1
|
Duangthim N, Lomphithak T, Saito-Koyama R, Miki Y, Inoue C, Sato I, Miyauchi E, Abe J, Sasano H, Jitkaew S. Prognostic significance and response to immune checkpoint inhibitors of RIPK3, MLKL and necroptosis in non-small cell lung cancer. Sci Rep 2024; 14:21625. [PMID: 39285232 PMCID: PMC11405766 DOI: 10.1038/s41598-024-72545-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
Lung cancer remains the leading cause of cancer death. Treatment with immune checkpoint inhibitor (ICI) alone or combination with chemotherapy served as first-line therapy in non-small cell lung cancer (NSCLC). However, only 20-50% of NSCLC patients respond to ICI. Necroptosis, an inflammatory form of cell death plays an important role in the regulation of tumor immune microenvironment which may affect prognosis and ICI response but its clinical significance in NSCLC patients has remained largely unknown. Therefore, we aimed to analyze the correlation between key necroptotic proteins and necroptosis and clinical outcomes, the status of tumor-infiltrating immune cells, and response to ICI in NSCLC patients. The expression of receptor-interacting protein kinase 3 (RIPK3), mixed lineage kinase domain-like protein (MLKL) and phosphorylated MLKL (pMLKL) were immunolocalized in 125 surgically resected NSCLC patients and 23 NSCLC patients administered with ICI therapy. CD8 + and FOXp3 + T cells and CD163 + M2 macrophages were also immunolocalized. High RIPK3 status was positively correlated with survival of the patients and RIPK3 turned out an independent favorable prognostic factor of the patients. RIPK3 was negatively correlated with CD8 + T cells, while MLKL positively correlated with CD163 + M2 macrophages, suggesting the possible involvement of RIPK3 and MLKL in formulating immunosuppressive microenvironment. In addition, high RIPK3 status tended to be associated with clinical resistance to ICI therapy (P-value = 0.057). Furthermore, NSCLC cells-expressing RIPK3 suppressed T cells response to ICI therapy in vitro. Therefore, RIPK3 and MLKL could induce an immunosuppressive microenvironment, resulting in low response to ICI therapy in NSCLC.
Collapse
Affiliation(s)
- Nattaya Duangthim
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanpisit Lomphithak
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ryoko Saito-Koyama
- Department of Pathology, Tohoku University School of Medicine, Sendai, Miyagi, 980-8575, Japan
- Department of Pathology, National Hospital Organization, Sendai Medical Center, Sendai, Miyagi, 980-8575, Japan
| | - Yasuhiro Miki
- Department of Pathology, Tohoku University School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Chihiro Inoue
- Department of Pathology, Tohoku University School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Ikuro Sato
- Department of Pathology, Miyagi Prefectural Cancer Center, Natori, Miyagi, 981-1293, Japan
| | - Eisaku Miyauchi
- Department of Respiratory Medicine, Tohoku University Hospital, Sendai, Miyagi, 980-8575, Japan
| | - Jiro Abe
- Department of Thoracic Surgery, Miyagi Cancer Center, Natori, Miyagi, 981-1293, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Siriporn Jitkaew
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
- Center of Excellence for Cancer and Inflammation, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Hu L, Sun C, Yuan K, Yang P. Expression, regulation, and function of PD-L1 on non-tumor cells in the tumor microenvironment. Drug Discov Today 2024; 29:104181. [PMID: 39278561 DOI: 10.1016/j.drudis.2024.104181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
Antiprogrammed death ligand 1 (PD-L1) therapy is a leading immunotherapy, but only some patients with solid cancers benefit. Overwhelming evidence has revealed that PD-L1 is expressed on various immune cells in the tumor microenvironment (TME), including macrophages, dendritic cells, and regulatory T cells, modulating tumor immunity and influencing tumor progression. PD-L1 can also be located on tumor cell membranes as well as in exosomes and cytoplasm. Accordingly, the dynamic expression and various forms of PD-L1 might explain the therapy's limited efficacy and resistance. Herein a systematic summary of the expression of PD-L1 on different immune cells and their regulatory mechanisms is provided to offer a solid foundation for future studies.
Collapse
Affiliation(s)
- Lingrong Hu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Chengliang Sun
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Kai Yuan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China.
