1
|
Federici S, Rossetti R, Moleri S, Munari EV, Frixou M, Bonomi M, Persani L. Primary ovarian insufficiency: update on clinical and genetic findings. Front Endocrinol (Lausanne) 2024; 15:1464803. [PMID: 39391877 PMCID: PMC11466302 DOI: 10.3389/fendo.2024.1464803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/02/2024] [Indexed: 10/12/2024] Open
Abstract
Primary ovarian insufficiency (POI) is a disorder of insufficient ovarian follicle function before the age of 40 years with an estimated prevalence of 3.7% worldwide. Its relevance is emerging due to the increasing number of women desiring conception late or beyond the third decade of their lives. POI clinical presentation is extremely heterogeneous with a possible exordium as primary amenorrhea due to ovarian dysgenesis or with a secondary amenorrhea due to different congenital or acquired abnormalities. POI significantly impacts non only on the fertility prospect of the affected women but also on their general, psychological, sexual quality of life, and, furthermore, on their long-term bone, cardiovascular, and cognitive health. In several cases the underlying cause of POI remains unknown and, thus, these forms are still classified as idiopathic. However, we now know the age of menopause is an inheritable trait and POI has a strong genetic background. This is confirmed by the existence of several candidate genes, experimental and natural models. The most common genetic contributors to POI are the X chromosome-linked defects. Moreover, the variable expressivity of POI defect suggests it can be considered as a multifactorial or oligogenic defect. Here, we present an updated review on clinical findings and on the principal X-linked and autosomal genes involved in syndromic and non-syndromic forms of POI. We also provide current information on the management of the premature hypoestrogenic state as well as on fertility preservation in subjects at risk of POI.
Collapse
Affiliation(s)
- Silvia Federici
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Raffaella Rossetti
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Silvia Moleri
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Elisabetta V. Munari
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Maria Frixou
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Marco Bonomi
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Luca Persani
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
2
|
Pouladvand N, Azarnia M, Zeinali H, Fathi R, Tavana S. An overview of different methods to establish a murine premature ovarian failure model. Animal Model Exp Med 2024. [PMID: 39219374 DOI: 10.1002/ame2.12477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/14/2024] [Indexed: 09/04/2024] Open
Abstract
Premature ovarian failure (POF)is defined as the loss of normal ovarian function before the age of 40 and is characterized by increased gonadotropin levels and decreased estradiol levels and ovarian reserve, often leading to infertility. The incomplete understanding of the pathogenesis of POF is a major impediment to the development of effective treatments for this disease, so the use of animal models is a promising option for investigating and identifying the molecular mechanisms involved in POF patients and developing therapeutic agents. As mice and rats are the most commonly used models in animal research, this review article considers studies that used murine POF models. In this review based on the most recent studies, first, we introduce 10 different methods for inducing murine POF models, then we demonstrate the advantages and disadvantages of each one, and finally, we suggest the most practical method for inducing a POF model in these animals. This may help researchers find the method of creating a POF model that is most appropriate for their type of study and suits the purpose of their research.
Collapse
Affiliation(s)
- Negar Pouladvand
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mahnaz Azarnia
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Hadis Zeinali
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Somayeh Tavana
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
3
|
Yan Y, Zhang H, Xu R, Luo L, Yin L, Wu H, Zhang Y, Li C, Lu S, Tang Y, Zhao X, Pan M, Wei Q, Peng S, Ma B. Single-cell sequencing reveals the transcriptional alternations of 17β-estradiol suppressing primordial follicle formation in neonatal mouse ovaries. Cell Prolif 2024; 57:e13713. [PMID: 38988058 PMCID: PMC11503257 DOI: 10.1111/cpr.13713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024] Open
Abstract
Estrogen has been implicated in multiple biological processes, but the variation underlying estrogen-mediated primordial follicle (PF) formation remains unclear. Here, we show that 17β-estradiol (E2) treatment of neonatal mice led to the inhibition of PF formation and cell proliferation. Single-cell RNA sequencing (scRNA-seq) revealed that E2 treatment caused significant changes in the transcriptome of oocytes and somatic cells. E2 treatment disrupted the synchronised development of oocytes, pre-granulosa (PG) cells and stromal cells. Mechanistically, E2 treatment disrupted several signalling pathways critical to PF formation, especially down-regulating the Kitl and Smad1/3/4/5/7 expression, reducing the frequency and number of cell communication. In addition, E2 treatment influenced key gene expression, mitochondrial function of oocytes, the recruitment and maintenance of PG cells, the cell proliferation of somatic cells, as well as disordered the ovarian microenvironment. This study not only revealed insights into the regulatory role of estrogen during PF formation, but also filled in knowledge of dramatic changes in perinatal hormones, which are critical for the physiological significance of understanding hormone changes and reproductive protection.
Collapse
Affiliation(s)
- Yutong Yan
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Hui Zhang
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Rui Xu
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Linglin Luo
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Lu Yin
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Hao Wu
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Yiqian Zhang
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Chan Li
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Sihai Lu
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Yaju Tang
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Xiaoe Zhao
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Menghao Pan
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Qiang Wei
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Sha Peng
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Baohua Ma
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
4
|
Munakata Y, Hu M, Kitamura Y, Bynder AL, Fritz AS, Schultz RM, Namekawa SH. Chromatin remodeler CHD4 establishes chromatin states required for ovarian reserve formation, maintenance, and germ cell survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607691. [PMID: 39185217 PMCID: PMC11343143 DOI: 10.1101/2024.08.12.607691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
The ovarian reserve defines female reproductive lifespan, which in humans spans decades due to the maintenance of meiotic arrest in non-growing oocytes (NGO) residing in primordial follicles. Unknown is how the chromatin state of NGOs is established to enable long-term maintenance of the ovarian reserve. Here, we show that a chromatin remodeler, CHD4, a member of the Nucleosome Remodeling and Deacetylase (NuRD) complex, establishes chromatin states required for formation and maintenance of the ovarian reserve. Conditional loss of CHD4 in perinatal mouse oocytes results in acute death of NGOs and depletion of the ovarian reserve. CHD4 establishes closed chromatin at regulatory elements of pro-apoptotic genes to prevent cell death and at specific genes required for meiotic prophase I to facilitate the transition from meiotic prophase I oocytes to meiotic arrested NGOs. In addition, CHD4 establishes closed chromatin at the regulatory elements of pro-apoptotic genes in male germ cells, allowing male germ cell survival. These results demonstrate a role for CHD4 in defining a chromatin state that ensures germ cell survival, thereby enabling the long-term maintenance of both female and male germ cells.
Collapse
Affiliation(s)
- Yasuhisa Munakata
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Mengwen Hu
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Yuka Kitamura
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Adam L. Bynder
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Amelia S. Fritz
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Richard M. Schultz
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Satoshi H. Namekawa
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| |
Collapse
|
5
|
Nie L, Wang X, Wang S, Hong Z, Wang M. Genetic insights into the complexity of premature ovarian insufficiency. Reprod Biol Endocrinol 2024; 22:94. [PMID: 39095891 PMCID: PMC11295921 DOI: 10.1186/s12958-024-01254-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/29/2024] [Indexed: 08/04/2024] Open
Abstract
Premature Ovarian Insufficiency (POI) is a highly heterogeneous condition characterized by ovarian dysfunction in women occurring before the age of 40, representing a significant cause of female infertility. It manifests through primary or secondary amenorrhea. While more than half of POI cases are idiopathic, genetic factors play a pivotal role in all instances with known causes, contributing to approximately 20-25% of cases. This article comprehensively reviews the genetic factors associated with POI, delineating the primary candidate genes. The discussion delves into the intricate relationship between these genes and ovarian development, elucidating the functional consequences of diverse mutations to underscore the fundamental impact of genetic effects on POI. The identified genetic factors, encompassing gene mutations and chromosomal abnormalities, are systematically classified based on whether the resulting POI is syndromic or non-syndromic. Furthermore, this paper explores the genetic interplay between mitochondrial genes, such as Required for Meiotic Nuclear Division 1 homolog Gene (RMND1), Mitochondrial Ribosomal Protein S22 Gene (MRPS22), Leucine-rich Pentapeptide Repeat Gene (LRPPRC), and non-coding RNAs, including both microRNAs and Long non-coding RNAs, with POI. The insights provided serve to consolidate and enhance our understanding of the etiology of POI, contributing to establishing a theoretical foundation for diagnosing and treating POI patients, as well as for exploring the mechanisms underlying the disease.
Collapse
Affiliation(s)
- Linhang Nie
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- WuHan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, Hubei, P.R. China
| | - Xiaojie Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- Second Clinical Hospital of WuHan University, Wuhan, Hubei, P.R. China
| | - Songyuan Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- WuHan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, Hubei, P.R. China
| | - Zhidan Hong
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China.
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, P.R. China.
| | - Mei Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China.
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, P.R. China.
| |
Collapse
|
6
|
Chouchene L, Boughammoura S, Ben Rhouma M, Mlouka R, Banni M, Messaoudi I, Kessabi K. Effect of thyroid disruption on ovarian development following maternal exposure to Bisphenol S. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52596-52614. [PMID: 39153066 DOI: 10.1007/s11356-024-34666-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
Thyroid hormones play a crucial role in numerous physiological processes, including reproduction. Bisphenol S (BPS) is a structural analog of Bisphenol A known for its toxic effects. Interference of this substitute with normal thyroid function has been described. To investigate the effect of thyroid disruption on ovarian development following maternal exposure to BPS, female rats were exposed, daily, to either AT 1-850 (a thyroid hormone receptor antagonist) (10 nmol/rat) or BPS (0.2 mg/kg) during gestation and lactation. The effects on reproductive outcome, offspring development, histological structures, hormone levels, oxidative status, cytoskeleton proteins expression, and oocyte development gene expression were examined. Our results are in favor of offspring ovarian development disruption due to thyroid disturbance in adult pregnant females. During both fetal and postnatal stages, BPS considerably altered the histological structure of the thyroid tissue as well as oocyte and follicular development, which led to premature ovarian failure and stimulation of oocyte atresia, being accompanied with oxidative stress, hypothalamic-pituitary-ovarian axis disorders, and cytoskeletal dynamic disturbance. Crucially, our study underscores that BPS may induce reproductive toxicity by blocking nuclear thyroid hormone receptors, evidenced by the parallelism and the perfect meshing between the data obtained following exposure to AT 1-850 and those after the treatment by this substitute.
Collapse
Affiliation(s)
- Lina Chouchene
- Laboratory of Genetics, Biodiversity and Bio-Resources Valorization, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia.
| | - Sana Boughammoura
- Laboratory of Genetics, Biodiversity and Bio-Resources Valorization, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| | - Mariem Ben Rhouma
- Laboratory of Genetics, Biodiversity and Bio-Resources Valorization, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| | - Rania Mlouka
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy, University of Sousse, Sousse, Tunisia
| | - Mohamed Banni
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy, University of Sousse, Sousse, Tunisia
| | - Imed Messaoudi
- Laboratory of Genetics, Biodiversity and Bio-Resources Valorization, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| | - Kaouthar Kessabi
- Laboratory of Genetics, Biodiversity and Bio-Resources Valorization, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| |
Collapse
|
7
|
Liu B, He Y, Wu X, Lin Z, Ma J, Qiu Y, Xiang Y, Kong F, Lai F, Pal M, Wang P, Ming J, Zhang B, Wang Q, Wu J, Xia W, Shen W, Na J, Torres-Padilla ME, Li J, Xie W. Mapping putative enhancers in mouse oocytes and early embryos reveals TCF3/12 as key folliculogenesis regulators. Nat Cell Biol 2024; 26:962-974. [PMID: 38839978 DOI: 10.1038/s41556-024-01422-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/11/2024] [Indexed: 06/07/2024]
Abstract
Dynamic epigenomic reprogramming occurs during mammalian oocyte maturation and early development. However, the underlying transcription circuitry remains poorly characterized. By mapping cis-regulatory elements using H3K27ac, we identified putative enhancers in mouse oocytes and early embryos distinct from those in adult tissues, enabling global transitions of regulatory landscapes around fertilization and implantation. Gene deserts harbour prevalent putative enhancers in fully grown oocytes linked to oocyte-specific genes and repeat activation. Embryo-specific enhancers are primed before zygotic genome activation and are restricted by oocyte-inherited H3K27me3. Putative enhancers in oocytes often manifest H3K4me3, bidirectional transcription, Pol II binding and can drive transcription in STARR-seq and a reporter assay. Finally, motif analysis of these elements identified crucial regulators of oogenesis, TCF3 and TCF12, the deficiency of which impairs activation of key oocyte genes and folliculogenesis. These data reveal distinctive regulatory landscapes and their interacting transcription factors that underpin the development of mammalian oocytes and early embryos.
Collapse
Affiliation(s)
- Bofeng Liu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yuanlin He
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
- Innovation Center of Suzhou Nanjing Medical University, Suzhou, China
| | - Xiaotong Wu
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, China
| | - Zili Lin
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Jing Ma
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yuexin Qiu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Yunlong Xiang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Feng Kong
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Fangnong Lai
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Mrinmoy Pal
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, Munich, Germany
| | - Peizhe Wang
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing, China
| | - Jia Ming
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing, China
| | - Bingjie Zhang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Qiujun Wang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Jingyi Wu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Weikun Xia
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Weimin Shen
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, China
| | - Jie Na
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing, China
| | | | - Jing Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China.
