: 38452081 PMCID: PMC11187695 DOI: 10.1126/science.adk9469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/30/2024] [Indexed: 03/09/2024]
Abstract
The extent to which prophage proteins interact with eukaryotic macromolecules is largely unknown. In this work, we show that cytoplasmic incompatibility factor A (CifA) and B (CifB) proteins, encoded by prophage WO of the endosymbiont Wolbachia, alter long noncoding RNA (lncRNA) and DNA during Drosophila sperm development to establish a paternal-effect embryonic lethality known as cytoplasmic incompatibility (CI). CifA is a ribonuclease (RNase) that depletes a spermatocyte lncRNA important for the histone-to-protamine transition of spermiogenesis. Both CifA and CifB are deoxyribonucleases (DNases) that elevate DNA damage in late spermiogenesis. lncRNA knockdown enhances CI, and mutagenesis links lncRNA depletion and subsequent sperm chromatin integrity changes to embryonic DNA damage and CI. Hence, prophage proteins interact with eukaryotic macromolecules during gametogenesis to create a symbiosis that is fundamental to insect evolution and vector control.
Collapse
Affiliation(s)
- Rupinder Kaur
- Pennsylvania State University, Departments of Biology and Entomology, University Park, PA 16802, USA
- One Health Microbiome Center, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Vanderbilt University, Department of Biological Sciences, Nashville, TN 37235, USA
| | - Angelina McGarry
- Pennsylvania State University, Departments of Biology and Entomology, University Park, PA 16802, USA
- One Health Microbiome Center, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - J. Dylan Shropshire
- Vanderbilt University, Department of Biological Sciences, Nashville, TN 37235, USA
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Brittany A. Leigh
- Vanderbilt University, Department of Biological Sciences, Nashville, TN 37235, USA
| | - Seth R. Bordenstein
- Pennsylvania State University, Departments of Biology and Entomology, University Park, PA 16802, USA
- One Health Microbiome Center, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Vanderbilt University, Department of Biological Sciences, Nashville, TN 37235, USA
| |
Collapse
|
7
|
Rivera-Rincón N, Altindag UH, Amin R, Graze RM, Appel AG, Stevison LS. "A comparison of thermal stress response between Drosophila melanogaster and Drosophila pseudoobscura reveals differences between species and sexes". JOURNAL OF INSECT PHYSIOLOGY 2024; 153:104616. [PMID: 38278288 PMCID: PMC11048572 DOI: 10.1016/j.jinsphys.2024.104616] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
The environment is changing faster than anticipated due to climate change, making species more vulnerable to its impacts. The level of vulnerability of species is influenced by factors such as the degree and duration of exposure, as well as the physiological sensitivity of organisms to changes in their environments, which has been shown to vary among species, populations, and individuals. Here, we compared physiological changes in fecundity, critical thermalmaximum (CTmax), respiratory quotient (RQ), and DNA damage in ovaries in response to temperature stress in two species of fruit fly, Drosophila melanogaster (25 vs. 29.5 °C) and Drosophila pseudoobscura (20.5 vs. 25 °C). The fecundity of D. melanogaster was more affected by high temperatures when exposed during egg through adult development, while D. pseudoobscura was most significantly affected when exposed to high temperatures exclusively during egg through pupal development. Additionally, D. melanogaster males exhibited a decrease of CTmax under high temperatures, while females showed an increase of CTmax when exposed to high temperatures during egg through adult development. while D. pseudoobscura females and males showed an increased CTmax only when reared at high temperatures during egg through pupae development. Moreover, both species showed an acceleration in oogenesis and an increase in apoptosis due to heat stress. These changes can likely be attributed to key differences in the geographic range, thermal range, development time, and other different factors between these two systems. Through this comparison of variation in physiology and developmental response to thermal stress, we found important differences between species and sexes that suggest future work needs to account for these factors separately in understanding the effects of constant increased temperatures.
Collapse
Affiliation(s)
- N Rivera-Rincón
- Department of Biological Sciences, Auburn University, Auburn, AL USA
| | - U H Altindag
- Department of Biological Sciences, Auburn University, Auburn, AL USA
| | - R Amin
- Department of Biological Sciences, Auburn University, Auburn, AL USA
| | - R M Graze
- Department of Biological Sciences, Auburn University, Auburn, AL USA
| | - A G Appel
- Department of Biological Sciences, Auburn University, Auburn, AL USA
| | - L S Stevison
- Department of Biological Sciences, Auburn University, Auburn, AL USA.
| |
Collapse
|
8
|
Umargamwala R, Manning J, Dorstyn L, Denton D, Kumar S. Understanding Developmental Cell Death Using Drosophila as a Model System. Cells 2024; 13:347. [PMID: 38391960 PMCID: PMC10886741 DOI: 10.3390/cells13040347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
Cell death plays an essential function in organismal development, wellbeing, and ageing. Many types of cell deaths have been described in the past 30 years. Among these, apoptosis remains the most conserved type of cell death in metazoans and the most common mechanism for deleting unwanted cells. Other types of cell deaths that often play roles in specific contexts or upon pathological insults can be classed under variant forms of cell death and programmed necrosis. Studies in Drosophila have contributed significantly to the understanding and regulation of apoptosis pathways. In addition to this, Drosophila has also served as an essential model to study the genetic basis of autophagy-dependent cell death (ADCD) and other relatively rare types of context-dependent cell deaths. Here, we summarise what is known about apoptosis, ADCD, and other context-specific variant cell death pathways in Drosophila, with a focus on developmental cell death.
Collapse
Affiliation(s)
- Ruchi Umargamwala
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5001, Australia; (J.M.); (L.D.)
| | - Jantina Manning
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5001, Australia; (J.M.); (L.D.)
| | - Loretta Dorstyn
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5001, Australia; (J.M.); (L.D.)
| | - Donna Denton
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5001, Australia; (J.M.); (L.D.)
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5001, Australia; (J.M.); (L.D.)
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
9
|
Kandouz M. Cell Death, by Any Other Name…. Cells 2024; 13:325. [PMID: 38391938 PMCID: PMC10886887 DOI: 10.3390/cells13040325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Studies trying to understand cell death, this ultimate biological process, can be traced back to a century ago. Yet, unlike many other fashionable research interests, research on cell death is more alive than ever. New modes of cell death are discovered in specific contexts, as are new molecular pathways. But what is "cell death", really? This question has not found a definitive answer yet. Nevertheless, part of the answer is irreversibility, whereby cells can no longer recover from stress or injury. Here, we identify the most distinctive features of different modes of cell death, focusing on the executive final stages. In addition to the final stages, these modes can differ in their triggering stimulus, thus referring to the initial stages. Within this framework, we use a few illustrative examples to examine how intercellular communication factors in the demise of cells. First, we discuss the interplay between cell-cell communication and cell death during a few steps in the early development of multicellular organisms. Next, we will discuss this interplay in a fully developed and functional tissue, the gut, which is among the most rapidly renewing tissues in the body and, therefore, makes extensive use of cell death. Furthermore, we will discuss how the balance between cell death and communication is modified during a pathological condition, i.e., colon tumorigenesis, and how it could shed light on resistance to cancer therapy. Finally, we briefly review data on the role of cell-cell communication modes in the propagation of cell death signals and how this has been considered as a potential therapeutic approach. Far from vainly trying to provide a comprehensive review, we launch an invitation to ponder over the significance of cell death diversity and how it provides multiple opportunities for the contribution of various modes of intercellular communication.
Collapse
Affiliation(s)
- Mustapha Kandouz
- Department of Pathology, School of Medicine, Wayne State University, 540 East Canfield Avenue, Detroit, MI 48201, USA;
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
10
|
Colon Plaza S, Su TT. Ionizing radiation induces cells with past caspase activity that contribute to the adult organ in Drosophila and show reduced Loss of Heterozygosity. Cell Death Discov 2024; 10:6. [PMID: 38182576 PMCID: PMC10770159 DOI: 10.1038/s41420-023-01769-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 01/07/2024] Open
Abstract
There is increasing recognition that cells may activate apoptotic caspases but not die, instead displaying various physiologically relevant consequences. Mechanisms that underlie the life-or-death decision in a cell that has activated apoptotic caspases, however, are incompletely understood. By optimizing a published reporter for past caspase activity, we were able to visualize cells that survived caspase activation specifically after exposure to ionizing radiation in Drosophila larval wing discs. We found that cells with X-ray-induced past active caspases (XPAC) did not arise at random but were born at specific locations within the developing wing imaginal discs of Drosophila larvae. Inhibiting key components of the apoptotic pathway decreased XPAC number, suggesting that apoptotic signaling is needed to induce XPAC cells. Yet, XPAC cells appeared in stereotypical patterns that did not follow the pattern of IR-induced apoptosis, suggesting additional controls at play. Functional testing identified the contribution of wingless (Drosophila Wnt1) and Ras signaling to the prevalence of XPAC cells. Furthermore, by following irradiated larvae into adulthood, we found that XPAC cells contribute to the adult wing. To address the relationship between XPAC and genome stability, we combined a reporter for past caspase activity with mwh, an adult marker for Loss of Heterozygosity (LOH). We found a lower incidence of LOH among XPAC compared to cells that did not activate the reporter for past caspase activity. In addition, at time points when wing disc cells are finishing DNA repair, XPAC cells show an anti-correlation with cells with unrepaired IR-induced double-stranded breaks. Our data suggest that non-lethal caspase activity safeguards the genome by facilitating DNA repair and reducing LOH after transient exposure to X-rays. These results identify a physiological role for non-lethal caspase activity during recovery from radiation damage.
