1
|
Costa P, Pereira C, Romalde JL, Almeida A. A game of resistance: War between bacteria and phages and how phage cocktails can be the solution. Virology 2024; 599:110209. [PMID: 39186863 DOI: 10.1016/j.virol.2024.110209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
While phages hold promise as an antibiotic alternative, they encounter significant challenges in combating bacterial infections, primarily due to the emergence of phage-resistant bacteria. Bacterial defence mechanisms like superinfection exclusion, CRISPR, and restriction-modification systems can hinder phage effectiveness. Innovative strategies, such as combining different phages into cocktails, have been explored to address these challenges. This review delves into these defence mechanisms and their impact at each stage of the infection cycle, their challenges, and the strategies phages have developed to counteract them. Additionally, we examine the role of phage cocktails in the evolving landscape of antibacterial treatments and discuss recent studies that highlight the effectiveness of diverse phage cocktails in targeting essential bacterial receptors and combating resistant strains.
Collapse
Affiliation(s)
- Pedro Costa
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Carla Pereira
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Jesús L Romalde
- Department of Microbiology and Parasitology, CRETUS & CIBUS - Faculty of Biology, University of Santiago de Compostela, CP 15782 Santiago de Compostela, Spain.
| | - Adelaide Almeida
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
2
|
Kim S, Son B, Kim H, Shin H, Ryu S. Precision Phage Cocktail Targeting Surface Appendages for Biocontrol of Salmonella in Cold-Stored Foods. Antibiotics (Basel) 2024; 13:799. [PMID: 39334974 PMCID: PMC11428620 DOI: 10.3390/antibiotics13090799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Salmonella enterica is a major food-borne pathogen causing food poisoning. The use of bacteriophages as alternative biocontrol agents has gained renewed interest due to the rising issue of antibiotic-resistant bacteria. We isolated and characterized three phages targeting Salmonella: SPN3US, SPN3UB, and SPN10H. Morphological and genomic analyses revealed that they belong to the class Caudoviricetes. SPN3UB, SPN3US, and SPN10H specifically target bacterial surface molecules as receptors, including O-antigens of lipopolysaccharides, flagella, and BtuB, respectively. The phages exhibited a broad host range against Salmonella strains, highlighting their potential for use in a phage cocktail. Bacterial challenge assays demonstrated significant lytic activity of the phage cocktail consisting of the three phages against S. typhimurium UK1, effectively delaying the emergence of phage-resistant bacteria. The phage cocktail effectively reduced Salmonella contamination in foods, including milk and pork and chicken meats, during cold storage. These results indicate that a phage cocktail targeting different host receptors could serve as a promising antimicrobial strategy to control Salmonella.
Collapse
Affiliation(s)
- Seongok Kim
- Department of Food Science & Biotechnology, College of Life Science, Sejong University, Seoul 05006, Republic of Korea;
- Carbohydrate Bioproduct Research Center, College of Life Science, Sejong University, Seoul 05006, Republic of Korea
| | - Bokyung Son
- Department of Food Biotechnology, Dong-A University, Busan 49315, Republic of Korea;
| | - Hyeryen Kim
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea;
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Hakdong Shin
- Department of Food Science & Biotechnology, College of Life Science, Sejong University, Seoul 05006, Republic of Korea;
- Carbohydrate Bioproduct Research Center, College of Life Science, Sejong University, Seoul 05006, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea;
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
3
|
Mallick B, Dutta A, Mondal P, Dutta M. Proteomic analysis and protein structure prediction of Shigella phage Sfk20 based on a comparative study using structure prediction approaches. Proteins 2024; 92:637-648. [PMID: 38146101 DOI: 10.1002/prot.26653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 12/27/2023]
Abstract
Bacteriophages are the natural predators of bacteria and are available abundantly everywhere in nature. Lytic phages can specifically infect their bacterial host (through attachment to the receptor) and use their host replication machinery to replicate rapidly, a feature that enables them to kill a disease-causing bacteria. Hence, phage attachment to the host bacteria is the first important step of the infection process. It is reported in this study that the receptor could be an LPS which is responsible for the attachment of the Sfk20 phage to its host (Shigella flexneri 2a). Phage Sfk20 bacteriolytic activity was examined for preliminary optimization of phage titer. The phage Sfk20 viability at different saline conditions was conducted. The LC-MS/MS technique used here for detecting and identifying 40 Sfk20 phage proteins helped us to get an initial understanding of the structural landscape of phage Sfk20. From the identified proteins, six structurally significant proteins were selected for structure prediction using two neural network systems: AlphaFold2 and ESMFold, and one homology modeling software: Phyre2. Later the performance of these modeling systems was compared using various metrics. We conclude from the available and generated information that AlphaFold2 and Phyre2 perform better than ESMFold for predicting Sfk20 phage protein structures.
Collapse
Affiliation(s)
- Bani Mallick
- Division of Electron Microscopy, ICMR-National Institute of Cholera & Enteric Diseases, Kolkata, West Bengal, India
| | - Aninda Dutta
- Division of Electron Microscopy, ICMR-National Institute of Cholera & Enteric Diseases, Kolkata, West Bengal, India
| | - Payel Mondal
- Division of Electron Microscopy, ICMR-National Institute of Cholera & Enteric Diseases, Kolkata, West Bengal, India
| | - Moumita Dutta
- Division of Electron Microscopy, ICMR-National Institute of Cholera & Enteric Diseases, Kolkata, West Bengal, India
| |
Collapse
|
4
|
Bhandare S, Lawal OU, Colavecchio A, Cadieux B, Zahirovich-Jovich Y, Zhong Z, Tompkins E, Amitrano M, Kukavica-Ibrulj I, Boyle B, Wang S, Levesque RC, Delaquis P, Danyluk M, Goodridge L. Genomic and Phenotypic Analysis of Salmonella enterica Bacteriophages Identifies Two Novel Phage Species. Microorganisms 2024; 12:695. [PMID: 38674639 PMCID: PMC11052255 DOI: 10.3390/microorganisms12040695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Bacteriophages (phages) are potential alternatives to chemical antimicrobials against pathogens of public health significance. Understanding the diversity and host specificity of phages is important for developing effective phage biocontrol approaches. Here, we assessed the host range, morphology, and genetic diversity of eight Salmonella enterica phages isolated from a wastewater treatment plant. The host range analysis revealed that six out of eight phages lysed more than 81% of the 43 Salmonella enterica isolates tested. The genomic sequences of all phages were determined. Whole-genome sequencing (WGS) data revealed that phage genome sizes ranged from 41 to 114 kb, with GC contents between 39.9 and 50.0%. Two of the phages SB13 and SB28 represent new species, Epseptimavirus SB13 and genera Macdonaldcampvirus, respectively, as designated by the International Committee for the Taxonomy of Viruses (ICTV) using genome-based taxonomic classification. One phage (SB18) belonged to the Myoviridae morphotype while the remaining phages belonged to the Siphoviridae morphotype. The gene content analyses showed that none of the phages possessed virulence, toxin, antibiotic resistance, type I-VI toxin-antitoxin modules, or lysogeny genes. Three (SB3, SB15, and SB18) out of the eight phages possessed tailspike proteins. Whole-genome-based phylogeny of the eight phages with their 113 homologs revealed three clusters A, B, and C and seven subclusters (A1, A2, A3, B1, B2, C1, and C2). While cluster C1 phages were predominantly isolated from animal sources, cluster B contained phages from both wastewater and animal sources. The broad host range of these phages highlights their potential use for controlling the presence of S. enterica in foods.
Collapse
Affiliation(s)
- Sudhakar Bhandare
- Food Safety and Quality Program, Department of Food Science and Agricultural Chemistry, McGill University, Montreal, QC H9X 3V9, Canada or (S.B.)
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham LE12 5RD, UK
| | - Opeyemi U. Lawal
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Anna Colavecchio
- Food Safety and Quality Program, Department of Food Science and Agricultural Chemistry, McGill University, Montreal, QC H9X 3V9, Canada or (S.B.)
| | - Brigitte Cadieux
- Food Safety and Quality Program, Department of Food Science and Agricultural Chemistry, McGill University, Montreal, QC H9X 3V9, Canada or (S.B.)
| | - Yella Zahirovich-Jovich
- Food Safety and Quality Program, Department of Food Science and Agricultural Chemistry, McGill University, Montreal, QC H9X 3V9, Canada or (S.B.)
| | - Zeyan Zhong
- Food Safety and Quality Program, Department of Food Science and Agricultural Chemistry, McGill University, Montreal, QC H9X 3V9, Canada or (S.B.)
| | - Elizabeth Tompkins
- Food Safety and Quality Program, Department of Food Science and Agricultural Chemistry, McGill University, Montreal, QC H9X 3V9, Canada or (S.B.)
| | - Margot Amitrano
- Food Safety and Quality Program, Department of Food Science and Agricultural Chemistry, McGill University, Montreal, QC H9X 3V9, Canada or (S.B.)
| | - Irena Kukavica-Ibrulj
- Institute for Integrative Systems Biology (IBIS), Laval University, Québec, QC G1V 0A6, Canada (R.C.L.)
| | - Brian Boyle
- Institute for Integrative Systems Biology (IBIS), Laval University, Québec, QC G1V 0A6, Canada (R.C.L.)
| | - Siyun Wang
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - Roger C. Levesque
- Institute for Integrative Systems Biology (IBIS), Laval University, Québec, QC G1V 0A6, Canada (R.C.L.)
| | - Pascal Delaquis
- Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada
| | - Michelle Danyluk
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA
| | - Lawrence Goodridge
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
5
|
Martinez-Soto CE, McClelland M, Kropinski AM, Lin JT, Khursigara CM, Anany H. Multireceptor phage cocktail against Salmonella enterica to circumvent phage resistance. MICROLIFE 2024; 5:uqae003. [PMID: 38545601 PMCID: PMC10972627 DOI: 10.1093/femsml/uqae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/18/2024] [Accepted: 03/11/2024] [Indexed: 04/14/2024]
Abstract
Non-Typhoidal Salmonella (NTS) is one of the most common food-borne pathogens worldwide, with poultry products being the major vehicle for pathogenesis in humans. The use of bacteriophage (phage) cocktails has recently emerged as a novel approach to enhancing food safety. Here, a multireceptor Salmonella phage cocktail of five phages was developed and characterized. The cocktail targets four receptors: O-antigen, BtuB, OmpC, and rough Salmonella strains. Structural analysis indicated that all five phages belong to unique families or subfamilies. Genome analysis of four of the phages showed they were devoid of known virulence or antimicrobial resistance factors, indicating enhanced safety. The phage cocktail broad antimicrobial spectrum against Salmonella, significantly inhibiting the growth of all 66 strains from 20 serovars tested in vitro. The average bacteriophage insensitive mutant (BIM) frequency against the cocktail was 6.22 × 10-6 in S. Enteritidis, significantly lower than that of each of the individual phages. The phage cocktail reduced the load of Salmonella in inoculated chicken skin by 3.5 log10 CFU/cm2 after 48 h at 25°C and 15°C, and 2.5 log10 CFU/cm2 at 4°C. A genome-wide transduction assay was used to investigate the transduction efficiency of the selected phage in the cocktail. Only one of the four phages tested could transduce the kanamycin resistance cassette at a low frequency comparable to that of phage P22. Overall, the results support the potential of cocktails of phage that each target different host receptors to achieve complementary infection and reduce the emergence of phage resistance during biocontrol applications.