- Innovation Center of Suzhou Nanjing Medical University, Suzhou, China.
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
8
|
Fiorentino G, Merico V, Zanoni M, Comincini S, Sproviero D, Garofalo M, Gagliardi S, Cereda C, Lin CJ, Innocenti F, Taggi M, Vaiarelli A, Ubaldi FM, Rienzi L, Cimadomo D, Garagna S, Zuccotti M. Extracellular vesicles secreted by cumulus cells contain microRNAs that are potential regulatory factors of mouse oocyte developmental competence. Mol Hum Reprod 2024; 30:gaae019. [PMID: 38745364 DOI: 10.1093/molehr/gaae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 04/23/2024] [Indexed: 05/16/2024] Open
Abstract
The role of cumulus cells (CCs) in the acquisition of oocyte developmental competence is not yet fully understood. In a previous study, we matured cumulus-denuded fully-grown mouse oocytes to metaphase II (MII) on a feeder layer of CCs (FL-CCs) isolated from developmentally competent (FL-SN-CCs) or incompetent (FL-NSN-CCs) SN (surrounded nucleolus) or NSN (not surrounding nucleolus) oocytes, respectively. We observed that oocytes cultured on the former could develop into blastocysts, while those matured on the latter arrested at the 2-cell stage. To investigate the CC factors contributing to oocyte developmental competence, here we focused on the CCs' release into the medium of extracellular vesicles (EVs) and on their miRNA content. We found that, during the 15-h transition to MII, both FL-SN-CCs and FL-NSN-CCs release EVs that can be detected, by confocal microscopy, inside the zona pellucida (ZP) or the ooplasm. The majority of EVs are <200 nm in size, which is compatible with their ability to cross the ZP. Next-generation sequencing of the miRNome of FL-SN-CC versus FL-NSN-CC EVs highlighted 74 differentially expressed miRNAs, with 43 up- and 31 down-regulated. Although most of these miRNAs do not have known roles in the ovary, in silico functional analysis showed that seven of these miRNAs regulate 71 target genes with specific roles in meiosis resumption (N = 24), follicle growth (N = 23), fertilization (N = 1), and the acquisition of oocyte developmental competence (N = 23). Overall, our results indicate CC EVs as emerging candidates of the CC-to-oocyte communication axis and uncover a group of miRNAs as potential regulatory factors.
Collapse
Affiliation(s)
- Giulia Fiorentino
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Valeria Merico
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Mario Zanoni
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Sergio Comincini
- Functional Genomics Laboratory, Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Daisy Sproviero
- IFOM, IFOM-The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Maria Garofalo
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Stella Gagliardi
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Cristina Cereda
- Department of Pediatrics, Center of Functional Genomics and Rare Diseases, Buzzi Children's Hospital, Milan, Italy
| | - Chih-Jen Lin
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Federica Innocenti
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Marilena Taggi
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Alberto Vaiarelli
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | | | - Laura Rienzi
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Danilo Cimadomo
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Silvia Garagna
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Maurizio Zuccotti
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| |
Collapse
|
9
|
Sakamoto M, Ito A, Wakayama S, Sasaki H, Wakayama T, Ishiuchi T. Detection of newly synthesized RNA reveals transcriptional reprogramming during ZGA and a role of Obox3 in totipotency acquisition. Cell Rep 2024; 43:114118. [PMID: 38619966 DOI: 10.1016/j.celrep.2024.114118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/15/2024] [Accepted: 03/29/2024] [Indexed: 04/17/2024] Open
Abstract
Zygotic genome activation (ZGA) after fertilization enables the maternal-to-zygotic transition. However, the global view of ZGA, particularly at initiation, is incompletely understood. Here, we develop a method to capture and sequence newly synthesized RNA in early mouse embryos, providing a view of transcriptional reprogramming during ZGA. Our data demonstrate that major ZGA gene activation begins earlier than previously thought. Furthermore, we identify a set of genes activated during minor ZGA, the promoters of which show enrichment of the Obox factor motif, and find that Obox3 or Obox5 overexpression in mouse embryonic stem cells activates ZGA genes. Notably, the expression of Obox factors is severely impaired in somatic cell nuclear transfer (SCNT) embryos, and restoration of Obox3 expression corrects the ZGA profile and greatly improves SCNT embryo development. Hence, our study reveals dynamic transcriptional reprogramming during ZGA and underscores the crucial role of Obox3 in facilitating totipotency acquisition.
Collapse
Affiliation(s)
- Mizuki Sakamoto
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Aoi Ito
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Sayaka Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Teruhiko Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Takashi Ishiuchi
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan.
| |
Collapse
|
10
|
Chesnokov MS, Mamedova AR, Zhivotovsky B, Kopeina GS. A matter of new life and cell death: programmed cell death in the mammalian ovary. J Biomed Sci 2024; 31:31. [PMID: 38509545 PMCID: PMC10956231 DOI: 10.1186/s12929-024-01017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/27/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND The mammalian ovary is a unique organ that displays a distinctive feature of cyclic changes throughout the entire reproductive period. The estrous/menstrual cycles are associated with drastic functional and morphological rearrangements of ovarian tissue, including follicular development and degeneration, and the formation and subsequent atrophy of the corpus luteum. The flawless execution of these reiterative processes is impossible without the involvement of programmed cell death (PCD). MAIN TEXT PCD is crucial for efficient and careful clearance of excessive, depleted, or obsolete ovarian structures for ovarian cycling. Moreover, PCD facilitates selection of high-quality oocytes and formation of the ovarian reserve during embryonic and juvenile development. Disruption of PCD regulation can heavily impact the ovarian functions and is associated with various pathologies, from a moderate decrease in fertility to severe hormonal disturbance, complete loss of reproductive function, and tumorigenesis. This comprehensive review aims to provide updated information on the role of PCD in various processes occurring in normal and pathologic ovaries. Three major events of PCD in the ovary-progenitor germ cell depletion, follicular atresia, and corpus luteum degradation-are described, alongside the detailed information on molecular regulation of these processes, highlighting the contribution of apoptosis, autophagy, necroptosis, and ferroptosis. Ultimately, the current knowledge of PCD aberrations associated with pathologies, such as polycystic ovarian syndrome, premature ovarian insufficiency, and tumors of ovarian origin, is outlined. CONCLUSION PCD is an essential element in ovarian development, functions and pathologies. A thorough understanding of molecular mechanisms regulating PCD events is required for future advances in the diagnosis and management of various disorders of the ovary and the female reproductive system in general.
Collapse
Affiliation(s)
- Mikhail S Chesnokov
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Aygun R Mamedova
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Boris Zhivotovsky
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden.
| | - Gelina S Kopeina
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
11
|
Zhang Y, Lu Y, Xu F, Zhang X, Wu Y, Zhao J, Luo Q, Liu H, Chen K, Fei S, Cui X, Sun Y, Ou M. Molecular Characterization, Expression Pattern, DNA Methylation and Gene Disruption of Figla in Blotched Snakehead ( Channa maculata). Animals (Basel) 2024; 14:491. [PMID: 38338134 PMCID: PMC10854511 DOI: 10.3390/ani14030491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Figla is one of the earliest expressed genes in the oocyte during ovarian development. In this study, Figla was characterized in C. maculata, one of the main aquaculture species in China, and designated as CmFigla. The length of CmFigla cDNA was 1303 bp, encoding 197 amino acids that contained a conserved bHLH domain. CmFigla revealed a female-biased expression patterns in the gonads of adult fish, and CmFigla expression was far higher in ovaries than that in testes at all gonadal development stages, especially at 60~180 days post-fertilization (dpf). Furthermore, a noteworthy inverse relationship was observed between CmFigla expression and the methylation of its promoter in the adult gonads. Gonads at 90 dpf were used for in situ hybridization (ISH), and CmFigla transcripts were mainly concentrated in oogonia and the primary oocytes in ovaries, but undetectable in the testes. These results indicated that Figla would play vital roles in the ovarian development in C. maculata. Additionally, the frame-shift mutations of CmFigla were successfully constructed through the CRISPR/Cas9 system, which established a positive foundation for further investigation on the role of Figla in the ovarian development of C. maculata. Our study provides valuable clues for exploring the regulatory mechanism of Figla in the fish ovarian development and maintenance, which would be useful for the sex control and reproduction of fish in aquaculture.
Collapse
Affiliation(s)
- Yang Zhang
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (Y.Z.); (Y.L.); (X.C.)
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.); (Y.W.); (J.Z.); (Q.L.); (H.L.); (K.C.); (S.F.)
| | - Yuntao Lu
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (Y.Z.); (Y.L.); (X.C.)
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.); (Y.W.); (J.Z.); (Q.L.); (H.L.); (K.C.); (S.F.)
| | - Feng Xu
- Chongqing Fisheries Technical Extension Center, Chongqing 404100, China;
| | - Xiaotian Zhang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.); (Y.W.); (J.Z.); (Q.L.); (H.L.); (K.C.); (S.F.)
| | - Yuxia Wu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.); (Y.W.); (J.Z.); (Q.L.); (H.L.); (K.C.); (S.F.)
| | - Jian Zhao
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.); (Y.W.); (J.Z.); (Q.L.); (H.L.); (K.C.); (S.F.)
| | - Qing Luo
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.); (Y.W.); (J.Z.); (Q.L.); (H.L.); (K.C.); (S.F.)
| | - Haiyang Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.); (Y.W.); (J.Z.); (Q.L.); (H.L.); (K.C.); (S.F.)
| | - Kunci Chen
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.); (Y.W.); (J.Z.); (Q.L.); (H.L.); (K.C.); (S.F.)
| | - Shuzhan Fei
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.); (Y.W.); (J.Z.); (Q.L.); (H.L.); (K.C.); (S.F.)
| | - Xiaojuan Cui
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (Y.Z.); (Y.L.); (X.C.)
| | - Yuandong Sun
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (Y.Z.); (Y.L.); (X.C.)
| | - Mi Ou
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (Y.Z.); (Y.L.); (X.C.)
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.); (Y.W.); (J.Z.); (Q.L.); (H.L.); (K.C.); (S.F.)
| |
Collapse
|
12
|
Clark AC, Edison R, Esvelt K, Kamau S, Dutoit L, Champer J, Champer SE, Messer PW, Alexander A, Gemmell NJ. A framework for identifying fertility gene targets for mammalian pest control. Mol Ecol Resour 2024; 24:e13901. [PMID: 38009398 DOI: 10.1111/1755-0998.13901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/16/2023] [Accepted: 11/06/2023] [Indexed: 11/28/2023]
Abstract
Fertility-targeted gene drives have been proposed as an ethical genetic approach for managing wild populations of vertebrate pests for public health and conservation benefit. This manuscript introduces a framework to identify and evaluate target gene suitability based on biological gene function, gene expression and results from mouse knockout models. This framework identified 16 genes essential for male fertility and 12 genes important for female fertility that may be feasible targets for mammalian gene drives and other non-drive genetic pest control technology. Further, a comparative genomics analysis demonstrates the conservation of the identified genes across several globally significant invasive mammals. In addition to providing important considerations for identifying candidate genes, our framework and the genes identified in this study may have utility in developing additional pest control tools such as wildlife contraceptives.
Collapse
Affiliation(s)
- Anna C Clark
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Computational Biology, Cornell University, Ithaca, New York, USA
| | - Rey Edison
- Media Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kevin Esvelt
- Media Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Sebastian Kamau
- Media Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ludovic Dutoit
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Jackson Champer
- Center for Bioinformatics, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Samuel E Champer
- Department of Computational Biology, Cornell University, Ithaca, New York, USA
| | - Philipp W Messer
- Department of Computational Biology, Cornell University, Ithaca, New York, USA
| | - Alana Alexander
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
13
|
Schultz IJ, Zimmerman Y, Moelans CB, Chrusciel M, Krijgh J, van Diest PJ, Huhtaniemi IT, Coelingh Bennink HJT. A tumor cell specific Zona Pellucida glycoprotein 3 RNA transcript encodes an intracellular cancer antigen. Front Oncol 2023; 13:1233039. [PMID: 38125942 PMCID: PMC10731367 DOI: 10.3389/fonc.2023.1233039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Background Expression of Zona Pellucida glycoprotein 3 (ZP3) in healthy tissue is restricted to the extracellular Zona Pellucida layer surrounding oocytes of ovarian follicles and to specific cells of the spermatogenic lineage. Ectopic expression of ZP3 has been observed in various types of cancer, rendering it a possible therapeutic target. Methods To support its validity as therapeutic target, we extended the cancer related data by investigating ZP3 expression using immunohistochemistry (IHC) of tumor biopsies. We performed a ZP3 transcript specific analysis of publicly available RNA-sequencing (RNA-seq) data of cancer cell lines (CCLs) and tumor and normal tissues, and validated expression data by independent computational analysis and real-time quantitative PCR (qPCR). A correlation between the ZP3 expression level and pathological and clinical parameters was also investigated. Results IHC data for several cancer types showed abundant ZP3 protein staining, which was confined to the cytoplasm, contradicting the extracellular protein localization in oocytes. We noticed that an alternative ZP3 RNA transcript, which we term 'ZP3-Cancer', was annotated in gene databases that lacks the genetic information encoding the N-terminal signal peptide that governs entry into the secretory pathway. This explains the intracellular localization of ZP3 in tumor cells. Analysis of publicly available RNA-seq data of 1339 cancer cell lines (CCLs), 10386 tumor tissues (The Cancer Genome Atlas) and 7481 healthy tissues (Genotype-Tissue Expression) indicated that ZP3-Cancer is the dominant ZP3 RNA transcript in tumor cells and is highly enriched in many cancer types, particularly in rectal, ovarian, colorectal, prostate, lung and breast cancer. Expression of ZP3-Cancer in tumor cells was confirmed by qPCR. Higher levels of the ZP3-Cancer transcript were associated with more aggressive tumors and worse survival of patients with various types of cancer. Conclusion The cancer-restricted expression of ZP3-Cancer renders it an attractive tumor antigen for the development of a therapeutic cancer vaccine, particularly using mRNA expression technologies.