Collapse
Affiliation(s)
- Sarah Colon Plaza
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, 80309-0347, USA
| | - Tin Tin Su
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, 80309-0347, USA.
| |
Collapse
|
11
|
Silva CS, Kudlyk T, Tryndyak VP, Twaddle NC, Robinson B, Gu Q, Beland FA, Fitzpatrick SC, Kanungo J. Gene expression analyses reveal potential mechanism of inorganic arsenic-induced apoptosis in zebrafish. J Appl Toxicol 2023; 43:1872-1882. [PMID: 37501093 DOI: 10.1002/jat.4520] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
Our previous study showed that sodium arsenite (200 mg/L) affected the nervous system and induced motor neuron development via the Sonic hedgehog pathway in zebrafish larvae. To gain more insight into the effects of arsenite on other signaling pathways, including apoptosis, we have performed quantitative polymerase chain reaction array-based gene expression analyses. The 96-well array plates contained primers for 84 genes representing 10 signaling pathways that regulate several biological functions, including apoptosis. We exposed eggs at 5 h postfertilization until the 72 h postfertilization larval stage to 200 mg/L sodium arsenite. In the Janus kinase/signal transducers and activators of transcription, nuclear factor κ-light-chain-enhancer of activated B cells, and Wingless/Int-1 signaling pathways, the expression of only one gene in each pathway was significantly altered. The expression of multiple genes was altered in the p53 and oxidative stress pathways. Sodium arsenite induced excessive apoptosis in the larvae. This compelled us to analyze specific genes in the p53 pathway, including cdkn1a, gadd45aa, and gadd45ba. Our data suggest that the p53 pathway is likely responsible for sodium arsenite-induced apoptosis. In addition, sodium arsenite significantly reduced global DNA methylation in the zebrafish larvae, which may indicate that epigenetic factors could be dysregulated after arsenic exposure. Together, these data elucidate potential mechanisms of arsenic toxicity that could improve understanding of arsenic's effects on human health.
Collapse
Affiliation(s)
- Camila S Silva
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Tetyana Kudlyk
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Volodymyr P Tryndyak
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Nathan C Twaddle
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Bonnie Robinson
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Qiang Gu
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Suzanne C Fitzpatrick
- Office of the Center Director, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Jyotshna Kanungo
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| |
Collapse
|
12
|
Li C, Zhu X, Sun X, Guo X, Li W, Chen P, Shidlovskii YV, Zhou Q, Xue L. Slik maintains tissue homeostasis by preventing JNK-mediated apoptosis. Cell Div 2023; 18:16. [PMID: 37794497 PMCID: PMC10552427 DOI: 10.1186/s13008-023-00097-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND The c-Jun N-terminal kinase (JNK) pathway is an evolutionarily conserved regulator of cell death, which is essential for coordinating tissue homeostasis. In this study, we have characterized the Drosophila Ste20-like kinase Slik as a novel modulator of JNK pathway-mediated apoptotic cell death. RESULTS First, ectopic JNK signaling-triggered cell death is enhanced by slik depletion whereas suppressed by Slik overexpression. Second, loss of slik activates JNK signaling, which results in enhanced apoptosis and impaired tissue homeostasis. In addition, genetic epistasis analysis suggests that Slik acts upstream of or in parallel to Hep to regulate JNK-mediated apoptotic cell death. Moreover, Slik is necessary and sufficient for preventing physiologic JNK signaling-mediated cell death in development. Furthermore, introduction of STK10, the human ortholog of Slik, into Drosophila restores slik depletion-induced cell death and compromised tissue homeostasis. Lastly, knockdown of STK10 in human cancer cells also leads to JNK activation, which is cancelled by expression of Slik. CONCLUSIONS This study has uncovered an evolutionarily conserved role of Slik/STK10 in blocking JNK signaling, which is required for cell death inhibition and tissue homeostasis maintenance in development.
Collapse
Affiliation(s)
- Chenglin Li
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Xiaojie Zhu
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Xinyue Sun
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Xiaowei Guo
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Wenzhe Li
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Ping Chen
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Yulii V Shidlovskii
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Biology and General Genetics, Sechenov University, 8, bldg. 2 Trubetskaya St, Moscow, 119048, Russia
| | - Qian Zhou
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China.
| | - Lei Xue
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China.
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong, China.
| |
Collapse
|
13
|
Heron R, Amato C, Wood W, Davidson AJ. Understanding the diversity and dynamics of in vivo efferocytosis: Insights from the fly embryo. Immunol Rev 2023; 319:27-44. [PMID: 37589239 PMCID: PMC10952863 DOI: 10.1111/imr.13266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023]
Abstract
The clearance of dead and dying cells, termed efferocytosis, is a rapid and efficient process and one that is critical for organismal health. The extraordinary speed and efficiency with which dead cells are detected and engulfed by immune cells within tissues presents a challenge to researchers who wish to unravel this fascinating process, since these fleeting moments of uptake are almost impossible to catch in vivo. In recent years, the fruit fly (Drosophila melanogaster) embryo has emerged as a powerful model to circumvent this problem. With its abundance of dying cells, specialist phagocytes and relative ease of live imaging, the humble fly embryo provides a unique opportunity to catch and study the moment of cell engulfment in real-time within a living animal. In this review, we explore the recent advances that have come from studies in the fly, and how live imaging and genetics have revealed a previously unappreciated level of diversity in the efferocytic program. A variety of efferocytic strategies across the phagocytic cell population ensure efficient and rapid clearance of corpses wherever death is encountered within the varied and complex setting of a multicellular living organism.
Collapse
Affiliation(s)
- Rosalind Heron
- Institute for Regeneration and RepairUniversity of EdinburghEdinburghUK
| | - Clelia Amato
- Institute for Regeneration and RepairUniversity of EdinburghEdinburghUK
| | - Will Wood
- Institute for Regeneration and RepairUniversity of EdinburghEdinburghUK
| | - Andrew J. Davidson
- Institute for Regeneration and RepairUniversity of EdinburghEdinburghUK
- School of Cancer SciencesWolfson Wohl Cancer Research Centre, University of GlasgowGlasgowUK
| |
Collapse
|
14
|
Gomes TC, Conrado R, Oliveira RCD, Selari PJRG, Melo ISD, Araújo WL, Maria DA, De Souza AO. Effect of Monocerin, a Fungal Secondary Metabolite, on Endothelial Cells. Toxins (Basel) 2023; 15:toxins15050344. [PMID: 37235378 DOI: 10.3390/toxins15050344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
This study reports the isolation and identification of the endophytic fungus Exserohilum rostratum through molecular and morphological analysis using optical and transmission electron microscopy (TEM), as well as the procurement of its secondary metabolite monocerin, an isocoumarin derivative. Considering the previously observed biological activities of monocerin, this study was performed on human umbilical vein endothelial cells (HUVECs) that are widely used as an in vitro model for several different purposes. Important parameters, such as cell viability, senescence-associated β-galactosidase, cellular proliferation by using 5(6)-carboxyfluorescein diacetate N-succinimidyl ester (CFSE), apoptosis analysis with annexin, cellular morphology through scanning electron microscopy (SEM), and laser confocal analysis were evaluated after exposing the cells to monocerin. After 24 h of exposure to monocerin at 1.25 mM, there was more than 80% of cell viability and a low percentage of cells in the early and late apoptosis and necrosis. Monocerin increased cell proliferation and did not induce cell senescence. Morphological analysis showed cellular integrity. The study demonstrates aspects of the mechanism of action of monocerin on endothelial cell proliferation, suggesting the possibility of its pharmaceutical application, such as in regenerative medicine.
Collapse
Affiliation(s)
- Tainah Colombo Gomes
- Development and Innovation Laboratory, Instituto Butantan, Avenida Vital Brasil, 1500, Sao Paulo 05503-900, SP, Brazil
| | - Rafael Conrado
- Development and Innovation Laboratory, Instituto Butantan, Avenida Vital Brasil, 1500, Sao Paulo 05503-900, SP, Brazil
| | - Rodrigo Cardoso de Oliveira
- Department of Biochemical and Pharmaceutical Technology, FCF, University of Sao Paulo, Sao Paulo 05508-000, SP, Brazil
| | | | - Itamar Soares de Melo
- Environmental Microbiology Laboratory, EMBRAPA Meio Ambiente, Jaguariuna 13918-110, SP, Brazil
| | - Welington Luiz Araújo
- Laboratory of Molecular Biology and Microbial Ecology (LABMEM), Microbiology Department, ICB II, University of Sao Paulo, Sao Paulo 05508-000, SP, Brazil
| | - Durvanei Augusto Maria
- Development and Innovation Laboratory, Instituto Butantan, Avenida Vital Brasil, 1500, Sao Paulo 05503-900, SP, Brazil
| | - Ana Olívia De Souza
- Development and Innovation Laboratory, Instituto Butantan, Avenida Vital Brasil, 1500, Sao Paulo 05503-900, SP, Brazil
| |
Collapse
|
15
|
Yoshida K, Hayashi S. Epidermal growth factor receptor signaling protects epithelia from morphogenetic instability and tissue damage in Drosophila. Development 2023; 150:297057. [PMID: 36897356 PMCID: PMC10108703 DOI: 10.1242/dev.201231] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/09/2023] [Indexed: 03/11/2023]
Abstract
Dying cells in the epithelia communicate with neighboring cells to initiate coordinated cell removal to maintain epithelial integrity. Naturally occurring apoptotic cells are mostly extruded basally and engulfed by macrophages. Here, we have investigated the role of Epidermal growth factor (EGF) receptor (EGFR) signaling in the maintenance of epithelial homeostasis. In Drosophila embryos, epithelial tissues undergoing groove formation preferentially enhanced extracellular signal-regulated kinase (ERK) signaling. In EGFR mutant embryos at stage 11, sporadic apical cell extrusion in the head initiates a cascade of apical extrusions of apoptotic and non-apoptotic cells that sweeps the entire ventral body wall. Here, we show that this process is apoptosis dependent, and clustered apoptosis, groove formation, and wounding sensitize EGFR mutant epithelia to initiate massive tissue disintegration. We further show that tissue detachment from the vitelline membrane, which frequently occurs during morphogenetic processes, is a key trigger for the EGFR mutant phenotype. These findings indicate that, in addition to cell survival, EGFR plays a role in maintaining epithelial integrity, which is essential for protecting tissues from transient instability caused by morphogenetic movement and damage.
