1
|
Przybyszewski O, Mik M, Nowicki M, Kusiński M, Mikołajczyk-Solińska M, Śliwińska A. Using microRNAs Networks to Understand Pancreatic Cancer-A Literature Review. Biomedicines 2024; 12:1713. [PMID: 39200178 PMCID: PMC11351910 DOI: 10.3390/biomedicines12081713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 09/02/2024] Open
Abstract
Pancreatic cancer is a severe disease, challenging to diagnose and treat, and thereby characterized by a poor prognosis and a high mortality rate. Pancreatic ductal adenocarcinoma (PDAC) represents approximately 90% of pancreatic cancer cases, while other cases include neuroendocrine carcinoma. Despite the growing knowledge of the pathophysiology of this cancer, the mortality rate caused by it has not been effectively reduced. Recently, microRNAs have aroused great interest among scientists and clinicians, as they are negative regulators of gene expression, which participate in many processes, including those related to the development of pancreatic cancer. The aim of this review is to show how microRNAs (miRNAs) affect key signaling pathways and related cellular processes in pancreatic cancer development, progression, diagnosis and treatment. We included the results of in vitro studies, animal model of pancreatic cancer and those performed on blood, saliva and tumor tissue isolated from patients suffering from PDAC. Our investigation identified numerous dysregulated miRNAs involved in KRAS, JAK/STAT, PI3/AKT, Wnt/β-catenin and TGF-β signaling pathways participating in cell cycle control, proliferation, differentiation, apoptosis and metastasis. Moreover, some miRNAs (miRNA-23a, miRNA-24, miRNA-29c, miRNA-216a) seem to be engaged in a crosstalk between signaling pathways. Evidence concerning the utility of microRNAs in the diagnosis and therapy of this cancer is poor. Therefore, despite growing knowledge of the involvement of miRNAs in several processes associated with pancreatic cancer, we are beginning to recognize and understand their role and usefulness in clinical practice.
Collapse
Affiliation(s)
- Oskar Przybyszewski
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland
| | - Michał Mik
- Department of General and Colorectal Surgery, Medical University of Lodz, 113 Stefana Żeromskiego St., 90-549 Lodz, Poland; (M.M.); (M.N.)
| | - Michał Nowicki
- Department of General and Colorectal Surgery, Medical University of Lodz, 113 Stefana Żeromskiego St., 90-549 Lodz, Poland; (M.M.); (M.N.)
| | - Michał Kusiński
- Department of Endocrinological, General and Oncological Surgery, Medical University of Lodz, 62 Pabianicka St., 93-513 Lodz, Poland;
| | - Melania Mikołajczyk-Solińska
- Department of Internal Medicine, Diabetology and Clinical Pharmacology, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland;
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland
| |
Collapse
|
2
|
Seyhan AA. Trials and Tribulations of MicroRNA Therapeutics. Int J Mol Sci 2024; 25:1469. [PMID: 38338746 PMCID: PMC10855871 DOI: 10.3390/ijms25031469] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
The discovery of the link between microRNAs (miRNAs) and a myriad of human diseases, particularly various cancer types, has generated significant interest in exploring their potential as a novel class of drugs. This has led to substantial investments in interdisciplinary research fields such as biology, chemistry, and medical science for the development of miRNA-based therapies. Furthermore, the recent global success of SARS-CoV-2 mRNA vaccines against the COVID-19 pandemic has further revitalized interest in RNA-based immunotherapies, including miRNA-based approaches to cancer treatment. Consequently, RNA therapeutics have emerged as highly adaptable and modular options for cancer therapy. Moreover, advancements in RNA chemistry and delivery methods have been pivotal in shaping the landscape of RNA-based immunotherapy, including miRNA-based approaches. Consequently, the biotechnology and pharmaceutical industry has witnessed a resurgence of interest in incorporating RNA-based immunotherapies and miRNA therapeutics into their development programs. Despite substantial progress in preclinical research, the field of miRNA-based therapeutics remains in its early stages, with only a few progressing to clinical development, none reaching phase III clinical trials or being approved by the US Food and Drug Administration (FDA), and several facing termination due to toxicity issues. These setbacks highlight existing challenges that must be addressed for the broad clinical application of miRNA-based therapeutics. Key challenges include establishing miRNA sensitivity, specificity, and selectivity towards their intended targets, mitigating immunogenic reactions and off-target effects, developing enhanced methods for targeted delivery, and determining optimal dosing for therapeutic efficacy while minimizing side effects. Additionally, the limited understanding of the precise functions of miRNAs limits their clinical utilization. Moreover, for miRNAs to be viable for cancer treatment, they must be technically and economically feasible for the widespread adoption of RNA therapies. As a result, a thorough risk evaluation of miRNA therapeutics is crucial to minimize off-target effects, prevent overdosing, and address various other issues. Nevertheless, the therapeutic potential of miRNAs for various diseases is evident, and future investigations are essential to determine their applicability in clinical settings.
Collapse
Affiliation(s)
- Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA;
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI 02912, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| |
Collapse
|
3
|
Lavacchi D, Polvani S, Taddei A, Scolari F, Messerini L, Caliman E, Moraldi L, Guidolin A, Grazi GL, Galli A, Pillozzi S, Antonuzzo L. KRAS-related miR-143 expression is associated with lymph node involvement and correlates with outcome in pancreatic adenocarcinoma patients. Front Oncol 2023; 13:1295936. [PMID: 38130990 PMCID: PMC10735715 DOI: 10.3389/fonc.2023.1295936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Pancreatic adenocarcinoma (PC) is one of the most lethal malignancies; even after resection the patients' 5-year disease-free survival (DFS) is lower than 26%. The genetic mutational landscape of PC is dominated by activating KRAS mutations, that have been reported in approximately 90% of cases; however, beyond KRAS - direct mutations, several KRAS-targeting miRNAs appear to be downregulated, strengthening the already activated RAS signaling. In addition, the interplay between miRNAs and RAS includes poorly investigated downstream miRNAs. The aim of this study was to determine the prognostic value of some of these candidate KRAS-related miRNAs. Patients and methods Between 2015 and 2022, 44 patients with pathologically confirmed PC, who received surgery and were enrolled by the Clinical Oncology Unit, Careggi University Hospital, Florence (Italy). PC Total RNA was extracted from FFPE sections, retro-transcribed and the resulting cDNA was then used for qPCR analysis. A panel of KRAS-related miRNA (miR-155, miR-206 and miR-143) was analyzed. Results In this observational study patients sex distribution was unequal with 34.1% being male and 65.9% female. The most frequent tumor localization was the head of the pancreas (65.9%) and the pathological stages were pT1-2 (45.5%), pT3 (54.5%), pN0 (22.7%), pN+ (77.3%). Adjuvant therapy was administered to 63.6% of patients; disease recurrence was observed in 69% of cases. Twenty-three patients, whose RNA was of adequate quality, were used in the mRNAs expression studies. When comparing the miRNA expression between PC and a pool of healthy tissues, miR-155 was overexpressed and miR-206 downregulated in PC, while miR-143 expression was unchanged. However, when categorized in low- and high- miR-143 expressing PC (according to the median value), high miR-143 was associated with nodal involvement (pN+) (p=0.029), who in turn was linked with shorter DFS (p=0.009) and overall survival (OS) (p=0.021) compared to pN0. A trend toward inferior DFS was observed for higher expression of miR-206 (p=0.095) and miR-143 (p=0.092). Finally, responders to a first-line treatment for advanced disease had miR-155 overexpressed (p=0.048). Conclusions miRNAs are involved in PC tumorigenesis and metastatic spread. In light of miR-143 association with lymphatic spread and poor prognosis, a comprehensive analysis of miRNA interplay with KRAS deserves further investigation.
Collapse
Affiliation(s)
- Daniele Lavacchi
- Clinical Oncology Unit, Careggi University Hospital, Florence, Italy
| | - Simone Polvani
- Department of Clinical and Experimental Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Antonio Taddei
- HPB Surgery Unit, Careggi University Hospital, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Federico Scolari
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Luca Messerini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Enrico Caliman
- Clinical Oncology Unit, Careggi University Hospital, Florence, Italy
| | - Luca Moraldi
- HPB Surgery Unit, Careggi University Hospital, Florence, Italy
| | - Alessia Guidolin
- Clinical Oncology Unit, Careggi University Hospital, Florence, Italy
| | - Gian Luca Grazi
- HPB Surgery Unit, Careggi University Hospital, Florence, Italy
| | - Andrea Galli
- Department of Clinical and Experimental Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Serena Pillozzi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Lorenzo Antonuzzo
- Clinical Oncology Unit, Careggi University Hospital, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
4
|
Seyhan AA. Circulating microRNAs as Potential Biomarkers in Pancreatic Cancer-Advances and Challenges. Int J Mol Sci 2023; 24:13340. [PMID: 37686149 PMCID: PMC10488102 DOI: 10.3390/ijms241713340] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
There is an urgent unmet need for robust and reliable biomarkers for early diagnosis, prognosis, and prediction of response to specific treatments of many aggressive and deadly cancers, such as pancreatic cancer, and liquid biopsy-based miRNA profiling has the potential for this. MiRNAs are a subset of non-coding RNAs that regulate the expression of a multitude of genes post-transcriptionally and thus are potential diagnostic, prognostic, and predictive biomarkers and have also emerged as potential therapeutics. Because miRNAs are involved in the post-transcriptional regulation of their target mRNAs via repressing gene expression, defects in miRNA biogenesis pathway and miRNA expression perturb the expression of a multitude of oncogenic or tumor-suppressive genes that are involved in the pathogenesis of various cancers. As such, numerous miRNAs have been identified to be downregulated or upregulated in many cancers, functioning as either oncomes or oncosuppressor miRs. Moreover, dysregulation of miRNA biogenesis pathways can also change miRNA expression and function in cancer. Profiling of dysregulated miRNAs in pancreatic cancer has been shown to correlate with disease diagnosis, indicate optimal treatment options and predict response to a specific therapy. Specific miRNA signatures can track the stages of pancreatic cancer and hold potential as diagnostic, prognostic, and predictive markers, as well as therapeutics such as miRNA mimics and miRNA inhibitors (antagomirs). Furthermore, identified specific miRNAs and genes they regulate in pancreatic cancer along with downstream pathways can be used as potential therapeutic targets. However, a limited understanding and validation of the specific roles of miRNAs, lack of tissue specificity, methodological, technical, or analytical reproducibility, harmonization of miRNA isolation and quantification methods, the use of standard operating procedures, and the availability of automated and standardized assays to improve reproducibility between independent studies limit bench-to-bedside translation of the miRNA biomarkers for clinical applications. Here I review recent findings on miRNAs in pancreatic cancer pathogenesis and their potential as diagnostic, prognostic, and predictive markers.
Collapse
Affiliation(s)
- Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA;
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI 02912, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| |
Collapse
|
5
|
Tufail M. The MALAT1-breast cancer interplay: insights and implications. Expert Rev Mol Diagn 2023; 23:665-678. [PMID: 37405385 DOI: 10.1080/14737159.2023.2233902] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/04/2023] [Indexed: 07/06/2023]
Abstract
INTRODUCTION Breast cancer (BC) is a major public health concern, and identifying new biomarkers and therapeutic targets is critical to improving patient outcomes. MALAT1, a long noncoding RNA, has emerged as a promising candidate due to its overexpression in BC and the associated poor prognosis. Understanding the role of MALAT1 in BC progression is paramount for the development of effective therapeutic strategies. COVERED AREA This review delves into the structure and function of MALAT1, and examines its expression pattern in breast cancer (BC) and its association with different BC subtypes. This review focuses on the interactions between MALAT1 and microRNAs (miRNAs) and the various signaling pathways involved in BC. Furthermore, this study investigates the influence of MALAT1 on the BC tumor microenvironment and the possible influence of MALAT1 on immune checkpoint regulation. This study also sheds light the role of MALAT1 in breast cancer resistance. EXPERT OPINION MALAT1 has been shown to play a key role in the progression of BC, highlighting its importance as a potential therapeutic target. Further studies are needed to elucidate the underlying molecular mechanisms by which MALAT1 contributes to the development of BC. In combination with standard therapy, there is a need to evaluates the potential of treatments targeting MALAT1, which may lead to improved treatment outcomes. Moreover, study of MALAT1 as a diagnostic and prognostic marker promises improved BC management. Continued efforts to decipher the functional role of MALAT1 and explore its clinical utility are critical to advancing the BC research field.
Collapse
Affiliation(s)
- Muhammad Tufail
- Institute of Biomedical Sciences, Shanxi University, Taiyuan, China
| |
Collapse
|
6
|
Bortoletto AS, Parchem RJ. KRAS Hijacks the miRNA Regulatory Pathway in Cancer. Cancer Res 2023; 83:1563-1572. [PMID: 36946612 PMCID: PMC10183808 DOI: 10.1158/0008-5472.can-23-0296] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/01/2023] [Accepted: 03/20/2023] [Indexed: 03/23/2023]
Abstract
Extensive studies have focused on the misregulation of individual miRNAs in cancer. More recently, mutations in the miRNA biogenesis and processing machinery have been implicated in several malignancies. Such mutations can lead to global miRNA misregulation, which may promote many of the well-known hallmarks of cancer. Interestingly, recent evidence also suggests that oncogenic Kristen rat sarcoma viral oncogene homolog (KRAS) mutations act in part by modulating the activity of members of the miRNA regulatory pathway. Here, we highlight the vital role mutations in the miRNA core machinery play in promoting malignant transformation. Furthermore, we discuss how mutant KRAS can simultaneously impact multiple steps of miRNA processing and function to promote tumorigenesis. Although the ability of KRAS to hijack the miRNA regulatory pathway adds a layer of complexity to its oncogenic nature, it also provides a potential therapeutic avenue that has yet to be exploited in the clinic. Moreover, concurrent targeting of mutant KRAS and members of the miRNA core machinery represents a potential strategy for treating cancer.
