1
|
Urbina-Meléndez D, Azadjou H, Valero-Cuevas FJ. Brain-body-task co-adaptation can improve autonomous learning and speed of bipedal walking. BIOINSPIRATION & BIOMIMETICS 2024; 19:066008. [PMID: 39374630 PMCID: PMC11499933 DOI: 10.1088/1748-3190/ad8419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/11/2024] [Accepted: 10/07/2024] [Indexed: 10/09/2024]
Abstract
Inspired by animals that co-adapt their brain and body to interact with the environment, we present a tendon-driven and over-actuated (i.e.njoint,n+1 actuators) bipedal robot that (i) exploits its backdrivable mechanical properties to manage body-environment interactions without explicit control,and(ii) uses a simple 3-layer neural network to learn to walk after only 2 min of 'natural' motor babbling (i.e. an exploration strategy that is compatible with leg and task dynamics; akin to childsplay). This brain-body collaboration first learns to produce feet cyclical movements 'in air' and, without further tuning, can produce locomotion when the biped is lowered to be in slight contact with the ground. In contrast, training with 2 min of 'naïve' motor babbling (i.e. an exploration strategy that ignores leg task dynamics), does not produce consistent cyclical movements 'in air', and produces erratic movements and no locomotion when in slight contact with the ground. When further lowering the biped and making the desired leg trajectories reach 1 cm below ground (causing the desired-vs-obtained trajectories error to be unavoidable), cyclical movements based on either natural or naïve babbling presented almost equally persistent trends, and locomotion emerged with naïve babbling. Therefore, we show how continual learning of walking in unforeseen circumstances can be driven by continual physical adaptation rooted in the backdrivable properties of the plant and enhanced by exploration strategies that exploit plant dynamics. Our studies also demonstrate that the bio-inspired co-design and co-adaptations of limbs and control strategies can produce locomotion without explicit control of trajectory errors.
Collapse
Affiliation(s)
- Darío Urbina-Meléndez
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, United States of America
| | - Hesam Azadjou
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, United States of America
| | - Francisco J Valero-Cuevas
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, United States of America
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA 90089, United States of America
| |
Collapse
|
2
|
Safa AT, Biswas T, Ramakrishnan A, Bhandawat V. Leg compliance is required to explain the ground reaction force patterns and speed ranges in different gaits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.612940. [PMID: 39386548 PMCID: PMC11463684 DOI: 10.1101/2024.09.23.612940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Two simple models - vaulting over stiff legs and rebounding over compliant legs - are employed to describe the mechanics of legged locomotion. It is agreed that compliant legs are necessary for describing running and that legs are compliant while walking. Despite this agreement, stiff legs continue to be employed to model walking. Here, we show that leg compliance is necessary to model walking and, in the process, identify the principles that underpin two important features of legged locomotion: First, at the same speed, step length, and stance duration, multiple gaits that differ in the number of leg contraction cycles are possible. Among them, humans and other animals choose a gait with M-shaped vertical ground reaction forces because it is energetically favored. Second, the transition from walking to running occurs because of the inability to redirect the vertical component of the velocity during the double stance phase. Additionally, we also examine the limits of double spring-loaded pendulum (DSLIP) as a quantitative model for locomotion, and conclude that DSLIP is limited as a model for walking. However, insights gleaned from the analytical treatment of DSLIP are general and will inform the construction of more accurate models of walking.
Collapse
Affiliation(s)
- Ali Tehrani Safa
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Tirthabir Biswas
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Arun Ramakrishnan
- College of Nursing and Health Professionals, Drexel University, Philadelphia, PA 19104, USA
| | - Vikas Bhandawat
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Janneke Schwaner M, Mayfield DL, Azizi E, Daley MA. Linking in vivo muscle dynamics to force-length and force-velocity properties reveals that guinea fowl lateral gastrocnemius operates at shorter than optimal lengths. J Exp Biol 2024; 227:jeb246879. [PMID: 38873800 PMCID: PMC11418180 DOI: 10.1242/jeb.246879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
The isometric force-length (F-L) and isotonic force-velocity (F-V) relationships characterize the contractile properties of skeletal muscle under controlled conditions, yet it remains unclear how these properties relate to in vivo muscle function. Here, we map the in situ F-L and F-V characteristics of guinea fowl (Numida meleagris) lateral gastrocnemius (LG) to the in vivo operating range during walking and running. We test the hypothesis that muscle fascicles operate on the F-L plateau, near the optimal length for force (L0) and near velocities that maximize power output (Vopt) during walking and running. We found that in vivo LG velocities are consistent with optimizing power during work production, and economy of force at higher loads. However, LG does not operate near L0 at higher loads. LG length was near L0 at the time of electromyography (EMG) onset but shortened rapidly such that force development during stance occurred on the ascending limb of the F-L curve, around 0.8L0. Shortening across L0 in late swing might optimize potential for rapid force development near the swing-stance transition, providing resistance to unexpected perturbations that require rapid force development. We also found evidence of in vivo passive force rise in late swing, without EMG activity, at lengths where in situ passive force is zero, suggesting that dynamic viscoelastic effects contribute to in vivo force development. Comparison of in vivo operating ranges with F-L and F-V properties suggests the need for new approaches to characterize muscle properties in controlled conditions that more closely resemble in vivo dynamics.
Collapse
Affiliation(s)
- M. Janneke Schwaner
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Dean L. Mayfield
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Emanuel Azizi
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Monica A. Daley
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
- Center for Integrative Movement Sciences, University of California, Irvine, Irvine, CA 92617, USA
| |
Collapse
|
4
|
AminiAghdam S, Rode C. Posture-induced modulation of lower-limb joint powers in perturbed running. PLoS One 2024; 19:e0302867. [PMID: 38743754 PMCID: PMC11093285 DOI: 10.1371/journal.pone.0302867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/18/2024] [Indexed: 05/16/2024] Open
Abstract
Despite evidence on trunk flexion's impact on locomotion mechanics, its role in modulating lower-limb energetics during perturbed running remains underexplored. Therefore, we investigated posture-induced power redistribution in the lower-limb joints (hip, knee, and ankle), along with the relative contribution from each joint to total lower-limb average positive and negative mechanical powers (i.e., over time) during perturbed running. Twelve runners (50% female) ran at self-selected (~15°) and three more sagittal trunk inclinations (backward, ~0°; low forward, ~20°; high forward, ~25°) on a custom-built runway, incorporating both a level surface and a 10 cm visible drop-step positioned midway, while simultaneously recording three-dimensional kinematics and kinetics. We used inverse dynamics analysis to determine moments and powers in lower-limb joints. Increasing the trunk forward inclination yielded the following changes in lower-limb mechanics: a) an elevation in total positive power with a distoproximal shift and a reduction in total negative power; b) systematic increases in hip positive power, coupled with decreased and increased contribution to total negative (during level-step) and positive (during drop-step) powers, respectively; c) reductions in both negative and positive knee powers, along with a decrease in its contribution to total positive power. Regardless of the trunk posture, accommodating drop-steps while running demands elevated total limb negative and positive powers with the ankle as a primary source of energy absorption and generation. Leaning the trunk more forward induces a distoproximal shift in positive power, whereas leaning backward exerts an opposing influence on negative power within the lower-limb joints.
Collapse
Affiliation(s)
- Soran AminiAghdam
- Carnegie School of Sport, Leeds Beckett University, Leeds, United Kingdom
- Department of Motion Science, Institute of Sport Science, Friedrich-Schiller-University, Jena, Germany
| | - Christian Rode
- Department of Motion Science, Institute of Sport Science, Friedrich-Schiller-University, Jena, Germany
- Department of Biomechanics, Institute of Sport Science, University of Rostock, Rostock, Germany
| |
Collapse
|
5
|
Mohammadi Nejad Rashty A, Sharbafi MA, Mohseni O, Seyfarth A. Role of compliant mechanics and motor control in hopping - from human to robot. Sci Rep 2024; 14:6820. [PMID: 38514699 PMCID: PMC10957903 DOI: 10.1038/s41598-024-57149-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 03/14/2024] [Indexed: 03/23/2024] Open
Abstract
Compliant leg function found during bouncy gaits in humans and animals can be considered a role model for designing and controlling bioinspired robots and assistive devices. The human musculoskeletal design and control differ from distal to proximal joints in the leg. The specific mechanical properties of different leg parts could simplify motor control, e.g., by taking advantage of passive body dynamics. This control embodiment is complemented by neural reflex circuitries shaping human motor control. This study investigates the contribution of specific passive and active properties at different leg joint levels in human hopping at different hopping frequencies. We analyze the kinematics and kinetics of human leg joints to design and control a bioinspired hopping robot. In addition, this robot is used as a test rig to validate the identified concepts from human hopping. We found that the more distal the joint, the higher the possibility of benefit from passive compliant leg structures. A passive elastic element nicely describes the ankle joint function. In contrast, a more significant contribution to energy management using an active element (e.g., by feedback control) is predicted for the knee and hip joints. The ankle and knee joints are the key contributors to adjusting hopping frequency. Humans can speed up hopping by increasing ankle stiffness and tuning corresponding knee control parameters. We found that the force-modulated compliance (FMC) as an abstract reflex-based control beside a fixed spring can predict human knee torque-angle patterns at different frequencies. These developed bioinspired models for ankle and knee joints were applied to design and control the EPA-hopper-II robot. The experimental results support our biomechanical findings while indicating potential robot improvements. Based on the proposed model and the robot's experimental results, passive compliant elements (e.g. tendons) have a larger capacity to contribute to the distal joint function compared to proximal joints. With the use of more compliant elements in the distal joint, a larger contribution to managing energy changes is observed in the upper joints.
Collapse
Affiliation(s)
- Aida Mohammadi Nejad Rashty
- Lauflabor Locomotion Laboratory, Institute of Sport Science and Centre for Cognitive Science, Technical University of Darmstadt, Darmstadt, 64289, Germany.
| | - Maziar A Sharbafi
- Lauflabor Locomotion Laboratory, Institute of Sport Science and Centre for Cognitive Science, Technical University of Darmstadt, Darmstadt, 64289, Germany
| | - Omid Mohseni
- Lauflabor Locomotion Laboratory, Institute of Sport Science and Centre for Cognitive Science, Technical University of Darmstadt, Darmstadt, 64289, Germany
| | - André Seyfarth
- Lauflabor Locomotion Laboratory, Institute of Sport Science and Centre for Cognitive Science, Technical University of Darmstadt, Darmstadt, 64289, Germany
| |
Collapse
|
6
|
Gibbs BJ, Akanyeti O, Liao JC. Kinematics and muscle activity of pectoral fins in rainbow trout (Oncorhynchus mykiss) station holding in turbulent flow. J Exp Biol 2024; 227:jeb246275. [PMID: 38390692 PMCID: PMC10984278 DOI: 10.1242/jeb.246275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024]
Abstract
Pectoral fins play a crucial role in fish locomotion. Despite fishes living in complex fluid environments that exist in rivers and tidal flows, the role of the pectoral fins in navigating turbulent flows is not well understood. This study investigated the kinematics and muscle activity of pectoral fins in rainbow trout as they held station in the unsteady flows behind a D-section cylinder. We observed two distinct pectoral fin behaviors, one during braking and the other during Kármán gaiting. These behaviors were correlated to whole-body movements in response to the hydrodynamic conditions of specific regions in the cylinder wake. Sustained fin extensions during braking, where the fin was held out to maintain its position away from the body and against the flow, were associated with the cessation of forward body velocity, where the fish avoided the suction region directly downstream of the cylinder. Transient fin extensions and retractions during Kármán gaiting controlled body movements in the cross-stream direction. These two fin behaviors had different patterns of muscle activity. All braking events required recruitment from both the abductor and adductor musculature to actively extend a pectoral fin. In contrast, over 50% of fin extension movements during Kármán gaiting proceed in the absence of muscle activity. We reveal that in unsteady fluid environments, pectoral fin movements are the result of a complex combination of passive and active mechanisms that deviate substantially from canonical labriform locomotion, the implications of which await further work on the integration of sensory and motor systems.
