1
|
Zhang R, Zhang X, Lau HCH, Yu J. Gut microbiota in cancer initiation, development and therapy. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-024-2831-x. [PMID: 39821827 DOI: 10.1007/s11427-024-2831-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/12/2024] [Indexed: 01/19/2025]
Abstract
Cancer has long been associated with genetic and environmental factors, but recent studies reveal the important role of gut microbiota in its initiation and progression. Around 13% of cancers are linked to infectious agents, highlighting the need to identify the specific microorganisms involved. Gut microbiota can either promote or inhibit cancer growth by influencing oncogenic signaling pathways and altering immune responses. Dysbiosis can lead to cancer, while certain probiotics and their metabolites may help reestablish micro-ecological balance and improve anti-tumor immune responses. Research into targeted approaches that enhance therapy with probiotics is promising. However, the effects of probiotics in humans are complex and not yet fully understood. Additionally, methods to counteract harmful bacteria are still in development. Early clinical trials also indicate that modifying gut microbiota may help manage side effects of cancer treatments. Ongoing research is crucial to understand better how gut microbiota can be used to improve cancer prevention and treatment outcomes.
Collapse
Affiliation(s)
- Ruyi Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiang Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Harry Cheuk Hay Lau
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
Lv R, Wang D, Wang T, Li R, Zhuang A. Causality between gut microbiota, immune cells, and breast cancer: Mendelian randomization analysis. Medicine (Baltimore) 2024; 103:e40815. [PMID: 39654239 PMCID: PMC11630993 DOI: 10.1097/md.0000000000040815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024] Open
Abstract
The association between gut microbiota (GM) and breast cancer (BC) has been studied. Nevertheless, the causal relationship between them and the potential mediating factors have not been clearly defined. Therefore, in this study, Mendelian randomization analysis (MR) was employed to explore the causal relationship between 473 GM and BC, as well as the mediating effect of potential immune cells. In this investigation, we availed ourselves of the publicly accessible summary statistics from the genome-wide association study to undertake two-sample and reverse Mendelian randomization analyses on GM and BC, with the intention of clarifying the causal association between GM and BC. Subsequently, through the application of the two-step Mendelian randomization analysis, it was revealed that the relationship between GM and BC was mediated by immune cells. The stability of the research outcomes was verified via sensitivity analysis. Mendelian randomization analysis elucidated the protective impacts of 8 genera on BC (such as Phylum Actinobacteriota, Species Bacteroides A plebeius A, Species Bifidobacterium adolescentis, Species CAG-841 sp002479075, Family Fibrobacteraceae, Order Fibrobacterales, Class Fibrobacteria, and Species Phascolarctobacterium sp003150755). Additionally, there are 23 immune cell traits related to BC. Our research findings showed that the species Megamonas funiformis was associated with an increased risk of BC, and 11.20% of this effect was mediated by CD38 on IgD+ CD24-. Likewise, HLA DR on CD33br HLA DR+ CD14- mediated the causal relationship between Species Prevotellamassilia and BC, having a mediating ratio of 7.89%. This study clarifies a potential causal relationship between GM, immune cells, and BC and provides genetic evidence for this causal connection. It offers research directions for the subsequent prevention and treatment of BC through the interaction between GM and immune cells, and provides a reference for future mechanistic and clinical studies in this field.
Collapse
Affiliation(s)
- Rui Lv
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Danyan Wang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Zhuji Second People’s Hospital, Zhuji, China
| | - Tengyue Wang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rongqun Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Aiwen Zhuang
- Institute of TCM Literature and Information, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| |
Collapse
|
3
|
Zhao H, Zhang L, Du D, Mai L, Liu Y, Morigen M, Fan L. The RIG-I-like receptor signaling pathway triggered by Staphylococcus aureus promotes breast cancer metastasis. Int Immunopharmacol 2024; 142:113195. [PMID: 39303544 DOI: 10.1016/j.intimp.2024.113195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Host microbes are increasingly recognized as key components in various types of cancer, although their exact impact remains unclear. This study investigated the functional significance of Staphylococcus aureus (S. aureus) in breast cancer tumorigenesis and progression. We found that S. aureus invasion resulted in a compromised DNA damage response process, as evidenced by the absence of G1-phase arrest and apoptosis in breast cells in the background of double strand breaks production and the activation of the ataxia-telangiectasia mutated (ATM)-p53 signaling pathway. The high-throughput mRNA sequencing, bioinformatics analysis and pharmacological studies revealed that S. aureus facilitates breast cell metastasis through the innate immune pathway, particularly in cancer cells. During metastasis, S. aureus initially induced the expression of RIG-I-like receptors (RIG-I in normal breast cells, RIG-I and MDA5 in breast cancer cells), which in turn activated NF-κB p65 expression. We further showed that NF-κB p65 activated the CCL5-CCR5 pathway, contributing to breast cell metastasis. Our study provides novel evidence that the innate immune system, triggered by bacterial infection, plays a role in bacterial-driven cancer metastasis.
Collapse
Affiliation(s)
- Haile Zhao
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China
| | - Linzhe Zhang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China
| | - Dongdong Du
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China
| | - Lisu Mai
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China
| | - Yaping Liu
- Department of Gynecology and Obstetrics, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, PR China
| | - Morigen Morigen
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China.
| | - Lifei Fan
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China.
| |
Collapse
|
4
|
Mir R, Albarqi SA, Albalawi W, Alatwi HE, Alatawy M, Bedaiwi RI, Almotairi R, Husain E, Zubair M, Alanazi G, Alsubaie SS, Alghabban RI, Alfifi KA, Bashir S. Emerging Role of Gut Microbiota in Breast Cancer Development and Its Implications in Treatment. Metabolites 2024; 14:683. [PMID: 39728464 DOI: 10.3390/metabo14120683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/14/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Background: The human digestive system contains approximately 100 trillion bacteria. The gut microbiota is an emerging field of research that is associated with specific biological processes in many diseases, including cardiovascular disease, obesity, diabetes, brain disease, rheumatoid arthritis, and cancer. Emerging evidence indicates that the gut microbiota affects the response to anticancer therapies by modulating the host immune system. Recent studies have explained a high correlation between the gut microbiota and breast cancer: dysbiosis in breast cancer may regulate the systemic inflammatory response, hormone metabolism, immune response, and the tumor microenvironment. Some of the gut bacteria are related to estrogen metabolism, which may increase or decrease the risk of breast cancer by changing the number of hormones. Further, the gut microbiota has been seen to modulate the immune system in respect of its ability to protect against and treat cancers, with a specific focus on hormone receptor-positive breast cancer. Probiotics and other therapies claiming to control the gut microbiome by bacterial means might be useful in the prevention, or even in the treatment, of breast cancer. Conclusions: The present review underlines the various aspects of gut microbiota in breast cancer risk and its clinical application, warranting research on individualized microbiome-modulated therapeutic approaches to breast cancer treatment.
Collapse
Affiliation(s)
- Rashid Mir
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, Prince Fahd Bin Sultan Research Chair for Biomedical Research, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Shrooq A Albarqi
- Molecular Medicine, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Wed Albalawi
- Molecular Medicine, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Hanan E Alatwi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Marfat Alatawy
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Ruqaiah I Bedaiwi
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, Prince Fahd Bin Sultan Research Chair for Biomedical Research, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Reema Almotairi
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, Prince Fahd Bin Sultan Research Chair for Biomedical Research, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Eram Husain
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, Prince Fahd Bin Sultan Research Chair for Biomedical Research, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Mohammad Zubair
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Ghaida Alanazi
- Molecular Medicine, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Shouq S Alsubaie
- Molecular Medicine, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Razan I Alghabban
- Molecular Medicine, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Khalid A Alfifi
- Department of Laboratory and Blood Bank, King Fahd Special Hospital, Tabuk 47717, Saudi Arabia
| | - Shabnam Bashir
- Mubarak Hospital, Srinagar 190002, Jammu and Kashmir, India
| |
Collapse
|
5
|
Ma Y, Chen T, Sun T, Dilimulati D, Xiao Y. The oncomicrobiome: New insights into microorganisms in cancer. Microb Pathog 2024; 197:107091. [PMID: 39481695 DOI: 10.1016/j.micpath.2024.107091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/15/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
The discoveries of the oncomicrobiome (intratumoral microbiome) and oncomicrobiota (intratumoral microbiota) represent significant advances in tumor research and have rapidly become of key interest to the field. Within tumors, microorganisms such as bacteria, fungi, viruses, and archaea form the oncomicrobiota and are primarily found within tumor cells, immunocytes, and the intercellular matrix. The oncomicrobiome exhibits marked heterogeneity and is associated with tumor initiation, progression, metastasis, and treatment response. Interactions between the oncomicrobiome and the immune system can modulate host antitumor immunity, influencing the efficacy of immunotherapies. Oncomicrobiome research also faces numerous challenges, including overcoming methodological issues such as low target abundance, susceptibility to contamination, and biases in sample handling and analysis methods across different studies. Furthermore, studies of the oncomicrobiome may be confounded by baseline differences in microbiomes among populations driven by both environmental and genetic factors. Most studies to date have revealed associations between the oncomicrobiome and tumors, but very few have established mechanistic links between the two. This review introduces the relevant concepts, detection methods, sources, and characteristics of the oncomicrobiome. We then describe the composition of the oncomicrobiome in common tumors and its role in shaping the tumor microenvironment. We also discuss the current problems and challenges to be overcome in this rapidly progressing field.
Collapse
Affiliation(s)
- Yingying Ma
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tingting Sun
- Department of Structure and Morphology, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China; Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, China
| | - Dilinuer Dilimulati
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Structure and Morphology, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China; Peking Union Medical College & Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
6
|
Lin Z, Assaraf YG, Kwok HF. Peptides for microbe-induced cancers: latest therapeutic strategies and their advanced technologies. Cancer Metastasis Rev 2024; 43:1315-1336. [PMID: 39008152 DOI: 10.1007/s10555-024-10197-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/14/2024] [Indexed: 07/16/2024]
Abstract
Cancer is a significant global health concern associated with multiple distinct factors, including microbial and viral infections. Numerous studies have elucidated the role of microorganisms, such as Helicobacter pylori (H. pylori), as well as viruses for example human papillomavirus (HPV), hepatitis B virus (HBV), and hepatitis C virus (HCV), in the development of human malignancies. Substantial attention has been focused on the treatment of these microorganism- and virus-associated cancers, with promising outcomes observed in studies employing peptide-based therapies. The current paper provides an overview of microbe- and virus-induced cancers and their underlying molecular mechanisms. We discuss an assortment of peptide-based therapies which are currently being developed, including tumor-targeting peptides and microbial/viral peptide-based vaccines. We describe the major technological advancements that have been made in the design, screening, and delivery of peptides as anticancer agents. The primary focus of the current review is to provide insight into the latest research and development in this field and to provide a realistic glimpse into the future of peptide-based therapies for microbe- and virus-induced neoplasms.
Collapse
Affiliation(s)
- Ziqi Lin
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Lab, Faculty of Biology, Technion-Israel Instituteof Technology, Haifa, 3200003, Israel
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR.
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau SAR.
| |
Collapse
|
7
|
Wang X, Gao H, Zeng Y, Chen J. Exploring the relationship between gut microbiota and breast diseases using Mendelian randomization analysis. Front Med (Lausanne) 2024; 11:1450298. [PMID: 39697203 PMCID: PMC11654425 DOI: 10.3389/fmed.2024.1450298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/28/2024] [Indexed: 12/20/2024] Open
Abstract
Background Growing evidence suggests a relationship between gut microbiota composition and breast diseases, although the precise nature of this association remains uncertain. To investigate the causal relationship between gut microbiota and breast diseases, we utilized two-way Mendelian randomization (MR) analysis. Methods Four common diseases were included as outcomes: breast cancer, breast cysts, inflammatory disorders of the breast, and infections of the breast associated with childbirth, along with their subtypes. Genetic data on gut microbiota were extracted from genome-wide association studies (GWAS). The primary approach used to investigate the association between these genetic factors and gut microbiota was the inverse-variance-weighted (IVW) method with random-effects types. Sensitivity analyses, such as Cochran's Q test, the MR-Egger intercept test, and leave-one-out analysis, were conducted to ensure the stability and reliability of the MR findings. Results We discovered plausible causal links between 20 microbial categories and the breast diseases, with a significance level of p < 0.05. Notably, Family.Rikenellaceae (p: 0.0013) maintained a significant inverse relationship with overall breast cancer (BC), after the Bonferroni correction. In the reverse MR analysis, interactions were observed between Genus.Adlercreutzia and estrogen receptor-positive cancer. In addition, Genus.Sellimonas, Family.Rikenellaceae, and Genus.Paraprevotella were associated with ER+ and overall breast cancer, whereas Genus.Dorea was linked to both estrogen receptor-negative and overall breast cancer. Family.Prevotellaceae was the only category correlated with inflammatory breast disorders. Moreover, Genus Eubacteriumruminantiumgroup, Genus.Lactococcus, and Family.Alcaligenaceae were associated with breast cysts, while Genus.Anaerofilum, Genus.Butyricimonas, Order.Coriobacteriales, Order.Pasteurellales, and Order.Verrucomicrobiales showed significant associations with infections of the breast associated with childbirth. No evidence of heterogeneity or horizontal pleiotropy was found. Conclusion Our Mendelian randomization analysis confirmed a causal relationship between gut microbiota and breast diseases. Early stool tests may be a viable method for screening diseases to identify people at higher risk of breast diseases.