Collapse
Affiliation(s)
- Angelina S. Bortoletto
- Center for Cell and Gene Therapy, Stem Cell and Regenerative Medicine Center, Department of Molecular and Cellular Biology, Department of Neuroscience, Translational Biology and Molecular Medicine Program, Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas
| | - Ronald J. Parchem
- Center for Cell and Gene Therapy, Stem Cell and Regenerative Medicine Center, Department of Molecular and Cellular Biology, Department of Neuroscience, Translational Biology and Molecular Medicine Program, Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
7
|
Kalita A, Sikora-Skrabaka M, Nowakowska-Zajdel E. Role of Some microRNA/ADAM Proteins Axes in Gastrointestinal Cancers as a Novel Biomarkers and Potential Therapeutic Targets—A Review. Curr Issues Mol Biol 2023; 45:2917-2936. [PMID: 37185715 PMCID: PMC10136553 DOI: 10.3390/cimb45040191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/16/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Gastrointestinal (GI) cancers are some of the most common cancers in the world and their number is increasing. Their etiology and pathogenesis are still unclear. ADAM proteins are a family of transmembrane and secreted metalloproteinases that play a role in cancerogenesis, metastasis and neoangiogenesis. MicroRNAs are small single-stranded non-coding RNAs that take part in the post-transcriptional regulation of gene expression. Some ADAM proteins can be targets for microRNAs. In this review, we analyze the impact of microRNA/ADAM protein axes in GI cancers.
Collapse
Affiliation(s)
- Agnieszka Kalita
- Department of Nutrition-Related Disease Prevention, Department of Metabolic Disease Prevention, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
- Department of Clinical Oncology, No. 4 Provincial Specialist Hospital, 41-902 Bytom, Poland
| | - Magdalena Sikora-Skrabaka
- Department of Nutrition-Related Disease Prevention, Department of Metabolic Disease Prevention, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
- Department of Clinical Oncology, No. 4 Provincial Specialist Hospital, 41-902 Bytom, Poland
| | - Ewa Nowakowska-Zajdel
- Department of Nutrition-Related Disease Prevention, Department of Metabolic Disease Prevention, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
- Department of Clinical Oncology, No. 4 Provincial Specialist Hospital, 41-902 Bytom, Poland
| |
Collapse
|
8
|
Montalvo-Javé EE, Nuño-Lámbarri N, López-Sánchez GN, Ayala-Moreno EA, Gutierrez-Reyes G, Beane J, Pawlik TM. Pancreatic Cancer: Genetic Conditions and Epigenetic Alterations. J Gastrointest Surg 2023; 27:1001-1010. [PMID: 36749558 DOI: 10.1007/s11605-022-05553-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/19/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Pancreatic cancer is a lethal proliferative disease driven by multiple genetic and epigenetic alterations. Microarrays and omics-based sequencing techniques are potent tools that have facilitated a broader understanding of the complex biological processes that drive pancreatic ductal adenocarcinoma (PDAC). In turn, these tools have resulted in the identification of novel disease markers, prognostic factors, and therapeutic targets. Herein, we provide a review of the genetic and epigenetic drivers of PDAC relative to recent discoveries that impact patient management. METHODS A review of PubMed, Medline, Clinical Key, and Index Medicus was conducted to identify literature from January 1995 to July 2022 that is related to PDAC genetics and epigenetics. Articles in Spanish and English were considered during selection. RESULTS Molecular, genetic, and epigenetic diagnostic tools, novel biomarkers, and promising therapeutic targets have emerged in the treatment of pancreatic cancer. The implementation of microarray technology and application of large omics-based data repositories have facilitated recent discoveries in PDAC. Multiple molecular analyses based on RNA interference have been instrumental in the identification of novel therapeutic targets for patients with PDAC. Moreover, microarrays and next-generation omics-based discoveries have been instrumental in the characterization of subtypes of pancreatic cancer, thereby improving prognostication and refining patient selection for available targeted therapies. CONCLUSION Advances in molecular biology, genetics, and epigenetics have ushered in a new era of discovery in the pathobiology of PDAC. Current efforts are underway to translate these findings into clinical tools and therapies to improve outcomes in patients with PDAC.
Collapse
Affiliation(s)
- Eduardo E Montalvo-Javé
- Hepatopancreatobiliary Clinic, Department of Surgery, Hospital General de México "Dr. Eduardo Liceaga", Mexico City, Mexico. .,Department of Surgery, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | | | | | - Edwin A Ayala-Moreno
- Department of Surgery, Hospital General de México "Dr. Eduardo Liceaga", Mexico City, Mexico
| | - Gabriela Gutierrez-Reyes
- Liver, Pancreas and Motility Laboratory, Unit of Experimental Medicine, Hospital General de México "Dr. Eduardo Liceaga", Mexico City, Mexico
| | - Joal Beane
- Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Timothy M Pawlik
- Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
9
|
Zhang W, Jiang T, Xie K. Epigenetic reprogramming in pancreatic premalignancy and clinical implications. Front Oncol 2023; 13:1024151. [PMID: 36874143 PMCID: PMC9978013 DOI: 10.3389/fonc.2023.1024151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
Pancreatic cancer (PC) is the most lethal human cancer, with less than 10% 5-year survival. Pancreatic premalignancy is a genetic and epigenomic disease and is linked to PC initiation. Pancreatic premalignant lesions include pancreatic intraepithelial neoplasia (PanIN), intraductal papillary mucinous neoplasm (IPMN), and mucinous cystic neoplasm (MCN), with pancreatic acinar-to-ductal metaplasia (ADM) as the major source of pancreatic premalignant lesions. Emerging evidence reveals that an epigenetic dysregulation is an early event in pancreatic tumorigenesis. The molecular mechanisms of epigenetic inheritance include chromatin remodeling; modifications in histone, DNA, and RNA; non-coding RNA expression; and alternative splicing of RNA. Changes in those epigenetic modifications contribute to the most notable alterations in chromatin structure and promoter accessibility, thus leading to the silence of tumor suppressor genes and/or activation of oncogenes. The expression profiles of various epigenetic molecules provide a promising opportunity for biomarker development for early diagnosis of PC and novel targeted treatment strategies. However, how the alterations in epigenetic regulatory machinery regulate epigenetic reprogramming in pancreatic premalignant lesions and the different stages of their initiation needs further investigation. This review will summarize the current knowledge of epigenetic reprogramming in pancreatic premalignant initiation and progression, and its clinical applications as detection and diagnostic biomarkers and therapeutic targets in PC.
Collapse
Affiliation(s)
- Wei Zhang
- Center for Pancreatic Cancer Research, School of Medicine, The South China University of Technology, Guangzhou, China.,Department of Pathology, School of Medicine, The South China University of Technology, Guangzhou, China
| | - Tingting Jiang
- Center for Pancreatic Cancer Research, School of Medicine, The South China University of Technology, Guangzhou, China.,Department of Pathology, School of Medicine, The South China University of Technology, Guangzhou, China
| | - Keping Xie
- Center for Pancreatic Cancer Research, School of Medicine, The South China University of Technology, Guangzhou, China.,Department of Pathology, School of Medicine, The South China University of Technology, Guangzhou, China
| |
Collapse
|
10
|
Yu YC, Ahmed A, Lai HC, Cheng WC, Yang JC, Chang WC, Chen LM, Shan YS, Ma WL. Review of the endocrine organ-like tumor hypothesis of cancer cachexia in pancreatic ductal adenocarcinoma. Front Oncol 2022; 12:1057930. [PMID: 36465353 PMCID: PMC9713001 DOI: 10.3389/fonc.2022.1057930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/26/2022] [Indexed: 08/30/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal types of solid tumors, associated with a high prevalence of cachexia (~80%). PDAC-derived cachexia (PDAC-CC) is a systemic disease involving the complex interplay between the tumor and multiple organs. The endocrine organ-like tumor (EOLT) hypothesis may explain the systemic crosstalk underlying the deleterious homeostatic shifts that occur in PDAC-CC. Several studies have reported a markedly heterogeneous collection of cachectic mediators, signaling mechanisms, and metabolic pathways, including exocrine pancreatic insufficiency, hormonal disturbance, pro-inflammatory cytokine storm, digestive and tumor-derived factors, and PDAC progression. The complexities of PDAC-CC necessitate a careful review of recent literature summarizing cachectic mediators, corresponding metabolic functions, and the collateral impacts on wasting organs. The EOLT hypothesis suggests that metabolites, genetic instability, and epigenetic changes (microRNAs) are involved in cachexia development. Both tumors and host tissues can secrete multiple cachectic factors (beyond only inflammatory mediators). Some regulatory molecules, metabolites, and microRNAs are tissue-specific, resulting in insufficient energy production to support tumor/cachexia development. Due to these complexities, changes in a single factor can trigger bi-directional feedback circuits that exacerbate PDAC and result in the development of irreversible cachexia. We provide an integrated review based on 267 papers and 20 clinical trials from PubMed and ClinicalTrials.gov database proposed under the EOLT hypothesis that may provide a fundamental understanding of cachexia development and response to current treatments.
Collapse
Affiliation(s)
- Ying-Chun Yu
- Department of Medical Research, Department of Obstetrics and Gynecology, Department of Gastroenterology, and Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, Center for Tumor Biology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Azaj Ahmed
- Department of Medical Research, Department of Obstetrics and Gynecology, Department of Gastroenterology, and Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
| | - Hsueh-Chou Lai
- Department of Medical Research, Department of Obstetrics and Gynecology, Department of Gastroenterology, and Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Chung Cheng
- Graduate Institute of Biomedical Sciences, Center for Tumor Biology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Juan-Chern Yang
- Department of Medical Research, Department of Obstetrics and Gynecology, Department of Gastroenterology, and Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Chun Chang
- Department of Medical Research, Department of Obstetrics and Gynecology, Department of Gastroenterology, and Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, Center for Tumor Biology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Lu-Min Chen
- Department of Medical Research, Department of Obstetrics and Gynecology, Department of Gastroenterology, and Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
| | - Yan-Shen Shan
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Chen Kung University, Tainan, Taiwan
| | - Wen-Lung Ma
- Department of Medical Research, Department of Obstetrics and Gynecology, Department of Gastroenterology, and Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, Center for Tumor Biology, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Nursing, Asia University, Taichung, Taiwan
| |
Collapse
|
11
|
Nickel's Role in Pancreatic Ductal Adenocarcinoma: Potential Involvement of microRNAs. TOXICS 2022; 10:toxics10030148. [PMID: 35324773 PMCID: PMC8952337 DOI: 10.3390/toxics10030148] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 02/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancer types with a limited overall survival rate due to the asymptomatic progression of symptoms in metastatic stages of the malignancy and the lack of an early reliable diagnostic biomarker. MicroRNAs (miRs/miRNAs) are small (~18–24 nucleotides), endogenous, non-coding RNAs, which are closely linked to the development of numerous malignancies comprising PDAC. Recent studies have described the role of environmental pollutants such as nickel (Ni) in PDAC, but the mechanisms of Ni-mediated toxicity in cancer are still not completely understood. Specifically, Ni has been found to alter the expression and function of miRs in several malignancies, leading to changes in target gene expression. In this study, we found that levels of Ni were significantly higher in cancerous tissue, thus implicating Ni in pancreatic carcinogenesis. Hence, in vitro studies followed by using both normal and pancreatic tumor cell lines and increasing Ni concentration increased lethality. Comparing LC50 values, Ni-acetate groups demonstrated lower values needed than in NiCl2 groups, suggesting greater Ni-acetate. Panc-10.05 cell line appeared the most sensitive to Ni compounds. Exposure to Ni-acetate resulted in an increased phospho-AKT, and decreased FOXO1 expression in Panc-10.05 cells, while NiCl2 also increased PTEN expression in Panc-10.05 cells. Specifically, following NiCl2 exposure to PDAC cells, the expression levels of miR-221 and miR-155 were significantly upregulated, while the expression levels of miR-126 were significantly decreased. Hence, our study has suggested pilot insights to indicate that the environmental pollutant Ni plays an important role in the progression of PDAC by promoting an association between miRs and Ni exposure during PDAC pathogenesis.
Collapse
|
12
|
Mortoglou M, Buha Djordjevic A, Djordjevic V, Collins H, York L, Mani K, Valle E, Wallace D, Uysal-Onganer P. Role of microRNAs in response to cadmium chloride in pancreatic ductal adenocarcinoma. Arch Toxicol 2022; 96:467-485. [PMID: 34905088 PMCID: PMC8837568 DOI: 10.1007/s00204-021-03196-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal and aggressive malignancies with a 5-year survival rate less than 9%. Early detection is particularly difficult due to the lack of symptoms even in advanced stages. microRNAs (miRs/miRNAs) are small (~ 18-24 nucleotides), endogenous, non-coding RNAs, which are involved in the pathogenesis of several malignancies including PDAC. Alterations of miR expressions can lead to apoptosis, angiogenesis, and metastasis. The role of environmental pollutants such as cadmium (Cd) in PDAC has been suggested but not fully understood. This study underlines the role of miRs (miR-221, miR-155, miR-126) in response to cadmium chloride (CdCl2) in vitro. Lethal concentration (LC50) values for CdCl2 resulted in a toxicity series of AsPC-1 > HPNE > BxPC-3 > Panc-1 = Panc-10.5. Following the treatment with CdCl2, miR-221 and miR-155 were significantly overexpressed, whereas miR-126 was downregulated. An increase in epithelial-mesenchymal transition (EMT) via the dysregulation of mesenchymal markers such as Wnt-11, E-cadherin, Snail, and Zeb1 was also observed. Hence, this study has provided evidence to suggest that the environmental pollutant Cd can have a significant role in the development of PDAC, suggesting a significant correlation between miRs and Cd exposure during PDAC progression. Further studies are needed to investigate the precise role of miRs in PDAC progression as well as the role of Cd and other environmental pollutants.