Collapse
Affiliation(s)
- Kentaro Yoshida
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Department of Biology, Kobe University Graduate School of Science, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8051, Japan
| | - Shigeo Hayashi
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Department of Biology, Kobe University Graduate School of Science, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8051, Japan
| |
Collapse
|
16
|
Airs PM, Nazarchyk MJ, Tucker BJ, Bartholomay LC. Characterizing oogenesis and programmed cell death in the eastern tree hole mosquito Aedes (Protomacleaya) triseriatus. FRONTIERS IN INSECT SCIENCE 2023; 2:1073308. [PMID: 38468807 PMCID: PMC10926484 DOI: 10.3389/finsc.2022.1073308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/29/2022] [Indexed: 03/13/2024]
Abstract
Oogenesis in flies manifests as a carefully orchestrated cascade of developmental gates and growth events, punctuated by programmed cell death (PCD) and follicular resorption events. In anautogenous mosquitoes, a blood meal stimulates growth of primary follicles, but the timing of developmental stages is species-specific, and few species have been characterized. Here, we characterize the first gonotrophic cycle of oogenesis in Aedes triseriatus (Diptera: Culicidae), the principal vector of La Crosse Virus (LACV), a major cause of pediatric encephalitis in North America. We note significant differences in the timing and appearance of developmental stages from previous studies of other mosquito species, particularly Aedes aegypti. We also describe the appearance and timing of PCD events including atresia, nurse cell death, and follicular epithelium death and show that the majority of follicular epithelium cells do not undergo apoptosis during oogenesis but persist in the ovariole at least until the second gonotrophic cycle. This thorough characterization of oogenesis and PCD in Ae. triseriatus, through which LACV must persist in order to achieve filial infection, also serves as a baseline to study host-pathogen interactions during transovarial transmission.
Collapse
Affiliation(s)
- Paul M. Airs
- Department of Entomology, Iowa State University, Ames, IA, United States
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Bradley J. Tucker
- Department of Entomology, Iowa State University, Ames, IA, United States
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Midwest Center of Excellence for Vector-Borne Disease, University of Wisconsin-Madison, Madison, WI, United States
| | - Lyric C. Bartholomay
- Department of Entomology, Iowa State University, Ames, IA, United States
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Midwest Center of Excellence for Vector-Borne Disease, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
17
|
Yasuda T, Li D, Sha E, Kakimoto F, Mitani H, Yamamoto H, Ishikawa-Fujiwara T, Todo T, Oda S. 3D reconstructed brain images reveal the possibility of the ogg1 gene to suppress the irradiation-induced apoptosis in embryonic brain in medaka (Oryzias latipes). JOURNAL OF RADIATION RESEARCH 2022; 63:319-330. [PMID: 35276012 PMCID: PMC9124622 DOI: 10.1093/jrr/rrac005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/07/2021] [Indexed: 06/14/2023]
Abstract
The accumulation of oxidative DNA lesions in neurons is associated with neurodegenerative disorders and diseases. Ogg1 (8-oxoG DNA glycosylase-1) is a primary repair enzyme to excise 7,8-dihydro-8-oxoguanine (8-oxoG), the most frequent mutagenic base lesion produced by oxidative DNA damage. We have developed ogg1-deficient medaka by screening with a high resolution melting (HRM) assay in Targeting-Induced Local Lesions In Genomes (TILLING) library. In this study, we identified that ogg1-deficient embryos have smaller brains than wild-type during the period of embryogenesis and larvae under normal conditions. To reveal the function of ogg1 when brain injury occurs during embryogenesis, we examined the induction of apoptosis in brains after exposure to gamma-rays with 10 Gy (137Cs, 7.3 Gy/min.) at 24 h post-irradiation both in wild-type and ogg1-deficient embryos. By acridine orange (AO) assay, clustered apoptosis in irradiated ogg1-deficient embryonic brains were distributed in a similar manner to those of irradiated wild-type embryos. To evaluate possible differences of gamma-ray induced apoptosis in both types of embryonic brains, we constructed 3D images of the whole brain based on serial histological sections. This analysis identified that the clustered apoptotic volume was about 3 times higher in brain of irradiated ogg1-deficient embryos (n = 3) compared to wild-type embryos (n = 3) (P = 0.04), suggesting that irradiation-induced apoptosis in medaka embryonic brain can be suppressed in the presence of functional ogg1. Collectively, reconstruction of 3D images can be a powerful approach to reveal slight differences in apoptosis induction post-irradiation.
Collapse
Affiliation(s)
- Takako Yasuda
- Corresponding author: Center for Environmental Risk Research, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki 305-8506, Japan/tel 029-850-2864/Fax 029-850-2870, E-mail address: ;
| | | | | | - Fumitaka Kakimoto
- Laboratory of Genome Stability, Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Hiroshi Mitani
- Laboratory of Genome Stability, Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Hiroshi Yamamoto
- Center for Environmental Risk Research, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki 305-8506, Japan
| | - Tomoko Ishikawa-Fujiwara
- Department of Radiation Biology and Medical Genetics, Graduate School of Medicine, Osaka University, B4, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takeshi Todo
- Department of Radiation Biology and Medical Genetics, Graduate School of Medicine, Osaka University, B4, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shoji Oda
- Laboratory of Genome Stability, Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| |
Collapse
|
18
|
Thiel WA, Blume ZI, Mitchell DM. Compensatory engulfment and Müller glia reactivity in the absence of microglia. Glia 2022; 70:1402-1425. [PMID: 35451181 DOI: 10.1002/glia.24182] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 01/25/2023]
Abstract
Microglia are known for important phagocytic functions in the vertebrate retina. Reports also suggest that Müller glia have phagocytic capacity, though the relative levels and contexts in which this occurs remain to be thoroughly examined. Here, we investigate Müller glial engulfment of dying cells in the developing zebrafish retina in the presence and absence of microglia, using a genetic mutant in which microglia do not develop. We show that in normal conditions clearance of dying cells is dominated by microglia; however, Müller glia do have a limited clearance role. In retinas lacking intact microglial populations, we found a striking increase in the engulfment load assumed by the Müller glia, which displayed prominent cellular compartments containing apoptotic cells, several of which localized with the early phagosome/endosome marker Rab5. Consistent with increased engulfment, lysosomal staining was also increased in Müller glia in the absence of microglia. Increased engulfment load led to evidence of Müller glia reactivity including upregulation of gfap but did not trigger cell cycle re-entry by differentiated Müller glia. Our work provides important insight into the phagocytic capacity of Müller glia and the ability for compensatory functions and downstream effects. Therefore, effects of microglial deficiency or depletion on other glial cell types should be well-considered in experimental manipulations, in neurodegenerative disease, and in therapeutic approaches that target microglia. Our findings further justify future work to understand differential mechanisms and contexts of phagocytosis by glial cells in the central nervous system, and the significance of these mechanisms in health and disease.
Collapse
Affiliation(s)
- Whitney A Thiel
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Zachary I Blume
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Diana M Mitchell
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
19
|
Raymond MH, Davidson AJ, Shen Y, Tudor DR, Lucas CD, Morioka S, Perry JSA, Krapivkina J, Perrais D, Schumacher LJ, Campbell RE, Wood W, Ravichandran KS. Live cell tracking of macrophage efferocytosis during Drosophila embryo development in vivo. Science 2022; 375:1182-1187. [PMID: 35271315 PMCID: PMC7612538 DOI: 10.1126/science.abl4430] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Apoptosis of cells and their subsequent removal via efferocytosis occurs in nearly all tissues during development, homeostasis, and disease. However, it has been difficult to track cell death and subsequent corpse removal in vivo. Here, we developed a genetically encoded fluorescent reporter, CharON, that could track emerging apoptotic cells and their efferocytic clearance by phagocytes. Using Drosophila expressing CharON, we uncovered multiple qualitative and quantitative features of coordinated clearance of apoptotic corpses during embryonic development. To confront high rate of emerging apoptotic corpses, the macrophages displayed heterogeneity in engulfment, with some efferocytic macrophages carrying high corpse burden. However, overburdened macrophages were compromised in clearing wound debris, revealing an inherent vulnerability. These findings reveal known and unexpected features of apoptosis and macrophage efferocytosis in vivo.
Collapse
Affiliation(s)
- Michael H Raymond
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA.,Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
| | - Andrew J Davidson
- Centre for Inflammation Research, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Yi Shen
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Daniel R Tudor
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Christopher D Lucas
- Centre for Inflammation Research, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Sho Morioka
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA.,Department of Medicine, Division of Nephrology and CIIR, University of Virginia, Charlottesville, VA, USA
| | - Justin S A Perry
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Julia Krapivkina
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience (IINS), UMR 5297, Bordeaux, France
| | - David Perrais
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience (IINS), UMR 5297, Bordeaux, France
| | - Linus J Schumacher
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Robert E Campbell
- Department of Chemistry, University of Alberta, Edmonton, Canada.,Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Will Wood
- Centre for Inflammation Research, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Kodi S Ravichandran
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA.,VIB/UGent Inflammation Research Centre, and Biomedical Molecular Biology, Ghent University, Belgium.,Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
20
|
Liu KE, Raymond MH, Ravichandran KS, Kucenas S. Clearing Your Mind: Mechanisms of Debris Clearance After Cell Death During Neural Development. Annu Rev Neurosci 2022; 45:177-198. [PMID: 35226828 PMCID: PMC10157384 DOI: 10.1146/annurev-neuro-110920-022431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neurodevelopment and efferocytosis have fascinated scientists for decades. How an organism builds a nervous system that is precisely tuned for efficient behaviors and survival and how it simultaneously manages constant somatic cell turnover are complex questions that have resulted in distinct fields of study. Although neurodevelopment requires the overproduction of cells that are subsequently pruned back, very few studies marry these fields to elucidate the cellular and molecular mechanisms that drive nervous system development through the lens of cell clearance. In this review, we discuss these fields to highlight exciting areas of future synergy. We first review neurodevelopment from the perspective of overproduction and subsequent refinement and then discuss who clears this developmental debris and the mechanisms that control these events. We then end with how a more deliberate merger of neurodevelopment and efferocytosis could reframe our understanding of homeostasis and disease and discuss areas of future study. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Kendra E Liu
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA; .,Program in Fundamental Neuroscience, University of Virginia, Charlottesville, Virginia, USA
| | - Michael H Raymond
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA; .,Center for Clearance, University of Virginia, Charlottesville, Virginia, USA
| | - Kodi S Ravichandran
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA; .,Center for Clearance, University of Virginia, Charlottesville, Virginia, USA.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA.,VIB-UGent Center for Inflammation Research and the Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sarah Kucenas
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA; .,Program in Fundamental Neuroscience, University of Virginia, Charlottesville, Virginia, USA.,Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
21
|
The concept of intrinsic versus extrinsic apoptosis. Biochem J 2022; 479:357-384. [PMID: 35147165 DOI: 10.1042/bcj20210854] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/12/2022]
Abstract
Regulated cell death is a vital and dynamic process in multicellular organisms that maintains tissue homeostasis and eliminates potentially dangerous cells. Apoptosis, one of the better-known forms of regulated cell death, is activated when cell-surface death receptors like Fas are engaged by their ligands (the extrinsic pathway) or when BCL-2-family pro-apoptotic proteins cause the permeabilization of the mitochondrial outer membrane (the intrinsic pathway). Both the intrinsic and extrinsic pathways of apoptosis lead to the activation of a family of proteases, the caspases, which are responsible for the final cell demise in the so-called execution phase of apoptosis. In this review, I will first discuss the most common types of regulated cell death on a morphological basis. I will then consider in detail the molecular pathways of intrinsic and extrinsic apoptosis, discussing how they are activated in response to specific stimuli and are sometimes overlapping. In-depth knowledge of the cellular mechanisms of apoptosis is becoming more and more important not only in the field of cellular and molecular biology but also for its translational potential in several pathologies, including neurodegeneration and cancer.