Collapse
Affiliation(s)
- Xin Wang
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Breast Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Haoyu Gao
- Division of Cardiovascular Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yiyao Zeng
- Department of Cardiology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, China
| | - Jie Chen
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Breast Disease Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Huang L, Jiang C, Yan M, Wan W, Li S, Xiang Z, Wu J. The oral-gut microbiome axis in breast cancer: from basic research to therapeutic applications. Front Cell Infect Microbiol 2024; 14:1413266. [PMID: 39639864 PMCID: PMC11617537 DOI: 10.3389/fcimb.2024.1413266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 11/01/2024] [Indexed: 12/07/2024] Open
Abstract
As a complicated and heterogeneous condition, breast cancer (BC) has posed a tremendous public health challenge across the world. Recent studies have uncovered the crucial effect of human microbiota on various perspectives of health and disease, which include cancer. The oral-gut microbiome axis, particularly, have been implicated in the occurrence and development of colorectal cancer through their intricate interactions with host immune system and modulation of systemic inflammation. However, the research concerning the impact of oral-gut microbiome axis on BC remains scarce. This study focused on comprehensively reviewing and summarizing the latest ideas about the potential bidirectional relation of the gut with oral microbiota in BC, emphasizing their potential impact on tumorigenesis, treatment response, and overall patient outcomes. This review can reveal the prospect of tumor microecology and propose a novel viewpoint that the oral-gut microbiome axis can be a breakthrough point in future BC studies.
Collapse
Affiliation(s)
- Lan Huang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Chun Jiang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Meina Yan
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Weimin Wan
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Shuxiang Li
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
9
|
Yang Y, Chen J, Gong F, Miao J, Lin M, Liu R, Wang C, Ge F, Chen W. Exploring the genetic associations and causal relationships between antibody responses, immune cells, and various types of breast cancer. Sci Rep 2024; 14:28579. [PMID: 39562684 PMCID: PMC11577091 DOI: 10.1038/s41598-024-79521-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND There may be potential associations between various pathogens, antibody immune responses, and breast cancer (BC), but the specific mechanisms and causal relationships remain unclear. METHODS First, multiple Mendelian randomization (MR) methods were used for univariable MR analysis to explore potential causal relationships between 34 antibody immune responses (related to 12 pathogens), 46 antibody immune responses (related to 13 pathogens), antibody responses post-COVID-19 vaccination, 731 immune cell types, and various BC subtypes (including overall BC, ER-positive, ER-negative, Luminal A, Luminal B, Luminal B HER2-negative, HER2-positive, and triple-negative BC). The primary results were then subjected to reverse MR analysis, heterogeneity testing using Cochran's Q, and horizontal pleiotropy testing. Robust findings were further used to design mediation pathways involving antibody immune responses, immune cells, and BC. After adjusting the effect estimates using multivariable MR (MVMR), a two-step mediation analysis was conducted to explore mediation pathways and mediation proportions. Finally, linkage disequilibrium score regression (LDSC) was applied to analyze the genetic correlation between phenotypes along mediation pathways, and cross-phenotype association analysis (CPASSOC) was performed to identify pleiotropic SNPs among three phenotypes along these pathways. Bayesian colocalization tests were conducted on pleiotropic SNPs using the multiple-trait-coloc (moloc). RESULTS We identified potential causal relationships between 15 antibody immune responses to 8 pathogens (Hepatitis B virus, Herpes Simplex Virus 2, Human Herpesvirus 6, Polyomavirus 2, BK polyomavirus, Cytomegalovirus, Helicobacter pylori, Chlamydia trachomatis), 250 immune cell phenotypes, and various BC subtypes. MVMR-adjusted mediation analysis revealed four potential mediation pathways. LDSC results showed no significant genetic correlation between phenotypes pairwise. CPASSOC analysis identified two potential mediation pathways with common pleiotropic SNPs (rs12121677, rs281378, rs2894250). However, none of these SNPs passed the Bayesian colocalization test by moloc. These results excluded horizontal pleiotropy, stabilizing MR analysis results. CONCLUSION This study utilized MR methods to analyze potential causal relationships between various antibody immune responses, immune cell types, and BC subtypes, identifying four potential regulatory mediation pathways. The findings of this study offer potential targets and research directions for virus-related and immunotherapy-related studies, providing a certain level of theoretical support. However, limitations such as GWAS sample size constraints and unclear specific pathophysiological mechanisms need further improvement and validation in future studies.
Collapse
Affiliation(s)
- Yang Yang
- Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan Hospital, The Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Hospital, Kunming, 650118, China
| | - Jiayi Chen
- Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan Hospital, The Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Hospital, Kunming, 650118, China
| | - Fuhong Gong
- Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan Hospital, The Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Hospital, Kunming, 650118, China
| | - Jingge Miao
- Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan Hospital, The Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Hospital, Kunming, 650118, China
| | - Mengping Lin
- Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan Hospital, The Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Hospital, Kunming, 650118, China
| | - Ruimin Liu
- Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan Hospital, The Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Hospital, Kunming, 650118, China
| | - Chenxi Wang
- Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan Hospital, The Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Hospital, Kunming, 650118, China
| | - Fei Ge
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| | - Wenlin Chen
- Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan Hospital, The Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Hospital, Kunming, 650118, China.
| |
Collapse
|
10
|
Zhang Q, Song J, Wu H, Wang L, Zhuo G, Li H, He S, Pan Y, Liu G. Intratumoral microbiota associates with systemic immune inflammation state in nasopharyngeal carcinoma. Int Immunopharmacol 2024; 141:112984. [PMID: 39173404 DOI: 10.1016/j.intimp.2024.112984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/07/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND The nasopharynx serves as a crucial niche for the microbiome of the upper respiratory tract. However, the association between the intratumoral microbiota and host systemic inflammation and immune status in nasopharyngeal carcinoma (NPC) remain uncertain. METHODS We performed 5R 16S rDNA sequencing on NPC tissue samples, followed by diversity analysis, LEfSe differential analysis, and KEGG functional prediction. The analyses were based on indices such as AISI, SIRI, PAR, PLR, and NAR. Correlation analyses between microbes and these indices were performed to identify microbes associated with inflammation and immune status. Additionally, regression analysis based on tumor TNM stage was performed to identify key microbes linked to tumor progression. The head and neck squamous cell carcinoma (HNSC) transcriptome and the paired HNSC microbiome data from TCGA were utilized to validate the analyses. RESULTS The Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes were the most enriched phyla in NPC tissues. Microbes within these phyla demonstrated high sensitivity to changes in host systemic inflammation and immune status. Proteobacteria and Firmicutes showed significant differences between inflammation groups. Actinobacteria varied specifically with platelet-related inflammatory indices, and Bacteroidetes genera exhibited significant differences between NAR groups. Corynebacterium and Brevundimonas significantly impacted the T stage of tumors, with a high load of Corynebacterium within tumors associated with a better prognosis CONCLUSION: Our analysis indicates that Proteobacteria play a crucial role in the inflammatory state of NPC, while Bacteroidetes are more sensitive to the tumor immune status.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China
| | - Jiangqin Song
- Department of Laboratory Medicine, The First People's Hospital of Tianmen City, Tianmen, Hubei 431700, China
| | - Huiqing Wu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China
| | - Liping Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China
| | - Guangzheng Zhuo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China
| | - Huashun Li
- Department of Pathology, The First People's Hospital of Tianmen City, Tianmen, Hubei 431700, China
| | - Siyu He
- Department of Laboratory Medicine, The First People's Hospital of Tianmen City, Tianmen, Hubei 431700, China
| | - Yunbao Pan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China; Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, Wuhan, China.
| | - Guohong Liu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China.
| |
Collapse
|
11
|
Nandi D, Sharma D. Integrating immunotherapy with conventional treatment regime for breast cancer patients- an amalgamation of armamentarium. Front Immunol 2024; 15:1477980. [PMID: 39555066 PMCID: PMC11563812 DOI: 10.3389/fimmu.2024.1477980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/08/2024] [Indexed: 11/19/2024] Open
Abstract
Immunotherapy stands as the frontrunner in treatment strategies imparting efficient remission in various types of cancer. In fact, emerging breakthroughs with immune checkpoint inhibitors (ICI) in a spectrum of cancers have evoked interest in research related to the potential effects of immunotherapy in breast cancer patients. A major challenge with breast cancer is the molecular heterogeneity that limits the efficacy of many therapeutic regimes. Clinical trials have shown favorable clinical outcomes with immunotherapeutic options in some subtypes of breast cancer. However, ICI monotherapy may not be sufficient for all breast cancer patients, emphasizing the need for combinatorial approaches. Ongoing research is focused on untangling the interplay of ICI with established as well as novel anticancer therapeutic regimens in preclinical models of breast cancer. Our review will analyze the existing research regarding the mechanisms and clinical impact of immunotherapy for the treatment of breast cancer. We shall evaluate the role of immune cell modulation for improved therapeutic response in breast cancer patients. This review will provide collated evidences about the current clinical trials that are testing out the implications of immunotherapy in conjunction with traditional treatment modalities in breast cancer and summarize the potential future research directions in the field. In addition, we shall underline the recent findings related to microbiota modulation as a key regulator of immune therapy response in cancer patients and its plausible applications in breast cancer.
Collapse
Affiliation(s)
- Deeptashree Nandi
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
| | - Dipali Sharma
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
| |
Collapse
|
12
|
Rozani S, Lykoudis PM. The impact of intestinal and mammary microbiomes on breast cancer development: A review on the microbiota and oestrobolome roles in tumour microenvironments. Am J Surg 2024; 237:115795. [PMID: 38853033 DOI: 10.1016/j.amjsurg.2024.115795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Microbiota affects carcinogenesis by altering energy equilibrium, increasing fat mass, synthesizing small signaling molecules, and formulating and regulating immune response and indigestible food ingredient, xenobiotic, and pharmaceutical compound metabolism. The intestinal microbiome can moderate oestrogen and other steroid hormone metabolisms, and secrete bioactive metabolites that are important for tumour microenvironment. Specifically, the breast tissue microbiome could become altered and lead to breast cancer development. The study of oestrobolome, the microbiomic component that metabolizes oestrogens, can contribute to better breast cancer understanding and subsequent treatment. Investigating oestrobolome-related oestrogen metabolism mechanisms in immune system regulation can shed light on how intestinal microorganisms regulate tumour microenvironment. Intestinal and regional breast microbiomes can determine treatment lines and serve as possible biomarkers for breast cancer. The aim of this study is to summarise current evidence on the role of microbiome in breast cancer progression with particular interest in therapeutic and diagnostic implementation.
