1
|
Xu Y, Zhu W, Dai B, Xiao H, Chen J. The rod cell, a small form of Candida albicans, possesses superior fitness to the host gut and adaptation to commensalism. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1278-1288. [PMID: 38887798 PMCID: PMC11532210 DOI: 10.3724/abbs.2024066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/06/2024] [Indexed: 06/20/2024] Open
Abstract
Candida albicans deploys various morphological forms through complex switching mechanisms, ensuring its survival and thriving as a commensal or pathogen in vastly different human niches. In this study, we demonstrate that a novel ''rod'' morphological form of C. albicans coexists and is interchangeable with previously reported white, gray, and opaque forms, constituting a tetra-stable phenotypic switching system. Rod cells arise from the efg1 mutant of SC5314 cells or from the clinical BJ1097 strain cultured under glucose-free conditions. They are characterized by a distinct gene expression profile and can be stably maintained through in vitro passaging or in vivo inhabitation of the gastrointestinal (GI) tract of mice. Remarkably, the majority of the efg1 mutant cells become rod cells in N-acetylglucosamine (GlcNAc)-containing medium, and the GlcNAc sensor Ngs1 is instrumental in converting the white or gray cells to the rod cells. Conversely, glucose inhibits rod cells through Cph1; consequently, the loss of Cph1 in the efg1 mutant cells permits their conversion to rod cells in glucose-replete media. Notably, rod cells of the efg1/ cph1 mutant display superior adaptation and longer persistence in the murine GI environment than wild-type white cells. Taken together, these findings establish rod cells as a previously unappreciated form that is not only morphologically and transcriptionally distinguishable but also defined by specific genetic and environmental determinants, shedding light on complex fungus-host interactions.
Collapse
Affiliation(s)
- Yinxing Xu
- State Key Laboratory of Molecular BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai200031China
| | - Wencheng Zhu
- State Key Laboratory of Molecular BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai200031China
- Institute of NeuroscienceCAS Center for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghai200031China
| | - Baodi Dai
- State Key Laboratory of Molecular BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai200031China
| | - Hui Xiao
- The Center for MicrobesDevelopment and HealthCAS Key Laboratory of Molecular Virology & ImmunologyShanghai Institute of Immunity and InfectionUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Jiangye Chen
- State Key Laboratory of Molecular BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai200031China
| |
Collapse
|
2
|
Huang Y, Su Y, Chen X, Xiao M, Xu Y. Insight into Virulence and Mechanisms of Amphotericin B Resistance in the Candida haemulonii Complex. J Fungi (Basel) 2024; 10:615. [PMID: 39330375 PMCID: PMC11433262 DOI: 10.3390/jof10090615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
The Candida haemulonii complex includes emerging opportunistic human fungal pathogens with documented multidrug-resistance profiles. It comprises Candida haemulonii sensu stricto, Candida haemulonii var. vulnera, Candida duobushaemulonii, Candida pseudohaemulonii, and Candida vulturna. In recent years, rates of clinical isolation of strains from this complex have increased in multiple countries, including China, Malaysia, and Brazil. Biofilm formation, hydrolytic enzymes, surface interaction properties, phenotype switching and cell aggregation abilities, extracellular vesicles production, stress response, and immune evasion help these fungi to infect the host and exert pathological effects. Multidrug resistance profiles also enhance the threat they pose; they exhibit low susceptibility to echinocandins and azoles and an intrinsic resistance to amphotericin B (AMB), the first fungal-specific antibiotic. AMB is commonly employed in antifungal treatments, and it acts via several known mechanisms. Given the propensity of clinical Candida species to initiate bloodstream infections, clarifying how C. haemulonii resists AMB is of critical clinical importance. This review outlines our present understanding of the C. haemulonii complex's virulence factors, the mechanisms of action of AMB, and the mechanisms underlying AMB resistance.
Collapse
Affiliation(s)
- Yuyan Huang
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing 100730, China
- Graduate School, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Yanyu Su
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing 100730, China
- Graduate School, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Xinfei Chen
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing 100730, China
| | - Meng Xiao
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing 100730, China
| | - Yingchun Xu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing 100730, China
| |
Collapse
|
3
|
Deng Y, Xu M, Li S, Bing J, Zheng Q, Huang G, Liao W, Pan W, Tao L. A single gene mutation underpins metabolic adaptation and acquisition of filamentous competence in the emerging fungal pathogen Candida auris. PLoS Pathog 2024; 20:e1012362. [PMID: 38976759 PMCID: PMC11257696 DOI: 10.1371/journal.ppat.1012362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/18/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024] Open
Abstract
Filamentous cell growth is a vital property of fungal pathogens. The mechanisms of filamentation in the emerging multidrug-resistant fungal pathogen Candida auris are poorly understood. Here, we show that exposure of C. auris to glycerol triggers a rod-like filamentation-competent (RL-FC) phenotype, which forms elongated filamentous cells after a prolonged culture period. Whole-genome sequencing analysis reveals that all RL-FC isolates harbor a mutation in the C2H2 zinc finger transcription factor-encoding gene GFC1 (Gfc1 variants). Deletion of GFC1 leads to an RL-FC phenotype similar to that observed in Gfc1 variants. We further demonstrate that GFC1 mutation causes enhanced fatty acid β-oxidation metabolism and thereby promotes RL-FC/filamentous growth. This regulation is achieved through a Multiple Carbon source Utilizer (Mcu1)-dependent mechanism. Interestingly, both the evolved RL-FC isolates and the gfc1Δ mutant exhibit an enhanced ability to colonize the skin. Our results reveal that glycerol-mediated GFC1 mutations are beneficial during C. auris skin colonization and infection.
Collapse
Affiliation(s)
- Yuchen Deng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Ming Xu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuaihu Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Bing
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiushi Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Guanghua Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Wanqing Liao
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Weihua Pan
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Li Tao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
4
|
Soll DR. White-opaque switching in Candida albicans: cell biology, regulation, and function. Microbiol Mol Biol Rev 2024; 88:e0004322. [PMID: 38546228 PMCID: PMC11332339 DOI: 10.1128/mmbr.00043-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024] Open
Abstract
SUMMARYCandida albicans remains a major fungal pathogen colonizing humans and opportunistically invading tissue when conditions are predisposing. Part of the success of C. albicans was attributed to its capacity to form hyphae that facilitate tissue invasion. However, in 1987, a second developmental program was discovered, the "white-opaque transition," a high-frequency reversible switching system that impacted most aspects of the physiology, cell architecture, virulence, and gene expression of C. albicans. For the 15 years following the discovery of white-opaque switching, its role in the biology of C. albicans remained elusive. Then in 2002, it was discovered that in order to mate, C. albicans had to switch from white to opaque, a unique step in a yeast mating program. In 2006, three laboratories simultaneously identified a putative master switch gene, which led to a major quest to elucidate the underlying mechanisms that regulate white-opaque switching. Here, the evolving discoveries related to this complicated phenotypic transition are reviewed in a quasi-chronological order not only to provide a historical perspective but also to highlight several unique characteristics of white-opaque switching, which are fascinating and may be important to the life history and virulence of this persistent pathogen. Many of these characteristics have not been fully investigated, in many cases, leaving intriguing questions unresolved. Some of these include the function of unique channeled pimples on the opaque cell wall, the capacity to form opaque cells in the absence of the master switch gene WOR1, the formation of separate "pathogenic" and "sexual" biofilms, and the possibility that a significant portion of natural strains colonizing the lower gastrointestinal tract may be in the opaque phase. This review addresses many of these characteristics with the intent of engendering interest in resolving questions that remain unanswered.
Collapse
Affiliation(s)
- David R. Soll
- Department of Biology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
5
|
Wang X, Zhou S, Hu X, Ye C, Nie Q, Wang K, Yan S, Lin J, Xu F, Li M, Wu Q, Sun L, Liu B, Zhang Y, Yun C, Wang X, Liu H, Yin WB, Zhao D, Hang J, Zhang S, Jiang C, Pang Y. Candida albicans accelerates atherosclerosis by activating intestinal hypoxia-inducible factor2α signaling. Cell Host Microbe 2024; 32:964-979.e7. [PMID: 38754418 DOI: 10.1016/j.chom.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 03/17/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
The gut microbiota is closely linked to atherosclerosis. However, the role of intestinal fungi, essential members of the complex microbial community, in atherosclerosis is poorly understood. Herein, we show that gut fungi dysbiosis is implicated in patients with dyslipidemia, characterized by higher levels of Candida albicans (C. albicans), which are positively correlated with plasma total cholesterol and low-density lipoprotein-cholesterol (LDL-C) levels. Furthermore, C. albicans colonization aggravates atherosclerosis progression in a mouse model of the disease. Through gain- and loss-of-function studies, we show that an intestinal hypoxia-inducible factor 2α (HIF-2α)-ceramide pathway mediates the effect of C. albicans. Mechanistically, formyl-methionine, a metabolite of C. albicans, activates intestinal HIF-2α signaling, which drives increased ceramide synthesis to accelerate atherosclerosis. Administration of the HIF-2α selective antagonist PT2385 alleviates atherosclerosis in mice by reducing ceramide levels. Our findings identify a role for intestinal fungi in atherosclerosis progression and highlight the intestinal HIF-2α-ceramide pathway as a target for atherosclerosis treatment.
Collapse
Affiliation(s)
- Xuemei Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Shuang Zhou
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Xiaomin Hu
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Chuan Ye
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Qixing Nie
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Kai Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Sen Yan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Jun Lin
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Feng Xu
- Clinical Pharmacology and Pharmacometrics, Janssen China Research & Development, Beijing, China
| | - Meng Li
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Qing Wu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lulu Sun
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China; State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Bo Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yi Zhang
- Department of General Surgery, Cancer Center, Peking University Third Hospital, Beijing 100191, China; Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing 100191, China
| | - Chuyu Yun
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Xian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Huiying Liu
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dongyu Zhao
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jing Hang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.
| | - Shuyang Zhang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.
| | - Changtao Jiang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing 100191, China.
| | - Yanli Pang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
6
|
Alonso-Monge R, Cortés-Prieto I, Román E, Pla J. Morphogenetic transitions in the adaptation of Candida albicans to the mammalian gut. Microbes Infect 2024; 26:105253. [PMID: 37977323 DOI: 10.1016/j.micinf.2023.105253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/06/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Candida albicans is a pathobiont in humans that forms part of the mycobiota in healthy individuals and can cause different pathologies upon alterations of the host defenses. The mammalian gut is clinically relevant as this niche is the most common pool for bloodstream-derived infections. The ability of C. albicans to switch from yeast to hypha has been related to the commensal-to-pathogen transition and is, therefore, considered relevant in virulence. Recently, filaments have been implicated in the humoral response in the gut. C. albicans exhibits other morphologies that play different roles in pathogenicity and commensalism. This review focuses on the role of these morphological transitions in C. albicans proliferation and its establishment as a commensal in the mammalian gut, paying special attention to the transcription factors involved in their regulation.