Collapse
Affiliation(s)
- Carlos E Martinez-Soto
- Guelph Research and Development Centre, Agriculture and Agri-Food
Canada, 93 Stone Rd W, N1G 5C9, Guelph, Ontario,
Canada
- Department of Molecular and Cellular Biology, College of Biological
Science, University of Guelph, 50 Stone Rd E, N1G 2W1,
Guelph, Ontario, Canada
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, School of Medicine,
University of California, Irvine, 811 Health Sciences Road,
CA 92614, United States
| | - Andrew M Kropinski
- Department of Pathobiology, Ontario Veterinary College, University of
Guelph, Guelph, 419 Gordon St, Guelph, ON N1G
2W1, Canada
| | - Janet T Lin
- Guelph Research and Development Centre, Agriculture and Agri-Food
Canada, 93 Stone Rd W, N1G 5C9, Guelph, Ontario,
Canada
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, College of Biological
Science, University of Guelph, 50 Stone Rd E, N1G 2W1,
Guelph, Ontario, Canada
| | - Hany Anany
- Guelph Research and Development Centre, Agriculture and Agri-Food
Canada, 93 Stone Rd W, N1G 5C9, Guelph, Ontario,
Canada
- Department of Molecular and Cellular Biology, College of Biological
Science, University of Guelph, 50 Stone Rd E, N1G 2W1,
Guelph, Ontario, Canada
| |
Collapse
|
6
|
Gunathilake KMD, Makumi A, Loignon S, Tremblay D, Labrie S, Svitek N, Moineau S. Diversity of Salmonella enterica phages isolated from chicken farms in Kenya. Microbiol Spectr 2024; 12:e0272923. [PMID: 38078723 PMCID: PMC10783031 DOI: 10.1128/spectrum.02729-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/15/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Non-typhoidal Salmonella enterica infections are one of the leading causes of diarrhoeal diseases that spread to humans from animal sources such as poultry. Hence, keeping poultry farms free of Salmonella is essential for consumer safety and for a better yield of animal products. However, the emergence of antibiotic resistance due to over usage has sped up the search for alternative biocontrol methods such as the use of bacteriophages. Isolation and characterization of novel bacteriophages are key to adapt phage-based biocontrol applications. Here, we isolated and characterized Salmonella phages from samples collected at chicken farms and slaughterhouses in Kenya. The genomic characterization of these phage isolates revealed that they belong to four ICTV (International Committee on Taxonomy of Viruses) phage genera. All these phages are lytic and possibly suitable for biocontrol applications because no lysogenic genes or virulence factors were found in their genomes. Hence, we recommend further studies on these phages for their applications in Salmonella biocontrol.
Collapse
Affiliation(s)
- K. M. Damitha Gunathilake
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec city, Quebec, Canada
| | - Angela Makumi
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Stéphanie Loignon
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec city, Quebec, Canada
| | - Denise Tremblay
- Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec city, Quebec, Canada
| | | | - Nicholas Svitek
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Sylvain Moineau
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec city, Quebec, Canada
- Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec city, Quebec, Canada
| |
Collapse
|
7
|
Álvarez-Espejo DM, Rivera D, Moreno-Switt AI. Bacteriophage-Host Interactions and Coevolution. Methods Mol Biol 2024; 2738:231-243. [PMID: 37966603 DOI: 10.1007/978-1-0716-3549-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Bacteriophages are the most abundant entity on the planet and play very relevant roles in the diversity and abundance of their bacterial hosts. These interactions are subject to several factors, such as the first encounter of the phage with its host bacterium, in which molecular interactions are fundamental. Along with this, these interactions depend on the environment and other communities present. This chapter focuses on these phage-bacteria interactions, reviewing the knowledge of the early stage (receptor-binding proteins), host responses (resistance and counter-resistance), and ecological and evolutionary models described to date. In general, knowledge has focused on a few phage-bacteria models and has been deepened by sequencing and metagenomics. The study of phage-bacteria interactions is an essential step for the development of therapies and other applications of phages in the clinical and productive environment.
Collapse
Affiliation(s)
- Diana M Álvarez-Espejo
- Escuela de Medicina Veterinaria, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Dácil Rivera
- Escuela de Medicina Veterinaria, Universidad Andres Bello, Santiago, Chile
| | - Andrea I Moreno-Switt
- Escuela de Medicina Veterinaria, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
8
|
Zhao Y, Shu M, Zhang L, Zhong C, Liao N, Wu G. Phage-driven coevolution reveals trade-off between antibiotic and phage resistance in Salmonella anatum. ISME COMMUNICATIONS 2024; 4:ycae039. [PMID: 38616926 PMCID: PMC11014889 DOI: 10.1093/ismeco/ycae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
Phage therapy faces challenges against multidrug-resistant (MDR) Salmonella due to rapid phage-resistant mutant emergence. Understanding the intricate interplay between antibiotics and phages is essential for shaping Salmonella evolution and advancing phage therapy. In this study, MDR Salmonella anatum (S. anatum) 2089b coevolved with phage JNwz02 for 30 passages (60 days), then the effect of coevolution on the trade-off between phage and antibiotic resistance in bacteria was investigated. Our results demonstrated antagonistic coevolution between bacteria and phages, transitioning from arms race dynamics (ARD) to fluctuating selection dynamics (FSD). The fitness cost of phage resistance, manifested as reduced competitiveness, was observed. Bacteria evolved phage resistance while simultaneously regaining sensitivity to amoxicillin, ampicillin, and gentamicin, influenced by phage selection pressure and bacterial competitiveness. Moreover, the impact of phage selection pressure on the trade-off between antibiotic and phage resistance was more pronounced in the ARD stage than in the FSD stage. Whole genome analysis revealed mutations in the btuB gene in evolved S. anatum strains, with a notably higher mutation frequency in the ARD stage compared to the FSD stage. Subsequent knockout experiments confirmed BtuB as a receptor for phage JNwz02, and the deletion of btuB resulted in reduced bacterial competitiveness. Additionally, the mutations identified in the phage-resistant strains were linked to multiple single nucleotide polymorphisms (SNPs) associated with membrane components. This correlation implies a potential role of these SNPs in reinstating antibiotic susceptibility. These findings significantly advance our understanding of phage-host interactions and the impact of bacterial adaptations on antibiotic resistance.
Collapse
Affiliation(s)
- Yuanyang Zhao
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China
| | - Mei Shu
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China
| | - Ling Zhang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China
| | - Chan Zhong
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China
| | - Ningbo Liao
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China
| | - Guoping Wu
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China
| |
Collapse
|
9
|
Hernández Villamizar S, Chica Cárdenas LA, Morales Mancera LT, Vives Florez MJ. Anaerobiosis, a neglected factor in phage-bacteria interactions. Appl Environ Microbiol 2023; 89:e0149123. [PMID: 37966212 PMCID: PMC10734468 DOI: 10.1128/aem.01491-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 11/16/2023] Open
Abstract
IMPORTANCE Many parameters affect phage-bacteria interaction. Some of these parameters depend on the environment in which the bacteria are present. Anaerobiosis effect on phage infection in facultative anaerobic bacteria has not yet been studied. The absence of oxygen triggers metabolic changes in facultative bacteria and this affects phage infection and viral life cycle. Understanding how an anaerobic environment can alter the behavior of phages during infection is relevant for the phage therapy success.
Collapse
|
10
|
Woudstra C, Sørensen AN, Brøndsted L. Engineering of Salmonella Phages into Novel Antimicrobial Tailocins. Cells 2023; 12:2637. [PMID: 37998371 PMCID: PMC10670071 DOI: 10.3390/cells12222637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Due to the extensive use of antibiotics, the increase of infections caused by antibiotic-resistant bacteria is now a global health concern. Phages have proven useful for treating bacterial infections and represent a promising alternative or complement to antibiotic treatment. Yet, other alternatives exist, such as bacteria-produced non-replicative protein complexes that can kill their targeted bacteria by puncturing their membrane (Tailocins). To expand the repertoire of Tailocins available, we suggest a new approach that transforms phages into Tailocins. Here, we genetically engineered the virulent Ackermannviridae phage S117, as well as temperate phages Fels-1, -2 and Gifsy-1 and -2, targeting the food pathogen Salmonella, by deleting the portal vertex or major capsid gene using CRISPR-Cas9. We report the production of Tailocin particles from engineered virulent and temperate phages able to kill their native host. Our work represents a steppingstone that taps into the huge diversity of phages and transforms them into versatile puncturing new antimicrobials.
Collapse
Affiliation(s)
| | | | - Lone Brøndsted
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark; (C.W.); (A.N.S.)
| |
Collapse
|
11
|
Esteves NC, Bigham DN, Scharf BE. Phages on filaments: A genetic screen elucidates the complex interactions between Salmonella enterica flagellin and bacteriophage Chi. PLoS Pathog 2023; 19:e1011537. [PMID: 37535496 PMCID: PMC10399903 DOI: 10.1371/journal.ppat.1011537] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023] Open
Abstract
The bacterial flagellum is a rotary motor organelle and important virulence factor that propels motile pathogenic bacteria, such as Salmonella enterica, through their surroundings. Bacteriophages, or phages, are viruses that solely infect bacteria. As such, phages have myriad applications in the healthcare field, including phage therapy against antibiotic-resistant bacterial pathogens. Bacteriophage χ (Chi) is a flagellum-dependent (flagellotropic) bacteriophage, which begins its infection cycle by attaching its long tail fiber to the S. enterica flagellar filament as its primary receptor. The interactions between phage and flagellum are poorly understood, as are the reasons that χ only kills certain Salmonella serotypes while others entirely evade phage infection. In this study, we used molecular cloning, targeted mutagenesis, heterologous flagellin expression, and phage-host interaction assays to determine which domains within the flagellar filament protein flagellin mediate this complex interaction. We identified the antigenic N- and C-terminal D2 domains as essential for phage χ binding, with the hypervariable central D3 domain playing a less crucial role. Here, we report that the primary structure of the Salmonella flagellin D2 domains is the major determinant of χ adhesion. The phage susceptibility of a strain is directly tied to these domains. We additionally uncovered important information about flagellar function. The central and most variable domain, D3, is not required for motility in S. Typhimurium 14028s, as it can be deleted or its sequence composition can be significantly altered with minimal impacts on motility. Further knowledge about the complex interactions between flagellotropic phage χ and its primary bacterial receptor may allow genetic engineering of its host range for use as targeted antimicrobial therapy against motile pathogens of the χ-host genera Salmonella, Escherichia, or Serratia.
Collapse
Affiliation(s)
- Nathaniel C. Esteves
- Dept. of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Danielle N. Bigham
- Dept. of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Birgit E. Scharf
- Dept. of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| |
Collapse
|
12
|
Wang Y, Xuan G, Ning H, Kong J, Lin H, Wang J. Tn5 Transposon-based Mutagenesis for Engineering Phage-resistant Strains of Escherichia coli BL21 (DE3). J Microbiol 2023:10.1007/s12275-023-00048-2. [PMID: 37213024 DOI: 10.1007/s12275-023-00048-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/23/2023]
Abstract
Escherichia coli is a preferred strain for recombinant protein production, however, it is often plagued by phage infection during experimental studies and industrial fermentation. While the existing methods of obtaining phage-resistant strains by natural mutation are not efficient enough and time-consuming. Herein, a high-throughput method by combining Tn5 transposon mutation and phage screening was used to produce Escherichia coli BL21 (DE3) phage-resistant strains. Mutant strains PR281-7, PR338-8, PR339-3, PR340-8, and PR347-9 were obtained, and they could effectively resist phage infection. Meanwhile, they had good growth ability, did not contain pseudolysogenic strains, and were controllable. The resultant phage-resistant strains maintained the capabilities of producing recombinant proteins since no difference in mCherry red fluorescent protein expression was found in phage-resistant strains. Comparative genomics showed that PR281-7, PR338-8, PR339-3, and PR340-8 mutated in ecpE, nohD, nrdR, and livM genes, respectively. In this work, a strategy was successfully developed to obtain phage-resistant strains with excellent protein expression characteristics by Tn5 transposon mutation. This study provides a new reference to solve the phage contamination problem.
Collapse
Affiliation(s)
- Yinfeng Wang
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, 266003, Qingdao, People's Republic of China
| | - Guanhua Xuan
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, 266003, Qingdao, People's Republic of China
| | - Houqi Ning
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, 266003, Qingdao, People's Republic of China
| | - Jiuna Kong
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, 266003, Qingdao, People's Republic of China
| | - Hong Lin
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, 266003, Qingdao, People's Republic of China
| | - Jingxue Wang
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, 266003, Qingdao, People's Republic of China.
| |
Collapse
|
13
|
Zhu X, Li Z, Tong Y, Chen L, Sun T, Zhang W. From natural to artificial cyanophages: Current progress and application prospects. ENVIRONMENTAL RESEARCH 2023; 223:115428. [PMID: 36746205 DOI: 10.1016/j.envres.2023.115428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
The over proliferation of harmful cyanobacteria and their cyanotoxins resulted in damaged aquatic ecosystem, polluted drinking water and threatened human health. Cyanophages are a kind of viruses that exclusively infect cyanobacteria, which is considered as a potential strategy to deal with cyanobacterial blooms. Nevertheless, the infecting host range and/or lysis efficiency of natural cyanophages is limited, rising the necessity of constructing non-natural cyanophages via artificial modification, design and synthesis to expand their host range and/or efficiency. The paper firstly reviewed representative cyanophages such as P60 with a short latent period of 1.5 h and S-CBS1 having a burst size up to 200 PFU/cell. To explore the in-silico design principles, we critically summarized the interactions between cyanophages and the hosts, indicating modifying the recognized receptors, enhancing the adsorption ability, changing the lysogeny and excluding the defense of hosts are important for artificial cyanophages. The research progress of synthesizing artificial cyanophages were summarized subsequently, raising the importance of developing genetic manipulation technologies and their rescue strategies in the future. Meanwhile, Large-scale preparation of cyanophages for bloom control is a big challenge. The application prospects of artificial cyanophages besides cyanobacteria bloom control like adaptive evolution and phage therapy were discussed at last. The review will promote the design, synthesis and application of cyanophages for cyanobacteria blooms, which may provide new insights for the related water pollution control and ensuring hydrosphere security.