Collapse
Affiliation(s)
- Sofia Rozani
- Faculty of Medicine, National and Kapodistrian University of Athens, Greece.
| | - Panagis M Lykoudis
- Faculty of Medicine, National and Kapodistrian University of Athens, Greece; Honorary Lecturer, Division of Surgery and Interventional Science, University College London (UCL), United Kingdom
| |
Collapse
|
13
|
Bohm MS, Ramesh AV, Pierre JF, Cook KL, Murphy EA, Makowski L. Fecal microbial transplants as investigative tools in cancer. Am J Physiol Gastrointest Liver Physiol 2024; 327:G711-G726. [PMID: 39301964 PMCID: PMC11559651 DOI: 10.1152/ajpgi.00171.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/22/2024]
Abstract
The gut microbiome plays a critical role in the development, progression, and treatment of cancer. As interest in microbiome-immune-cancer interactions expands, the prevalence of fecal microbial transplant (FMT) models has increased proportionally. However, current literature does not provide adequate details or consistent approaches to allow for necessary rigor and experimental reproducibility. In this review, we evaluate key studies using FMT to investigate the relationship between the gut microbiome and various types of cancer. In addition, we will discuss the common pitfalls of these experiments and methods for improved standardization and validation as the field uses FMT with greater frequency. Finally, this review focuses on the impacts of the gut and extraintestinal microbes, prebiotics, probiotics, and postbiotics in cancer risk and response to therapy across a variety of tumor types.NEW & NOTEWORTHY The microbiome impacts the onset, progression, and therapy response of certain types of cancer. Fecal microbial transplants (FMTs) are an increasingly prevalent tool to test these mechanisms that require standardization by the field.
Collapse
Affiliation(s)
- Margaret S Bohm
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Arvind V Ramesh
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Joseph F Pierre
- Department of Nutritional Sciences, College of Agriculture and Life Science, The University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Katherine L Cook
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - E Angela Murphy
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, United States
| | - Liza Makowski
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, United States
- Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| |
Collapse
|
14
|
Lombardo C, Fazio R, Sinagra M, Gattuso G, Longo F, Lombardo C, Salmeri M, Zanghì GN, Loreto CAE. Intratumoral Microbiota: Insights from Anatomical, Molecular, and Clinical Perspectives. J Pers Med 2024; 14:1083. [PMID: 39590575 PMCID: PMC11595780 DOI: 10.3390/jpm14111083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
The human microbiota represents a heterogeneous microbial community composed of several commensal, symbiotic, and even pathogenic microorganisms colonizing both the external and internal body surfaces. Despite the term "microbiota" being commonly used to identify microorganisms inhabiting the gut, several pieces of evidence suggest the presence of different microbiota physiologically colonizing other organs. In this context, several studies have also confirmed that microbes are integral components of tumor tissue in different types of cancer, constituting the so-called "intratumoral microbiota". The intratumoral microbiota is closely related to the occurrence and development of cancer as well as to the efficacy of anticancer treatments. Indeed, intratumoral microbiota can contribute to carcinogenesis and metastasis formation as some microbes can directly cause DNA damage, while others can induce the activation of proinflammatory responses or oncogenic pathways and alter the tumor microenvironment (TME). All these characteristics make the intratumoral microbiota an interesting topic to investigate for both diagnostic and prognostic purposes in order to improve the management of cancer patients. This review aims to gather the most recent data on the role of the intratumoral microbiota in cancer development, progression, and response to treatment, as well as its potential diagnostic and prognostic value.
Collapse
Affiliation(s)
- Claudia Lombardo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Rosanna Fazio
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Marta Sinagra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Federica Longo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Cinzia Lombardo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Mario Salmeri
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Guido Nicola Zanghì
- Department of General Surgery and Medical-Surgical Specialties, Policlinico-Vittorio Emanuele Hospital, University of Catania, 95123 Catania, Italy;
| | - Carla Agata Erika Loreto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| |
Collapse
|
15
|
Herrera-Quintana L, Vázquez-Lorente H, Silva RCMC, Olivares-Arancibia J, Reyes-Amigo T, Pires BRB, Plaza-Diaz J. The Role of the Microbiome and of Radiotherapy-Derived Metabolites in Breast Cancer. Cancers (Basel) 2024; 16:3671. [PMID: 39518108 PMCID: PMC11545256 DOI: 10.3390/cancers16213671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
The gut microbiome has emerged as a crucial player in modulating cancer therapies, including radiotherapy. In the case of breast cancer, the interplay between the microbiome and radiotherapy-derived metabolites may enhance therapeutic outcomes and minimize adverse effects. In this review, we explore the bidirectional relationship between the gut microbiome and breast cancer. We explain how gut microbiome composition influences cancer progression and treatment response, and how breast cancer and its treatments influence microbiome composition. A dual role for radiotherapy-derived metabolites is explored in this article, highlighting both their therapeutic benefits and potential hazards. By integrating genomics, metabolomics, and bioinformatics tools, we present a comprehensive overview of these interactions. The study provides real-world insight through case studies and clinical trials, while therapeutic innovations such as probiotics, and dietary interventions are examined for their potential to modulate the microbiome and enhance treatment effectiveness. Moreover, ethical considerations and patient perspectives are discussed, ensuring a comprehensive understanding of the subject. Towards revolutionizing treatment strategies and improving patient outcomes, the review concludes with future research directions. It also envisions integrating microbiome and metabolite research into personalized breast cancer therapy.
Collapse
Affiliation(s)
- Lourdes Herrera-Quintana
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Héctor Vázquez-Lorente
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | | | - Jorge Olivares-Arancibia
- AFySE Group, Research in Physical Activity and School Health, School of Physical Education, Faculty of Education, Universidad de Las Américas, Santiago 7500975, Chile;
| | - Tomás Reyes-Amigo
- Physical Activity Sciences Observatory (OCAF), Department of Physical Activity Sciences, Universidad de Playa Ancha, Valparaíso 2360072, Chile;
| | - Bruno Ricardo Barreto Pires
- Biometry and Biophysics Department, Institute of Biology Roberto Alcantara Gomes (IBRAG), Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20551-030, RJ, Brazil;
| | - Julio Plaza-Diaz
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- School of Health Sciences, Universidad Internacional de La Rioja, Avenida de la Paz, 137, 26006 Logroño, Spain
| |
Collapse
|
16
|
Neagoe CXR, Ionică M, Neagoe OC, Trifa AP. The Influence of Microbiota on Breast Cancer: A Review. Cancers (Basel) 2024; 16:3468. [PMID: 39456562 PMCID: PMC11506631 DOI: 10.3390/cancers16203468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/05/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Breast cancer remains one of the leading causes of death among women worldwide, and recent research highlights its growing connection to alterations in the microbiota. This review delves into the intricate relationship between microbiotas and breast cancer, exploring its presence in healthy breast tissue, its changes during cancer progression, and its considerable impact on both the tumor microenvironment (TME) and the tumor immune microenvironment (TIME). We extensively analyze how the microbiota influences cancer growth, invasion, metastasis, resistance to drugs, and the evasion of the immune system, with a special focus on its effects on the TIME. Furthermore, we investigate distinct microbial profiles associated with the four primary molecular subtypes of breast cancer, examining how the microbiota in tumor tissues compares with that in adjacent normal tissues. Emerging studies suggest that microbiotas could serve as valuable diagnostic and prognostic biomarkers, as well as targets for therapy. This review emphasizes the urgent need for further research to improve strategies for breast cancer prevention, diagnosis, and treatment. By offering a detailed examination of the microbiota's critical role in breast cancer, this review aims to foster the development of novel microbiota-based approaches for managing the disease.
Collapse
Affiliation(s)
- Cara-Xenia-Rafaela Neagoe
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
| | - Mihaela Ionică
- Second Clinic of General Surgery and Surgical Oncology, Emergency Clinical Municipal Hospital, 300079 Timișoara, Romania;
- Second Discipline of Surgical Semiology, First Department of Surgery, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
- Breast Surgery Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300079 Timișoara, Romania
| | - Octavian Constantin Neagoe
- Second Clinic of General Surgery and Surgical Oncology, Emergency Clinical Municipal Hospital, 300079 Timișoara, Romania;
- Second Discipline of Surgical Semiology, First Department of Surgery, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
- Breast Surgery Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300079 Timișoara, Romania
| | - Adrian Pavel Trifa
- The Discipline of Genetics, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Department of Genetics, Clinical Hospital of Infectious Diseases and Pneumophthisiology “Dr. Victor Babes” Timisoara, 300041 Timisoara, Romania
- Center for Research and Innovation in Personalized Medicine of Respiratory Diseases, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| |
Collapse
|
17
|
Mikó E, Sipos A, Tóth E, Lehoczki A, Fekete M, Sebő É, Kardos G, Bai P. Guideline for designing microbiome studies in neoplastic diseases. GeroScience 2024; 46:4037-4057. [PMID: 38922379 PMCID: PMC11336004 DOI: 10.1007/s11357-024-01255-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Oncobiosis has emerged as a key contributor to the development, and modulator of the treatment efficacy of cancer. Hereby, we review the modalities through which the oncobiome can support the progression of tumors, and the emerging therapeutic opportunities they present. The review highlights the inherent challenges and limitations faced in sampling and accurately characterizing oncobiome. Additionally, the review underscores the critical need for the standardization of microbial analysis techniques and the consistent reporting of microbiome data. We provide a suggested metadata set that should accompany microbiome datasets from oncological settings so that studies remain comparable and decipherable.
Collapse
Affiliation(s)
- Edit Mikó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem Tér 1., 4032, Debrecen, Hungary
| | - Adrienn Sipos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem Tér 1., 4032, Debrecen, Hungary
| | - Emese Tóth
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem Tér 1., 4032, Debrecen, Hungary
- HUN-REN-DE Cell Biology and Signaling Research Group, 4032, Debrecen, Hungary
| | - Andrea Lehoczki
- Department of Hematology and Stem Cell Transplantation, South Pest Central Hospital-National Institute for Hematology and Infectious Diseases, Budapest, Hungary
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Monika Fekete
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Éva Sebő
- Breast Center, Kenézy Gyula Hospital, University of Debrecen, 4032, Debrecen, Hungary
| | - Gábor Kardos
- Department of Metagenomics, University of Debrecen, 4032, Debrecen, Hungary
- Faculty of Health Sciences, One Health Institute, University of Debrecen, 4032, Debrecen, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem Tér 1., 4032, Debrecen, Hungary.
- HUN-REN-DE Cell Biology and Signaling Research Group, 4032, Debrecen, Hungary.
- MTA-DE Lendület Laboratory of Cellular Metabolism, 4032, Debrecen, Hungary.
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary.
- Center of Excellence, The Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
18
|
Lim ESY, Ong Y, Chou Y, Then CK. Interconnected influences of tumour and host microbiota on treatment response and side effects in nasopharyngeal cancer. Crit Rev Oncol Hematol 2024; 202:104468. [PMID: 39103130 DOI: 10.1016/j.critrevonc.2024.104468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024] Open
Abstract
This study elucidates the intricate relationship between nasopharyngeal carcinoma (NPC), a significant malignancy predominant in Asia with notable global incidence and mortality rates, and the host microbiota, including those of tumour, nasal, nasopharyngeal, oral, oropharyngeal, and gut communities. It underscores how the composition and diversity of microbiota are altered in NPC, delving into their implications for disease pathogenesis, treatment response, and the side effects of therapies. A consistent reduction in alpha diversity across oral, nasal, and gut microbiomes in NPC patients compared to healthy individuals signals a distinct microbial signature indicative of the diseased state. The study also shows unique microbial changes tied to different NPC stages, indicating a dynamic interplay between disease progression and microbiota composition. Patients with specific microbial profiles exhibit varied responses to chemotherapy and immunotherapy, underscoring the potential for treatment personalisation based on microbiota analysis. Furthermore, the side effects of NPC treatments, such as oral mucositis, are intensified by shifts in microbial communities, suggesting a direct link between microbiota composition and treatment tolerance. This nexus offers opportunities for interventions aimed at modulating the microbiota to alleviate side effects, improve quality of life, and potentially enhance treatment efficacy. Highlighting the dual potential of microbiota as both a therapeutic target and a biomarker for NPC, this review emphasises its significance in influencing treatment outcomes and side effects, heralding a new era in NPC management through personalised treatment strategies and innovative approaches.