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
3
|
Butner JD, Dogra P, Chung C, Koay EJ, Welsh JW, Hong DS, Cristini V, Wang Z. Hybridizing mechanistic modeling and deep learning for personalized survival prediction after immune checkpoint inhibitor immunotherapy. NPJ Syst Biol Appl 2024; 10:88. [PMID: 39143136 PMCID: PMC11324794 DOI: 10.1038/s41540-024-00415-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024] Open
Abstract
We present a study where predictive mechanistic modeling is combined with deep learning methods to predict individual patient survival probabilities under immune checkpoint inhibitor (ICI) immunotherapy. This hybrid approach enables prediction based on both measures that are calculable from mechanistic models of key mechanisms underlying ICI therapy that may not be directly measurable in the clinic and easily measurable quantities or patient characteristics that are not always readily incorporated into predictive mechanistic models. A deep learning time-to-event predictive model trained on a hybrid mechanistic + clinical data set from 93 patients achieved higher per-patient predictive accuracy based on event-time concordance, Brier score, and negative binomial log-likelihood-based criteria than when trained on only mechanistic model-derived values or only clinical data. Feature importance analysis revealed that both clinical and model-derived parameters play prominent roles in increasing prediction accuracy, further supporting the advantage of our hybrid approach.
Collapse
Affiliation(s)
- Joseph D Butner
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Institute for Data Science in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The Cameron School of Business, University of St. Thomas, Houston, TX, USA.
| | - Prashant Dogra
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, TX, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Caroline Chung
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Institute for Data Science in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eugene J Koay
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James W Welsh
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David S Hong
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vittorio Cristini
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, TX, USA
- Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, USA
- Physiology, Biophysics, and Systems Biology Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhihui Wang
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, TX, USA.
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
- Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, USA.
- Department of Medical Education, Texas A&M University School of Medicine, Bryan, TX, USA.
| |
Collapse
|
4
|
Wang C, Fu H, Wang F. Durvalumab supplementation for non-small-cell lung cancer: a meta-analysis study. J Cardiothorac Surg 2024; 19:421. [PMID: 38965530 PMCID: PMC11223428 DOI: 10.1186/s13019-024-02940-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 06/17/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Durvalumab supplementation may have some potential in improving the efficacy in patients with non-small-cell lung cancer (NSCLC), and this meta-analysis aims to explore the impact of durvalumab supplementation on efficacy for NSCLC. METHODS PubMed, EMbase, Web of science, EBSCO, and Cochrane library databases were systematically searched, and we included randomized controlled trials (RCTs) assessing the effect of durvalumab supplementation on efficacy in patients with NSCLC. Overall survival and progression-free survival were included for this meta-analysis. RESULTS Four RCTs were finally included in the meta-analysis. Overall, compared with control group for NSCLC, durvalumab supplementation showed significantly improved survival rate (odd ratio [OR] = 1.64; 95% confidence interval [CI] = 1.31 to 2.06; P < 0.0001), overall survival ( hazard ratio [HR] = 0.73; 95% CI = 0.61 to 0.87; P = 0.0003), progression-free survival rate (OR = 2.31; 95% CI = 1.78 to 3.01; P < 0.00001) and progression-free survival (HR = 0.71; 95% CI = 0.54 to 0.95; P = 0.02), and had the capability to reduce the incidence of grade ≥ 3 adverse events (OR = 0.26; 95% CI = 0.16 to 0.42; P < 0.00001). CONCLUSIONS Durvalumab supplementation is effective to improve the efficacy for NSCLC.
Collapse
Affiliation(s)
- Chengchen Wang
- Department of Oncology Radiotherapy Center, Chongqing University Cancer Hospital, Chongqing, 400030, China.
- Chongqing University Cancer Hospital, No. 181 Hanyu Road, Chongqing, 400030, China.