Collapse
Affiliation(s)
- Xiaofei Zhu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China; Frontier Science Center for Synthetic Biology & Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China
| | - Zipeng Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China; Frontier Science Center for Synthetic Biology & Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China.
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China; Frontier Science Center for Synthetic Biology & Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin, 300072, PR China.
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China; Frontier Science Center for Synthetic Biology & Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin, 300072, PR China
| |
Collapse
|
14
|
Wang Y, Xuan G, Lin H, Fei Z, Wang J. Phage resistance of Salmonella enterica obtained by transposon Tn5-mediated SefR gene silent mutation. J Basic Microbiol 2023; 63:530-541. [PMID: 37032321 DOI: 10.1002/jobm.202200532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/05/2023] [Accepted: 03/12/2023] [Indexed: 04/11/2023]
Abstract
Salmonella enterica contamination is a primary cause of global food poisoning. Using phages as bactericidal alternatives to antibiotics could confront the issue of drug resistance. However, the problem of phage resistance, especially mutant strains with multiple phage resistance, is a critical barrier to the practical application of phages. In this study, a library of EZ-Tn5 transposable mutants of susceptible host S. enterica B3-6 was constructed. After the infestation pressure of a broad-spectrum phage TP1, a mutant strain with resistance to eight phages was obtained. Analysis of the genome resequencing results revealed that the SefR gene was disrupted in the mutant strain. The mutant strain displayed a reduced adsorption rate of 42% and a significant decrease in swimming and swarming motility, as well as a significantly reduced expression of the flagellar-related FliL and FliO genes to 17% and 36%, respectively. An uninterrupted form of the SefR gene was cloned into vector pET-21a (+) and used for complementation of the mutant strain. The complemented mutant exhibited similar adsorption and motility as the wild-type control. These results suggest that the disrupted flagellar-mediated SefR gene causes an adsorption inhibition, which is responsible for the phage-resistant phenotype of the S. enterica transposition mutant.
Collapse
Affiliation(s)
- Yinfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Guanhua Xuan
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Zhenhong Fei
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Jingxue Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| |
Collapse
|
15
|
Williams J, Burton N, Dhanoa G, Sagona AP. Host-phage interactions and modeling for therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 200:127-158. [PMID: 37739552 DOI: 10.1016/bs.pmbts.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Phage are drivers of numerous ecological processes on the planet and have the potential to be developed into a therapy alternative to antibiotics. Phage at all points of their life cycle, from initiation of infection to their release, interact with their host in some manner. More importantly, to harness their antimicrobial potential it is vital to understand how phage interact with the eukaryotic environment in the context of applying phage for therapy. In this chapter, the various mechanisms of phage interplay with their hosts as part of their natural life cycle are discussed in depth for Gram-positive and negative bacteria. Further, the literature surrounding the various models utilized to develop phage as a therapeutic are examined, and how these models may improve our understanding of phage-host interactions and current progress in utilizing phage for therapy in the clinical environment.
Collapse
Affiliation(s)
- Joshua Williams
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Nathan Burton
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Gurneet Dhanoa
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Antonia P Sagona
- School of Life Sciences, University of Warwick, Coventry, United Kingdom.
| |
Collapse
|
16
|
Mun W, Upatissa S, Lim S, Dwidar M, Mitchell RJ. Outer Membrane Porin F in E. coli Is Critical for Effective Predation by Bdellovibrio. Microbiol Spectr 2022; 10:e0309422. [PMID: 36445149 PMCID: PMC9769668 DOI: 10.1128/spectrum.03094-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/08/2022] [Indexed: 12/02/2022] Open
Abstract
Bdellovibrio and like organisms (BALOs) are a unique bacterial group that live by predating on other bacteria, consuming them from within to grow and replicate before the progeny come out to complete the life cycle. The mechanisms by which these predators recognize their prey and differentiate them from nonprey bacteria, however, are still not clear. Through genetic knockout and complementation studies in different Escherichia coli strains, we found that Bdellovibrio bacteriovorus strain 109J recognizes outer membrane porin F (OmpF) on the E. coli surface and that the activity of the E. coli EnvZ-OmpR regulatory system significantly impacts predation kinetics. OmpF is not the only signal by which BALOs recognize their prey, however, as B. bacteriovorus could eventually predate on the E. coli ΔompF mutant after prolonged incubation. Furthermore, recognizing OmpF as a prey surface structure was dependent on the prey strain, as knocking out OmpF protein homologues in other prey species, including Escherichia fergusonii, Klebsiella pneumoniae, and Salmonella enterica, did not always reduce the predation rate. Consequently, although OmpF was found to be an important surface component used by Bdellovibrio to efficiently recognize and attack E. coli, future work is needed to determine what other prey surface structures are recognized by these predators. IMPORTANCE Bdellovibrio bacteriovorus and like organisms (BALOs) are Gram-negative predatory bacteria that attack other Gram-negative bacteria by penetrating their periplasm and consuming them from within to obtain the nutrients necessary for the predator's growth and replication. How these predators recognize their prey, however, has remained a mystery. Here, we show that the outer membrane porin F (OmpF) in E. coli is recognized by B. bacteriovorus strain 109J and that the loss of this protein leads to severely delayed predation. However, predation of several other prey species was not dependent on the recognition of this protein or its homologues, indicating that there are other structures recognized by the predators on the prey surface that are yet to be discovered.
Collapse
Affiliation(s)
- Wonsik Mun
- School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Sumudu Upatissa
- School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Sungbin Lim
- School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Mohammed Dwidar
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Robert J. Mitchell
- School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| |
Collapse
|
17
|
Kim S, Chang Y. Anti-Salmonella polyvinyl alcohol coating containing a virulent phage PBSE191 and its application on chicken eggshell. Food Res Int 2022; 162:111971. [DOI: 10.1016/j.foodres.2022.111971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/27/2022] [Accepted: 09/21/2022] [Indexed: 11/28/2022]
|
18
|
Efficacy of Repeated Applications of Bacteriophages on Salmonella enterica-Infected Alfalfa Sprouts during Germination. Pathogens 2022; 11:pathogens11101156. [PMID: 36297213 PMCID: PMC9610501 DOI: 10.3390/pathogens11101156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/01/2022] [Accepted: 10/01/2022] [Indexed: 11/13/2022] Open
Abstract
Nontyphoidal Salmonella enterica is one of the leading pathogens for foodborne outbreaks in a multitude of food commodities, including alfalfa sprouts, which are commonly consumed raw. The food industry has commonly used chlorinated washes, but such methods may not be perceived as natural; this can be a detriment as a large portion of sprouts are designated for the organic market. A natural and affordable antimicrobial method that has been acquiring popularity is the use of bacteriophages. This study compared the efficacy of repeated daily applications and a single application of two separate bacteriophage cocktails (SE14, SE20, SF6 and SE14, SF5, SF6) against four Salmonella enterica (S. enterica) strains on germinating alfalfa sprout seeds from days 0 to 7. The results show S. Enteritidis to be the most susceptible to both cocktails with ~2.5 log CFU/mL decrease on day 0 with cocktail SE14, SF5, and SF6. S. enterica populations on all strains continued to grow even with repeated daily bacteriophage applications but in a significantly decreased rate (p < 0.05) compared with a single bacteriophage application. The extent of the reduction was dependent on the S. enterica strain, but the results do show benefits to using repeated bacteriophage applications during sprout germination to reduce S. enterica populations compared with a single bacteriophage application.
Collapse
|
19
|
Biological Features and In Planta Transcriptomic Analyses of a Microviridae Phage (CLasMV1) in " Candidatus Liberibacter asiaticus". Int J Mol Sci 2022; 23:ijms231710024. [PMID: 36077424 PMCID: PMC9456138 DOI: 10.3390/ijms231710024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/27/2022] Open
Abstract
“Candidatus Liberibacter asiaticus” (CLas) is the causal agent of citrus Huanglongbing (HLB, also called citrus greening disease), a highly destructive disease threatening citrus production worldwide. A novel Microviridae phage (named CLasMV1) has been found to infect CLas, providing a potential therapeutic strategy for CLas/HLB control. However, little is known about the CLasMV1 biology. In this study, we analyzed the population dynamics of CLasMV1 between the insect vector of CLas, the Asian citrus psyllid (ACP, Diaphorina citri Kuwayama) and the holoparasitic dodder plant (Cuscuta campestris Yunck.); both acquired CLasMV1-infected CLas from an HLB citrus. All CLas-positive dodder samples were CLasMV1-positive, whereas only 32% of CLas-positive ACP samples were identified as CLasMV1-positive. Quantitative analyses showed a similar distribution pattern of CLasMV1 phage and CLas among eight citrus cultivars by presenting at highest abundance in the fruit pith and/or the center axis of the fruit. Transcriptome analyses revealed the possible lytic activity of CLasMV1 on CLas in fruit pith as evidenced by high-level expressions of CLasMV1 genes, and CLas genes related to cell wall biogenesis and remodeling to maintain the CLas cell envelope integrity. The up-regulation of CLas genes were involved in restriction–modification system that could involve possible phage resistance for CLas during CLasMV1 infection. In addition, the regulation of CLas genes involved in cell surface components and Sec pathway by CLasMV1 phage could be beneficial for phage infection. This study expanded our knowledge of CLasMV1 phage that will benefit further CLas phage research and HLB control.
Collapse
|
20
|
Knecht LE, Born Y, Pelludat C, Pothier JF, Smits THM, Loessner MJ, Fieseler L. Spontaneous Resistance of Erwinia amylovora Against Bacteriophage Y2 Affects Infectivity of Multiple Phages. Front Microbiol 2022; 13:908346. [PMID: 35979490 PMCID: PMC9376448 DOI: 10.3389/fmicb.2022.908346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022] Open
Abstract
Broad application of antibiotics gave rise to increasing numbers of antibiotic resistant bacteria. Therefore, effective alternatives are currently investigated. Bacteriophages, natural predators of bacteria, could work as such an alternative. Although phages can be highly effective at eliminating specific bacteria, phage resistance can be observed after application. The nature of this resistance, however, can differ depending on the phage. Exposing Erwinia amylovora CFBP 1430, the causative agent of fire blight, to the different phages Bue1, L1, S2, S6, or M7 led to transient resistance. The bacteria reversed to a phage sensitive state after the phage was eliminated. When wild type bacteria were incubated with Y2, permanently resistant colonies (1430Y2R) formed spontaneously. In addition, 1430Y2R revealed cross-resistance against other phages (Bue1) or lowered the efficiency of plating (L1, S2, and S6). Pull down experiments revealed that Y2 is no longer able to bind to the mutant suggesting mutation or masking of the Y2 receptor. Other phages tested were still able to bind to 1430Y2R. Bue1 was observed to still adsorb to the mutant, but no host lysis was found. These findings indicated that, in addition to the alterations of the Y2 receptor, the 1430Y2R mutant might block phage attack at different stage of infection. Whole genome sequencing of 1430Y2R revealed a deletion in the gene with the locus tag EAMY_2231. The gene, which encodes a putative galactosyltransferase, was truncated due to the resulting frameshift. The mutant 1430Y2R was monitored for potential defects or fitness loss. Weaker growth was observed in LB medium compared to the wild type but not in minimal medium. Strain 1430Y2R was still highly virulent in blossoms even though amylovoran production was observed to be reduced. Additionally, LPS structures were analyzed and were clearly shown to be altered in the mutant. Complementation of the truncated EAMY_2231 in trans restored the wild type phenotype. The truncation of EAMY_2231 can therefore be associated with manifold modifications in 1430Y2R, which can affect different phages simultaneously.