Collapse
Affiliation(s)
- Maria Mortoglou
- Cancer Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW UK
| | | | | | - Hunter Collins
- College of Medicine and the Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107-1898 USA
| | - Lauren York
- College of Medicine and the Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107-1898 USA
| | - Katherine Mani
- College of Medicine and the Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107-1898 USA
| | - Elizabeth Valle
- College of Medicine and the Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107-1898 USA
| | - David Wallace
- College of Medicine and the Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107-1898 USA
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW UK
| |
Collapse
|
13
|
Wei L, Sun C, Zhang Y, Han N, Sun S. miR-503-5p inhibits colon cancer tumorigenesis, angiogenesis, and lymphangiogenesis by directly downregulating VEGF-A. Gene Ther 2022; 29:28-40. [PMID: 32533103 DOI: 10.1038/s41434-020-0167-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are considered important in the pathogenesis of colon cancer. But the mechanism of their role in colon cancer is still largely unknown. Here, we aimed to explore the function of miR-503-5p in the pathogenesis of colon cancer. This study analyzed miRNA microarray of colon cancer. Then, we performed EdU, CCK-8, flow cytometry, Transwell invasion assays and in vivo assays to explore the exact role of miR-503-5p in colon cancer. We observed considerable downregulation of miR-503-5p expression in colon cancer cells and tissues and significant correlation with the TNM stage, differentiation grade and lymph node metastasis of colon cancer. Overexpression of miR-503-5p promoted the apoptosis and G1 arrest of colon cancer cells, and inhibited migration, proliferation, invasion and colony formation. Interestingly, ectopic miR-503-5p overexpression could significantly inhibit vascular endothelial growth factor (VEGF)-A expression and reduce the activity of a luciferase reporter containing the VEGF-A 3'-untranslated region. Furthermore, overexpressed miR-503-5p in human umbilical vein endothelial cells (HUVECs) and colon cancer cells resulted in lower expression levels of VEGFR-2, and subsequently inhibited AKT signaling pathway. Additionally, overexpression of miR-503-5p suppressed both lymphangiogenesis and angiogenesis in vivo and significantly inhibited the tumorigenicity of HT-29 cells in nude mice. In summary, our study shows downregulation of miR-503-5p at least partially contributes to the tumorigenesis of colon cancer through modulating the angiogenesis and lymphangiogenesis by targeting VEGF-A while stimulating AKT signaling pathways. Therapeutic strategies to restore miR-503-5p in colon cancer could be useful to inhibit tumor progression.
Collapse
Affiliation(s)
- Linlin Wei
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning, China.
| | - Chaonan Sun
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning, China
| | - Yaotian Zhang
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning, China
| | - Ning Han
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning, China
| | - Shichen Sun
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning, China
| |
Collapse
|
14
|
The Role of Circulating MicroRNAs in Patients with Early-Stage Pancreatic Adenocarcinoma. Biomedicines 2021; 9:biomedicines9101468. [PMID: 34680585 PMCID: PMC8533318 DOI: 10.3390/biomedicines9101468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 01/17/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is increasing in incidence and is still associated with a high rate of mortality. Only a minority of patients are diagnosed in the early stage. Radical surgery is the only potential curative procedure. However, radicality is reached in 20% of patients operated on. Despite the multidisciplinary approach in resectable tumors, early tumor recurrences are common. Options on how to select optimal candidates for resection remain limited. Nevertheless, accumulating evidence shows an important role of circulating non-coding plasma and serum microRNAs (miRNAs), which physiologically regulate the function of a target protein. miRNAs also play a crucial role in carcinogenesis. In PDAC patients, the expression levels of certain miRNAs vary and may modulate the function of oncogenes or tumor suppressor genes. As they can be detected in a patient's blood, they have the potential to become promising non-invasive diagnostic and prognostic biomarkers. Moreover, they may also serve as markers of chemoresistance. Thus, miRNAs could be useful for early and accurate diagnosis, prognostic stratification, and individual treatment planning. In this review, we summarize the latest findings on miRNAs in PDAC patients, focusing on their potential use in the early stage of the disease.
Collapse
|
15
|
Lu Y, Corradi C, Gentiluomo M, López de Maturana E, Theodoropoulos GE, Roth S, Maiello E, Morelli L, Archibugi L, Izbicki JR, Sarlós P, Kiudelis V, Oliverius M, Aoki MN, Vashist Y, van Eijck CHJ, Gazouli M, Talar-Wojnarowska R, Mambrini A, Pezzilli R, Bueno-de-Mesquita B, Hegyi P, Souček P, Neoptolemos JP, Di Franco G, Sperti C, Kauffmann EF, Hlaváč V, Uzunoğlu FG, Ermini S, Małecka-Panas E, Lucchesi M, Vanella G, Dijk F, Mohelníková-Duchoňová B, Bambi F, Petrone MC, Jamroziak K, Guo F, Kolarova K, Capretti G, Milanetto AC, Ginocchi L, Loveček M, Puzzono M, van Laarhoven HWM, Carrara S, Ivanauskas A, Papiris K, Basso D, Arcidiacono PG, Izbéki F, Chammas R, Vodicka P, Hackert T, Pasquali C, Piredda ML, Costello-Goldring E, Cavestro GM, Szentesi A, Tavano F, Włodarczyk B, Brenner H, Kreivenaite E, Gao X, Bunduc S, Vermeulen RCH, Schneider MA, Latiano A, Gioffreda D, Testoni SGG, Kupcinskas J, Lawlor RT, Capurso G, Malats N, Campa D, Canzian F. Association of Genetic Variants Affecting microRNAs and Pancreatic Cancer Risk. Front Genet 2021; 12:693933. [PMID: 34527018 PMCID: PMC8435735 DOI: 10.3389/fgene.2021.693933] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/05/2021] [Indexed: 02/05/2023] Open
Abstract
Genetic factors play an important role in the susceptibility to pancreatic cancer (PC). However, established loci explain a small proportion of genetic heritability for PC; therefore, more progress is needed to find the missing ones. We aimed at identifying single nucleotide polymorphisms (SNPs) affecting PC risk through effects on micro-RNA (miRNA) function. We searched in silico the genome for SNPs in miRNA seed sequences or 3 prime untranslated regions (3'UTRs) of miRNA target genes. Genome-wide association data of PC cases and controls from the Pancreatic Cancer Cohort (PanScan) Consortium and the Pancreatic Cancer Case-Control (PanC4) Consortium were re-analyzed for discovery, and genotyping data from two additional consortia (PanGenEU and PANDoRA) were used for replication, for a total of 14,062 cases and 11,261 controls. None of the SNPs reached genome-wide significance in the meta-analysis, but for three of them the associations were in the same direction in all the study populations and showed lower value of p in the meta-analyses than in the discovery phase. Specifically, rs7985480 was consistently associated with PC risk (OR = 1.12, 95% CI 1.07-1.17, p = 3.03 × 10-6 in the meta-analysis). This SNP is in linkage disequilibrium (LD) with rs2274048, which modulates binding of various miRNAs to the 3'UTR of UCHL3, a gene involved in PC progression. In conclusion, our results expand the knowledge of the genetic PC risk through miRNA-related SNPs and show the usefulness of functional prioritization to identify genetic polymorphisms associated with PC risk.
Collapse
Affiliation(s)
- Ye Lu
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, University of Heidelberg, Heidelberg, Germany
| | | | | | | | - George E. Theodoropoulos
- First Propaedeutic University Surgery Clinic, Hippocratio General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Susanne Roth
- Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - Evaristo Maiello
- Department of Oncology, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, San Giovanni Rotondo, Italy
| | - Luca Morelli
- General Surgery, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Livia Archibugi
- Digestive and Liver Disease Unit, Sant’Andrea Hospital, Rome, Italy
- Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, IRSSC San Raffaele Scientific Institute, Milan, Italy
| | - Jakob R. Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patricia Sarlós
- First Department of Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Vytautas Kiudelis
- Department of Gastroenterology, Institute for Digestive Research, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Martin Oliverius
- Department of Surgery, Faculty Hospital Kralovske Vinohrady and Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Mateus Nóbrega Aoki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Curitiba, Brazil
| | - Yogesh Vashist
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Casper H. J. van Eijck
- Department of Surgery, Erasmus Medical Center, Erasmus University, Rotterdam, Netherlands
| | - Maria Gazouli
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Andrea Mambrini
- Oncological Department, Azienda USL Toscana Nord Ovest, Oncological Unit of Massa Carrara, Carrara, Italy
| | | | - Bas Bueno-de-Mesquita
- Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Péter Hegyi
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Department of Medicine, Centre for Translational Medicine, University of Szeged, Szeged, Hungary
| | - Pavel Souček
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - John P. Neoptolemos
- Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - Gregorio Di Franco
- General Surgery, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Cosimo Sperti
- Department of Surgery-DiSCOG, Padua University Hospital, Padua, Italy
| | | | - Viktor Hlaváč
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Faik G. Uzunoğlu
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefano Ermini
- Blood Transfusion Service, Azienda Ospedaliero-Universitaria Meyer, Children's Hospital, Florence, Italy
| | - Ewa Małecka-Panas
- Department of Digestive Tract Diseases, Medical University of Lodz, Lodz, Poland
| | - Maurizio Lucchesi
- Oncological Department, Azienda USL Toscana Nord Ovest, Oncological Unit of Massa Carrara, Carrara, Italy
| | - Giuseppe Vanella
- Digestive and Liver Disease Unit, Sant’Andrea Hospital, Rome, Italy
- Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, IRSSC San Raffaele Scientific Institute, Milan, Italy
| | - Frederike Dijk
- Deparment of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Beatrice Mohelníková-Duchoňová
- Department of Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czechia
| | - Franco Bambi
- Blood Transfusion Service, Azienda Ospedaliero-Universitaria Meyer, Children's Hospital, Florence, Italy
| | - Maria Chiara Petrone
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, IRSSC San Raffaele Scientific Institute, Milan, Italy
| | - Krzysztof Jamroziak
- Department of Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Feng Guo
- Medical Faculty Heidelberg, University of Heidelberg, Heidelberg, Germany
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katerina Kolarova
- Department of Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czechia
| | - Giovanni Capretti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Pancreatic Surgery Unit, Humanitas Clinical and Research Center IRCCS, Milan, Italy
| | | | - Laura Ginocchi
- Oncological Department, Azienda USL Toscana Nord Ovest, Oncological Unit of Massa Carrara, Carrara, Italy
| | - Martin Loveček
- Department of Surgery I, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czechia
| | - Marta Puzzono
- Division of Experimental Oncology, Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Hanneke W. M. van Laarhoven
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Silvia Carrara
- Division of Gastroenterology and Digestive Endoscopy, Department of Gastroenterology, Humanitas Clinical and Research Center IRCCS, Milan, Italy
| | - Audrius Ivanauskas
- Department of Gastroenterology, Institute for Digestive Research, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Konstantinos Papiris
- Endoscopic Surgery Department, Hippocratio General Hospital of Athens, Athens, Greece
| | - Daniela Basso
- Department of Medicine-DIMED, Padua University Hospital, Padua, Italy
| | - Paolo G. Arcidiacono
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, IRSSC San Raffaele Scientific Institute, Milan, Italy
| | - Ferenc Izbéki
- Szent György University Teaching Hospital of County Fejér, Székesfehérvár, Hungary
| | - Roger Chammas
- Department of Radiology and Oncology, Institute of Cancer of São Paulo (ICESP), São Paulo, Brazil
- Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Biomedical Centre and Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University, Prague, Czechia
| | - Thilo Hackert
- Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - Claudio Pasquali
- Department of Surgery-DiSCOG, Padua University Hospital, Padua, Italy
| | - Maria L. Piredda
- ARC-NET, Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy
| | - Eithne Costello-Goldring
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Giulia Martina Cavestro
- Division of Experimental Oncology, Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Szentesi
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Department of Medicine, Centre for Translational Medicine, University of Szeged, Szeged, Hungary
| | - Francesca Tavano
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, San Giovanni Rotondo, Italy
| | - Barbara Włodarczyk
- Department of Digestive Tract Diseases, Medical University of Lodz, Lodz, Poland
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Edita Kreivenaite
- Department of Gastroenterology, Institute for Digestive Research, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Xin Gao
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefania Bunduc
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Fundeni Clinical Institute, Bucharest, Romania
| | - Roel C. H. Vermeulen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, Netherlands
| | - Martin A. Schneider
- Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - Anna Latiano
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, San Giovanni Rotondo, Italy
| | - Domenica Gioffreda
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, San Giovanni Rotondo, Italy
| | - Sabrina G. G. Testoni
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, IRSSC San Raffaele Scientific Institute, Milan, Italy
| | - Juozas Kupcinskas
- Department of Gastroenterology, Institute for Digestive Research, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rita T. Lawlor
- ARC-NET, Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy
| | - Gabriele Capurso
- Digestive and Liver Disease Unit, Sant’Andrea Hospital, Rome, Italy
- Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, IRSSC San Raffaele Scientific Institute, Milan, Italy
| | - Núria Malats
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
16
|
Chen S, Gao C, Yu T, Qu Y, Xiao GG, Huang Z. Bioinformatics Analysis of a Prognostic miRNA Signature and Potential Key Genes in Pancreatic Cancer. Front Oncol 2021; 11:641289. [PMID: 34094925 PMCID: PMC8174116 DOI: 10.3389/fonc.2021.641289] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/31/2021] [Indexed: 12/11/2022] Open
Abstract
Background In this study, miRNAs and their critical target genes related to the prognosis of pancreatic cancer were screened based on bioinformatics analysis to provide targets for the prognosis and treatment of pancreatic cancer. Methods R software was used to screen differentially expressed miRNAs (DEMs) and genes (DEGs) downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, respectively. A miRNA Cox proportional hazards regression model was constructed based on the miRNAs, and a miRNA prognostic model was generated. The target genes of the prognostic miRNAs were predicted using TargetScan and miRDB and then intersected with the DEGs to obtain common genes. The functions of the common genes were subjected to Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses. A protein-protein interaction (PPI) network of the common genes was constructed with the STRING database and visualized with Cytoscape software. Key genes were also screened with the MCODE and cytoHubba plug-ins of Cytoscape. Finally, a prognostic model formed by the key gene was also established to help evaluate the reliability of this screening process. Results A prognostic model containing four downregulated miRNAs (hsa-mir-424, hsa-mir-3613, hsa-mir-4772 and hsa-mir-126) related to the prognosis of pancreatic cancer was constructed. A total of 118 common genes were enriched in two KEGG pathways and 33 GO functional annotations, including extracellular matrix (ECM)-receptor interaction and cell adhesion. Nine key genes related to pancreatic cancer were also obtained: MMP14, ITGA2, THBS2, COL1A1, COL3A1, COL11A1, COL6A3, COL12A1 and COL5A2. The prognostic model formed by nine key genes also possessed good prognostic ability. Conclusions The prognostic model consisting of four miRNAs can reliably predict the prognosis of patients with pancreatic cancer. In addition, the screened nine key genes, which can also form a reliable prognostic model, are significantly related to the occurrence and development of pancreatic cancer. Among them, one novel miRNA (hsa-mir-4772) and two novel genes (COL12A1 and COL5A2) associated with pancreatic cancer have great potential to be used as prognostic factors and therapeutic targets for this tumor.