| | - Hongyi Fu
- Department of Nursing, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Feng Wang
- Department of Oncology Radiotherapy Center, Chongqing University Cancer Hospital, Chongqing, 400030, China
| |
Collapse
|
5
|
Sholl LM, Awad M, Basu Roy U, Beasley MB, Cartun RW, Hwang DM, Kalemkerian G, Lopez-Rios F, Mino-Kenudson M, Paintal A, Reid K, Ritterhouse L, Souter LA, Swanson PE, Ventura CB, Furtado LV. Programmed Death Ligand-1 and Tumor Mutation Burden Testing of Patients With Lung Cancer for Selection of Immune Checkpoint Inhibitor Therapies: Guideline From the College of American Pathologists, Association for Molecular Pathology, International Association for the Study of Lung Cancer, Pulmonary Pathology Society, and LUNGevity Foundation. Arch Pathol Lab Med 2024; 148:757-774. [PMID: 38625026 DOI: 10.5858/arpa.2023-0536-cp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 04/17/2024]
Abstract
CONTEXT.— Rapid advancements in the understanding and manipulation of tumor-immune interactions have led to the approval of immune therapies for patients with non-small cell lung cancer. Certain immune checkpoint inhibitor therapies require the use of companion diagnostics, but methodologic variability has led to uncertainty around test selection and implementation in practice. OBJECTIVE.— To develop evidence-based guideline recommendations for the testing of immunotherapy/immunomodulatory biomarkers, including programmed death ligand-1 (PD-L1) and tumor mutation burden (TMB), in patients with lung cancer. DESIGN.— The College of American Pathologists convened a panel of experts in non-small cell lung cancer and biomarker testing to develop evidence-based recommendations in accordance with the standards for trustworthy clinical practice guidelines established by the National Academy of Medicine. A systematic literature review was conducted to address 8 key questions. Using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach, recommendations were created from the available evidence, certainty of that evidence, and key judgments as defined in the GRADE Evidence to Decision framework. RESULTS.— Six recommendation statements were developed. CONCLUSIONS.— This guideline summarizes the current understanding and hurdles associated with the use of PD-L1 expression and TMB testing for immune checkpoint inhibitor therapy selection in patients with advanced non-small cell lung cancer and presents evidence-based recommendations for PD-L1 and TMB testing in the clinical setting.
Collapse
Affiliation(s)
- Lynette M Sholl
- From the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Sholl)
| | - Mark Awad
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts (Awad)
| | - Upal Basu Roy
- Translational Science Research Program, LUNGevity Foundation, Chicago, Illinois (Basu Roy)
| | - Mary Beth Beasley
- the Department of Anatomic Pathology and Clinical Pathology, Mt. Sinai Medical Center, New York, New York (Beasley)
| | - Richard Walter Cartun
- the Department of Anatomic Pathology, Hartford Hospital, Hartford, Connecticut (Cartun)
| | - David M Hwang
- the Department of Laboratory Medicine & Pathobiology, Sunnybrook Health Science Centre, Toronto, Ontario, Canada (Hwang)
| | - Gregory Kalemkerian
- the Department of Medical Oncology and Internal Medicine, University of Michigan Health, Ann Arbor (Kalemkerian)
| | - Fernando Lopez-Rios
- Pathology Department, Hospital Universitario 12 de Octubre, Madrid, Spain (Lopez-Rios)
| | - Mari Mino-Kenudson
- the Department of Pathology, Massachusetts General Hospital, Boston (Mino-Kenudson)
| | - Ajit Paintal
- the Department of Pathology, NorthShore University Health System, Evanston, Illinois (Paintal)
| | - Kearin Reid
- Governance (Reid) and the Pathology and Laboratory Quality Center for Evidence-based Guidelines, College of American Pathologists, Northfield, Illinois(Ventura)
| | - Lauren Ritterhouse
- the Department of Pathology, Foundation Medicine, Cambridge, Massachusetts (Ritterhouse)
| | | | - Paul E Swanson
- the Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle (Swanson)
| | - Christina B Ventura
- Governance (Reid) and the Pathology and Laboratory Quality Center for Evidence-based Guidelines, College of American Pathologists, Northfield, Illinois(Ventura)
| | - Larissa V Furtado
- the Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee (Furtado)
| |
Collapse
|
6
|
Zhang Y, Yin F, Luo Z, Li S, Li X, Wan S, Chen Y, Kong L, Wang X. Improving tumor sensitivity by the introduction of an ester chain to triaryl derivatives targeting PD-1/PD-L1. Eur J Med Chem 2024; 271:116433. [PMID: 38678826 DOI: 10.1016/j.ejmech.2024.116433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
PD-1/PD-L1 pathway blockade is a promising immunotherapy for the treatment of cancer. In this manuscript, a series of triaryl compounds containing ester chains were designed and synthesized based on the pharmacophore studies of the lead BMS-1. After several SAR iterations, 22 showed the best biochemical activity binding to hPD-L1 with an IC50 of 1.21 nM in HTRF assay, and a KD value of 5.068 nM in SPR analysis. Cell-based experiments showed that 22 effectively promoted A549 cell death by restoring T-cell immune function. 22 showed significant in vivo antitumor activity in a 4T1 mouse model without obvious toxicity, with a TGI rate of 67.8 % (20 mg/kg, ip). Immunohistochemistry data indicated that 22 activates the immune activity in tumors. These results suggest that 22 is a promising compound for further development of PD-1/PD-L1 inhibitor for cancer therapy.