Collapse
Affiliation(s)
- Leandra E. Knecht
- Food Microbiology Research Group, Institute of Food and Beverage Innovation, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
- Institute of Food, Nutrition and Health, ETH Zürich, Zurich, Switzerland
| | - Yannick Born
- Food Microbiology Research Group, Institute of Food and Beverage Innovation, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Cosima Pelludat
- Agroscope, Plant Pathology and Zoology in Fruit and Vegetable Production, Wädenswil, Switzerland
| | - Joël F. Pothier
- Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Theo H. M. Smits
- Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Martin J. Loessner
- Institute of Food, Nutrition and Health, ETH Zürich, Zurich, Switzerland
| | - Lars Fieseler
- Food Microbiology Research Group, Institute of Food and Beverage Innovation, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
- *Correspondence: Lars Fieseler,
| |
Collapse
|
21
|
Li Y, Lv P, Shi D, Zhao H, Yuan X, Jin X, Wang X. A Cocktail of Three Virulent Phages Controls Multidrug-Resistant Salmonella Enteritidis Infection in Poultry. Front Microbiol 2022; 13:940525. [PMID: 35875532 PMCID: PMC9298555 DOI: 10.3389/fmicb.2022.940525] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022] Open
Abstract
Salmonella enterica is not only the most common pathogen of poultry and poultry-derived products but is also a significant foodborne pathogen. In recent years, many S. enterica isolates have exhibited multi-drug resistance, which places huge pressure on global economy and health. Since phages are an attractive alternative to biocontrol pathogens, we isolated a total of 15 Salmonella phages from sewage effluent, sediment, and chicken manure. The GRNsp1, GRNsp3, GRNsp6, GRNsp21, GRNsp27, GRNsp30, GRNsp50, and GRNsp51 phages exhibited a wide host range against S. enterica serovars Enteritidis and Typhimurium in vitro. In particular, GRNsp51 exerted highly efficient lytic effects against a large proportion of S. Enteritidis and S. Typhimurium strains isolated from different regions of China. Meanwhile, GRNsp8 expanded the host range of GRNsp6 and GRNsp51. Based on their host ranges and lytic capacities, GRNsp6, GRNssp8, and GRNsp51 were selected for further investigation. Morphology, one-step growth curves, and stability assays revealed that GRNsp6, GRNsp8, and GRNsp51 all belong to the Caudovirales order and display relatively short latency periods with broad pH and thermal stability. Genomic analysis indicated that the genomes of these three phages contained no genes related to virulence, antibiotic resistance, or lysogeny. In addition, we tested the effectiveness of a cocktail composed of these three phages against S. Enteritidis in a chicken model. Treatment with the oral phage cocktail 24 h before or alongside Salmonella challenge significantly reduced colonization of the intestinal tract and decreased the mRNA expression of IL-6, IFN-γ, and IL-1β in the duodenum. Together, these findings indicate that a cocktail of the GRNsp6, GRNsp8, and GRNsp51 phages could serve as an effective antimicrobial therapeutic agent against multidrug-resistant Salmonella in animal production to mitigate infections by multiple zoonotic Salmonella species.
Collapse
Affiliation(s)
- Yue Li
- Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Peilin Lv
- Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Deshi Shi
- Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hongze Zhao
- Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xu Yuan
- Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiue Jin
- Hubei Provincial Institute of Veterinary Drug Control, Wuhan, China
| | - Xiliang Wang
- Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
22
|
Mohakud NK, Panda RK, Patra SD, Sahu BR, Ghosh M, Kushwaha GS, Misra N, Suar M. Genome analysis and virulence gene expression profile of a multi drug resistant Salmonella enterica serovar Typhimurium ms202. Gut Pathog 2022; 14:28. [PMID: 35765034 PMCID: PMC9237969 DOI: 10.1186/s13099-022-00498-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/19/2022] [Indexed: 12/01/2022] Open
Abstract
Background In India, multi-drug resistance in Salmonella enterica serovar Typhimurium poses a significant health threat. Indeed, S. Typhimurium has remained unknown for a large portion of its genome associated with various physiological functions including mechanism of drug resistance and virulence. The whole-genome sequence of a Salmonella strain obtained from feces of a patient with gastroenteritis in Odisha, India, was analyzed for understanding the disease association and underlying virulence mechanisms. Results The de novo assembly yielded 17 contigs and showed 99.9% similarity to S. enterica sub sp enterica strain LT2 and S. enteric subsp salamae strain DSM 9220. S. Typhimurium ms202 strain constitutes six known Salmonella pathogenicity islands and nine different phages. The comparative interpretation of pathogenic islands displayed the genes contained in SPI-1 and SPI-2 to be highly conserved. We identified sit ABCD cluster regulatory cascade in SPI-1. Multiple antimicrobial resistance genes were identified that directly implies antibiotic-resistant phenotype. Notably, seven unique genes were identified as "acquired antibiotic resistance". These data suggest that virulence in S. enterica Typhimurium ms202 is associated with SPI-1 and SPI-2. Further, we found several virulent genes encoding SPI regions belonging to type III secretion systems (T3SS) of bacteria were significantly upregulated in ms202 compared to control LT2. Moreover, all these genes were significantly downregulated in S. enterica Typhimurium ms202 as compared to control LT2 on adding Mn2+ exogenously. Conclusions Our study raises a vital concern about the potential diffusion of a novel multi-drug resistant S. enterica Typhimurium ms202. It justifies this clinical pathogen to demonstrate a higher degree survival due to higher expression of virulent genes and enhanced ability of metallic ion acquisition. Supplementary Information The online version contains supplementary material available at 10.1186/s13099-022-00498-w.
Collapse
Affiliation(s)
- Nirmal Kumar Mohakud
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India.,Kalinga Institute of Medical Sciences (KIMS), KIIT University, Bhubaneswar, 751024, India
| | | | | | | | - Mrinmoy Ghosh
- KIIT-Technology Business Incubator (KIIT-TBI), KIIT University, Bhubaneswar, 751024, India.
| | - Gajraj Singh Kushwaha
- KIIT-Technology Business Incubator (KIIT-TBI), KIIT University, Bhubaneswar, 751024, India
| | - Namrata Misra
- KIIT-Technology Business Incubator (KIIT-TBI), KIIT University, Bhubaneswar, 751024, India
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India. .,KIIT-Technology Business Incubator (KIIT-TBI), KIIT University, Bhubaneswar, 751024, India.
| |
Collapse
|
23
|
Flagellotropic Bacteriophages: Opportunities and Challenges for Antimicrobial Applications. Int J Mol Sci 2022; 23:ijms23137084. [PMID: 35806089 PMCID: PMC9266447 DOI: 10.3390/ijms23137084] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 12/22/2022] Open
Abstract
Bacteriophages (phages) are the most abundant biological entities in the biosphere. As viruses that solely infect bacteria, phages have myriad healthcare and agricultural applications including phage therapy and antibacterial treatments in the foodservice industry. Phage therapy has been explored since the turn of the twentieth century but was no longer prioritized following the invention of antibiotics. As we approach a post-antibiotic society, phage therapy research has experienced a significant resurgence for the use of phages against antibiotic-resistant bacteria, a growing concern in modern medicine. Phages are extraordinarily diverse, as are their host receptor targets. Flagellotropic (flagellum-dependent) phages begin their infection cycle by attaching to the flagellum of their motile host, although the later stages of the infection process of most of these phages remain elusive. Flagella are helical appendages required for swimming and swarming motility and are also of great importance for virulence in many pathogenic bacteria of clinical relevance. Not only is bacterial motility itself frequently important for virulence, as it allows pathogenic bacteria to move toward their host and find nutrients more effectively, but flagella can also serve additional functions including mediating bacterial adhesion to surfaces. Flagella are also a potent antigen recognized by the human immune system. Phages utilizing the flagellum for infections are of particular interest due to the unique evolutionary tradeoff they force upon their hosts: by downregulating or abolishing motility to escape infection by a flagellotropic phage, a pathogenic bacterium would also likely attenuate its virulence. This factor may lead to flagellotropic phages becoming especially potent antibacterial agents. This review outlines past, present, and future research of flagellotropic phages, including their molecular mechanisms of infection and potential future applications.
Collapse
|
24
|
Lourenço M, Chaffringeon L, Lamy-Besnier Q, Titécat M, Pédron T, Sismeiro O, Legendre R, Varet H, Coppée JY, Bérard M, De Sordi L, Debarbieux L. The gut environment regulates bacterial gene expression which modulates susceptibility to bacteriophage infection. Cell Host Microbe 2022; 30:556-569.e5. [PMID: 35421351 DOI: 10.1016/j.chom.2022.03.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/14/2022] [Accepted: 03/10/2022] [Indexed: 11/24/2022]
Abstract
Abundance and diversity of bacteria and their viral predators, bacteriophages (phages), in the digestive tract are associated with human health. Particularly intriguing is the long-term coexistence of these two antagonistic populations. We performed genome-wide RNA sequencing on a human enteroaggregative Escherichia coli isolate to identify genes differentially expressed between in vitro conditions and in murine intestines. We experimentally demonstrated that four of these differentially expressed genes modified the interactions between E. coli and three virulent phages by either increasing or decreasing its susceptibility/resistance pattern and also by interfering with biofilm formation. Therefore, the regulation of bacterial genes expression during the colonization of the digestive tract influences the coexistence of phages and bacteria, highlighting the intricacy of tripartite relationships between phages, bacteria, and the animal host in intestinal homeostasis.
Collapse
Affiliation(s)
- Marta Lourenço
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Bacteriophage Bacterium Host, 75015 Paris, France; Sorbonne Université, Collège Doctoral, 75005 Paris, France
| | - Lorenzo Chaffringeon
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Bacteriophage Bacterium Host, 75015 Paris, France; Sorbonne Université, INSERM, Centre de Recherche St Antoine, UMRS_938, Paris, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, AP-HP, Paris, Ile-de-France, France
| | - Quentin Lamy-Besnier
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Bacteriophage Bacterium Host, 75015 Paris, France
| | - Marie Titécat
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Bacteriophage Bacterium Host, 75015 Paris, France; Université de Lille, INSERM, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, 59000 Lille, France
| | - Thierry Pédron
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Bacteriophage Bacterium Host, 75015 Paris, France
| | - Odile Sismeiro
- Transcriptome and EpiGenome Platform, Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Rachel Legendre
- Transcriptome and EpiGenome Platform, Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Université Paris Cité, 75015 Paris, France; Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Hugo Varet
- Transcriptome and EpiGenome Platform, Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Université Paris Cité, 75015 Paris, France; Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Jean-Yves Coppée
- Transcriptome and EpiGenome Platform, Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Marion Bérard
- Institut Pasteur, Université Paris Cité, DT, Animalerie Centrale, Centre de Gnotobiologie, 75724 Paris, France
| | - Luisa De Sordi
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Bacteriophage Bacterium Host, 75015 Paris, France; Sorbonne Université, INSERM, Centre de Recherche St Antoine, UMRS_938, Paris, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, AP-HP, Paris, Ile-de-France, France
| | - Laurent Debarbieux
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Bacteriophage Bacterium Host, 75015 Paris, France.
| |
Collapse
|
25
|
Lee C, Kim H, Ryu S. Bacteriophage and endolysin engineering for biocontrol of food pathogens/pathogens in the food: recent advances and future trends. Crit Rev Food Sci Nutr 2022; 63:8919-8938. [PMID: 35400249 DOI: 10.1080/10408398.2022.2059442] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite advances in modern technologies, various foodborne outbreaks have continuously threatened the food safety. The overuse of and abuse/misuse of antibiotics have escalated this threat due to the prevalence of multidrug-resistant (MDR) pathogens. Therefore, the development of new methodologies for controlling microbial contamination is extremely important to ensure the food safety. As an alternative to antibiotics, bacteriophages(phages) and derived endolysins have been proposed as novel, effective, and safe antimicrobial agents and applied for the prevention and/or eradication of bacterial contaminants even in foods and food processing facilities. In this review, we describe recent genetic and protein engineering tools for phages and endolysins. The major aim of engineering is to overcome limitations such as a narrow host range, low antimicrobial activity, and low stability of phages and endolysins. Phage engineering also aims to deter the emergence of phage resistance. In the case of endolysin engineering, enhanced antibacterial ability against Gram-negative and Gram-positive bacteria is another important goal. Here, we summarize the successful studies of phages and endolysins treatment in different types of food. Moreover, this review highlights the recent advances in engineering techniques for phages and endolysins, discusses existing challenges, and suggests technical opportunities for further development, especially in terms of antimicrobial agents in the food industry.