Collapse
Affiliation(s)
- Shuoling Chen
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, China.,The Second School of Clinical Medicine, Guangdong Medical University, Dongguan, China
| | - Chang Gao
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Tianyang Yu
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Yueyang Qu
- School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, China
| | - Gary Guishan Xiao
- School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, China
| | - Zunnan Huang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| |
Collapse
|
17
|
Baghbani E, Noorolyai S, Duijf PHG, Silvestris N, Kolahian S, Hashemzadeh S, Baghbanzadeh Kojabad A, FallahVazirabad A, Baradaran B. The impact of microRNAs on myeloid-derived suppressor cells in cancer. Hum Immunol 2021; 82:668-678. [PMID: 34020831 DOI: 10.1016/j.humimm.2021.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 02/08/2023]
Abstract
Inflammation promotes cancer development. To a large extent, this can be attributed to the recruitment of myeloid-derived suppressor cells (MDSCs) to tumors. These cells are known for establishing an immunosuppressive tumor microenvironment by suppressing T cell activities. However, MDSCs also promote metastasis and angiogenesis. Critically, as small non-coding RNAs that regulate gene expression, microRNAs (miRNAs) control MDSC activities. In this review, we discuss how miRNA networks regulate key MDSC signaling pathways, how they shape MDSC development, differentiation and activation, and how this impacts tumor development. By targeting the expression of miRNAs in MDSCs, we can alter their main signaling pathways. In turn, this can compromise their ability to promote multiple hallmarks of cancer. Therefore, this may represent a new powerful strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Noorolyai
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pascal H G Duijf
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Australia; University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Nicola Silvestris
- IRCCS Bari, Italy. Medical Oncology Unit-IRCCS Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy, Department of Biomedical Sciences and Human Oncology DIMO-University of Bari, Bari, Italy
| | - Saeed Kolahian
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Division of Pharmacogenomics, University of Tübingen, Tübingen, Germany; Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University of Marburg, Marburg, Germany; Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Marburg, Germany
| | - Shahryar Hashemzadeh
- General and Vascular Surgery Department, Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most aggressive and invasive type of pancreatic cancer (PCa) and is expected to be the second most common cause of cancer-associated deaths. The high mortality rate is due to the asymptomatic progression of the clinical features until the advanced stages of the disease and the limited effectiveness of the current therapeutics. Aberrant expression of several microRNAs (miRs/miRNAs) has been related to PDAC progression and thus they could be potential early diagnostic, prognostic, and/or therapeutic predictors for PDAC. miRs are small (18 to 24 nucleotides long) non-coding RNAs, which regulate the expression of key genes by targeting their 3′-untranslated mRNA region. Increased evidence has also suggested that the chemoresistance of PDAC cells is associated with metabolic alterations. Metabolic stress and the dysfunctionality of systems to compensate for the altered metabolic status of PDAC cells is the foundation for cellular damage. Current data have implicated multiple systems as hallmarks of PDAC development, such as glutamine redox imbalance, oxidative stress, and mitochondrial dysfunction. Hence, both the aberrant expression of miRs and dysregulation in metabolism can have unfavorable effects in several biological processes, such as apoptosis, cell proliferation, growth, survival, stress response, angiogenesis, chemoresistance, invasion, and migration. Therefore, due to these dismal statistics, it is crucial to develop beneficial therapeutic strategies based on an improved understanding of the biology of both miRs and metabolic mediators. This review focuses on miR-mediated pathways and therapeutic resistance mechanisms in PDAC and evaluates the impact of metabolic alterations in the progression of PDAC.
Collapse
|
19
|
Peptidylarginine Deiminase Inhibitor Application, Using Cl-Amidine, PAD2, PAD3 and PAD4 Isozyme-Specific Inhibitors in Pancreatic Cancer Cells, Reveals Roles for PAD2 and PAD3 in Cancer Invasion and Modulation of Extracellular Vesicle Signatures. Int J Mol Sci 2021; 22:ijms22031396. [PMID: 33573274 PMCID: PMC7866560 DOI: 10.3390/ijms22031396] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies with limited survival rate. Roles for peptidylarginine deiminases (PADs) have been studied in relation to a range of cancers with roles in epigenetic regulation (including histone modification and microRNA regulation), cancer invasion, and extracellular vesicle (EV) release. Hitherto though, knowledge on PADs in PDAC is limited. In the current study, two PDAC cell lines (Panc-1 and MiaPaCa-2) were treated with pan-PAD inhibitor Cl-amidine as well as PAD2, PAD3, and PAD4 isozyme-specific inhibitors. Effects were assessed on changes in EV signatures, including EV microRNA cargo (miR-21, miR-126, and miR-221), on changes in cellular protein expression relevant for pancreatic cancer progression and invasion (moesin), for mitochondrial housekeeping (prohibitin, PHB), and gene regulation (deiminated histone H3, citH3). The two pancreatic cancer cell lines were found to predominantly express PAD2 and PAD3, which were furthermore expressed at higher levels in Panc-1, compared with MiaPaCa-2 cells. PAD2 isozyme-specific inhibitor had the strongest effects on reducing Panc-1 cell invasion capability, which was accompanied by an increase in moesin expression, which in pancreatic cancer is found to be reduced and associated with pancreatic cancer aggressiveness. Some reduction, but not significant, was also found on PHB levels while effects on histone H3 deimination were variable. EV signatures were modulated in response to PAD inhibitor treatment, with the strongest effects observed for PAD2 inhibitor, followed by PAD3 inhibitor, showing significant reduction in pro-oncogenic EV microRNA cargo (miR-21, miR-221) and increase in anti-oncogenic microRNA cargo (miR-126). While PAD2 inhibitor, followed by PAD3 inhibitor, had most effects on reducing cancer cell invasion, elevating moesin expression, and modulating EV signatures, PAD4 inhibitor had negligible effects and pan-PAD inhibitor Cl-amidine was also less effective. Compared with MiaPaCa-2 cells, stronger modulatory effects for the PAD inhibitors were observed in Panc-1 cells, which importantly also showed strong response to PAD3 inhibitor, correlating with previous observations that Panc-1 cells display neuronal/stem-like properties. Our findings report novel PAD isozyme regulatory roles in PDAC, highlighting roles for PAD isozyme-specific treatment, depending on cancer type and cancer subtypes, including in PDAC.
Collapse
|
20
|
Nelson SR, Roche S, Cotter M, Garcia PA, Reitmeier D, Zollbrecht E, O'Neill F, Clynes M, Doolan P, Mehta JP, Swan N, Larkin A, Walsh N. Genomic Profiling and Functional Analysis of let-7c miRNA-mRNA Interactions Identify SOX13 to Be Involved in Invasion and Progression of Pancreatic Cancer. JOURNAL OF ONCOLOGY 2020; 2020:2951921. [PMID: 33424970 PMCID: PMC7775161 DOI: 10.1155/2020/2951921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/01/2020] [Accepted: 12/11/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Pancreatic cancer is a devastating disease; its lethality is related to rapid growth and tendency to invade adjacent organs and metastasize at an early stage. OBJECTIVE The aim of this study was to identify miRNAs and their gene targets involved in the invasive phenotype in pancreatic cancer to better understand the biological behaviour and the rapid progression of this disease. METHODS miRNA profiling was performed in isogenic matched high invasive and low-invasive subclones derived from the MiaPaCa-2 cell line and validated in a panel of pancreatic cancer cell lines, tumour, and normal pancreas. Online miRNA target prediction algorithms and gene expression arrays were used to predict the target genes of the differentially expressed miRNAs. miRNAs and potential target genes were subjected to overexpression and knockdown approaches and downstream functional assays to determine their pathological role in pancreatic cancer. RESULTS Differential expression analysis revealed 10 significantly dysregulated miRNAs associated with invasive capacity (Student's t-tests; P value <0.05; fold change = ±2). The expression of top upregulated miR-135b and downregulated let-7c miRNAs correlated with the invasive abilities of eight pancreatic cancer cell lines and displayed differential expression in pancreatic cancer and adjacent normal tissue specimens. Ectopic overexpression of let-7c decreased proliferation, invasion, and colony formation. Integrated analysis of miRNA-mRNA using in silico algorithms and experimental validation databases identified four putative gene targets of let-7c. One of these targets, SOX13, was found to be upregulated in PDAC tumour compared with normal tissue in TCGA and an independent data set by qPCR and immunohistochemistry. RNAi knockdown of SOX13 reduced the invasion and colony formation ability of pancreatic cancer cells. CONCLUSION The identification of key miRNA-mRNA gene interactions and networks provide potential diagnostic and therapeutic strategies for better treatment options for pancreatic cancer patients.
Collapse
Affiliation(s)
- Shannon R. Nelson
- National Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Sandra Roche
- National Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Maura Cotter
- Histopathology Department, St. Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - Pablo Anton Garcia
- National Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Daniela Reitmeier
- National Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Elisabeth Zollbrecht
- National Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Fiona O'Neill
- National Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Padraig Doolan
- National Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Jai P. Mehta
- National Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Niall Swan
- Histopathology Department, St. Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - AnneMarie Larkin
- National Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Naomi Walsh
- National Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
21
|
Nguyen L, Schilling D, Dobiasch S, Raulefs S, Santiago Franco M, Buschmann D, Pfaffl MW, Schmid TE, Combs SE. The Emerging Role of miRNAs for the Radiation Treatment of Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12123703. [PMID: 33317198 PMCID: PMC7763922 DOI: 10.3390/cancers12123703] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/17/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Pancreatic cancer is an aggressive disease with a high mortality rate. Radiotherapy is one treatment option within a multimodal therapy approach for patients with locally advanced, non-resectable pancreatic tumors. However, radiotherapy is only effective in about one-third of the patients. Therefore, biomarkers that can predict the response to radiotherapy are of utmost importance. Recently, microRNAs, small non-coding RNAs regulating gene expression, have come into focus as there is growing evidence that microRNAs could serve as diagnostic, predictive and prognostic biomarkers in various cancer entities, including pancreatic cancer. Moreover, their high stability in body fluids such as serum and plasma render them attractive candidates for non-invasive biomarkers. This article describes the role of microRNAs as suitable blood biomarkers and outlines an overview of radiation-induced microRNAs changes and the association with radioresistance in pancreatic cancer. Abstract Today, pancreatic cancer is the seventh leading cause of cancer-related deaths worldwide with a five-year overall survival rate of less than 7%. Only 15–20% of patients are eligible for curative intent surgery at the time of diagnosis. Therefore, neoadjuvant treatment regimens have been introduced in order to downsize the tumor by chemotherapy and radiotherapy. To further increase the efficacy of radiotherapy, novel molecular biomarkers are urgently needed to define the subgroup of pancreatic cancer patients who would benefit most from radiotherapy. MicroRNAs (miRNAs) could have the potential to serve as novel predictive and prognostic biomarkers in patients with pancreatic cancer. In the present article, the role of miRNAs as blood biomarkers, which are associated with either radioresistance or radiation-induced changes of miRNAs in pancreatic cancer, is discussed. Furthermore, the manuscript provides own data of miRNAs identified in a pancreatic cancer mouse model as well as radiation-induced miRNA changes in the plasma of tumor-bearing mice.
Collapse
Affiliation(s)
- Lily Nguyen
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany; (L.N.); (D.S.); (S.D.); (S.R.); (M.S.F.); (T.E.S.)
- Department of Radiation Oncology, School of Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany
| | - Daniela Schilling
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany; (L.N.); (D.S.); (S.D.); (S.R.); (M.S.F.); (T.E.S.)
- Department of Radiation Oncology, School of Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany
| | - Sophie Dobiasch
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany; (L.N.); (D.S.); (S.D.); (S.R.); (M.S.F.); (T.E.S.)
- Department of Radiation Oncology, School of Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, 81675 Munich, Germany
| | - Susanne Raulefs
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany; (L.N.); (D.S.); (S.D.); (S.R.); (M.S.F.); (T.E.S.)
- Department of Radiation Oncology, School of Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany
| | - Marina Santiago Franco
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany; (L.N.); (D.S.); (S.D.); (S.R.); (M.S.F.); (T.E.S.)
| | - Dominik Buschmann
- Division of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), 85354 Freising, Germany; (D.B.); (M.W.P.)
| | - Michael W. Pfaffl
- Division of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), 85354 Freising, Germany; (D.B.); (M.W.P.)
| | - Thomas E. Schmid
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany; (L.N.); (D.S.); (S.D.); (S.R.); (M.S.F.); (T.E.S.)
- Department of Radiation Oncology, School of Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany
| | - Stephanie E. Combs
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany; (L.N.); (D.S.); (S.D.); (S.R.); (M.S.F.); (T.E.S.)
- Department of Radiation Oncology, School of Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, 81675 Munich, Germany
- Correspondence: ; Tel.: +49-89-4140-4501
| |
Collapse
|
22
|
Starzyńska T, Karczmarski J, Paziewska A, Kulecka M, Kuśnierz K, Żeber-Lubecka N, Ambrożkiewicz F, Mikula M, Kos-Kudła B, Ostrowski J. Differences between Well-Differentiated Neuroendocrine Tumors and Ductal Adenocarcinomas of the Pancreas Assessed by Multi-Omics Profiling. Int J Mol Sci 2020; 21:E4470. [PMID: 32586046 PMCID: PMC7352720 DOI: 10.3390/ijms21124470] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023] Open
Abstract
Most pancreatic neuroendocrine tumors (PNETs) are indolent, while pancreatic ductal adenocarcinomas (PDACs) are particularly aggressive. To elucidate the basis for this difference and to establish the biomarkers, by using the deep sequencing, we analyzed somatic variants across coding regions of 409 cancer genes and measured mRNA/miRNA expression in nine PNETs, eight PDACs, and four intestinal neuroendocrine tumors (INETs). There were 153 unique somatic variants considered pathogenic or likely pathogenic, found in 50, 57, and 24 genes in PDACs, PNETs, and INETs, respectively. Ten and 11 genes contained a pathogenic mutation in at least one sample of all tumor types and in PDACs and PNETs, respectively, while 28, 34, and 11 genes were found to be mutated exclusively in PDACs, PNETs, and INETs, respectively. The mRNA and miRNA transcriptomes of PDACs and NETs were distinct: from 54 to 1659 differentially expressed mRNAs and from 117 to 250 differentially expressed miRNAs exhibited high discrimination ability and resulted in models with an area under the receiver operating characteristics curve (AUC-ROC) >0.9 for both miRNA and mRNA. Given the miRNAs high stability, we proposed exploring that class of RNA as new pancreatic tumor biomarkers.