Collapse
Affiliation(s)
| | | | - Cathy B. Moelans
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Jan Krijgh
- Pantarhei Oncology BV, Zeist, Netherlands
| | - Paul J. van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ilpo T. Huhtaniemi
- Institute of Biomedicine, University of Turku, Turku, Finland
- Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| | | |
Collapse
|
14
|
Wu K, Zhai Y, Qin M, Zhao C, Ai N, He J, Ge W. Genetic evidence for differential functions of figla and nobox in zebrafish ovarian differentiation and folliculogenesis. Commun Biol 2023; 6:1185. [PMID: 37990081 PMCID: PMC10663522 DOI: 10.1038/s42003-023-05551-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
FIGLA and NOBOX are important oocyte-specific transcription factors. Both figla-/- and nobox-/- mutants showed all-male phenotype in zebrafish due to increased dominance of the male-promoting pathway. The early diversion towards males in these mutants has precluded analysis of their roles in folliculogenesis. In this study, we attenuated the male-promoting pathway by deleting dmrt1, a key male-promoting gene, in figla-/- and nobox-/- fish, which allows a sufficient display of defects in folliculogenesis. Germ cells in figla-/-;dmrt1-/- double mutant remained in cysts without forming follicles. In contrast, follicles could form well but exhibited deficient growth in nobox-/-;dmrt1-/- double mutants. Follicles in nobox-/-;dmrt1-/- ovary could progress to previtellogenic (PV) stage but failed to enter vitellogenic growth. Such arrest at PV stage suggested a possible deficiency in estrogen signaling. This was supported by lines of evidence in nobox-/-;dmrt1-/-, including reduced expression of ovarian aromatase (cyp19a1a) and level of serum estradiol (E2), regressed genital papilla (female secondary sex characteristics), and more importantly the resumption of vitellogenic growth by E2 treatment. Expression analysis suggested Nobox might regulate cyp19a1a by controlling Gdf9 and/or Bmp15. Our discoveries indicate that Figla is essential for ovarian differentiation and follicle formation whereas Nobox is important for driving subsequent follicle development.
Collapse
Affiliation(s)
- Kun Wu
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, 999078, Taipa, Macau, China
- School of Marine Sciences, Sun Yat-sen University, 519082, Zhuhai, China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), 519082, Zhuhai, China
| | - Yue Zhai
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, 999078, Taipa, Macau, China
| | - Mingming Qin
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, 999078, Taipa, Macau, China
| | - Cheng Zhao
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, 999078, Taipa, Macau, China
| | - Nana Ai
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, 999078, Taipa, Macau, China
| | - Jianguo He
- School of Marine Sciences, Sun Yat-sen University, 519082, Zhuhai, China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), 519082, Zhuhai, China
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, 999078, Taipa, Macau, China.
| |
Collapse
|
15
|
Wang JY, Zhang FL, Li XX, Zhu KX, Zuo N, Wang JJ, Shen W, Li L. Cyanidin-3- O-glucoside Mitigates the Ovarian Defect Induced by Zearalenone via p53-GADD45a Signaling during Primordial Follicle Assembly. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16715-16726. [PMID: 37889105 DOI: 10.1021/acs.jafc.3c03315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Zearalenone (ZEN) is well known as a kind of endocrine disruptor whose exposure is capable of causing reproductive toxicity in animals. Cyanidin-3-O-glucoside (C3G) is a derivative of cyanidin and owns multiple biofunctions, and prior efforts have suggested that C3G has therapeutic actions for reproductive diseases. In this article, a ZEN exposure model during primordial follicle assembly was constructed using the in vitro culture platform of neonatal mouse ovaries. We investigated the protective effect of C3G on ZEN-induced ovarian toxicity during primordial follicle assembly in mice, as well as its potential mechanism. Interestingly, we observed that C3G could effectively protect the ovary from ZEN damage, mainly by restoring primordial follicle assembly, which upregulated the expression of LHX8 and SOHLH1 proteins and relieved ZEN-induced DNA damage. Next, to explore the mechanism by which C3G rescued ZEN-induced injury, we performed RNA sequencing (RNA-seq). The bioinformatic analysis illustrated that the rescue pathway of C3G was associated with p53-Gadd45a signaling and cell cycle. Then, western blotting and flow cytometry results revealed that C3G restored the expression levels of cyclin-dependent kinase 6 (CDK6) and cyclin D2 (CCND2) and regulated the ovarian cell cycle to normal. In conclusion, our findings manifested that C3G could alleviate ZEN-induced primordial follicle assembly impairment by restoring the cell cycle involved in p53-GADD45a signaling.
Collapse
Affiliation(s)
- Jing-Ya Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Fa-Li Zhang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Xiu-Xiu Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Ke-Xin Zhu
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Ning Zuo
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Jun-Jie Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Lan Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
16
|
Telfer EE, Grosbois J, Odey YL, Rosario R, Anderson RA. Making a good egg: human oocyte health, aging, and in vitro development. Physiol Rev 2023; 103:2623-2677. [PMID: 37171807 PMCID: PMC10625843 DOI: 10.1152/physrev.00032.2022] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023] Open
Abstract
Mammalian eggs (oocytes) are formed during fetal life and establish associations with somatic cells to form primordial follicles that create a store of germ cells (the primordial pool). The size of this pool is influenced by key events during the formation of germ cells and by factors that influence the subsequent activation of follicle growth. These regulatory pathways must ensure that the reserve of oocytes within primordial follicles in humans lasts for up to 50 years, yet only approximately 0.1% will ever be ovulated with the rest undergoing degeneration. This review outlines the mechanisms and regulatory pathways that govern the processes of oocyte and follicle formation and later growth, within the ovarian stroma, through to ovulation with particular reference to human oocytes/follicles. In addition, the effects of aging on female reproductive capacity through changes in oocyte number and quality are emphasized, with both the cellular mechanisms and clinical implications discussed. Finally, the details of current developments in culture systems that support all stages of follicle growth to generate mature oocytes in vitro and emerging prospects for making new oocytes from stem cells are outlined.
Collapse
Affiliation(s)
- Evelyn E Telfer
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Johanne Grosbois
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Yvonne L Odey
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Roseanne Rosario
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
17
|
Sciorio R, Cariati F, Fleming S, Alviggi C. Exploring the Impact of Controlled Ovarian Stimulation and Non-Invasive Oocyte Assessment in ART Treatments. Life (Basel) 2023; 13:1989. [PMID: 37895371 PMCID: PMC10608727 DOI: 10.3390/life13101989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/14/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Invasive and noninvasive features are normally applied to select developmentally competent oocytes and embryos that can increase the take-home baby rates in assisted reproductive technology. The noninvasive approach mainly applied to determine oocyte and embryo competence has been, since the early days of IVF, the morphological evaluation of the mature cumulus-oocyte complex at the time of pickup, first polar body, zona pellucida thickness, perivitelline space and cytoplasm appearance. Morphological evaluation of oocyte quality is one of the options used to predict successful fertilization, early embryo development, uterine implantation and the capacity of an embryo to generate a healthy pregnancy to term. Thus, this paper aims to provide an analytical revision of the current literature relating to the correlation between ovarian stimulation procedures and oocyte/embryo quality. In detail, several aspects of oocyte quality such as morphological features, oocyte competence and its surrounding environment will be discussed. In addition, the main noninvasive features as well as novel approaches to biomechanical parameters of oocytes that might be correlated with the competence of embryos to produce a healthy pregnancy and live birth will be illustrated.
Collapse
Affiliation(s)
- Romualdo Sciorio
- Fertility Medicine and Gynaecological Endocrinology Unit, Department Woman-Mother-Child, Lausanne University Hospital, CHUV, 1011 Lausanne, Switzerland
| | - Federica Cariati
- Department of Public Health, University of Naples Federico II, Via Pansini 5, 80131 Napoli, Italy;
| | - Steven Fleming
- Discipline of Anatomy & Histology, School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia;
| | - Carlo Alviggi
- Fertility Unit, Maternal-Child Department, AOU Policlinico Federico II, 80131 Naples, Italy;
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
- Endocrinology and Experimental Oncology Institute (IEOS), National Research Council, 80131 Naples, Italy
| |
Collapse
|
18
|
Eldem V, Zararsız G, Erkan M. Global expression pattern of genes containing positively selected sites in European anchovy (Engraulis encrasicolus L.) may shed light on teleost reproduction. PLoS One 2023; 18:e0289940. [PMID: 37566603 PMCID: PMC10420382 DOI: 10.1371/journal.pone.0289940] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
European anchovy is a multiple-spawning and highly fecundate pelagic fish with high economic and ecological significance. Although fecundity is influenced by nutrition, temperature and weight of spawners, high reproductive capacity is related to molecular processes in the ovary. The ovary is an essential and complex reproductive organ composed of various somatic and germ cells, which interact to facilitate the development of the ovary and functional oocytes. Revealing the ovarian transcriptome profile of highly fecundate fishes provides insights into oocyte production in teleosts. Here we use a comprehensive tissue-specific RNA sequencing which yielded 102.3 billion clean bases to analyze the transcriptional profiles of the ovary compared with other organs (liver, kidney, ovary, testis, fin, cauda and gill) and juvenile tissues of European anchovy. We conducted a comparative transcriptome and positive selection analysis of seven teleost species with varying fecundity rates to identify genes potentially involved in oogenesis and oocyte development. Of the 2,272 single copies of orthologous genes found, up to 535 genes were under positive selection in European anchovy and these genes are associated with a wide spectrum of cellular and molecular functions, with enrichments such as RNA methylation and modification, ribosome biogenesis, DNA repair, cell cycle processing and peptide/amide biosynthesis. Of the 535 positively selected genes, 55 were upregulated, and 45 were downregulated in the ovary, most of which were related to RNA and DNA transferase, developmental transcription factors, protein kinases and replication factors. Overall, our analysis of the transcriptome level in the ovarian tissue of a teleost will provide further insights into molecular processes and deepen our genetic understanding of egg production in highly fecund fish.
Collapse
Affiliation(s)
- Vahap Eldem
- Faculty of Sciences, Department of Biology, Istanbul University, Istanbul, Turkey
| | - Gökmen Zararsız
- Department of Biostatistics, Erciyes University, Kayseri, Turkey
| | - Melike Erkan
- Faculty of Sciences, Department of Biology, Istanbul University, Istanbul, Turkey
| |
Collapse
|
19
|
King AC, Zenker AK. Sex blind: bridging the gap between drug exposure and sex-related gene expression in Danio rerio using next-generation sequencing (NGS) data and a literature review to find the missing links in pharmaceutical and environmental toxicology studies. FRONTIERS IN TOXICOLOGY 2023; 5:1187302. [PMID: 37398910 PMCID: PMC10312089 DOI: 10.3389/ftox.2023.1187302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
The sex of both humans and Danio rerio has previously been shown to affect the way individuals respond to drug exposure. Genes which allow identification of sex in juvenile zebrafish show potential to reveal these confounding variables between sex in toxicological and preclinical trials but the link between these is so far missing. These sex-specific, early expressed genes where expression is not altered by drug exposure must be carefully selected for this purpose. We aimed to discover genes which can be used in pharmaceutical trials and environmental toxicology studies to uncover sex-related variations in gene expression with drug application using the model organism Danio rerio. Previously published early sex determining genes from King et al. were evaluated as well as additional genes selected from our zebrafish Next-generation sequencing (NGS) data which are known from previously published works not to be susceptible to changes in expression with drug exposure. NGS revealed a further ten female-specific genes (vtg1, cyp17a1, cyp19a1a, igf3, ftz-f1, gdf9, foxl2a, Nr0b1, ipo4, lhcgr) and five male related candidate genes (FKBP5, apobb1, hbaa1, dmrt1, spata6) which are also expressed in juvenile zebrafish, 28 days post fertilisation (dpf). Following this, a literature review was performed to classify which of these early-expressed sex specific genes are already known to be affected by drug exposure in order to determine candidate genes to be used in pharmaceutical trials or environmental toxicology testing studies. Discovery of these early sex-determining genes in Danio rerio will allow identification of sex-related responses to drug testing to improve sex-specific healthcare and the medical treatment of human patients.
Collapse
Affiliation(s)
| | - Armin K. Zenker
- University of Applied Sciences and Arts North-Western Switzerland (FHNW), Muttenz, Switzerland
| |
Collapse
|
20
|
Clark AC, Alexander A, Edison R, Esvelt K, Kamau S, Dutoit L, Champer J, Champer SE, Messer PW, Gemmell NJ. A framework for identifying fertility gene targets for mammalian pest control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542751. [PMID: 37398071 PMCID: PMC10312551 DOI: 10.1101/2023.05.30.542751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Fertility-targeted gene drives have been proposed as an ethical genetic approach for managing wild populations of vertebrate pests for public health and conservation benefit.This manuscript introduces a framework to identify and evaluate target gene suitability based on biological gene function, gene expression, and results from mouse knockout models.This framework identified 16 genes essential for male fertility and 12 genes important for female fertility that may be feasible targets for mammalian gene drives and other non-drive genetic pest control technology. Further, a comparative genomics analysis demonstrates the conservation of the identified genes across several globally significant invasive mammals.In addition to providing important considerations for identifying candidate genes, our framework and the genes identified in this study may have utility in developing additional pest control tools such as wildlife contraceptives.