Collapse
Affiliation(s)
- Yonglei Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Fucheng Yin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhongwen Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Shang Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xinxin Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Siyuan Wan
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yifan Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiaobing Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
7
|
John N, Schlintl V, Sassmann T, Lindenmann J, Fediuk M, Wurm R, Douschan P, Zacharias M, Kalson L, Posch F, Absenger G, Brcic L, Jost PJ, Terbuch A. Longitudinal analysis of PD-L1 expression in patients with relapsed NSCLC. J Immunother Cancer 2024; 12:e008592. [PMID: 38604811 PMCID: PMC11015283 DOI: 10.1136/jitc-2023-008592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND The use and approval of immune checkpoint inhibitors for the treatment of non-small cell lung cancer (NSCLC) depends on PD-L1 expression in the tumor tissue. Nevertheless, PD-L1 often fails to predict response to treatment. One possible explanation could be a change in PD-L1 expression during the course of the disease and the neglect of reassessment. The purpose of this study was a longitudinal analysis of PD-L1 expression in patients with relapsed NSCLC. METHODS We retrospectively analyzed PD-L1 expression in patients with early-stage NSCLC and subsequent relapse in preoperative samples, matched surgical specimens and biopsy samples of disease recurrence. Ventana PD-L1 (SP263) immunohistochemistry assay was used for all samples. PD-L1 expression was scored based on clinically relevant groups (0%, 1%-49%, and ≥50%). The primary endpoint was the change in PD-L1 score group between preoperative samples, matched surgical specimens and relapsed tumor tissue. RESULTS 395 consecutive patients with stages I-III NSCLC and 136 (34%) patients with a subsequent relapse were identified. For 87 patients at least two specimens for comparison of PD-L1 expression between early stage and relapsed disease were available. In 72 cases, a longitudinal analysis between preoperative biopsy, the surgically resected specimen and biopsy of disease recurrence was feasible. When comparing preoperative and matched surgical specimens, a treatment-relevant conversion of PD-L1 expression group was found in 25 patients (34.7%). Neoadjuvant treatment showed no significant effect on PD-L1 alteration (p=0.39). In 32 (36.8%) out of 87 cases, a change in PD-L1 group was observed when biopsies of disease relapse were compared with early-stage disease. Adjuvant treatment was not significantly associated with a change in PD-L1 expression (p=0.53). 39 patients (54.2%) showed at least 1 change into a different PD-L1 score group during the course of disease. 14 patients (19.4%) changed the PD-L1 score group twice, 5 (6.9%) of them being found in all different score groups. CONCLUSION PD-L1 expression shows dynamic changes during the course of disease. There is an urgent need for consensus guidelines to define a PD-L1 testing strategy including time points of reassessment, the number of biopsies to be obtained and judgment of surgical specimens.
Collapse
Affiliation(s)
- Nikolaus John
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Verena Schlintl
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Teresa Sassmann
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Jörg Lindenmann
- Division of Thoracic Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Melanie Fediuk
- Division of Thoracic Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Robert Wurm
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Philipp Douschan
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Department of Internal Medicine, Marburg Lung Center, Giessen, Germany
| | - Martin Zacharias
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Lipika Kalson
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Florian Posch
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Gudrun Absenger
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Luka Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Philipp J Jost
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed-Graz Office, Graz, Austria
| | - Angelika Terbuch
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
8
|
Saito-Koyama R, Tamai K, Yasuda J, Okamura Y, Yamazaki Y, Inoue C, Miki Y, Abe J, Oishi H, Sato I, Sasano H. Morphometric analysis of nuclear shape irregularity as a novel predictor of programmed death-ligand 1 expression in lung squamous cell carcinoma. Virchows Arch 2024; 484:609-620. [PMID: 37171482 DOI: 10.1007/s00428-023-03548-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 05/13/2023]
Abstract
Immune checkpoint inhibitor (ICI) therapy has been established as one of the key treatment strategies for lung squamous cell carcinoma (LUSQ). The status of programmed death-ligand 1 (PD-L1) in tumor cells and/or immune cells using immunohistochemistry has been primarily used as a surrogate marker for determining ICI treatment; however, when the tissues to be examined are small, false-negative results could be unavoidable due to the heterogeneity of PD-L1 immunoreactivity. To overcome this practical limitation, we attempted to explore the status of nuclear atypia evaluated using morphometry as a potential predictor of PD-L1 status in LUSQ. We correlated the parameters related to nuclear atypia with PD-L1 status using two different cohorts of LUSQ patients (95 cases from The Cancer Genome Atlas database and 30 cases from the Miyagi Cancer Center). Furthermore, we studied the gene mutation status to elucidate the genetic profile of PD-L1 predictable cases. The results revealed that nuclear atypia, especially morphometric parameters related to nuclear shape irregularity, including aspect ratio, circularity, roundness, and solidity, were all significantly associated with PD-L1 status. Additionally, LUSQ cases with high PD-L1 expression and pronounced nuclear atypia were significantly associated with C10orf71 and COL14A1 mutations compared with those with low PD-L1 expression and mild nuclear atypia. We demonstrated for the first time that nuclear shape irregularity could represent a novel predictor of PD-L1 expression in LUSQ. Including the morphometric parameters related to nuclear atypia in conjunction with PD-L1 status could help determine an effective ICI therapeutic strategy; however, further investigation is required.