Collapse
Affiliation(s)
- Rebeca Alonso-Monge
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Isabel Cortés-Prieto
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Elvira Román
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Jesús Pla
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain.
| |
Collapse
|
7
|
Cui H, Yang D, Gong S, Zhang Y, Dong B, Su C, Yang L, Lu Y. The transcription factor Ofi1 is critical for white-opaque switching in natural MTLa/α isolates of Candida albicans. Mol Microbiol 2024; 121:275-290. [PMID: 38167837 DOI: 10.1111/mmi.15222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/11/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024]
Abstract
Candida albicans, an opportunistic fungal pathogen, is able to switch between two distinct cell types: white and opaque. While white-to-opaque switching is typically repressed by the a1/α2 heterodimer in MTLa/α cells, it was recently reported that switching can also occur in some natural MTLa/α strains under certain environmental conditions. However, the regulatory program governing white-opaque switching in MTLa/α cells is not fully understood. Here, we collected 90 clinical isolates of C. albicans, 16 of which possess the ability to form opaque colonies. Among the known regulators implicated in white-opaque switching, only OFI1 exhibited significantly higher expression in these 16 strains compared to the reference strain SC5314. Importantly, ectopic expression of OFI1 in both clinical isolates and laboratory strains promoted switching frequency even in the absence of N-acetylglucosamine and high CO2 , the optimal condition for white-to-opaque switching in MTLa/α strains. Deleting OFI1 resulted in a reduction in opaque-formation frequency and the stability of the opaque cell in MTLa/α cells. Ofi1 binds to the promoters of WOR1 and WOR3 to induce their expression, which facilitates white-to-opaque switching. Ofi1 is conserved across the CTG species. Altogether, our study reported the identification of a transcription factor Ofi1 as the critical regulator that promotes white-to-opaque switching in natural MTLa/α isolates of C. albicans.
Collapse
Affiliation(s)
- Hao Cui
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Dandan Yang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Shengwei Gong
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yaling Zhang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Bin Dong
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chang Su
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lianjuan Yang
- Shanghai Dermatology Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yang Lu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Lohse MB, Ziv N, Johnson AD. Variation in transcription regulator expression underlies differences in white-opaque switching between the SC5314 reference strain and the majority of Candida albicans clinical isolates. Genetics 2023; 225:iyad162. [PMID: 37811798 PMCID: PMC10627253 DOI: 10.1093/genetics/iyad162] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/26/2023] [Indexed: 10/10/2023] Open
Abstract
Candida albicans, a normal member of the human microbiome and an opportunistic fungal pathogen, undergoes several morphological transitions. One of these transitions is white-opaque switching, where C. albicans alternates between 2 stable cell types with distinct cellular and colony morphologies, metabolic preferences, mating abilities, and interactions with the innate immune system. White-to-opaque switching is regulated by mating type; it is repressed by the a1/α2 heterodimer in a/α cells, but this repression is lifted in a/a and α/α mating type cells (each of which are missing half of the repressor). The widely used C. albicans reference strain, SC5314, is unusual in that white-opaque switching is completely blocked when the cells are a/α; in contrast, most other C. albicans a/α strains can undergo white-opaque switching at an observable level. In this paper, we uncover the reason for this difference. We show that, in addition to repression by the a1/α2 heterodimer, SC5314 contains a second block to white-opaque switching: 4 transcription regulators of filamentous growth are upregulated in this strain and collectively suppress white-opaque switching. This second block is missing in the majority of clinical strains, and, although they still contain the a1/α2 heterodimer repressor, they exhibit a/α white-opaque switching at an observable level. When both blocks are absent, white-opaque switching occurs at very high levels. This work shows that white-opaque switching remains intact across a broad group of clinical strains, but the precise way it is regulated and therefore the frequency at which it occurs varies from strain to strain.
Collapse
Affiliation(s)
- Matthew B Lohse
- Department of Microbiology and Immunology, University of California - San Francisco, San Francisco, CA 94143, USA
| | - Naomi Ziv
- Department of Microbiology and Immunology, University of California - San Francisco, San Francisco, CA 94143, USA
| | - Alexander D Johnson
- Department of Microbiology and Immunology, University of California - San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
9
|
Guan G, Tao L, Li C, Xu M, Liu L, Bennett RJ, Huang G. Glucose depletion enables Candida albicans mating independently of the epigenetic white-opaque switch. Nat Commun 2023; 14:2067. [PMID: 37045865 PMCID: PMC10097730 DOI: 10.1038/s41467-023-37755-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
The human fungal pathogen Candida albicans can switch stochastically and heritably between a "white" phase and an "opaque" phase. Opaque cells are the mating-competent form of the species, whereas white cells are thought to be essentially "sterile". Here, we report that glucose depletion, a common nutrient stress, enables C. albicans white cells to undergo efficient sexual mating. The relative expression levels of pheromone-sensing and mating-associated genes (including STE2/3, MFA1, MFα1, FIG1, FUS1, and CEK1/2) are increased under glucose depletion conditions, while expression of mating repressors TEC1 and DIG1 is decreased. Cph1 and Tec1, factors that act downstream of the pheromone MAPK pathway, play opposite roles in regulating white cell mating as TEC1 deletion or CPH1 overexpression promotes white cell mating. Moreover, inactivation of the Cph1 repressor Dig1 increases white cell mating ~4000 fold in glucose-depleted medium relative to that in the presence of glucose. Our findings reveal that the white-to-opaque epigenetic switch may not be a prerequisite for sexual mating in C. albicans in nature.
Collapse
Affiliation(s)
- Guobo Guan
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Institute of Infectious Disease and Biosecurity and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Tao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Institute of Infectious Disease and Biosecurity and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Chao Li
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Institute of Infectious Disease and Biosecurity and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Ming Xu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Institute of Infectious Disease and Biosecurity and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Ling Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Richard J Bennett
- Molecular Microbiology and Immunology Department, Brown University, Providence, RI, 02912, USA
| | - Guanghua Huang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Institute of Infectious Disease and Biosecurity and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, China.
- Shanghai Huashen Institute of Microbes and Infections, Shanghai, 200052, China.
| |
Collapse
|
10
|
Gao N, Dai B, Nie X, Zhao Q, Zhu W, Chen J. Fun30 nucleosome remodeller regulates white-to-opaque switching in Candida albicans. Acta Biochim Biophys Sin (Shanghai) 2023; 55:508-517. [PMID: 36896644 PMCID: PMC10160231 DOI: 10.3724/abbs.2023031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Candida albicans ( C. albicans) is an opportunistic pathogen in humans and possesses a white-opaque heritable switching system. Wor1 is a master regulator of white-opaque switching and is essential for opaque cell formation in C. albicans. However, the regulatory network of Wor1 in white-opaque switching is still vague. In this study, we obtain a series of Wor1-interacting proteins using LexA-Wor1 as bait. Among these proteins, function unknown now 30 (Fun30) interacts with Wor1 in vitro and in vivo. Fun30 expression is upregulated in opaque cells at the transcriptional and protein levels. Loss of FUN30 attenuates white-to-opaque switching, while ectopic expression of FUN30 significantly increases white-to-opaque switching in an ATPase activity-dependent manner. Furthermore, FUN30 upregulation is dependent on CO 2; loss of FLO8, a key CO 2-sensing transcriptional regulator, abolishes FUN30 upregulation. Interestingly, deletion of FUN30 affects the WOR1 expression regulation feedback loop. Thus, our results indicate that the chromatin remodeller Fun30 interacts with Wor1 and is required for WOR1 expression and opaque cell formation.
Collapse
Affiliation(s)
- Ning Gao
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Baodi Dai
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinyi Nie
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qun Zhao
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wencheng Zhu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.,Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiangye Chen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
11
|
Yadav V, Sun S, Heitman J. On the evolution of variation in sexual reproduction through the prism of eukaryotic microbes. Proc Natl Acad Sci U S A 2023; 120:e2219120120. [PMID: 36867686 PMCID: PMC10013875 DOI: 10.1073/pnas.2219120120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/23/2023] [Indexed: 03/05/2023] Open
Abstract
Almost all eukaryotes undergo sexual reproduction to generate diversity and select for fitness in their population pools. Interestingly, the systems by which sex is defined are highly diverse and can even differ between evolutionarily closely related species. While the most commonly known form of sex determination involves males and females in animals, eukaryotic microbes can have as many as thousands of different mating types for the same species. Furthermore, some species have found alternatives to sexual reproduction and prefer to grow clonally and yet undergo infrequent facultative sexual reproduction. These organisms are mainly invertebrates and microbes, but several examples are also present among vertebrates suggesting that alternative modes of sexual reproduction evolved multiple times throughout evolution. In this review, we summarize the sex-determination modes and variants of sexual reproduction found across the eukaryotic tree of life and suggest that eukaryotic microbes provide unique opportunities to study these processes in detail. We propose that understanding variations in modes of sexual reproduction can serve as a foundation to study the evolution of sex and why and how it evolved in the first place.
Collapse
Affiliation(s)
- Vikas Yadav
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| |
Collapse
|
12
|
Jafarian H, Gharaghani M, Asnafi AA, Hardani AK, Zarei‐Mahmoudabadi A. Phenotype, genotype, and mating type determination in oral
Candida albicans
isolates from pediatric patients with neutropenia. J Clin Lab Anal 2022; 36:e24664. [PMID: 36082467 PMCID: PMC9459309 DOI: 10.1002/jcla.24664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/08/2022] Open
Abstract
Background The most frequent species of Candida to infect and colonize patients with neutropenia is still Candida albicans. This study aimed to provide detailed information on the phenotype, genotype, and mating type of oral C. albicans isolated from neutropenic pediatric patients, and to investigate how these characteristics are related. Methods Two hundred fifty‐four oral samples from patients under 18 years old with neutropenia and malignancies were collected from January to October 2021. Samples were cultured on CHROMagar Candida. Isolates of C. albicans were identified with the germ tube test, chlamydospore production on cornmeal agar, and PCR‐RFLP. Genotyping of C. albicans isolates was carried out by amplifying the 25S rDNA gene with specific CAINT‐L and CA‐INT‐R primers. MTLa1 and MTLα1 primers were used to identify each mating type. Yeast peptone dextrose supplemented with phloxine B was used to identify different phenotypes. Results Ninety‐two (36%) patients were positive for C. albicans. The mean age of patients was 7.85. Fifty‐three (58.9%) isolates demonstrated type A, 15 (16.7%) type B, 15 (16.7%) types D/E, and 7 (7.7%) type C. Three isolates each (3.3%) were homozygous for MTLa or homozygous for MTLα. All of the MTL‐homozygous isolates were genotype A. There was a significant correlation between patients' underlying disease and genotype (p = 0.036). There was a significant correlation between mating type and genotype (p = 0.000). Conclusion Most of the isolates exhibited a white phenotype, noted in the literature as the most virulent. Moreover, heterozygous strains were frequent and may play a role in Candida colonization.