Collapse
Affiliation(s)
- Brendan J. Gibbs
- Department of Biology, The Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA
| | - Otar Akanyeti
- Department of Computer Science, Aberystwyth University, Aberystwyth, Ceredigion SY23 3DB, UK
| | - James C. Liao
- Department of Biology, The Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA
| |
Collapse
|
7
|
Mistretta OC, Wood RL, English AW, Alvarez FJ. Air-stepping in the neonatal mouse: a powerful tool for analyzing early stages of rhythmic limb movement development. J Neurophysiol 2024; 131:321-337. [PMID: 38198656 PMCID: PMC11305634 DOI: 10.1152/jn.00227.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/07/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
There is a lack of experimental methods in genetically tractable mouse models to analyze the developmental period at which newborns mature weight-bearing locomotion. To overcome this deficit, we introduce methods to study l-3,4-dihydroxyphenylalanine (l-DOPA)-induced air-stepping in mice at postnatal day (P)7 and P10. Air-stepping is a stereotypic rhythmic behavior that resembles mouse walking overground locomotion but without constraints imposed by weight bearing, postural adjustments, or sensory feedback. We propose that air-stepping represents the functional organization of early spinal circuits coordinating limb movements. After subcutaneous injection of l-DOPA (0.5 mg/g), we recorded air-stepping movements in all four limbs and electromyographic (EMG) activity from ankle flexor (tibialis anterior, TA) and extensor (lateral gastrocnemius, LG) muscles. Using DeepLabCut pose estimation, we analyzed rhythmicity and limb coordination. We demonstrate steady rhythmic stepping of similar duration from P7 to P10 but with some fine-tuning of interlimb coordination with age. Hindlimb joints undergo a greater range of flexion at older ages, indicating maturation of flexion-extension cycles as the animal starts to walk. EMG recordings of TA and LG show alternation but with more focused activation particularly in the LG from P7 to P10. We discuss similarities to neonatal rat l-DOPA-induced air-stepping and infant assisted walking. We conclude that limb coordination and muscle activations recorded with this method represent basic spinal cord circuitry for limb control in neonates and pave the way for future investigations on the development of rhythmic limb control in genetic or disease models with correctly or erroneously developing motor circuitry.NEW & NOTEWORTHY We present novel methods to study neonatal air-stepping in newborn mice. These methods allow analyses at the onset of limb coordination during the period in which altricial species like rats, mice, and humans "learn" to walk. The methods will be useful to test a large variety of mutations that serve as models of motor disease in newborns or that are used to probe for specific circuit mechanisms that generate coordinated limb motor output.
Collapse
Affiliation(s)
- Olivia C Mistretta
- Department of Cell Biology, Emory University, Atlanta, Georgia, United States
| | - Ryan L Wood
- Department of Cell Biology, Emory University, Atlanta, Georgia, United States
| | - Arthur W English
- Department of Cell Biology, Emory University, Atlanta, Georgia, United States
| | - Francisco J Alvarez
- Department of Cell Biology, Emory University, Atlanta, Georgia, United States
| |
Collapse
|
8
|
Charles JP, Bates KT. The Functional and Anatomical Impacts of Healthy Muscle Ageing. BIOLOGY 2023; 12:1357. [PMID: 37887067 PMCID: PMC10604714 DOI: 10.3390/biology12101357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/14/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023]
Abstract
Even "healthy" muscle ageing is often associated with substantial changes in muscle form and function and can lead to increased injury risks and significant negative impacts on quality of life. However, the impacts of healthy muscle ageing on the fibre architecture and microstructure of different muscles and muscle groups throughout the lower limb, and how these are related to their functional capabilities, are not fully understood. Here, a previously established framework of magnetic resonance and diffusion tensor imaging was used to measure the muscle volumes, intramuscular fat, fibre lengths and physiological cross-sectional areas of 12 lower limb muscles in a cohort of healthily aged individuals, which were compared to the same data from a young population. Maximum muscle forces were also measured from an isokinetic dynamometer. The more substantial interpopulation differences in architecture and functional performance were located within the knee extensor muscles, while the aged muscles were also more heterogeneous in muscle fibre type and atrophy. The relationships between architecture and muscle strength were also more significant in the knee extensors compared to other functional groups. These data highlight the importance of the knee extensors as a potential focus for interventions to negate the impacts of muscle ageing.
Collapse
Affiliation(s)
- James P. Charles
- Department of Musculoskeletal & Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK;
| | | |
Collapse
|
9
|
Williamson JL, Lichtwark GA, Dick TJM. Elastic ankle exoskeletons influence soleus fascicle dynamics during unexpected perturbations. J Biomech 2023; 159:111775. [PMID: 37672852 DOI: 10.1016/j.jbiomech.2023.111775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/18/2023] [Accepted: 08/21/2023] [Indexed: 09/08/2023]
Abstract
Spring-based passive ankle exoskeletons have been designed to emulate the energy conservation and power amplification roles of biological muscle-tendon units during locomotion. Yet, it remains unknown if similar assistive devices can serve the other elastomechanical role of biological muscle-tendon units - power attenuation. Here we explored the effect of bilateral passive ankle exoskeletons on neuromuscular control and muscle fascicle dynamics in the ankle plantarflexors during rapid, unexpected vertical perturbations. We recorded muscle activation and soleus fascicle length changes during hopping with and without exoskeleton assistance (0 and 76 Nm rad-1) on elevated platforms (20 cm), which were removed at an unknown time. Our results demonstrate that exoskeleton assistance leads to a reduction in soleus muscle activation, increases in fascicle length change and decreases in muscle forces during perturbed hopping. These changes have competing effects on the mechanics and energetics of lower limb muscles, likely limiting the capacity for series elastic tissues to absorb energy. As we strive towards the design of wearable assistive devices for everyday locomotion, information regarding real-time muscle-tendon behavior may enable tunable assistance that adapts to both the user and the environment.
Collapse
Affiliation(s)
- James L Williamson
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia.
| | - Glen A Lichtwark
- School of Exercise & Nutrition Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Taylor J M Dick
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
10
|
Ijspeert AJ, Daley MA. Integration of feedforward and feedback control in the neuromechanics of vertebrate locomotion: a review of experimental, simulation and robotic studies. J Exp Biol 2023; 226:jeb245784. [PMID: 37565347 DOI: 10.1242/jeb.245784] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Animal locomotion is the result of complex and multi-layered interactions between the nervous system, the musculo-skeletal system and the environment. Decoding the underlying mechanisms requires an integrative approach. Comparative experimental biology has allowed researchers to study the underlying components and some of their interactions across diverse animals. These studies have shown that locomotor neural circuits are distributed in the spinal cord, the midbrain and higher brain regions in vertebrates. The spinal cord plays a key role in locomotor control because it contains central pattern generators (CPGs) - systems of coupled neuronal oscillators that provide coordinated rhythmic control of muscle activation that can be viewed as feedforward controllers - and multiple reflex loops that provide feedback mechanisms. These circuits are activated and modulated by descending pathways from the brain. The relative contributions of CPGs, feedback loops and descending modulation, and how these vary between species and locomotor conditions, remain poorly understood. Robots and neuromechanical simulations can complement experimental approaches by testing specific hypotheses and performing what-if scenarios. This Review will give an overview of key knowledge gained from comparative vertebrate experiments, and insights obtained from neuromechanical simulations and robotic approaches. We suggest that the roles of CPGs, feedback loops and descending modulation vary among animals depending on body size, intrinsic mechanical stability, time required to reach locomotor maturity and speed effects. We also hypothesize that distal joints rely more on feedback control compared with proximal joints. Finally, we highlight important opportunities to address fundamental biological questions through continued collaboration between experimentalists and engineers.
Collapse
Affiliation(s)
- Auke J Ijspeert
- BioRobotics Laboratory, EPFL - Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Monica A Daley
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
11
|
Schwaner MJ, Gordon JC, Biewener AA, Daley MA. Muscle force-length dynamics during walking over obstacles indicates delayed recovery and a shift towards more 'strut-like' function in birds with proprioceptive deficit. J Exp Biol 2023; 226:jeb245199. [PMID: 37282982 PMCID: PMC10658895 DOI: 10.1242/jeb.245199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/16/2023] [Indexed: 06/08/2023]
Abstract
Recent studies of in vivo muscle function in guinea fowl revealed that distal leg muscles rapidly modulate force and work to stabilize running in uneven terrain. Previous studies focused on running only, and it remains unclear how muscular mechanisms for stability differ between walking and running. Here, we investigated in vivo function of the lateral gastrocnemius (LG) during walking over obstacles. We compared muscle function in birds with intact (iLG) versus self-reinnervated LG (rLG). Self-reinnervation results in proprioceptive feedback deficit due to loss of monosynaptic stretch reflex. We tested the hypothesis that proprioceptive deficit results in decreased modulation of EMG activity in response to obstacle contact, and a delayed obstacle recovery compared with that for iLG. We found that total myoelectric intensity (Etot) of iLG increased by 68% in obstacle strides (S 0) compared with level terrain, suggesting a substantial reflex-mediated response. In contrast, Etot of rLG increased by 31% in S 0 strides compared with level walking, but also increased by 43% in the first post-obstacle (S +1) stride. In iLG, muscle force and work differed significantly from level walking only in the S 0 stride, indicating a single-stride recovery. In rLG, force increased in S 0, S +1 and S +2 compared with level walking, indicating three-stride obstacle recovery. Interestingly, rLG showed little variation in work output and shortening velocity in obstacle terrain, indicating a shift towards near-isometric strut-like function. Reinnervated birds also adopted a more crouched posture across level and obstacle terrains compared with intact birds. These findings suggest gait-specific control mechanisms in walking and running.
Collapse
Affiliation(s)
- M. Janneke Schwaner
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Joanne C. Gordon
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK
| | - Andrew A. Biewener
- Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Monica A. Daley
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
- Center for Integrative Movement Sciences, University of California, Irvine, Irvine, CA 92617, USA
| |
Collapse
|
12
|
Clifton G, Stark AY, Li C, Gravish N. The bumpy road ahead: the role of substrate roughness on animal walking and a proposed comparative metric. J Exp Biol 2023; 226:307149. [PMID: 37083141 DOI: 10.1242/jeb.245261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Outside laboratory conditions and human-made structures, animals rarely encounter flat surfaces. Instead, natural substrates are uneven surfaces with height variation that ranges from the microscopic scale to the macroscopic scale. For walking animals (which we define as encompassing any form of legged movement across the ground, such as walking, running, galloping, etc.), such substrate 'roughness' influences locomotion in a multitude of ways across scales, from roughness that influences how each toe or foot contacts the ground, to larger obstacles that animals must move over or navigate around. Historically, the unpredictability and variability of natural environments has limited the ability to collect data on animal walking biomechanics. However, recent technical advances, such as more sensitive and portable cameras, biologgers, laboratory tools to fabricate rough terrain, as well as the ability to efficiently store and analyze large variable datasets, have expanded the opportunity to study how animals move under naturalistic conditions. As more researchers endeavor to assess walking over rough terrain, we lack a consistent approach to quantifying roughness and contextualizing these findings. This Review summarizes existing literature that examines non-human animals walking on rough terrain and presents a metric for characterizing the relative substrate roughness compared with animal size. This framework can be applied across terrain and body scales, facilitating direct comparisons of walking over rough surfaces in animals ranging in size from ants to elephants.
Collapse
Affiliation(s)
| | | | - Chen Li
- Department of Mechanical Engineering, Johns Hopkins University, MD, USA
| | - Nicholas Gravish
- Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
13
|
Williamson JL, Lichtwark GA, Sawicki GS, Dick TJM. The influence of elastic ankle exoskeletons on lower limb mechanical energetics during unexpected perturbations. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221133. [PMID: 36756059 PMCID: PMC9890106 DOI: 10.1098/rsos.221133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Passive elastic ankle exoskeletons have been used to augment locomotor performance during walking, running and hopping. In this study, we aimed to determine how these passive devices influence lower limb joint and whole-body mechanical energetics to maintain stable upright hopping during rapid, unexpected perturbations. We recorded lower limb kinematics and kinetics while participants hopped with exoskeleton assistance (0, 76 and 91 Nm rad-1) on elevated platforms (15 and 20 cm) which were rapidly removed at an unknown time. Given that springs cannot generate nor dissipate energy, we hypothesized that passive ankle exoskeletons would reduce stability during an unexpected perturbation. Our results demonstrate that passive exoskeletons lead to a brief period of instability during unexpected perturbations - characterized by increased hop height. However, users rapidly stabilize via a distal-to-proximal redistribution of joint work such that the knee performs an increased energy dissipation role and stability is regained within one hop cycle. Together, these results demonstrate that despite the inability of elastic exoskeletons to directly dissipate mechanical energy, humans can still effectively dissipate the additional energy of a perturbation, regain stability and recover from a rapid unexpected vertical perturbation to maintain upright hopping.