Collapse
Affiliation(s)
- Eugene Sheng Yao Lim
- Jeffery Cheah School of Medicine and Health Sciences, Monash University, Malaysia
| | - Yenyi Ong
- Jeffery Cheah School of Medicine and Health Sciences, Monash University, Malaysia
| | - Yang Chou
- Department of Otolaryngology, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Chee Kin Then
- Department of Radiation Oncology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
| |
Collapse
|
19
|
Furuta S. Microbiome-Stealth Regulator of Breast Homeostasis and Cancer Metastasis. Cancers (Basel) 2024; 16:3040. [PMID: 39272898 PMCID: PMC11394247 DOI: 10.3390/cancers16173040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Cumulative evidence attests to the essential roles of commensal microbes in the physiology of hosts. Although the microbiome has been a major research subject since the time of Luis Pasteur and William Russell over 140 years ago, recent findings that certain intracellular bacteria contribute to the pathophysiology of healthy vs. diseased tissues have brought the field of the microbiome to a new era of investigation. Particularly, in the field of breast cancer research, breast-tumor-resident bacteria are now deemed to be essential players in tumor initiation and progression. This is a resurrection of Russel's bacterial cause of cancer theory, which was in fact abandoned over 100 years ago. This review will introduce some of the recent findings that exemplify the roles of breast-tumor-resident microbes in breast carcinogenesis and metastasis and provide mechanistic explanations for these phenomena. Such information would be able to justify the utility of breast-tumor-resident microbes as biomarkers for disease progression and therapeutic targets.
Collapse
Affiliation(s)
- Saori Furuta
- MetroHealth Medical Center, Case Western Reserve University School of Medicine, 2500 MetroHealth Drive, Cleveland, OH 44109, USA;
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
20
|
Jiang Y, Li Y. Nutrition Intervention and Microbiome Modulation in the Management of Breast Cancer. Nutrients 2024; 16:2644. [PMID: 39203781 PMCID: PMC11356826 DOI: 10.3390/nu16162644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Breast cancer (BC) is one of the most common cancers worldwide and a leading cause of cancer-related deaths among women. The escalating incidence of BC underscores the necessity of multi-level treatment. BC is a complex and heterogeneous disease involving many genetic, lifestyle, and environmental factors. Growing evidence suggests that nutrition intervention is an evolving effective prevention and treatment strategy for BC. In addition, the human microbiota, particularly the gut microbiota, is now widely recognized as a significant player contributing to health or disease status. It is also associated with the risk and development of BC. This review will focus on nutrition intervention in BC, including dietary patterns, bioactive compounds, and nutrients that affect BC prevention and therapeutic responses in both animal and human studies. Additionally, this paper examines the impacts of these nutrition interventions on modulating the composition and functionality of the gut microbiome, highlighting the microbiome-mediated mechanisms in BC. The combination treatment of nutrition factors and microbes is also discussed. Insights from this review paper emphasize the necessity of comprehensive BC management that focuses on the nutrition-microbiome axis.
Collapse
Affiliation(s)
| | - Yuanyuan Li
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA;
| |
Collapse
|
21
|
Naik A, Godbole M. Elucidating the Intricate Roles of Gut and Breast Microbiomes in Breast Cancer Metastasis to the Bone. Cancer Rep (Hoboken) 2024; 7:e70005. [PMID: 39188104 PMCID: PMC11347752 DOI: 10.1002/cnr2.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 07/10/2024] [Accepted: 08/11/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Breast cancer is the most predominant and heterogeneous cancer in women. Moreover, breast cancer has a high prevalence to metastasize to distant organs, such as the brain, lungs, and bones. Patients with breast cancer metastasis to the bones have poor overall and relapse-free survival. Moreover, treatment using chemotherapy and immunotherapy is ineffective in preventing or reducing cancer metastasis. RECENT FINDINGS Microorganisms residing in the gut and breast, termed as the resident microbiome, have a significant influence on the formation and progression of breast cancer. Recent studies have identified some microorganisms that induce breast cancer metastasis to the bone. These organisms utilize multiple mechanisms, including induction of epithelial-mesenchymal transition, steroid hormone metabolism, immune modification, bone remodeling, and secretion of microbial products that alter tumor microenvironment, and enhance propensity of breast cancer cells to metastasize. However, their involvement makes these microorganisms suitable as novel therapeutic targets. Thus, studies are underway to prevent and reduce breast cancer metastasis to distant organs, including the bone, using chemotherapeutic or immunotherapeutic drugs, along with probiotics, antibiotics or fecal microbiota transplantation. CONCLUSIONS The present review describes association of gut and breast microbiomes with bone metastases. We have elaborated on the mechanisms utilized by breast and gut microbiomes that induce breast cancer metastasis, especially to the bone. The review also highlights the current treatment options that may target both the microbiomes for preventing or reducing breast cancer metastases. Finally, we have specified the necessity of maintaining a diverse gut microbiome to prevent dysbiosis, which otherwise may induce breast carcinogenesis and metastasis especially to the bone. The review may facilitate more detailed investigations of the causal associations between these microbiomes and bone metastases. Moreover, the potential treatment options described in the review may promote discussions and research on the modes to improve survival of patients with breast cancer by targeting the gut and breast microbiomes.
Collapse
Affiliation(s)
- Amruta Naik
- Department of Biosciences and Technology, School of Science and Environmental StudiesDr. Vishwanath Karad MIT World Peace UniversityPuneIndia
| | - Mukul S. Godbole
- Department of Biosciences and Technology, School of Science and Environmental StudiesDr. Vishwanath Karad MIT World Peace UniversityPuneIndia
| |
Collapse
|
22
|
Deng X, Yang H, Tian L, Ling J, Ruan H, Ge A, Liu L, Fan H. Bibliometric analysis of global research trends between gut microbiota and breast cancer: from 2013 to 2023. Front Microbiol 2024; 15:1393422. [PMID: 39144230 PMCID: PMC11322113 DOI: 10.3389/fmicb.2024.1393422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Background Breast cancer is the most prevalent cancer globally and is associated with significant mortality. Recent research has provided crucial insights into the role of gut microbiota in the onset and progression of breast cancer, confirming its impact on the disease's management. Despite numerous studies exploring this relationship, there is a lack of comprehensive bibliometric analyses to outline the field's current state and emerging trends. This study aims to fill that gap by analyzing key research directions and identifying emerging hotspots. Method Publications from 2013 to 2023 were retrieved from the Web of Science Core Collection database. The VOSviewer, R language and SCImago Graphica software were utilized to analyze and visualize the volume of publications, countries/regions, institutions, authors, and keywords in this field. Results A total of 515 publications were included in this study. The journal Cancers was identified as the most prolific, contributing 21 papers. The United States and China were the leading contributors to this field. The University of Alabama at Birmingham was the most productive institution. Peter Bai published the most papers, while James J. Goedert was the most cited author. Analysis of highly cited literature and keyword clustering confirmed a close relationship between gut microbiota and breast cancer. Keywords such as "metabolomics" and "probiotics" have been prominently highlighted in the keyword analysis, indicating future research hotspots in exploring the interaction between metabolites in the breast cancer microenvironment and gut microbiota. Additionally, these keywords suggest significant interest in the therapeutic potential of probiotics for breast cancer treatment. Conclusion Research on the relationship between gut microbiota and breast cancer is expanding. Attention should be focused on understanding the mechanisms of their interaction, particularly the metabolite-microbiota-breast cancer crosstalk. These insights have the potential to advance prevention, diagnosis, and treatment strategies for breast cancer. This bibliometric study provides a comprehensive assessment of the current state and future trends of research in this field, offering valuable perspectives for future studies on gut microbiota and breast cancer.
Collapse
Affiliation(s)
- Xianguang Deng
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Hua Yang
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Lingjia Tian
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jie Ling
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Hui Ruan
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Anqi Ge
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Lifang Liu
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Hongqiao Fan
- Department of Cosmetic and Plastic Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
23
|
Liu W, Li Y, Wu P, Guo X, Xu Y, Jin L, Zhao D. The intratumoral microbiota: a new horizon in cancer immunology. Front Cell Infect Microbiol 2024; 14:1409464. [PMID: 39135638 PMCID: PMC11317474 DOI: 10.3389/fcimb.2024.1409464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/01/2024] [Indexed: 08/15/2024] Open
Abstract
Over the past decade, advancements in high-throughput sequencing technologies have led to a qualitative leap in our understanding of the role of the microbiota in human diseases, particularly in oncology. Despite the low biomass of the intratumoral microbiota, it remains a crucial component of the tumor immune microenvironment, displaying significant heterogeneity across different tumor tissues and individual patients. Although immunotherapy has emerged a major strategy for treating tumors, patient responses to these treatments vary widely. Increasing evidence suggests that interactions between the intratumoral microbiota and the immune system can modulate host tumor immune responses, thereby influencing the effectiveness of immunotherapy. Therefore, it is critical to gain a deep understanding of how the intratumoral microbiota shapes and regulates the tumor immune microenvironment. Here, we summarize the latest advancements on the role of the intratumoral microbiota in cancer immunity, exploring the potential mechanisms through which immune functions are influenced by intratumoral microbiota within and outside the gut barrier. We also discuss the impact of the intratumoral microbiota on the response to cancer immunotherapy and its clinical applications, highlighting future research directions and challenges in this field. We anticipate that the valuable insights into the interactions between cancer immunity and the intratumoral microbiota provided in this review will foster the development of microbiota-based tumor therapies.
Collapse
Affiliation(s)
- Wei Liu
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Yuming Li
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Ping Wu
- General Surgery Department of Liaoyuan Central Hospital, Jilin, China
| | - Xinyue Guo
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Yifei Xu
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Lianhai Jin
- Low Pressure and Low Oxygen Environment and Health Intervention Innovation Center, Jilin Medical University, Jilin, China
| | - Donghai Zhao
- College of Basic Medicine, Jilin Medical University, Jilin, China
| |
Collapse
|
24
|
D'Afonseca V, Muñoz EV, Leal AL, Soto PMAS, Parra-Cid C. Implications of the microbiome and metabolic intermediaries produced by bacteria in breast cancer. Genet Mol Biol 2024; 47Suppl 1:e20230316. [PMID: 39037373 PMCID: PMC11262001 DOI: 10.1590/1678-4685-gmb-2023-0316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 05/10/2024] [Indexed: 07/23/2024] Open
Abstract
The breast microbiome presents a diverse microbial community that could affects health and disease states, in the context of breast cancer. Sequencing technologies have allowed describing the diversity and abundance of microbial communities among individuals. The complex tumoral microenvironment that includes the microbial composition could influence tumor growth. The imbalance of diversity and abundance inside the microbial community, known as dysbiosis plays a crucial role in this context. One the most prevalent bacterial genera described in breast invasive carcinoma are Bacillus, Pseudomonas, Brevibacillus, Mycobacterium, Thermoviga, Acinetobacter, Corynebacterium, Paenibacillus, Ensifer, and Bacteroides. Paenibacills genus shows a relation with patient survival. When the Paenibacills genus increases its abundance in patients with breast cancer, the survival probability decreases. Within this dysbiotic environment, various bacterial metabolites could play a pivotal role in the progression and modulation of breast cancer. Key bacterial metabolites, such as cadaverine, lipopolysaccharides (LPS), and trimethylamine N-oxide (TMAO), have been found to exhibit potential interactions within breast tissue microenvironments. Understanding the intricate relationships between dysbiosis and these metabolites in breast cancer may open new avenues for diagnostic biomarkers and therapeutic targets. Further research is essential to unravel the specific roles and mechanisms of these microbial metabolites in breast cancer progression.
Collapse
Affiliation(s)
- Vívian D'Afonseca
- Universidad Católica del Maule, Facultad de Medicina, Departamento de Ciencias Preclinicas, Laboratorio de Microbiología y Parasitología, Talca, Chile
| | - Elizabeth Valdés Muñoz
- Universidad Católica del Maule, Centro de Biotecnología de los Recursos Naturales (CENBIO), Programa de Doctorado en Biotecnología Traslacional, Talca, Chile
| | - Alan López Leal
- Universidad Católica del Maule, Centro de Biotecnología de los Recursos Naturales (CENBIO), Talca, Chile
| | | | - Cristóbal Parra-Cid
- Universitat de Barcelona, Facultad de Farmacia y Ciencias de la Alimentación, Programa de Máster en Biotecnología Molecular, Barcelona, España
| |
Collapse
|
25
|
Maranha A, Alarico S, Nunes-Costa D, Melo-Marques I, Roxo I, Castanheira P, Caramelo O, Empadinhas N. Drinking Water Microbiota, Entero-Mammary Pathways, and Breast Cancer: Focus on Nontuberculous Mycobacteria. Microorganisms 2024; 12:1425. [PMID: 39065193 PMCID: PMC11279143 DOI: 10.3390/microorganisms12071425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
The prospect of drinking water serving as a conduit for gut bacteria, artificially selected by disinfection strategies and a lack of monitoring at the point of use, is concerning. Certain opportunistic pathogens, notably some nontuberculous mycobacteria (NTM), often exceed coliform bacteria levels in drinking water, posing safety risks. NTM and other microbiota resist chlorination and thrive in plumbing systems. When inhaled, opportunistic NTM can infect the lungs of immunocompromised or chronically ill patients and the elderly, primarily postmenopausal women. When ingested with drinking water, NTM often survive stomach acidity, reach the intestines, and migrate to other organs using immune cells as vehicles, potentially colonizing tumor tissue, including in breast cancer. The link between the microbiome and cancer is not new, yet the recognition of intratumoral microbiomes is a recent development. Breast cancer risk rises with age, and NTM infections have emerged as a concern among breast cancer patients. In addition to studies hinting at a potential association between chronic NTM infections and lung cancer, NTM have also been detected in breast tumors at levels higher than normal adjacent tissue. Evaluating the risks of continued ingestion of contaminated drinking water is paramount, especially given the ability of various bacteria to migrate from the gut to breast tissue via entero-mammary pathways. This underscores a pressing need to revise water safety monitoring guidelines and delve into hormonal factors, including addressing the disproportionate impact of NTM infections and breast cancer on women and examining the potential health risks posed by the cryptic and unchecked microbiota from drinking water.