Collapse
Affiliation(s)
- Hadis Jafarian
- Department of Medical Mycology, School of Medicine Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
- Infectious and Tropical Diseases Research Center, Health Research Institute Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| | - Maral Gharaghani
- Medicinal Plants Research Center Yasuj University of Medical Sciences Yasuj Iran
| | - Ali Amin Asnafi
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| | - Amir Kamal Hardani
- Department of Pediatrics, School of Medicine, Abuzar Children Hospital Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| | - Ali Zarei‐Mahmoudabadi
- Department of Medical Mycology, School of Medicine Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
- Infectious and Tropical Diseases Research Center, Health Research Institute Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| |
Collapse
|
13
|
Mba IE, Nweze EI, Eze EA, Anyaegbunam ZKG. Genome plasticity in Candida albicans: A cutting-edge strategy for evolution, adaptation, and survival. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 99:105256. [PMID: 35231665 DOI: 10.1016/j.meegid.2022.105256] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/12/2021] [Accepted: 02/22/2022] [Indexed: 12/15/2022]
Abstract
Candida albicans is the most implicated fungal species that grows as a commensal or opportunistic pathogen in the human host. It is associated with many life-threatening infections, especially in immunocompromised persons. The genome of Candida albicans is very flexible and can withstand a wide assortment of variations in a continuously changing environment. Thus, genome plasticity is central to its adaptation and has long been of considerable interest. C. albicans has a diploid heterozygous genome that is highly dynamic and can display variation from small to large scale chromosomal rearrangement and aneuploidy, which have implications in drug resistance, virulence, and pathogenicity. This review presents an up-to-date overview of recent genomic studies involving C. albicans. It discusses the accumulating evidence that shows how mitotic recombination events, ploidy dynamics, aneuploidy, and loss of heterozygosity (LOH) influence evolution, adaptation, and survival in C. albicans. Understanding the factors that affect the genome is crucial for a proper understanding of species and rapid development and adjustment of therapeutic strategies to mitigate their spread.
Collapse
Affiliation(s)
| | | | | | - Zikora Kizito Glory Anyaegbunam
- Institution for Drug-Herbal Medicine-Excipient-Research and Development, Faculty of Pharmaceutical Sciences, Nsukka, Nigeria
| |
Collapse
|
14
|
Glazier VE. EFG1, Everyone’s Favorite Gene in Candida albicans: A Comprehensive Literature Review. Front Cell Infect Microbiol 2022; 12:855229. [PMID: 35392604 PMCID: PMC8980467 DOI: 10.3389/fcimb.2022.855229] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/24/2022] [Indexed: 12/18/2022] Open
Abstract
Candida sp. are among the most common fungal commensals found in the human microbiome. Although Candida can be found residing harmlessly on the surface of the skin and mucosal membranes, these opportunistic fungi have the potential to cause superficial skin, nail, and mucus membrane infections as well as life threatening systemic infections. Severity of infection is dependent on both fungal and host factors including the immune status of the host. Virulence factors associated with Candida sp. pathogenicity include adhesin proteins, degradative enzymes, phenotypic switching, and morphogenesis. A central transcriptional regulator of morphogenesis, the transcription factor Efg1 was first characterized in Candida albicans in 1997. Since then, EFG1 has been referenced in the Candida literature over three thousand times, with the number of citations growing daily. Arguably one of the most well studied genes in Candida albicans, EFG1 has been referenced in nearly all contexts of Candida biology from the development of novel therapeutics to white opaque switching, hyphae morphology to immunology. In the review that follows we will synthesize the research that has been performed on this extensively studied transcription factor and highlight several important unanswered questions.
Collapse
|
15
|
Candida albicans MTLa2 regulates the mating response through both the a-factor and α-factor sensing pathways. Fungal Genet Biol 2022; 159:103664. [PMID: 35026387 DOI: 10.1016/j.fgb.2022.103664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 11/23/2022]
Abstract
The diploid fungal pathogen Candida albicans has three configurations at the mating type locus (MTL): heterozygous (a/α) and homozygous (a/a or α/α). C. albicans MTL locus encodes four transcriptional regulators (MTLa1, a2, α1, and α2). The conserved a1/α2 heterodimer controls not only mating competency but also white-opaque heritable phenotypic switching. However, the regulatory roles of MTLa2 and α1 are more complex and remain to be investigated. MTLa/a cells often express a cell type-specific genes and mate as the a-type partner, whereas MTLα/α cells express α-specific genes and mate as the α-type partner. In this study, we report that the MTLa2 regulator controls the formation of mating projections through both the a- and α-pheromone-sensing pathways and thus results in the bi-mater feature of "α cells" of C. albicans. Ectopic expression of MTLa2 in opaque α cells activates the expression of not only MFA1 and STE3 (a-pheromone receptor) but also MFα1 and STE2 (α-pheromone receptor). Inactivation of either the MFa-Ste3 or MFα-Ste2 pheromone-sensing pathway cannot block the MTLa2-induced development of mating projections. However, the case is different in MTLα1-ectopically expressed opaque a cells. Inactivation of the MFα-Ste2 but not the MFa-Ste3 pheromone-sensing pathway blocks MTLα1-induced development of mating projections. Therefore, MTLa2 and MTLα1 exhibit distinct regulatory features that control the mating response in C. albicans. These findings shed new light on the regulatory mechanism of bi-mating behaviors and sexual reproduction in C. albicans.
Collapse
|
16
|
Mishra A, Forche A, Anderson MZ. Parasexuality of Candida Species. Front Cell Infect Microbiol 2021; 11:796929. [PMID: 34966696 PMCID: PMC8711763 DOI: 10.3389/fcimb.2021.796929] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/19/2021] [Indexed: 12/03/2022] Open
Abstract
While most fungi have the ability to reproduce sexually, multiple independent lineages have lost meiosis and developed parasexual cycles in its place. Emergence of parasexual cycles is particularly prominent in medically relevant fungi from the CUG paraphyletic group of Candida species. Since the discovery of parasex in C. albicans roughly two decades ago, it has served as the model for Candida species. Importantly, parasex in C. albicans retains hallmarks of meiosis including genetic recombination and chromosome segregation, making it a potential driver of genetic diversity. Furthermore, key meiotic genes play similar roles in C. albicans parasex and highlights parallels between these processes. Yet, the evolutionary role of parasex in Candida adaptation and the extent of resulting genotypic and phenotypic diversity remain as key knowledge gaps in this facultative reproductive program. Here, we present our current understanding of parasex, the mechanisms governing its regulation, and its relevance to Candida biology.
Collapse
Affiliation(s)
- Abhishek Mishra
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Anja Forche
- Department of Biology, Bowdoin College, Brunswick, ME, United States
| | - Matthew Z Anderson
- Department of Microbiology, The Ohio State University, Columbus, OH, United States.,Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
17
|
Phenotypic Switching and Filamentation in Candida haemulonii, an Emerging Opportunistic Pathogen of Humans. Microbiol Spectr 2021; 9:e0077921. [PMID: 34878301 PMCID: PMC8653834 DOI: 10.1128/spectrum.00779-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Phenotypic plasticity is a common strategy adopted by fungal pathogens to adapt to diverse host environments. Candida haemulonii is an emerging multidrug-resistant human pathogen that is closely related to Candida auris. Until recently, it was assumed that C. haemulonii is incapable of phenotypic switching or filamentous growth. In this study, we report the identification of three distinct phenotypes in C. haemulonii: white, pink, and filament. The white and pink phenotypes differ in cellular size, colony morphology, and coloration on phloxine B- or CuSO4-containing agar. Switching between the white and pink cell types is heritable and reversible and is referred to as “the primary switching system.” The additional switch phenotype, filament, has been identified and exhibits obviously filamentous morphology when grown on glycerol-containing medium. Several unique characteristics of the filamentous phenotype suggest that switching from or to this phenotype poses as a second yeast-filament switching system. The yeast-filament switch is nonheritable and temperature-dependent. Low temperatures favor the filamentous phenotype, whereas high temperatures promote filament-yeast transition. We further demonstrated that numerous aspects of the distinct cell types differ in numerous biological aspects, including their high temperature response, specific gene expression, CuSO4 tolerance, secreted aspartyl protease (SAP) activity, and virulence. Therefore, transition among the three phenotypes could enable C. haemulonii to rapidly adapt to, survive, and thrive in certain host niches, thereby contributing to its virulence. IMPORTANCE The capacity to switch between distinct cell types, known as phenotypic switching, is a common strategy adopted by Candida species to adapt to diverse environments. Despite considerable studies on phenotypic plasticity of various Candida species, Candida haemulonii is considered to be incapable of phenotypic switching or filamentous growth. Here, we report and describe filamentation and three distinct phenotypes (white, pink, and filament) in C. haemulonii. The three cell types differ in cellular and colony appearance, gene expression profiles, CuSO4 tolerance, and virulence. C. haemulonii cells switch heritably and reversibly between white and pink cell types, which is referred to as the “primary switching system.” Switching between pink and filamentous phenotypes is nonheritable and temperature-dependent, representing a second switching system. As in other Candida species, switching among distinct morphological types may provide C. haemulonii with phenotypic plasticity for rapid responses to the changing host environment, and may contribute to its virulence.
Collapse
|
18
|
Mycobiota-induced IgA antibodies regulate fungal commensalism in the gut and are dysregulated in Crohn's disease. Nat Microbiol 2021; 6:1493-1504. [PMID: 34811531 PMCID: PMC8622360 DOI: 10.1038/s41564-021-00983-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022]
Abstract
Secretory immunoglobulin A (sIgA) plays an important role in gut barrier protection by shaping the resident microbiota community, restricting the growth of bacterial pathogens and enhancing host protective immunity via immunological exclusion. Here, we found that a portion of the microbiota-driven sIgA response is induced by and directed towards intestinal fungi. Analysis of the human gut mycobiota bound by sIgA revealed a preference for hyphae, a fungal morphotype associated with virulence. Candida albicans was a potent inducer of IgA class-switch recombination among plasma cells, via an interaction dependent on intestinal phagocytes and hyphal programming. Characterization of sIgA affinity and polyreactivity showed that hyphae-associated virulence factors were bound by these antibodies and that sIgA influenced C. albicans morphotypes in the murine gut. Furthermore, an increase in granular hyphal morphologies in patients with Crohn's disease compared with healthy controls correlated with a decrease in antifungal sIgA antibody titre with affinity to two hyphae-associated virulence factors. Thus, in addition to its importance in gut bacterial regulation, sIgA targets the uniquely fungal phenomenon of hyphal formation. Our findings indicate that antifungal sIgA produced in the gut can play a role in regulating intestinal fungal commensalism by coating fungal morphotypes linked to virulence, thereby providing a protective mechanism that might be dysregulated in patients with Crohn's disease.