Collapse
Affiliation(s)
- James L. Williamson
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Glen A. Lichtwark
- School of Human Movement and Nutrition Sciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Gregory S. Sawicki
- George W. Woodruff School of Mechanical Engineering and School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Taylor J. M. Dick
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
14
|
AminiAghdam S, Epro G, James D, Karamanidis K. Leaning the Trunk Forward Decreases Patellofemoral Joint Loading During Uneven Running. J Strength Cond Res 2022; 36:3345-3351. [PMID: 34537800 DOI: 10.1519/jsc.0000000000004128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ABSTRACT AminiAghdam, S, Epro, G, James, D, and Karamanidis, K. Leaning the trunk forward decreases patellofemoral joint loading during uneven running. J Strength Cond Res 36(12): 3345-3351, 2022-Although decline surfaces or a more upright trunk posture during running increase the patellofemoral joint (PFJ) contact force and stress, less is known about these kinetic parameters under simultaneous changes to the running posture and surface height. This study aimed to investigate the interaction between Step (10-cm drop-step and level step) and Posture (trunk angle from the vertical: self-selected, ∼15°; backward, ∼0°; forward, ∼25°) on PFJ kinetics (primary outcomes) and knee kinematics and kinetics as well as hip and ankle kinetics (secondary outcomes) in 12 runners at 3.5 ms -1 . Two-way repeated measures analyses of variance ( α = 0.05) revealed no step-related changes in peak PFJ kinetics across running postures; however, a decreased peak knee flexion angle and increased joint stiffness in the drop-step only during backward trunk-leaning. The Step main effect revealed significantly increased peak hip and ankle extension moments in the drop-step, signifying pronounced mechanical demands on these joints. The Posture main effect revealed significantly higher and lower PFJ kinetics during backward and forward trunk-leaning, respectively, when compared with the self-selected condition. Forward trunk-leaning yielded significantly lower peak knee extension moments and higher hip extension moments, whereas the opposite effects occurred with backward trunk-leaning. Overall, changes to the running posture, but not to the running surface height, influenced the PFJ kinetics. In line with the previously reported efficacy of forward trunk-leaning in mitigating PFJ stress while even or decline running, this technique, through a distal-to-proximal joint load redistribution, also seems effective during running on surfaces with height perturbations.
Collapse
Affiliation(s)
- Soran AminiAghdam
- Sport and Exercise Science Research Center, School of Applied Sciences, London South Bank University, London, United Kingdom
| | | | | | | |
Collapse
|
15
|
Andrada E, Mothes O, Stark H, Tresch MC, Denzler J, Fischer MS, Blickhan R. Limb, joint and pelvic kinematic control in the quail coping with steps upwards and downwards. Sci Rep 2022; 12:15901. [PMID: 36151454 PMCID: PMC9508109 DOI: 10.1038/s41598-022-20247-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
Small cursorial birds display remarkable walking skills and can negotiate complex and unstructured terrains with ease. The neuromechanical control strategies necessary to adapt to these challenging terrains are still not well understood. Here, we analyzed the 2D- and 3D pelvic and leg kinematic strategies employed by the common quail to negotiate visible steps (upwards and downwards) of about 10%, and 50% of their leg length. We used biplanar fluoroscopy to accurately describe joint positions in three dimensions and performed semi-automatic landmark localization using deep learning. Quails negotiated the vertical obstacles without major problems and rapidly regained steady-state locomotion. When coping with step upwards, the quail mostly adapted the trailing limb to permit the leading leg to step on the elevated substrate similarly as it did during level locomotion. When negotiated steps downwards, both legs showed significant adaptations. For those small and moderate step heights that did not induce aerial running, the quail kept the kinematic pattern of the distal joints largely unchanged during uneven locomotion, and most changes occurred in proximal joints. The hip regulated leg length, while the distal joints maintained the spring-damped limb patterns. However, to negotiate the largest visible steps, more dramatic kinematic alterations were observed. There all joints contributed to leg lengthening/shortening in the trailing leg, and both the trailing and leading legs stepped more vertically and less abducted. In addition, locomotion speed was decreased. We hypothesize a shift from a dynamic walking program to more goal-directed motions that might be focused on maximizing safety.
Collapse
Affiliation(s)
- Emanuel Andrada
- Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University Jena, Jena, Germany.
| | - Oliver Mothes
- Computer Vision Group, Friedrich-Schiller-University Jena, Jena, Germany
| | - Heiko Stark
- Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University Jena, Jena, Germany
| | - Matthew C Tresch
- Department of Physiology, Northwestern University, Chicago, IL, USA
| | - Joachim Denzler
- Computer Vision Group, Friedrich-Schiller-University Jena, Jena, Germany
| | - Martin S Fischer
- Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University Jena, Jena, Germany
| | - Reinhard Blickhan
- Science of Motion, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
16
|
Fan X, Swartz S, Breuer K. Power requirements for bat-inspired flapping flight with heavy, highly articulated and cambered wings. J R Soc Interface 2022; 19:20220315. [PMID: 36128710 PMCID: PMC9490335 DOI: 10.1098/rsif.2022.0315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/25/2022] [Indexed: 11/12/2022] Open
Abstract
Bats fly with highly articulated and heavy wings. To understand their power requirements, we develop a three-dimensional reduced-order model, and apply it to flights of Cynopterus brachyotis, the lesser dog-faced fruit bat. Using previously measured wing kinematics, the model computes aerodynamic forces using blade element momentum theory, and incorporates inertial forces of the flapping wing using the measured mass distribution of the membrane wing and body. The two are combined into a Lagrangian equation of motion, and we performed Monte Carlo simulations to address uncertainties in measurement errors and modelling assumptions. We find that the camber of the armwing decreases with flight speed whereas the handwing camber is more independent of speed. Wing camber disproportionately impacts energetics, mainly during the downstroke, and increases the power requirement from 8% to 22% over flight speed U = 3.2-7.4 m s-1. We separate total power into aerodynamic and inertial components, and aerodynamic power into parasitic, profile and induced power, and find strong agreement with previous theoretical and experimental studies. We find that inertia of wings help to balance aerodynamic forces, alleviating the muscle power required for weight support and thrust generation. Furthermore, the model suggests aerodynamic forces assist in lifting the heavy wing during upstroke.
Collapse
Affiliation(s)
- Xiaozhou Fan
- Center for Fluid Mechanics, School of Engineering, Brown University, Providence, RI, USA
| | - Sharon Swartz
- Center for Fluid Mechanics, School of Engineering, Brown University, Providence, RI, USA
- Department of Ecology, Evolution, and Organismal Biology, Aeromechanics & Evolutionary Morphology Lab, Brown University, Providence, RI, USA
| | - Kenneth Breuer
- Center for Fluid Mechanics, School of Engineering, Brown University, Providence, RI, USA
- Department of Ecology, Evolution, and Organismal Biology, Aeromechanics & Evolutionary Morphology Lab, Brown University, Providence, RI, USA
| |
Collapse
|
17
|
Faltings L, Young MW, Ross CF, Granatosky MC. Got rhythm? Rhythmicity differences reflect different optimality criteria in feeding and locomotor systems. Evolution 2022; 76:2181-2190. [PMID: 35862552 DOI: 10.1111/evo.14569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/19/2022] [Accepted: 05/24/2022] [Indexed: 01/22/2023]
Abstract
Evolutionary analyses of joint kinematics and muscle mechanics suggest that, during cyclic behaviors, tetrapod feeding systems are optimized for precise application of forces over small displacements during chewing, whereas locomotor systems are more optimized for large and rapid joint excursions during walking and running. If this hypothesis is correct, then it stands to reason that other biomechanical variables in the feeding and locomotor systems should also reflect these divergent functions. We compared rhythmicity of cyclic jaw and limb movements in feeding and locomotor systems in 261 tetrapod species in a phylogenetic context. Accounting for potential confounding variables, our analyses reveal higher rhythmicity of cyclic movements of the limbs than of the jaw. Higher rhythmicity in the locomotor system corroborates a hypothesis of stronger optimization for energetic efficiency: deviation from the limbs' natural frequency results in greater variability of center of mass movements and limb inertial changes, and therefore more work by limb muscles. Relatively lower rhythmicity in the feeding system may be a consequence of the necessity to prevent tooth breakage and wear, the greater complexity of coordination with tongue movements, and/or a greater emphasis on energy storage in elastic elements rather than the kinetics of limb movement.
Collapse
Affiliation(s)
- Lukas Faltings
- College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York, 11568, USA
| | - Melody W Young
- College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York, 11568, USA
- Department of Anatomy, Center for Biomedical Innovation, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York, 11568, USA
| | - Callum F Ross
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, 60637, USA
| | - Michael C Granatosky
- College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York, 11568, USA
- Department of Anatomy, Center for Biomedical Innovation, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York, 11568, USA
| |
Collapse
|
18
|
Charles J, Kissane R, Hoehfurtner T, Bates KT. From fibre to function: are we accurately representing muscle architecture and performance? Biol Rev Camb Philos Soc 2022; 97:1640-1676. [PMID: 35388613 PMCID: PMC9540431 DOI: 10.1111/brv.12856] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022]
Abstract
The size and arrangement of fibres play a determinate role in the kinetic and energetic performance of muscles. Extrapolations between fibre architecture and performance underpin our understanding of how muscles function and how they are adapted to power specific motions within and across species. Here we provide a synopsis of how this 'fibre to function' paradigm has been applied to understand muscle design, performance and adaptation in animals. Our review highlights the widespread application of the fibre to function paradigm across a diverse breadth of biological disciplines but also reveals a potential and highly prevalent limitation running through past studies. Specifically, we find that quantification of muscle architectural properties is almost universally based on an extremely small number of fibre measurements. Despite the volume of research into muscle properties, across a diverse breadth of research disciplines, the fundamental assumption that a small proportion of fibre measurements can accurately represent the architectural properties of a muscle has never been quantitatively tested. Subsequently, we use a combination of medical imaging, statistical analysis, and physics-based computer simulation to address this issue for the first time. By combining diffusion tensor imaging (DTI) and deterministic fibre tractography we generated a large number of fibre measurements (>3000) rapidly for individual human lower limb muscles. Through statistical subsampling simulations of these measurements, we demonstrate that analysing a small number of fibres (n < 25) typically used in previous studies may lead to extremely large errors in the characterisation of overall muscle architectural properties such as mean fibre length and physiological cross-sectional area. Through dynamic musculoskeletal simulations of human walking and jumping, we demonstrate that recovered errors in fibre architecture characterisation have significant implications for quantitative predictions of in-vivo dynamics and muscle fibre function within a species. Furthermore, by applying data-subsampling simulations to comparisons of muscle function in humans and chimpanzees, we demonstrate that error magnitudes significantly impact both qualitative and quantitative assessment of muscle specialisation, potentially generating highly erroneous conclusions about the absolute and relative adaption of muscles across species and evolutionary transitions. Our findings have profound implications for how a broad diversity of research fields quantify muscle architecture and interpret muscle function.
Collapse
Affiliation(s)
- James Charles
- Structure and Motion Lab, Comparative Biomedical SciencesRoyal Veterinary CollegeHawkshead LaneHatfieldHertfordshireAL9 7TAU.K.