Collapse
Affiliation(s)
- Ryoko Saito-Koyama
- Department of Pathology, Tohoku University School of Medicine, Miyagi, Japan.
- Department of Pathology, National Hospital Organization, Sendai Medical Center, 2-11-12 Miyagino, Miyagino-ku, Sendai, Miyagi, 983-8520, Japan.
| | - Keiichi Tamai
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Miyagi, Japan
| | - Jun Yasuda
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Miyagi, Japan
| | - Yasunobu Okamura
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Miyagi, Japan
| | - Yuto Yamazaki
- Department of Pathology, Tohoku University School of Medicine, Miyagi, Japan
| | - Chihiro Inoue
- Department of Pathology, Tohoku University School of Medicine, Miyagi, Japan
| | - Yasuhiro Miki
- Department of Pathology, Tohoku University School of Medicine, Miyagi, Japan
- Faculty of Medical Science & Welfare, Tohoku Bunka Gakuen University, Miyagi, Japan
| | - Jiro Abe
- Division of Thoracic Surgery, Miyagi Cancer Center, Miyagi, Japan
| | - Hisashi Oishi
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Miyagi, Japan
| | - Ikuro Sato
- Division of Pathology, Miyagi Cancer Center, Miyagi, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine, Miyagi, Japan
| |
Collapse
|
9
|
Shen LF, Fu ZM, Zhou SH. The role of radiotherapy in tumor immunity and the potential of PET/CT in detecting the expression of PD-1/PD-L1. Jpn J Radiol 2024; 42:347-353. [PMID: 37953364 DOI: 10.1007/s11604-023-01507-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023]
Abstract
Upregulation of PD-1/PD-L1 allows cancer cells to escape from host immune systems by functionally inactivating T-cell immune surveillance. Clinical blockade strategies have resulted in an increased prevalence of patients with late-stage cancers. However, many cancer patients had limited or no response to current immunotherapeutic strategies. Therefore, how to improve the sensitivity of immunotherapy has become the focus of attention of many scholars. Radiotherapy plays a role in the recruitment of T cells in the tumor microenvironment, increases CD4 + and CD8 + T cells, and increases PD-L1 expression, resulting in the synergistically enhanced antitumor effect of irradiation and PD-L1 blockade. Radiotherapy can cause changes in tumor metabolism, especially glucose metabolism. Tumor glycolysis and tumor immune evasion are interdependent, glycolytic activity enhances PD-L1 expression on tumor cells and thus promotes anti-PD-L1 immunotherapy response. Therefore, the mechanism of radiotherapy affecting tumor immunity may be partly through intervention of tumor glucose metabolism. Furthermore, some authors had found that the uptake of 2'-deoxy-2'-[18F]fluoro-D-glucose(18F-FDG) was correlated with PD-1/PD-L1 expression. Positron emission tomography/computed tomography (PET/CT) is a non-invasive detection method for PD-1/PD-L1 expression and has several potential advantages over immunohistochemical (IHC), PET/CT can dynamically reflect the expression of PD-1/PD-L1 inside the tumor and further guide clinical treatment.