Collapse
|
19
|
d'Enfert C, Kaune AK, Alaban LR, Chakraborty S, Cole N, Delavy M, Kosmala D, Marsaux B, Fróis-Martins R, Morelli M, Rosati D, Valentine M, Xie Z, Emritloll Y, Warn PA, Bequet F, Bougnoux ME, Bornes S, Gresnigt MS, Hube B, Jacobsen ID, Legrand M, Leibundgut-Landmann S, Manichanh C, Munro CA, Netea MG, Queiroz K, Roget K, Thomas V, Thoral C, Van den Abbeele P, Walker AW, Brown AJP. The impact of the Fungus-Host-Microbiota interplay upon Candida albicans infections: current knowledge and new perspectives. FEMS Microbiol Rev 2021; 45:fuaa060. [PMID: 33232448 PMCID: PMC8100220 DOI: 10.1093/femsre/fuaa060] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Candida albicans is a major fungal pathogen of humans. It exists as a commensal in the oral cavity, gut or genital tract of most individuals, constrained by the local microbiota, epithelial barriers and immune defences. Their perturbation can lead to fungal outgrowth and the development of mucosal infections such as oropharyngeal or vulvovaginal candidiasis, and patients with compromised immunity are susceptible to life-threatening systemic infections. The importance of the interplay between fungus, host and microbiota in driving the transition from C. albicans commensalism to pathogenicity is widely appreciated. However, the complexity of these interactions, and the significant impact of fungal, host and microbiota variability upon disease severity and outcome, are less well understood. Therefore, we summarise the features of the fungus that promote infection, and how genetic variation between clinical isolates influences pathogenicity. We discuss antifungal immunity, how this differs between mucosae, and how individual variation influences a person's susceptibility to infection. Also, we describe factors that influence the composition of gut, oral and vaginal microbiotas, and how these affect fungal colonisation and antifungal immunity. We argue that a detailed understanding of these variables, which underlie fungal-host-microbiota interactions, will present opportunities for directed antifungal therapies that benefit vulnerable patients.
Collapse
Affiliation(s)
- Christophe d'Enfert
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Ann-Kristin Kaune
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Leovigildo-Rey Alaban
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Sayoni Chakraborty
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Neugasse 25, 07743 Jena, Germany
| | - Nathaniel Cole
- Gut Microbiology Group, Rowett Institute, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Margot Delavy
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Daria Kosmala
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Benoît Marsaux
- ProDigest BV, Technologiepark 94, B-9052 Gent, Belgium
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links, 9000 Ghent, Belgium
| | - Ricardo Fróis-Martins
- Immunology Section, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, Zurich 8057, Switzerland
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Moran Morelli
- Mimetas, Biopartner Building 2, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | - Diletta Rosati
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Marisa Valentine
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Zixuan Xie
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Yoan Emritloll
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Peter A Warn
- Magic Bullet Consulting, Biddlecombe House, Ugbrook, Chudleigh Devon, TQ130AD, UK
| | - Frédéric Bequet
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
| | - Marie-Elisabeth Bougnoux
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Stephanie Bornes
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF0545, 20 Côte de Reyne, 15000 Aurillac, France
| | - Mark S Gresnigt
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Bernhard Hube
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Ilse D Jacobsen
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Mélanie Legrand
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Salomé Leibundgut-Landmann
- Immunology Section, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, Zurich 8057, Switzerland
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Chaysavanh Manichanh
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Carol A Munro
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Karla Queiroz
- Mimetas, Biopartner Building 2, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | - Karine Roget
- NEXBIOME Therapeutics, 22 allée Alan Turing, 63000 Clermont-Ferrand, France
| | - Vincent Thomas
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
| | - Claudia Thoral
- NEXBIOME Therapeutics, 22 allée Alan Turing, 63000 Clermont-Ferrand, France
| | | | - Alan W Walker
- Gut Microbiology Group, Rowett Institute, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Alistair J P Brown
- MRC Centre for Medical Mycology, Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
20
|
Witchley JN, Basso P, Brimacombe CA, Abon NV, Noble SM. Recording of DNA-binding events reveals the importance of a repurposed Candida albicans regulatory network for gut commensalism. Cell Host Microbe 2021; 29:1002-1013.e9. [PMID: 33915113 DOI: 10.1016/j.chom.2021.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/17/2021] [Accepted: 03/30/2021] [Indexed: 12/13/2022]
Abstract
Candida albicans is a fungal component of the human gut microbiota and an opportunistic pathogen. C. albicans transcription factors (TFs), Wor1 and Efg1, are master regulators of an epigenetic switch required for fungal mating that also control colonization of the mammalian gut. We show that additional mating regulators, WOR2, WOR3, WOR4, AHR1, CZF1, and SSN6, also influence gut commensalism. Using Calling Card-seq to record Candida TF DNA-binding events in the host, we examine the role and relationships of these regulators during murine gut colonization. By comparing in-host transcriptomes of regulatory mutants with enhanced versus diminished commensal fitness, we also identify a set of candidate commensalism effectors. These include Cht2, a GPI-linked chitinase whose gene is bound by Wor1, Czf1, and Efg1 in vivo, that we show promotes commensalism. Thus, the network required for a C. albicans sexual switch is biochemically active in the host intestine and repurposed to direct commensalism.
Collapse
Affiliation(s)
- Jessica N Witchley
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Pauline Basso
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Cedric A Brimacombe
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nina V Abon
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Suzanne M Noble
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Medicine, Division of Infectious Diseases, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
21
|
Wang JM, Woodruff AL, Dunn MJ, Fillinger RJ, Bennett RJ, Anderson MZ. Intraspecies Transcriptional Profiling Reveals Key Regulators of Candida albicans Pathogenic Traits. mBio 2021; 12:e00586-21. [PMID: 33879584 PMCID: PMC8092256 DOI: 10.1128/mbio.00586-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/17/2021] [Indexed: 12/27/2022] Open
Abstract
The human commensal and opportunistic fungal pathogen Candida albicans displays extensive genetic and phenotypic variation across clinical isolates. Here, we performed RNA sequencing on 21 well-characterized isolates to examine how genetic variation contributes to gene expression differences and to link these differences to phenotypic traits. C. albicans adapts primarily through clonal evolution, and yet hierarchical clustering of gene expression profiles in this set of isolates did not reproduce their phylogenetic relationship. Strikingly, strain-specific gene expression was prevalent in some strain backgrounds. Association of gene expression with phenotypic data by differential analysis, linear correlation, and assembly of gene networks connected both previously characterized and novel genes with 23 C. albicans traits. Construction of de novo gene modules produced a gene atlas incorporating 67% of C. albicans genes and revealed correlations between expression modules and important phenotypes such as systemic virulence. Furthermore, targeted investigation of two modules that have novel roles in growth and filamentation supported our bioinformatic predictions. Together, these studies reveal widespread transcriptional variation across C. albicans isolates and identify genetic and epigenetic links to phenotypic variation based on coexpression network analysis.IMPORTANCE Infectious fungal species are often treated uniformly despite clear evidence of genotypic and phenotypic heterogeneity being widespread across strains. Identifying the genetic basis for this phenotypic diversity is extremely challenging because of the tens or hundreds of thousands of variants that may distinguish two strains. Here, we use transcriptional profiling to determine differences in gene expression that can be linked to phenotypic variation among a set of 21 Candida albicans isolates. Analysis of this transcriptional data set uncovered clear trends in gene expression characteristics for this species and new genes and pathways that were associated with variation in pathogenic processes. Direct investigation confirmed functional predictions for a number of new regulators associated with growth and filamentation, demonstrating the utility of these approaches in linking genes to important phenotypes.
Collapse
Affiliation(s)
- Joshua M Wang
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Andrew L Woodruff
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Matthew J Dunn
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Robert J Fillinger
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Richard J Bennett
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Matthew Z Anderson
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
22
|
Yang J, Feng W, Xi Z, Yang L, Zhao X, Ma Y, Ma Y. Virulence of "white-gray-opaque" tri-stable transformation in clinical Candida albicans in vitro and in vivo. Microb Pathog 2021; 154:104825. [PMID: 33689812 DOI: 10.1016/j.micpath.2021.104825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 10/22/2022]
Abstract
The study aimed to induce the white-opaque-gray tri-stable transformation in clinical C. albicans and to explore their potential pathogenicity. Sixty-four clinical strains were used to induce the white, opaque and gray cells of C. albicans. Secreted aspartyl proteinases (Sap) activity of the three phenotypes was then measured, and a vulvovaginal candidiasis (VVC) animal model was constructed. Of the 64 clinical strains, only 3 strains successfully underwent white-gray-opaque tri-stable transformation, and the three strains all belonged to MTL homozygous strains. Pz values in white, opaque and gray phenotypes were 0.834 ± 0.012, 0.707 ± 0.036, and 0.628 ± 0.002, respectively, which indicated that the cells with gray phenotype had higher Sap activity. After inoculation of different fungal suspension, the fungal colony count in descending order was as follows: gray phenotype, opaque phenotype and white phenotype. After treated with fluconazole for 3 days or 10 days, the fungal colony counts were significantly decreased compared with that before treatment (P < 0.05). The Sap activity and pathogenicity of gray cells in C. albicans were the strongest, followed by opaque cells and white cells. Additionally, white, gray and opaque phenotypic cells were all susceptible to fluconazole.
Collapse
Affiliation(s)
- Jing Yang
- The Department of Dermatovenereology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Wenli Feng
- The Department of Dermatovenereology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Zhiqin Xi
- The Department of Dermatovenereology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Lu Yang
- The Department of Dermatovenereology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaoxia Zhao
- The Department of Dermatovenereology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yan Ma
- The Department of Dermatovenereology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yanping Ma
- The Department of Dermatovenereology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
23
|
Dai B, Xu Y, Gao N, Chen J. Wor1-regulated ferroxidases contribute to pigment formation in opaque cells of Candida albicans. FEBS Open Bio 2021; 11:598-621. [PMID: 33350590 PMCID: PMC7931227 DOI: 10.1002/2211-5463.13070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/14/2020] [Accepted: 12/19/2020] [Indexed: 12/25/2022] Open
Abstract
Candida albicans is a harmless commensal resident in the human gut and a prevalent opportunistic pathogen. A key part of its commensalism and pathogenesis is its ability to switch between different morphological forms, including white‐to‐opaque switching. The Wor1 protein was previously identified as a master regulator of white‐to‐opaque switching in mating type locus (MTL) homozygous cells. The mechanisms by which the dark color of the opaque colonies is controlled and the pimpled surface of opaque cells is formed remain unknown. Candida albicans produces melanin pigment in vitro and during infection. However, the molecular mechanism underlying the regulation of melanin production is unclear. In this study, we demonstrated that ferroxidases (Fets) function as pigment multicopper oxidases and regulate the production of dark‐pigmented melanin in opaque cells. The FET genes presented distinct regulation patterns in response to different extracellular stimuli. In YPD (1% yeast extract, 2% peptone and 2% dextrose)‐rich medium, four of the five FET genes were up‐regulated by Wor1, especially at the human body temperature of 37 °C. In minimal medium with low ammonium concentrations, all five FET genes were up‐regulated by Wor1. However, at high ammonium concentrations, some FET genes were down‐regulated by Wor1. Wor1‐up‐regulated Fets contributed to dark pigment formation in opaque colonies, but not to the elongated shape of these opaque cells. Increased melanin externalization was associated with the pimpled surface of the opaque cells. Melanized C. albicans cells were more resistant to fungal clearance. Deletion of the five FET genes completely blocked melanin production in opaque cells and resulted in the generation of white elongated ‘opaque’ cells. In addition, the up‐regulated Fets are important for defense against oxidant attacks. The functional diversity of Fets may reflect the multiple strategies of C. albicans to rapidly adapt to diverse host niches.