Collapse
Affiliation(s)
- Teresa Starzyńska
- Department of Gastroenterology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland;
| | - Jakub Karczmarski
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (J.K.); (A.P.); (M.K.); (F.A.); (M.M.)
| | - Agnieszka Paziewska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (J.K.); (A.P.); (M.K.); (F.A.); (M.M.)
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland;
| | - Maria Kulecka
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (J.K.); (A.P.); (M.K.); (F.A.); (M.M.)
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland;
| | - Katarzyna Kuśnierz
- Department of Gastrointestinal Surgery, Medical University of Silesia, 40-514 Katowice, Poland;
| | - Natalia Żeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland;
| | - Filip Ambrożkiewicz
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (J.K.); (A.P.); (M.K.); (F.A.); (M.M.)
| | - Michał Mikula
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (J.K.); (A.P.); (M.K.); (F.A.); (M.M.)
| | - Beata Kos-Kudła
- Department of Endocrinology and Neuroendocrine Tumors, ENETS Center of Excelence, Department of Pathophysiology and Endocrinology, Medical University of Silesia, 40-514 Katowice, Poland;
| | - Jerzy Ostrowski
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (J.K.); (A.P.); (M.K.); (F.A.); (M.M.)
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland;
| |
Collapse
|
23
|
Tokumaru Y, Takabe K, Yoshida K, Akao Y. Effects of MIR143 on rat sarcoma signaling networks in solid tumors: A brief overview. Cancer Sci 2020; 111:1076-1083. [PMID: 32077199 PMCID: PMC7156858 DOI: 10.1111/cas.14357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/01/2020] [Accepted: 02/14/2020] [Indexed: 12/18/2022] Open
Abstract
Rat sarcoma (RAS) is a well-known oncogene that plays important roles in cancer proliferation, cell survival and cell invasion. RAS exists as three major isoforms, Kirsten rat sarcoma (KRAS), Harvey rat sarcoma (HRAS) and neuroblastoma rat sarcoma (NRAS). Mutations of these genes account for approximately 30% of all cancers. Among them, KRAS mutations are the most common, responsible for 85%, followed by NRAS (12%) and HRAS (3%). Although the development of RAS inhibitors has been explored for over the past decade, so far, no effective inhibitor has been found. MicroRNA (miRNA) are a class of small non-coding RNA that control the gene expression of pleural target genes at the post-transcriptional level. MiRNA play critical roles in the physiological and pathological processes at work in cancers, such as cell proliferation, cell death, cell invasion and metastasis. MicroRNA-143 (MIR143) is known to function as a tumor suppressor in a variety of cancers. One of its known mechanisms is suppression of RAS expression and its effector signaling pathways, such as PI3K/AKT and MAPK/ERK. Within the last five years, we developed a potent chemically modified MIR143-3p that enabled us to elucidate the details of the KRAS signaling networks at play in colon and other cancer cells. In this review, we will discuss the role of MIR143-3p in those RAS signaling networks that are related to various biological processes of cancer cells. In addition, we will discuss the possibility of the use of MIR143 as a therapeutic drug for targeting RAS signaling networks.
Collapse
Affiliation(s)
- Yoshihisa Tokumaru
- Breast SurgeryDepartment of Surgical OncologyRoswell Park Comprehensive Cancer CenterBuffaloNew York
- Department of Surgical OncologyGraduate School of MedicineGifu UniversityGifuJapan
| | - Kazuaki Takabe
- Breast SurgeryDepartment of Surgical OncologyRoswell Park Comprehensive Cancer CenterBuffaloNew York
- Department of SurgeryUniversity at Buffalo Jacobs School of Medicine and Biomedical SciencesThe State University of New YorkBuffaloNew York
| | - Kazuhiro Yoshida
- Department of Surgical OncologyGraduate School of MedicineGifu UniversityGifuJapan
| | - Yukihiro Akao
- United Graduate School of Drug and Medical Information SciencesGifu UniversityGifuJapan
| |
Collapse
|
24
|
Tesfaye AA, Azmi AS, Philip PA. miRNA and Gene Expression in Pancreatic Ductal Adenocarcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:58-70. [PMID: 30558723 DOI: 10.1016/j.ajpath.2018.10.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/20/2018] [Accepted: 10/04/2018] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a challenging disease that is mostly diagnosed late in the course of the illness. Unlike other cancers in which measurable successes have been achieved with traditional chemotherapy, targeted therapy, and, recently, immunotherapy, PDAC has proved to be poorly responsive to these treatments, with only marginal to modest incremental benefits using conventional cytotoxic therapy. There is, therefore, a great unmet need to develop better therapies based on improved understanding of biology and identification of predictive and prognostic biomarkers that would guide therapy. miRNAs are small noncoding RNAs that regulate the expression of some key genes by targeting their 3'-untranslated mRNA region. Aberrant expression of miRNAs has been linked to the development of various malignancies, including PDAC. A series of miRNAs have been identified as potential tools for early diagnosis, prediction of treatment response, and prognosis of patients with PDAC. In this review, we present a summary of the miRNAs that have been studied in PDAC in the context of disease biology.
Collapse
Affiliation(s)
- Anteneh A Tesfaye
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan.
| | - Asfar S Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - Philip A Philip
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan; Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan
| |
Collapse
|
25
|
Roncarati R, Lupini L, Shankaraiah RC, Negrini M. The Importance of microRNAs in RAS Oncogenic Activation in Human Cancer. Front Oncol 2019; 9:988. [PMID: 31612113 PMCID: PMC6777413 DOI: 10.3389/fonc.2019.00988] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022] Open
Abstract
microRNAs (miRNAs) regulate gene expression by modulating the translation of protein-coding RNAs. Their aberrant expression is involved in various human diseases, including cancer. Here, we summarize the experimental pieces of evidence that proved how dysregulated miRNA expression can lead to RAS (HRAS, KRAS, or NRAS) activation irrespective of their oncogenic mutations. These findings revealed relevant pathogenic mechanisms as well as mechanisms of resistance to target therapies. Based on this knowledge, potential approaches for the control of RAS oncogenic activation can be envisioned.
Collapse
Affiliation(s)
- Roberta Roncarati
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,CNR, Institute of Genetics and Biomedical Research, National Research Council of Italy, Milan, Italy
| | - Laura Lupini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Ram C Shankaraiah
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Massimo Negrini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
26
|
Rawat M, Kadian K, Gupta Y, Kumar A, Chain PSG, Kovbasnjuk O, Kumar S, Parasher G. MicroRNA in Pancreatic Cancer: From Biology to Therapeutic Potential. Genes (Basel) 2019; 10:genes10100752. [PMID: 31557962 PMCID: PMC6827136 DOI: 10.3390/genes10100752] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/20/2022] Open
Abstract
Pancreatic cancer is one of the most aggressive malignancies, accounting for more than 45,750 deaths annually in the U.S. alone. The aggressive nature and late diagnosis of pancreatic cancer, coupled with the limitations of existing chemotherapy, present the pressing need for the development of novel therapeutic strategies. Recent reports have demonstrated a critical role of microRNAs (miRNAs) in the initiation, progression, and metastasis of cancer. Furthermore, aberrant expressions of miRNAs have often been associated with the cause and consequence of pancreatic cancer, emphasizing the possible use of miRNAs in the effective management of pancreatic cancer patients. In this review, we provide a brief overview of miRNA biogenesis and its role in fundamental cellular process and miRNA studies in pancreatic cancer patients and animal models. Subsequent sections narrate the role of miRNA in, (i) cell cycle and proliferation; (ii) apoptosis; (iii) invasions and metastasis; and (iv) various cellular signaling pathways. We also describe the role of miRNA's in pancreatic cancer; (i) diagnosis; (ii) prognosis and (iii) therapeutic intervention. Conclusion section describes the gist of review with future directions.
Collapse
Affiliation(s)
- Manmeet Rawat
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| | - Kavita Kadian
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand 263001, India.
| | - Yash Gupta
- Department of Internal Medicine, Loyola University Medical Center, Chicago, IL 60153, USA.
| | - Anand Kumar
- Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Patrick S G Chain
- Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Olga Kovbasnjuk
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| | - Suneel Kumar
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Gulshan Parasher
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| |
Collapse
|
27
|
Zaccari P, Cardinale V, Severi C, Pedica F, Carpino G, Gaudio E, Doglioni C, Petrone MC, Alvaro D, Arcidiacono PG, Capurso G. Common features between neoplastic and preneoplastic lesions of the biliary tract and the pancreas. World J Gastroenterol 2019; 25:4343-4359. [PMID: 31496617 PMCID: PMC6710182 DOI: 10.3748/wjg.v25.i31.4343] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/13/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
the bile duct system and pancreas show many similarities due to their anatomical proximity and common embryological origin. Consequently, preneoplastic and neoplastic lesions of the bile duct and pancreas share analogies in terms of molecular, histological and pathophysiological features. Intraepithelial neoplasms are reported in biliary tract, as biliary intraepithelial neoplasm (BilIN), and in pancreas, as pancreatic intraepithelial neoplasm (PanIN). Both can evolve to invasive carcinomas, respectively cholangiocarcinoma (CCA) and pancreatic ductal adenocarcinoma (PDAC). Intraductal papillary neoplasms arise in biliary tract and pancreas. Intraductal papillary neoplasm of the biliary tract (IPNB) share common histologic and phenotypic features such as pancreatobiliary, gastric, intestinal and oncocytic types, and biological behavior with the pancreatic counterpart, the intraductal papillary mucinous neoplasm of the pancreas (IPMN). All these neoplastic lesions exhibit similar immunohistochemical phenotypes, suggesting a common carcinogenic process. Indeed, CCA and PDAC display similar clinic-pathological features as growth pattern, poor response to conventional chemotherapy and radiotherapy and, as a consequence, an unfavorable prognosis. The objective of this review is to discuss similarities and differences between the neoplastic lesions of the pancreas and biliary tract with potential implications on a common origin from similar stem/progenitor cells.
Collapse
Affiliation(s)
- Piera Zaccari
- Department of Internal Medicine and Medical Specialties, Gastroenterology Unit, Sapienza University of Rome, Rome 00161, Italy
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00161 Rome, Italy
| | - Carola Severi
- Department of Internal Medicine and Medical Specialties, Gastroenterology Unit, Sapienza University of Rome, Rome 00161, Italy
| | - Federica Pedica
- Pathology Department, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute IRCCS, Milan 20132, Italy
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico", Rome 00161, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Division of Human Anatomy, Sapienza University of Rome, Rome 00161, Italy
| | - Claudio Doglioni
- Pathology Department, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute IRCCS, Milan 20132, Italy
| | - Maria Chiara Petrone
- PancreatoBiliary Endoscopy and EUS Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute IRCCS, Milan 20132, Italy
| | - Domenico Alvaro
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Paolo Giorgio Arcidiacono
- PancreatoBiliary Endoscopy and EUS Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute IRCCS, Milan 20132, Italy
| | - Gabriele Capurso
- PancreatoBiliary Endoscopy and EUS Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute IRCCS, Milan 20132, Italy
| |
Collapse
|
28
|
Orang AV, Petersen J, McKinnon RA, Michael MZ. Micromanaging aerobic respiration and glycolysis in cancer cells. Mol Metab 2019; 23:98-126. [PMID: 30837197 PMCID: PMC6479761 DOI: 10.1016/j.molmet.2019.01.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/22/2019] [Accepted: 01/30/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Cancer cells possess a common metabolic phenotype, rewiring their metabolic pathways from mitochondrial oxidative phosphorylation to aerobic glycolysis and anabolic circuits, to support the energetic and biosynthetic requirements of continuous proliferation and migration. While, over the past decade, molecular and cellular studies have clearly highlighted the association of oncogenes and tumor suppressors with cancer-associated glycolysis, more recent attention has focused on the role of microRNAs (miRNAs) in mediating this metabolic shift. Accumulating studies have connected aberrant expression of miRNAs with direct and indirect regulation of aerobic glycolysis and associated pathways. SCOPE OF REVIEW This review discusses the underlying mechanisms of metabolic reprogramming in cancer cells and provides arguments that the earlier paradigm of cancer glycolysis needs to be updated to a broader concept, which involves interconnecting biological pathways that include miRNA-mediated regulation of metabolism. For these reasons and in light of recent knowledge, we illustrate the relationships between metabolic pathways in cancer cells. We further summarize our current understanding of the interplay between miRNAs and these metabolic pathways. This review aims to highlight important metabolism-associated molecular components in the hunt for selective preventive and therapeutic treatments. MAJOR CONCLUSIONS Metabolism in cancer cells is influenced by driver mutations but is also regulated by posttranscriptional gene silencing. Understanding the nuanced regulation of gene expression in these cells and distinguishing rapid cellular responses from chronic adaptive mechanisms provides a basis for rational drug design and novel therapeutic strategies.
Collapse
Affiliation(s)
- Ayla V Orang
- Flinders Centre for Innovation in Cancer, Flinders University, Flinders Medical Centre, Adelaide, South Australia 5042, Australia.
| | - Janni Petersen
- Flinders Centre for Innovation in Cancer, Flinders University, Flinders Medical Centre, Adelaide, South Australia 5042, Australia.
| | - Ross A McKinnon
- Flinders Centre for Innovation in Cancer, Flinders University, Flinders Medical Centre, Adelaide, South Australia 5042, Australia.
| | - Michael Z Michael
- Flinders Centre for Innovation in Cancer, Flinders University, Flinders Medical Centre, Adelaide, South Australia 5042, Australia.
| |
Collapse
|
29
|
Xu B, Gong X, Zi L, Li G, Dong S, Chen X, Li Y. Silencing of DLEU2 suppresses pancreatic cancer cell proliferation and invasion by upregulating microRNA-455. Cancer Sci 2019; 110:1676-1685. [PMID: 30838724 PMCID: PMC6501038 DOI: 10.1111/cas.13987] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/01/2019] [Accepted: 03/03/2019] [Indexed: 12/20/2022] Open
Abstract
Long noncoding RNA (lncRNA) DLEU2 has been shown to be dysregulated in several type of tumor. However, the potential biological roles and molecular mechanisms of DLEU2 in pancreatic cancer (PC) progression are poorly understood. In this study, we found that the DLEU2 level was substantially upregulated in PC tissues and PC cell lines, and significantly associated with poor clinical outcomes in PC patients. Overexpression of DLEU2 significantly induced PC cell proliferation and invasion, whereas knockdown of DLEU2 impaired cell proliferation and invasion in vitro. Furthermore, bioinformatics analysis, luciferase reporter assay, and RNA immunoprecipitation assay revealed that DLEU2 directly bond to microRNA‐455 (miR‐455) and functioned as an endogenous sponge for miR‐455, which could remarkably suppress cell growth and invasion. We also determined that SMAD2 was a direct target of miR‐455, and the restoration of SMAD2 rescued cell growth and invasion that were reduced by DLEU2 knockdown or miR‐455 overexpression. In addition, low miR‐455 expression and high SMAD2 expression was correlated with poor patient survival. These results indicate that DLEU2 is an important promoter of PC development, and targeting the DLEU2/miR‐455/SMAD2 pathway could be a promising therapeutic approach in the treatment of PC.