Collapse
Affiliation(s)
- Anna C Clark
- Department of Anatomy, School of Biomedical Sciences, University of Otago, 270 Great King Street, Central Dunedin, Dunedin 9016, New Zealand
- Department of Computational Biology, Cornell University, 102 Tower Rd, Ithaca, NY 14853, United States
| | - Alana Alexander
- Department of Anatomy, School of Biomedical Sciences, University of Otago, 270 Great King Street, Central Dunedin, Dunedin 9016, New Zealand
| | - Rey Edison
- Media Laboratory, Massachusetts Institute of Technology, 75 Amherst St, Cambridge, United States
| | - Kevin Esvelt
- Media Laboratory, Massachusetts Institute of Technology, 75 Amherst St, Cambridge, United States
| | - Sebastian Kamau
- Media Laboratory, Massachusetts Institute of Technology, 75 Amherst St, Cambridge, United States
| | - Ludovic Dutoit
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin 9016, New Zealand
| | - Jackson Champer
- Center for Bioinformatics, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Samuel E Champer
- Department of Computational Biology, Cornell University, 102 Tower Rd, Ithaca, NY 14853, United States
| | - Philipp W Messer
- Department of Computational Biology, Cornell University, 102 Tower Rd, Ithaca, NY 14853, United States
| | - Neil J Gemmell
- Department of Anatomy, School of Biomedical Sciences, University of Otago, 270 Great King Street, Central Dunedin, Dunedin 9016, New Zealand
| |
Collapse
|
21
|
Huang J, Wu T, Li Y, Zhang Y, Yu X, Xu D, Wang H. Toxic effect window of ovarian development in female offspring mice induced by prenatal prednisone exposure with different doses and time. J Ovarian Res 2023; 16:71. [PMID: 37038227 PMCID: PMC10088227 DOI: 10.1186/s13048-023-01148-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/29/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Prednisone is one of the most used synthetic glucocorticoids during pregnancy. Epidemiological investigations suggested that prenatal prednisone therapy could affect fetal development, but systematic studies on its effects on ovarian development and the "toxic effect window" remained scarce. METHODS In this study, by simulating clinical application characteristics, Kunming mice were given prednisone by oral gavage with different doses (0.25 or 1.0 mg/kg·d) or at different time gestational days (GD) (GD0-9, GD10-18, or GD0-18). Blood and ovaries of fetal mice were collected on GD18, and the serum estradiol level and the related function indexes of ovarian granulosa cells and oocytes were detected. RESULTS Compared with the control group, prenatal prednisone exposure (PPE) induced pathological injury and enhanced cell proliferation in fetal mice ovary. Furthermore, the expression of steroid synthesis functional genes in pre-granulosa cells, the oocyte function markers, and developmentally related genes was enhanced with different doses or at different time of PPE. The Hippo signaling was activated in the fetal ovary of PPE groups. The above changes were most significant in the low or high-dose and full-term PPE groups. CONCLUSION PPE caused various cell developmental toxicity in the fetal ovary, especially in the low or high-dose, full-term exposure groups. The potential mechanism might be related to the activation of the Hippo signaling pathway.
Collapse
Affiliation(s)
- Jing Huang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Otorhinolaryngology Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Tiancheng Wu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Yating Li
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Yuanzhen Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Xingjiang Yu
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Dan Xu
- Department of Pharmacy, School of Pharmaceutical Sciences, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| | - Hui Wang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
22
|
Xie QP, Zhan W, Shi JZ, Liu F, Niu BL, He X, Liu M, Wang J, Liang QQ, Xie Y, Xu P, Wang X, Lou B. Whole-genome assembly and annotation for the little yellow croaker (Larimichthys polyactis) provide insights into the evolution of hermaphroditism and gonochorism. Mol Ecol Resour 2023; 23:632-658. [PMID: 36330680 DOI: 10.1111/1755-0998.13731] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
The evolutionary direction of gonochorism and hermaphroditism is an intriguing mystery to be solved. The special transient hermaphroditic stage makes the little yellow croaker (Larimichthys polyactis) an appealing model for studying hermaphrodite formation. However, the origin and evolutionary relationship between of L. polyactis and Larimichthys crocea, the most famous commercial fish species in East Asia, remain unclear. Here, we report the sequence of the L. polyactis genome, which we found is ~706 Mb long (contig N50 = 1.21 Mb and scaffold N50 = 4.52 Mb) and contains 25,233 protein-coding genes. Phylogenomic analysis suggested that L. polyactis diverged from the common ancestor, L. crocea, approximately 25.4 million years ago. Our high-quality genome assembly enabled comparative genomic analysis, which revealed several within-chromosome rearrangements and translocations, without major chromosome fission or fusion events between the two species. The dmrt1 gene was identified as the male-specific gene in L. polyactis. Transcriptome analysis showed that the expression of dmrt1 and its upstream regulatory gene (rnf183) were both sexually dimorphic. Rnf183, unlike its two paralogues rnf223 and rnf225, is only present in Larimichthys and Lates but not in other teleost species, suggesting that it originated from lineage-specific duplication or was lost in other teleosts. Phylogenetic analysis shows that the hermaphrodite stage in male L. polyactis may be explained by the sequence evolution of dmrt1. Decoding the L. polyactis genome not only provides insight into the genetic underpinnings of hermaphrodite evolution, but also provides valuable information for enhancing fish aquaculture.
Collapse
Affiliation(s)
- Qing-Ping Xie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wei Zhan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jian-Zhi Shi
- Novogene Bioinformatics Institute, Beijing, China
| | - Feng Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Bao-Long Niu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xue He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Meng Liu
- Novogene Bioinformatics Institute, Beijing, China
| | - Jing Wang
- Novogene Bioinformatics Institute, Beijing, China
| | - Qi-Qi Liang
- Novogene Bioinformatics Institute, Beijing, China
| | - Yue Xie
- Novogene Bioinformatics Institute, Beijing, China
| | - Peng Xu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Xu Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA.,Alabama Agricultural Experiment Station, Auburn, Alabama, USA.,The HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Bao Lou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
23
|
Sun L, Lv Z, Chen X, Wang C, Lv P, Yan L, Tian S, Xie X, Yao X, Liu J, Wang Z, Luo H, Cui S, Liu J. SRSF1 regulates primordial follicle formation and number determination during meiotic prophase I. BMC Biol 2023; 21:49. [PMID: 36882745 PMCID: PMC9993595 DOI: 10.1186/s12915-023-01549-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Ovarian folliculogenesis is a tightly regulated process leading to the formation of functional oocytes and involving successive quality control mechanisms that monitor chromosomal DNA integrity and meiotic recombination. A number of factors and mechanisms have been suggested to be involved in folliculogenesis and associated with premature ovarian insufficiency, including abnormal alternative splicing (AS) of pre-mRNAs. Serine/arginine-rich splicing factor 1 (SRSF1; previously SF2/ASF) is a pivotal posttranscriptional regulator of gene expression in various biological processes. However, the physiological roles and mechanism of SRSF1 action in mouse early-stage oocytes remain elusive. Here, we show that SRSF1 is essential for primordial follicle formation and number determination during meiotic prophase I. RESULTS The conditional knockout (cKO) of Srsf1 in mouse oocytes impairs primordial follicle formation and leads to primary ovarian insufficiency (POI). Oocyte-specific genes that regulate primordial follicle formation (e.g., Lhx8, Nobox, Sohlh1, Sohlh2, Figla, Kit, Jag1, and Rac1) are suppressed in newborn Stra8-GFPCre Srsf1Fl/Fl mouse ovaries. However, meiotic defects are the leading cause of abnormal primordial follicle formation. Immunofluorescence analyses suggest that failed synapsis and an inability to undergo recombination result in fewer homologous DNA crossovers (COs) in the Srsf1 cKO mouse ovaries. Moreover, SRSF1 directly binds and regulates the expression of the POI-related genes Six6os1 and Msh5 via AS to implement the meiotic prophase I program. CONCLUSIONS Altogether, our data reveal the critical role of an SRSF1-mediated posttranscriptional regulatory mechanism in the mouse oocyte meiotic prophase I program, providing a framework to elucidate the molecular mechanisms of the posttranscriptional network underlying primordial follicle formation.
Collapse
Affiliation(s)
- Longjie Sun
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zheng Lv
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xuexue Chen
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Chaofan Wang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Pengbo Lv
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lu Yan
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shuang Tian
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaomei Xie
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaohong Yao
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jingjing Liu
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhao Wang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Haoshu Luo
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Sheng Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Jiali Liu
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
24
|
Effect of Formaldehyde and Curcumin on Histomorphological Indices, Gene Expression Associated with Ovarian Follicular Development, and Total Antioxidant to Oxidant Levels in Wistar Rats. Int J Biomater 2023; 2023:4662440. [PMID: 36776151 PMCID: PMC9908331 DOI: 10.1155/2023/4662440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/03/2023] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
The present experimental study was undertaken to investigate the effect of formaldehyde (FA) and curcumin (CUR) on histomorphological features, antioxidant potential, and messenger ribonucleic acid (mRNA) levels of genes related to follicular development in FA-exposed rats. 24 Wistar female rats were divided into four study groups and given intraperitoneal injections of FA (10 mg/kg) (N = 6), FA (10 mg/kg) + CUR (100 mg/kg) (N = 6), sham (N = 6), and control (N = 6) for 14 days. Ovarian follicular histology, the related gene expression, blood factors, and anti/oxidation potentials were assessed using ovarian tissue and serum, respectively. The klotho was significantly overexpressed in the FA group compared with controls and shams. Contradictory, the factor in germ line alpha was significantly down-regulated in FA and FA + CUR groups compared to shams and controls. A significant decline was seen in the number of ovarian follicles in the FA group, independent of the developmental stage. Regarding the comparison of the FA + CUR group to other groups, a significant change was seen in the number of secondary, graafian, and atretic follicles. The FA group demonstrated significantly lower hemoglobin, red blood cell count, hematocrit, and mean corpuscular hemoglobin concentration than controls. The activity of glutathione peroxidase increased significantly in the FA group than in the controls. Despite the deleterious effects of FA on histological and molecular aspects of rat ovarian follicles, CUR does not appear to have a protective effect against the hazardous effects of this chemical. However, CUR in some cases has positive effects such as reducing follicular destruction and interstitial edema.
Collapse
|
25
|
Sugiura K, Maruyama N, Akimoto Y, Matsushita K, Endo T. Paracrine regulation of granulosa cell development in the antral follicles in mammals. Reprod Med Biol 2023; 22:e12538. [PMID: 37638351 PMCID: PMC10457553 DOI: 10.1002/rmb2.12538] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/29/2023] Open
Abstract
Background Development of ovarian follicles is regulated by a complex interaction of intra- and extra-follicular signals. Oocyte-derived paracrine factors (ODPFs) play a central role in this process in cooperation with other signals. Methods This review provides an overview of the recent advances in our understanding of the paracrine regulation of antral follicle development in mammals. It specifically focuses on the regulation of granulosa cell development by ODPFs, along with other intrafollicular signals. Main Findings Bi-directional communication between oocytes and surrounding cumulus cells is a fundamental mechanism that determines cumulus cell differentiation. Along with estrogen, ODPFs promote the expression of forkhead box L2, a critical transcription factor required for mural granulosa cells. Follicle-stimulating hormone (FSH) facilitates these processes by stimulating estrogen production in mural granulosa cells. Conclusion Cooperative interactions among ODPFs, FSH, and estrogen are critical in determining the fate of cumulus and mural granulosa cells, as well as the development of oocytes.
Collapse
Affiliation(s)
- Koji Sugiura
- Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Natsumi Maruyama
- Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Yuki Akimoto
- Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Kodai Matsushita
- Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Tsutomu Endo
- Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| |
Collapse
|
26
|
Curzon AY, Shirak A, Benet-Perlberg A, Naor A, Low-Tanne SI, Sharkawi H, Ron M, Seroussi E. Absence of Figla-like Gene Is Concordant with Femaleness in Cichlids Harboring the LG1 Sex-Determination System. Int J Mol Sci 2022; 23:ijms23147636. [PMID: 35886982 PMCID: PMC9316214 DOI: 10.3390/ijms23147636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 02/04/2023] Open
Abstract
Oreochromis niloticus has been used as a reference genome for studies of tilapia sex determination (SD) revealing segregating genetic loci on linkage groups (LGs) 1, 3, and 23. The master key regulator genes (MKR) underlying the SD regions on LGs 3 and 23 have been already found. To identify the MKR in fish that segregate for the LG1 XX/XY SD-system, we applied short variant discovery within the sequence reads of the genomic libraries of the Amherst hybrid stock, Coptodon zillii and Sarotherodon galilaeus, which were aligned to a 3-Mbp-region of the O. aureus genome. We obtained 66,372 variants of which six were concordant with the XX/XY model of SD and were conserved across these species, disclosing the male specific figla-like gene. We further validated this observation in O. mossambicus and in the Chitralada hybrid stock. Genome alignment of the 1252-bp transcript showed that the figla-like gene’s size was 2664 bp, and that its three exons were capable of encoding 99 amino acids including a 45-amino-acid basic helix–loop–helix domain that is typical of the ovary development regulator—factor-in-the-germline-alpha (FIGLA). In Amherst gonads, the figla-like gene was exclusively expressed in testes. Thus, the figla-like genomic presence determines male fate by interrupting the female developmental program. This indicates that the figla-like gene is the long-sought SD MKR on LG1.