Collapse
Affiliation(s)
- Baodi Dai
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yinxing Xu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Ning Gao
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Jiangye Chen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
24
|
Beekman CN, Cuomo CA, Bennett RJ, Ene IV. Comparative genomics of white and opaque cell states supports an epigenetic mechanism of phenotypic switching in Candida albicans. G3 (BETHESDA, MD.) 2021; 11:6108101. [PMID: 33585874 PMCID: PMC8366294 DOI: 10.1093/g3journal/jkab001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/28/2020] [Indexed: 01/08/2023]
Abstract
Several Candida species can undergo a heritable and reversible transition from a 'white' state to a mating proficient 'opaque' state. This ability relies on highly interconnected transcriptional networks that control cell-type-specific gene expression programs over multiple generations. Candida albicans, the most prominent pathogenic Candida species, provides a well-studied paradigm for the white-opaque transition. In this species, a network of at least eight transcriptional regulators controls the balance between white and opaque states that have distinct morphologies, transcriptional profiles, and physiological properties. Given the reversible nature and the high frequency of white-opaque transitions, it is widely assumed that this switch is governed by epigenetic mechanisms that occur independently of any changes in DNA sequence. However, a direct genomic comparison between white and opaque cells has yet to be performed. Here, we present a whole-genome comparative analysis of C. albicans white and opaque cells. This analysis revealed rare genetic changes between cell states, none of which are linked to white-opaque switching. This result is consistent with epigenetic mechanisms controlling cell state differentiation in C. albicans and provides direct evidence against a role for genetic variation in mediating the switch.
Collapse
Affiliation(s)
- Chapman N Beekman
- Department of Molecular Microbiology and Immunology,
Brown University, Providence, RI 02912, USA
| | - Christina A Cuomo
- Infectious Disease and Microbiome Program, Broad
Institute, Cambridge, MA 02142, USA
| | - Richard J Bennett
- Department of Molecular Microbiology and Immunology,
Brown University, Providence, RI 02912, USA
| | - Iuliana V Ene
- Department of Molecular Microbiology and Immunology,
Brown University, Providence, RI 02912, USA
- Corresponding author:
| |
Collapse
|
25
|
Affiliation(s)
- Zoe K. Ross
- Institute of Medical Sciences (IMS), University of Aberdeen, Aberdeen, United Kingdom
- MRC Centre for Medical Mycology, Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Alexander Lorenz
- Institute of Medical Sciences (IMS), University of Aberdeen, Aberdeen, United Kingdom
- * E-mail:
| |
Collapse
|
26
|
Rodriguez DL, Quail MM, Hernday AD, Nobile CJ. Transcriptional Circuits Regulating Developmental Processes in Candida albicans. Front Cell Infect Microbiol 2020; 10:605711. [PMID: 33425784 PMCID: PMC7793994 DOI: 10.3389/fcimb.2020.605711] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022] Open
Abstract
Candida albicans is a commensal member of the human microbiota that colonizes multiple niches in the body including the skin, oral cavity, and gastrointestinal and genitourinary tracts of healthy individuals. It is also the most common human fungal pathogen isolated from patients in clinical settings. C. albicans can cause a number of superficial and invasive infections, especially in immunocompromised individuals. The ability of C. albicans to succeed as both a commensal and a pathogen, and to thrive in a wide range of environmental niches within the host, requires sophisticated transcriptional regulatory programs that can integrate and respond to host specific environmental signals. Identifying and characterizing the transcriptional regulatory networks that control important developmental processes in C. albicans will shed new light on the strategies used by C. albicans to colonize and infect its host. Here, we discuss the transcriptional regulatory circuits controlling three major developmental processes in C. albicans: biofilm formation, the white-opaque phenotypic switch, and the commensal-pathogen transition. Each of these three circuits are tightly knit and, through our analyses, we show that they are integrated together by extensive regulatory crosstalk between the core regulators that comprise each circuit.
Collapse
Affiliation(s)
- Diana L. Rodriguez
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California—Merced, Merced, CA, United States
- Quantitative and Systems Biology Graduate Program, University of California—Merced, Merced, CA, United States
| | - Morgan M. Quail
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California—Merced, Merced, CA, United States
- Quantitative and Systems Biology Graduate Program, University of California—Merced, Merced, CA, United States
| | - Aaron D. Hernday
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California—Merced, Merced, CA, United States
- Health Sciences Research Institute, University of California - Merced, Merced, CA, United States
| | - Clarissa J. Nobile
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California—Merced, Merced, CA, United States
- Health Sciences Research Institute, University of California - Merced, Merced, CA, United States
| |
Collapse
|
27
|
Correia I, Wilson D, Hube B, Pla J. Characterization of a Candida albicans Mutant Defective in All MAPKs Highlights the Major Role of Hog1 in the MAPK Signaling Network. J Fungi (Basel) 2020; 6:jof6040230. [PMID: 33080787 PMCID: PMC7711971 DOI: 10.3390/jof6040230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022] Open
Abstract
The success of Candida albicans as a pathogen relies on its ability to adapt and proliferate in different environmental niches. Pathways regulated by mitogen-activated protein kinases (MAPKs) are involved in sensing environmental conditions and developing an accurate adaptive response. Given the frequent cooperative roles of these routes in cellular functions, we have generated mutants defective in all combinations of the four described MAPKs in C. albicans and characterized its phenotype regarding sensitiveness to specific drugs, morphogenesis and interaction with host immune cells. We demonstrate that all MAPKs are dispensable in this yeast as a mutant defective in Cek1, Cek2, Mkc1 and Hog1 is viable although highly sensitive to oxidative and osmotic stress, displaying a specific pattern of sensitivity to antifungals. By comparing its phenotype with single, double and triple combinations of MAPK-deletion mutants we were able to unveil a Cek1-independent mechanism for Hog1 resistance to Congo red, and confirm the predominant effect of Hog1 on oxidative and osmotic adaptation. The quadruple mutant produces filaments under non-inducing conditions, but is unable to develop chlamydospores. Furthermore, cek1 cek2 mkc1 hog1 cells switch to the opaque state at high frequency, which is blocked by the ectopic expression of HOG1 suggesting a role of this kinase for phenotypic switching.
Collapse
Affiliation(s)
- Inês Correia
- iBiMED-Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193 Aveiro, Portugal
- Correspondence: (I.C.); (J.P.); Tel.: +351-234-370-213 (I.C.); +34-913-941-617 (J.P.)
| | - Duncan Wilson
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter EX4 4QD, UK;
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knoell-Institute, Beutenbergstraße 11A, 07745 Jena, Germany;
- Institute of Microbiology, Friedrich Schiller University, Neugasse 25, 07743 Jena, Germany
| | - Jesús Pla
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Avda. Ramón y Cajal s/n, 28040 Madrid, Spain
- Correspondence: (I.C.); (J.P.); Tel.: +351-234-370-213 (I.C.); +34-913-941-617 (J.P.)
| |
Collapse
|
28
|
Abstract
Candida albicans, a pervasive opportunistic pathogen, undergoes a unique phenotypic transition from a "white" phenotype to an "opaque" phenotype. The switch to opaque impacts gene expression, cell morphology, wall structure, metabolism, biofilm formation, mating, virulence, and colonization of the skin and gastrointestinal (GI) tract. Although the regulation of switching is complex, a paradigm has evolved from a number of studies, in which, in its simplest form, the transcription factors Efg1 and Wor1 play central roles. When EFG1 is upregulated under physiological conditions, it represses WOR1, an activator of white-to-opaque switching, and the cell expresses the white phenotype; when EFG1 is downregulated, WOR1 is derepressed and activates expression of the opaque phenotype. Deletion of either EFG1 or WOR1 supports this yin-yang model of regulation. Here, we demonstrate that this simple model is insufficient, since strains in which WOR1 and EFG1 are simultaneously deleted can still be induced to switch en masse from white to opaque. Opaque cells of double mutants (efg1-/- wor1-/- ) are enlarged and elongate, form an enlarged vacuole, upregulate mCherry under the control of an opaque-specific promoter, form opaque cell wall pimples, express the opaque phenotype in lower GI colonization, and, if MTL homozygous, form conjugation tubes in response to pheromone and mate. These results can be explained if the basic and simplified model is expanded to include a WOR1-independent alternative opaque pathway repressed by EFG1 IMPORTANCE The switch from white to opaque in Candida albicans was discovered 33 years ago, but it is still unclear how it is regulated. A regulatory paradigm has emerged in which two transacting factors, Efg1 and Wor1, play central roles, Efg1 as a repressor of WOR1, which encodes an activator of the transition to the opaque phenotype. However, we show here that if both EFG1 and WOR1 are deleted simultaneously, bona fide opaque cells can still be induced en masse These results are not compatible with the simple paradigm, suggesting that an alternative opaque pathway (AOP) exists, which can activate expression of opaque and, like WOR1, is repressed by EFG1.
Collapse
|
29
|
Quantifying the Biophysical Impact of Budding Cell Division on the Spatial Organization of Growing Yeast Colonies. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10175780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Spatial patterns in microbial colonies are the consequence of cell-division dynamics coupled with cell-cell interactions on a physical media. Agent-based models (ABMs) are a powerful tool for understanding the emergence of large scale structure from these individual cell processes. However, most ABMs have focused on fission, a process by which cells split symmetrically into two daughters. The yeast, Saccharomyces cerevisiae, is a model eukaryote which commonly undergoes an asymmetric division process called budding. The resulting mother and daughter cells have unequal sizes and the daughter cell does not inherit the replicative age of the mother. In this work, we develop and analyze an ABM to study the impact of budding cell division and nutrient limitation on yeast colony structure. We find that while budding division does not impact large-scale properties of the colony (such as shape and size), local spatial organization of cells with respect to spatial layout of mother-daughter cell pairs and connectivity of subcolonies is greatly impacted. In addition, we find that nutrient limitation further promotes local spatial organization of cells and changes global colony organization by driving variation in subcolony sizes. Moreover, resulting differences in spatial organization, coupled with differential growth rates from nutrient limitation, create distinct sectoring patterns within growing yeast colonies. Our findings offer novel insights into mechanisms driving experimentally observed sectored yeast colony phenotypes. Furthermore, our work illustrates the need to include relevant biophysical mechanisms when using ABMs to compare to experimental studies.
Collapse
|
30
|
N-Acetylglucosamine (GlcNAc) Sensing, Utilization, and Functions in Candida albicans. J Fungi (Basel) 2020; 6:jof6030129. [PMID: 32784532 PMCID: PMC7558947 DOI: 10.3390/jof6030129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/25/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022] Open
Abstract
The sensing and efficient utilization of environmental nutrients are critical for the survival of microorganisms in environments where nutrients are limited, such as within mammalian hosts. Candida albicans is a common member of the human microbiota as well as an opportunistic fungal pathogen. The amide derivative sugar N-acetlyglucosamine (GlcNAc) is an important signaling molecule for C. albicans that could be a major nutrient source for this fungus in host settings. In this article, we review progress made over the past two decades on GlcNAc utilization, sensing, and functions in C. albicans and its related fungal species. GlcNAc sensing and catabolic pathways have been intensively studied in C. albicans. The C. albicans protein Ngt1 represents the first identified GlcNAc-specific transporter in eukaryotic organisms. In C. albicans, GlcNAc not only induces morphological transitions including the yeast to hyphal transition and the white to opaque phenotypic switch, but it also promotes fungal cell death. The Ras-cAMP/PKA signaling pathway plays critical roles in regulating these processes. Given the importance of GlcNAc sensing and utilization in C. albicans, targeting GlcNAc associated pathways and key pathway components could be promising in the development of new antifungal strategies.