Collapse
Affiliation(s)
- Baoli Xu
- Department of General Surgery, Linyi People's Hospital, Linyi, China
| | - Xufei Gong
- Department of General Surgery, Linyi People's Hospital, Linyi, China
| | - Li Zi
- Department of General Surgery, Linyi People's Hospital, Linyi, China
| | - Guang Li
- Department of General Surgery, Linyi People's Hospital, Linyi, China
| | - Shuxiao Dong
- Department of General Surgery, Linyi People's Hospital, Linyi, China
| | - Xinrui Chen
- Department of General Surgery, Linyi People's Hospital, Linyi, China
| | - Yutao Li
- Department of General Surgery, Linyi People's Hospital, Linyi, China
| |
Collapse
|
30
|
Swellam M, Ramadan A, El-Hussieny EA, Bakr NM, Hassan NM, Sobeih ME, EzzElArab LR. Clinical significance of blood-based miRNAs as diagnostic and prognostic nucleic acid markers in breast cancer: Comparative to conventional tumor markers. J Cell Biochem 2019; 120:12321-12330. [PMID: 30825229 DOI: 10.1002/jcb.28496] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/17/2018] [Accepted: 01/07/2019] [Indexed: 12/15/2022]
Abstract
microRNAs (miRNAs) are implicated in carcinogenesis and their expression in biological fluids offer great potential as nucleic acid markers for cancer detection and progression. Authors investigated the expression level of miRNAs (miRNA-21, miRNA-126, and miRNA-155) to evaluate their role as diagnostic and prognostic markers for breast cancer compared with other commonly used protein-based markers (CEA and CA15-3). Serum samples from patients with breast cancer (n = 96), patients with benign breast lesion (n = 47), and healthy individuals (n = 39) were enrolled for detection of miRNA expression levels and protein-based tumor markers using fluorescent real-time quantitative polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Correlation among investigated markers with clinicopathological factors and clinical outcomes were determined. Expression of miRNA-21 and miRNA-155 revealed significant increases in patients with breast cancer compared with both benign and control groups, the same result was reported for tumor markers; on the other hand, miRNA-126 was significantly decreased in breast cancer group as compared with the other two groups. miRNA frequencies were significantly related to clinical staging and histological grading as compared with tumor markers. Patients with breast cancer with increased miRNA-21 and miRNA-155 and decreased miRNA-126 expressions had significantly worse disease-free survival, while only miRNA-21 and miRNA-126 showed poor OS (P< 0.005). In conclusion, investigated miRNAs were superior over tumor markers for the early stage of breast cancer especially those with high-risk factor and their assessment in blood facilitates their role as a potential prognostic molecular marker.
Collapse
Affiliation(s)
- Menha Swellam
- Biochemistry Department Genetic Engineering and Biotechnology Research Division, National Research Centre, Giza, Egypt.,High Throughput Molecular and Genetic Laboratory, Center for Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Amal Ramadan
- Biochemistry Department Genetic Engineering and Biotechnology Research Division, National Research Centre, Giza, Egypt.,High Throughput Molecular and Genetic Laboratory, Center for Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Enas A El-Hussieny
- Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Noha M Bakr
- Biochemistry Department Genetic Engineering and Biotechnology Research Division, National Research Centre, Giza, Egypt.,High Throughput Molecular and Genetic Laboratory, Center for Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Naglaa M Hassan
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mohamed Emam Sobeih
- Medical Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Lobna R EzzElArab
- Clinical Oncology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
31
|
The expression levels of miRNA-15a and miRNA-16-1 in circulating tumor cells of patients with diffuse large B-cell lymphoma. Mol Biol Rep 2018; 46:975-980. [PMID: 30552617 DOI: 10.1007/s11033-018-4554-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/04/2018] [Indexed: 01/08/2023]
Abstract
MicroRNAs (miRNAs) have major roles in nearly all cellular process including gene expression, and may behave as oncogene or tumor suppressor gene by binding to complementary sequences in the target mRNA. The circulating microRNA-15a (miRNA-15a) and microRNA-16-1 (miRNA-16-1) of 15 healthy adults and of 40 untreated patients diagnosed with diffuse large B-cell lymphoma (DLBC) were recruited to investigate the expression levels. The expression levels of miRNA-15a, and miRNA-16-1 genes of the untreated DLBCL patients, and healthy individuals with matched age, sex and ethnicity were examined. MicroRNA expression profiles obtained from peripheral blood were investigated. The samples were collected from 40 patients diagnosed with DLBC patients, and from 15 healthy controls. Two miRNAs were selected, and expression profile was examined using a quantitative real-time polymerase chain reaction (qPCR) based on the previous studies. Statistically significant expression level differences (p < 0.05) were detected for miRNA-16-1 in DLBCL patients and healthy control groups. miRNA-16-1 gene expression level was found approximately ninefold higher in the patient group compared to the controls; however, no statistical difference was detected in the expression profile of miRNA-15a between the both groups. On the other hand, the decreased gene expression in miRNA16-1 was observed in 88.3% of DLBCL patients. These results suggested that there was no statistically significant decrease in the miRNA-15a gene expression in DLBCL patients (p > 0.05). On the contrary to the literature, miRNA-16-1 expression level was suppressed in DLBCL group in our study, however no whole gene silencing was performed. MicroRNA-16-1 might be suggested to behave as a tumor suppressor in DLBCL in our study.
Collapse
|
32
|
Rofi E, Vivaldi C, Del Re M, Arrigoni E, Crucitta S, Funel N, Fogli S, Vasile E, Musettini G, Fornaro L, Falcone A, Danesi R. The emerging role of liquid biopsy in diagnosis, prognosis and treatment monitoring of pancreatic cancer. Pharmacogenomics 2018; 20:49-68. [PMID: 30520336 DOI: 10.2217/pgs-2018-0149] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Circulating tumor DNA, circulating tumor cells and tumor-related exosomes may offer new opportunities to provide insights into the biological and clinical characteristics of a neoplastic disease. They represent alternative routes for diagnostic and prognostic purposes, and for predicting and longitudinally monitoring response to treatment and disease progression. Hence, circulating biomarkers represent promising noninvasive tools in the scenario of pancreatic cancer, where neither molecular nor clinical predictors of treatment benefit have been identified yet. This review aims to provide an overview of the current status of circulating biomarker research in pancreatic cancer, and discusses their potential clinical utility to facilitate clinical decision-making.
Collapse
Affiliation(s)
- Eleonora Rofi
- Unit of Clinical Pharmacology & Pharmacogenetics, Department of Clinical & Experimental Medicine, University of Pisa, Italy
| | - Caterina Vivaldi
- Unit of Medical Oncology, Department of Translational Research & New Technologies in Medicine, University of Pisa, Italy
| | - Marzia Del Re
- Unit of Clinical Pharmacology & Pharmacogenetics, Department of Clinical & Experimental Medicine, University of Pisa, Italy
| | - Elena Arrigoni
- Unit of Clinical Pharmacology & Pharmacogenetics, Department of Clinical & Experimental Medicine, University of Pisa, Italy
| | - Stefania Crucitta
- Unit of Clinical Pharmacology & Pharmacogenetics, Department of Clinical & Experimental Medicine, University of Pisa, Italy
| | - Niccola Funel
- Department of Translational Research & The New Technologies in Medicine & Surgery, University of Pisa, Pisa, Italy
| | - Stefano Fogli
- Unit of Clinical Pharmacology & Pharmacogenetics, Department of Clinical & Experimental Medicine, University of Pisa, Italy
| | - Enrico Vasile
- Unit of Medical Oncology, Department of Translational Research & New Technologies in Medicine, University of Pisa, Italy
| | - Gianna Musettini
- Unit of Medical Oncology, Department of Translational Research & New Technologies in Medicine, University of Pisa, Italy
| | - Lorenzo Fornaro
- Unit of Medical Oncology, Department of Translational Research & New Technologies in Medicine, University of Pisa, Italy
| | - Alfredo Falcone
- Unit of Medical Oncology, Department of Translational Research & New Technologies in Medicine, University of Pisa, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology & Pharmacogenetics, Department of Clinical & Experimental Medicine, University of Pisa, Italy
| |
Collapse
|
33
|
MicroRNAs in pancreatic cancer diagnosis and therapy. Cent Eur J Immunol 2018; 43:314-324. [PMID: 30588176 PMCID: PMC6305615 DOI: 10.5114/ceji.2018.80051] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 01/08/2018] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer remains a disease with very poor prognosis (only 5-6% of patients are still alive after five years). Attempts to improve the results of treatment of pancreatic cancer focus on a better understanding of the pathogenesis, and non-invasive diagnostic methods (genetic testing from peripheral blood), which would create the possibility of early diagnosis and early surgical treatment before the onset of metastasis. New hopes for the improvement of early diagnosis and treatment of pancreatic ductal adenocarcinoma (PDAC) are associated with genetic testing of microRNA expression changes. A large body of evidence has revealed that microRNAs are aberrantly expressed in the serum and in cancer tissues and elicit oncogenic or tumour-suppressive functions. Selected microRNAs can distinguish pancreatic ductal adenocarcinoma from non-cancerous lesions of the pancreas. This review focuses on the involvement of microRNAs in the early diagnosis of pancreatic cancer. Research results related to the development of a novel therapeutic strategy based on the modulation of microRNA expressions for a better outcome in patients with pancreatic cancer are also presented.
Collapse
|
34
|
Hu M, Xiong S, Chen Q, Zhu S, Zhou X. Novel role of microRNA-126 in digestive system cancers: From bench to bedside. Oncol Lett 2018; 17:31-41. [PMID: 30655735 PMCID: PMC6313097 DOI: 10.3892/ol.2018.9639] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 09/28/2018] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are ubiquitously expressed, small, non-coding RNAs that regulate the expression of approximately 30% of the human genes at the post-transcriptional level. miRNAs have emerged as crucial modulators in the initiation and progression of various diseases, including numerous cancer types. The high incidence rate of cancer and the large number of cancer-associated cases of mortality are mostly due to a lack of effective treatments and biomarkers for early diagnosis. Therefore there is an urgent requirement to further understand the underlying mechanisms of tumorigenesis. MicroRNA-126 (miR-126) is significantly downregulated in a number of tumor types and is commonly identified as a tumor suppressor in digestive system cancers (DSCs). miR-126 downregulates various oncogenes, including disintegrin and metalloproteinase domain-containing protein 9, v-crk sarcoma virus CT10 oncogene homolog and phosphoinositide-3-kinase regulatory subunit 2. These genes are involved in a number of tumor-associated signaling pathways, including angiogenesis, epithelial-mensenchymal transition and metastasis pathways. The aim of the current review was to summarize the role of miR-126 in DSCs, in terms of its dysregulation, target genes and associated signaling pathways. In addition, the current review has discussed the potential clinical application of miR-126 as a biomarker and therapeutic target for DSCs.
Collapse
Affiliation(s)
- Mingli Hu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Shengwei Xiong
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Qiaofeng Chen
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Shixuan Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Xiaodong Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| |
Collapse
|
35
|
Zhang L, Yu S, Wang C, Jia C, Lu Z, Chen J. Establishment of a non‑coding RNAomics screening platform for the regulation of KRAS in pancreatic cancer by RNA sequencing. Int J Oncol 2018; 53:2659-2670. [PMID: 30221677 DOI: 10.3892/ijo.2018.4560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/09/2018] [Indexed: 11/05/2022] Open
Affiliation(s)
- Li Zhang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Shuangni Yu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Cuiping Wang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Congwei Jia
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Zhaohui Lu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Jie Chen
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| |
Collapse
|
36
|
Liu L, Jiang H, Zhao J, Wen H. MiRNA-16 inhibited oral squamous carcinoma tumor growth in vitro and in vivo via suppressing Wnt/β-catenin signaling pathway. Onco Targets Ther 2018; 11:5111-5119. [PMID: 30197522 PMCID: PMC6112799 DOI: 10.2147/ott.s153888] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Oral carcinoma, one of the most commonly diagnosed cancers, has a poor prognosis and low survival rate with treatment. In recent years, some studies reported the upregulation of miRNA-16 (miR-16) in the oral carcinoma, whereas some other studies confirmed the downregulation of miR-16. In the current study, we aimed to investigate the function of miR-16 in oral carcinoma. Materials and methods Cell proliferation assay was measured by MTT assay, quantitative real time polymerase chain reaction (qRT-PCR) was used to evaluate the expression of miR-16, and apoptosis was analyzed by flow cytometry. In addition, the expression of proteins was detected by Western blot. Moreover, xenograft tumor model was established to detect the effect of miR-16 in vivo. Results The results suggested that miR-16 was downregulated in the oral carcinoma tissues. Overexpression of miR-16 inhibited the growth and proliferation of oral squamous carcinoma cells (OSCCs) and induced apoptosis both in vitro and in vivo, which is due to the suppression of Wnt/β-catenin signaling pathway. Conclusion This study provides evidence that overexpression of miR-16 inhibits OSCC growth by regulating Wnt/β-catenin signaling. Our findings suggest that overexpression of miR-16 could be a potential approach for gene therapy of OSCC in future.