Collapse
Affiliation(s)
- Arie Yehuda Curzon
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 75288, Israel; (A.Y.C.); (A.S.); (M.R.)
- Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Andrey Shirak
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 75288, Israel; (A.Y.C.); (A.S.); (M.R.)
| | - Ayana Benet-Perlberg
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Alon Naor
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Shay Israel Low-Tanne
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Haled Sharkawi
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Micha Ron
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 75288, Israel; (A.Y.C.); (A.S.); (M.R.)
| | - Eyal Seroussi
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 75288, Israel; (A.Y.C.); (A.S.); (M.R.)
- Correspondence:
| |
Collapse
|
27
|
Liu Y, Kossack ME, McFaul ME, Christensen LN, Siebert S, Wyatt SR, Kamei CN, Horst S, Arroyo N, Drummond IA, Juliano CE, Draper BW. Single-cell transcriptome reveals insights into the development and function of the zebrafish ovary. eLife 2022; 11:e76014. [PMID: 35588359 PMCID: PMC9191896 DOI: 10.7554/elife.76014] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Zebrafish are an established research organism that has made many contributions to our understanding of vertebrate tissue and organ development, yet there are still significant gaps in our understanding of the genes that regulate gonad development, sex, and reproduction. Unlike the development of many organs, such as the brain and heart that form during the first few days of development, zebrafish gonads do not begin to form until the larval stage (≥5 days post-fertilization). Thus, forward genetic screens have identified very few genes required for gonad development. In addition, bulk RNA-sequencing studies that identify genes expressed in the gonads do not have the resolution necessary to define minor cell populations that may play significant roles in the development and function of these organs. To overcome these limitations, we have used single-cell RNA sequencing to determine the transcriptomes of cells isolated from juvenile zebrafish ovaries. This resulted in the profiles of 10,658 germ cells and 14,431 somatic cells. Our germ cell data represents all developmental stages from germline stem cells to early meiotic oocytes. Our somatic cell data represents all known somatic cell types, including follicle cells, theca cells, and ovarian stromal cells. Further analysis revealed an unexpected number of cell subpopulations within these broadly defined cell types. To further define their functional significance, we determined the location of these cell subpopulations within the ovary. Finally, we used gene knockout experiments to determine the roles of foxl2l and wnt9b for oocyte development and sex determination and/or differentiation, respectively. Our results reveal novel insights into zebrafish ovarian development and function, and the transcriptome profiles will provide a valuable resource for future studies.
Collapse
Affiliation(s)
- Yulong Liu
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Michelle E Kossack
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Matthew E McFaul
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Lana N Christensen
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Stefan Siebert
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Sydney R Wyatt
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Caramai N Kamei
- Mount Desert Island Biological LaboratoryBar HarborUnited States
| | - Samuel Horst
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Nayeli Arroyo
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Iain A Drummond
- Mount Desert Island Biological LaboratoryBar HarborUnited States
| | - Celina E Juliano
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Bruce W Draper
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| |
Collapse
|
28
|
Woodman MF, Ozcan MCH, Gura MA, De La Cruz P, Gadson AK, Grive KJ. The Requirement of Ubiquitin C-Terminal Hydrolase L1 (UCHL1) in Mouse Ovarian Development and Fertility †. Biol Reprod 2022; 107:500-513. [PMID: 35512140 PMCID: PMC9382372 DOI: 10.1093/biolre/ioac086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/07/2022] [Accepted: 04/27/2022] [Indexed: 11/14/2022] Open
Abstract
Ubiquitin C-Terminal Hydrolase L1 (UCHL1) is a de-ubiquitinating enzyme enriched in neuronal and gonadal tissues known to regulate the cellular stores of mono-ubiquitin and protein turnover. While its function in maintaining proper motor neuron function is well-established, investigation into its role in the health and function of reproductive processes is only just beginning to be studied. Single-cell-sequencing analysis of all ovarian cells from the murine perinatal period revealed that Uchl1 is very highly expressed in the developing oocyte population, an observation which was corroborated by high levels of oocyte-enriched UCHL1 protein expression in oocytes of all stages throughout the mouse reproductive lifespan. To better understand the role UCHL1 may be playing in oocytes, we utilized a UCHL1-deficient mouse line, finding reduced number of litters, reduced litter sizes, altered folliculogenesis, morphologically abnormal oocytes, disrupted estrous cyclicity and apparent endocrine dysfunction in these animals compared to their wild-type and heterozygous littermates. These data reveal a novel role of UCHL1 in female fertility as well as overall ovarian function, and suggest a potentially essential role for the ubiquitin proteasome pathway in mediating reproductive health. Summary sentence: Ubiquitin C-Terminal Hydrolase L1 (UCHL1) is required for proper ovarian folliculogenesis, estrous cyclicity, and fertility in the female mouse.
Collapse
Affiliation(s)
- Morgan F Woodman
- Women and Infants Hospital of Rhode Island, Department of Obstetrics and Gynecology, Program in Women's Oncology, Providence, RI 02905
| | - Meghan C H Ozcan
- Women and Infants Hospital of Rhode Island, Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility Fellowship Program, Providence, RI 02905.,Warren Alpert Medical School of Brown University, Department of Obstetrics and Gynecology, Providence, RI 02905
| | - Megan A Gura
- Brown University, MCB Graduate Program and Department of Molecular Biology, Cell Biology, and Biochemistry, Providence, RI, 02906
| | - Payton De La Cruz
- Women and Infants Hospital of Rhode Island, Department of Obstetrics and Gynecology, Program in Women's Oncology, Providence, RI 02905.,Brown University, Pathobiology Graduate Program, Providence, RI, 02906
| | - Alexis K Gadson
- Women and Infants Hospital of Rhode Island, Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility Fellowship Program, Providence, RI 02905.,Warren Alpert Medical School of Brown University, Department of Obstetrics and Gynecology, Providence, RI 02905
| | - Kathryn J Grive
- Women and Infants Hospital of Rhode Island, Department of Obstetrics and Gynecology, Program in Women's Oncology, Providence, RI 02905.,Women and Infants Hospital of Rhode Island, Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility Fellowship Program, Providence, RI 02905
| |
Collapse
|
29
|
Fang F, Iaquinta PJ, Xia N, Liu L, Diao L, Reijo Pera RA. Transcriptional control of human gametogenesis. Hum Reprod Update 2022; 28:313-345. [PMID: 35297982 PMCID: PMC9071081 DOI: 10.1093/humupd/dmac002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/22/2021] [Indexed: 11/14/2022] Open
Abstract
The pathways of gametogenesis encompass elaborate cellular specialization accompanied by precise partitioning of the genome content in order to produce fully matured spermatozoa and oocytes. Transcription factors are an important class of molecules that function in gametogenesis to regulate intrinsic gene expression programs, play essential roles in specifying (or determining) germ cell fate and assist in guiding full maturation of germ cells and maintenance of their populations. Moreover, in order to reinforce or redirect cell fate in vitro, it is transcription factors that are most frequently induced, over-expressed or activated. Many reviews have focused on the molecular development and genetics of gametogenesis, in vivo and in vitro, in model organisms and in humans, including several recent comprehensive reviews: here, we focus specifically on the role of transcription factors. Recent advances in stem cell biology and multi-omic studies have enabled deeper investigation into the unique transcriptional mechanisms of human reproductive development. Moreover, as methods continually improve, in vitro differentiation of germ cells can provide the platform for robust gain- and loss-of-function genetic analyses. These analyses are delineating unique and shared human germ cell transcriptional network components that, together with somatic lineage specifiers and pluripotency transcription factors, function in transitions from pluripotent stem cells to gametes. This grand theme review offers additional insight into human infertility and reproductive disorders that are linked predominantly to defects in the transcription factor networks and thus may potentially contribute to the development of novel treatments for infertility.
Collapse
Affiliation(s)
- Fang Fang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Phillip J Iaquinta
- Division of Research, Economic Development, and Graduate Education, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Ninuo Xia
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Lei Liu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Lei Diao
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Renee A Reijo Pera
- Division of Research, Economic Development, and Graduate Education, California Polytechnic State University, San Luis Obispo, CA, USA
- McLaughlin Research Institute, Great Falls, MT, USA
| |
Collapse
|
30
|
Artificial Oocyte: Development and Potential Application. Cells 2022; 11:cells11071135. [PMID: 35406698 PMCID: PMC8998074 DOI: 10.3390/cells11071135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 02/07/2023] Open
Abstract
Millions of people around the world suffer from infertility, with the number of infertile couples and individuals increasing every year. Assisted reproductive technologies (ART) have been widely developed in recent years; however, some patients are unable to benefit from these technologies due to their lack of functional germ cells. Therefore, the development of alternative methods seems necessary. One of these methods is to create artificial oocytes. Oocytes can be generated in vitro from the ovary, fetal gonad, germline stem cells (GSCs), ovarian stem cells, or pluripotent stem cells (PSCs). This approach has raised new hopes in both basic research and medical applications. In this article, we looked at the principle of oocyte development, the landmark studies that enhanced our understanding of the cellular and molecular mechanisms that govern oogenesis in vivo, as well as the mechanisms underlying in vitro generation of functional oocytes from different sources of mouse and human stem cells. In addition, we introduced next-generation ART using somatic cells with artificial oocytes. Finally, we provided an overview of the reproductive application of in vitro oogenesis and its use in human fertility.
Collapse
|
31
|
Saga Y. How Germ Cells Determine Their Own Sexual Fate in Mice. Sex Dev 2022:1-13. [PMID: 35263749 DOI: 10.1159/000520976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/12/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Whether to produce sperm or eggs is the most basic and important choice from the perspective of germ cell development and differentiation. However, the induction mechanism has not received much attention until relatively recently. This is because the issue of sexual differentiation has generally been considered a theme of somatic cells to make a testis or ovary. Basically, the sex of individual somatic cells and germ cells matches. Therefore, the sex of germ cells is thought to follow the sex of somatic cells once determined. However, researchers realized that a big, open question remained: What somatic cell signals actually induce the sexual differentiation of germ cells and what is the sex determinant in germ cells? SUMMARY In vitro experiments demonstrated that 2 somatic signals (BMP and RA) act directly on germ cells to induce oogonia. Therefore, these 2 signals may be referred to as oogonia inducers. From the viewpoint of germ cells, an independent experiment identified SMAD4 and STRA8, which are directly downstream of BMP and RA, respectively, acting in germ cells as female determinants. However, what about male? If these factors are female determinants, their absence may result in the induction of spermatogonia. This may be true in vivo because germ cells enter a male pathway if they do not receive these signals even in the ovary. However, this has not been confirmed in an in vitro culture system. There should be signals required for germ cells to enter a male pathway. KEY MESSAGES The important message is that although testis-specific factors secreted from the testis are considered to include male-inducing factors for germ cells, this may not be the case, and the male-inducing factor, if it exists, also exists in the ovary.
Collapse
Affiliation(s)
- Yumiko Saga
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
32
|
Yang D, Ran Y, Li X, Jiang X, Chen J, Sun J, Tian L, Teerds K, Bai W. Cyanidin-3-O-glucoside ameliorates cadmium induced uterine epithelium proliferation in mice. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127571. [PMID: 34986559 DOI: 10.1016/j.jhazmat.2021.127571] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 10/09/2021] [Accepted: 10/19/2021] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) is an environmental pollutant and endocrine disrupter, abundantly present in water, food, and soil. Accumulation of Cd in the body can negatively affect female reproduction; especially the uterus is exceptionally sensitive to the toxic actions of Cd. The anthocyanin cyanidin-3-O-glucoside (C3G) is a naturally occurring phenolic compound in fruits and plants that can antagonize the toxic effects of Cd. This capacity makes C3G a possible candidate to prevent Cd-induced female infertility. The present study aimed to investigate: 1) whether C3G intake could prevent Cd-induced female reproductive toxicity, and 2) the underlying mechanisms responsible for this protective effect. The results of our study indicated that Cd exposure did not affect ovarian function, but induced hypertrophy of the uterine endometrium. Oral intake of C3G markedly reduced the effects of Cd exposure on the thickness of the uterine epithelium cells. Transcriptomic analysis of the endometrium revealed that C3G intake had anti-estrogenic effects, attenuating Cd-induced endometrial epithelial cell proliferation by inhibiting estrogen-responsive genes, enhancing epithelial progesterone receptor expression, and regulating Klf4 expression. The current findings implicate that C3G has the potential to be used as a dietary supplement based on its capacity to intervene in Cd-induced female reproductive toxicity.