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical SciencesUniversity of LiverpoolThe William Henry Duncan Building, 6 West Derby StreetLiverpoolL7 8TXU.K.
| | - Roger Kissane
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical SciencesUniversity of LiverpoolThe William Henry Duncan Building, 6 West Derby StreetLiverpoolL7 8TXU.K.
| | - Tatjana Hoehfurtner
- School of Life SciencesUniversity of Lincoln, Joseph Banks LaboratoriesGreen LaneLincolnLN6 7DLU.K.
| | - Karl T. Bates
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical SciencesUniversity of LiverpoolThe William Henry Duncan Building, 6 West Derby StreetLiverpoolL7 8TXU.K.
| |
Collapse
|
19
|
2021 ISB World Athletics Award for Biomechanics: The Subtalar Joint Maintains "Spring-Like" Function While Running in Footwear That Perturbs Foot Pronation. J Appl Biomech 2022; 38:221-231. [PMID: 35894959 DOI: 10.1123/jab.2021-0354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/05/2022] [Accepted: 05/14/2022] [Indexed: 11/18/2022]
Abstract
Humans have the remarkable ability to run over variable terrains. During locomotion, however, humans are unstable in the mediolateral direction and this instability must be controlled actively-a goal that could be achieved in more ways than one. Walking research indicates that the subtalar joint absorbs energy in early stance and returns it in late stance, an attribute that is credited to the tibialis posterior muscle-tendon unit. The purpose of this study was to determine how humans (n = 11) adapt to mediolateral perturbations induced by custom-made 3D-printed "footwear" that either enhanced or reduced pronation of the subtalar joint (modeled as motion in 3 planes) while running (3 m/s). In all conditions, the subtalar joint absorbed energy (ie, negative mechanical work) in early stance followed by an immediate return of energy (ie, positive mechanical work) in late stance, demonstrating a "spring-like" behavior. These effects increased and decreased in footwear conditions that enhanced or reduced pronation (P ≤ .05), respectively. Of the recorded muscles, the tibialis posterior (P ≤ .05) appeared to actively change its activation in concert with the changes in joint energetics. We suggest that the "spring-like" behavior of the subtalar joint may be an inherent function that enables the lower limb to respond to mediolateral instabilities during running.
Collapse
|
20
|
Golyski PR, Sawicki GS. Which lower limb joints compensate for destabilizing energy during walking in humans? J R Soc Interface 2022; 19:20220024. [PMID: 35642426 PMCID: PMC9156907 DOI: 10.1098/rsif.2022.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/04/2022] [Indexed: 11/12/2022] Open
Abstract
Current approaches to investigating stabilizing responses during locomotion lack measures that both directly relate to perturbation demands and are shared across different levels of description (i.e. joints and legs). Here, we investigated whether mechanical energy could serve as a 'common currency' during treadmill walking with transient unilateral belt accelerations. We hypothesized that by delivering perturbations in either early or late stance, we could elicit net negative or positive work, respectively, from the perturbed leg at the leg/treadmill interface, which would dictate the net demand at the overall leg level. We further hypothesized that of the lower limb joints, the ankle would best reflect changes in overall leg work. On average across all seven participants and 222 perturbations, we found early stance perturbations elicited no change in net work performed by the perturbed leg on the treadmill, but net positive work by the overall leg, which did not support our hypotheses. Conversely, late stance perturbations partially supported our hypotheses by eliciting positive work at the leg/treadmill interface, but no change in net work by the overall leg. In support of our final hypothesis, changes in perturbed ankle work, in addition to contralateral knee work, best reflected changes in overall leg work.
Collapse
Affiliation(s)
- Pawel R. Golyski
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gregory S. Sawicki
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
21
|
Schwaner MJ, Nishikawa KC, Daley MA. Kinematic trajectories in response to speed perturbations in walking suggest modular task-level control of leg angle and length. Integr Comp Biol 2022; 62:icac057. [PMID: 35612979 DOI: 10.1093/icb/icac057] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Navigating complex terrains requires dynamic interactions between the substrate, musculoskeletal and sensorimotor systems. Current perturbation studies have mostly used visible terrain height perturbations, which do not allow us to distinguish among the neuromechanical contributions of feedforward control, feedback-mediated and mechanical perturbation responses. Here, we use treadmill belt speed perturbations to induce a targeted perturbation to foot speed only, and without terrain-induced changes in joint posture and leg loading at stance onset. Based on previous studies suggesting a proximo-distal gradient in neuromechanical control, we hypothesized that distal joints would exhibit larger changes in joint kinematics, compared to proximal joints. Additionally, we expected birds to use feedforward strategies to increase the intrinsic stability of gait. To test these hypotheses, seven adult guinea fowl were video recorded while walking on a motorized treadmill, during both steady and perturbed trials. Perturbations consisted of repeated exposures to a deceleration and acceleration of the treadmill belt speed. Surprisingly, we found that joint angular trajectories and center of mass fluctuations remain very similar, despite substantial perturbation of foot velocity by the treadmill belt. Hip joint angular trajectories exhibit the largest changes, with the birds adopting a slightly more flexed position across all perturbed strides. Additionally, we observed increased stride duration across all strides, consistent with feedforward changes in the control strategy. The speed perturbations mainly influenced the timing of stance and swing, with the largest kinematic changes in the strides directly following a deceleration. Our findings do not support the general hypothesis of a proximo-distal gradient in joint control, as distal joint kinematics remain largely unchanged. Instead, we find that leg angular trajectory and the timing of stance and swing are most sensitive to this specific perturbation, and leg length actuation remains largely unchanged. Our results are consistent with modular task-level control of leg length and leg angle actuation, with different neuromechanical control and perturbation sensitivity in each actuation mode. Distal joints appear to be sensitive to changes in vertical loading but not foot fore-aft velocity. Future directions should include in vivo studies of muscle activation and force-length dynamics to provide more direct evidence of the sensorimotor control strategies for stability in response to belt speed perturbations.
Collapse
Affiliation(s)
- M J Schwaner
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697
| | - K C Nishikawa
- Center for Integrative Movement Sciences, University of California, Irvine, CA 92697
- Department of Biology, Northern Arizona University, Flagstaff, AZ 86011
| | - M A Daley
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697
- Center for Integrative Movement Sciences, University of California, Irvine, CA 92697
| |
Collapse
|
22
|
Badri-Spröwitz A, Aghamaleki Sarvestani A, Sitti M, Daley MA. BirdBot achieves energy-efficient gait with minimal control using avian-inspired leg clutching. Sci Robot 2022; 7:eabg4055. [PMID: 35294220 DOI: 10.1126/scirobotics.abg4055] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Designers of legged robots are challenged with creating mechanisms that allow energy-efficient locomotion with robust and minimalistic control. Sources of high energy costs in legged robots include the rapid loading and high forces required to support the robot's mass during stance and the rapid cycling of the leg's state between stance and swing phases. Here, we demonstrate an avian-inspired robot leg design, BirdBot, that challenges the reliance on rapid feedback control for joint coordination and replaces active control with intrinsic, mechanical coupling, reminiscent of a self-engaging and disengaging clutch. A spring tendon network rapidly switches the leg's slack segments into a loadable state at touchdown, distributes load among joints, enables rapid disengagement at toe-off through elastically stored energy, and coordinates swing leg flexion. A bistable joint mediates the spring tendon network's disengagement at the end of stance, powered by stance phase leg angle progression. We show reduced knee-flexing torque to a 10th of what is required for a nonclutching, parallel-elastic leg design with the same kinematics, whereas spring-based compliance extends the leg in stance phase. These mechanisms enable bipedal locomotion with four robot actuators under feedforward control, with high energy efficiency. The robot offers a physical model demonstration of an avian-inspired, multiarticular elastic coupling mechanism that can achieve self-stable, robust, and economic legged locomotion with simple control and no sensory feedback. The proposed design is scalable, allowing the design of large legged robots. BirdBot demonstrates a mechanism for self-engaging and disengaging parallel elastic legs that are contact-triggered by the foot's own lever-arm action.
Collapse
Affiliation(s)
| | | | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany.,Institute for Biomedical Engineering, ETH-Zürich, Zürich, Switzerland.,School of Medicine and College of Engineering, Koç University, Istanbul, Turkey
| | - Monica A Daley
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA.,Royal Veterinary College, London, UK
| |
Collapse
|
23
|
Bardin AL, Taylor NC, Robert Colborne G. Response of the Thoroughbred forelimb to perturbations caused by a change in ground surface. J Equine Vet Sci 2022; 112:103897. [PMID: 35150852 DOI: 10.1016/j.jevs.2022.103897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 11/15/2022]
Abstract
Thoroughbred racehorses are often affected by musculoskeletal injuries, leading to involuntary rest, early retirement or death. Hardness and consistency of the track surface have been implicated as major risk factors for limb injury. The purpose was to test the utility of a preliminary AnyBody musculoskeletal model of the equine forelimb for its responses on two perturbing surfaces. A musculoskeletal model was developed using CT, muscle, tendon and ligament properties, and kinematic data were applied from ridden trials using five Thoroughbred horses. Horses were ridden at trot and canter on a baseline sand surface, and through two perturbation pits containing a harder and a softer surface for one stance phase. In response to the hard perturbation, the proximal limb was more compliant at trot and canter, as measured by increased shoulder flexion in the perturbed stance phase and increased elbow and carpal flexion in the subsequent swing phase. The suspensory ligaments and muscle-tendon units were less strained while lacertus fibrosus was more strained. In response to the soft perturbation, the coffin joint was more flexed and the elbow was more extended in the acute stance phase at trot, resulting in increased strain to the DDF, extensor branches and lacertus fibrosus. At canter, the coffin was more flexed, the fetlock less hyperextended and so the suspensory structures were less strained in the perturbed stance phase, but more strained in the second stance phase. Changes in ground surface affect both the perturbed stance phase, and the following stance phase.
Collapse
Affiliation(s)
- Alienor L Bardin
- School of Veterinary Science, Massey University, Palmerston North 4410, New Zealand
| | - Nila C Taylor
- School of Veterinary Science, Massey University, Palmerston North 4410, New Zealand
| | - G Robert Colborne
- School of Veterinary Science, Massey University, Palmerston North 4410, New Zealand.
| |
Collapse
|
24
|
Schmidt A, Feldotto B, Gumpert T, Seidel D, Albu-Schäffer A, Stratmann P. Adapting Highly-Dynamic Compliant Movements to Changing Environments: A Benchmark Comparison of Reflex- vs. CPG-Based Control Strategies. Front Neurorobot 2021; 15:762431. [PMID: 34955801 PMCID: PMC8709475 DOI: 10.3389/fnbot.2021.762431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/18/2021] [Indexed: 12/02/2022] Open
Abstract
To control highly-dynamic compliant motions such as running or hopping, vertebrates rely on reflexes and Central Pattern Generators (CPGs) as core strategies. However, decoding how much each strategy contributes to the control and how they are adjusted under different conditions is still a major challenge. To help solve this question, the present paper provides a comprehensive comparison of reflexes, CPGs and a commonly used combination of the two applied to a biomimetic robot. It leverages recent findings indicating that in mammals both control principles act within a low-dimensional control submanifold. This substantially reduces the search space of parameters and enables the quantifiable comparison of the different control strategies. The chosen metrics are motion stability and energy efficiency, both key aspects for the evolution of the central nervous system. We find that neither for stability nor energy efficiency it is favorable to apply the state-of-the-art approach of a continuously feedback-adapted CPG. In both aspects, a pure reflex is more effective, but the pure CPG allows easy signal alteration when needed. Additionally, the hardware experiments clearly show that the shape of a control signal has a strong influence on energy efficiency, while previous research usually only focused on frequency alignment. Both findings suggest that currently used methods to combine the advantages of reflexes and CPGs can be improved. In future research, possible combinations of the control strategies should be reconsidered, specifically including the modulation of the control signal's shape. For this endeavor, the presented setup provides a valuable benchmark framework to enable the quantitative comparison of different bioinspired control principles.