Collapse
Affiliation(s)
- Ana Maranha
- Center for Neuroscience and Cell Biology (CNC-UC), University of Coimbra, 3004-504 Coimbra, Portugal; (A.M.); (S.A.); (D.N.-C.); (I.M.-M.); (I.R.)
- Centre for Innovative Biomedicine & Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Susana Alarico
- Center for Neuroscience and Cell Biology (CNC-UC), University of Coimbra, 3004-504 Coimbra, Portugal; (A.M.); (S.A.); (D.N.-C.); (I.M.-M.); (I.R.)
- Centre for Innovative Biomedicine & Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Daniela Nunes-Costa
- Center for Neuroscience and Cell Biology (CNC-UC), University of Coimbra, 3004-504 Coimbra, Portugal; (A.M.); (S.A.); (D.N.-C.); (I.M.-M.); (I.R.)
- Centre for Innovative Biomedicine & Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Inês Melo-Marques
- Center for Neuroscience and Cell Biology (CNC-UC), University of Coimbra, 3004-504 Coimbra, Portugal; (A.M.); (S.A.); (D.N.-C.); (I.M.-M.); (I.R.)
- Centre for Innovative Biomedicine & Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Inês Roxo
- Center for Neuroscience and Cell Biology (CNC-UC), University of Coimbra, 3004-504 Coimbra, Portugal; (A.M.); (S.A.); (D.N.-C.); (I.M.-M.); (I.R.)
- Centre for Innovative Biomedicine & Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Ph.D. Programme in Biomedicine and Experimental Biology (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | - Olga Caramelo
- Gynecology Department, Coimbra Hospital and University Centre (CHUC), 3004-561 Coimbra, Portugal;
| | - Nuno Empadinhas
- Center for Neuroscience and Cell Biology (CNC-UC), University of Coimbra, 3004-504 Coimbra, Portugal; (A.M.); (S.A.); (D.N.-C.); (I.M.-M.); (I.R.)
- Centre for Innovative Biomedicine & Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
26
|
Zhang A, Sun T, Yu D, Fu R, Liu X, Xue F, Liu W, Ju M, Dai X, Dong H, Gu W, Chen J, Chi Y, Li H, Wang W, Yang R, Chen Y, Zhang L. Multi-omics differences in the bone marrow between essential thrombocythemia and prefibrotic primary myelofibrosis. Clin Exp Med 2024; 24:154. [PMID: 38972952 PMCID: PMC11228008 DOI: 10.1007/s10238-024-01350-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/04/2024] [Indexed: 07/09/2024]
Abstract
Essential thrombocythemia (ET) and prefibrotic primary myelofibrosis (pre-PMF) are Philadelphia chromosome-negative myeloproliferative neoplasms. These conditions share overlapping clinical presentations; however, their prognoses differ significantly. Current morphological diagnostic methods lack reliability in subtype differentiation, underlining the need for improved diagnostics. The aim of this study was to investigate the multi-omics alterations in bone marrow biopsies of patients with ET and pre-PMF to improve our understanding of the nuanced diagnostic characteristics of both diseases. We performed proteomic analysis with 4D direct data-independent acquisition and microbiome analysis with 2bRAD-M sequencing technology to identify differential protein and microbe levels between untreated patients with ET and pre-PMF. Laboratory and multi-omics differences were observed between ET and pre-PMF, encompassing diverse pathways, such as lipid metabolism and immune response. The pre-PMF group showed an increased neutrophil-to-lymphocyte ratio and decreased high-density lipoprotein and cholesterol levels. Protein analysis revealed significantly higher CXCR2, CXCR4, and MX1 levels in pre-PMF, while APOC3, APOA4, FABP4, C5, and CFB levels were elevated in ET, with diagnostic accuracy indicated by AUC values ranging from 0.786 to 0.881. Microbiome assessment identified increased levels of Mycobacterium, Xanthobacter, and L1I39 in pre-PMF, whereas Sphingomonas, Brevibacillus, and Pseudomonas_E were significantly decreased, with AUCs for these genera ranging from 0.833 to 0.929. Our study provides preliminary insights into the proteomic and microbiome variations in the bone marrow of patients with ET and pre-PMF, identifying specific proteins and bacterial genera that warrant further investigation as potential diagnostic indicators. These observations contribute to our evolving understanding of the multi-omics variations and possible mechanisms underlying ET and pre-PMF.
Collapse
Affiliation(s)
- Anqi Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
| | - Ting Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
| | - Dandan Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
| | - Rongfeng Fu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
| | - Xiaofan Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
| | - Feng Xue
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
| | - Wei Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
| | - Mankai Ju
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
| | - Xinyue Dai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
| | - Huan Dong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
| | - Wenjing Gu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
| | - Jia Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
| | - Ying Chi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
| | - Huiyuan Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
| | - Wentian Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
| | - Renchi Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yunfei Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China.
| | - Lei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
27
|
Wang L, Lynch C, Pitroda SP, Piffkó A, Yang K, Huser AK, Liang HL, Weichselbaum RR. Radiotherapy and immunology. J Exp Med 2024; 221:e20232101. [PMID: 38771260 PMCID: PMC11110906 DOI: 10.1084/jem.20232101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024] Open
Abstract
The majority of cancer patients receive radiotherapy during the course of treatment, delivered with curative intent for local tumor control or as part of a multimodality regimen aimed at eliminating distant metastasis. A major focus of research has been DNA damage; however, in the past two decades, emphasis has shifted to the important role the immune system plays in radiotherapy-induced anti-tumor effects. Radiotherapy reprograms the tumor microenvironment, triggering DNA and RNA sensing cascades that activate innate immunity and ultimately enhance adaptive immunity. In opposition, radiotherapy also induces suppression of anti-tumor immunity, including recruitment of regulatory T cells, myeloid-derived suppressor cells, and suppressive macrophages. The balance of pro- and anti-tumor immunity is regulated in part by radiotherapy-induced chemokines and cytokines. Microbiota can also influence radiotherapy outcomes and is under clinical investigation. Blockade of the PD-1/PD-L1 axis and CTLA-4 has been extensively investigated in combination with radiotherapy; we include a review of clinical trials involving inhibition of these immune checkpoints and radiotherapy.
Collapse
Affiliation(s)
- Liangliang Wang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Connor Lynch
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Sean P. Pitroda
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - András Piffkó
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kaiting Yang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Amy K. Huser
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
| | - Hua Laura Liang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Ralph R. Weichselbaum
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| |
Collapse
|
28
|
Herrera-Quintana L, Vázquez-Lorente H, Plaza-Diaz J. Breast Cancer: Extracellular Matrix and Microbiome Interactions. Int J Mol Sci 2024; 25:7226. [PMID: 39000333 PMCID: PMC11242809 DOI: 10.3390/ijms25137226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Breast cancer represents the most prevalent form of cancer and the leading cause of cancer-related mortality among females worldwide. It has been reported that several risk factors contribute to the appearance and progression of this disease. Despite the advancements in breast cancer treatment, a significant portion of patients with distant metastases still experiences no cure. The extracellular matrix represents a potential target for enhanced serum biomarkers in breast cancer. Furthermore, extracellular matrix degradation and epithelial-mesenchymal transition constitute the primary stages of local invasion during tumorigenesis. Additionally, the microbiome has a potential influence on diverse physiological processes. It is emerging that microbial dysbiosis is a significant element in the development and progression of various cancers, including breast cancer. Thus, a better understanding of extracellular matrix and microbiome interactions could provide novel alternatives to breast cancer treatment and management. In this review, we summarize the current evidence regarding the intricate relationship between breast cancer with the extracellular matrix and the microbiome. We discuss the arising associations and future perspectives in this field.
Collapse
Affiliation(s)
- Lourdes Herrera-Quintana
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Héctor Vázquez-Lorente
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| |
Collapse
|
29
|
Che S, Yan Z, Feng Y, Zhao H. Unveiling the intratumoral microbiota within cancer landscapes. iScience 2024; 27:109893. [PMID: 38799560 PMCID: PMC11126819 DOI: 10.1016/j.isci.2024.109893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
Recent advances in cancer research have unveiled a significant yet previously underappreciated aspect of oncology: the presence and role of intratumoral microbiota. These microbial residents, encompassing bacteria, fungi, and viruses within tumor tissues, have been found to exert considerable influence on tumor development, progression, and the efficacy of therapeutic interventions. This review aims to synthesize these groundbreaking discoveries, providing an integrated overview of the identification, characterization, and functional roles of intratumoral microbiota in cancer biology. We focus on elucidating the complex interactions between these microorganisms and the tumor microenvironment, highlighting their potential as novel biomarkers and therapeutic targets. The purpose of this review is to offer a comprehensive understanding of the microbial dimension in cancer, paving the way for innovative approaches in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Shusheng Che
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266005, Shandong, China
| | - Zhiyong Yan
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266005, Shandong, China
| | - Yugong Feng
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266005, Shandong, China
| | - Hai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266005, Shandong, China
| |
Collapse
|
30
|
Wu-Chuang A, Mateos-Hernandez L, Abuin-Denis L, Maitre A, Avellanet J, García A, Fuentes D, Cabezas-Cruz A. Exploring the impact of breast cancer on colonization resistance of mouse microbiota using network node manipulation. Heliyon 2024; 10:e30914. [PMID: 38784541 PMCID: PMC11112314 DOI: 10.1016/j.heliyon.2024.e30914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/11/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Breast cancer, a global health concern affecting women, has been linked to alterations in the gut microbiota, impacting various aspects of human health. This study investigates the interplay between breast cancer and the gut microbiome, particularly focusing on colonization resistance-an essential feature of the microbiota's ability to prevent pathogenic overgrowth. Using a mouse model of breast cancer, we employ diversity analysis, co-occurrence network analysis, and robustness tests to elucidate the impact of breast cancer on microbiome dynamics. Our results reveal that breast cancer exposure affects the bacterial community's composition and structure, with temporal dynamics playing a role. Network analysis demonstrates that breast cancer disrupts microbial interactions and decreases network complexity, potentially compromising colonization resistance. Moreover, network robustness analysis shows the susceptibility of the microbiota to node removal, indicating potential vulnerability to pathogenic colonization. Additionally, predicted metabolic profiling of the microbiome highlights the significance of the enzyme EC 6.2.1.2 - Butyrate--CoA ligase, potentially increasing butyrate, and balancing the reduction of colonization resistance. The identification of Rubrobacter as a key contributor to this enzyme suggests its role in shaping the microbiota's response to breast cancer. This study uncovers the intricate relationship between breast cancer, the gut microbiome, and colonization resistance, providing insights into potential therapeutic strategies and diagnostic approaches for breast cancer patients.