Collapse
Affiliation(s)
- Li-Fang Shen
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Zi-Ming Fu
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shui-Hong Zhou
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Chovet F, Passot AS, Mangon Q, Rouzaire P, Dougé A. [The circulating PD-L1: An emerging predictive biomarker for immune checkpoint inhibitors response]. Bull Cancer 2024; 111:416-427. [PMID: 38438284 DOI: 10.1016/j.bulcan.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/29/2023] [Accepted: 12/07/2023] [Indexed: 03/06/2024]
Abstract
Immune checkpoint inhibitors (ICI) have recently become the standard of care for many metastatic solid tumors, with considerable improvements in patient prognosis. However, a non-negligible proportion of patients does not respond to this type of treatment, making it essential to identify predictive factors of this response in order to better adapt the therapy. Among the biomarkers that have been most extensively studied in recent years, tumor PD-L1 levels come out on top, with controversial results for predicting response to ICI. The determination of circulating PD-L1 (or soluble PD-L1) in peripheral blood seems to be an interesting emerging biomarker. Indeed, several studies have investigated its prognostic value, and/or its potential predictive value of response to immunotherapy, and it would appear that there is a correlation between the level of soluble PD-L1 and the level of tumor aggressiveness and therefore prognosis. Furthermore, the results suggest that higher PD-L1 levels are associated with a poorer response to immunotherapy, although this remains to be confirmed in large-scale studies.
Collapse
Affiliation(s)
- Fanny Chovet
- Service d'oncologie médicale, CHU Gabriel-Montpied, 63000 Clermont-Ferrand, France
| | - Anne-Sophie Passot
- Service d'oncologie médicale, CHU Gabriel-Montpied, 63000 Clermont-Ferrand, France
| | - Quentin Mangon
- Service d'oncologie médicale, CHU Gabriel-Montpied, 63000 Clermont-Ferrand, France
| | - Paul Rouzaire
- Service d'histocompatibilité et d'immunogénétique, CHU Gabriel-Montpied, 63000 Clermont-Ferrand, France
| | - Aurore Dougé
- Service d'oncologie médicale, CHU Gabriel-Montpied, 63000 Clermont-Ferrand, France.
| |
Collapse
|
11
|
Kang Y, Lee SE, Kim CH, Lee YJ. Revisiting the impact of clinicopathologic characteristics in PD-L1 profile in a large cohort of non-small cell lung cancer. Transl Lung Cancer Res 2024; 13:475-490. [PMID: 38601456 PMCID: PMC11002508 DOI: 10.21037/tlcr-23-812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/04/2024] [Indexed: 04/12/2024]
Abstract
Background Immunotherapies using anti-programmed cell death ligand-1 (PD-L1) agents have recently shown remarkable outcomes in patients with non-small cell lung cancer (NSCLC). However, there was a poor correlation between PD-L1 expression and treatment response. Many researchers have focused on the clinicopathological factors associated with prognosis, but the results are conflicting. In the present study, we investigated the clinicopathological significance of PD-L1 overexpression in NSCLC cells. Methods In total, 344 NSCLC cases with PD-L1 assays were retrospectively analyzed. PD-L1 expression was evaluated via immunohistochemical staining using antibodies against SP263 and SP142. The correlation between clinicopathological factors and PD-L1 expression was analyzed for various clinicopathological features. Results PD-L1 expression significantly correlated with several poor clinicopathological factors, including the solid component of adenocarcinoma, lymphatic invasion, and recurrence. Squamous cell carcinoma, older age, and male sex were also associated with PD-L1 expression. However, we could not observe correlation between PD-L1 expression and disease-free survival (DFS). A novel finding was that lower metastasis was associated with high PD-L1 expression of SP142 in tumor-infiltrating immune cells (ICs). Conclusions PD-L1 expression in NSCLC is associated with adverse clinicopathological features and recurrence; therefore, it could be utilized to predict poor prognosis. Furthermore, the high PD-L1 expression of SP142 in tumor-infiltrating ICs could be a potential marker for low metastasis.