Collapse
Affiliation(s)
- Chanyoung Lee
- Department of Food and Animal Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Hyeongsoon Kim
- Department of Food and Animal Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
26
|
Knecht LE, Heinrich N, Born Y, Felder K, Pelludat C, Loessner MJ, Fieseler L. Bacteriophage S6 requires bacterial cellulose for Erwinia amylovora infection. Environ Microbiol 2022; 24:3436-3450. [PMID: 35289468 DOI: 10.1111/1462-2920.15973] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 01/21/2023]
Abstract
Bacteriophages are highly selective in targeting bacteria. This selectivity relies on the specific adsorption of phages to the host cell surface. In this study, a Tn5 transposon mutant library of Erwinia amylovora, the causative agent of fire blight, was screened to identify bacterial receptors required for infection by the podovirus S6. Phage S6 was unable to infect mutants with defects in the bacterial cellulose synthase operon (bcs). The Bcs complex produces and secretes bacterial cellulose, an extracellular polysaccharide associated with bacterial biofilms. Deletion of the bcs operon or associated genes (bcsA, bcsC and bcsZ) verified the crucial role of bacterial cellulose for S6 infection. Application of the cellulose binding dye Congo Red blocked infection by S6. We demonstrate that infective S6 virions degraded cellulose and that Gp95, a phage-encoded cellulase, is involved to catalyse the reaction. In planta S6 did not significantly inhibit fire blight symptom development. Moreover, deletion of bcs genes in E. amylovora did not affect bacterial virulence in blossom infections, indicating that sole application of cellulose targeting phages is less appropriate to biologically control E. amylovora. The interplay between cellulose synthesis, host cell infection and maintenance of the host cell population is discussed.
Collapse
Affiliation(s)
- Leandra E Knecht
- Food Microbiology Research Group, Institute of Food and Beverage Innovation, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland.,Institute of Food, Nutrition and Health, ETH Zurich, Zürich, Switzerland
| | - Nadine Heinrich
- Institute of Food, Nutrition and Health, ETH Zurich, Zürich, Switzerland
| | - Yannick Born
- Food Microbiology Research Group, Institute of Food and Beverage Innovation, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Katja Felder
- Institute of Food, Nutrition and Health, ETH Zurich, Zürich, Switzerland
| | - Cosima Pelludat
- Agroscope, Plant Pathology and Zoology in Fruit and Vegetable Production, Wädenswil, Switzerland
| | - Martin J Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Zürich, Switzerland
| | - Lars Fieseler
- Food Microbiology Research Group, Institute of Food and Beverage Innovation, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| |
Collapse
|
27
|
Development of a Phage Cocktail to Target Salmonella Strains Associated with Swine. Pharmaceuticals (Basel) 2022; 15:ph15010058. [PMID: 35056115 PMCID: PMC8777603 DOI: 10.3390/ph15010058] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/20/2021] [Accepted: 12/30/2021] [Indexed: 02/06/2023] Open
Abstract
Infections caused by multidrug resistant Salmonella strains are problematic in swine and are entering human food chains. Bacteriophages (phages) could be used to complement or replace antibiotics to reduce infection within swine. Here, we extensively characterised six broad host range lytic Salmonella phages, with the aim of developing a phage cocktail to prevent or treat infection. Intriguingly, the phages tested differed by one to five single nucleotide polymorphisms. However, there were clear phenotypic differences between them, especially in their heat and pH sensitivity. In vitro killing assays were conducted to determine the efficacy of phages alone and when combined, and three cocktails reduced bacterial numbers by ~2 × 103 CFU/mL within two hours. These cocktails were tested in larvae challenge studies, and prophylactic treatment with phage cocktail SPFM10-SPFM14 was the most efficient. Phage treatment improved larvae survival to 90% after 72 h versus 3% in the infected untreated group. In 65% of the phage-treated larvae, Salmonella counts were below the detection limit, whereas it was isolated from 100% of the infected, untreated larvae group. This study demonstrates that phages effectively reduce Salmonella colonisation in larvae, which supports their ability to similarly protect swine.
Collapse
|
28
|
Adler BA, Kazakov AE, Zhong C, Liu H, Kutter E, Lui LM, Nielsen TN, Carion H, Deutschbauer AM, Mutalik VK, Arkin AP. The genetic basis of phage susceptibility, cross-resistance and host-range in Salmonella. MICROBIOLOGY (READING, ENGLAND) 2021; 167. [PMID: 34910616 PMCID: PMC8744999 DOI: 10.1099/mic.0.001126] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Though bacteriophages (phages) are known to play a crucial role in bacterial fitness and virulence, our knowledge about the genetic basis of their interaction, cross-resistance and host-range is sparse. Here, we employed genome-wide screens in Salmonella enterica serovar Typhimurium to discover host determinants involved in resistance to eleven diverse lytic phages including four new phages isolated from a therapeutic phage cocktail. We uncovered 301 diverse host factors essential in phage infection, many of which are shared between multiple phages demonstrating potential cross-resistance mechanisms. We validate many of these novel findings and uncover the intricate interplay between RpoS, the virulence-associated general stress response sigma factor and RpoN, the nitrogen starvation sigma factor in phage cross-resistance. Finally, the infectivity pattern of eleven phages across a panel of 23 genome sequenced Salmonella strains indicates that additional constraints and interactions beyond the host factors uncovered here define the phage host range.
Collapse
Affiliation(s)
- Benjamin A Adler
- The UC Berkeley-UCSF Graduate Program in Bioengineering, Berkeley, California, USA.,Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA.,Innovative Genomics Institute, University of California, Berkeley, California, USA
| | - Alexey E Kazakov
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Crystal Zhong
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA
| | - Hualan Liu
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | | | - Lauren M Lui
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Torben N Nielsen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Heloise Carion
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA
| | - Adam M Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA.,Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Vivek K Mutalik
- Innovative Genomics Institute, University of California, Berkeley, California, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Adam P Arkin
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA.,Innovative Genomics Institute, University of California, Berkeley, California, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
29
|
Martinez-Soto CE, Cucić S, Lin JT, Kirst S, Mahmoud ES, Khursigara CM, Anany H. PHIDA: A High Throughput Turbidimetric Data Analytic Tool to Compare Host Range Profiles of Bacteriophages Isolated Using Different Enrichment Methods. Viruses 2021; 13:2120. [PMID: 34834927 PMCID: PMC8623551 DOI: 10.3390/v13112120] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023] Open
Abstract
Bacteriophages are viruses that infect bacteria and are present in niches where bacteria thrive. In recent years, the suggested application areas of lytic bacteriophage have been expanded to include therapy, biocontrol, detection, sanitation, and remediation. However, phage application is constrained by the phage's host range-the range of bacterial hosts sensitive to the phage and the degree of infection. Even though phage isolation and enrichment techniques are straightforward protocols, the correlation between the enrichment technique and host range profile has not been evaluated. Agar-based methods such as spotting assay and efficiency of plaquing (EOP) are the most used methods to determine the phage host range. These methods, aside from being labor intensive, can lead to subjective and incomplete results as they rely on qualitative observations of the lysis/plaques, do not reflect the lytic activity in liquid culture, and can overestimate the host range. In this study, phages against three bacterial genera were isolated using three different enrichment methods. Host range profiles of the isolated phages were quantitatively determined using a high throughput turbidimetric protocol and the data were analyzed with an accessible analytic tool "PHIDA". Using this tool, the host ranges of 9 Listeria, 14 Salmonella, and 20 Pseudomonas phages isolated with different enrichment methods were quantitatively compared. A high variability in the host range index (HRi) ranging from 0.86-0.63, 0.07-0.24, and 0.00-0.67 for Listeria, Salmonella, and Pseudomonas phages, respectively, was observed. Overall, no direct correlation was found between the phage host range breadth and the enrichment method in any of the three target bacterial genera. The high throughput method and analytics tool developed in this study can be easily adapted to any phage study and can provide a consensus for phage host range determination.
Collapse
Affiliation(s)
- Carlos E. Martinez-Soto
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (C.E.M.-S.); (S.C.); (J.T.L.); (S.K.); (C.M.K.)
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Stevan Cucić
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (C.E.M.-S.); (S.C.); (J.T.L.); (S.K.); (C.M.K.)
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Janet T. Lin
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (C.E.M.-S.); (S.C.); (J.T.L.); (S.K.); (C.M.K.)
| | - Sarah Kirst
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (C.E.M.-S.); (S.C.); (J.T.L.); (S.K.); (C.M.K.)
| | - El Sayed Mahmoud
- Faculty of Applied Science and Technology, The Sheridan College Institute of Technology and Advanced Learning, Oakville, ON L6H 2L1, Canada;
| | - Cezar M. Khursigara
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (C.E.M.-S.); (S.C.); (J.T.L.); (S.K.); (C.M.K.)
| | - Hany Anany
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (C.E.M.-S.); (S.C.); (J.T.L.); (S.K.); (C.M.K.)
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
30
|
Ongenae V, Briegel A, Claessen D. Cell wall deficiency as an escape mechanism from phage infection. Open Biol 2021; 11:210199. [PMID: 34465216 PMCID: PMC8437236 DOI: 10.1098/rsob.210199] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/09/2021] [Indexed: 01/04/2023] Open
Abstract
The cell wall plays a central role in protecting bacteria from some environmental stresses, but not against all. In fact, in some cases, an elaborate cell envelope may even render the cell more vulnerable. For example, it contains molecules or complexes that bacteriophages recognize as the first step of host invasion, such as proteins and sugars, or cell appendages such as pili or flagella. In order to counteract phages, bacteria have evolved multiple escape mechanisms, such as restriction-modification, abortive infection, CRISPR/Cas systems or phage inhibitors. In this perspective review, we present the hypothesis that bacteria may have additional means to escape phage attack. Some bacteria are known to be able to shed their cell wall in response to environmental stresses, yielding cells that transiently lack a cell wall. In this wall-less state, the bacteria may be temporarily protected against phages, since they lack the essential entities that are necessary for phage binding and infection. Given that cell wall deficiency can be triggered by clinically administered antibiotics, phage escape could be an unwanted consequence that limits the use of phage therapy for treating stubborn infections.
Collapse
Affiliation(s)
- Véronique Ongenae
- Molecular Biotechnology, Institute of Biology, Leiden University, PO Box 9505, 2300 RA Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Ariane Briegel
- Molecular Biotechnology, Institute of Biology, Leiden University, PO Box 9505, 2300 RA Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Dennis Claessen
- Molecular Biotechnology, Institute of Biology, Leiden University, PO Box 9505, 2300 RA Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
31
|
Isolation and Characterization of Bacteriophage ZCSE6 against Salmonella spp.: Phage Application in Milk. Biologics 2021. [DOI: 10.3390/biologics1020010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Food safety is very important in the food industry as most pathogenic bacteria can cause food-borne diseases and negatively affect public health. In the milk industry, contamination with Salmonella has always been a challenge, but the risks have dramatically increased as almost all bacteria now show resistance to a wide range of commercial antibiotics. This study aimed to isolate a bacteriophage to be used as a bactericidal agent against Salmonella in milk and dairy products. Here, phage ZCSE6 has been isolated from raw milk sample sand molecularly and chemically characterized. At different multiplicities of infection (MOIs) of 0.1, 0.01, and 0.001, the phage–Salmonella interaction was studied for 6 h at 37 °C and 24 h at 8 °C. In addition, ZCSE6 was tested against Salmonella contamination in milk to examine its lytic activity for 3 h at 37 °C. The results showed that ZCSE6 has a small genome size (<48.5 kbp) and belongs to the Siphovirus family. Phage ZCSE6 revealed a high thermal and pH stability at various conditions that mimic milk manufacturing and supply chain conditions. It also demonstrated a significant reduction in Salmonella concentration in media at various MOIs, with higher bacterial eradication at higher MOI. Moreover, it significantly reduced Salmonella growth (MOI 1) in milk, manifesting a 1000-fold decrease in bacteria concentration following 3 h incubation at 37 °C. The results highlighted the strong ability of ZCSE6 to kill Salmonella and control its growth in milk. Thus, ZCSE6 is recommended as a biocontrol agent in milk to limit bacterial growth and increase the milk shelf-life.
Collapse
|
32
|
Park H, Kim J, Kim M, Park Y, Ryu S. Development of new strategy combining heat treatment and phage cocktail for post-contamination prevention. Food Res Int 2021; 145:110415. [PMID: 34112418 DOI: 10.1016/j.foodres.2021.110415] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022]
Abstract
Heat treatment is an effective method for ensuring food safety and quality by controlling microbial contamination. However, food poisoning outbreaks have continuously occurred in heat-treated products due to improper thermal treatment and/or post-contamination of foodborne pathogens. This study proposes a novel strategy combining thermostable bacteriophages with thermal processing of food production plants to control foodborne pathogens and even bacterial contamination. Typically, bacteriophages' susceptibility to heat is a major challenge to their application with thermal processing, we isolated thermostable bacteriophages by a modified isolation method of applying heat to samples and characterized the thermostable bacteriophages. Furthermore, we optimized the bacteriophage cocktail components to expand the controllable host range and reduce the risk of bacteriophage resistance development. Finally, we verified this antibacterial strategy by combining heat treatment with thermostable bacteriophages in model systems, including milk and chicken breast. After the phage cocktail and heat treatment, we artificially contaminated the food products to mimic the post-contamination event. Surprisingly, the remaining bacteriophages that withstood heat treatment significantly reduced the number of post-contaminated Salmonella. Altogether, thermostable phages could be applied as complementary tools to control post-contamination after thermal processing of food products.