Collapse
Affiliation(s)
- Alejandra Wu-Chuang
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | - Lourdes Mateos-Hernandez
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | - Lianet Abuin-Denis
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology, Avenue 31 between 158 and 190, P.O. Box 6162, 10600, Havana, Cuba
| | - Apolline Maitre
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
- INRAE, UR 0045 Laboratoire de Recherches Sur Le Développement de L'Elevage (SELMET-LRDE), Corte, France
- EA 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| | - Janet Avellanet
- Center of Molecular Immunology (CIM), Calle 15 esq. 216, Atabey, Playa, Havana, Cuba
| | - Arlem García
- Center of Molecular Immunology (CIM), Calle 15 esq. 216, Atabey, Playa, Havana, Cuba
| | - Dasha Fuentes
- National Center for Laboratory Animal Breeding (CENPALAB), Calle 3ra # 40759 entre 6ta y carretera de Tirabeque, Rpto La Unión, Boyeros, Havana, Cuba
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| |
Collapse
|
31
|
Yang M. Interaction between intestinal flora and gastric cancer in tumor microenvironment. Front Oncol 2024; 14:1402483. [PMID: 38835386 PMCID: PMC11148328 DOI: 10.3389/fonc.2024.1402483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/01/2024] [Indexed: 06/06/2024] Open
Abstract
Gastric Cancer (GC) is a prevalent malignancy globally and is the third leading cause of cancer-related deaths. Recent researches focused on the correlation between intestinal flora and GC. Studies indicate that bacteria can influence the development of gastrointestinal tumors by releasing bacterial extracellular vesicles (BEVs). The Tumor microenvironment (TME) plays an important role in tumor survival, with the interaction between intestinal flora, BEVs, and TME directly impacting tumor progression. Moreover, recent studies have demonstrated that intestinal microflora and BEVs can modify TME to enhance the effectiveness of antitumor drugs. This review article provides an overview and comparison of the biological targets through which the intestinal microbiome regulates TME, laying the groundwork for potential applications in tumor diagnosis, treatment, and prognosis.
Collapse
Affiliation(s)
- Mingjin Yang
- Department of Gastrointestinal Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
32
|
Valsecchi AA, Ferrari G, Paratore C, Dionisio R, Vignani F, Sperone P, Vellani G, Novello S, Di Maio M. Gut and local microbiota in patients with cancer: increasing evidence and potential clinical applications. Crit Rev Oncol Hematol 2024; 197:104328. [PMID: 38490281 DOI: 10.1016/j.critrevonc.2024.104328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/19/2023] [Accepted: 03/11/2024] [Indexed: 03/17/2024] Open
Abstract
In recent years, cancer research has highlighted the role of disrupted microbiota in carcinogenesis and cancer recurrence. However, microbiota may also interfere with drug metabolism, influencing the efficacy of cancer drugs, especially immunotherapy, and modulating the onset of adverse events. Intestinal micro-organisms can be altered by external factors, such as use of antibiotics, proton pump inhibitors treatment, lifestyle and the use of prebiotics or probiotics. The aim of our review is to provide a picture of the current evidence about preclinical and clinical data of the role of gut and local microbiota in malignancies and its potential clinical role in cancer treatments. Standardization of microbiota sequencing approaches and its modulating strategies within prospective clinical trials could be intriguing for two aims: first, to provide novel potential biomarkers both for early cancer detection and for therapeutic effectiveness; second, to propose personalized and "microbiota-tailored" treatment strategies.
Collapse
Affiliation(s)
- Anna Amela Valsecchi
- Department of Oncology, University of Turin, Città della Salute e della Scienza di Torino, Turin, Italy
| | - Giorgia Ferrari
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Chiara Paratore
- Department of Oncology, ASL TO4, Ivrea Community Hospital, Ivrea, Italy.
| | - Rossana Dionisio
- Department of Oncology, University of Turin, Mauriziano Hospital, Turin, Italy
| | - Francesca Vignani
- Department of Oncology, University of Turin, Mauriziano Hospital, Turin, Italy
| | - Paola Sperone
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Giorgio Vellani
- Department of Oncology, ASL TO4, Ivrea Community Hospital, Ivrea, Italy
| | - Silvia Novello
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Massimo Di Maio
- Department of Oncology, University of Turin, Città della Salute e della Scienza di Torino, Turin, Italy
| |
Collapse
|
33
|
Chow L, Flaherty E, Pezzanite L, Williams M, Dow S, Wotman K. Impact of Equine Ocular Surface Squamous Neoplasia on Interactions between Ocular Transcriptome and Microbiome. Vet Sci 2024; 11:167. [PMID: 38668434 PMCID: PMC11054121 DOI: 10.3390/vetsci11040167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/29/2024] Open
Abstract
Ocular surface squamous neoplasia (OSSN) represents the most common conjunctival tumor in horses and frequently results in vision loss and surgical removal of the affected globe. Multiple etiologic factors have been identified as contributing to OSSN progression, including solar radiation exposure, genetic mutations, and a lack of periocular pigmentation. Response to conventional treatments has been highly variable, though our recent work indicates that these tumors are highly responsive to local immunotherapy. In the present study, we extended our investigation of OSSN in horses to better understand how the ocular transcriptome responds to the presence of the tumor and how the ocular surface microbiome may also be altered by the presence of cancer. Therefore, we collected swabs from the ventral conjunctival fornix from 22 eyes in this study (11 with cytologically or histologically confirmed OSSN and 11 healthy eyes from the same horses) and performed RNA sequencing and 16S microbial sequencing using the same samples. Microbial 16s DNA sequencing and bulk RNA sequencing were both conducted using an Illumina-based platform. In eyes with OSSN, we observed significantly upregulated expression of genes and pathways associated with inflammation, particularly interferon. Microbial diversity was significantly reduced in conjunctival swabs from horses with OSSN. We also performed interactome analysis and found that three bacterial taxa (Actinobacillus, Helcococcus and Parvimona) had significant correlations with more than 100 upregulated genes in samples from animals with OSSN. These findings highlight the inflammatory nature of OSSN in horses and provide important new insights into how the host ocular surface interacts with certain microbial populations. These findings suggest new strategies for the management of OSSN in horses, which may entail immunotherapy in combination with ocular surface probiotics or prebiotics to help normalize ocular cell and microbe interactions.
Collapse
Affiliation(s)
- Lyndah Chow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (L.C.); (E.F.); (L.P.); (M.W.)
| | - Edward Flaherty
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (L.C.); (E.F.); (L.P.); (M.W.)
| | - Lynn Pezzanite
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (L.C.); (E.F.); (L.P.); (M.W.)
| | - Maggie Williams
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (L.C.); (E.F.); (L.P.); (M.W.)
| | - Steven Dow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (L.C.); (E.F.); (L.P.); (M.W.)
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Kathryn Wotman
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (L.C.); (E.F.); (L.P.); (M.W.)
| |
Collapse
|
34
|
Li X, Xu H, Du Z, Cao Q, Liu X. Advances in the study of tertiary lymphoid structures in the immunotherapy of breast cancer. Front Oncol 2024; 14:1382701. [PMID: 38628669 PMCID: PMC11018917 DOI: 10.3389/fonc.2024.1382701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Breast cancer, as one of the most common malignancies in women, exhibits complex and heterogeneous pathological characteristics across different subtypes. Triple-negative breast cancer (TNBC) and HER2-positive breast cancer are two common and highly invasive subtypes within breast cancer. The stability of the breast microbiota is closely intertwined with the immune environment, and immunotherapy is a common approach for treating breast cancer.Tertiary lymphoid structures (TLSs), recently discovered immune cell aggregates surrounding breast cancer, resemble secondary lymphoid organs (SLOs) and are associated with the prognosis and survival of some breast cancer patients, offering new avenues for immunotherapy. Machine learning, as a form of artificial intelligence, has increasingly been used for detecting biomarkers and constructing tumor prognosis models. This article systematically reviews the latest research progress on TLSs in breast cancer and the application of machine learning in the detection of TLSs and the study of breast cancer prognosis. The insights provided contribute valuable perspectives for further exploring the biological differences among different subtypes of breast cancer and formulating personalized treatment strategies.
Collapse
Affiliation(s)
- Xin Li
- The First Clinical School of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Han Xu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ziwei Du
- The First Clinical School of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qiang Cao
- Department of Earth Sciences, Kunming University of Science and Technology, Kunming, China
| | - Xiaofei Liu
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
35
|
Fu Y, Li J, Cai W, Huang Y, Liu X, Ma Z, Tang Z, Bian X, Zheng J, Jiang J, Li C. The emerging tumor microbe microenvironment: From delineation to multidisciplinary approach-based interventions. Acta Pharm Sin B 2024; 14:1560-1591. [PMID: 38572104 PMCID: PMC10985043 DOI: 10.1016/j.apsb.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 04/05/2024] Open
Abstract
Intratumoral microbiota has become research hotspots, and emerges as a non-negligent new component of tumor microenvironments (TME), due to its powerful influence on tumor initiation, metastasis, immunosurveillance and prognosis despite in low-biomass. The accumulations of microbes, and their related components and metabolites within tumor tissues, endow TME with additional pluralistic features which are distinct from the conventional one. Therefore, it's definitely necessary to comprehensively delineate the sophisticated landscapes of tumor microbe microenvironment, as well as their functions and related underlying mechanisms. Herein, in this review, we focused on the fields of tumor microbe microenvironment, including the heterogeneity of intratumor microbiota in different types of tumors, the controversial roles of intratumoral microbiota, the basic features of tumor microbe microenvironment (i.e., pathogen-associated molecular patterns (PAMPs), typical microbial metabolites, autophagy, inflammation, multi-faceted immunomodulation and chemoresistance), as well as the multidisciplinary approach-based intervention of tumor microbiome for cancer therapy by applying wild-type or engineered live microbes, microbiota metabolites, antibiotics, synthetic biology and rationally designed biomaterials. We hope our work will provide valuable insight to deeply understand the interplay of cancer-immune-microbial, and facilitate the development of microbes-based tumor-specific treatments.
Collapse
Affiliation(s)
- Yu Fu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jia Li
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Wenyun Cai
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yulan Huang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xinlong Liu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhongyi Ma
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhongjie Tang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xufei Bian
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Jiayun Jiang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chong Li
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
36
|
González A, Fullaondo A, Odriozola A. Impact of evolution on lifestyle in microbiome. ADVANCES IN GENETICS 2024; 111:149-198. [PMID: 38908899 DOI: 10.1016/bs.adgen.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
This chapter analyses the interaction between microbiota and humans from an evolutionary point of view. Long-term interactions between gut microbiota and host have been generated as a result of dietary choices through coevolutionary processes, where mutuality of advantage is essential. Likewise, the characteristics of the intestinal environment have made it possible to describe different intrahost evolutionary mechanisms affecting microbiota. For its part, the intestinal microbiota has been of great importance in the evolution of mammals, allowing the diversification of dietary niches, phenotypic plasticity and the selection of host phenotypes. Although the origin of the human intestinal microbial community is still not known with certainty, mother-offspring transmission plays a key role, and it seems that transmissibility between individuals in adulthood also has important implications. Finally, it should be noted that certain aspects inherent to modern lifestyle, including refined diets, antibiotic intake, exposure to air pollutants, microplastics, and stress, could negatively affect the diversity and composition of our gut microbiota. This chapter aims to combine current knowledge to provide a comprehensive view of the interaction between microbiota and humans throughout evolution.
Collapse
Affiliation(s)
- Adriana González
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Asier Fullaondo
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Adrián Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
37
|
Summer M, Sajjad A, Ali S, Hussain T. Exploring the underlying correlation between microbiota, immune system, hormones, and inflammation with breast cancer and the role of probiotics, prebiotics and postbiotics. Arch Microbiol 2024; 206:145. [PMID: 38461447 DOI: 10.1007/s00203-024-03868-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 03/12/2024]
Abstract
According to recent research, bacterial imbalance in the gut microbiota and breast tissue may be linked to breast cancer. It has been discovered that alterations in the makeup and function of different types of bacteria found in the breast and gut may contribute to growth and advancement of breast cancer in several ways. The main role of gut microbiota is to control the metabolism of steroid hormones, such as estrogen, which are important in raising the risk of breast cancer, especially in women going through menopause. On the other hand, because the microbiota can influence mucosal and systemic immune responses, they are linked to the mutual interactions between cancer cells and their local environment in the breast and the gut. In this regard, the current review thoroughly explains the mode of action of probiotics and microbiota to eradicate the malignancy. Furthermore, immunomodulation by microbiota and probiotics is described with pathways of their activity.