Collapse
Affiliation(s)
- Annika Schmidt
- Sensor Based Robotic Systems and Intelligent Assistance Systems, Department of Informatics, Technical University of Munich, Garching, Germany.,German Aerospace Center (DLR), Institute of Robotics and Mechatronics, Weßling, Germany
| | - Benedikt Feldotto
- Robotics, Artificial Intelligence and Real-Time Systems, Department of Informatics, Technical University of Munich, Garching, Germany
| | - Thomas Gumpert
- German Aerospace Center (DLR), Institute of Robotics and Mechatronics, Weßling, Germany
| | - Daniel Seidel
- German Aerospace Center (DLR), Institute of Robotics and Mechatronics, Weßling, Germany
| | - Alin Albu-Schäffer
- Sensor Based Robotic Systems and Intelligent Assistance Systems, Department of Informatics, Technical University of Munich, Garching, Germany.,German Aerospace Center (DLR), Institute of Robotics and Mechatronics, Weßling, Germany
| | - Philipp Stratmann
- Sensor Based Robotic Systems and Intelligent Assistance Systems, Department of Informatics, Technical University of Munich, Garching, Germany.,German Aerospace Center (DLR), Institute of Robotics and Mechatronics, Weßling, Germany
| |
Collapse
|
25
|
Marmol-Guijarro A, Nudds R, Folkow L, Lees J, Codd J. Does posture explain the kinematic differences in a grounded running gait between male and female Svalbard rock ptarmigan ( Lagopus muta hyperborea) moving on snow? Polar Biol 2021; 44:1141-1152. [PMID: 34720374 PMCID: PMC8550507 DOI: 10.1007/s00300-021-02872-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 02/24/2021] [Accepted: 04/20/2021] [Indexed: 11/13/2022]
Abstract
The majority of locomotor research is conducted on treadmills and few studies attempt to understand the differences between this and animals moving in the wild. For example, animals may adjust their gait kinematics or limb posture, to a more compliant limb, to increase stability of locomotion to prevent limb failure or falling on different substrates. Here, using video recordings, we compared locomotor parameters (speed range, stride length, stride frequency, stance duration, swing duration and duty factor) of female Svalbard rock ptarmigan (Lagopus muta hyperborea) moving in the wild over snow to previous treadmill-based research. We also compared the absolute and body size (body mass and limb length)-corrected values of kinematic parameters to published data from males to look for any sex differences across walking and grounded running gaits. Our findings indicate that the kinematics of locomotion are largely conserved between the field and laboratory in that none of the female gaits were drastically affected by moving over snow, except for a prolonged swing phase at very slow walking speeds, likely due to toe dragging. Comparisons between the sexes indicate that the differences observed during a walking gait are likely due to body size. However, sexual dimorphism in body size could not explain the disparate grounded running kinematics of the female and male ptarmigan, which might be linked to a more crouched posture in females. Our findings provide insight into how males and females moving in situ may use different strategies to alleviate the effects of a variable substrate.
Collapse
Affiliation(s)
- Andres Marmol-Guijarro
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| | - Robert Nudds
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| | - Lars Folkow
- Department of Arctic and Marine Biology, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - John Lees
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Östergötland Sweden
| | - Jonathan Codd
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| |
Collapse
|
26
|
Estimation of Walking Speed and Its Spatiotemporal Determinants Using a Single Inertial Sensor Worn on the Thigh: From Healthy to Hemiparetic Walking. SENSORS 2021; 21:s21216976. [PMID: 34770283 PMCID: PMC8587282 DOI: 10.3390/s21216976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022]
Abstract
We present the use of a single inertial measurement unit (IMU) worn on the thigh to produce stride-by-stride estimates of walking speed and its spatiotemporal determinants (i.e., stride time and stride length). Ten healthy and eight post-stroke individuals completed a 6-min walk test with an 18-camera motion capture system used for ground truth measurements. Subject-specific estimation models were trained to estimate walking speed using the polar radius extracted from phase portraits produced from the IMU-measured thigh angular position and velocity. Consecutive flexion peaks in the thigh angular position data were used to define each stride and compute stride times. Stride-by-stride estimates of walking speed and stride time were then used to compute stride length. In both the healthy and post-stroke cohorts, low error and high consistency were observed for the IMU estimates of walking speed (MAE < 0.035 m/s; ICC > 0.98), stride time (MAE < 30 ms; ICC > 0.97), and stride length (MAE < 0.037 m; ICC > 0.96). This study advances the use of a single wearable sensor to accurately estimate walking speed and its spatiotemporal determinants during both healthy and hemiparetic walking.
Collapse
|
27
|
Smith DL, Haworth JL, Brooks EK, Cousins JM. Postural Control, Dual Task Performance and Executive Function Following an Ultramarathon. Percept Mot Skills 2021; 128:2767-2786. [PMID: 34474623 DOI: 10.1177/00315125211044351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
As research into the postural and cognitive effects of ultramarathon running is sparse and still needed, we investigated the effect of ultramarathon running on runners' postural control, dual task postural control and a measure of executive function-the flanker test, expecting fatigue-related deterioration on each measure. We used a pre- and post-test research design with 14 runners who completed (a) postural assessment with eyes open and closed, on a flat surface and on foam during (b) a two-choice reaction time dual task postural assessment, and (c) an executive function modified flanker task. With regard to postural stability, we observed, after running, increased anterior-posterior (AP) path length and AP root mean square (RMS) and reductions in both mediolateral (ML) RMS and ML median frequency. Dual task analysis showed reduced ML RMS prior to the race, whereas the effect was absent afterwards. Reaction times were not significantly altered between pre-post or surface conditions assessments. There were no statistically significant differences in mean modified flanker scores before and after the race. These data demonstrated that, following an endurance run, there were plane specific movement adaptations in postural sway that may have resulted from neuroprotective changes under extreme fatigue.
Collapse
Affiliation(s)
- Dean L Smith
- Department of Kinesiology and Health, Miami University, Oxford, Ohio, United States.,Essence of Wellness Chiropractic Center, Eaton, Ohio, United States
| | - Joshua L Haworth
- Department of Human Movement Science, 6918Oakland University, Oakland University, Rochester, Michigan, United States
| | - Eric K Brooks
- Department of Kinesiology and Health, Miami University, Oxford, Ohio, United States
| | - Julie M Cousins
- Department of Kinesiology, 1098Albion College, Albion College, Albion, Michigan, United States
| |
Collapse
|
28
|
Ryu HX, Kuo AD. An optimality principle for locomotor central pattern generators. Sci Rep 2021; 11:13140. [PMID: 34162903 PMCID: PMC8222298 DOI: 10.1038/s41598-021-91714-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/18/2021] [Indexed: 11/18/2022] Open
Abstract
Two types of neural circuits contribute to legged locomotion: central pattern generators (CPGs) that produce rhythmic motor commands (even in the absence of feedback, termed “fictive locomotion”), and reflex circuits driven by sensory feedback. Each circuit alone serves a clear purpose, and the two together are understood to cooperate during normal locomotion. The difficulty is in explaining their relative balance objectively within a control model, as there are infinite combinations that could produce the same nominal motor pattern. Here we propose that optimization in the presence of uncertainty can explain how the circuits should best be combined for locomotion. The key is to re-interpret the CPG in the context of state estimator-based control: an internal model of the limbs that predicts their state, using sensory feedback to optimally balance competing effects of environmental and sensory uncertainties. We demonstrate use of optimally predicted state to drive a simple model of bipedal, dynamic walking, which thus yields minimal energetic cost of transport and best stability. The internal model may be implemented with neural circuitry compatible with classic CPG models, except with neural parameters determined by optimal estimation principles. Fictive locomotion also emerges, but as a side effect of estimator dynamics rather than an explicit internal rhythm. Uncertainty could be key to shaping CPG behavior and governing optimal use of feedback.
Collapse
Affiliation(s)
- Hansol X Ryu
- Biomedical Engineering Program, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
| | - Arthur D Kuo
- Biomedical Engineering Program, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.,Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
29
|
AminiAghdam S, Karamanidis K, Rode C. Uneven running: How does trunk-leaning affect the lower-limb joint mechanics and energetics? Eur J Sport Sci 2021; 22:1188-1195. [PMID: 34077302 DOI: 10.1080/17461391.2021.1938691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This study aimed to investigate the role of trunk posture in running locomotion. Twelve recreational runners ran in the laboratory across even and uneven ground surface (expected 10 cm drop-step) with three trunk-lean angles from the vertical (self-selected, ∼15°; anterior, ∼25°; posterior, ∼0°) while 3D kinematic and kinetic data were collected using a 3D motion-capture-system and two embedded force-plates. Two-way repeated measures ANOVAs (α = 0.05) compared lower-limb joint mechanics (angles, moments, energy absorption and generation) and ground-reaction-force parameters (braking and propulsive impulse) between Step (level and drop) and Posture conditions. The Step-by-Posture interaction revealed decreased hip energy generation, and greater peak knee extension moment in the drop-step during running with posterior versus anterior trunk-lean. Furthermore, energy absorption across hip and ankle nearly doubled in the drop-step across all running conditions. The Step main effect revealed that the knee and ankle energy absorption, ankle energy generation, ground-reaction-force, and braking impulse significantly increased in the drop-step. The Posture main effect revealed that, compared with a self-selected trunk-lean, the knee's energy absorption/generation, ankle's energy generation and the braking impulse were either retained or attenuated when leaning the trunk anteriorly. The opposite effects occurred with a posterior trunk-lean. In conclusion, while the pronounced mechanical ankle stress in drop-steps is marginally affected by posture, changing the trunk-lean reorganizes the load distribution across the knee and hip joints. Leaning the trunk anteriorly in running shifts loading from the knee to the hip not only in level running but also when coping with ground-level changes.Highlights Changing the trunk-lean when running reorganizes the load distribution across the knee and hip joints.Leaning the trunk anteriorly from a habitual trunk posture during running attenuates the mechanical stress on the knee, while the opposite effect occurs with a posterior trunk-lean, irrespective to the ground surface uniformity.The effect of posture on pronounced mechanical ankle stress in small perturbation height during running is marginal.Leaning the trunk anteriorly shifts loading from the knee to the hip not only in level running but also when coping with small perturbation height.
Collapse
Affiliation(s)
- Soran AminiAghdam
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, London, UK.,Science of Motion, Institute of Sports Science, Friedrich Schiller University Jena, Jena, Germany
| | - Kiros Karamanidis
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, London, UK
| | - Christian Rode
- Institute of Sports Science, University of Rostock, Rostock, Germany
| |
Collapse
|
30
|
Di Russo A, Stanev D, Armand S, Ijspeert A. Sensory modulation of gait characteristics in human locomotion: A neuromusculoskeletal modeling study. PLoS Comput Biol 2021; 17:e1008594. [PMID: 34010288 PMCID: PMC8168850 DOI: 10.1371/journal.pcbi.1008594] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 06/01/2021] [Accepted: 04/16/2021] [Indexed: 11/18/2022] Open
Abstract
The central nervous system of humans and other animals modulates spinal cord activity to achieve several locomotion behaviors. Previous neuromechanical models investigated the modulation of human gait changing selected parameters belonging to CPGs (Central Pattern Generators) feedforward oscillatory structures or to feedback reflex circuits. CPG-based models could replicate slow and fast walking by changing only the oscillation’s properties. On the other hand, reflex-based models could achieve different behaviors through optimizations of large dimensional parameter spaces. However, they could not effectively identify individual key reflex parameters responsible for gait characteristics’ modulation. This study investigates which reflex parameters modulate the gait characteristics through neuromechanical simulations. A recently developed reflex-based model is used to perform optimizations with different target behaviors on speed, step length, and step duration to analyze the correlation between reflex parameters and their influence on these gait characteristics. We identified nine key parameters that may affect the target speed ranging from slow to fast walking (0.48 and 1.71 m/s) as well as a large range of step lengths (0.43 and 0.88 m) and step duration (0.51, 0.98 s). The findings show that specific reflexes during stance significantly affect step length regulation, mainly given by positive force feedback of the ankle plantarflexors’ group. On the other hand, stretch reflexes active during swing of iliopsoas and gluteus maximus regulate all the gait characteristics under analysis. Additionally, the results show that the hamstrings’ group’s stretch reflex during the landing phase is responsible for modulating the step length and step duration. Additional validation studies in simulations demonstrated that the modulation of identified reflexes is sufficient to regulate the investigated gait characteristics. Thus, this study provides an overview of possible reflexes involved in modulating speed, step length, and step duration of human gaits. This study investigates the possible reflex parameters that the central nervous system could use to modulate human locomotion. Specifically, we target the modulation of three gait characteristics: speed, step length, and step duration. We utilize human locomotion simulations with a previously developed reflex-based model and perform multiple optimizations ranging targeting low to high values of the three gait characteristics investigated. From the data acquired in optimizations, we investigate which reflex parameter correlates most with the gait characteristics changes. We identified nine key reflex parameters affecting gait modulation, performed validation experiments, and verified that the optimization of key reflex parameters alone could generate modulation in the studied locomotion behaviors. Kinematics, ground reaction forces, and muscle activity obtained in simulations show similarities with past experimental studies on gait modulation. Therefore, the identified parameters could potentially be used by the nervous system to regulate locomotion behaviors in a task-dependent manner. Other circuits not modeled in this study could play a crucial role in gait modulation, and further investigations should be done in the co-optimization of feedforward and feedback circuits.