Collapse
Affiliation(s)
- Lijun Liu
- Department of Stomatology, Stomatology of Mylike Plastic and Cosmetic Hospital of ChongQing, Chongqing, China.,Department of Oral and Maxillofacial Surgery, School of Stomatology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China,
| | - Han Jiang
- Department of Periodontics, School of Stomatology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Jin Zhao
- Department of Periodontics, School of Stomatology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Hao Wen
- Department of Oral and Maxillofacial Surgery, School of Stomatology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China,
| |
Collapse
|
37
|
MicroRNA analysis of gastroenteropancreatic neuroendocrine tumors and metastases. Oncotarget 2018; 9:28379-28390. [PMID: 29983867 PMCID: PMC6033345 DOI: 10.18632/oncotarget.25357] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 04/24/2018] [Indexed: 12/16/2022] Open
Abstract
The incidence of neuroendocrine neoplasias (NEN) continues to increase. Since the primary tumor cannot be diagnosed in some cases of metastatic disease, new biomarkers are clearly needed to find the most probable site of origin. Tissue samples from 79 patients were analyzed and microRNA profiles were generated from a total of 76 primary tumors, 31 lymph node and 14 solid organ metastases. NEN metastases were associated with elevated levels of miR-30a-5p, miR-210, miR-339-3p, miR-345 and miR-660. Three microRNAs showed a strong correlation between proliferation index and metastatic disease in general (miR-150, miR-21 and miR-660). Further, each anatomic location (primary or metastatic) had one or more site-specific microRNAs more highly expressed in these tissues. Comparison between primary tumors and metastases revealed an overlap only in pancreatic (miR-127) and ileal tumors (let-7g, miR-200a and miR-331). This thorough analysis of gastroenteropancreatic neuroendocrine tumors demonstrates site-specific microRNA profiles, correlation with proliferation indices as well as corresponding nodal and distant metastases. Using microRNA profiling might improve NEN diagnostics by linking metastases to a most probable site of origin.
Collapse
|
38
|
|
39
|
Yu Y, Feng X, Cang S. A two-microRNA signature as a diagnostic and prognostic marker of pancreatic adenocarcinoma. Cancer Manag Res 2018; 10:1507-1515. [PMID: 29942152 PMCID: PMC6005310 DOI: 10.2147/cmar.s158712] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background and aim Some cancer-specific miRNAs are dysregulated in pancreatic adenocarcinoma (PAAD) and involved in cell autophagy, differentiation, proliferation, migration, invasion, and malignant transformation. The aim of our study was to determine a panel of new diagnostic and prognostic biomarkers for PAAD. Methods We conducted a comprehensive analysis of global miRNA-expression profiles and corresponding prognosis information of 168 PAAD patients from the Cancer Genome Atlas data set. A total of 16 differentially expressed miRNAs were identified as aberrantly expressed in PAAD, and six of these were evaluated for use as diagnostic markers for PAAD. Next, we confirmed a two-miRNA signature significantly associated with PAAD patient diagnosis and outcome prediction. Results The panel of two miRNAs showed outstanding diagnostic performance, with sensitivity of 100% and specificity of 87.5%. Finally, we divided the PAAD patients into high-risk and low-risk groups based on the expression profile of the two miRNAs. Kaplan–Meier analysis demonstrated that patients in the high-risk group had significantly worse prognosis than patients in the low-risk group. Univariate and multivariate Cox regression analysis showed that the two-miRNA signature was an independent prognostic factor for the overall survival of PAAD patients. Conclusion Taken together, the two-miRNA signature may serve as an accurate and sensitive biomarker for diagnosis and PAAD-outcome prediction, facilitating the diagnosis and potentially improving treatment outcome of PAAD.
Collapse
Affiliation(s)
- Yang Yu
- Department of Oncology, Henan Province People's Hospital, Henan University, Zhengzhou, Henan, China
| | - Xiao Feng
- Department of Oncology, Henan Province People's Hospital, Henan University, Zhengzhou, Henan, China
| | - Shundong Cang
- Department of Oncology, Henan Province People's Hospital, Henan University, Zhengzhou, Henan, China
| |
Collapse
|
40
|
Jiang J, Liu HL, Tao L, Lin XY, Yang YD, Tan SW, Wu B. Let‑7d inhibits colorectal cancer cell proliferation through the CST1/p65 pathway. Int J Oncol 2018; 53:781-790. [PMID: 29845224 DOI: 10.3892/ijo.2018.4419] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 04/19/2018] [Indexed: 12/14/2022] Open
Abstract
Cystatin SN (cystatin 1, CST1) is a member of the cystatin superfamily which inhibits the proteolytic activity of cysteine proteases. CST1 is a tumor biomarker that provides useful information for the diagnosis of esophageal, gastric and colorectal carcinomas. MicroRNAs (miRNAs or miRs) play an important role in tumor cell proliferation. However, the exact role of let‑7d and CST1 in colon cancer remains unknown. The aim of this study was to assess whether let‑7d inhibits colorectal carcinogenesis through the CST1/p65 pathway, and determine whether it may be used as a potential target for clinical therapy. Microarray analysis of mRNAs extracted from colon cancer and normal tissues was performed. The results of gene expression microanalysis revealed that CST1 expression was upregulated in colon cancer compared with normal tissues. In addition, the upregulation of CST1 expression and the downregulation of let‑7d expression in patients with colon cancer and in several colorectal cancer cell lines were confirmed by reverse transcription-quantitative PCR (RT‑qPCR), immunohistochemistry and western blot analysis. In addition, siRNA targeting CST1 (CST1‑siRNA) and let‑7d-mimics were used in the HCT116 cells, and the results revealed that CST1 and let‑7d played a role in colorectal cancer cell proliferation. Let‑7d inhibited colorectal carcinogenesis through the CST1/p65 pathway. Thus, the findings of the present study indicate that CST1 may be a potential target for the future clinical therapy of colorectal cancer.
Collapse
Affiliation(s)
- Jie Jiang
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Hui-Ling Liu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Li Tao
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Xian-Yi Lin
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Yi-Dong Yang
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Si-Wei Tan
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Bin Wu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
41
|
Ottaviani S, Stebbing J, Frampton AE, Zagorac S, Krell J, de Giorgio A, Trabulo SM, Nguyen VTM, Magnani L, Feng H, Giovannetti E, Funel N, Gress TM, Jiao LR, Lombardo Y, Lemoine NR, Heeschen C, Castellano L. TGF-β induces miR-100 and miR-125b but blocks let-7a through LIN28B controlling PDAC progression. Nat Commun 2018; 9:1845. [PMID: 29748571 PMCID: PMC5945639 DOI: 10.1038/s41467-018-03962-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 03/26/2018] [Indexed: 12/15/2022] Open
Abstract
TGF-β/Activin induces epithelial-to-mesenchymal transition and stemness in pancreatic ductal adenocarcinoma (PDAC). However, the microRNAs (miRNAs) regulated during this response have remained yet undetermined. Here, we show that TGF-β transcriptionally induces MIR100HG lncRNA, containing miR-100, miR-125b and let-7a in its intron, via SMAD2/3. Interestingly, we find that although the pro-tumourigenic miR-100 and miR-125b accordingly increase, the amount of anti-tumourigenic let-7a is unchanged, as TGF-β also induces LIN28B inhibiting its maturation. Notably, we demonstrate that inactivation of miR-125b or miR-100 affects the TGF-β-mediated response indicating that these miRNAs are important TGF-β effectors. We integrate AGO2-RIP-seq with RNA-seq to identify the global regulation exerted by these miRNAs in PDAC cells. Transcripts targeted by miR-125b and miR-100 significantly overlap and mainly inhibit p53 and cell-cell junctions' pathways. Together, we uncover that TGF-β induces an lncRNA, whose encoded miRNAs, miR-100, let-7a and miR-125b play opposing roles in controlling PDAC tumourigenesis.
Collapse
Affiliation(s)
- Silvia Ottaviani
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, W12 0NN, UK
| | - Justin Stebbing
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, W12 0NN, UK
| | - Adam E Frampton
- Department of Surgery and Cancer, HPB Surgical Unit, Imperial College, Hammersmith Hospital Campus, London, W12 0HS, UK
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Institute of Reproductive and Developmental Biology (IRDB), London, W12 0NN, UK
| | - Sladjana Zagorac
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, W12 0NN, UK
| | - Jonathan Krell
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Institute of Reproductive and Developmental Biology (IRDB), London, W12 0NN, UK
| | - Alexander de Giorgio
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, W12 0NN, UK
| | - Sara M Trabulo
- Stem Cells & Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, 28028, Spain
- Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Van T M Nguyen
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, W12 0NN, UK
| | - Luca Magnani
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, W12 0NN, UK
| | - Hugang Feng
- Epigenetics and Genome Stability Team, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, 1081 HV, The Netherlands
- Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa, Pisa, 56126, Italy
| | - Niccola Funel
- Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa, Pisa, 56126, Italy
| | - Thomas M Gress
- Clinic for Gastroenterology, Endocrinology, Metabolism and Infectiology, Philipps-University Marburg, Marburg, 35037, Germany
| | - Long R Jiao
- Department of Surgery and Cancer, HPB Surgical Unit, Imperial College, Hammersmith Hospital Campus, London, W12 0HS, UK
| | - Ylenia Lombardo
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, W12 0NN, UK
| | - Nicholas R Lemoine
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Christopher Heeschen
- Stem Cells & Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, 28028, Spain
- Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Leandro Castellano
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, W12 0NN, UK.
- University of Sussex, School of life Sciences, John Maynard Smith Building, Falmer, Brighton, BN1 9QG, UK.
| |
Collapse
|
42
|
Kapodistrias N, Mavridis K, Batistatou A, Gogou P, Karavasilis V, Sainis I, Briasoulis E, Scorilas A. Assessing the clinical value of microRNAs in formalin-fixed paraffin-embedded liposarcoma tissues: Overexpressed miR-155 is an indicator of poor prognosis. Oncotarget 2018; 8:6896-6913. [PMID: 28036291 PMCID: PMC5351678 DOI: 10.18632/oncotarget.14320] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/01/2016] [Indexed: 12/26/2022] Open
Abstract
Liposarcoma (LPS) is a malignancy with extreme heterogeneity and thus optimization towards personalizing patient prognosis and treatment is essential. Here, we evaluated miR-155, miR-21, miR-143, miR-145 and miR-451 that are implicated in LPS, as novel FFPE tissue biomarkers. A total of 83 FFPE tissue specimens from primary LPS and lipomas (LPM) were analyzed. A proteinase K incubation-Trizol treatment coupled protocol was used for RNA isolation. After polyadenylation of total RNA and reverse transcription, expression analysis of 9 candidate reference and 5 target miRNAs was performed by qPCR. Genorm and NormFinder were used for finding the most suitable molecules for normalization. Survival analyses were performed in order to evaluate the prognostic potential of miRNAs. MiR-103 and miR-191 are most suitable for normalization of miRNA expression in LPS. MiR-155 and miR-21 are clearly overexpressed (P<0.001) in LPS compared with LPM specimens, whereas miR-145 (P<0.001), miR-143 (P =0.008) and miR-451 (P=0.037) are underexpressed. MiR-155 (P=0.007) and miR-21 (P=0.029) are differentially expressed between well-differentiated, dedifferentiated, myxoid/round cell and pleomorphic LPs tumor subtypes. MiR-155 represents a novel independent indicator of unfavorable prognosis in LPS (HR = 2.97, 95% CI = 1.23–7.17, P = 0.016).
Collapse
Affiliation(s)
| | - Konstantinos Mavridis
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, Greece
| | - Anna Batistatou
- Department of Pathology, School of Medicine, University of Ioannina, Greece
| | - Penelope Gogou
- Clinical Oncology Department, Norwich University Hospital, UK
| | | | - Ioannis Sainis
- Cancer Biobank Center, University of Ioannina, University Campus, Ioannina, Greece
| | - Evangelos Briasoulis
- Cancer Biobank Center, University of Ioannina, University Campus, Ioannina, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, Greece
| |
Collapse
|
43
|
Zhou X, Huang Z, Xu L, Zhu M, Zhang L, Zhang H, Wang X, Li H, Zhu W, Shu Y, Liu P. A panel of 13-miRNA signature as a potential biomarker for predicting survival in pancreatic cancer. Oncotarget 2018; 7:69616-69624. [PMID: 27626307 PMCID: PMC5342502 DOI: 10.18632/oncotarget.11903] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 09/02/2016] [Indexed: 01/01/2023] Open
Abstract
Some reports have evaluated the prognostic relevance of microRNAs (miRNAs) in patients with pancreatic cancer (PC). However, most studies focused on limited miRNAs with small number of patients. The aim of the study is to identify a panel of miRNA signature that could predict prognosis in PC with the data from The Cancer Genome Atlas (TCGA). A total of 167 PC patients with the corresponding clinical data were enrolled in our study. The miRNAs significantly associated with overall survival (OS) in PC patients were identified with Cox proportional regression model. A risk score formula was developed to evaluate the prognostic value of the miRNA signature in PC. Thirteen miRNAs were identified to be significantly related with OS in PC patients. Patients with high risk score suffered poor overall survival compared with patients who had low risk score. The multivariate Cox regression analyses showed that the miRNA signature could act as an independent prognostic indicator. In addition, the signature might serve as a predicator for treatment outcome. Our study identified a miRNA signature including 13 miRNAs which could serve as an independent marker in prognosis of PC.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zebo Huang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lei Xu
- Department of Thoracic Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Mingxia Zhu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lan Zhang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Huo Zhang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiaping Wang
- Department of Pathology, Sir Run Run Hospital Affiliated With Nanjing Medical University, Nanjing 211166, China
| | - Hai Li
- Department of Pathology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Wei Zhu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yongqian Shu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.,Cancer Center of Nanjing Medical University, Nanjing 210029, China
| | - Ping Liu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.,Cancer Center of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
44
|
Masliah-Planchon J, Garinet S, Pasmant E. RAS-MAPK pathway epigenetic activation in cancer: miRNAs in action. Oncotarget 2018; 7:38892-38907. [PMID: 26646588 PMCID: PMC5122439 DOI: 10.18632/oncotarget.6476] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 11/22/2015] [Indexed: 01/17/2023] Open
Abstract
The highly conserved RAS-mitogen activated protein kinase (MAPK) signaling pathway is involved in a wide range of cellular processes including differentiation, proliferation, and survival. Somatic mutations in genes encoding RAS-MAPK components frequently occur in many tumors, making the RAS-MAPK a critical pathway in human cancer. Since the pioneering study reporting that let-7 miRNA acted as tumor suppressor by repressing the RAS oncogene, growing evidence has suggested the importance of miRNAs targeting the RAS-MAPK in oncogenesis. MiRNAs alterations in human cancers may act as a rheostat of the oncogenic RAS signal that is often amplified as cancers progress. However, specific mechanisms leading to miRNAs deregulation and their functional consequences in cancer are far from being fully elucidated. In this review, we provide an experimental-validated map of RAS-MAPK oncomiRs and tumor suppressor miRNAs from transmembrane receptor to downstream ERK proteins. MiRNAs could be further considered as potential genetic biomarkers for diagnosis, prognosis, or therapeutic purpose.