Collapse
Affiliation(s)
- Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Ayesha Sajjad
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Tauqeer Hussain
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
38
|
Filippou C, Themistocleous SC, Marangos G, Panayiotou Y, Fyrilla M, Kousparou CA, Pana ZD, Tsioutis C, Johnson EO, Yiallouris A. Microbial Therapy and Breast Cancer Management: Exploring Mechanisms, Clinical Efficacy, and Integration within the One Health Approach. Int J Mol Sci 2024; 25:1110. [PMID: 38256183 PMCID: PMC10816061 DOI: 10.3390/ijms25021110] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
This comprehensive review elucidates the profound relationship between the human microbiome and breast cancer management. Recent findings highlight the significance of microbial alterations in tissue, such as the gut and the breast, and their role in influencing the breast cancer risk, development, progression, and treatment outcomes. We delve into how the gut microbiome can modulate systemic inflammatory responses and estrogen levels, thereby impacting cancer initiation and therapeutic drug efficacy. Furthermore, we explore the unique microbial diversity within breast tissue, indicating potential imbalances brought about by cancer and highlighting specific microbes as promising therapeutic targets. Emphasizing a holistic One Health approach, this review underscores the importance of integrating insights from human, animal, and environmental health to gain a deeper understanding of the complex microbe-cancer interplay. As the field advances, the strategic manipulation of the microbiome and its metabolites presents innovative prospects for the enhancement of cancer diagnostics and therapeutics. However, rigorous clinical trials remain essential to confirm the potential of microbiota-based interventions in breast cancer management.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Andreas Yiallouris
- School of Medicine, European University Cyprus, 6 Diogenis Str., 2404 Engomi, P.O. Box 22006, Nicosia 1516, Cyprus
| |
Collapse
|
39
|
Cao Y, Xia H, Tan X, Shi C, Ma Y, Meng D, Zhou M, Lv Z, Wang S, Jin Y. Intratumoural microbiota: a new frontier in cancer development and therapy. Signal Transduct Target Ther 2024; 9:15. [PMID: 38195689 PMCID: PMC10776793 DOI: 10.1038/s41392-023-01693-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/20/2023] [Accepted: 10/24/2023] [Indexed: 01/11/2024] Open
Abstract
Human microorganisms, including bacteria, fungi, and viruses, play key roles in several physiological and pathological processes. Some studies discovered that tumour tissues once considered sterile actually host a variety of microorganisms, which have been confirmed to be closely related to oncogenesis. The concept of intratumoural microbiota was subsequently proposed. Microbiota could colonise tumour tissues through mucosal destruction, adjacent tissue migration, and hematogenic invasion and affect the biological behaviour of tumours as an important part of the tumour microenvironment. Mechanistic studies have demonstrated that intratumoural microbiota potentially promote the initiation and progression of tumours by inducing genomic instability and mutations, affecting epigenetic modifications, promoting inflammation response, avoiding immune destruction, regulating metabolism, and activating invasion and metastasis. Since more comprehensive and profound insights about intratumoral microbiota are continuously emerging, new methods for the early diagnosis and prognostic assessment of cancer patients have been under examination. In addition, interventions based on intratumoural microbiota show great potential to open a new chapter in antitumour therapy, especially immunotherapy, although there are some inevitable challenges. Here, we aim to provide an extensive review of the concept, development history, potential sources, heterogeneity, and carcinogenic mechanisms of intratumoural microorganisms, explore the potential role of microorganisms in tumour prognosis, and discuss current antitumour treatment regimens that target intratumoural microorganisms and the research prospects and limitations in this field.
Collapse
Affiliation(s)
- Yaqi Cao
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Hui Xia
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Xueyun Tan
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Chunwei Shi
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Yanling Ma
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Daquan Meng
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Mengmeng Zhou
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Zhilei Lv
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Sufei Wang
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| |
Collapse
|
40
|
Peters BA, Kelly L, Wang T, Loudig O, Rohan TE. The Breast Microbiome in Breast Cancer Risk and Progression: A Narrative Review. Cancer Epidemiol Biomarkers Prev 2024; 33:9-19. [PMID: 37943168 DOI: 10.1158/1055-9965.epi-23-0965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/06/2023] [Accepted: 11/07/2023] [Indexed: 11/10/2023] Open
Abstract
A decade ago, studies in human populations first revealed the existence of a unique microbial community in the breast, a tissue historically viewed as sterile, with microbial origins seeded through the nipple and/or translocation from other body sites. Since then, research efforts have been made to characterize the microbiome in healthy and cancerous breast tissues. The purpose of this review is to summarize the current evidence for the association of the breast microbiome with breast cancer risk and progression. Briefly, while many studies have examined the breast microbiome in patients with breast cancer, and compared it with the microbiome of benign breast disease tissue or normal breast tissue, these studies have varied widely in their sample sizes, methods, and quality of evidence. Thus, while several large and rigorous cross-sectional studies have provided key evidence of an altered microbiome in breast tumors compared with normal adjacent and healthy control tissue, there are few consistent patterns of perturbed microbial taxa. In addition, only one large prospective study has provided evidence of a relationship between the breast tumor microbiota and cancer prognosis. Future research studies featuring large, well-characterized cohorts with prospective follow-up for breast cancer incidence, progression, and response to treatment are warranted.
Collapse
Affiliation(s)
- Brandilyn A Peters
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Libusha Kelly
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Tao Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Olivier Loudig
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey
| | - Thomas E Rohan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
41
|
Jiang S, Ma W, Ma C, Zhang Z, Zhang W, Zhang J. An emerging strategy: probiotics enhance the effectiveness of tumor immunotherapy via mediating the gut microbiome. Gut Microbes 2024; 16:2341717. [PMID: 38717360 PMCID: PMC11085971 DOI: 10.1080/19490976.2024.2341717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
The occurrence and progression of tumors are often accompanied by disruptions in the gut microbiota. Inversely, the impact of the gut microbiota on the initiation and progression of cancer is becoming increasingly evident, influencing the tumor microenvironment (TME) for both local and distant tumors. Moreover, it is even suggested to play a significant role in the process of tumor immunotherapy, contributing to high specificity in therapeutic outcomes and long-term effectiveness across various cancer types. Probiotics, with their generally positive influence on the gut microbiota, may serve as effective agents in synergizing cancer immunotherapy. They play a crucial role in activating the immune system to inhibit tumor growth. In summary, this comprehensive review aims to provide valuable insights into the dynamic interactions between probiotics, gut microbiota, and cancer. Furthermore, we highlight recent advances and mechanisms in using probiotics to improve the effectiveness of cancer immunotherapy. By understanding these complex relationships, we may unlock innovative approaches for cancer diagnosis and treatment while optimizing the effects of immunotherapy.
Collapse
Affiliation(s)
- Shuaiming Jiang
- School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Wenyao Ma
- School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Chenchen Ma
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, Shenzhen, PR China
| | - Zeng Zhang
- School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Jiachao Zhang
- School of Food Science and Engineering, Hainan University, Haikou, PR China
| |
Collapse
|
42
|
Kim D, Yu Y, Jung KS, Kim YH, Kim JJ. Tumor Microenvironment Can Predict Chemotherapy Response of Patients with Triple-Negative Breast Cancer Receiving Neoadjuvant Chemotherapy. Cancer Res Treat 2024; 56:162-177. [PMID: 37499695 PMCID: PMC10789965 DOI: 10.4143/crt.2023.330] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023] Open
Abstract
PURPOSE Triple-negative breast cancer (TNBC) is a breast cancer subtype that has poor prognosis and exhibits a unique tumor microenvironment. Analysis of the tumor microbiome has indicated a relationship between the tumor microenvironment and treatment response. Therefore, we attempted to reveal the role of the tumor microbiome in patients with TNBC receiving neoadjuvant chemotherapy. MATERIALS AND METHODS We collected TNBC patient RNA-sequencing samples from the Gene Expression Omnibus and extracted microbiome count data. Differential and relative abundance were estimated with linear discriminant analysis effect size. We calculated the immune cell fraction with CIBERSORTx and conducted survival analysis using the Cancer Genome Atlas patient data. Correlations between the microbiome and immune cell compositions were analyzed and a prediction model was constructed to estimate drug response. RESULTS Among the pathological complete response group (pCR), the beta diversity varied considerably; consequently, 20 genera and 24 species were observed to express a significant differential and relative abundance. Pandoraea pulmonicola and Brucella melitensis were found to be important features in determining drug response. In correlation analysis, Geosporobacter ferrireducens, Streptococcus sanguinis, and resting natural killer cells were the most correlated factors in the pCR, whereas Nitrosospira briensis, Plantactinospora sp. BC1, and regulatory T cells were key features in the residual disease group. CONCLUSION Our study demonstrated that the microbiome analysis of tumor tissue can predict chemotherapy response of patients with TNBC. Further, the immunological tumor microenvironment may be impacted by the tumor microbiome, thereby affecting the corresponding survival and treatment response.
Collapse
Affiliation(s)
- Dongjin Kim
- Interdisciplinary Program of Genomic Data Science, Pusan National University, Yangsan, Korea
| | - Yeuni Yu
- Biomedical Research Institute, Pusan National University School of Medicine, Yangsan, Korea
| | - Ki Sun Jung
- Department of Internal Medicine, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Korea
| | - Yun Hak Kim
- Periodontal Disease Signaling Network Research Center, Pusan National University School of Dentistry, Yangsan, Korea
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, Korea
- Department of Biomedical Informatics, Pusan National University School of Medicine, Yangsan, Korea
| | - Jae-Joon Kim
- Division of Hematology and Oncology, Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
| |
Collapse
|
43
|
Kandalai S, Li H, Zhang N, Peng H, Zheng Q. The human microbiome and cancer: a diagnostic and therapeutic perspective. Cancer Biol Ther 2023; 24:2240084. [PMID: 37498047 PMCID: PMC10376920 DOI: 10.1080/15384047.2023.2240084] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/09/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
Recent evidence has shown that the human microbiome is associated with various diseases, including cancer. The salivary microbiome, fecal microbiome, and circulating microbial DNA in blood plasma have all been used experimentally as diagnostic biomarkers for many types of cancer. The microbiomes present within local tissue, other regions, and tumors themselves have been shown to promote and restrict the development and progression of cancer, most often by affecting cancer cells or the host immune system. These microbes have also been shown to impact the efficacy of various cancer therapies, including radiation, chemotherapy, and immunotherapy. Here, we review the research advances focused on how microbes impact these different facets and why they are important to the clinical care of cancer. It is only by better understanding the roles these microbes play in the diagnosis, development, progression, and treatment of cancer, that we will be able to catch and treat cancer early.
Collapse
Affiliation(s)
- Shruthi Kandalai
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, USA
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Huapeng Li
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Nan Zhang
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, USA
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Haidong Peng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, USA
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Qingfei Zheng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, USA
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
44
|
Gurunathan S, Thangaraj P, Kim JH. Postbiotics: Functional Food Materials and Therapeutic Agents for Cancer, Diabetes, and Inflammatory Diseases. Foods 2023; 13:89. [PMID: 38201117 PMCID: PMC10778838 DOI: 10.3390/foods13010089] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Postbiotics are (i) "soluble factors secreted by live bacteria, or released after bacterial lysis, such as enzymes, peptides, teichoic acids, peptidoglycan-derived muropeptides, polysaccharides, cell-surface proteins and organic acids"; (ii) "non-viable metabolites produced by microorganisms that exert biological effects on the hosts"; and (iii) "compounds produced by microorganisms, released from food components or microbial constituents, including non-viable cells that, when administered in adequate amounts, promote health and wellbeing". A probiotic- and prebiotic-rich diet ensures an adequate supply of these vital nutrients. During the anaerobic fermentation of organic nutrients, such as prebiotics, postbiotics act as a benevolent bioactive molecule matrix. Postbiotics can be used as functional components in the food industry by offering a number of advantages, such as being added to foods that are harmful to probiotic survival. Postbiotic supplements have grown in popularity in the food, cosmetic, and healthcare industries because of their numerous health advantages. Their classification depends on various factors, including the type of microorganism, structural composition, and physiological functions. This review offers a succinct introduction to postbiotics while discussing their salient features and classification, production, purification, characterization, biological functions, and applications in the food industry. Furthermore, their therapeutic mechanisms as antibacterial, antiviral, antioxidant, anticancer, anti-diabetic, and anti-inflammatory agents are elucidated.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Biotechnology, Rathinam College of Arts and Science, Eachanari, Coimbatore 641021, Tamil Nadu, India;
| | - Pratheep Thangaraj
- Department of Biotechnology, Rathinam College of Arts and Science, Eachanari, Coimbatore 641021, Tamil Nadu, India;
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
45
|
Naderi N, Mosahebi A, Williams NR. Microorganisms and Breast Cancer: An In-Depth Analysis of Clinical Studies. Pathogens 2023; 13:6. [PMID: 38276152 PMCID: PMC10819802 DOI: 10.3390/pathogens13010006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/24/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Breast cancer is a multifactorial disease that affects millions of women worldwide. Recent work has shown intriguing connections between microorganisms and breast cancer, which might have implications for prevention and treatment. This article analyzed 117 relevant breast cancer clinical studies listed on ClinicalTrials.gov selected using a bespoke set of 38 search terms focused on bacteria, viruses, and fungi. This was supplemented with 20 studies found from a search of PubMed. The resulting 137 studies were described by their characteristics such as geographic distribution, interventions used, start date and status, etc. The studies were then collated into thematic groups for a descriptive analysis to identify knowledge gaps and emerging trends.