Collapse
|
22
|
Sayed AEDH, Nagata K, Nakazawa T, Mitani H, Kobayashi J, Oda S. Low Dose-Rate Irradiation of Gamma-Rays-Induced Cytotoxic and Genotoxic Alterations in Peripheral Erythrocytes of p53-Deficient Medaka (Oryzias latipes). FRONTIERS IN MARINE SCIENCE 2021. [DOI: 10.3389/fmars.2021.773481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Morphological alterations and nuclear abnormalities in fish erythrocytes have been used in many studies as bioindicators of environmental mutagens including ionizing radiation. In this study, adult Japanese medaka (Oryzias latipes) were irradiated with gamma rays at a low dose rate (9.92 μGy/min) for 7 days, giving a total dose of 100 mGy; and morphological alterations, nuclear abnormalities, and apoptotic cell death induced in peripheral erythrocytes were investigated 8 h and 7 days after the end of the irradiation. A variety of abnormalities, such as tear-drop cell, crenated cell, acanthocyte, sickled cell, micronucleated cell, eccentric nucleus, notched nucleus, and schistocyte, were induced in the peripheral erythrocytes of the wild-type fish, and a less number of abnormalities and apoptotic cell death were induced in the p53-deficient fish. These results indicate that low dose-rate chronic irradiation of gamma rays can induce cytotoxic and genotoxic effects in the peripheral erythrocytes of medaka, and p53-deficient medaka are tolerant to the gamma-ray irradiation than the wild type on the surface.
Collapse
|
23
|
Nanda KP, Firdaus H. Dietary cadmium (Cd) reduces hemocyte level by induction of apoptosis in Drosophila melanogaster. Comp Biochem Physiol C Toxicol Pharmacol 2021; 250:109188. [PMID: 34517133 DOI: 10.1016/j.cbpc.2021.109188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 12/16/2022]
Abstract
Drosophila melanogaster larvae ensure continuous proliferation and differentiation of hemocytes to maintain a fixed range of different blood cell types during its various stages of development. Variation in this number is often an indicator of animal well-being, its genotype or an effect of environmental perturbation, including exposure to heavy metals. The present study investigates the effect of Cd on larval hemocytes. Embryos were allowed to grow in metal media till third instar larvae and finally circulating hemocyte were collected. The number of major hemocytes, plasmatocytes and crystal cells was determined to be lowered in Cd exposed animals. Our results also showed modulation of antioxidant biology of Cd exposed hemocytes by changing the major antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) activity, and decreasing reduced glutathione (GSH) levels in hemocytes suspended in the hemolymph. Acridine orange (AO) staining further revealed induction of apoptosis in hemocytes of metal treated larvae. Our results suggest a negative impact of Cd exposure on the hemocytes of the Drosophila larvae culminating in their lowered count by induction of apoptosis.
Collapse
Affiliation(s)
- Kumari Pragati Nanda
- Department of Life Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi 835205, Jharkhand, India
| | - Hena Firdaus
- Department of Life Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi 835205, Jharkhand, India.
| |
Collapse
|
24
|
Lubin A, Otterstrom J, Hoade Y, Bjedov I, Stead E, Whelan M, Gestri G, Paran Y, Payne E. A versatile, automated and high-throughput drug screening platform for zebrafish embryos. Biol Open 2021; 10:bio058513. [PMID: 34472582 PMCID: PMC8430230 DOI: 10.1242/bio.058513] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/28/2021] [Indexed: 12/29/2022] Open
Abstract
Zebrafish provide a unique opportunity for drug screening in living animals, with the fast-developing, transparent embryos allowing for relatively high-throughput, microscopy-based screens. However, the limited availability of rapid, flexible imaging and analysis platforms has limited the use of zebrafish in drug screens. We have developed an easy-to-use, customisable automated screening procedure suitable for high-throughput phenotype-based screens of live zebrafish. We utilised the WiScan® Hermes High Content Imaging System to rapidly acquire brightfield and fluorescent images of embryos, and the WiSoft® Athena Zebrafish Application for analysis, which harnesses an Artificial Intelligence-driven algorithm to automatically detect fish in brightfield images, identify anatomical structures, partition the animal into regions and exclusively select the desired side-oriented fish. Our initial validation combined structural analysis with fluorescence images to enumerate GFP-tagged haematopoietic stem and progenitor cells in the tails of embryos, which correlated with manual counts. We further validated this system to assess the effects of genetic mutations and X-ray irradiation in high content using a wide range of assays. Further, we performed simultaneous analysis of multiple cell types using dual fluorophores in high throughput. In summary, we demonstrate a broadly applicable and rapidly customisable platform for high-content screening in zebrafish. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Alexandra Lubin
- Research Department of Haematology, Cancer Institute, University College London, London WC1E 6DD, UK
| | | | - Yvette Hoade
- Research Department of Haematology, Cancer Institute, University College London, London WC1E 6DD, UK
| | - Ivana Bjedov
- Research Department of Cancer Biology, Cancer Institute, University College London, London WC1E 6DD, UK
| | - Eleanor Stead
- Research Department of Cancer Biology, Cancer Institute, University College London, London WC1E 6DD, UK
| | - Matthew Whelan
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Gaia Gestri
- Department of Cell and Developmental Biology, University College London, London WC1E 6AR, UK
| | - Yael Paran
- IDEA Bio-Medical Ltd., Rehovot 76705, Israel
| | - Elspeth Payne
- Research Department of Haematology, Cancer Institute, University College London, London WC1E 6DD, UK
| |
Collapse
|
25
|
An G, Park H, Lim W, Song G. Fluroxypyr-1-methylheptyl ester interferes with the normal embryogenesis of zebrafish by inducing apoptosis, inflammation, and neurovascular toxicity. Comp Biochem Physiol C Toxicol Pharmacol 2021; 247:109069. [PMID: 33930526 DOI: 10.1016/j.cbpc.2021.109069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 01/08/2023]
Abstract
Fluroxypyr-1-methylheptyl ester (FPMH) is a synthetic auxin herbicide used to regulate the growth of post-emergence broad-leaved weeds. Although acute exposure to FPMH increases the mortality of several fish species in the juvenile stage, the developmental toxicity of FPMH in aquatic vertebrates has not yet been investigated. In the present study, we assessed the developmental toxicity of FPMH using zebrafish models that offer many advantages for studying toxicology. During embryogenesis, survival rates gradually decreased with increasing FPMH concentrations and exposure times. At 120 h post-fertilization, FPMH-exposed zebrafish larvae showed various abnormalities such as small eye size, heart defects, enlarged yolk sac, and shortened body length. The study results confirmed the induction of apoptosis in the anterior body of zebrafish and upregulation of inflammatory gene expression. Further, defects in vascular networks, especially the loss of central arteries and abnormal aortic arch structures, were seen in the fli1:eGFP transgenic zebrafish model. Neurotoxicity of FPMH was examined using mbp:eGFP zebrafish and which displayed compromised myelination following FPMH administration. Our study has demonstrated the mechanisms underlying FPMH toxicity in developing zebrafish that is a representative model of vertebrates.
Collapse
Affiliation(s)
- Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
26
|
Park A, Tran T, Gutierrez L, Stojanik CJ, Plyler J, Thompson GA, Bohm RA, Scheuerman EA, Smith DP, Atkinson NS. Alcohol-induced aggression in Drosophila. Addict Biol 2021; 26:e13045. [PMID: 34044470 DOI: 10.1111/adb.13045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/16/2021] [Accepted: 03/31/2021] [Indexed: 11/28/2022]
Abstract
Alcohol-induced aggression is a destructive and widespread phenomenon associated with violence and sexual assault. However, little is understood concerning its mechanistic origin. We have developed a Drosophila melanogaster model to genetically dissect and understand the phenomenon of sexually dimorphic alcohol-induced aggression. Males with blood alcohol levels of 0.04-mg/ml BAC were less aggressive than alcohol-naive males, but when the BAC had dropped to ~0.015 mg/ml, the alcohol-treated males showed an increase in aggression toward other males. This aggression-promoting treatment is referred to as the post-ethanol aggression (PEA) treatment. Females do not show increased aggression after the same treatment. PEA-treated males also spend less time courting and attempt to copulate earlier than alcohol-naive flies. PEA treatment induces expression of the FruM transcription factor (encoded by a male-specific transcript from the fruitless gene), whereas sedating doses of alcohol reduce FruM expression and reduce male aggression. Transgenic suppression of FruM induction also prevents alcohol-induced aggression. In male flies, alcohol-induced aggression is dependent on the male isoform of the fruitless transcription factor (FruM). Low-dose alcohol induces FruM expression and promotes aggression, whereas higher doses of alcohol suppress FruM and suppress aggression.