Collapse
Affiliation(s)
- Andrea Di Russo
- Biorobotics Laboratory, École polytechnique fédérale de Lausanne, School of Engineering, Institute of Bioengineering, Lausanne, Switzerland
- * E-mail:
| | - Dimitar Stanev
- Biorobotics Laboratory, École polytechnique fédérale de Lausanne, School of Engineering, Institute of Bioengineering, Lausanne, Switzerland
| | - Stéphane Armand
- Kinesiology Laboratory, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Auke Ijspeert
- Biorobotics Laboratory, École polytechnique fédérale de Lausanne, School of Engineering, Institute of Bioengineering, Lausanne, Switzerland
| |
Collapse
|
31
|
Pfeiffenberger JA, Hsieh ST. Autotomy-induced effects on the locomotor performance of the ghost crab Ocypode quadrata. J Exp Biol 2021; 224:238065. [PMID: 33785503 DOI: 10.1242/jeb.233536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 03/23/2021] [Indexed: 02/02/2023]
Abstract
The voluntary amputation of an appendage, or autotomy, is an effective defensive mechanism that allows an animal to escape aggressive interactions. However, animals may suffer long-term costs that can reduce their overall fitness. Atlantic ghost crabs (Ocypode quadrata) are one of the fastest terrestrial invertebrates, and regularly lose one or more limbs in response to an antagonist encounter. When running laterally at fast speeds, they adopt a quadrupedal gait using their first and second pairs of legs while raising their fourth, and sometimes the third, pair of legs off the ground. This suggests that some limbs may be more important for achieving maximal locomotor performance than others. The goal of this study was to determine whether the loss of certain limbs would affect running performance more than others, and what compensatory strategies were used. Crabs were assigned to four different paired limb removal treatments or the control group and run on an enclosed trackway in their natural habitat. Ghost crabs were found to adjust stride kinematics in response to limb loss. Loss of the second or third limb pairs caused a reduction in running speed by about 25%, suggesting that the remaining intact limbs were unable to compensate for the loss of either limb, either due to a lack of propulsive forces produced by these limbs or issues stemming from re-coupling limb arrangements. Loss of any of the other limbs had no detectable effect on running speed. We conclude that compensatory ability varies depending on the limb that is lost.
Collapse
Affiliation(s)
| | - S Tonia Hsieh
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
32
|
Leg Joint Mechanics When Hopping at Different Frequencies. J Appl Biomech 2021; 37:263-271. [PMID: 33975280 DOI: 10.1123/jab.2020-0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 01/15/2021] [Accepted: 01/22/2021] [Indexed: 11/18/2022]
Abstract
Although the dynamics of center of mass can be accounted for by a spring-mass model during hopping, less is known about how each leg joint (ie, hip, knee, and ankle) contributes to center of mass dynamics. This work investigated the function of individual leg joints when hopping unilaterally and vertically at 4 frequencies (ie, 1.6, 2.0, 2.4, and 2.8 Hz). The hypotheses are (1) all leg joints maintain the function as torsional springs and increase their stiffness when hopping faster and (2) leg joints are controlled to maintain the mechanical load in the joints or vertical peak accelerations at different body locations when hopping at different frequencies. Results showed that all leg joints behaved as torsional springs during low-frequency hopping (ie, 1.6 Hz). As hopping frequency increased, leg joints changed their functions differently; that is, the hip and knee shifted to strut, and the ankle remained as spring. When hopping fast, the body's total mechanical energy decreased, and the ankle increased the amount of energy storage and return from 50% to 62%. Leg joints did not maintain a constant load at the joints or vertical peak accelerations at different body locations when hopping at different frequencies.
Collapse
|
33
|
Dick TJM, Clemente CJ, Punith LK, Sawicki GS. Series elasticity facilitates safe plantar flexor muscle-tendon shock absorption during perturbed human hopping. Proc Biol Sci 2021; 288:20210201. [PMID: 33726594 PMCID: PMC8059679 DOI: 10.1098/rspb.2021.0201] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
In our everyday lives, we negotiate complex and unpredictable environments. Yet, much of our knowledge regarding locomotion has come from studies conducted under steady-state conditions. We have previously shown that humans rely on the ankle joint to absorb energy and recover from perturbations; however, the muscle-tendon unit (MTU) behaviour and motor control strategies that accompany these joint-level responses are not yet understood. In this study, we determined how neuromuscular control and plantar flexor MTU dynamics are modulated to maintain stability during unexpected vertical perturbations. Participants performed steady-state hopping and, at an unknown time, we elicited an unexpected perturbation via rapid removal of a platform. In addition to kinematics and kinetics, we measured gastrocnemius and soleus muscle activations using electromyography and in vivo fascicle dynamics using B-mode ultrasound. Here, we show that an unexpected drop in ground height introduces an automatic phase shift in the timing of plantar flexor muscle activity relative to MTU length changes. This altered timing initiates a cascade of responses including increased MTU and fascicle length changes and increased muscle forces which, when taken together, enables the plantar flexors to effectively dissipate energy. Our results also show another mechanism, whereby increased co-activation of the plantar- and dorsiflexors enables shortening of the plantar flexor fascicles prior to ground contact. This co-activation improves the capacity of the plantar flexors to rapidly absorb energy upon ground contact, and may also aid in the avoidance of potentially damaging muscle strains. Our study provides novel insight into how humans alter their neural control to modulate in vivo muscle-tendon interaction dynamics in response to unexpected perturbations. These data provide essential insight to help guide design of lower-limb assistive devices that can perform within varied and unpredictable environments.
Collapse
Affiliation(s)
- Taylor J. M. Dick
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - Christofer J. Clemente
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
- School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Australia
| | - Laksh K. Punith
- George W. Woodruff School of Mechanical Engineering and School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gregory S. Sawicki
- George W. Woodruff School of Mechanical Engineering and School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
34
|
Wilshin S, Reeve MA, Spence AJ. Dog galloping on rough terrain exhibits similar limb co-ordination patterns and gait variability to that on flat terrain. BIOINSPIRATION & BIOMIMETICS 2021; 16:015001. [PMID: 33684074 DOI: 10.1088/1748-3190/abb17a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Understanding how animals regulate their gait during locomotion can give biological insight and inspire controllers for robots. Why animals use the gallop at the highest speeds remains incompletely explained. Hypothesized reasons for galloping include that it enables recruitment of spinal musculoskeletal structures, that it minimizes energy losses as predicted by collisional theory, or that it provides extended flight phases with more time for leg placement and hence enhances or provides necessary maneuverability [Alexander 1988 Am. Zool. 28 237-45; Ruina, Bertram and Srinivasan 2005 J. Theor. Biol. 237 170-92; Usherwood 2019 J. Exp. Zool. Part A 333 9-19; Hildebrand1989 Bioscience 39 766-75]. The latter-most hypothesis has implications in robotics, where controllers based on the concept of multistability have gained some traction. Here we examine this hypothesis by studying the dynamics of dog gait on flat and rough terrain. This hypothesis predicts that injection of noise into timing and location of ground contacts during the galloping gait by rough terrain will result in an isotropically more noisy gallop gait, centered around the gallop used on flat terrain. We find that dog gait in terms of leg swing timing on rough terrain is not consistently more variable about the mean gait, and constrain the upper limits of this variability to values that are unlikely to be biologically relevant. However the location of the mean gait indeed only shifts by a small amount. Therefore, we find limited support for this hypothesis. This suggests that achieving a target gallop gait with tight regulation is still the desired behavior, and that large amounts of variability in gait are not a desired feature of the gallop. For robotics, our results suggest that the emergent animal-environment dynamics on rough terrain do not exhibit uniformly wider basins of attraction. Future robotics work could test whether controllers that do or do not allow shifts in mean gait and gait variability produce more economical and/or stable gallops.
Collapse
Affiliation(s)
- Simon Wilshin
- Structure and Motion Laboratory, Royal Veterinary College, University of London, Hawkshead Lane, Hatfield, Hertfordshire, AL9 7TA, United Kingdom
| | | | | |
Collapse
|
35
|
Muscle Diversity, Heterogeneity, and Gradients: Learning from Sarcoglycanopathies. Int J Mol Sci 2021; 22:ijms22052502. [PMID: 33801487 PMCID: PMC7958856 DOI: 10.3390/ijms22052502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle, the most abundant tissue in the body, is heterogeneous. This heterogeneity forms the basis of muscle diversity, which is reflected in the specialized functions of muscles in different parts of the body. However, these different parts are not always clearly delimitated, and this often gives rise to gradients within the same muscle and even across the body. During the last decade, several studies on muscular disorders both in mice and in humans have observed particular distribution patterns of muscle weakness during disease, indicating that the same mutation can affect muscles differently. Moreover, these phenotypical differences reveal gradients of severity, existing alongside other architectural gradients. These two factors are especially prominent in sarcoglycanopathies. Nevertheless, very little is known about the mechanism(s) driving the phenotypic diversity of the muscles affected by these diseases. Here, we will review the available literature on sarcoglycanopathies, focusing on phenotypic differences among affected muscles and gradients, characterization techniques, molecular signatures, and cell population heterogeneity, highlighting the possibilities opened up by new technologies. This review aims to revive research interest in the diverse disease phenotype affecting different muscles, in order to pave the way for new therapeutic interventions.
Collapse
|
36
|
Ravi DK, Bartholet M, Skiadopoulos A, Kent JA, Wickstrom J, Taylor WR, Singh NB, Stergiou N. Rhythmic auditory stimuli modulate movement recovery in response to perturbation during locomotion. J Exp Biol 2021; 224:jeb.237073. [PMID: 33536309 PMCID: PMC7938806 DOI: 10.1242/jeb.237073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/20/2021] [Indexed: 12/11/2022]
Abstract
The capacity to recover after a perturbation is a well-known intrinsic property of physiological systems, including the locomotor system, and can be termed ‘resilience’. Despite an abundance of metrics proposed to measure the complex dynamics of bipedal locomotion, analytical tools for quantifying resilience are lacking. Here, we introduce a novel method to directly quantify resilience to perturbations during locomotion. We examined the extent to which synchronizing stepping with two different temporal structured auditory stimuli (periodic and 1/f structure) during walking modulates resilience to a large unexpected perturbation. Recovery time after perturbation was calculated from the horizontal velocity of the body's center of mass. Our results indicate that synchronizing stepping with a 1/f stimulus elicited greater resilience to mechanical perturbations during walking compared with the periodic stimulus (3.3 s faster). Our proposed method may help to gain a comprehensive understanding of movement recovery behavior of humans and other animals in their ecological contexts. Summary: A new method for the evaluation of intrinsic resilience during unsteady locomotion in humans and animals, analysing the relationship between the structure of movement variability and resilience.
Collapse
Affiliation(s)
- Deepak K Ravi
- Institute for Biomechanics, ETH Zürich, 8093 Zürich, Switzerland
| | - Marc Bartholet
- Institute for Biomechanics, ETH Zürich, 8093 Zürich, Switzerland
| | - Andreas Skiadopoulos
- Department of Biomechanics and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Jenny A Kent
- Department of Biomechanics and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Jordan Wickstrom
- Department of Biomechanics and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - William R Taylor
- Institute for Biomechanics, ETH Zürich, 8093 Zürich, Switzerland
| | - Navrag B Singh
- Institute for Biomechanics, ETH Zürich, 8093 Zürich, Switzerland
| | - Nick Stergiou
- Department of Biomechanics and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE 68182, USA .,Department of Environmental Agricultural and Occupational Health, University of Nebraska Medical Center, Omaha, NE 68198-4388, USA
| |
Collapse
|
37
|
Hunter B, Greenhalgh A, Karsten B, Burnley M, Muniz-Pumares D. A non-linear analysis of running in the heavy and severe intensity domains. Eur J Appl Physiol 2021; 121:1297-1313. [PMID: 33580289 DOI: 10.1007/s00421-021-04615-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 01/15/2021] [Indexed: 01/06/2023]
Abstract
PURPOSE Altered movement complexity, indicative of system dysfunction, has been demonstrated with increased running velocity and neuromuscular fatigue. The critical velocity (CV) denotes a metabolic and neuromuscular fatigue threshold. It remains unclear whether changes to complexity during running are coupled with the exercise intensity domain in which it is performed. The purpose of this study was to examine whether movement variability and complexity differ exclusively above the CV intensity during running. METHODS Ten endurance-trained participants ran at 95%, 100%, 105% and 115% CV for 20 min or to task failure, whichever occurred first. Movement at the hip, knee, and ankle were sampled throughout using 3D motion analysis. Complexity of kinematics in the first and last 30 s were quantified using sample entropy (SampEn) and detrended fluctuation analysis (DFA-α). Variability was determined using standard deviation (SD). RESULTS SampEn decreased during all trials in knee flexion/extension and it increased in hip internal/external rotation, whilst DFA-α increased in knee internal/external rotation. SD of ankle plantar/dorsiflexion and inversion/eversion, knee internal/external rotation, and hip flexion/extension and abduction/adduction increased during trials. Hip flexion/extension SampEn values were lowest below CV. DFA-α was lower at higher velocities compared to velocities below CV in ankle plantar/dorsiflexion, hip flexion/extension, hip adduction/abduction, hip internal/external rotation. In hip flexion/extension SD was highest at 115% CV. CONCLUSIONS Changes to kinematic complexity over time are consistent between heavy and severe intensity domains. The findings suggest running above CV results in increased movement complexity and variability, particularly at the hip, during treadmill running.