Collapse
Affiliation(s)
- Naghmeh Naderi
- Department of Plastic and Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK; (N.N.); (A.M.)
- Division of Surgery & Interventional Science, University College London, London W1W 7TY, UK
| | - Afshin Mosahebi
- Department of Plastic and Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK; (N.N.); (A.M.)
- Division of Surgery & Interventional Science, University College London, London W1W 7TY, UK
| | - Norman R. Williams
- Division of Surgery & Interventional Science, University College London, London W1W 7TY, UK
| |
Collapse
|
46
|
Actis S, Cazzaniga M, Bounous VE, D'Alonzo M, Rosso R, Accomasso F, Minella C, Biglia N. Emerging evidence on the role of breast microbiota on the development of breast cancer in high-risk patients. Carcinogenesis 2023; 44:718-725. [PMID: 37793149 DOI: 10.1093/carcin/bgad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 08/02/2023] [Accepted: 10/03/2023] [Indexed: 10/06/2023] Open
Abstract
Cancer is a multi-factorial disease, and the etiology of breast cancer (BC) is due to a combination of both genetic and environmental factors. Breast tissue shows a unique microbiota, Proteobacteria and Firmicutes are the most abundant bacteria in breast tissue, and several studies have shown that the microbiota of healthy breast differs from that of BC. Breast microbiota appears to be correlated with different characteristics of the tumor, and prognostic clinicopathologic features. It also appears that there are subtle differences between the microbial profiles of the healthy control and high-risk patients. Genetic predisposition is an extremely important risk factor for BC. BRCA1/2 germline mutations and Li-Fraumeni syndrome are DNA repair deficiency syndromes inherited as autosomal dominant characters that substantially increase the risk of BC. These syndromes exhibit incomplete penetrance of BC expression in carrier subjects. The action of breast microbiota on carcinogenesis might explain why women with a mutation develop cancer and others do not. Among the potential biological pathways through which the breast microbiota may affect tumorigenesis, the most relevant appear to be DNA damage caused by colibactin and other bacterial-derived genotoxins, β-glucuronidase-mediated estrogen deconjugation and reactivation, and HPV-mediated cancer susceptibility. In conclusion, in patients with a genetic predisposition, an unfavorable breast microbiota may be co-responsible for the onset of BC. Prospectively, the ability to modulate the microbiota may have an impact on disease onset and progression in patients at high risk for BC.
Collapse
Affiliation(s)
- Silvia Actis
- Gynecology and Obstetrics Unit, Department of Surgical Sciences, Mauriziano Umberto I Hospital, University of Turin, 10128 Turin, Italy
| | | | - Valentina Elisabetta Bounous
- Gynecology and Obstetrics Unit, Department of Surgical Sciences, Mauriziano Umberto I Hospital, University of Turin, 10128 Turin, Italy
| | - Marta D'Alonzo
- Gynecology and Obstetrics Unit, Department of Surgical Sciences, Mauriziano Umberto I Hospital, University of Turin, 10128 Turin, Italy
| | - Roberta Rosso
- Gynecology and Obstetrics Unit, Department of Surgical Sciences, Mauriziano Umberto I Hospital, University of Turin, 10128 Turin, Italy
| | - Francesca Accomasso
- Gynecology and Obstetrics Unit, Department of Surgical Sciences, Mauriziano Umberto I Hospital, University of Turin, 10128 Turin, Italy
| | - Carola Minella
- Gynecology and Obstetrics Unit, Department of Surgical Sciences, Mauriziano Umberto I Hospital, University of Turin, 10128 Turin, Italy
| | - Nicoletta Biglia
- Gynecology and Obstetrics Unit, Department of Surgical Sciences, Mauriziano Umberto I Hospital, University of Turin, 10128 Turin, Italy
| |
Collapse
|
47
|
Lagoumintzis G, Patrinos GP. Triangulating nutrigenomics, metabolomics and microbiomics toward personalized nutrition and healthy living. Hum Genomics 2023; 17:109. [PMID: 38062537 PMCID: PMC10704648 DOI: 10.1186/s40246-023-00561-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
The unique physiological and genetic characteristics of individuals influence their reactions to different dietary constituents and nutrients. This notion is the foundation of personalized nutrition. The field of nutrigenetics has witnessed significant progress in understanding the impact of genetic variants on macronutrient and micronutrient levels and the individual's responsiveness to dietary intake. These variants hold significant value in facilitating the development of personalized nutritional interventions, thereby enabling the effective translation from conventional dietary guidelines to genome-guided nutrition. Nevertheless, certain obstacles could impede the extensive implementation of individualized nutrition, which is still in its infancy, such as the polygenic nature of nutrition-related pathologies. Consequently, many disorders are susceptible to the collective influence of multiple genes and environmental interplay, wherein each gene exerts a moderate to modest effect. Furthermore, it is widely accepted that diseases emerge because of the intricate interplay between genetic predisposition and external environmental influences. In the context of this specific paradigm, the utilization of advanced "omic" technologies, including epigenomics, transcriptomics, proteomics, metabolomics, and microbiome analysis, in conjunction with comprehensive phenotyping, has the potential to unveil hitherto undisclosed hereditary elements and interactions between genes and the environment. This review aims to provide up-to-date information regarding the fundamentals of personalized nutrition, specifically emphasizing the complex triangulation interplay among microbiota, dietary metabolites, and genes. Furthermore, it highlights the intestinal microbiota's unique makeup, its influence on nutrigenomics, and the tailoring of dietary suggestions. Finally, this article provides an overview of genotyping versus microbiomics, focusing on investigating the potential applications of this knowledge in the context of tailored dietary plans that aim to improve human well-being and overall health.
Collapse
Affiliation(s)
- George Lagoumintzis
- Division of Pharmacology and Biosciences, Department of Pharmacy, School of Health Sciences, University of Patras, 26504, Patras, Greece.
| | - George P Patrinos
- Division of Pharmacology and Biosciences, Department of Pharmacy, School of Health Sciences, University of Patras, 26504, Patras, Greece.
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, Abu Dhabi, UAE.
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, Abu Dhabi, UAE.
| |
Collapse
|
48
|
Xia Y. Statistical normalization methods in microbiome data with application to microbiome cancer research. Gut Microbes 2023; 15:2244139. [PMID: 37622724 PMCID: PMC10461514 DOI: 10.1080/19490976.2023.2244139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/12/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
Mounting evidence has shown that gut microbiome is associated with various cancers, including gastrointestinal (GI) tract and non-GI tract cancers. But microbiome data have unique characteristics and pose major challenges when using standard statistical methods causing results to be invalid or misleading. Thus, to analyze microbiome data, it not only needs appropriate statistical methods, but also requires microbiome data to be normalized prior to statistical analysis. Here, we first describe the unique characteristics of microbiome data and the challenges in analyzing them (Section 2). Then, we provide an overall review on the available normalization methods of 16S rRNA and shotgun metagenomic data along with examples of their applications in microbiome cancer research (Section 3). In Section 4, we comprehensively investigate how the normalization methods of 16S rRNA and shotgun metagenomic data are evaluated. Finally, we summarize and conclude with remarks on statistical normalization methods (Section 5). Altogether, this review aims to provide a broad and comprehensive view and remarks on the promises and challenges of the statistical normalization methods in microbiome data with microbiome cancer research examples.
Collapse
Affiliation(s)
- Yinglin Xia
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, USA
| |
Collapse
|
49
|
Avtanski D, Reddy V, Stojchevski R, Hadzi-Petrushev N, Mladenov M. The Microbiome in the Obesity-Breast Cancer Axis: Diagnostic and Therapeutic Potential. Pathogens 2023; 12:1402. [PMID: 38133287 PMCID: PMC10747404 DOI: 10.3390/pathogens12121402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
A growing body of evidence has demonstrated a relationship between the microbiome, adiposity, and cancer development. The microbiome is emerging as an important factor in metabolic disease and cancer pathogenesis. This review aimed to highlight the role of the microbiome in obesity and its association with cancer, with a particular focus on breast cancer. This review discusses how microbiota dysbiosis may contribute to obesity and obesity-related diseases, which are linked to breast cancer. It also explores the potential of the gut microbiome to influence systemic immunity, leading to carcinogenesis via the modulation of immune function. This review underscores the potential use of the microbiome profile as a diagnostic tool and treatment target, with strategies including probiotics, fecal microbiota transplantation, and dietary interventions. However, this emphasizes the need for more research to fully understand the complex relationship between the microbiome, metabolic disorders, and breast cancer. Future studies should focus on elucidating the mechanisms underlying the impact of the microbiome on breast cancer and exploring the potential of the microbiota profile as a biomarker and treatment target.
Collapse
Affiliation(s)
- Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY 10022, USA;
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Varun Reddy
- New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 11545, USA;
| | - Radoslav Stojchevski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY 10022, USA;
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Nikola Hadzi-Petrushev
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia; (N.H.-P.); (M.M.)
| | - Mitko Mladenov
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia; (N.H.-P.); (M.M.)
| |
Collapse
|
50
|
Nguyen MR, Ma E, Wyatt D, Knight KL, Osipo C. The effect of an exopolysaccharide probiotic molecule from Bacillus subtilis on breast cancer cells. Front Oncol 2023; 13:1292635. [PMID: 38074643 PMCID: PMC10702531 DOI: 10.3389/fonc.2023.1292635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/27/2023] [Indexed: 02/12/2024] Open
Abstract
Introduction Many well-known risk factors for breast cancer are associated with dysbiosis (an aberrant microbiome). However, how bacterial products modulate cancer are poorly understood. In this study, we investigated the effect of an exopolysaccharide (EPS) produced by the commensal bacterium Bacillus subtilis on breast cancer phenotypes. Although B. subtilis is commonly included in probiotic preparations and its EPS protects against inflammatory diseases, it was virtually unknown whether B. subtilis-derived EPS affects cancer. Methods This work investigated effects of EPS on phenotypes of breast cancer cells as a cancer model. The phenotypes included proliferation, mammosphere formation, cell migration, and tumor growth in two immune compromised mouse models. RNA sequencing was performed on RNA from four breast cancer cells treated with PBS or EPS. IKKβ or STAT1 signaling was assessed using pharmacologic or RNAi-mediated knock down approaches. Results Short-term treatment with EPS inhibited proliferation of certain breast cancer cells (T47D, MDA-MB-468, HCC1428, MDA-MB-453) while having little effect on others (MCF-7, MDA-MB-231, BT549, ZR-75-30). EPS induced G1/G0 cell cycle arrest of T47D cells while increasing apoptosis of MDA-MB-468 cells. EPS also enhanced aggressive phenotypes in T47D cells including cell migration and cancer stem cell survival. Long-term treatment with EPS (months) led to resistance in vitro and promoted tumor growth in immunocompromised mice. RNA-sequence analysis showed that EPS increased expression of pro-inflammatory pathways including STAT1 and NF-κB. IKKβ and/or STAT1 signaling was necessary for EPS to modulate phenotypes of EPS sensitive breast cancer cells. Discussion These results demonstrate a multifaceted role for an EPS molecule secreted by the probiotic bacterium B. subtilis on breast cancer cell phenotypes. These results warrant future studies in immune competent mice and different cancer models to fully understand potential benefits and/or side effects of long-term use of probiotics.
Collapse
Affiliation(s)
- Mai R. Nguyen
- M.D./Ph.D. Program, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Emily Ma
- M.D./Ph.D. Program, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
- Integrated Cell Biology Program, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Debra Wyatt
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Katherine L. Knight
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Clodia Osipo
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|