Collapse
Affiliation(s)
- Dacheng Yang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, 510632, PR China; Department of Bioengineering, College of life science and technology, Jinan University, Guangzhou, 510632, PR China
| | - Yanhong Ran
- Department of Bioengineering, College of life science and technology, Jinan University, Guangzhou, 510632, PR China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, 510632, PR China
| | - Xinwei Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, 510632, PR China
| | - Jiali Chen
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, 510632, PR China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Lingmin Tian
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, 510632, PR China
| | - Katia Teerds
- Department of Animal Sciences, Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
33
|
Innocenti F, Fiorentino G, Cimadomo D, Soscia D, Garagna S, Rienzi L, Ubaldi FM, Zuccotti M. Maternal effect factors that contribute to oocytes developmental competence: an update. J Assist Reprod Genet 2022; 39:861-871. [PMID: 35165782 PMCID: PMC9051001 DOI: 10.1007/s10815-022-02434-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/09/2022] [Indexed: 11/30/2022] Open
Abstract
Oocyte developmental competence is defined as the capacity of the female gamete to be fertilized and sustain development to the blastocyst stage. Epigenetic reprogramming, a correct cell division pattern, and an efficient DNA damage response are all critical events that, before embryonic genome activation, are governed by maternally inherited factors such as maternal-effect gene (MEG) products. Although these molecules are stored inside the oocyte until ovulation and exert their main role during fertilization and preimplantation development, some of them are already functioning during folliculogenesis and oocyte meiosis resumption. This mini review summarizes the crucial roles played by MEGs during oocyte maturation, fertilization, and preimplantation development with a direct/indirect effect on the acquisition or maintenance of oocyte competence. Our aim is to inspire future research on a topic with potential clinical perspectives for the prediction and treatment of female infertility.
Collapse
Affiliation(s)
- Federica Innocenti
- GeneraLife IVF, Clinica Valle Giulia, via G. de Notaris, 2b, 00197, Rome, Italy
| | - Giulia Fiorentino
- Laboratory of Developmental Biology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Center for Health Technologies, University of Pavia, Pavia, Italy
| | - Danilo Cimadomo
- GeneraLife IVF, Clinica Valle Giulia, via G. de Notaris, 2b, 00197, Rome, Italy.
| | - Daria Soscia
- GeneraLife IVF, Clinica Valle Giulia, via G. de Notaris, 2b, 00197, Rome, Italy
| | - Silvia Garagna
- Laboratory of Developmental Biology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Center for Health Technologies, University of Pavia, Pavia, Italy
| | - Laura Rienzi
- GeneraLife IVF, Clinica Valle Giulia, via G. de Notaris, 2b, 00197, Rome, Italy
| | | | - Maurizio Zuccotti
- Laboratory of Developmental Biology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Center for Health Technologies, University of Pavia, Pavia, Italy
| | | |
Collapse
|
34
|
Qin M, Xie Q, Wu K, Zhou X, Ge W. Loss of Nobox prevents ovarian differentiation from juvenile ovaries in zebrafish. Biol Reprod 2022; 106:1254-1266. [PMID: 35157068 DOI: 10.1093/biolre/ioac036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/10/2022] [Accepted: 02/12/2022] [Indexed: 11/12/2022] Open
Abstract
As a species without master sex-determining genes, zebrafish displays high plasticity in sex differentiation, making it an excellent model for studying the regulatory mechanisms underlying gonadal differentiation and gametogenesis. Despite being a gonochorist, zebrafish is a juvenile hermaphrodite that undergoes a special phase of juvenile ovary before further differentiation into functional testis and ovary. The mechanisms underlying juvenile ovary formation and subsequent gonadal differentiation remain largely unknown. In a recent study, we demonstrated an important role for Figla (factor in the germline alpha) in zebrafish oogenesis. In this study, we explored the role of Nobox/nobox (new born ovary homeobox protein), another oocyte-specific transcription factor in females, in early zebrafish gonadogenesis using CRISPR/Cas9 technology. As in mammals, nobox is specifically expressed in zebrafish gonads with a dimorphic pattern at juvenile stage. In contrast to the mutant of figla (another oocyte-specific transcription factor), the nobox mutants showed formation of typical perinucleolar (PN) follicles at primary growth (PG) stage in juvenile gonads, suggesting occurrence of follicle assembly from cystic oocytes (chromatin nucleolar stage, CN). These follicles, however, failed to develop further to form functional ovaries, resulting in all-male phenotype. Despite its expression in adult testis, the loss of nobox did not seem to affect testis development, spermatogenesis and male spawning. In summary, our results indicate an important role for Nobox in zebrafish ovarian differentiation and early folliculogenesis.
Collapse
Affiliation(s)
- Mingming Qin
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Qingping Xie
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Kun Wu
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,State Key Laboratory for Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
35
|
Abstract
Primary ovarian insufficiency (POI) is determined by exhaustion of follicles in the ovaries, which leads to infertility before the age of 40 years. It is characterized by a strong familial and heterogeneous genetic background. Therefore, we will mainly discuss the genetic basis of POI in this review. We identified 107 genes related to POI etiology in mammals described by several independent groups. Thirty-four of these genes (AARS2, AIRE, ANTXR1, ATM, BMPR1B, CLPP, CYP17A1, CYP19A1, DCAF17, EIF2B, ERAL1, FANCA, FANCC, FMR1, FOXL2, GALT, GNAS, HARS2, HSD17B4, LARS2, LMNA, MGME1, NBN, PMM2, POLG, PREPL, RCBTB1, RECQL2/3/4, STAR, TWNK, and XRCC4/9) have been linked to syndromic POI and are mainly implicated in metabolism function and meiosis/DNA repair. In addition, the majority of genes associated with nonsyndromic POI, widely expanded by high-throughput techniques over the last decade, have been implicated in ovarian development and meiosis/DNA repair pathways (ATG7, ATG9, ANKRD31, BMP8B, BMP15, BMPR1A, BMPR1B, BMPR2, BNC1, BRCA2, CPEB1, C14ORF39, DAZL, DIAPH2, DMC1, ERCC6, FANCL, FANCM, FIGLA, FSHR, GATA4, GDF9, GJA4, HELQ, HSF2BP, HFM1, INSL3, LHCGR, LHX8, MCM8, MCM9, MEIOB, MSH4, MSH5, NANOS3, NOBOX, NOTCH2, NR5A1, NUP107, PGRMC1, POLR3H, PRDM1, PRDM9, PSMC3IP, SOHLH1, SOHLH2, SPIDR, STAG3, SYCE1, TP63, UBR2, WDR62, and XRCC2), whereas a few are related to metabolic functions (EIF4ENIF1, KHDRBS1, MRPS22, POLR2C). Some genes, such as STRA8, FOXO3A, KIT, KITL, WNT4, and FANCE, have been shown to cause ovarian insufficiency in rodents, but mutations in these genes have yet to be elucidated in women affected by POI. Lastly, some genes have been rarely implicated in its etiology (AMH, AMHR2, ERRC2, ESR1, INHA, LMN4, POF1B, POU5F1, REC8, SMC1B). Considering the heterogeneous genetic and familial background of this disorder, we hope that an overview of literature data would reinforce that genetic screening of those patients is worthwhile and helpful for better genetic counseling and patient management.
Collapse
Affiliation(s)
- Monica Malheiros França
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Section of Endocrinology Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL, USA.
| | - Berenice Bilharinho Mendonca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
36
|
Mei L, Huang Y, Wu X, He H, Ye R, Ma J, He X, Shi Y, Li P. Mutations in FIGLA Associated With Premature Ovarian Insufficiency in a Chinese Population. Front Med (Lausanne) 2021; 8:714306. [PMID: 34778283 PMCID: PMC8585841 DOI: 10.3389/fmed.2021.714306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/28/2021] [Indexed: 11/25/2022] Open
Abstract
Objective: Premature ovarian insufficiency (POI) is one of the most common reproductive endocrinological causes of infertility in women of child-bearing age. The purpose of this study was to identify FIGLA gene mutations in Chinese patients with POI and to investigate the underlying mechanism. Methods: A total of 113 patients with idiopathic POI and 100 healthy controls were recruited for the analysis of FIGLA variants. Based on the identification of common mutations in the FIGLA, wild-type and mutant plasmids were constructed and transfected into HEK293 cells. Luciferase reporter genes were used to determine the effect of wild-type and mutant FIGLA genotypes on the transcriptional activity of its downstream targets, the zona pellucida glycoprotein genes ZP1, ZP2, and ZP3. Chromatin immunoprecipitation was used to determine the level of binding between wild-type and mutant FIGLA with the ZP1, ZP2, and ZP3 promoters. Results: Three different FIGLA mutations were identified in four patients with POI. Two patients carried the mutation c.11C>A (p.A4E), and the other two patients, respectively, carried the mutations c.625G>A (p.V209I) and c.84C>A (p.D28E). The luciferase reporter assay indicated that ZP1, ZP2, and ZP3 transcriptional activities were significantly reduced in individuals with FIGLA mutations. Chromatin immunoprecipitation indicated that the FIGLA mutation significantly decreased binding with the ZP1, ZP2, and ZP3 promoters. Conclusion:FIGLA mutation affects gene transcriptional regulation of its downstream target genes ZP1, ZP2, and ZP3, highlighting a new candidate genetic factor that causes POI. Our study demonstrates that FIGLA has a regulatory effect on reproduction-specific genes, thereby providing a basis for elucidating the specific regulatory mechanism of FIGLA in germ cell growth and development.
Collapse
Affiliation(s)
- Libin Mei
- Department of Reproductive Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Reproduction and Genetics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China.,School of Public Health, Xiamen University, Xiamen, China
| | - Yanru Huang
- Department of Reproductive Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China.,School of Public Health, Xiamen University, Xiamen, China
| | - Xiaoling Wu
- Department of Reproductive Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Reproduction and Genetics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Huang He
- Department of Reproductive Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Reproduction and Genetics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Ronghui Ye
- Department of Reproductive Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Reproduction and Genetics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Jinxiu Ma
- Department of Reproductive Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Reproduction and Genetics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - XueMei He
- Department of Reproductive Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Reproduction and Genetics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Yuhua Shi
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China
| | - Ping Li
- Department of Reproductive Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Reproduction and Genetics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
37
|
Lin CJ, Jeng SR, Lei ZY, Yueh WS, Dufour S, Wu GC, Chang CF. Involvement of Transforming Growth Factor Beta Family Genes in Gonadal Differentiation in Japanese Eel, Anguilla japonica, According to Sex-Related Gene Expressions. Cells 2021; 10:cells10113007. [PMID: 34831230 PMCID: PMC8616510 DOI: 10.3390/cells10113007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/20/2021] [Accepted: 11/01/2021] [Indexed: 11/18/2022] Open
Abstract
The gonochoristic feature with environmental sex determination that occurs during the yellow stage in the eel provides an interesting model to investigate the mechanisms of gonadal development. We previously studied various sex-related genes during gonadal sex differentiation in Japanese eels. In the present study, the members of transforming growth factor beta (TGF-β) superfamily were investigated. Transcript levels of anti-Müllerian hormone, its receptor, gonadal soma-derived factor (amh, amhr2, and gsdf, respectively) measured by real-time polymerase chain reaction (qPCR) showed a strong sexual dimorphism. Transcripts were dominantly expressed in the testis, and their levels significantly increased with testicular differentiation. In contrast, the expressions of amh, amhr2, and gsdf transcripts were low in the ovary of E2-feminized female eels. In situ hybridization detected gsdf (but not amh) transcript signals in undifferentiated gonads. amh and gsdf signals were localized to Sertoli cells and had increased significantly with testicular differentiation. Weak gsdf and no amh signals were detected in early ovaries of E2-feminized female eels. Transcript levels of amh and gsdf (not amhr2) decreased during human chorionic gonadotropin (HCG)-induced spermatogenesis in males. This study suggests that amh, amhr2, and especially gsdf might be involved in the gene pathway regulating testicular differentiation of Japanese eels.
Collapse
Affiliation(s)
- Chien-Ju Lin
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
| | - Shan-Ru Jeng
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan; (Z.-Y.L.); (W.-S.Y.)
- Correspondence: (S.-R.J.); (G.-C.W.); (C.-F.C.)
| | - Zhen-Yuan Lei
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan; (Z.-Y.L.); (W.-S.Y.)
| | - Wen-Shiun Yueh
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan; (Z.-Y.L.); (W.-S.Y.)
| | - Sylvie Dufour
- Laboratory Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d’Histoire Naturelle, CNRS, IRD, Sorbonne Université, CEDEX 05, 75231 Paris, France;
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Guan-Chung Wu
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan
- Correspondence: (S.-R.J.); (G.-C.W.); (C.-F.C.)
| | - Ching-Fong Chang
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan
- Correspondence: (S.-R.J.); (G.-C.W.); (C.-F.C.)
| |
Collapse
|
38
|
Kim S, Lee S, Park HT, Song JY, Kim T. Genomic Consideration in Chemotherapy-Induced Ovarian Damage and Fertility Preservation. Genes (Basel) 2021; 12:1525. [PMID: 34680919 PMCID: PMC8535252 DOI: 10.3390/genes12101525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/25/2021] [Accepted: 09/25/2021] [Indexed: 11/25/2022] Open
Abstract
Chemotherapy-induced ovarian damage and fertility preservation in young patients with cancer are emerging disciplines. The mechanism of treatment-related gonadal damage provides important information for targeting prevention methods. The genomic aspects of ovarian damage after chemotherapy are not fully understood. Several studies have demonstrated that gene alterations related to follicular apoptosis or accelerated follicle activation are related to ovarian insufficiency and susceptibility to ovarian damage following chemotherapy. This may accelerate follicular apoptosis and follicle reservoir utilization and damage the ovarian stroma via multiple molecular reactions after chemotherapy. This review highlights the importance of genomic considerations in chemotherapy-induced ovarian damage and multidisciplinary oncofertility strategies for providing high-quality care to young female cancer patients.