Collapse
Affiliation(s)
- Haejoon Park
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinwoo Kim
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Minsik Kim
- Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yerin Park
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea; Center for Food Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
33
|
Ge H, Zhang K, Gu D, Chen X, Wang X, Li G, Zhu H, Chang Y, Zhao G, Pan Z, Jiao X, Hu M. The rfbN gene of Salmonella Typhimurium mediates phage adsorption by modulating biosynthesis of lipopolysaccharide. Microbiol Res 2021; 250:126803. [PMID: 34146940 DOI: 10.1016/j.micres.2021.126803] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 01/21/2023]
Abstract
The study of the interaction mechanism between bacteriophage and host is helpful in promoting development of bacteriophage applications. The mechanism of the interaction with the phage was studied by constructing the rfbN gene deletion and complemented with strains of Salmonella enterica subspecies enterica serovar Typhimurium (Salmonella Typhimurium, S. Typhimurium) D6. The rfbN gene deletion strain could not be lysed by phage S55 and led to a disorder of lipopolysaccharide (LPS) biosynthesis, which changed from the smooth type to rough type. Also, the RfbN protein lacking any of the three-segment amino acid (aa) sequences (90-120 aa, 121-158 aa, and 159-194 aa) produces the same result. Transmission electron microscopy and confocal microscopy assays demonstrated that phage S55 dramatically reduced adsorption to the rfbN deletion strain as compared to the wild strain D6. After co-incubation of the S55 with the purified smooth LPS, D6 could not be lysed, indicating that the smooth LPS binds to the S55 in vitro and then inhibits the cleavage activity of the S55. To sum up, the rfbN gene affects phage adsorption by regulating LPS synthesis. Furthermore, the functioning of the RfbN protein requires the involvement of multiple structures. To the best of our knowledge, this study is the first report of the involvement of the bacterial rfbN gene involved in the phage-adsorption process.
Collapse
Affiliation(s)
- Haojie Ge
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Kai Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Dan Gu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xiang Chen
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xin Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Guiqin Li
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Hongji Zhu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yingyan Chang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Ge Zhao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Zhiming Pan
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xin'an Jiao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Maozhi Hu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
34
|
The Development of Bacteriophage Resistance in Vibrio alginolyticus Depends on a Complex Metabolic Adaptation Strategy. Viruses 2021; 13:v13040656. [PMID: 33920240 PMCID: PMC8069663 DOI: 10.3390/v13040656] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/23/2022] Open
Abstract
Lytic bacteriophages have been well documented to play a pivotal role in microbial ecology due to their complex interactions with bacterial species, especially in aquatic habitats. Although the use of phages as antimicrobial agents, known as phage therapy, in the aquatic environment has been increasing, recent research has revealed drawbacks due to the development of phage-resistant strains among Gram-negative species. Acquired phage resistance in marine Vibrios has been proven to be a very complicated process utilizing biochemical, metabolic, and molecular adaptation strategies. The results of our multi-omics approach, incorporating transcriptome and metabolome analyses of Vibrio alginolyticus phage-resistant strains, corroborate this prospect. Our results provide insights into phage-tolerant strains diminishing the expression of phage receptors ompF, lamB, and btuB. The same pattern was observed for genes encoding natural nutrient channels, such as rbsA, ptsG, tryP, livH, lysE, and hisp, meaning that the cell needs to readjust its biochemistry to achieve phage resistance. The results showed reprogramming of bacterial metabolism by transcript regulations in key-metabolic pathways, such as the tricarboxylic acid cycle (TCA) and lysine biosynthesis, as well as the content of intracellular metabolites belonging to processes that could also significantly affect the cell physiology. Finally, SNP analysis in resistant strains revealed no evidence of amino acid alterations in the studied putative bacterial phage receptors, but several SNPs were detected in genes involved in transcriptional regulation. This phenomenon appears to be a phage-specific, fine-tuned metabolic engineering, imposed by the different phage genera the bacteria have interacted with, updating the role of lytic phages in microbial marine ecology.
Collapse
|
35
|
Flagellar Structures from the Bacterium Caulobacter crescentus and Implications for Phage ϕ CbK Predation of Multiflagellin Bacteria. J Bacteriol 2021; 203:JB.00399-20. [PMID: 33288623 DOI: 10.1128/jb.00399-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023] Open
Abstract
Caulobacter crescentus is a Gram-negative alphaproteobacterium that commonly lives in oligotrophic fresh- and saltwater environments. C. crescentus is a host to many bacteriophages, including ϕCbK and ϕCbK-like bacteriophages, which require interaction with the bacterial flagellum and pilus complexes during adsorption. It is commonly thought that the six paralogs of the flagellin gene present in C. crescentus are important for bacteriophage evasion. Here, we show that deletion of specific flagellins in C. crescentus can indeed attenuate ϕCbK adsorption efficiency, although no single deletion completely ablates ϕCbK adsorption. Thus, the bacteriophage ϕCbK likely recognizes a common motif among the six known flagellins in C. crescentus with various degrees of efficiency. Interestingly, we observe that most deletion strains still generate flagellar filaments, with the exception of a strain that contains only the most divergent flagellin, FljJ, or a strain that contains only FljN and FljO. To visualize the surface residues that are likely recognized by ϕCbK, we determined two high-resolution structures of the FljK filament, with and without an amino acid substitution that induces straightening of the filament. We observe posttranslational modifications on conserved surface threonine residues of FljK that are likely O-linked glycans. The possibility of interplay between these modifications and ϕCbK adsorption is discussed. We also determined the structure of a filament composed of a heterogeneous mixture of FljK and FljL, the final resolution of which was limited to approximately 4.6 Å. Altogether, this work builds a platform for future investigations of how phage ϕCbK infects C. crescentus at the molecular level.IMPORTANCE Bacterial flagellar filaments serve as an initial attachment point for many bacteriophages to bacteria. Some bacteria harbor numerous flagellin genes and are therefore able to generate flagellar filaments with complex compositions, which is thought to be important for evasion from bacteriophages. This study characterizes the importance of the six flagellin genes in C. crescentus for infection by bacteriophage ϕCbK. We find that filaments containing the FljK flagellin are the preferred substrate for bacteriophage ϕCbK. We also present a high-resolution structure of a flagellar filament containing only the FljK flagellin, which provides a platform for future studies on determining how bacteriophage ϕCbK attaches to flagellar filaments at the molecular level.
Collapse
|
36
|
Premaratne A, Zhang H, Wang R, Chinivasagam N, Billington C. Phage Biotechnology to Mitigate Antimicrobial Resistance in Agriculture. SUSTAINABLE AGRICULTURE REVIEWS 2021. [DOI: 10.1007/978-3-030-58259-3_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
37
|
Cho JH, Kwon JG, O'Sullivan DJ, Ryu S, Lee JH. Development of an endolysin enzyme and its cell wall-binding domain protein and their applications for biocontrol and rapid detection of Clostridium perfringens in food. Food Chem 2020; 345:128562. [PMID: 33189482 DOI: 10.1016/j.foodchem.2020.128562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 10/28/2020] [Accepted: 11/01/2020] [Indexed: 01/10/2023]
Abstract
Clostridium perfringens is a well-known pathogen that causes food-borne illnesses. Although bacteriophages can be effective natural food preservatives, phage endolysin and cell wall-binding domain (CBD) provide useful materials for lysis of C. perfringens and rapid detection. The genome of phage CPAS-15 consists of 51.8-kb double-stranded circular DNA with 78 open reading frames, including an endolysin gene. The apparent absence of a virulence factor or toxin gene suggests its safety in food applications. C. perfringens endolysin (LysCPAS15) inhibits host cells by up to a 3-log reduction in 2 h, and enhanced green fluorescent protein (EGFP)-fused CBD protein (EGFP-LysCPAS15_CBD1) detects C. perfringens within 5 min. Both exhibit broader host range spectra and higher stabilities than a bacteriophage. Tests in milk show the same host lysis and specific detection activities, with no hindrance effect from food matrices, indicating that endolysin and its CBD can provide food extended protection from C. perfringens contamination.
Collapse
Affiliation(s)
- Jae-Hyun Cho
- Department of Food Science and Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Joon-Gi Kwon
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Daniel J O'Sullivan
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Ju-Hoon Lee
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea.
| |
Collapse
|
38
|
Nguyen MM, Gil J, Brown M, Cesar Tondo E, Soraya Martins de Aquino N, Eisenberg M, Erickson S. Accurate and sensitive detection of Salmonella in foods by engineered bacteriophages. Sci Rep 2020; 10:17463. [PMID: 33060781 PMCID: PMC7567081 DOI: 10.1038/s41598-020-74587-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/28/2020] [Indexed: 12/17/2022] Open
Abstract
Salmonella is a major causative agent of foodborne illness and rapid identification of this pathogen is essential to prevent disease. Currently most assays require high bacterial burdens or prolonged enrichment to achieve acceptable performance. A reduction in testing time without loss of sensitivity is critical to allow food processors to safely decrease product holding time. To meet this need, a method was developed to detect Salmonella using luciferase reporter bacteriophages. Bacteriophages were engineered to express NanoLuc, a novel optimized luciferase originating from the deep-sea shrimp Oplophorus gracilirostris. NanoLuc-expressing bacteriophages had a limit of detection of 10-100 CFU per mL in culture without enrichment. Luciferase reporters demonstrated a broad host range covering all Salmonella species with one reporter detecting 99.3% of 269 inclusivity strains. Cross-reactivity was limited and only observed with other members of the Enterobacteriaceae family. In food matrix studies, a cocktail of engineered bacteriophages accurately detected 1 CFU in either 25 g of ground turkey with a 7 h enrichment or 100 g of powdered infant formula with a 16 h enrichment. Use of the NanoLuc reporter assay described herein resulted in a considerable reduction in enrichment time without a loss of sensitivity.
Collapse
Affiliation(s)
- Minh M Nguyen
- Laboratory Corporation of America Holdings, New Brighton, MN, 55112, USA
| | - Jose Gil
- Laboratory Corporation of America Holdings, Los Angeles, CA, 90062, USA
| | - Matthew Brown
- Laboratory Corporation of America Holdings, Burlington, NC, 27215, USA
| | - Eduardo Cesar Tondo
- Laboratório de Microbiologia e Controle de Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (ICTA/UFRGS), Porto Alegre, RS, 91501-970, Brazil
| | - Nathanyelle Soraya Martins de Aquino
- Laboratório de Microbiologia e Controle de Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (ICTA/UFRGS), Porto Alegre, RS, 91501-970, Brazil
| | - Marcia Eisenberg
- Laboratory Corporation of America Holdings, Burlington, NC, 27215, USA
| | - Stephen Erickson
- Laboratory Corporation of America Holdings, New Brighton, MN, 55112, USA.
| |
Collapse
|
39
|
Mutalik VK, Adler BA, Rishi HS, Piya D, Zhong C, Koskella B, Kutter EM, Calendar R, Novichkov PS, Price MN, Deutschbauer AM, Arkin AP. High-throughput mapping of the phage resistance landscape in E. coli. PLoS Biol 2020; 18:e3000877. [PMID: 33048924 PMCID: PMC7553319 DOI: 10.1371/journal.pbio.3000877] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022] Open
Abstract
Bacteriophages (phages) are critical players in the dynamics and function of microbial communities and drive processes as diverse as global biogeochemical cycles and human health. Phages tend to be predators finely tuned to attack specific hosts, even down to the strain level, which in turn defend themselves using an array of mechanisms. However, to date, efforts to rapidly and comprehensively identify bacterial host factors important in phage infection and resistance have yet to be fully realized. Here, we globally map the host genetic determinants involved in resistance to 14 phylogenetically diverse double-stranded DNA phages using two model Escherichia coli strains (K-12 and BL21) with known sequence divergence to demonstrate strain-specific differences. Using genome-wide loss-of-function and gain-of-function genetic technologies, we are able to confirm previously described phage receptors as well as uncover a number of previously unknown host factors that confer resistance to one or more of these phages. We uncover differences in resistance factors that strongly align with the susceptibility of K-12 and BL21 to specific phage. We also identify both phage-specific mechanisms, such as the unexpected role of cyclic-di-GMP in host sensitivity to phage N4, and more generic defenses, such as the overproduction of colanic acid capsular polysaccharide that defends against a wide array of phages. Our results indicate that host responses to phages can occur via diverse cellular mechanisms. Our systematic and high-throughput genetic workflow to characterize phage-host interaction determinants can be extended to diverse bacteria to generate datasets that allow predictive models of how phage-mediated selection will shape bacterial phenotype and evolution. The results of this study and future efforts to map the phage resistance landscape will lead to new insights into the coevolution of hosts and their phage, which can ultimately be used to design better phage therapeutic treatments and tools for precision microbiome engineering.