Collapse
|
31
|
Zheng Q, Guan G, Cao C, Li Q, Huang G. The PHO pathway regulates white-opaque switching and sexual mating in the human fungal pathogen Candida albicans. Curr Genet 2020; 66:1155-1162. [PMID: 32761264 DOI: 10.1007/s00294-020-01100-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/08/2020] [Accepted: 07/30/2020] [Indexed: 11/27/2022]
Abstract
The opportunistic fungal pathogen Candida albicans is able to switch among several morphological phenotypes in response to environmental changes. White-opaque transition is a typical phenotypic switching system involved in the regulation of pathogenesis and sexual reproduction in C. albicans. Under regular laboratory culture conditions, to undergo white-to-opaque switching, cells must first undergo homozygosis at the mating-type locus (MTLa/a or α/α) since the a1/α2 heterodimer represses the expression of the Wor1 master regulator of switching in MTLa/α heterozygous strains. In this study, we report the roles of the PHO pathway of phosphate metabolism in the regulation of white-opaque switching and sexual mating in C. albicans. We find that deletion of the PHO pathway genes PHO81, PHO80, PHO2, and PHO4 induces the opaque phenotype in MTLa/α heterozygous cells. Low concentrations of external phosphate are conducive for the opaque phenotype in both MTL homozygous and heterozygous strains. Moreover, phosphate starvation can also increase the mating efficiency in C. albicans. Consistently, the pho80/pho80 mutant mimics an artificial phosphate starvation state and mates efficiently at both lower and higher phosphate concentrations. Our study establishes a link between the PHO pathway and white-opaque epigenetic switching in C. albicans.
Collapse
Affiliation(s)
- Qiushi Zheng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Department of Infectious Diseases, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Guobo Guan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chengjun Cao
- Department of Infectious Diseases, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Qi Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guanghua Huang
- Department of Infectious Diseases, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
32
|
Zhang Q, Xu L, Yuan S, Zhou Q, Wang X, Wang L, Hu Z, Yan Y. NGT1 Is Essential for N-Acetylglucosamine-Mediated Filamentous Growth Inhibition and HXK1 Functions as a Positive Regulator of Filamentous Growth in Candida tropicalis. Int J Mol Sci 2020; 21:ijms21114036. [PMID: 32516879 PMCID: PMC7312872 DOI: 10.3390/ijms21114036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022] Open
Abstract
Candida tropicalis is a pathogenic fungus that can cause opportunistic infections in humans. The ability of Candida species to transition between yeast and filamentous growth forms is essential to their ability to undergo environmental adaptation and to maintain virulence. In other fungal species, such as Candida albicans, N-acetylglucosamine (GlcNAc) can induce filamentous growth, whereas it suppresses such growth in C. tropicalis. In the present study, we found that knocking out the GlcNA-specific transporter gene NGT1 was sufficient to enhance C. tropicalis filamentous growth on Lee’s plus GlcNAc medium. This suggests that GlcNAc uptake into C. tropicalis cells is essential to the disruption of mycelial growth. As such, we further studied how GlcNAc catabolism-related genes were able to influence C. tropicalis filamentation. We found that HXK1 overexpression drove filamentous growth on Lee’s media containing glucose and GlcNAc, whereas the deletion of the same gene disrupted this filamentous growth. Interestingly, the deletion of the DAC1 or NAG1 genes impaired C. tropicalis growth on Lee’s plus GlcNAc plates. Overall, these results indicate that HXK1 can serve as a positive regulator of filamentous growth, with excess GlcNAc-6-PO4 accumulation being toxic to C. tropicalis. These findings may highlight novel therapeutic targets worthy of future investigation.
Collapse
|
33
|
|
34
|
Abstract
Close to half of a collection of 27 clinical a/α isolates of Candida albicans underwent white-to-opaque switching. Complementation experiments revealed that while approximately half of the a/α switchers were due to EFG1 mutations, the remaining half were due to mutations in other genes. In addition, the results of competition experiments in a mouse GI tract colonization model support previous observations that efg1/efg1 cells rapidly outcompete EFG1/EFG1 strains, but direct microscopic analysis reveals that the major colonizing cells were opaque, not gray. The transcription factor EFG1 functions as a suppressor of white-to-opaque and white-to-gray switching in a/α strains of Candida albicans. In a collection of 27 clinical isolates, 4 of the 17 EFG1/EFG1 strains, 1 of the 2 EFG1/efg1 strains, and all 8 of the efg1/efg1 strains underwent white-to-opaque switching. The four EFG1/EFG1 strains, the one EFG1/efg1 strain, and one of the eight efg1/efg1 strains that underwent switching to opaque did not switch to gray and could not be complemented with a copy of EFG1. Competition experiments in a mouse model for gastrointestinal (GI) colonization confirmed that efg1/efg1 cells rapidly outcompete EFG1/EFG1 cells, and in plating experiments, formed colonies containing both gray and opaque cells. Direct microscopic analysis of live cells in the feces, however, revealed that the great majority of cells were opaque, suggesting opaque, not gray, may be the dominant phenotype at the site of colonization. IMPORTANCE Close to half of a collection of 27 clinical a/α isolates of Candida albicans underwent white-to-opaque switching. Complementation experiments revealed that while approximately half of the a/α switchers were due to EFG1 mutations, the remaining half were due to mutations in other genes. In addition, the results of competition experiments in a mouse GI tract colonization model support previous observations that efg1/efg1 cells rapidly outcompete EFG1/EFG1 strains, but direct microscopic analysis reveals that the major colonizing cells were opaque, not gray.
Collapse
|
35
|
Perry AM, Hernday AD, Nobile CJ. Unraveling How Candida albicans Forms Sexual Biofilms. J Fungi (Basel) 2020; 6:jof6010014. [PMID: 31952361 PMCID: PMC7151012 DOI: 10.3390/jof6010014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Abstract
Biofilms, structured and densely packed communities of microbial cells attached to surfaces, are considered to be the natural growth state for a vast majority of microorganisms. The ability to form biofilms is an important virulence factor for most pathogens, including the opportunistic human fungal pathogen Candida albicans. C. albicans is one of the most prevalent fungal species of the human microbiota that asymptomatically colonizes healthy individuals. However, C. albicans can also cause severe and life-threatening infections when host conditions permit (e.g., through alterations in the host immune system, pH, and resident microbiota). Like many other pathogens, this ability to cause infections depends, in part, on the ability to form biofilms. Once formed, C. albicans biofilms are often resistant to antifungal agents and the host immune response, and can act as reservoirs to maintain persistent infections as well as to seed new infections in a host. The majority of C. albicans clinical isolates are heterozygous (a/α) at the mating type-like (MTL) locus, which defines Candida mating types, and are capable of forming robust biofilms when cultured in vitro. These “conventional” biofilms, formed by MTL-heterozygous (a/α) cells, have been the primary focus of C. albicans biofilm research to date. Recent work in the field, however, has uncovered novel mechanisms through which biofilms are generated by C. albicans cells that are homozygous or hemizygous (a/a, a/Δ, α/α, or α/Δ) at the MTL locus. In these studies, the addition of pheromones of the opposite mating type can induce the formation of specialized “sexual” biofilms, either through the addition of synthetic peptide pheromones to the culture, or in response to co-culturing of cells of the opposite mating types. Although sexual biofilms are generally less robust than conventional biofilms, they could serve as a protective niche to support genetic exchange between mating-competent cells, and thus may represent an adaptive mechanism to increase population diversity in dynamic environments. Although conventional and sexual biofilms appear functionally distinct, both types of biofilms are structurally similar, containing yeast, pseudohyphal, and hyphal cells surrounded by an extracellular matrix. Despite their structural similarities, conventional and sexual biofilms appear to be governed by distinct transcriptional networks and signaling pathways, suggesting that they may be adapted for, and responsive to, distinct environmental conditions. Here we review sexual biofilms and compare and contrast them to conventional biofilms of C. albicans.
Collapse
Affiliation(s)
- Austin M. Perry
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA; (A.M.P.); (A.D.H.)
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Aaron D. Hernday
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA; (A.M.P.); (A.D.H.)
| | - Clarissa J. Nobile
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA; (A.M.P.); (A.D.H.)
- Correspondence: ; Tel.: +1-209-228-2427
| |
Collapse
|
36
|
Min K, Naseem S, Konopka JB. N-Acetylglucosamine Regulates Morphogenesis and Virulence Pathways in Fungi. J Fungi (Basel) 2019; 6:jof6010008. [PMID: 31878148 PMCID: PMC7151181 DOI: 10.3390/jof6010008] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/17/2022] Open
Abstract
N-acetylglucosamine (GlcNAc) is being increasingly recognized for its ability to stimulate cell signaling. This amino sugar is best known as a component of cell wall peptidoglycan in bacteria, cell wall chitin in fungi and parasites, exoskeletons of arthropods, and the extracellular matrix of animal cells. In addition to these structural roles, GlcNAc is now known to stimulate morphological and stress responses in a wide range of organisms. In fungi, the model organisms Saccharomyces cerevisiae and Schizosaccharomyces pombe lack the ability to respond to GlcNAc or catabolize it, so studies with the human pathogen Candida albicans have been providing new insights into the ability of GlcNAc to stimulate cellular responses. GlcNAc potently induces C. albicans to transition from budding to filamentous hyphal growth. It also promotes an epigenetic switch from White to Opaque cells, which differ in morphology, metabolism, and virulence properties. These studies have led to new discoveries, such as the identification of the first eukaryotic GlcNAc transporter. Other results have shown that GlcNAc can induce signaling in C. albicans in two ways. One is to act as a signaling molecule independent of its catabolism, and the other is that its catabolism can cause the alkalinization of the extracellular environment, which provides an additional stimulus to form hyphae. GlcNAc also induces the expression of virulence genes in the C. albicans, indicating it can influence pathogenesis. Therefore, this review will describe the recent advances in understanding the role of GlcNAc signaling pathways in regulating C. albicans morphogenesis and virulence.
Collapse
|
37
|
Biological and genomic analyses of a clinical isolate of Yarrowia galli from China. Curr Genet 2019; 66:549-559. [PMID: 31865398 DOI: 10.1007/s00294-019-01046-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 02/05/2023]
Abstract
Infections caused by emerging fungal pathogens represent a new threat to human health. The yeast Yarrowia (Candida) galli was first described from chicken breast and liver in 2004 and has occasionally been isolated in clinical settings. In this study, we present the first report of a Y. galli isolate from a face granuloma of a woman. Y. galli is unable to grow at human physiological temperature (37 °C). Phenotypic analysis demonstrates that Y. galli can exist as several morphological types, namely fluffy, sticky, tight, and yeast forms, based on their cellular and colony appearances. Interestingly, Y. galli is able to undergo switching among different morphologies. These morphological changes are similar to the switching systems in pathogenic Candida species such as Candida albicans and Candida tropicalis. We further sequenced the genome of the Y. galli isolate. A comparative analysis with pathogenic yeast species indicated that a set of lipid metabolism genes were enriched in Y. galli. Domain enrichment analysis demonstrated that, similar to Candida clade species, the genome of Y. galli maintained several gene families required for virulence. Our biological and genomic analyses provide new insights into the understanding of the biology of Y. galli as either an environmental isolate or a potential human pathogen.