Collapse
Affiliation(s)
- Annie Park
- Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research The University of Texas at Austin Austin Texas USA
- Centre for Neural Circuits and Behaviour The University of Oxford Oxford UK
| | - Tracy Tran
- Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research The University of Texas at Austin Austin Texas USA
| | - Linda Gutierrez
- Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research The University of Texas at Austin Austin Texas USA
| | - Christopher J. Stojanik
- Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research The University of Texas at Austin Austin Texas USA
| | - Julian Plyler
- Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research The University of Texas at Austin Austin Texas USA
| | - Grace A. Thompson
- Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research The University of Texas at Austin Austin Texas USA
| | - Rudolf A. Bohm
- Department of Biological and Health Sciences Texas A&M University‐Kingsville Kingsville Texas USA
| | - Elizabeth A. Scheuerman
- Department of Pharmacology and Neuroscience University of Texas Southwestern Medical Center Dallas Texas USA
| | - Dean P. Smith
- Department of Pharmacology and Neuroscience University of Texas Southwestern Medical Center Dallas Texas USA
| | - Nigel S. Atkinson
- Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research The University of Texas at Austin Austin Texas USA
| |
Collapse
|
27
|
Mase A, Augsburger J, Brückner K. Macrophages and Their Organ Locations Shape Each Other in Development and Homeostasis - A Drosophila Perspective. Front Cell Dev Biol 2021; 9:630272. [PMID: 33777939 PMCID: PMC7991785 DOI: 10.3389/fcell.2021.630272] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
Across the animal kingdom, macrophages are known for their functions in innate immunity, but they also play key roles in development and homeostasis. Recent insights from single cell profiling and other approaches in the invertebrate model organism Drosophila melanogaster reveal substantial diversity among Drosophila macrophages (plasmatocytes). Together with vertebrate studies that show genuine expression signatures of macrophages based on their organ microenvironments, it is expected that Drosophila macrophage functional diversity is shaped by their anatomical locations and systemic conditions. In vivo evidence for diverse macrophage functions has already been well established by Drosophila genetics: Drosophila macrophages play key roles in various aspects of development and organogenesis, including embryogenesis and development of the nervous, digestive, and reproductive systems. Macrophages further maintain homeostasis in various organ systems and promote regeneration following organ damage and injury. The interdependence and interplay of tissues and their local macrophage populations in Drosophila have implications for understanding principles of organ development and homeostasis in a wide range of species.
Collapse
Affiliation(s)
- Anjeli Mase
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, United States
| | - Jordan Augsburger
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, United States
| | - Katja Brückner
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, United States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
28
|
Abstract
In the final stages of apoptosis, apoptotic cells can generate a variety of membrane-bound vesicles known as apoptotic extracellular vesicles (ApoEVs). Apoptotic bodies (ApoBDs), a major subset of ApoEVs, are formed through a process termed apoptotic cell disassembly characterised by a series of tightly regulated morphological steps including plasma membrane blebbing, apoptotic membrane protrusion formation and fragmentation into ApoBDs. To better characterise the properties of ApoBDs and elucidate their function, a number of methods including differential centrifugation, filtration and fluorescence-activated cell sorting were developed to isolate ApoBDs. Furthermore, it has become increasingly clear that ApoBD formation can contribute to various biological processes such as apoptotic cell clearance and intercellular communication. Together, recent literature demonstrates that apoptotic cell disassembly and thus, ApoBD formation, is an important process downstream of apoptotic cell death. In this chapter, we discuss the current understandings of the molecular mechanisms involved in regulating apoptotic cell disassembly, techniques for ApoBD isolation, and the functional roles of ApoBDs in physiological and pathological settings.
Collapse
|
29
|
Rahul, Naz F, Jyoti S, Siddique YH. Effect of kaempferol on the transgenic Drosophila model of Parkinson's disease. Sci Rep 2020; 10:13793. [PMID: 32796885 PMCID: PMC7429503 DOI: 10.1038/s41598-020-70236-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/27/2020] [Indexed: 11/22/2022] Open
Abstract
The present study was aimed to study the effect of kaempferol, on the transgenic Drosophila model of Parkinson's disease. Kaempferol was added in the diet at final concentration of 10, 20, 30 and 40 µM and the effect was studied on various cognitive and oxidative stress markers. The results of the study showed that kaempferol, delayed the loss of climbing ability as well as the activity of PD flies in a dose dependent manner compared to unexposed PD flies. A dose-dependent reduction in oxidative stress markers was also observed. Histopathological examination of fly brains using anti-tyrosine hydroxylase immunostaining has revealed a significant dose-dependent increase in the expression of tyrosine hydroxylase in PD flies exposed to kaempferol. Molecular docking results revealed that kaempferol binds to human alpha synuclein at specific sites that might results in the inhibition of alpha synuclein aggregation and prevents the formation of Lewy bodies.
Collapse
Affiliation(s)
- Rahul
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Falaq Naz
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Smita Jyoti
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India.
| |
Collapse
|
30
|
Abstract
Cell death is an important facet of animal development. In some developing tissues, death is the ultimate fate of over 80% of generated cells. Although recent studies have delineated a bewildering number of cell death mechanisms, most have only been observed in pathological contexts, and only a small number drive normal development. This Primer outlines the important roles, different types and molecular players regulating developmental cell death, and discusses recent findings with which the field currently grapples. We also clarify terminology, to distinguish between developmental cell death mechanisms, for which there is evidence for evolutionary selection, and cell death that follows genetic, chemical or physical injury. Finally, we suggest how advances in understanding developmental cell death may provide insights into the molecular basis of developmental abnormalities and pathological cell death in disease.
Collapse
Affiliation(s)
- Piya Ghose
- Department of Biology, The University of Texas at Arlington, 655 Mitchell St., Arlington, TX 76019, USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
31
|
Davidson AJ, Wood W. Phagocyte Responses to Cell Death in Flies. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a036350. [PMID: 31501193 DOI: 10.1101/cshperspect.a036350] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Multicellular organisms are not created through cell proliferation alone. It is through cell death that an indefinite cellular mass is pared back to reveal its true form. Cells are also lost throughout life as part of homeostasis and through injury. This detritus represents a significant burden to the living organism and must be cleared, most notably through the use of specialized phagocytic cells. Our understanding of these phagocytes and how they engulf cell corpses has been greatly aided by studying the fruit fly, Drosophila melanogaster Here we review the contribution of Drosophila research to our understanding of how phagocytes respond to cell death. We focus on the best studied phagocytes in the fly: the glia of the central nervous system, the ovarian follicle cells, and the macrophage-like hemocytes. Each is explored in the context of the tissue they maintain as well as how they function during development and in response to injury.
Collapse
Affiliation(s)
- Andrew J Davidson
- Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, United Kingdom
| | - Will Wood
- Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, United Kingdom
| |
Collapse
|
32
|
Abstract
BACKGROUND After fluorochromes are incorporated into cells, tissues, and organisms, confocal microscopy can be used to observe three-dimensional structures. LysoTracker Red (LT) is a paraformaldehyde-fixable probe that concentrates into acidic compartments of cells and indicates regions of high lysosomal activity and phagocytosis, both of which correlate to apoptotic activity. Thus, LT is a good indicator of apoptosis visualized by confocal microscopy. Results of LT staining of apoptotic cell death correlate well with other whole mount apoptosis vital dyes such as Nile blue sulfate and neutral red, with the added benefit of being fixable in situ. Nile blue sulfate can also be used as a non-vital, nonspecific dye to visualize general morphology. Stains such as acridine orange can be used for surface staining of fixed embryos to yield confocal images that are similar to scanning electron micrographs. METHODS Mouse embryos were stained with LT, fixed with paraformaldehyde/glutaraldehyde, dehydrated with methanol (MEOH), and cleared with benzyl alcohol/benzyl benzoate (BABB). Following this treatment, the tissues were nearly transparent. Embryos are mounted on depression slides, and serial sections are imaged by confocal microscopy, followed by 3-D reconstruction. RESULTS Embryos or tissues as thick as 500 microns (μm) can be visualized after clearing with BABB. LysoTracker staining reveals apoptotic regions in organogenesis-stage mouse embryos. Morphological observation of tissue was facilitated by combining autofluorescence with Nile blue sulfate staining of fixed embryos or opaque surface staining with acridine orange staining. CONCLUSIONS The use of BABB for clearing LT vital-stained and fixed embryos matches the refractive index of the tissue to the suspending medium, allowing increased penetration of laser light in a confocal microscope. Nile blue sulfate used as a non-vital dye provides a nonspecific staining of fixed embryos that can then be cleared with methyl salicylate for confocal observation. Sample preparation and staining procedures described here, with optimization of confocal laser scanning microscopy, allow for the detection and visualization of morphological structure and apoptosis in embryos up to 500 μm thick, and stained specimens can be fixed and mounted on depression slides.
Collapse
|
33
|
Balzer ZS, Davis AR. Adaptive morphology of the host-seeking first-instar larva of Stylops advarians Pierce (Strepsiptera, Stylopidae), a parasite of Andrena milwaukeensis Graenicher (Hymenoptera, Andrenidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2019; 52:100881. [PMID: 31473469 DOI: 10.1016/j.asd.2019.100881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
The morphology of the prognathous, host-seeking first-instar larvae of Stylops advarians was examined to advance our understanding of their adaptations to reach immature bee hosts, a process requiring temporal phoresy on an adult bee. Sensory structures on the larval head, including eye spots and two pairs of olfactory pits, evidently assist recognition of an adult bee and eventual detection of a permanent host within a nest cell. First-instar larvae utilize various features of their appendages to travel securely on their phoretic host. Flexible adhesive tarsi of the pro- and mesothoracic legs allow them to embark and be retained on a flying bee. The tips of the pair of caudal filaments appear modified for a similar purpose. Spinulae of two lengths, and arranged in distinct patterns, cover the posterior edges of the thoracic and abdominal segments both dorsally and ventrally. These projections can cause lodging of larvae in the plumose hairs of the phoretic host, and may lock into the exine of pollen collected by the foraging bee. Discovery of a first-instar larva partially packed into a pollen load and in the crop of Andrena milwaukeensis demonstrates that Stylops is adapted to travel with a phoretic host both externally and internally.