Collapse
Affiliation(s)
- Vivek K. Mutalik
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Innovative Genomics Institute, Berkeley, California, United States of America
| | - Benjamin A. Adler
- Innovative Genomics Institute, Berkeley, California, United States of America
- Department of Bioengineering, University of California – Berkeley, Berkeley, California, United States of America
| | - Harneet S. Rishi
- Biophysics Graduate Group, University of California – Berkeley, Berkeley, California, United States of America
- Designated Emphasis Program in Computational and Genomic Biology, University of California – Berkeley, Berkeley, California, United States of America
| | - Denish Piya
- Innovative Genomics Institute, Berkeley, California, United States of America
- Department of Bioengineering, University of California – Berkeley, Berkeley, California, United States of America
| | - Crystal Zhong
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Britt Koskella
- Department of Integrative Biology, University of California – Berkeley, Berkeley, California, United States of America
| | | | - Richard Calendar
- Department of Molecular and Cell Biology, University of California – Berkeley, Berkeley, California, United States of America
| | - Pavel S. Novichkov
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Morgan N. Price
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Adam M. Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Innovative Genomics Institute, Berkeley, California, United States of America
- Department of Plant and Microbial Biology, University of California – Berkeley, Berkeley, California, United States of America
| | - Adam P. Arkin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Innovative Genomics Institute, Berkeley, California, United States of America
- Department of Bioengineering, University of California – Berkeley, Berkeley, California, United States of America
- Biophysics Graduate Group, University of California – Berkeley, Berkeley, California, United States of America
- Designated Emphasis Program in Computational and Genomic Biology, University of California – Berkeley, Berkeley, California, United States of America
| |
Collapse
|
40
|
Hernández S, Vives MJ. Phages in Anaerobic Systems. Viruses 2020; 12:E1091. [PMID: 32993161 PMCID: PMC7599459 DOI: 10.3390/v12101091] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/21/2022] Open
Abstract
Since the discovery of phages in 1915, these viruses have been studied mostly in aerobic systems, or without considering the availability of oxygen as a variable that may affect the interaction between the virus and its host. However, with such great abundance of anaerobic environments on the planet, the effect that a lack of oxygen can have on the phage-bacteria relationship is an important consideration. There are few studies on obligate anaerobes that investigate the role of anoxia in causing infection. In the case of facultative anaerobes, it is a well-known fact that their shifting from an aerobic environment to an anaerobic one involves metabolic changes in the bacteria. As the phage infection process depends on the metabolic state of the host bacteria, these changes are also expected to affect the phage infection cycle. This review summarizes the available information on phages active on facultative and obligate anaerobes and discusses how anaerobiosis can be an important parameter in phage infection, especially among facultative anaerobes.
Collapse
Affiliation(s)
- Santiago Hernández
- Department of Biological Sciences, Universidad de los Andes, Bogotá 111711, Colombia;
| | - Martha J. Vives
- Department of Biological Sciences, Universidad de los Andes, Bogotá 111711, Colombia;
- School of Sciences, Universidad de los Andes, Bogotá 111711, Colombia
| |
Collapse
|
41
|
Exploiting phage receptor binding proteins to enable endolysins to kill Gram-negative bacteria. Sci Rep 2020; 10:12087. [PMID: 32694655 PMCID: PMC7374709 DOI: 10.1038/s41598-020-68983-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 07/02/2020] [Indexed: 01/21/2023] Open
Abstract
Bacteriophage-encoded endolysins degrading the bacterial peptidoglycan are promising antibacterials for combating antibiotic-resistant bacteria. However, endolysins have limited use against Gram-negative bacteria, since the outer membrane prevents access to the peptidoglycan. Here, we present Innolysins, an innovative concept for engineering endolysins to exert antibacterial activity against Gram-negative bacteria. Innolysins combine the enzymatic activity of endolysins with the binding capacity of phage receptor binding proteins (RBPs). As proof-of-concept, we constructed 12 Innolysins by fusing phage T5 endolysin and RBP Pb5 in different configurations. One of these, Innolysin Ec6 displayed antibacterial activity against Escherichia coli only in the presence of Pb5 receptor FhuA, leading to 1.22 ± 0.12 log reduction in cell counts. Accordingly, other bacterial species carrying FhuA homologs such as Shigella sonnei and Pseudomonas aeruginosa were sensitive to Innolysin Ec6. To enhance the antibacterial activity, we further constructed 228 novel Innolysins by fusing 23 endolysins with Pb5. High-throughput screening allowed to select Innolysin Ec21 as the best antibacterial candidate, leading to 2.20 ± 0.09 log reduction in E. coli counts. Interestingly, Innolysin Ec21 also displayed bactericidal activity against E. coli resistant to third-generation cephalosporins, reaching a 3.31 ± 0.53 log reduction in cell counts. Overall, the Innolysin approach expands previous endolysin-engineering strategies, allowing customization of endolysins by exploiting phage RBPs to specifically target Gram-negative bacteria.
Collapse
|
42
|
Mangalea MR, Duerkop BA. Fitness Trade-Offs Resulting from Bacteriophage Resistance Potentiate Synergistic Antibacterial Strategies. Infect Immun 2020; 88:e00926-19. [PMID: 32094257 PMCID: PMC7309606 DOI: 10.1128/iai.00926-19] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bacteria that cause life-threatening infections in humans are becoming increasingly difficult to treat. In some instances, this is due to intrinsic and acquired antibiotic resistance, indicating that new therapeutic approaches are needed to combat bacterial pathogens. There is renewed interest in utilizing viruses of bacteria known as bacteriophages (phages) as potential antibacterial therapeutics. However, critics suggest that similar to antibiotics, the development of phage-resistant bacteria will halt clinical phage therapy. Although the emergence of phage-resistant bacteria is likely inevitable, there is a growing body of literature showing that phage selective pressure promotes mutations in bacteria that allow them to subvert phage infection, but with a cost to their fitness. Such fitness trade-offs include reduced virulence, resensitization to antibiotics, and colonization defects. Resistance to phage nucleic acid entry, primarily via cell surface modifications, compromises bacterial fitness during antibiotic and host immune system pressure. In this minireview, we explore the mechanisms behind phage resistance in bacterial pathogens and the physiological consequences of acquiring phage resistance phenotypes. With this knowledge, it may be possible to use phages to alter bacterial populations, making them more tractable to current therapeutic strategies.
Collapse
Affiliation(s)
- Mihnea R Mangalea
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Breck A Duerkop
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
43
|
Wong CW, Delaquis P, Goodridge L, Lévesque RC, Fong K, Wang S. Inactivation of Salmonella enterica on post-harvest cantaloupe and lettuce by a lytic bacteriophage cocktail. Curr Res Food Sci 2020; 2:25-32. [PMID: 32914108 PMCID: PMC7473338 DOI: 10.1016/j.crfs.2019.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Salmonella enterica (S. enterica) is a causative agent of multiple outbreaks of foodborne illness associated with fresh produce, including pre-cut melon and leafy vegetables. Current industrial antimicrobial interventions have been shown to reduce microbial populations by <90%. Consequently, bacteriophages have been suggested as an alternative to chemical sanitizers. Seven S. enterica strains from four serovars (105 CFU/mL) were separately inoculated onto excised pieces of Romaine lettuce leaf and cantaloupe flesh treated with a five-strain bacteriophage cocktail 24 h before S. enterica inoculation. S. enterica, total aerobic populations and water activity were measured immediately after inoculation and after 1 and 2 days of incubation at 8 °C. The efficacy of the bacteriophage cocktail varied between strains. Populations of S. enterica Enteritidis strain S3, S. Javiana S203, S. Javiana S200 were reduced by > 3 log CFU/g and S. Newport S2 by 1 log CFU/g on both lettuce and cantaloupe tissues at all sampling times. In contrast, populations of strains S. Thompson S193 and S194 were reduced by 2 log CFU/g on day 0 on lettuce, but were not significantly different (P > 0.05) from the controls thereafter, S. Newport S195 populations were reduced on lettuce by 1 log CFU/g on day 0 and no reductions were found on cantaloupe tissue. Both aerobic populations and water activity were higher on cantaloupe than on lettuce. The water activity of lettuce decreased significantly (P < 0.05) from 0.845 ± 0.027 on day 0-0.494 ± 0.022 on day 1, but that of cantaloupe remained between 0.977 and 0.993 from day 0-2. The results of this study showed that bacteriophages can reduce S. enterica populations on lettuce and cantaloupe tissues but that the magnitude of the effect was strain-dependent.
Collapse
Affiliation(s)
- Catherine W.Y. Wong
- Department of Food Science, University of British Columbia, 2205 East Mall, Vancouver, BC, V6R 1Z4, Canada
| | - Pascal Delaquis
- Agriculture and Agri-Food Canada, 4200 Highway 97, Summerland, BC, V0H 1Z0, Canada
| | - Lawrence Goodridge
- Department of Food Science and Agricultural Chemistry, McGill University, Montréal, QC, Canada
| | - Roger C. Lévesque
- Institute for Integrative and Systems Biology, Université Laval, Québec City, QC, Canada
| | - Karen Fong
- Department of Food Science, University of British Columbia, 2205 East Mall, Vancouver, BC, V6R 1Z4, Canada
| | - Siyun Wang
- Department of Food Science, University of British Columbia, 2205 East Mall, Vancouver, BC, V6R 1Z4, Canada
| |
Collapse
|
44
|
Uddin MJ, Ahn J. Associations between antibiotic resistance and bacteriophage resistance phenotypes in laboratory and clinical strains of Salmonella enterica subsp. enterica serovar Typhimurium. Microb Pathog 2020; 143:104159. [PMID: 32198093 DOI: 10.1016/j.micpath.2020.104159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 01/21/2023]
Abstract
Bacteriophages have received great attention as an alternative over antibiotics due to the host specificity. Therefore, this study was designed to evaluate the associations between bacteriophage-insensitive (BI) and antibiotic-resistant mutants of Salmonella Typhimurium strains. Bacteriophage-sensitive (BS) Salmonella enterica serovar Typhimurium ATCC 19585 (BSSTWT), ciprofloxacin-induced S. Typhimurium ATCC 19585 (BSSTCIP), S. Typhimurium KCCM 40253 (BSSTLAB), and clinically isolated multidrug-resistant S. Typhimurium CCARM 8009 (BSSTMDR) were used to induce the bacteriophage-insensitive mutants (BISTWT, BISTCIP, BISTLAB, and BISTMDR), which were characterized by measuring mutant frequency lysogenic induction, phage adsorption, antibiotic susceptibility, and differential gene expression. The numbers of BSSTWT, BSSTCIP, and BSSTLAB were reduced by P22 (>3 log), while the least lytic activity was observed for BSSTMDR, suggesting alteration in bacteriophage-binding receptors on the surface of multidrug-resistant strain. BSSTWT treated with P22 showed the large variation in the cell state (CV>40%) and highest mutant frequency (62%), followed by 25% for BSSTCIP. The least similarities between BSSTWT and BISTWT were observed for P22 and PBST-13 (<12%). The relative expression levels of bacteriophage-binding receptor-related genes (btuB, fhuA, fliK, fljB, ompC, ompF, rfaL, and tolC) were decreased in BISTCIP and BISTMDR. These results indicate that the bacteriophage resistance is highly associated with the antibiotic resistance. The findings in this study could pave the way for the application of bacteriophages as an alternative to control antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Md Jalal Uddin
- Department of Medical Biomaterials Engineering and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Juhee Ahn
- Department of Medical Biomaterials Engineering and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea.
| |
Collapse
|
45
|
Bai J, Lee S, Ryu S. Identification and in vitro Characterization of a Novel Phage Endolysin that Targets Gram-Negative Bacteria. Microorganisms 2020; 8:microorganisms8030447. [PMID: 32245284 PMCID: PMC7143992 DOI: 10.3390/microorganisms8030447] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 12/22/2022] Open
Abstract
Most double-stranded (ds) DNA phages utilize holin proteins to secrete endolysin for host peptidoglycan lysis. In contrast, several holin-independent endolysins with secretion sequences or signal-arrest-release (SAR) sequences are secreted via the Sec pathway. In this study, we characterized a novel lysis protein (M4Lys) encoded by the dsDNA phage BSPM4, whose lysis function is not dependent on either holin or the Sec pathway in vitro. In silico analysis of M4Lys revealed that it contains a putative virion protein domain and an unusual C-terminal transmembrane domain (TMD). Turbidity reduction assays and liquid chromatography-mass spectrometry using purified peptidoglycan showed that the virion protein domain of M4Lys has peptidoglycan lysis activity. In vitro overproduction of M4Lys in Escherichia coli revealed that M4Lys alone caused rapid cell lysis. Treatment of E. coli with a Sec inhibitor did not inhibit the lysis activity of M4Lys, indicating that the Sec pathway is not involved in M4Lys-mediated cell lysis. Truncation of the TMD eliminated the cell lysis phenomenon, while production of the TMD alone did not induce the cell lysis. All these findings demonstrate that M4Lys is a novel endolysin that has a unique mosaic structure distinct from other canonical endolysins and the TMD plays a critical role in M4Lys-mediated in vitro cell lysis.