Collapse
Affiliation(s)
- Youngjin Kang
- Department of Pathology, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Seung-Eun Lee
- Collage of Medicine, Korea University, Seoul, Republic of Korea
| | - Chul Hwan Kim
- Department of Pathology, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Yoo Jin Lee
- Department of Pathology, Korea University Anam Hospital, Seoul, Republic of Korea
| |
Collapse
|
12
|
Butner JD, Dogra P, Chung C, Koay EJ, Welsh JW, Hong DS, Cristini V, Wang Z. Hybridizing mechanistic mathematical modeling with deep learning methods to predict individual cancer patient survival after immune checkpoint inhibitor therapy. RESEARCH SQUARE 2024:rs.3.rs-4151883. [PMID: 38586046 PMCID: PMC10996814 DOI: 10.21203/rs.3.rs-4151883/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
We present a study where predictive mechanistic modeling is used in combination with deep learning methods to predict individual patient survival probabilities under immune checkpoint inhibitor (ICI) therapy. This hybrid approach enables prediction based on both measures that are calculable from mechanistic models (but may not be directly measurable in the clinic) and easily measurable quantities or characteristics (that are not always readily incorporated into predictive mechanistic models). The mechanistic model we have applied here can predict tumor response from CT or MRI imaging based on key mechanisms underlying checkpoint inhibitor therapy, and in the present work, its parameters were combined with readily-available clinical measures from 93 patients into a hybrid training set for a deep learning time-to-event predictive model. Analysis revealed that training an artificial neural network with both mechanistic modeling-derived and clinical measures achieved higher per-patient predictive accuracy based on event-time concordance, Brier score, and negative binomial log-likelihood-based criteria than when only mechanistic model-derived values or only clinical data were used. Feature importance analysis revealed that both clinical and model-derived parameters play prominent roles in neural network decision making, and in increasing prediction accuracy, further supporting the advantage of our hybrid approach. We anticipate that many existing mechanistic models may be hybridized with deep learning methods in a similar manner to improve predictive accuracy through addition of additional data that may not be readily implemented in mechanistic descriptions.
Collapse
Affiliation(s)
- Joseph D Butner
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Institute for Data Science in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Master in Clinical Translation Management Program, The Cameron School of Business, University of St. Thomas, Houston, TX 77006, USA
| | - Prashant Dogra
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Caroline Chung
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Institute for Data Science in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Eugene J Koay
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - James W Welsh
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David S Hong
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas 77230, USA
| | - Vittorio Cristini
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, TX 77030, USA
- Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
- Physiology, Biophysics, and Systems Biology Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | - Zhihui Wang
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
- Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Medical Education, Texas A&M University School of Medicine, Bryan, TX 77807, USA
| |
Collapse
|
13
|
Stolfo JB, Motta ACDA. Density of high endothelial venules and PDL-1 expression: relationship with tumor-infiltrating lymphocytes in primary cutaneous melanomas. AN ACAD BRAS CIENC 2024; 96:e20230441. [PMID: 38511744 DOI: 10.1590/0001-3765202420230441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/17/2023] [Indexed: 03/22/2024] Open
Abstract
Studies have highlighted melanoma immunogenicity, and the prognostic importance of tumor infiltrating lymphocytes (TILs) and mechanisms of tumor immune evasion, such as hyperexpression of programmed cell death ligand 1 (PDL-1). High endothelial venules (HEV) are specialized blood vessels that can facilitate the lymphocytes migration to the tumor. Here we evaluate the association of HEV density and PDL-1 expression in primary cutaneous melanomas with the presence and degree of TILs and with other clinicopathological variables (age, sex, tumor location, melanoma histological type, Breslow thickness, ulceration, regression signs, mitotic index). HEV density and PDL-1 expression were assessed immunohistochemically in 78 melanoma cases, using a specific antibody, and were detected in 59% and 76% of these, respectively. Positive associations were identified between HEV density and PDL-1 expression with the presence and degree of lymphocytic infiltration, melanoma histological type and ulceration presence. No correlation was found between HEV density and PDL-1 expression. Our findings confirm the HEV role in the recruitment and facilitation of lymphocyte transport in cutaneous melanomas, where HEV density is strongly associated with the degree of TILs. Additionally, PDL-1 hyperexpression suggests a possible mechanism of tumor immune evasion, which may lead to inactivation and reduction of the tumor lymphocytes number.