Collapse
|
38
|
A population shift between two heritable cell types of the pathogen Candida albicans is based both on switching and selective proliferation. Proc Natl Acad Sci U S A 2019; 116:26918-26924. [PMID: 31822605 DOI: 10.1073/pnas.1908986116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Differentiated cell types often retain their characteristics through many rounds of cell division. A simple example is found in Candida albicans, a member of the human microbiota and also the most prevalent fungal pathogen of humans; here, two distinct cell types (white and opaque) exist, and each one retains its specialized properties across many cell divisions. Switching between the two cell types is rare in standard laboratory medium (2% glucose) but can be increased by signals in the environment, for example, certain sugars. When these signals are removed, switching ceases and cells remain in their present state, which is faithfully passed on through many generations of daughter cells. Here, using an automated flow cytometry assay to monitor white-opaque switching over 96 different sugar concentrations, we observed a wide range of opaque-to-white switching that varied continuously across different sugar compositions of the medium. By also measuring white cell proliferation rates under each condition, we found that both opaque-to-white switching and selective white cell proliferation are required for entire populations to shift from opaque to white. Moreover, the switching frequency correlates with the preference of the resulting cell type for the growth medium; that is, the switching is adjusted to increase in environments that favor white cell proliferation. The widely adjustable, all-or-none nature of the switch, combined with the long-term heritability of each state, is distinct from conventional forms of gene regulation, and we propose that it represents a strategy used by C. albicans to efficiently colonize different niches of its human host.
Collapse
|
39
|
Gong J, Huang Q, Liang W, Wei Y, Huang G. The general transcriptional repressor Tup1 governs filamentous development in Candida tropicalis. Acta Biochim Biophys Sin (Shanghai) 2019; 51:463-470. [PMID: 30968937 DOI: 10.1093/abbs/gmz023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/15/2019] [Accepted: 02/24/2019] [Indexed: 12/29/2022] Open
Abstract
Filamentous development is associated with the ability to cause infections and colonize the host in pathogenic Candida species. Candida tropicalis is one of the major fungal pathogens of humans. The conserved transcriptional repressor Tup1 plays a critical role in the regulation of transcription and filamentation in yeast species. Despite its central role, the full coding sequence of TUP1 has not been found in the reported genome sequence of C. tropicalis to date. In this study, we report the identification of Tup1 and characterize its role in filamentous growth in C. tropicalis. As expected, C. tropicalis Tup1 exhibits general conserved features to the orthologs of other fungi in terms of its structure and function. Deletion of TUP1 in C. tropicalis leads to increased filamentation under several culture conditions. However, Tup1 indeed exhibits species-specific roles in the regulation of filamentous development in C. tropicalis. For example, unlike the tup1/tup1 mutant of Candida albicans, the tup1/tup1 mutant of C. tropicalis is able to exist in the yeast form at low temperatures or in the presence of N-acetylglucosamine (GlcNAc). Acidic pH conditions also favor the yeast form of the tup1/tup1 mutant of C. tropicalis. Quantitative real-time PCR (qRT-PCR) assays indicate that Tup1 may regulate filamentous development through the transcriptional control of key filamentation regulators in C. tropicalis, such as Ume6, Brg1, Wor1, Sfl2, Ahr1, and Zcf3. Taken together, our findings demonstrate both conserved and species-specific roles of Tup1 in the regulation of filamentation and provide novel insights into the biology of C. tropicalis.
Collapse
Affiliation(s)
- Jiao Gong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Qian Huang
- Dermatology Department, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Weihong Liang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yujia Wei
- Dermatology Department, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Guanghua Huang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
40
|
Candida albicans Interactions with Mucosal Surfaces during Health and Disease. Pathogens 2019; 8:pathogens8020053. [PMID: 31013590 PMCID: PMC6631630 DOI: 10.3390/pathogens8020053] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/05/2019] [Accepted: 04/15/2019] [Indexed: 12/20/2022] Open
Abstract
Flexible adaptation to the host environment is a critical trait that underpins the success of numerous microbes. The polymorphic fungus Candida albicans has evolved to persist in the numerous challenging niches of the human body. The interaction of C. albicans with a mucosal surface is an essential prerequisite for fungal colonisation and epitomises the complex interface between microbe and host. C. albicans exhibits numerous adaptations to a healthy host that permit commensal colonisation of mucosal surfaces without provoking an overt immune response that may lead to clearance. Conversely, fungal adaptation to impaired immune fitness at mucosal surfaces enables pathogenic infiltration into underlying tissues, often with devastating consequences. This review will summarise our current understanding of the complex interactions that occur between C. albicans and the mucosal surfaces of the human body.
Collapse
|
41
|
Roles of the Transcription Factors Sfl2 and Efg1 in White-Opaque Switching in a/α Strains of Candida albicans. mSphere 2019; 4:4/2/e00703-18. [PMID: 30996111 PMCID: PMC6470211 DOI: 10.1128/msphere.00703-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Candida albicans remains the most pervasive fungal pathogen colonizing humans. The majority of isolates from hosts are heterozygous at the mating type locus (MTL a/α), and a third of these have recently been shown to be capable of switching to the opaque phenotype. Here we have investigated the roles of two transcription factors (TFs) Sfl2 and Efg1, in repressing switching in a/α strains. Deleting either gene results in the capacity of a/α cells to switch to opaque en masse under facilitating environmental conditions, which include N-acetylglucosamine (GlcNAc) as the carbon source, physiological temperature (37°C), and high CO2 (5%). These conditions are similar to those in the host. Our results further reveal that while glucose is a repressor of sfl2Δ and efg1Δ switching, GlcNAc is an inducer. Finally, we show that when GlcNAc is the carbon source, and the temperature is low (25°C), the efg1Δ mutants, but not the sfl2Δ mutants, form a tiny, elongate cell, which differentiates into an opaque cell when transferred to conditions optimal for a/α switching. These results demonstrate that at least two TFs, Sfl2 and Efg1, repress switching in a/α cells and that a/α strains with either an sfl2Δ or efg1Δ mutation can switch en masse but only under physiological conditions. The role of opaque a/α cells in commensalism and pathogenesis must, therefore, be investigated.IMPORTANCE More than 95% of Candida albicans strains isolated from humans are MTL a/α, and approximately a third of these can undergo the white-to-opaque transition. Therefore, besides being a requirement for MTL-homozygous strains to mate, the opaque phenotype very likely plays a role in the commensalism and pathogenesis of nonmating, a/α populations colonizing humans.
Collapse
|
42
|
Duan SF, Shi JY, Yin Q, Zhang RP, Han PJ, Wang QM, Bai FY. Reverse Evolution of a Classic Gene Network in Yeast Offers a Competitive Advantage. Curr Biol 2019; 29:1126-1136.e5. [PMID: 30905601 DOI: 10.1016/j.cub.2019.02.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 01/04/2019] [Accepted: 02/15/2019] [Indexed: 11/26/2022]
Abstract
Glucose repression is a central regulatory system in yeast that ensures the utilization of carbon sources in a highly economical manner. The galactose (GAL) metabolism network is stringently regulated by glucose repression in yeast and has been a classic system for studying gene regulation. We show here that a Saccharomyces cerevisiae (S. cerevisiae) lineage in spontaneously fermented milk has swapped all its structural GAL genes (GAL2 and the GAL7-10-1 cluster) with early diverged versions through introgression. The rewired GAL network has abolished glucose repression and conversed from a strictly inducible to a constitutive system through polygenic changes in the regulatory components of the network, including a thymine (T) to cytosine (C) and a guanine (G) to adenine (A) transition in the upstream repressing sequence (URS) sites of GAL1 and GAL4, respectively, which impair Mig1p-mediated repression, loss of function of the repressor Gal80p through a T146I substitution in the protein, and subsequent futility of GAL3. Furthermore, the milk lineage of S. cerevisiae has achieved galactose-utilization rate elevation and galactose-over-glucose preference switch through the duplication of the introgressed GAL2 and the loss of function of the main glucose transporter genes HXT6 and HXT7. In addition, we demonstrate that GAL2 requires GAL7 or GAL10 for its expression, and Gal2p likely requires Gal1p for its transportation function in the milk lineage of S. cerevisiae. We show a clear case of reverse evolution of a classic gene network for ecological adaptation and provide new insights into the regulatory model of the canonical GAL network.
Collapse
Affiliation(s)
- Shou-Fu Duan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jun-Yan Shi
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Qi Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Ri-Peng Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Pei-Jie Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi-Ming Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China.
| |
Collapse
|
43
|
Guan G, Tao L, Yue H, Liang W, Gong J, Bing J, Zheng Q, Veri AO, Fan S, Robbins N, Cowen LE, Huang G. Environment-induced same-sex mating in the yeast Candida albicans through the Hsf1-Hsp90 pathway. PLoS Biol 2019; 17:e2006966. [PMID: 30865631 PMCID: PMC6415874 DOI: 10.1371/journal.pbio.2006966] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 02/13/2019] [Indexed: 12/14/2022] Open
Abstract
While sexual reproduction is pervasive in eukaryotic cells, the strategies employed by fungal species to achieve and complete sexual cycles is highly diverse and complex. Many fungi, including Saccharomyces cerevisiae and Schizosaccharomyces pombe, are homothallic (able to mate with their own mitotic descendants) because of homothallic switching (HO) endonuclease-mediated mating-type switching. Under laboratory conditions, the human fungal pathogen Candida albicans can undergo both heterothallic and homothallic (opposite- and same-sex) mating. However, both mating modes require the presence of cells with two opposite mating types (MTLa/a and α/α) in close proximity. Given the predominant clonal feature of this yeast in the human host, both opposite- and same-sex mating would be rare in nature. In this study, we report that glucose starvation and oxidative stress, common environmental stresses encountered by the pathogen, induce the development of mating projections and efficiently permit same-sex mating in C. albicans with an "a" mating type (MTLa/a). This induction bypasses the requirement for the presence of cells with an opposite mating type and allows efficient sexual mating between cells derived from a single progenitor. Glucose starvation causes an increase in intracellular oxidative species, overwhelming the Heat Shock transcription Factor 1 (Hsf1)- and Heat shock protein (Hsp)90-mediated stress-response pathway. We further demonstrate that Candida TransActivating protein 4 (Cta4) and Cell Wall Transcription factor 1 (Cwt1), downstream effectors of the Hsf1-Hsp90 pathway, regulate same-sex mating in C. albicans through the transcriptional control of the master regulator of a-type mating, MTLa2, and the pheromone precursor-encoding gene Mating α factor precursor (MFα). Our results suggest that mating could occur much more frequently in nature than was originally appreciated and that same-sex mating could be an important mode of sexual reproduction in C. albicans.