Collapse
Affiliation(s)
- Ben Hunter
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK.
| | - Andrew Greenhalgh
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Bettina Karsten
- European University of Applied Sciences (EUFH), Berlin, Germany
| | - Mark Burnley
- Endurance Research Group, School of Sport and Exercise Sciences, University of Kent, Chatham Maritime, Chatham, UK
| | | |
Collapse
|
38
|
Blickhan R, Andrada E, Hirasaki E, Ogihara N. Trunk and leg kinematics of grounded and aerial running in bipedal macaques. J Exp Biol 2021; 224:jeb225532. [PMID: 33288531 DOI: 10.1242/jeb.225532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 11/27/2020] [Indexed: 11/20/2022]
Abstract
Across a wide range of Froude speeds, non-human primates such as macaques prefer to use grounded and aerial running when locomoting bipedally. Both gaits are characterized by bouncing kinetics of the center of mass. In contrast, a discontinuous change from pendular to bouncing kinetics occurs in human locomotion. To clarify the mechanism underlying these differences in bipedal gait mechanics between humans and non-human primates, we investigated the influence of gait on joint kinematics in the legs and trunk of three macaques crossing an experimental track. The coordination of movement was compared with observations available for primates. Compared with human running, macaque leg retraction cannot merely be produced by hip extension, but needs to be supported by substantial knee flexion. As a result, despite quasi-elastic whole-leg operation, the macaque's knee showed only minor rebound behavior. Ankle extension resembled that observed during human running. Unlike human running and independent of gait, torsion of the trunk represents a rather conservative feature in primates, and pelvic axial rotation added to step length. Pelvic lateral lean during grounded running by macaques (compliant leg) and human walking (stiff leg) depends on gait dynamics at the same Froude speed. The different coordination between the thorax and pelvis in the sagittal plane as compared with human runners indicates different bending modes of the spine. Morphological adaptations in non-human primates to quadrupedal locomotion may prevent human-like operation of the leg and limit exploitation of quasi-elastic leg operation despite running dynamics.
Collapse
Affiliation(s)
- Reinhard Blickhan
- Science of Motion, Friedrich-Schiller-University, Jena 07749, Germany
| | - Emanuel Andrada
- Institute of Zoology and Evolutionary Research, Jena 07743, Germany
| | - Eishi Hirasaki
- Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Naomichi Ogihara
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi Kohoku-ku, Yokohama 223-8522, Japan
- Department of Biological Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
39
|
Abstract
Temperature influences many physiological processes that govern life as a result of the thermal sensitivity of chemical reactions. The repeated evolution of endothermy and widespread behavioral thermoregulation in animals highlight the importance of elevating tissue temperature to increase the rate of chemical processes. Yet, movement performance that is robust to changes in body temperature has been observed in numerous species. This thermally robust performance appears exceptional in light of the well-documented effects of temperature on muscle contractile properties, including shortening velocity, force, power and work. Here, we propose that the thermal robustness of movements in which mechanical processes replace or augment chemical processes is a general feature of any organismal system, spanning kingdoms. The use of recoiling elastic structures to power movement in place of direct muscle shortening is one of the most thoroughly studied mechanical processes; using these studies as a basis, we outline an analytical framework for detecting thermal robustness, relying on the comparison of temperature coefficients (Q 10 values) between chemical and mechanical processes. We then highlight other biomechanical systems in which thermally robust performance that arises from mechanical processes may be identified using this framework. Studying diverse movements in the context of temperature will both reveal mechanisms underlying performance and allow the prediction of changes in performance in response to a changing thermal environment, thus deepening our understanding of the thermal ecology of many organisms.
Collapse
Affiliation(s)
- Jeffrey P Olberding
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, USA
| | - Stephen M Deban
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Science Center 110, Tampa, FL 33620, USA
| |
Collapse
|
40
|
Richardson MC, Murphy S, Macpherson T, English B, Spears I, Chesterton P. Effect of Sand on Knee Load During a Single-Leg Jump Task: Implications for Injury Prevention and Rehabilitation Programs. J Strength Cond Res 2020; 34:3164-3172. [PMID: 33105367 DOI: 10.1519/jsc.0000000000002623] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Richardson, MC, Murphy, S, Macpherson, T, English, B, Spears, I, and Chesterton, P. Effect of sand on knee load during a single-leg jump task: implications for injury prevention and rehabilitation programs. J Strength Cond Res 34(11): 3164-3172, 2020-The purpose of the study was to determine potential differences in landing strategies and subsequent joint loads at the knee (knee abduction moment [KAM], anterior-posterior [AP] tibial translation, and total knee shear force) when jumping onto sand and firm ground from both a level surface and a 30-cm height. Firm ground would act as the control for the study. Seventeen subjects (age: 23.6 ± 3.7 years; body mass: 67.7 ± 10.3 kg; height: 168.5 ± 7.4 cm) performed 3 single-leg jumps on their dominant leg for each of the 4 conditions tested (ground level, sand level, ground height, and sand height). A repeated-measures design investigated the effect of sand on KAM, AP tibial translation, and total knee shear force. Data were analyzed using magnitude-based inferences and presented as percentage change with 90% confidence limits. Results indicated that sand had a clear beneficial effect on KAM, which was possibly moderate during a drop jump (30 cm) and possibly small from a level jump. Sand also had a possibly moderate beneficial effect on AP tibial translation from a level jump. The effect of sand on total knee shear force was unclear. These results suggest that sand may provide a safer alternative to firm ground when performing jump tasks commonly used in anterior cruciate ligament and patellofemoral joint injury prevention and rehabilitation programs. Sand may also allow for an accelerated rehabilitation program because jumping activities could potentially be implemented more safely at an earlier stage in the process.
Collapse
Affiliation(s)
- Mark C Richardson
- Psychology, Sport and Exercise Department, Sport and Exercise Science Section, Teesside University, Middlesbrough, United Kingdom; and
| | - Sinead Murphy
- Psychology, Sport and Exercise Department, Sport and Exercise Science Section, Teesside University, Middlesbrough, United Kingdom; and
| | - Tom Macpherson
- Psychology, Sport and Exercise Department, Sport and Exercise Science Section, Teesside University, Middlesbrough, United Kingdom; and
| | - Bryan English
- Middlesbrough Football Club, Riverside Stadium, Middlesbrough, United Kingdom
| | - Iain Spears
- Psychology, Sport and Exercise Department, Sport and Exercise Science Section, Teesside University, Middlesbrough, United Kingdom; and
| | - Paul Chesterton
- Psychology, Sport and Exercise Department, Sport and Exercise Science Section, Teesside University, Middlesbrough, United Kingdom; and
| |
Collapse
|
41
|
Biological system energy algorithm reflected in sub-system joint work distribution movement strategies: influence of strength and eccentric loading. Sci Rep 2020; 10:12052. [PMID: 32694565 PMCID: PMC7374631 DOI: 10.1038/s41598-020-68714-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/25/2020] [Indexed: 11/18/2022] Open
Abstract
To better understand and define energy algorithms during physical activity as it relates to strength and movement strategy of the hip, knee and ankle, a model of increasing eccentric load was implemented in the current investigation utilizing a countermovement jump and a series of drop jumps from different heights (15, 30, 45, 60, 75 cm). Twenty-one participants were grouped by sex (men, n = 9; women, n = 12) and muscle strength (higher strength, n = 7; moderate strength, n = 7; lower strength, n = 7) as determined by a maximal squat test. Force plates and 3D motion capture were utilized to calculate work for the center of mass (COM) of the whole body and individually for the hip, knee and ankle joints. Statistically significant lower net work of the COM was observed in women and lower strength participants in comparison to men and moderate strength and higher strength participants respectively (p ≤ 0.05). This was primarily due to higher negative to positive work ratios of the COM in women and lower strength participants during all jumps. Furthermore, the COM negative work was primarily dissipated at the knee joint in women and in the lower strength group, particularly during the higher drop jump trials, which are representative of a demanding eccentric load task. A definitive energy algorithm was observed as a reflection of altering joint work strategy in women and lower strength individuals, indicating a possible role in knee joint injury and modulation of such by altering muscular strength.
Collapse
|
42
|
Bohm S, Mandla-Liebsch M, Mersmann F, Arampatzis A. Exercise of Dynamic Stability in the Presence of Perturbations Elicit Fast Improvements of Simulated Fall Recovery and Strength in Older Adults: A Randomized Controlled Trial. Front Sports Act Living 2020; 2:52. [PMID: 33345043 PMCID: PMC7739602 DOI: 10.3389/fspor.2020.00052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/16/2020] [Indexed: 12/21/2022] Open
Abstract
Age-related impairments of reactive motor responses to postural threats and reduced muscular capacities of the legs are key factors for the higher risk of falling in older people. It has been evidenced that a training of dynamic stability in the presence of perturbations has the potential to improve these deficits. However, the time course of training effects during such interventions is poorly understood. The purpose of this parallel-group study was to investigate the temporal adaptation dynamics of the balance recovery performance and leg strength during a dynamic stability training. Forty-two healthy older adults (65–85 years) were randomly assigned to a training (n = 27, analyzed n = 18) or control group (n = 15, n = 14). The training was conducted in a group setting for 6 weeks (3×/week, 45 min). The exercises focused on the mechanism of stability control (i.e., modulation of the base of support and segment counter-rotations around the center of mass) during standing, stepping, and jumping on unstable surfaces with a high balance intensity. Before, after 3 and after 6 weeks, the maximum plantar flexion moment and the knee extension moment were assessed. The recovery performance was evaluated by a simulated forward fall (lean-and-release test) and the margin of stability concept. The margin of stability at release decreased significantly after 3 weeks of training (34%, effect size g = 0.79), which indicates fast improvements of balance recovery performance. The margin of stability further decreased after week 6 (53%, g = 1.21), yet the difference between weeks 3 and 6 was not significant. Furthermore, the training led to significant increases in the plantar flexion moment after weeks 3 (12%, g = 0.72) and 6 (13%, g = 0.75) with no significant difference between weeks. For the knee extension moment, a significant increase was found only after week 6 (11%, g = 1.07). The control group did not show any significant changes. This study provides evidence that a challenging training of dynamic stability in the presence of perturbations can improve balance recovery performance and leg strength of older adults already after a few weeks. Therefore, short-term training interventions using this paradigm may be an effective strategy for fall prevention in the elderly population, particularly when intervention time is limited.
Collapse
Affiliation(s)
- Sebastian Bohm
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin Mandla-Liebsch
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Falk Mersmann
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
43
|
Francis P, Schofield G. From barefoot hunter gathering to shod pavement pounding. Where to from here? A narrative review. BMJ Open Sport Exerc Med 2020; 6:e000577. [PMID: 32405429 PMCID: PMC7202747 DOI: 10.1136/bmjsem-2019-000577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2020] [Indexed: 12/22/2022] Open
Abstract
Understanding the current prevalence and incidence of running injury from an evolutionary perspective has sparked great debate. Proponents of the evolutionary approach to understanding running injury suggest that humans ran using less injurious biomechanics prior to the invention of cushioned running shoes. Those who disagree with this view, point to the many runners, wearing cushioned running shoes, who do not get injured and suggest that the evolutionary approach is indulging in a 'natural fallacy'. This polarises the scientific debate into discrete categories such as 'shod' vs 'barefoot'. This review aims, first, to describe humans' innate impact moderating mechanisms which arise from our evolutionary legacy. Second, we discuss the impact of footwear on these mechanisms and the potential link to injury in some runners. Finally, we discuss the role of barefoot training in sports medicine and attempt to make some practical suggestions as to how it might be integrated in our modern urban environments.