Collapse
Affiliation(s)
- Seongmin Kim
- Gynecologic Cancer Center, CHA Ilsan Medical Center, CHA University College of Medicine, 1205 Jungang-ro, Ilsandong-gu, Goyang-si 10414, Korea;
| | - Sanghoon Lee
- Department of Obstetrics and Gynecology, Korea University College of Medicine, 73 Inchon-ro, Seongbuk-gu, Seoul 02841, Korea; (H.-T.P.); (J.-Y.S.); (T.K.)
| | - Hyun-Tae Park
- Department of Obstetrics and Gynecology, Korea University College of Medicine, 73 Inchon-ro, Seongbuk-gu, Seoul 02841, Korea; (H.-T.P.); (J.-Y.S.); (T.K.)
| | - Jae-Yun Song
- Department of Obstetrics and Gynecology, Korea University College of Medicine, 73 Inchon-ro, Seongbuk-gu, Seoul 02841, Korea; (H.-T.P.); (J.-Y.S.); (T.K.)
| | - Tak Kim
- Department of Obstetrics and Gynecology, Korea University College of Medicine, 73 Inchon-ro, Seongbuk-gu, Seoul 02841, Korea; (H.-T.P.); (J.-Y.S.); (T.K.)
| |
Collapse
|
39
|
Rojas J, Hinostroza F, Vergara S, Pinto-Borguero I, Aguilera F, Fuentes R, Carvacho I. Knockin' on Egg's Door: Maternal Control of Egg Activation That Influences Cortical Granule Exocytosis in Animal Species. Front Cell Dev Biol 2021; 9:704867. [PMID: 34540828 PMCID: PMC8446563 DOI: 10.3389/fcell.2021.704867] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/16/2021] [Indexed: 12/23/2022] Open
Abstract
Fertilization by multiple sperm leads to lethal chromosomal number abnormalities, failed embryo development, and miscarriage. In some vertebrate and invertebrate eggs, the so-called cortical reaction contributes to their activation and prevents polyspermy during fertilization. This process involves biogenesis, redistribution, and subsequent accumulation of cortical granules (CGs) at the female gamete cortex during oogenesis. CGs are oocyte- and egg-specific secretory vesicles whose content is discharged during fertilization to block polyspermy. Here, we summarize the molecular mechanisms controlling critical aspects of CG biology prior to and after the gametes interaction. This allows to block polyspermy and provide protection to the developing embryo. We also examine how CGs form and are spatially redistributed during oogenesis. During egg activation, CG exocytosis (CGE) and content release are triggered by increases in intracellular calcium and relies on the function of maternally-loaded proteins. We also discuss how mutations in these factors impact CG dynamics, providing unprecedented models to investigate the genetic program executing fertilization. We further explore the phylogenetic distribution of maternal proteins and signaling pathways contributing to CGE and egg activation. We conclude that many important biological questions and genotype–phenotype relationships during fertilization remain unresolved, and therefore, novel molecular players of CG biology need to be discovered. Future functional and image-based studies are expected to elucidate the identity of genetic candidates and components of the molecular machinery involved in the egg activation. This, will open new therapeutic avenues for treating infertility in humans.
Collapse
Affiliation(s)
- Japhet Rojas
- Laboratorio Fisiología de la Reproducción, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile.,Escuela de Ingeniería en Biotecnología, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca, Chile
| | - Fernando Hinostroza
- Laboratorio Fisiología de la Reproducción, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile.,Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile.,Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca, Chile
| | - Sebastián Vergara
- Laboratorio Fisiología de la Reproducción, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile.,Escuela de Ingeniería en Biotecnología, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca, Chile
| | - Ingrid Pinto-Borguero
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Felipe Aguilera
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ricardo Fuentes
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ingrid Carvacho
- Laboratorio Fisiología de la Reproducción, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile
| |
Collapse
|
40
|
Zona Pellucida Genes and Proteins: Essential Players in Mammalian Oogenesis and Fertility. Genes (Basel) 2021; 12:genes12081266. [PMID: 34440440 PMCID: PMC8391237 DOI: 10.3390/genes12081266] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022] Open
Abstract
All mammalian oocytes and eggs are surrounded by a relatively thick extracellular matrix (ECM), the zona pellucida (ZP), that plays vital roles during oogenesis, fertilization, and preimplantation development. Unlike ECM surrounding somatic cells, the ZP is composed of only a few glycosylated proteins, ZP1–4, that are unique to oocytes and eggs. ZP1–4 have a large region of polypeptide, the ZP domain (ZPD), consisting of two subdomains, ZP-N and ZP-C, separated by a short linker region, that plays an essential role in polymerization of nascent ZP proteins into crosslinked fibrils. Both subdomains adopt immunoglobulin (Ig)-like folds for their 3-dimensional structure. Mouse and human ZP genes are encoded by single-copy genes located on different chromosomes and are highly expressed in the ovary by growing oocytes during late stages of oogenesis. Genes encoding ZP proteins are conserved among mammals, and their expression is regulated by cis-acting sequences located close to the transcription start-site and by the same/similar trans-acting factors. Nascent ZP proteins are synthesized, packaged into vesicles, secreted into the extracellular space, and assembled into long, crosslinked fibrils that have a structural repeat, a ZP2-ZP3 dimer, and constitute the ZP matrix. Fibrils are oriented differently with respect to the oolemma in the inner and outer layers of the ZP. Sequence elements in the ZPD and the carboxy-terminal propeptide of ZP1–4 regulate secretion and assembly of nascent ZP proteins. The presence of both ZP2 and ZP3 is required to assemble ZP fibrils and ZP1 and ZP4 are used to crosslink the fibrils. Inactivation of mouse ZP genes by gene targeting has a detrimental effect on ZP formation around growing oocytes and female fertility. Gene sequence variations in human ZP genes due to point, missense, or frameshift mutations also have a detrimental effect on ZP formation and female fertility. The latter mutations provide additional support for the role of ZPD subdomains and other regions of ZP polypeptide in polymerization of human ZP proteins into fibrils and matrix.
Collapse
|
41
|
Monget P, McNatty K, Monniaux D. The Crazy Ovary. Genes (Basel) 2021; 12:928. [PMID: 34207147 PMCID: PMC8234655 DOI: 10.3390/genes12060928] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
From fetal life until senescence, the ovary is an extremely active tissue undergoing continuous structural and functional changes. These ever-changing events are best summarized by a quotation attributed to Plato when describing motion in space and time-'nothing ever is but is always becoming…'. With respect to the ovary, these changes include, at the beginning, the processes of follicular formation and thereafter those of follicular growth and atresia, steroidogenesis, oocyte maturation, and decisions relating to the number of mature oocytes that are ovulated for fertilization and the role of the corpus luteum. The aims of this review are to offer some examples of these complex and hitherto unknown processes. The ones herein have been elucidated from studies undertaken in vitro or from normal in vivo events, natural genetic mutations or after experimental inactivation of gene function. Specifically, this review offers insights concerning the initiation of follicular growth, pathologies relating to poly-ovular follicles, the consequences of premature loss of germ cells or oocytes loss, the roles of AMH (anti-Müllerian hormone) and BMP (bone morphogenetic protein) genes in regulating follicular growth and ovulation rate together with species differences in maintaining luteal function during pregnancy. Collectively, the evidence suggests that the oocyte is a key organizer of normal ovarian function. It has been shown to influence the phenotype of the adjacent somatic cells, the growth and maturation of the follicle, and to determine the ovulation rate. When germ cells or oocytes are lost prematurely, the ovary becomes disorganized and a wide range of pathologies may arise.
Collapse
Affiliation(s)
- Philippe Monget
- UMR INRAE-CNRS-IFCE-Université de Tours, 37380 Nouzilly, France;
| | - Ken McNatty
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand;
| | | |
Collapse
|
42
|
Khan HL, Bhatti S, Abbas S, Kaloglu C, Isa AM, Younas H, Ziders R, Khan YL, Hassan Z, Turhan BO, Yildiz A, Aydin HH, Kalyan EY. Extracellular microRNAs: key players to explore the outcomes of in vitro fertilization. Reprod Biol Endocrinol 2021; 19:72. [PMID: 33992122 PMCID: PMC8122550 DOI: 10.1186/s12958-021-00754-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/27/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small RNA molecules that modulate post-transcriptional gene regulation. They are often used as promising non-invasive biomarkers for the early diagnosis of cancer. However, their roles in assisted reproduction are still unknown. METHODS This prospective study was designed to evaluate the expression profiles of seven extracellular miRNAs (miR-7-5p, miR-202-5p, miR-378-3p, miR-224, miR-320a, miR-212-3p, and miR-21-5p) in human follicular fluid (FF) to explore the outcomes of in vitro fertilization (IVF). Of 255 women, 145 were without polycystic ovary syndrome (PCOS), and their ovarian assets were normal (NOR), while 110 were with normo-androgenic PCOS. RESULTS The combination of six FF miRNAs expression profile discriminated between PCOS and NOR women with a sensitivity of 79.2% and a specificity of 87.32% (AUC = 0.881 [0.61; 0.92], p = 0.001). MiR-202-5p significantly had a lower abundance level, and miR-378-3p had a high abundance level in pooled FF samples from patients treated with human menopausal gonadotropin (hMG) than those treated with recombinant follicle-stimulating hormone (rFSH) (p < 0.001). Our results showed that miRNA-320a was significantly different in top-quality embryos versus non-top-quality embryos on day 3 in NOR patients with a sensitivity of 80% and specificity of 71%, (AUC = [0.753 (0.651; 0.855)], p = 0.001). For clinical pregnancy outcome prediction, FF miRNA-21 exhibited high sensitivity (74.8%) and specificity (83.7%) with the AUC value of 0.774 (0.682; 0.865). CONCLUSION Conclusively, our results provide evidence that miR-7-5p, miR-378-3p, miR-224, miR-212-3p were a differentially high expression in normo-androgenic PCOS patients than NOR patients. While miRNA-320a was significantly different in top-quality embryos versus non-top-quality embryos on day 3 (p = 0.001). The expression level of FF miR-212-3p was significantly related to the probability of embryos to develop into a high-quality blastocyst in patients with normal ovarian reserve.
Collapse
Affiliation(s)
- Haroon Latif Khan
- Lahore Institute of Fertility and Endocrinology, Hameed Latif Hospital, 14 Abu-Bakar Block New Garden Town, 54800, Lahore, Pakistan
| | - Shahzad Bhatti
- Lahore Institute of Fertility and Endocrinology, Hameed Latif Hospital, 14 Abu-Bakar Block New Garden Town, 54800, Lahore, Pakistan.
- Department of Human Genetics and Molecular biology, University of Health Sciences, Lahore, 54600, Pakistan.
- Department of Medical Education, Rashid Latif Medical College, Lahore, Pakistan.
| | - Sana Abbas
- Lahore Institute of Fertility and Endocrinology, Hameed Latif Hospital, 14 Abu-Bakar Block New Garden Town, 54800, Lahore, Pakistan
| | - Celal Kaloglu
- Department of Histology and Embryology, Cumhuriyet University Faculty of Medicine, 58140, Sivas, Turkey
| | - Ahmed M Isa
- Assisted Conception Unit, Obstetrics and Gynecology Department, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Hooria Younas
- Department of Biochemistry, Kinnaird College Lahore, Lahore, Pakistan
| | - Rachel Ziders
- Your Family Fertility, 1408 Sweet Home Road Suite 9, Amherst, NY 14228, USA
| | - Yousaf Latif Khan
- Lahore Institute of Fertility and Endocrinology, Hameed Latif Hospital, 14 Abu-Bakar Block New Garden Town, 54800, Lahore, Pakistan
| | - Zahira Hassan
- Department of Cellular Pathology, Royal Free Hospital, London, NW3 2QG, UK
| | | | - Aysegul Yildiz
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Kotekli, 48000, Mugla, Turkey
| | - Hikmet Hakan Aydin
- Department of Medical Biochemistry, Ege University School of Medicine, Bornova, Izmir, Turkey
| | - Ender Yalcinkaya Kalyan
- Department of IVF unit, Private Adatip Hospital, Yenisehir mahallesi Kardelen sokak 2, Pendik, 34912, Istanbul, Turkey
| |
Collapse
|
43
|
Figla promotes secondary follicle growth in mature mice. Sci Rep 2021; 11:9842. [PMID: 33972571 PMCID: PMC8110814 DOI: 10.1038/s41598-021-89052-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/20/2021] [Indexed: 11/09/2022] Open
Abstract
The in vitro growth (IVG) of human follicles is a potential fertility option for women for whom cryopreserved ovarian tissues cannot be transplanted due to the risk of cancer cell reintroduction; however, there is currently no established method. Furthermore, optimal IVG conditions may differ between the follicles of adult and pre-pubertal females due to molecular differences suggested by basic research. To systematically identify differences between the secondary follicles of adult and pre-pubertal females, a comparative transcriptomic study using mice was conducted herein. Among differentially expressed genes (DEGs), Figla was up-regulated in mature mice. We successfully down-regulated Figla expression in secondary follicle oocytes by a Figla siRNA microinjection, and the subsequent IVG of follicles showed that the diameter of these follicles was smaller than those of controls in mature mice, whereas no significant difference was observed in premature mice. The canonical pathways of DEGs between control and Figla-reduced secondary follicles suggest that Figla up-regulates VDR/RXR activation and down-regulates stem cell pluripotency as well as estrogen signaling. We demonstrated for the first time that folliculogenesis of the secondary follicles of premature and mature mice may be regulated by different factors, such as Figla with its possible target genes, providing insights into optimal IVG conditions for adult and pre-pubertal females, respectively.