Collapse
Affiliation(s)
- Guobo Guan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Li Tao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Huizhen Yue
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Weihong Liang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiao Gong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jian Bing
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qiushi Zheng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Amanda O Veri
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Shuru Fan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Guanghua Huang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
44
|
Abstract
Fungi are prone to phenotypic instability, that is, the vegetative phase of these organisms, be they yeasts or molds, undergoes frequent switching between two or more behaviors, often with different morphologies, but also sometime having different physiologies without any obvious morphological outcome. In the context of industrial utilization of fungi, this can have a negative impact on the maintenance of strains and/or on their productivity. Instabilities have been shown to result from various mechanisms, either genetic or epigenetic. This chapter will review different types of instabilities and discuss some lesser-known ones, mostly in filamentous fungi, while it will direct readers to additional literature in the case of well-known phenomena such as the amyloid prions or fungal senescence. It will present in depth the "white/opaque" switch of Candida albicans and the "crippled growth" degeneration of the model fungus Podospora anserina. These are two of the most thoroughly studied epigenetic phenotypic switches. I will also discuss the "sectors" presented by many filamentous ascomycetes, for which a prion-based model exists but is not demonstrated. Finally, I will also describe intriguing examples of phenotypic instability for which an explanation has yet to be provided.
Collapse
|
45
|
Yue H, Bing J, Zheng Q, Zhang Y, Hu T, Du H, Wang H, Huang G. Filamentation in Candida auris, an emerging fungal pathogen of humans: passage through the mammalian body induces a heritable phenotypic switch. Emerg Microbes Infect 2018; 7:188. [PMID: 30482894 PMCID: PMC6258701 DOI: 10.1038/s41426-018-0187-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/22/2018] [Accepted: 10/25/2018] [Indexed: 01/08/2023]
Abstract
Morphological plasticity has historically been an indicator of increased virulence among fungal pathogens, allowing rapid adaptation to changing environments. Candida auris has been identified as an emerging multidrug-resistant human pathogen of global importance. Since the discovery of this species, it has been thought that C. auris is incapable of filamentous growth. Here, we report the discovery of filamentation and three distinct cell types in C. auris: typical yeast, filamentation-competent (FC) yeast, and filamentous cells. These cell types form a novel phenotypic switching system that contains a heritable (typical yeast-filament) and a nonheritable (FC-filament) switch. Intriguingly, the heritable switch between the typical yeast and the FC/filamentous phenotype is triggered by passage through a mammalian body, whereas the switch between the FC and filamentous phenotype is nonheritable and temperature-dependent. Low temperatures favor the filamentous phenotype, whereas high temperatures promote the FC yeast phenotype. Systemic in vivo and in vitro investigations were used to characterize phenotype-specific variations in global gene expression, secreted aspartyl proteinase (SAP) activity, and changes in virulence, indicating potential for niche-specific adaptations. Taken together, our study not only sheds light on the pathogenesis and biology of C. auris but also provides a novel example of morphological and epigenetic switching in fungi.
Collapse
Affiliation(s)
- Huizhen Yue
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Bing
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qiushi Zheng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yulong Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianren Hu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Han Du
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Guanghua Huang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
46
|
Huang G, Huang Q, Wei Y, Wang Y, Du H. Multiple roles and diverse regulation of the Ras/cAMP/protein kinase A pathway in Candida albicans. Mol Microbiol 2018; 111:6-16. [PMID: 30299574 DOI: 10.1111/mmi.14148] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2018] [Indexed: 01/15/2023]
Abstract
Candida albicans is a major fungal pathogen of humans, causing both superficial and life-threatening systemic infections in immunocompromised people. The conserved Ras/cAMP/PKA pathway plays a key role in regulating multiple traits important for the virulence of C. albicans such as cell growth, yeast-hyphal transition, white-opaque switching, sexual reproduction and biofilm development. Diverse external signals influence cell physiology by activating this signaling pathway. The key components of the Ras/cAMP/PKA pathway include two Ras GTPases (Ras1 and Ras2), an adenylyl cyclase (Cyr1, also known as Cdc35), two cyclic nucleotide phosphodiesterases (Pde1 and Pde2) and the catalytic (Tpk1 and Tpk2) and regulatory (Bcy1) subunits of PKA kinase. Activation of this pathway dramatically alters the gene expression profile via several transcription factors, leading to the activation of specific biological processes. Here, we review the progress made in the past two decades to elucidate the molecular mechanisms by which the Ras/cAMP/PKA pathway senses diverse environmental cues and controls specific cellular responses and its connection with other signaling pathways in C. albicans.
Collapse
Affiliation(s)
- Guanghua Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.,State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Huang
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550025, China
| | - Yujia Wei
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550025, China
| | - Yue Wang
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Han Du
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| |
Collapse
|
47
|
Candida albicans White-Opaque Switching Influences Virulence but Not Mating during Oropharyngeal Candidiasis. Infect Immun 2018; 86:IAI.00774-17. [PMID: 29581190 DOI: 10.1128/iai.00774-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/17/2018] [Indexed: 12/13/2022] Open
Abstract
The capacity of Candida albicans to switch reversibly between the white phenotype and the opaque phenotype is required for the fungus to mate. It also influences virulence during hematogenously disseminated candidiasis. We investigated the roles of the mating type loci (MTL) and white-opaque switching in the capacity of C. albicans to mate in the oropharynx and cause oropharyngeal candidiasis (OPC). When immunosuppressed mice were orally infected with mating-competent opaque a/a and α/α cells either alone or mixed with white cells, no detectable mating occurred, indicating that the mating frequency was less than 1.6 × 10-6 Opaque cells were also highly attenuated in virulence; they either were cleared from the oropharynx or switched to the white phenotype during OPC. Although there were strain-to-strain differences in the virulence of white cells, they were consistently more virulent than opaque cells. In vitro studies indicated that relative to white cells, opaque cells had decreased capacity to invade and damage oral epithelial cells. The reduced invasion of at least one opaque strain was due to reduced surface expression of the Als3 invasin and inability to activate the epidermal growth factor receptor, which is required to stimulate the epithelial cell endocytic machinery. These results suggest that mating is a rare event during OPC because opaque cells have reduced capacity to invade and damage the epithelial cells of the oral mucosa.
Collapse
|
48
|
Wang X, Bing J, Zheng Q, Zhang F, Liu J, Yue H, Tao L, Du H, Wang Y, Wang H, Huang G. The first isolate of Candida auris in China: clinical and biological aspects. Emerg Microbes Infect 2018; 7:93. [PMID: 29777096 PMCID: PMC5959928 DOI: 10.1038/s41426-018-0095-0] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 12/21/2022]
Abstract
The emerging human fungal pathogen Candida auris has been recognized as a multidrug resistant species and is associated with high mortality. This fungus was first described in Japan in 2009 and has been reported in at least 18 countries on five continents. In this study, we report the first isolate of C. auris from the bronchoalveolar lavage fluid (BALF) of a hospitalized woman in China. Interestingly, this isolate is susceptible to all tested antifungals including amphotericin B, fluconazole, and caspofungin. Copper sulfate (CuSO4) also has a potent inhibitory effect on the growth of this fungus. Under different culture conditions, C. auris exhibits multiple morphological phenotypes including round-to-ovoid, elongated, and pseudohyphal-like forms. High concentrations of sodium chloride induce the formation of a pseudohyphal-like form. We further demonstrate that C. auris is much less virulent than Candida albicans in both mouse systemic and invertebrate Galleria mellonella models.
Collapse
Affiliation(s)
- Xiaojuan Wang
- Department of Clinical Laboratory, Peking University People's Hospital, 100044, Beijing, China
| | - Jian Bing
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Qiushi Zheng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Feifei Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, 100044, Beijing, China
| | - Jingbo Liu
- Department of Clinical Laboratory, Peking University People's Hospital, 100044, Beijing, China
| | - Huizhen Yue
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Li Tao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Han Du
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Yina Wang
- Department of Nephrology, Peking University People's Hospital, 100044, Beijing, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, 100044, Beijing, China.
| | - Guanghua Huang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China. .,State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 200438, Shanghai, China.
| |
Collapse
|
49
|
Du H, Zheng Q, Bing J, Bennett RJ, Huang G. A coupled process of same- and opposite-sex mating generates polyploidy and genetic diversity in Candida tropicalis. PLoS Genet 2018; 14:e1007377. [PMID: 29734333 PMCID: PMC5957450 DOI: 10.1371/journal.pgen.1007377] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/17/2018] [Accepted: 04/24/2018] [Indexed: 01/04/2023] Open
Abstract
Sexual reproduction is a universal mechanism for generating genetic diversity in eukaryotes. Fungi exhibit diverse strategies for sexual reproduction both in nature and in the laboratory. In this study, we report the discovery of same-sex (homothallic) mating in the human fungal pathogen Candida tropicalis. We show that same-sex mating occurs between two cells carrying the same mating type (MTLa/a or α/α) and requires the presence of pheromone from the opposite mating type as well as the receptor for this pheromone. In ménage à trois mating mixes (i.e., “a x a + α helper” or “α x α + a helper” mixes), pheromone secreted by helper strains promotes diploid C. tropicalis cells to undergo same-sex mating and form tetraploid products. Surprisingly, however, the tetraploid mating products can then efficiently mate with cells of the opposite mating type to generate hexaploid products. The unstable hexaploid progeny generated from this coupled process of same- and opposite-sex mating undergo rapid chromosome loss and generate extensive genetic variation. Phenotypic analysis demonstrated that the mating progeny-derived strains exhibit diverse morphologies and phenotypes, including differences in secreted aspartic proteinase (Sap) activity and susceptibility to the antifungal drugs. Thus, the coupling of same- and opposite-sex mating represents a novel mode to generate polyploidy and genetic diversity, which may facilitate the evolution of new traits in C. tropicalis and adaptation to changing environments. The fungal pathogen Candida tropicalis not only lives as a commensal in humans but is also widely distributed in diverse environments. Until recently, C. tropicalis was thought to be an asexual diploid organism. In this study, we report the discovery of same-sex mating and reveal an unusual process in which same- and opposite-sex mating are coupled in this fungus. The coupling process represents a novel mode of mating which produces unstable polyploid products and results in a high level of genetic and phenotypic diversity. This biological process may benefit the adaptation of C. tropicalis to a variety of ecological niches and promotes survival under stressful conditions. Our study expands the repertoire of mating strategies in fungi and sheds new lights on the generation of polyploidy and genomic flexibility.
Collapse
Affiliation(s)
- Han Du
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- * E-mail:
| | - Qiushi Zheng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian Bing
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Richard J. Bennett
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Guanghua Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
50
|
Modulation of the Fungal-Host Interaction by the Intra-Species Diversity of C. albicans. Pathogens 2018; 7:pathogens7010011. [PMID: 29342100 PMCID: PMC5874737 DOI: 10.3390/pathogens7010011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 01/09/2023] Open
Abstract
The incidence of human infections caused by the opportunistic fungal pathogen Candida albicans is on the rise due to increasing numbers of immunosuppressed patients. The importance of the immune system in preventing overgrowth of the colonizing fungus and thereby limiting infection is well recognized and host protective mechanisms widely investigated. Only recently, it was recognized that the natural diversity in the fungal species could also influence the outcome of the interaction between the fungus and the host. C. albicans strain-specific differences are complex and their regulation at the genomic, genetic, and epigenetic level and by environmental factors is only partially understood. In this review, we provide an overview of the natural diversity of C. albicans and discuss how it impacts host-fungal interactions and thereby affects the balance between commensalism versus disease.
Collapse
|