Collapse
Affiliation(s)
- Zachary S Balzer
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, Saskatchewan, S7N 5E2, Canada.
| | - Arthur R Davis
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, Saskatchewan, S7N 5E2, Canada.
| |
Collapse
|
34
|
Wang SY, Mao H, Shibuya H, Uzawa S, O’Brown ZK, Wesenberg S, Shin N, Saito TT, Gao J, Meyer BJ, Colaiácovo MP, Greer EL. The demethylase NMAD-1 regulates DNA replication and repair in the Caenorhabditis elegans germline. PLoS Genet 2019; 15:e1008252. [PMID: 31283754 PMCID: PMC6638966 DOI: 10.1371/journal.pgen.1008252] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 07/18/2019] [Accepted: 06/18/2019] [Indexed: 01/03/2023] Open
Abstract
The biological roles of nucleic acid methylation, other than at the C5-position of cytosines in CpG dinucleotides, are still not well understood. Here, we report genetic evidence for a critical role for the putative DNA demethylase NMAD-1 in regulating meiosis in C. elegans. nmad-1 mutants have reduced fertility. They show defects in prophase I of meiosis, which leads to reduced embryo production and an increased incidence of males due to defective chromosomal segregation. In nmad-1 mutant worms, nuclear staging beginning at the leptotene and zygotene stages is disorganized, the cohesin complex is mislocalized at the diplotene and diakinesis stages, and chromosomes are improperly condensed, fused, or lost by the end of diakinesis. RNA sequencing of the nmad-1 germline revealed reduced induction of DNA replication and DNA damage response genes during meiosis, which was coupled with delayed DNA replication, impaired DNA repair and increased apoptosis of maturing oocytes. To begin to understand how NMAD-1 regulates DNA replication and repair, we used immunoprecipitation and mass spectrometry to identify NMAD-1 binding proteins. NMAD-1 binds to multiple proteins that regulate DNA repair and replication, including topoisomerase TOP-2 and co-localizes with TOP-2 on chromatin. Moreover, the majority of TOP-2 binding to chromatin depends on NMAD-1. These results suggest that NMAD-1 functions at DNA replication sites to regulate DNA replication and repair during meiosis. Errors in meiosis are the leading cause of miscarriages, as well as developmental and intellectual disabilities. We have identified that NMAD-1, an enzyme which removes methyl moieties from nucleic acids, is essential for appropriate DNA damage response, DNA replication and meiosis in the nematode C. elegans. We have cytologically and genetically characterized the defects which occur due to deletion of NMAD-1 in the C. elegans germline. Additionally, we have begun to determine molecularly how NMAD-1 can regulate DNA replication, by demonstrating that NMAD-1 binds to components of the DNA replication machinery and is required for their appropriate localization to DNA. Characterizing how epigenetic modifications and the corresponding enzymes that add or remove epigenetic modifications can control the fundamental process of meiosis will have broad implications for understanding and eventually correcting errors in meiosis that disrupt normal development.
Collapse
Affiliation(s)
- Simon Yuan Wang
- Division of Newborn Medicine, Children’s Hospital Boston, Boston, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston Massachusetts, United States of America
| | - Hui Mao
- Division of Newborn Medicine, Children’s Hospital Boston, Boston, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston Massachusetts, United States of America
| | - Hiroki Shibuya
- Division of Newborn Medicine, Children’s Hospital Boston, Boston, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston Massachusetts, United States of America
| | - Satoru Uzawa
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Zach Klapholz O’Brown
- Division of Newborn Medicine, Children’s Hospital Boston, Boston, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston Massachusetts, United States of America
| | - Sage Wesenberg
- Division of Newborn Medicine, Children’s Hospital Boston, Boston, Massachusetts, United States of America
| | - Nara Shin
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Takamune T. Saito
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jinmin Gao
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Barbara J. Meyer
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Monica P. Colaiácovo
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Eric Lieberman Greer
- Division of Newborn Medicine, Children’s Hospital Boston, Boston, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
35
|
Harumoto T, Fukatsu T, Lemaitre B. Common and unique strategies of male killing evolved in two distinct Drosophila symbionts. Proc Biol Sci 2019; 285:rspb.2017.2167. [PMID: 29563258 DOI: 10.1098/rspb.2017.2167] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 02/26/2018] [Indexed: 11/12/2022] Open
Abstract
Male killing is a selfish reproductive manipulation caused by symbiotic bacteria, where male offspring of infected hosts are selectively killed. The underlying mechanisms and the process of their evolution are of great interest not only in terms of fundamental biology, but also their potential applications. The two bacterial Drosophila symbionts, Wolbachia and Spiroplasma, have independently evolved male-killing ability. This raises the question whether the underlying mechanisms share some similarities or are specific to each bacterial species. Here, we analyse pathogenic phenotypes of D. bifasciata infected with its natural male-killing Wolbachia strain and compare them with those of D. melanogaster infected with male-killing Spiroplasma We show that male progeny infected with the Wolbachia strain die during embryogenesis with abnormal apoptosis. Interestingly, male-killing Wolbachia infection induces DNA damage and segregation defects in the dosage-compensated chromosome in male embryos, which are reminiscent of the phenotypes caused by male-killing Spiroplasma in D. melanogaster By contrast, host neural development seems to proceed normally unlike male-killing Spiroplasma infection. Our results demonstrate that the dosage-compensated chromosome is a common target of two distinct male killers, yet Spiroplasma uniquely evolved the ability to damage neural tissue of male embryos.
Collapse
Affiliation(s)
- Toshiyuki Harumoto
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Station 19, CH-1015 Lausanne, Switzerland
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Station 19, CH-1015 Lausanne, Switzerland
| |
Collapse
|
36
|
Melcarne C, Lemaitre B, Kurant E. Phagocytosis in Drosophila: From molecules and cellular machinery to physiology. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 109:1-12. [PMID: 30953686 DOI: 10.1016/j.ibmb.2019.04.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/22/2019] [Accepted: 04/01/2019] [Indexed: 05/20/2023]
Abstract
Phagocytosis is an evolutionarily conserved mechanism that plays a key role in both host defence and tissue homeostasis in multicellular organisms. A range of surface receptors expressed on different cell types allow discriminating between self and non-self (or altered) material, thus enabling phagocytosis of pathogens and apoptotic cells. The phagocytosis process can be divided into four main steps: 1) binding of the phagocyte to the target particle, 2) particle internalization and phagosome formation, through remodelling of the plasma membrane, 3) phagosome maturation, and 4) particle destruction in the phagolysosome. In this review, we describe our present knowledge on phagocytosis in the fruit fly Drosophila melanogaster, assessing each of the key steps involved in engulfment of both apoptotic cells and bacteria. We also assess the physiological role of phagocytosis in host defence, development and tissue homeostasis.
Collapse
Affiliation(s)
- C Melcarne
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - B Lemaitre
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - E Kurant
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, 34988, Israel.
| |
Collapse
|
37
|
Arya R, Gyonjyan S, Harding K, Sarkissian T, Li Y, Zhou L, White K. A Cut/cohesin axis alters the chromatin landscape to facilitate neuroblast death. Development 2019; 146:dev166603. [PMID: 30952666 PMCID: PMC6526717 DOI: 10.1242/dev.166603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 03/25/2019] [Indexed: 12/24/2022]
Abstract
Precise control of cell death in the nervous system is essential for development. Spatial and temporal factors activate the death of Drosophila neural stem cells (neuroblasts) by controlling the transcription of multiple cell death genes through a shared enhancer. The activity of this enhancer is controlled by abdominal A and Notch, but additional inputs are needed for proper specificity. Here, we show that the Cut DNA binding protein is required for neuroblast death, regulating reaper and grim downstream of the shared enhancer and of abdominal A expression. The loss of cut accelerates the temporal progression of neuroblasts from a state of low overall levels of H3K27me3 to a higher H3K27me3 state. This is reflected in an increase in H3K27me3 modifications in the cell death gene locus in the CNS on Cut knockdown. We also show that cut regulates the expression of the cohesin subunit Stromalin. Stromalin and the cohesin regulatory subunit Nipped-B are required for neuroblast death, and knockdown of Stromalin increases H3K27me3 levels in neuroblasts. Thus, Cut and cohesin regulate apoptosis in the developing nervous system by altering the chromatin landscape.
Collapse
Affiliation(s)
- Richa Arya
- Cutaneous Biology Research Center, Massachusetts General Hospital Research Institute/Harvard Medical School, Boston, MA 02129, USA
| | - Seda Gyonjyan
- Cutaneous Biology Research Center, Massachusetts General Hospital Research Institute/Harvard Medical School, Boston, MA 02129, USA
| | - Katherine Harding
- Cutaneous Biology Research Center, Massachusetts General Hospital Research Institute/Harvard Medical School, Boston, MA 02129, USA
| | - Tatevik Sarkissian
- Cutaneous Biology Research Center, Massachusetts General Hospital Research Institute/Harvard Medical School, Boston, MA 02129, USA
| | - Ying Li
- Department of Molecular Genetics and Microbiology, College of Medicine/UF Health Cancer Center/UF Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Lei Zhou
- Department of Molecular Genetics and Microbiology, College of Medicine/UF Health Cancer Center/UF Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Kristin White
- Cutaneous Biology Research Center, Massachusetts General Hospital Research Institute/Harvard Medical School, Boston, MA 02129, USA
| |
Collapse
|
38
|
Karimooy FN, Bideskan AE, Pour AM, Hoseini SM. Neurotoxic Effects of Stanozolol on Male Rats‘ Hippocampi: Does Stanozolol cause apoptosis? Biomol Concepts 2019; 10:73-81. [DOI: 10.1515/bmc-2019-0009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/03/2019] [Indexed: 11/15/2022] Open
Abstract
AbstractStanozolol is an anabolic-androgenic steroid which is commonly abused by athletes for improved energy, appearance, and physical size. It has been previously shown to cause changes in behaviour and has various physical effects. Studies have previously been conducted on its neurotoxic effect on the central nervous system (CNS), which are typically psychological in nature. This study was performed to investigate the apoptotic effect of stanozolol on different parts of the rat hippocampus. Sixteen male Wistar rats were divided randomly into two groups (experimental and control). The experimental group received subcutaneous injections of stanozolol (5mg/kg/day) for consecutive 28 days, whereas the control group received saline using the same dosing schedule and administration route. After routine procedures, coronal sections of rat brain were stained with Toluidine blue and TUNEL for pre-apoptotic and apoptotic cell detection, respectively. In order to compare groups, the mean number of TUNEL-positive and pre-apoptotic neurons per unit area were calculated and analysed. Histopathological examination revealed that the mean number of pre-apoptotic and apoptotic neurons in the CA1, CA2, CA3 and DG areas of the hippocampus were significantly increased in the stanozolol treated group. In conclusion, stanozolol abuse may induce pre-apoptotic and apoptotic cell formation in different regions of the hippocampus.
Collapse
|
39
|
Tixeira R, Poon IKH. Disassembly of dying cells in diverse organisms. Cell Mol Life Sci 2019; 76:245-257. [PMID: 30317529 PMCID: PMC11105331 DOI: 10.1007/s00018-018-2932-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/25/2018] [Accepted: 10/01/2018] [Indexed: 01/09/2023]
Abstract
Programmed cell death (PCD) is a conserved phenomenon in multicellular organisms required to maintain homeostasis. Among the regulated cell death pathways, apoptosis is a well-described form of PCD in mammalian cells. One of the characteristic features of apoptosis is the change in cellular morphology, often leading to the fragmentation of the cell into smaller membrane-bound vesicles through a process called apoptotic cell disassembly. Interestingly, some of these morphological changes and cell disassembly are also noted in cells of other organisms including plants, fungi and protists while undergoing 'apoptosis-like PCD'. This review will describe morphologic features leading to apoptotic cell disassembly, as well as its regulation and function in mammalian cells. The occurrence of cell disassembly during cell death in other organisms namely zebrafish, fly and worm, as well as in other eukaryotic cells will also be discussed.