Collapse
|
44
|
Abstract
In female reproduction, the oocyte number is limited after birth. To achieve a continuous ovulatory cycle, oocytes are stored in primordial follicles.
Therefore, the regulation of primordial follicle dormancy and activation is important for reproductive sustainability, and its collapse leads to premature
ovarian insufficiency. In this review, we summarize primordial follicle development and the molecular mechanisms underlying primordial follicle maintenance and
activation in mice. We also overview the mechanisms discovered through in vitro culture of functional oocytes, including the establishment of
primordial follicle induction by environmental factors, which revealed the importance of hypoxia and compression by the extra cellular matrix (ECM) for
primordial follicle maintenance in vivo.
Collapse
Affiliation(s)
- Go Nagamatsu
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
45
|
Fukuda K, Muraoka M, Kato Y, Saga Y. Decoding the transcriptome of pre-granulosa cells during the formation of primordial follicles in the mouse†. Biol Reprod 2021; 105:179-191. [PMID: 33847353 DOI: 10.1093/biolre/ioab065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/18/2021] [Indexed: 11/12/2022] Open
Abstract
Primordial follicles, a finite reservoir of eggs in mammalian ovaries, are composed of a single oocyte and its supporting somatic cells, termed granulosa cells. Although their formation may require reciprocal interplay between oocytes and pre-granulosa cells, precursors of granulosa cells, little is known about the underlying mechanisms. We addressed this issue by decoding the transcriptome of pre-granulosa cells during the formation of primordial follicles. We found that marked gene expression changes, including extracellular matrix, cell adhesion, and several signaling pathways, occur along with primordial follicle formation. Importantly, differentiation of Lgr5-EGFP-positive pre-granulosa cells to FOXL2-positive granulosa cells was delayed in mutant ovaries of the germ cell-specific genes Nanos3 and Figla, accompanied by perturbed gene expression in mutant pre-granulosa cells. These results suggest that proper development of oocytes is required for the differentiation of pre-granulosa cells. Our data provide a valuable resource for understanding the gene regulatory networks involved in the formation of primordial follicles.
Collapse
Affiliation(s)
- Kurumi Fukuda
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.,Department of Genetics, SOKENDAI, Mishima, Shizuoka, Japan
| | - Masafumi Muraoka
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Yuzuru Kato
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.,Department of Genetics, SOKENDAI, Mishima, Shizuoka, Japan
| | - Yumiko Saga
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.,Department of Genetics, SOKENDAI, Mishima, Shizuoka, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
46
|
Cai H, Liu B, Wang H, Sun G, Feng L, Chen Z, Zhou J, Zhang J, Zhang T, He M, Yang T, Guo Q, Teng Z, Xin Q, Zhou B, Zhang H, Xia G, Wang C. SP1 governs primordial folliculogenesis by regulating pregranulosa cell development in mice. J Mol Cell Biol 2021; 12:230-244. [PMID: 31282930 PMCID: PMC7181717 DOI: 10.1093/jmcb/mjz059] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/20/2019] [Accepted: 06/12/2019] [Indexed: 01/05/2023] Open
Abstract
Establishment of the primordial follicle (PF) pool is pivotal for the female reproductive lifespan; however, the mechanism of primordial folliculogenesis is poorly understood. Here, the transcription factor SP1 was shown to be essential for PF formation in mice. Our results showed that SP1 is present in both oocytes and somatic cells during PF formation in the ovary. Knockdown of Sp1 expression, especially in pregranulosa cells, significantly suppressed nest breakdown, oocyte apoptosis, and PF formation, suggesting that SP1 expressed by somatic cells functions in the process of primordial folliculogenesis. We further demonstrated that SP1 governs the recruitment and maintenance of Forkhead box L2-positive (FOXL2+) pregranulosa cells using an Lgr5-EGFP-IRES-CreERT2 (Lgr5-KI) reporter mouse model and a FOXL2+ cell-specific knockdown model. At the molecular level, SP1 functioned mainly through manipulation of NOTCH2 expression by binding directly to the promoter of the Notch2 gene. Finally, consistent with the critical role of granulosa cells in follicle survival in vitro, massive loss of oocytes in Sp1 knockdown ovaries was evidenced before puberty after the ovaries were transplanted under the renal capsules. Conclusively, our results reveal that SP1 controls the establishment of the ovarian reserve by regulating pregranulosa cell development in the mammalian ovary.
Collapse
Affiliation(s)
- Han Cai
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Bingying Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Huarong Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen 361102, China
| | - Guanghong Sun
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lizhao Feng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ziqi Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiaqi Zhou
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiawei Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tuo Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Meina He
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tingting Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qirui Guo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhen Teng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qiliang Xin
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Bo Zhou
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hua Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Guoliang Xia
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.,Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Chao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
47
|
Premature ovarian insufficiency: pathogenesis and therapeutic potential of mesenchymal stem cell. J Mol Med (Berl) 2021; 99:637-650. [PMID: 33641066 DOI: 10.1007/s00109-021-02055-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 01/29/2021] [Accepted: 02/21/2021] [Indexed: 12/14/2022]
Abstract
Primary ovarian insufficiency (POI) is defined as a reduction in ovarian function before the expected age of menopause. POI is known to increase the risk of cardiovascular disorders, osteoporosis, cognitive decline, and mood disorders, resulting in a reduced quality of life. Appropriate hormone replacement for premenopausal women decreases these adverse health risks and improves quality of life for women with POI, but does not prolong life expectancy. The potential etiologies of POI include chromosomal abnormalities and genetic mutations, autoimmune factors, and iatrogenic causes, including surgery, chemotherapy, and radiation therapy. A major association is suggested to exist between reproductive longevity and the DNA damage pathway response genes. DNA damage and repair in ovarian granulosa cells is strongly associated with POI. Depletion of oocytes with damaged DNA occurs through different cell death mechanisms, such as apoptosis, autophagy, and necroptosis, mediated by the phosphatase and tensin homolog (PTEN)/phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/forkhead transcription factors 3 (FOXO3) pathway. Mesenchymal stem cells (MSCs) are characterized by the ability of self-renewal and differentiation and play an important role in the regeneration of injured tissues. Transplantation of MSCs has been shown to functionally restore ovarian reserve in a POI mouse model. Recent advances in stem cell therapy are likely to be translated to new therapeutic options bringing new hope to patients with POI. The aim of this review is to summarize the pathogenic mechanisms that involve cell death and DNA damage and repair pathways and to discuss the stem cell-based therapies as potential therapeutic options for this gynecologic pathology.
Collapse
|
48
|
Ragonese F, Monarca L, De Luca A, Mancinelli L, Mariani M, Corbucci C, Gerli S, Iannitti RG, Leonardi L, Fioretti B. Resveratrol depolarizes the membrane potential in human granulosa cells and promotes mitochondrial biogenesis. Fertil Steril 2021; 115:1063-1073. [PMID: 33487442 DOI: 10.1016/j.fertnstert.2020.08.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/24/2020] [Accepted: 08/10/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To study the biological effects of resveratrol on the growth, electrophysiology, and mitochondrial function of human granulosa cells (h-GCs). DESIGN Preclinical study. SETTING Electrophysiology laboratory and in vitro fertilization unit. PATIENT(S) This study included h-GCs from seven infertile women undergoing assisted reproductive techniques. INTERVENTION(S) Human ovarian Granulosa Cell Tumor (GCT) cell line COV434 and h-GCs obtained after oocyte retrieval were cultured in the absence or presence of resveratrol. MAIN OUTCOME MEASURE(S) Granulosa cells were evaluated for cell viability and mitochondrial activity. Electrophysiological recordings and evaluation of potassium current (IKur) and Ca2+ concentration were also performed. RESULT(S) Resveratrol induced mitochondrial activity in a bell-shaped, dose-effect-dependent manner. Specifically, resveratrol treatment (3 μM, 48 hours) increased ATP production and cell viability and promoted the induction of cellular differentiation. These biological changes were associated with mitochondrial biogenesis. Electrophysiological recordings showed that resveratrol reduced the functional expression of an ultra rapid activating, slow inactivating, delayed rectifier potassium current (IKur) that is associated with a plasma membrane depolarization and that promotes an increase in intracellular Ca2+. CONCLUSION(S): The effects of resveratrol on potassium current and mitochondrial biogenesis in h-GCs could explain the beneficial effects of this polyphenol on the physiology of the female reproductive system. These findings suggest there are therapeutic implications of resveratrol in a clinical setting.
Collapse
Affiliation(s)
- Francesco Ragonese
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Lorenzo Monarca
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy; Department of Experimental Medicine, Perugia Medical School, University of Perugia, Perugia, Italy
| | - Antonella De Luca
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Loretta Mancinelli
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Monica Mariani
- Centre of Assisted Reproductive Technologies, S. Maria della Misericordia Hospital, Perugia, Italy
| | - Cristina Corbucci
- Centre of Assisted Reproductive Technologies, S. Maria della Misericordia Hospital, Perugia, Italy
| | - Sandro Gerli
- Department of Surgical and Biomedical Sciences, Centre of Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy
| | | | | | - Bernard Fioretti
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy.
| |
Collapse
|
49
|
Reconstitution of the oocyte transcriptional network with transcription factors. Nature 2020; 589:264-269. [PMID: 33328630 DOI: 10.1038/s41586-020-3027-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 10/28/2020] [Indexed: 02/08/2023]
Abstract
During female germline development, oocytes become a highly specialized cell type and form a maternal cytoplasmic store of crucial factors. Oocyte growth is triggered at the transition from primordial to primary follicle and is accompanied by dynamic changes in gene expression1, but the gene regulatory network that controls oocyte growth remains unknown. Here we identify a set of transcription factors that are sufficient to trigger oocyte growth. By investigation of the changes in gene expression and functional screening using an in vitro mouse oocyte development system, we identified eight transcription factors, each of which was essential for the transition from primordial to primary follicle. Notably, enforced expression of these transcription factors swiftly converted pluripotent stem cells into oocyte-like cells that were competent for fertilization and subsequent cleavage. These transcription-factor-induced oocyte-like cells were formed without specification of primordial germ cells, epigenetic reprogramming or meiosis, and demonstrate that oocyte growth and lineage-specific de novo DNA methylation are separable from the preceding epigenetic reprogramming in primordial germ cells. This study identifies a core set of transcription factors for orchestrating oocyte growth, and provides an alternative source of ooplasm, which is a unique material for reproductive biology and medicine.
Collapse
|
50
|
King AC, Gut M, Zenker AK. Shedding new light on early sex determination in zebrafish. Arch Toxicol 2020; 94:4143-4158. [PMID: 32975586 PMCID: PMC7655572 DOI: 10.1007/s00204-020-02915-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/17/2020] [Indexed: 01/10/2023]
Abstract
In contrast to established zebrafish gene annotations, the question of sex determination has still not been conclusively clarified for developing zebrafish, Danio rerio, larvae, 28 dpf or earlier. Recent studies indicate polygenic sex determination (PSD), with the genes being distributed throughout the genome. Early genetic markers of sex in zebrafish help unravel co-founding sex-related differences to apply to human health and environmental toxicity studies. A qPCR-based method was developed for six genes: cytochrome P450, family 17, subfamily A, polypeptide 1 (cyp17a1); cytochrome P450, family 19, subfamily A, polypeptide 1a (cyp19a1a); cytochrome P450, family 19, subfamily A, polypeptides 1b (cyp19a1b); vitellogenin 1 (vtg1); nuclear receptor subfamily 0, group B, member 1 (nr0b1), sry (sex-determining region Y)-box 9b (sox9b) and actin, beta 1 (actb1), the reference gene. Sry-box 9a (Sox9a), insulin-like growth factor 3 (igf3) and double sex and mab-3 related transcription factor 1 (dmrt1), which are also known to be associated with sex determination, were used in gene expression tests. Additionally, Next-Generation-Sequencing (NGS) sequenced the genome of two adult female and male and two juveniles. PCR analysis of adult zebrafish revealed sex-specific expression of cyp17a1, cyp19a1a, vtg1, igf3 and dmrt1, the first four strongly expressed in female zebrafish and the last one highly expressed in male conspecifics. From NGS, nine female and four male-fated genes were selected as novel for assessing zebrafish sex, 28 dpf. Differences in transcriptomes allowed allocation of sex-specific genes also expressed in juvenile zebrafish.
Collapse
Affiliation(s)
- Alex C King
- FHNW, University of Applied Sciences and Arts North-Western Switzerland, School of Life Sciences, Institute for Ecopreneurship, Hofackerstrasse 30, 4132, Muttenz, Switzerland
| | - Michelle Gut
- FHNW, University of Applied Sciences and Arts North-Western Switzerland, School of Life Sciences, Institute for Ecopreneurship, Hofackerstrasse 30, 4132, Muttenz, Switzerland
| | - Armin K Zenker
- FHNW, University of Applied Sciences and Arts North-Western Switzerland, School of Life Sciences, Institute for Ecopreneurship, Hofackerstrasse 30, 4132, Muttenz, Switzerland.
| |
Collapse
|