Collapse
Affiliation(s)
- Peter Francis
- Department of Science and Health, Institute of Technology Carlow, Carlow, Ireland
| | - Grant Schofield
- Human Potential Centre, School of Sport and Recreation, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
44
|
Eng CM, Konow N, Tijs C, Holt NC, Biewener AA. In vivo force-length and activation dynamics of two distal rat hindlimb muscles in relation to gait and grade. ACTA ACUST UNITED AC 2019; 222:jeb.205559. [PMID: 31753907 DOI: 10.1242/jeb.205559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 11/14/2019] [Indexed: 01/19/2023]
Abstract
Muscle function changes to meet the varying mechanical demands of locomotion across different gait and grade conditions. A muscle's work output is determined by time-varying patterns of neuromuscular activation, muscle force and muscle length change, but how these patterns change under different conditions in small animals is not well defined. Here, we report the first integrated in vivo force-length and activation patterns in rats, a commonly used small animal model, to evaluate the dynamics of two distal hindlimb muscles (medial gastrocnemius and plantaris) across a range of gait (walk, trot and gallop) and grade (level and incline) conditions. We use these data to explore how the pattern of force production, muscle activation and muscle length changes across conditions in a small quadrupedal mammal. As hypothesized, we found that the rat muscles show limited fascicle strains during active force generation in stance across gaits and grades, indicating that these distal rat muscles generate force economically but perform little work, similar to patterns observed in larger animals during level locomotion. Additionally, given differences in fiber type composition and variation in motor unit recruitment across the gait and grade conditions examined here for these muscles, the in vivo force-length behavior and neuromuscular activation data reported here can be used to validate improved two-element Hill-type muscle models.
Collapse
Affiliation(s)
- Carolyn M Eng
- Concord Field Station, Department of Organismic and Evolutionary Biology, Harvard University, Bedford 01730, MA, USA .,Department of Mechanical Engineering & Materials Science, Yale University, New Haven, CT 06520-8292, USA
| | - Nicolai Konow
- Concord Field Station, Department of Organismic and Evolutionary Biology, Harvard University, Bedford 01730, MA, USA.,Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Chris Tijs
- Concord Field Station, Department of Organismic and Evolutionary Biology, Harvard University, Bedford 01730, MA, USA
| | - Natalie C Holt
- Concord Field Station, Department of Organismic and Evolutionary Biology, Harvard University, Bedford 01730, MA, USA.,Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, Riverside, CA 92507, USA
| | - Andrew A Biewener
- Concord Field Station, Department of Organismic and Evolutionary Biology, Harvard University, Bedford 01730, MA, USA
| |
Collapse
|
45
|
Roberts TJ. Some Challenges of Playing with Power: Does Complex Energy Flow Constrain Neuromuscular Performance? Integr Comp Biol 2019; 59:1619-1628. [PMID: 31241134 DOI: 10.1093/icb/icz108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many studies of the flow of energy between the body, muscles, and elastic elements highlight advantages of the storage and recovery of elastic energy. The spring-like action of structures associated with muscles allows for movements that are less costly, more powerful and safer than would be possible with contractile elements alone. But these actions also present challenges that might not be present if the pattern of energy flow were simpler, for example, if power were always applied directly from muscle to motions of the body. Muscle is under the direct control of the nervous system, and precise modulation of activity can allow for finely controlled displacement and force. Elastic structures deform under load in a predictable way, but are not under direct control, thus both displacement and the flow of energy act at the mercy of the mechanical interaction of muscle and forces associated with movement. Studies on isolated muscle-tendon units highlight the challenges of controlling such systems. A carefully tuned activation pattern is necessary for effective cycling of energy between tendon and the environment; most activation patterns lead to futile cycling of energy between tendon and muscle. In power-amplified systems, "elastic backfire" sometimes occurs, where energy loaded into tendon acts to lengthen active muscles, rather than accelerate the body. Classic models of proprioception that rely on muscle spindle organs for sensing muscle and joint displacement illustrate how elastic structures might influence sensory feedback by decoupling joint movement from muscle fiber displacements. The significance of the complex flow of energy between muscles, elastic elements and the body for neuromotor control is worth exploring.
Collapse
Affiliation(s)
- Thomas J Roberts
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| |
Collapse
|
46
|
Olsen AM. A mobility-based classification of closed kinematic chains in biomechanics and implications for motor control. ACTA ACUST UNITED AC 2019; 222:222/21/jeb195735. [PMID: 31694932 DOI: 10.1242/jeb.195735] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Closed kinematic chains (CKCs), links connected to form one or more closed loops, are used as simple models of musculoskeletal systems (e.g. the four-bar linkage). Previous applications of CKCs have primarily focused on biomechanical systems with rigid links and permanently closed chains, which results in constant mobility (the total degrees of freedom of a system). However, systems with non-rigid elements (e.g. ligaments and muscles) and that alternate between open and closed chains (e.g. standing on one foot versus two) can also be treated as CKCs with changing mobility. Given that, in general, systems that have fewer degrees of freedom are easier to control, what implications might such dynamic changes in mobility have for motor control? Here, I propose a CKC classification to explain the different ways in which mobility of musculoskeletal systems can change dynamically during behavior. This classification is based on the mobility formula, taking into account the number of loops in the CKC and the nature of the constituent joint mobilities. I apply this mobility-based classification to five biomechanical systems: the human lower limbs, the operculum-lower jaw mechanism of fishes, the upper beak rotation mechanism of birds, antagonistic muscles at the human ankle joint and the human jaw processing a food item. I discuss the implications of this classification, including that mobility itself may be dynamically manipulated to simplify motor control. The principal aim of this Commentary is to provide a framework for quantifying mobility across diverse musculoskeletal systems to evaluate its potentially key role in motor control.
Collapse
Affiliation(s)
- Aaron M Olsen
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
47
|
Nyakatura JA, Baumgarten R, Baum D, Stark H, Youlatos D. Muscle internal structure revealed by contrast-enhanced μCT and fibre recognition: The hindlimb extensors of an arboreal and a fossorial squirrel. Mamm Biol 2019. [DOI: 10.1016/j.mambio.2019.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
48
|
Dick TJM, Punith LK, Sawicki GS. Humans falling in holes: adaptations in lower-limb joint mechanics in response to a rapid change in substrate height during human hopping. J R Soc Interface 2019; 16:20190292. [PMID: 31575349 DOI: 10.1098/rsif.2019.0292] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In getting from here to there, we continuously negotiate complex environments and unpredictable terrain. Our ability to stay upright in the face of obstacles, such as holes in the ground, is quite remarkable. However, we understand relatively little about how humans adjust limb mechanical behaviour to recover from unexpected perturbations. In this study, we determined how the joints of the lower-limb respond to recover from a rapid, unexpected drop in substrate height during human hopping. We recorded lower-limb kinematics and kinetics while subjects performed steady-state hopping at their preferred frequency on an elevated platform (5, 10 and 20 cm). At an unknown time, we elicited an unexpected perturbation (i.e. a hole in the ground) via the rapid removal of the platform. Based on previous research in bipedal birds, we hypothesized (i) that distal joints would play an increased role in fall recovery when compared to steady-state hopping, and (ii) that patterns of joint power redistribution would be more pronounced with increases in perturbation height. Our results suggest that humans successfully recover from falling in a hole by increasing the energy absorbed predominantly in distal lower-limb joints (i.e. the ankle) across perturbation heights ranging from 5 to 10 cm. However, with increased perturbation height (20 cm) humans increase their reliance on the more proximal lower-limb joints (i.e. the knee and the hip) to absorb mechanical energy and stabilize fall recovery. Further investigations into the muscle-tendon mechanics underlying these joint-level responses will likely provide additional insights into the neuromotor control strategies used to regain the stability following unexpected perturbations and provide biological inspiration for the future design of wearable devices capable of performing within unpredictable environments.
Collapse
Affiliation(s)
- Taylor J M Dick
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - Laksh K Punith
- George W. Woodruff School of Mechanical Engineering and School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gregory S Sawicki
- George W. Woodruff School of Mechanical Engineering and School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
49
|
Antoniak G, Biswas T, Cortes N, Sikdar S, Chun C, Bhandawat V. Spring-loaded inverted pendulum goes through two contraction-extension cycles during the single-support phase of walking. Biol Open 2019; 8:bio.043695. [PMID: 31097445 PMCID: PMC6602329 DOI: 10.1242/bio.043695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Despite the overall complexity of legged locomotion, the motion of the center of mass (COM) itself is relatively simple, and can be qualitatively described by simple mechanical models. In particular, walking can be qualitatively modeled by a simple model in which each leg is described by a spring-loaded inverted pendulum (SLIP). However, SLIP has many limitations and is unlikely to serve as a quantitative model. As a first step to obtaining a quantitative model for walking, we explored the ability of SLIP to model the single-support phase of walking, and found that SLIP has two limitations. First, it predicts larger horizontal ground reaction forces (GRFs) than empirically observed. A new model – angular and radial spring-loaded inverted pendulum (ARSLIP) – can overcome this deficit. Second, although the leg spring (surprisingly) goes through contraction-extension-contraction-extensions (CECEs) during the single-support phase of walking and can produce the characteristic M-shaped vertical GRFs, modeling the single-support phase requires active elements. Despite these limitations, SLIP as a model provides important insights. It shows that the CECE cycling lengthens the stance duration allowing the COM to travel passively for longer, and decreases the velocity redirection between the beginning and end of a step. Summary: We quantitatively evaluate a simple model for human walking based on two-spring and find that this model describes many features of human walking.
Collapse
Affiliation(s)
| | - Tirthabir Biswas
- Department of Physics, Loyola University, New Orleans, LA 70118, USA
| | - Nelson Cortes
- Department of Bioengineering, George Mason University, Fairfax, VA 22030, USA
| | - Siddhartha Sikdar
- Department of Bioengineering, George Mason University, Fairfax, VA 22030, USA
| | - Chanwoo Chun
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Vikas Bhandawat
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
50
|
Reynaga CM, Eaton CE, Strong GA, Azizi E. Compliant Substrates Disrupt Elastic Energy Storage in Jumping Tree Frogs. Integr Comp Biol 2019; 59:1535-1545. [DOI: 10.1093/icb/icz069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Abstract
Arboreal frogs navigate complex environments and face diverse mechanical properties within their physical environment. Such frogs may encounter substrates that are damped and absorb energy or are elastic and can store and release energy as the animal pushes off during take-off. When dealing with a compliant substrate, a well-coordinated jump would allow for the recovery of elastic energy stored in the substrate to amplify mechanical power, effectively adding an in-series spring to the hindlimbs. We tested the hypothesis that effective use of compliant substrates requires active changes to muscle activation and limb kinematics to recover energy from the substrate. We designed an actuated force platform, modulated with a real-time feedback controller to vary the stiffness of the substrate. We quantified the kinetics and kinematics of Cuban tree frogs (Osteopilus septentrionalis) jumping off platforms at four different stiffness conditions. In addition, we used electromyography to examine the relationship between muscle activation patterns and substrate compliance during take-off in a knee extensor (m. cruralis) and an ankle extensor (m. plantaris). We find O. septentrionalis do not modulate motor patterns in response to substrate compliance. Although not actively modulated, changes in the rate of limb extension suggest a trade-off between power amplification and energy recovery from the substrate. Our results suggest that compliant substrates disrupt the inertial catch mechanism that allows tree frogs to store elastic energy in the tendon, thereby slowing the rate of limb extension and increasing the duration of take-off. However, the slower rate of limb extension does provide additional time to recover more energy from the substrate. This work serves to broaden our understanding of how the intrinsic mechanical properties of a system may broaden an organism’s capacity to maintain performance when facing environmental perturbations.
Collapse
Affiliation(s)
- Crystal M Reynaga
- Department of Biology, Duke University, Durham, NC, USA
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA, USA
| | - Caitrin E Eaton
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA, USA
- Department of Computer Science, Colby College, 5852 Mayflower Hill, Waterville, ME, USA
| | - Galatea A Strong
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA, USA
| | - Emanuel Azizi
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA, USA
| |
Collapse
|