Collapse
Affiliation(s)
- Rochelle Tixeira
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Ivan K H Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
40
|
Verghese S, Su TT. Ionizing radiation induces stem cell-like properties in a caspase-dependent manner in Drosophila. PLoS Genet 2018; 14:e1007659. [PMID: 30462636 PMCID: PMC6248896 DOI: 10.1371/journal.pgen.1007659] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/27/2018] [Indexed: 11/18/2022] Open
Abstract
Cancer treatments including ionizing radiation (IR) can induce cancer stem cell-like properties in non-stem cancer cells, an outcome that can interfere with therapeutic success. Yet, we understand little about what consequences of IR induces stem cell like properties and why some cancer cells show this response but not others. In previous studies, we identified a pool of epithelial cells in Drosophila larval wing discs that display IR-induced stem cell-like properties. These cells are resistant to killing by IR and, after radiation damage, change fate and translocate to regenerate parts of the disc that suffered more cell death. Here, we report the identification of two new pools of cells with IR-induced regenerative capability. We addressed how IR exposure results in the induction of stem cell-like behavior, and found a requirement for IR-induced caspase activity and for Zfh2, a transcription factor and an effector in the JAK/STAT pathway. Unexpectedly, the requirement for caspase activity was cell-autonomous within cell populations that display regenerative behavior. We propose a model in which the requirement for caspase activity and Zfh2 can be explained by apoptotic and non-apoptotic functions of caspases in the induction of stem cell-like behavior. Ionizing Radiation (IR), alone or in combination with other therapies, is used to treat an estimated half of all cancer patients. Yet, we understand little about why some tumors cells respond to treatment while others grow back (regenerate). We identified specific pools of cells within a Drosophila organ that are capable of regeneration after damage by IR. We also identified what it is about IR damage that allows these cells to regenerate. These results help us understand how tissues regenerate after IR damage and will aid in designing better therapies that involve radiation.
Collapse
Affiliation(s)
- Shilpi Verghese
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, United States of America
| | - Tin Tin Su
- University of Colorado Comprehensive Cancer Center, Anschutz Medical Campus, Aurora, CO, United States of America
- * E-mail:
| |
Collapse
|
41
|
Harding K, White K. Drosophila as a Model for Developmental Biology: Stem Cell-Fate Decisions in the Developing Nervous System. J Dev Biol 2018; 6:E25. [PMID: 30347666 PMCID: PMC6315890 DOI: 10.3390/jdb6040025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/25/2022] Open
Abstract
Stem cells face a diversity of choices throughout their lives. At specific times, they may decide to initiate cell division, terminal differentiation, or apoptosis, or they may enter a quiescent non-proliferative state. Neural stem cells in the Drosophila central nervous system do all of these, at stereotypical times and anatomical positions during development. Distinct populations of neural stem cells offer a unique system to investigate the regulation of a particular stem cell behavior, while comparisons between populations can lead us to a broader understanding of stem cell identity. Drosophila is a well-described and genetically tractable model for studying fundamental stem cell behavior and the mechanisms that underlie cell-fate decisions. This review will focus on recent advances in our understanding of the factors that contribute to distinct stem cell-fate decisions within the context of the Drosophila nervous system.
Collapse
Affiliation(s)
- Katherine Harding
- Massachusetts General Hospital Cutaneous Biology Research Center, Harvard Medical School, Boston, MA 02129, USA
| | - Kristin White
- Massachusetts General Hospital Cutaneous Biology Research Center, Harvard Medical School, Boston, MA 02129, USA.
| |
Collapse
|
42
|
Khan M, Shaukat Z, Saint R, Gregory SL. Chromosomal instability causes sensitivity to protein folding stress and ATP depletion. Biol Open 2018; 7:7/10/bio038000. [PMID: 30327366 PMCID: PMC6215417 DOI: 10.1242/bio.038000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aneuploidy – having an unbalanced genome – is poorly tolerated at the cellular and organismal level. It gives rise to proteotoxic stress as well as a stereotypical oxidative shift which makes these cells sensitive to internal and environmental stresses. Using Drosophila as a model, we found that protein folding stress is exacerbated by redox stress that occurs in response to ongoing changes to ploidy (chromosomal instability, CIN). We also found that if de novo nucleotide synthesis is blocked, CIN cells are dependent on a high level of lysosome function to survive. Depletion of adenosine monophosphate (AMP) synthesis enzymes led to DNA damage in CIN cells, which showed elevated activity of the DNA repair enzyme activated poly(ADP ribose) polymerase (PARP). PARP activation causes depletion of its substrate, nicotinamide adenine dinucleotide (NAD+) and subsequent loss of Adenosine Tri-Phosphate (ATP), and we found that adding ATP or nicotinamide (a precursor in the synthesis of NAD+) could rescue the observed phenotypes. These findings provide ways to interpret, target and exploit aneuploidy, which has the potential to offer tumour-specific therapies. Summary: Cells that gain or lose chromosomes during cell division are shown to be sensitive to ATP levels and protein folding stress.
Collapse
Affiliation(s)
- Mahwish Khan
- Department of Genetics, University of Adelaide, Adelaide 5006, Australia
| | - Zeeshan Shaukat
- Department of Genetics, University of Adelaide, Adelaide 5006, Australia
| | - Robert Saint
- College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
| | - Stephen L Gregory
- Department of Genetics, University of Adelaide, Adelaide 5006, Australia .,College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
| |
Collapse
|
43
|
Valer FB, Machado MCR, Silva-Junior RMP, Ramos RGP. Expression of Hbs, Kirre, and Rst during Drosophila ovarian development. Genesis 2018; 56:e23242. [PMID: 30114331 DOI: 10.1002/dvg.23242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 07/22/2018] [Accepted: 07/23/2018] [Indexed: 12/16/2022]
Abstract
The Irre cell-recognition module (IRM) is a group of evolutionarily conserved and structurally related transmembrane glycoproteins of the immunoglobulin superfamily. In Drosophila melanogaster, it comprises the products of the genes roughest (rst; also known as irreC-rst), kin-of-irre (kirre; also known as duf), sticks-and-stones (sns), and hibris (hbs). In this model organism, the behavior of this group of proteins as a partly redundant functional unit mediating selective cell recognition was demonstrated in a variety of developmental contexts, but their possible involvement in ovarian development and oogenesis has not been investigated, notwithstanding the fact that some rst mutant alleles are also female sterile. Here, we show that IRM genes are dynamically and, to some extent, coordinately transcribed in both pupal and adult ovaries. Additionally, the spatial distribution of Hbs, Kirre, and Rst proteins indicates that they perform cooperative, although largely nonredundant, functions. Finally, phenotypical characterization of three different female sterile rst alleles uncovered two temporally separated and functionally distinct requirements for this locus in ovarian development: one in pupa, essential for the organization of peritoneal and epithelial sheaths that maintain the structural integrity of the adult organ and another, in mature ovarioles, needed for the progression of oogenesis beyond stage 10.
Collapse
Affiliation(s)
- Felipe Berti Valer
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Maiaro Cabral Rosa Machado
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | | |
Collapse
|
44
|
Crittenden JR, Skoulakis EMC, Goldstein ES, Davis RL. Drosophila mef2 is essential for normal mushroom body and wing development. Biol Open 2018; 7:bio.035618. [PMID: 30115617 PMCID: PMC6176937 DOI: 10.1242/bio.035618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
MEF2 (myocyte enhancer factor 2) transcription factors are found in the brain and muscle of insects and vertebrates and are essential for the differentiation of multiple cell types. We show that in the fruit fly Drosophila, MEF2 is essential for the formation of mushroom bodies in the embryonic brain and for the normal development of wings in the adult. In embryos mutant for mef2, there is a striking reduction in the number of mushroom body neurons and their axon bundles are not detectable. The onset of MEF2 expression in neurons of the mushroom bodies coincides with their formation in the embryo and, in larvae, expression is restricted to post-mitotic neurons. In flies with a mef2 point mutation that disrupts nuclear localization, we find that MEF2 is restricted to a subset of Kenyon cells that project to the α/β, and γ axonal lobes of the mushroom bodies, but not to those forming the α’/β’ lobes. Summary:Drosophila mef2 expression is restricted to subsets of mushroom body neurons, from the time of their differentiation to adulthood, and is essential for mushroom body formation.
Collapse
Affiliation(s)
- Jill R Crittenden
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Efthimios M C Skoulakis
- Division of Neuroscience, Biomedical Sciences Research Centre 'Alexander Fleming', Vari, 16672, Greece
| | - Elliott S Goldstein
- School of Life Science, Cellular, Molecular and Bioscience Program, Arizona State University, Tempe, AZ, 85287, USA
| | - Ronald L Davis
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| |
Collapse
|
45
|
Goh WL, Lee MY, Lim TX, Chua JS, Brenner S, Ghadessy FJ, Teo YN. A novel molecular rotor facilitates detection of p53-DNA interactions using the Fluorescent Intercalator Displacement Assay. Sci Rep 2018; 8:12946. [PMID: 30154420 PMCID: PMC6113202 DOI: 10.1038/s41598-018-31197-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/13/2018] [Indexed: 01/04/2023] Open
Abstract
We have investigated the use of fluorescent molecular rotors as probes for detection of p53 binding to DNA. These are a class of fluorophores that undergo twisted intramolecular charge transfer (TICT). They are non-fluorescent in a freely rotating conformation and experience a fluorescence increase when restricted in the planar conformation. We hypothesized that intercalation of a molecular rotor between DNA base pairs would result in a fluorescence turn-on signal. Upon displacement by a DNA binding protein, measurable loss of signal would facilitate use of the molecular rotor in the fluorescent intercalator displacement (FID) assay. A panel of probes was interrogated using the well-established p53 model system across various DNA response elements. A novel, readily synthesizable molecular rotor incorporating an acridine orange DNA intercalating group (AO-R) outperformed other conventional dyes in the FID assay. It enabled relative measurement of p53 sequence-specific DNA interactions and study of the dominant-negative effects of cancer-associated p53 mutants. In a further application, AO-R also proved useful for staining apoptotic cells in live zebrafish embryos.