Collapse
Affiliation(s)
- Jaewoo Bai
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Korea;
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Division of Applied Food System, Major in Food Science & Technology, Seoul Women’s University, Seoul 01797, Korea
| | - Sangmi Lee
- Department of Food and Nutrition, Chungbuk National University, Cheongju, Chungbuk 28644, Korea;
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Korea;
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
- Correspondence:
| |
Collapse
|
46
|
Bacteriophage-Insensitive Mutants of Antimicrobial-Resistant Salmonella Enterica are Altered in their Tetracycline Resistance and Virulence in Caco-2 Intestinal Cells. Int J Mol Sci 2020; 21:ijms21051883. [PMID: 32164202 PMCID: PMC7084636 DOI: 10.3390/ijms21051883] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 02/26/2020] [Accepted: 03/06/2020] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages have shown promise as therapeutic alternatives to antibiotics for the control of infectious bacteria, including the human pathogen Salmonella. However, the development of effective phage-based applications requires the elucidation of key interactions between phages and target hosts, particularly since host resistance to phage is inevitable. Little is known about the alteration of host phenotypes following the development of resistance to phage. The aim of this study is to evaluate the antibiotic susceptibility and virulence of a Salmonella isolate following the development of resistance to bacteriophage SI1. We observed enhanced susceptibility to tetracycline and decreased invasion capacity in a differentiated Caco-2 intestinal cell line. Whole genome sequence analysis revealed an array of mutations, most notably, truncations in vgrG1_2, a core gene involved in Type VI secretion and mutations in the lipopolysaccharide, thereby indicating the plausible attachment site of phage SI1. These findings shed light on understanding the underlying mechanism for phage immunity within the host. Importantly, we reveal an associated genetic cost to the bacterial host with developing resistance to phages. Taken together, these results will aid in advancing strategies to delay or eliminate the development of host resistance when designing informed phage-based antimicrobials.
Collapse
|
47
|
Ha E, Chun J, Kim M, Ryu S. Capsular Polysaccharide Is a Receptor of a Clostridium perfringens Bacteriophage CPS1. Viruses 2019; 11:v11111002. [PMID: 31683584 PMCID: PMC6893597 DOI: 10.3390/v11111002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/26/2019] [Accepted: 10/29/2019] [Indexed: 12/20/2022] Open
Abstract
Clostridium perfringens is a Gram-positive, anaerobic, and spore forming bacterium that is widely distributed in the environment and one of the most common causes of foodborne illnesses. Bacteriophages are regarded as one of the most promising alternatives to antibiotics in controlling antibiotic-resistant pathogenic bacteria. Here we isolated a virulent C. perfringens phage, CPS1, and analysis of its whole genome and morphology revealed a small genome (19 kbps) and a short noncontractile tail, suggesting that CPS1 can be classified as a member of Picovirinae, a subfamily of Podoviridae. To determine the host receptor of CPS1, the EZ-Tn5 random transposon mutant library of C. perfringens ATCC 13124 was constructed and screened for resistance to CPS1 infection. Analysis of the CPS1-resistant mutants revealed that the CPF_0486 was disrupted by Tn5. The CPF_0486 was annotated as galE, a gene encoding UDP-glucose 4-epimerase (GalE). However, biochemical analyses demonstrated that the encoded protein possessed dual activities of GalE and UDP-N-acetylglucosamine 4-epimerase (Gne). We found that the CPF_0486::Tn5 mutant produced a reduced amount of capsular polysaccharides (CPS) compared with the wild type. We also discovered that glucosamine and galactosamine could competitively inhibit host adsorption of CPS1. These results suggest that CPS acts as a receptor for this phage.
Collapse
Affiliation(s)
- Eunsu Ha
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| | - Jihwan Chun
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| | - Minsik Kim
- Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
48
|
Dunstan RA, Pickard D, Dougan S, Goulding D, Cormie C, Hardy J, Li F, Grinter R, Harcourt K, Yu L, Song J, Schreiber F, Choudhary J, Clare S, Coulibaly F, Strugnell RA, Dougan G, Lithgow T. The flagellotropic bacteriophage YSD1 targets Salmonella Typhi with a Chi-like protein tail fibre. Mol Microbiol 2019; 112:1831-1846. [PMID: 31556164 DOI: 10.1111/mmi.14396] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2019] [Indexed: 11/29/2022]
Abstract
The discovery of a Salmonella-targeting phage from the waterways of the United Kingdom provided an opportunity to address the mechanism by which Chi-like bacteriophage (phage) engages with bacterial flagellae. The long tail fibre seen on Chi-like phages has been proposed to assist the phage particle in docking to a host cell flagellum, but the identity of the protein that generates this fibre was unknown. We present the results from genome sequencing of this phage, YSD1, confirming its close relationship to the original Chi phage and suggesting candidate proteins to form the tail structure. Immunogold labelling in electron micrographs revealed that YSD1_22 forms the main shaft of the tail tube, while YSD1_25 forms the distal part contributing to the tail spike complex. The long curling tail fibre is formed by the protein YSD1_29, and treatment of phage with the antibodies that bind YSD1_29 inhibits phage infection of Salmonella. The host range for YSD1 across Salmonella serovars is broad, but not comprehensive, being limited by antigenic features of the flagellin subunits that make up the Salmonella flagellum, with which YSD1_29 engages to initiate infection.
Collapse
Affiliation(s)
- Rhys A Dunstan
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
| | - Derek Pickard
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK.,Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Sam Dougan
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - David Goulding
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Claire Cormie
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Joshua Hardy
- Infection and Immunity Program, Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
| | - Fuyi Li
- Infection and Immunity Program, Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
| | - Rhys Grinter
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia.,School of Biological Sciences, Monash University, Clayton, 3800, Australia
| | | | - Lu Yu
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Jiangning Song
- Infection and Immunity Program, Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
| | | | - Jyoti Choudhary
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Simon Clare
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Fasseli Coulibaly
- Infection and Immunity Program, Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
| | - Richard A Strugnell
- Department of Microbiology and Immunology, The Peter Doherty Institute, The University of Melbourne, Parkville, 3052, Australia
| | - Gordon Dougan
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK.,Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Trevor Lithgow
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
| |
Collapse
|
49
|
Tkacova A, Orieskova M, Halgasova N, Bocanova L, Bukovska G. Identification of Brevibacterium flavum genes related to receptors involved in bacteriophage BFK20 adsorption. Virus Res 2019; 274:197775. [PMID: 31600527 DOI: 10.1016/j.virusres.2019.197775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/28/2019] [Accepted: 10/04/2019] [Indexed: 12/27/2022]
Abstract
Phage infection of bacterial cells is a process requiring the interaction between phage receptor binding proteins and receptors on the bacterial cell surface. We prepared a Brevibacterium flavum CCM 251 EZ-Tn5 transposon insertional library and isolated phage-resistant mutants. Analysis of the DNA fragments produced by single-primer PCR was used to determine the EZ-Tn5 transposon insertion sites in the genomes of phage-resistant B. flavum mutants. Seven disrupted genes were identified in forty B. flavum mutants. The phage resistance of these mutants was demonstrated by cultivation analysis in the presence of BFK20, and the adsorption rate of BFK20 to these mutants was tested. B. flavum mutants displayed significantly reduced adsorption rates; the lowest rate was observed for mutants containing interrupted major facilitator superfamily (MFS) protein and glycosyltransferase genes. Uninterrupted forms of these genes were cloned into corynebacterial vector pJUP06 and used for in trans complementation of the corresponding B. flavum mutants. The growth of these complemented mutants when infected with BFK20 closely resembled that of wild-type B. flavum. These complemented mutants also exhibited similar BFK20 adsorption as the wild-type control. We infer that the disrupted MFS protein and glycosyltransferase genes are responsible for the phage-resistant phenotype of these B. flavum transposition mutants.
Collapse
Affiliation(s)
- Adela Tkacova
- Department of Genomics and Biotechnology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51, Bratislava, Slovakia
| | - Maria Orieskova
- Department of Genomics and Biotechnology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51, Bratislava, Slovakia
| | - Nora Halgasova
- Department of Genomics and Biotechnology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51, Bratislava, Slovakia
| | - Lucia Bocanova
- Department of Genomics and Biotechnology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51, Bratislava, Slovakia
| | - Gabriela Bukovska
- Department of Genomics and Biotechnology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51, Bratislava, Slovakia.
| |
Collapse
|
50
|
Kaczorowska J, Casey E, Neve H, Franz CM, Noben JP, Lugli GA, Ventura M, van Sinderen D, Mahony J. A Quest of Great Importance-Developing a Broad Spectrum Escherichia coli Phage Collection. Viruses 2019; 11:E899. [PMID: 31561510 PMCID: PMC6832132 DOI: 10.3390/v11100899] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/14/2019] [Accepted: 09/24/2019] [Indexed: 12/15/2022] Open
Abstract
Shigella ssp. and enterotoxigenic Escherichia coli are the most common etiological agents of diarrheal diseases in malnourished children under five years of age in developing countries. The ever-growing issue of antibiotic resistance and the potential negative impact of antibiotic use on infant commensal microbiota are significant challenges to current therapeutic approaches. Bacteriophages (or phages) represent an alternative treatment that can be used to treat specific bacterial infections. In the present study, we screened water samples from both environmental and industrial sources for phages capable of infecting E. coli laboratory strains within our collection. Nineteen phages were isolatedand tested for their ability to infect strains within the ECOR collection and E. coli O157:H7 Δstx. Furthermore, since coliphages have been reported to cross-infect certain Shigella spp., we also evaluated the ability of the nineteen phages to infect a representative Shigella sonnei strain from our collection. Based on having distinct (although overlapping in some cases) host ranges, ten phage isolates were selected for genome sequence and morphological characterization. Together, these ten selected phages were shown to infect most of the ECOR library, with 61 of the 72 strains infected by at least one phage from our collection. Genome analysis of the ten phages allowed classification into five previously described genetic subgroups plus one previously underrepresented subgroup.
Collapse
Affiliation(s)
- Joanna Kaczorowska
- School of Microbiology and APC Microbiome Ireland, University College Cork, Western Road, T12 YT20 Cork, Ireland; (J.K.); (E.C.)
| | - Eoghan Casey
- School of Microbiology and APC Microbiome Ireland, University College Cork, Western Road, T12 YT20 Cork, Ireland; (J.K.); (E.C.)
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut, 24103 Kiel, Germany; (H.N.)
| | - Charles M.A.P. Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institut, 24103 Kiel, Germany; (H.N.)
| | - Jean-Paul Noben
- Biomedical Research Institute, Hasselt University, B-3590 Diepenbeek, Belgium;
| | - Gabriele A. Lugli
- Laboratory of Probiogenomics, Dept. Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (G.A.L.); (M.V.)
| | - Marco Ventura
- Laboratory of Probiogenomics, Dept. Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (G.A.L.); (M.V.)
| | - Douwe van Sinderen
- School of Microbiology and APC Microbiome Ireland, University College Cork, Western Road, T12 YT20 Cork, Ireland; (J.K.); (E.C.)
| | - Jennifer Mahony
- School of Microbiology and APC Microbiome Ireland, University College Cork, Western Road, T12 YT20 Cork, Ireland; (J.K.); (E.C.)
| |
Collapse
|