Collapse
Affiliation(s)
- Julien Masliah-Planchon
- Unité de Génétique Somatique, Département de Génétique Oncologique, Institut Curie, Paris, France.,INSERM_U830, Institut Curie, Paris, France
| | - Simon Garinet
- Service de Biochimie et Génétique Moléculaire, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Eric Pasmant
- Service de Biochimie et Génétique Moléculaire, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France.,EA7331, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| |
Collapse
|
45
|
Feng SD, Mao Z, Liu C, Nie YS, Sun B, Guo M, Su C. Simultaneous overexpression of miR-126 and miR-34a induces a superior antitumor efficacy in pancreatic adenocarcinoma. Onco Targets Ther 2017; 10:5591-5604. [PMID: 29200874 PMCID: PMC5703150 DOI: 10.2147/ott.s149632] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Pancreatic adenocarcinoma (PAC) is one of the most fatal cancers due to its high degree of malignancy, increasing incidence, high mortality, and unsatisfactory treatment efficacy. Evidence has suggested that numerous microRNAs (miRNAs), including miR-126 and miR-34a, have potent tumor-suppressing effects on PAC, implicating a possible application of miRNA in tumor therapy. However, the therapeutic effect of a single miRNA on pancreatic cancer is limited. Methods We simultaneously delivered miR-126 and miR-34a into PAC cells by a carcinoembryonic antigen promoter-driven oncolytic adenovirus (AdCEAp-miR126/34a), and examined the antitumor efficacy of the therapeutic system in in vitro and in vivo experiments. Results In vitro cytological experiments found that the expression levels of miR-126 and miR-34a were specifically increased in the AdCEAp-miR126/34a-infected PAC cells, and the antitumor efficacy was enhanced in aspects of cancer cell viability, migration, invasion, and apoptosis, by synergistically combining the antitumor effects of overexpressed miR-126 and miR-34a and the oncolytic effect of viral replication specifically in PAC cells. The expression levels of miR-126 target genes (vascular endothelial growth factor-A and SOX2) and miR-34a target genes (cyclin D1, E2F1, and Bcl-2) were markedly decreased in the PAC cells after being infected with AdCEAp-miR126/34a. Notable suppression of the therapeutic system on tumor growth was also proven in established PAC xenograft tumor models in nude mice, which demonstrated that the combination of miR-126 and miR-34a exerts more effective antitumor outcomes than a single miRNA. Conclusion The therapeutic system co-expressing miR-126 and miR-34a mediated by oncolytic adenovirus is a promising system for PAC target therapy.
Collapse
Affiliation(s)
- Shu-De Feng
- Department of General Surgery, Jiangsu Armed Police General Hospital, Yangzhou, Jiangsu, China
| | - Ziming Mao
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital, National Center of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Chunying Liu
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital, National Center of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Yu-Song Nie
- Department of General Surgery, Jiangsu Armed Police General Hospital, Yangzhou, Jiangsu, China
| | - Bin Sun
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital, National Center of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Minggao Guo
- Department of General Surgery, Shanghai Sixth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Changqing Su
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital, National Center of Liver Cancer, Second Military Medical University, Shanghai, China
| |
Collapse
|
46
|
Adamska A, Domenichini A, Falasca M. Pancreatic Ductal Adenocarcinoma: Current and Evolving Therapies. Int J Mol Sci 2017; 18:E1338. [PMID: 28640192 PMCID: PMC5535831 DOI: 10.3390/ijms18071338] [Citation(s) in RCA: 389] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/01/2017] [Accepted: 06/13/2017] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), which constitutes 90% of pancreatic cancers, is the fourth leading cause of cancer-related deaths in the world. Due to the broad heterogeneity of genetic mutations and dense stromal environment, PDAC belongs to one of the most chemoresistant cancers. Most of the available treatments are palliative, with the objective of relieving disease-related symptoms and prolonging survival. Currently, available therapeutic options are surgery, radiation, chemotherapy, immunotherapy, and use of targeted drugs. However, thus far, therapies targeting cancer-associated molecular pathways have not given satisfactory results; this is due in part to the rapid upregulation of compensatory alternative pathways as well as dense desmoplastic reaction. In this review, we summarize currently available therapies and clinical trials, directed towards a plethora of pathways and components dysregulated during PDAC carcinogenesis. Emerging trends towards targeted therapies as the most promising approach will also be discussed.
Collapse
Affiliation(s)
- Aleksandra Adamska
- Metabolic Signalling Group, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.
| | - Alice Domenichini
- Metabolic Signalling Group, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.
| | - Marco Falasca
- Metabolic Signalling Group, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.
| |
Collapse
|
47
|
Dooley J, Lagou V, Garcia-Perez JE, Himmelreich U, Liston A. miR-29a-deficiency does not modify the course of murine pancreatic acinar carcinoma. Oncotarget 2017; 8:26911-26917. [PMID: 28460473 PMCID: PMC5432306 DOI: 10.18632/oncotarget.15850] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 02/20/2017] [Indexed: 11/25/2022] Open
Abstract
The development of cancers involves the complex dysregulation of multiple cellular processes. With key functions in simultaneous regulation of multiple pathways, microRNA (miR) are thought to have important roles in the oncogenic formation process. miR-29a is among the most abundantly expressed miR in the pancreas. Together with altered expression in pancreatic cancer cell lines and biopsies, and known oncogenic functions in leukemia, this expression data has identified miR-29a as a key candidate for miR involvement in pancreatic cancer biology. Here we used miR-29a-deficient mice and the TAg model of pancreatic acinar carcinoma to functionally test the role of miR-29a in vivo. We found no impact of miR-29a loss on the development or growth of pancreatic tumours, nor on the survival of tumour-bearing mice. These results suggest that, despite differential expression, miR-29a is oncogenically neutral in the pancreatic acinar carcinoma context. If these results are extended to other models of pancreatic cancer, they would reduce the attractiveness of miR-29a as a potential therapeutic target in pancreatic cancer.
Collapse
Affiliation(s)
- James Dooley
- VIB Center for Brain and Disease Research, Leuven, Belgium
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Leuven, Belgium
| | - Vasiliki Lagou
- VIB Center for Brain and Disease Research, Leuven, Belgium
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Leuven, Belgium
| | - Josselyn E. Garcia-Perez
- VIB Center for Brain and Disease Research, Leuven, Belgium
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Leuven, Belgium
| | - Uwe Himmelreich
- KU Leuven-University of Leuven, Department of Imaging and Pathology, Molecular Small Animal Imaging Center (MOSAIC), Leuven, Belgium
| | - Adrian Liston
- VIB Center for Brain and Disease Research, Leuven, Belgium
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Leuven, Belgium
| |
Collapse
|
48
|
Evaluation of Plasma MicroRNAs as Diagnostic and Prognostic Biomarkers in Pancreatic Adenocarcinoma: miR-196a and miR-210 Could Be Negative and Positive Prognostic Markers, Respectively. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6495867. [PMID: 28466015 PMCID: PMC5390608 DOI: 10.1155/2017/6495867] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/09/2017] [Indexed: 12/19/2022]
Abstract
Background. Identifying diagnostic and prognostic biomarkers that could be targeted in the therapy of pancreatic cancer is essential. Objective. Investigations were conducted with respect to plasma miRNA (miR-21, miR-210, miR-155, miR-196a, miR-20a, and miR-25) expression and clinicopathologic factors to evaluate the prognostic value of miRNAs in pancreatic ductal adenocarcinoma (PDAC). Methods. Plasma miRNAs were detected by real-time quantitative PCR, and the association with clinicopathologic factors was subsequently performed by univariate and multivariate analyses. Results. Six miRNAs expressed significantly higher in PDAC patients than in normal individuals were identified. Receiver operating characteristic (ROC) curves were constructed. It was evident that miRNA expression associated with PDAC, lymph node metastasis, serosal infiltration, and comprehensive therapy reached significance for overall survival. High miR-196a expression was associated with poor survival (P = 0.001), whereas high miR-210 expression was significantly associated with improved survival (P = 0.003). Multivariate survival analysis indicated that the miR-210 and miR-196a expression signature, lymph node metastasis, and comprehensive therapy were independent factors affecting overall survival. Conclusions. MiRNA expression profile is distinctive in PDAC. Aberrant expression of certain miRNAs was remarkably involved in shaping the overall survival time, which include miR-196a overexpression and decreased miR-210 expression.
Collapse
|
49
|
Seviour EG, Sehgal V, Mishra D, Rupaimoole R, Rodriguez-Aguayo C, Lopez-Berestein G, Lee JS, Sood AK, Kim MP, Mills GB, Ram PT. Targeting KRas-dependent tumour growth, circulating tumour cells and metastasis in vivo by clinically significant miR-193a-3p. Oncogene 2017; 36:1339-1350. [PMID: 27669434 PMCID: PMC5344721 DOI: 10.1038/onc.2016.308] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 06/16/2016] [Accepted: 07/01/2016] [Indexed: 12/21/2022]
Abstract
KRas is mutated in a significant number of human cancers and so there is an urgent therapeutic need to target KRas signalling. To target KRas in lung cancers we used a systems approach of integrating a genome-wide miRNA screen with patient-derived phospho-proteomic signatures of the KRas downstream pathway, and identified miR-193a-3p, which directly targets KRas. Unique aspects of miR-193a-3p biology include two functionally independent target sites in the KRas 3'UTR and clinically significant correlation between miR-193a-3p and KRas expression in patients. Rescue experiments with mutated KRas 3'UTR showed very significantly that the anti-tumour effect of miR-193a-3p is via specific direct targeting of KRas and not due to other targets. Ex vivo and in vivo studies utilizing nanoliposome packaged miR-193a-3p demonstrated significant inhibition of tumour growth, circulating tumour cell viability and decreased metastasis. These studies show the broader applicability of using miR-193a-3p as a therapeutic agent to target KRas-mutant cancer.
Collapse
Affiliation(s)
- Elena G. Seviour
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX
| | - Vasudha Sehgal
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX
| | | | | | | | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, UTMDACC, Houston, TX
- Center for RNA Interference and Non-Coding RNA, UTMDACC
| | - Ju-Seog Lee
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX
- Center for RNA Interference and Non-Coding RNA, UTMDACC
| | - Anil K. Sood
- Department of Gynecologic Oncology, UTMDACC
- Center for RNA Interference and Non-Coding RNA, UTMDACC
| | - Min P. Kim
- Methodist Hospital Research Institute, Houston, TX
| | - Gordon B. Mills
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX
| | - Prahlad T. Ram
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
50
|
Prattichizzo F, Micolucci L, Cricca M, De Carolis S, Mensà E, Ceriello A, Procopio AD, Bonafè M, Olivieri F. Exosome-based immunomodulation during aging: A nano-perspective on inflamm-aging. Mech Ageing Dev 2017; 168:44-53. [PMID: 28259747 DOI: 10.1016/j.mad.2017.02.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 01/23/2017] [Accepted: 02/25/2017] [Indexed: 12/19/2022]
Abstract
Exosomes are nanovesicles formed by inward budding of endosomal membranes. They exert complex immunomodulatory effects on target cells, acting both as antigen-presenting vesicles and as shuttles for packets of information such as proteins, coding and non-coding RNA, and nuclear and mitochondrial DNA fragments. Albeit different, all such functions seem to be encompassed in the adaptive mechanism mediating the complex interactions of the organism with a variety of stressors, providing both for defense and for the evolution of symbiotic relationships with others organisms (gut microbiota, bacteria, and viruses). Intriguingly, the newly deciphered human virome and exosome biogenesis seem to share some physical-chemical characteristics and molecular mechanisms. Exosomes are involved in immune system recognition of self from non-self throughout life: they are therefore ideal candidate to modulate inflamm-aging, the chronic, systemic, age-related pro-inflammatory status, which influence the development/progression of the most common age-related diseases (ARDs). Not surprisingly, recent evidence has documented exosomal alteration during aging and in association with ARDs, even though data in this field are still limited. Here, we review current knowledge on exosome-based trafficking between immune cells and self/non-self cells (i.e. the virome), sketching a nano-perspective on inflamm-aging and on the mechanisms involved in health maintenance throughout life.
Collapse
Affiliation(s)
- Francesco Prattichizzo
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS) and Centre of Biomedical Investigation on Diabetes and Associated Metabolic Disorders Network (CIBERDEM), 08036 Barcelona, Spain; Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Luigina Micolucci
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Monica Cricca
- Department of Experimental, Diagnostic, and Specialty Medicine, DIMES, University of Bologna, Bologna, Italy
| | - Sabrina De Carolis
- Department of Experimental, Diagnostic, and Specialty Medicine, DIMES, University of Bologna, Bologna, Italy
| | - Emanuela Mensà
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Antonio Ceriello
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS) and Centre of Biomedical Investigation on Diabetes and Associated Metabolic Disorders Network (CIBERDEM), 08036 Barcelona, Spain; Department of Cardiovascular and Metabolic Diseases, IRCCS Multimedica, Sesto San Giovanni, Milan, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, National Institute INRCA-IRCCS, Ancona, Italy
| | - Massimiliano Bonafè
- Department of Experimental, Diagnostic, and Specialty Medicine, DIMES, University of Bologna, Bologna, Italy
| | - Fabiola Olivieri
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS) and Centre of Biomedical Investigation on Diabetes and Associated Metabolic Disorders Network (CIBERDEM), 08036 Barcelona, Spain; Center of Clinical Pathology and Innovative Therapy, National Institute INRCA-IRCCS, Ancona, Italy.
| |
Collapse
|