Collapse
Affiliation(s)
- Walter L Goh
- p53 Laboratory, A*STAR, 8A Biomedical Grove, #06-06 Immunos, Singapore, 138648, Singapore
| | - Min Yen Lee
- Molecular Engineering Lab, Biomedical Sciences Institutes, A*STAR, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Ting Xiang Lim
- p53 Laboratory, A*STAR, 8A Biomedical Grove, #06-06 Immunos, Singapore, 138648, Singapore
| | - Joy S Chua
- p53 Laboratory, A*STAR, 8A Biomedical Grove, #06-06 Immunos, Singapore, 138648, Singapore
| | - Sydney Brenner
- Molecular Engineering Lab, Biomedical Sciences Institutes, A*STAR, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Farid J Ghadessy
- p53 Laboratory, A*STAR, 8A Biomedical Grove, #06-06 Immunos, Singapore, 138648, Singapore.
| | - Yin Nah Teo
- Molecular Engineering Lab, Biomedical Sciences Institutes, A*STAR, 61 Biopolis Drive, Singapore, 138673, Singapore.
| |
Collapse
|
46
|
Yasuda T, Ishikawa Y, Shioya N, Itoh K, Kamahori M, Nagata K, Takano Y, Mitani H, Oda S. Radical change of apoptotic strategy following irradiation during later period of embryogenesis in medaka (Oryzias latipes). PLoS One 2018; 13:e0201790. [PMID: 30075024 PMCID: PMC6075778 DOI: 10.1371/journal.pone.0201790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/23/2018] [Indexed: 11/17/2022] Open
Abstract
Induction of apoptosis in response to various genotoxic stresses could block transmission of teratogenic mutations to progeny cells. The severity of biological effects following irradiation depends on the stage at which embryos are irradiated during embryogenesis. We reported previously that irradiation of medaka embryos 3 days post fertilization (dpf) with 10 Gy of gamma rays induced high incidence of apoptotic cells in the mid-brain, however, the embryos hatched normally and developed without apparent malformations. To determine the severity of biological effects following irradiation during a later period of embryogenesis, embryos of various developmental stages were irradiated with 15 Gy of gamma rays and examined for apoptotic induction at 24 h after irradiation in the brain, eyes and pharyngeal epithelium tissues, which are actively proliferating and sensitive to irradiation. Embryos irradiated at 3 dpf exhibited many apoptotic cells in these tissues, and all of them died due to severe malformations. In contrast, embryos irradiated at 5 dpf showed no apoptotic cells and subsequently hatched without apparent malformations. Embryos irradiated at 4 dpf had relatively low numbers of apoptotic cells compared to those irradiated at 3 dpf, thereafter most of them died within 1 week of hatching. In adult medaka, apoptotic cells were not found in these tissues following irradiation, suggesting that apoptosis occurs during a restricted time period of medaka embryogenesis throughout the life. No apoptotic cells were found in irradiated intestinal tissue, which is known to be susceptible to radiation damage in mammals, whereas many apoptotic cells were found in proliferating spermatogonial cells in the mature testis following irradiation. Taken together, with the exception of testicular tissue, the results suggest a limited period during medaka embryogenesis in which irradiation-induced apoptosis can occur.
Collapse
Affiliation(s)
- Takako Yasuda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, Japan
| | - Yuta Ishikawa
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, Japan
| | - Noriko Shioya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, Japan
| | - Kazusa Itoh
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, Japan
| | - Miyuki Kamahori
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, Japan
| | - Kento Nagata
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, Japan
| | - Yoshiro Takano
- Section of Biostructural Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroshi Mitani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, Japan
| | - Shoji Oda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, Japan
| |
Collapse
|
47
|
Valanne S, Vesala L, Rämet M. Commentary: Drosophila GATA Factor Serpent Establishes Phagocytic Ability of Embryonic Macrophages. Front Immunol 2018; 9:1582. [PMID: 30034400 PMCID: PMC6043856 DOI: 10.3389/fimmu.2018.01582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/26/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Susanna Valanne
- Laboratory of Experimental Immunology, Faculty of Medicine and Life Sciences, BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Laura Vesala
- Laboratory of Experimental Immunology, Faculty of Medicine and Life Sciences, BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Mika Rämet
- Laboratory of Experimental Immunology, Faculty of Medicine and Life Sciences, BioMediTech Institute, University of Tampere, Tampere, Finland.,PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
48
|
Izquierdo E, Quinkler T, De Renzis S. Guided morphogenesis through optogenetic activation of Rho signalling during early Drosophila embryogenesis. Nat Commun 2018; 9:2366. [PMID: 29915285 PMCID: PMC6006163 DOI: 10.1038/s41467-018-04754-z] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 05/23/2018] [Indexed: 11/26/2022] Open
Abstract
During organismal development, cells undergo complex changes in shape whose causal relationship to individual morphogenetic processes remains unclear. The modular nature of such processes suggests that it should be possible to isolate individual modules, determine the minimum set of requirements sufficient to drive tissue remodeling, and re-construct morphogenesis. Here we use optogenetics to reconstitute epithelial folding in embryonic Drosophila tissues that otherwise would not undergo invagination. We show that precise spatial and temporal activation of Rho signaling is sufficient to trigger apical constriction and tissue folding. Induced furrows can occur at any position along the dorsal–ventral or anterior–posterior embryo axis in response to the spatial pattern and level of optogenetic activation. Thus, epithelial folding is a direct function of the spatio-temporal organization and strength of Rho signaling that on its own is sufficient to drive tissue internalization independently of any pre-determined condition or differentiation program associated with endogenous invagination processes. Optogenetics is opening the possibility to not only perturb morphogenesis, but also to guide it. Here, the authors use this technique to reconstruct epithelial folding in Drosophila embryos and study the relationship between strength of Rho activation, apical constrictions, and tissue invagination.
Collapse
|
49
|
Hilu-Dadia R, Hakim-Mishnaevski K, Levy-Adam F, Kurant E. Draper-mediated JNK signaling is required for glial phagocytosis of apoptotic neurons during Drosophila metamorphosis. Glia 2018. [PMID: 29520845 DOI: 10.1002/glia.23322] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Development of the central nervous system involves elimination of superfluous neurons through apoptosis and subsequent phagocytosis. In Drosophila, this occurs mainly during three developmental stages: embryogenesis, metamorphosis and emerging adult. Two transmembrane glial phagocytic receptors, SIMU (homolog of the mammalian Stabilin-2) and Draper (homolog of the mammalian MEGF10 and Jedi), mediate glial phagocytosis of apoptotic neurons during embryogenesis. However, less is known about the removal of apoptotic neurons during later stages of development. Here we show that during metamorphosis, Draper plays a critical role in apoptotic cell clearance by glia, whereas SIMU, which is mostly expressed in pupal macrophages outside the brain, is not involved in glial phagocytosis. We found that Draper activates Drosophila c-Jun N-terminal kinase (dJNK) signaling predominantly in the ensheathing glia and astrocytes, where it is required for efficient removal of apoptotic neurons. Our data suggest that besides the dJNK pathway, Draper also triggers an additional signaling pathway capable of removing apoptotic neurons in the pupal brain. This study thus reveals that SIMU unexpectedly is not involved in glial phagocytosis of apoptotic neurons during metamorphosis and highlights the novel role of dJNK signaling in developmental apoptotic cell clearance downstream of Draper.
Collapse
Affiliation(s)
- Reut Hilu-Dadia
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, 34988, Israel.,Department of Genetics and Developmental Biology, The Rappaport Family Institute for Research in the Medical Sciences, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, 31096, Israel
| | - Ketty Hakim-Mishnaevski
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, 34988, Israel
| | - Flonia Levy-Adam
- Department of Genetics and Developmental Biology, The Rappaport Family Institute for Research in the Medical Sciences, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, 31096, Israel
| | - Estee Kurant
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, 34988, Israel.,Department of Genetics and Developmental Biology, The Rappaport Family Institute for Research in the Medical Sciences, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, 31096, Israel
| |
Collapse
|
50
|
Boyan G, Graf P, Ehrhardt E. Patterns of cell death in the embryonic antenna of the grasshopper Schistocerca gregaria. Dev Genes Evol 2018; 228:105-118. [PMID: 29511851 DOI: 10.1007/s00427-018-0607-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 02/22/2018] [Indexed: 12/27/2022]
Abstract
We have investigated the pattern of apoptosis in the antennal epithelium during embryonic development of the grasshopper Schistocerca gregaria. The molecular labels lachesin and annulin reveal that the antennal epithelium becomes subdivided into segment-like meristal annuli within which sensory cell clusters later differentiate. To determine whether apoptosis is involved in the development of such sensory cell clusters, we examined the expression pattern of the cell death labels acridine orange and TUNEL in the epithelium. We found stereotypic, age-dependent, wave-like patterns of cell death in the antenna. Early in embryogenesis, apoptosis is restricted to the most basal meristal annuli but subsequently spreads to encompass almost the entire antenna. Cell death then declines in more basal annuli and is only found in the tip region later in embryogenesis. Apoptosis is restricted throughout to the midregion of a given annulus and away from its border with neighboring annuli, arguing against a causal role in annular formation. Double-labeling for cell death and sensory cell differentiation reveals apoptosis occurring within bands of differentiating sensory cell clusters, matching the meristal organization of the apical antenna. Examination of the individual epithelial lineages which generate sensory cells reveals that apoptosis begins peripherally within a lineage and with age expands to encompass the differentiated sensory cell at the base. We conclude that complete lineages can undergo apoptosis and that the youngest cells in these lineages appear to die first, with the sensory neuron dying last. Lineage-based death in combination with cell death patterns in different regions of the antenna may contribute to odor-mediated behaviors in the grasshopper.
Collapse
Affiliation(s)
- George Boyan
- Graduate School of Systemic Neuroscience, Biocenter, Ludwig-Maximilians-Universität, Grosshadernerstrasse 2 Martinsried, 82152, Planegg, Germany.
| | - Philip Graf
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia, 20147, USA
| | - Erica Ehrhardt
- Section of Neurobiology, Department of Biology II, Biocenter, Ludwig-Maximilians-Universität, Grosshadernerstrasse 2 Martinsried, 82152, Planegg, Germany
| |
Collapse
|