Collapse
Affiliation(s)
- Josiane B Stolfo
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo, Escola de Ciências Agrárias, Inovação e Negócios, Campus I, BR 285, Km 171, São José, 99001-970 Passo Fundo, RS, Brazil
| | - Adriana C DA Motta
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo, Escola de Ciências Agrárias, Inovação e Negócios, Campus I, BR 285, Km 171, São José, 99001-970 Passo Fundo, RS, Brazil
| |
Collapse
|
14
|
Takei S, Kawachi H, Yamada T, Tamiya M, Negi Y, Goto Y, Nakao A, Shiotsu S, Tanimura K, Takeda T, Okada A, Harada T, Date K, Chihara Y, Hasegawa I, Tamiya N, Katayama Y, Nishioka N, Morimoto K, Iwasaku M, Tokuda S, Kijima T, Takayama K. Prognostic impact of clinical factors for immune checkpoint inhibitor with or without chemotherapy in older patients with non-small cell lung cancer and PD-L1 TPS ≥ 50. Front Immunol 2024; 15:1348034. [PMID: 38464519 PMCID: PMC10920331 DOI: 10.3389/fimmu.2024.1348034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024] Open
Abstract
Introduction The proportion of older patients diagnosed with advanced-stage non-small cell lung cancer (NSCLC) has been increasing. Immune checkpoint inhibitor (ICI) monotherapy (MONO) and combination therapy of ICI and chemotherapy (COMBO) are standard treatments for patients with NSCLC and programmed cell death ligand-1 (PD-L1) tumor proportion scores (TPS) ≥ 50%. However, evidence from the clinical trials specifically for older patients is limited. Thus, it is unclear which older patients benefit more from COMBO than MONO. Methods We retrospectively analyzed 199 older NSCLC patients of Eastern Cooperative Oncology Group performance status (ECOG PS) 0-1 and PD-L1 TPS ≥ 50% who were treated with MONO or COMBO. We analyzed the association between treatment outcomes and baseline patient characteristics in each group, using propensity score matching. Results Of the 199 patients, 131 received MONO, and 68 received COMBO. The median overall survival (OS; MONO: 25.2 vs. COMBO: 42.2 months, P = 0.116) and median progression-free survival (PFS; 10.9 vs. 11.8 months, P = 0.231) did not significantly differ between MONO and COMBO group. In the MONO group, OS was significantly shorter in patients without smoking history compared to those with smoking history [HR for smoking history against non-smoking history: 0.36 (95% CI: 0.16-0.78), P = 0.010]. In the COMBO group, OS was significantly shorter in patients with PS 1 than those with PS 0 [HR for PS 0 against PS 1: 3.84 (95% CI: 1.44-10.20), P = 0.007] and for patients with squamous cell carcinoma (SQ) compared to non-squamous cell carcinoma (non-SQ) [HR for SQ against non-SQ: 0.17 (95% CI: 0.06-0.44), P < 0.001]. For patients with ECOG PS 0 (OS: 26.1 months vs. not reached, P = 0.0031, PFS: 6.5 vs. 21.7 months, P = 0.0436) or non-SQ (OS: 23.8 months vs. not reached, P = 0.0038, PFS: 10.9 vs. 17.3 months, P = 0.0383), PFS and OS were significantly longer in the COMBO group. Conclusions ECOG PS and histological type should be considered when choosing MONO or COMBO treatment in older patients with NSCLC and PD-L1 TPS ≥ 50%.
Collapse
Affiliation(s)
- Shota Takei
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hayato Kawachi
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tadaaki Yamada
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Motohiro Tamiya
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Yoshiki Negi
- Department of Respiratory Medicine and Hematology, School of Medicine, Hyogo Medical University, Nishinomiya, Japan
| | - Yasuhiro Goto
- Department of Respiratory Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| | - Akira Nakao
- Department of Respiratory Medicine, Fukuoka University Hospital, Nanakuma, Japan
| | - Shinsuke Shiotsu
- Department of Respiratory Medicine, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Keiko Tanimura
- Department of Respiratory Medicine, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Japan
| | - Takayuki Takeda
- Department of Respiratory Medicine, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Japan
| | - Asuka Okada
- Department of Respiratory Medicine, Saiseikai Suita Hospital, Suita, Japan
| | - Taishi Harada
- Department of Medical Oncology, Fukuchiyama City Hospital, Fukuchiyama, Japan
| | - Koji Date
- Department of Pulmonary Medicine, Kyoto Chubu Medical Center, Nantan, Japan
| | - Yusuke Chihara
- Department of Respiratory Medicine, Uji-Tokushukai Medical Center, Uji, Japan
| | - Isao Hasegawa
- Department of Respiratory Medicine, Saiseikai Shigaken Hospital, Rittou, Japan
| | - Nobuyo Tamiya
- Department of Respiratory Medicine, Rakuwakai Otowa Hospital, Kyoto, Japan
| | - Yuki Katayama
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naoya Nishioka
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kenji Morimoto
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masahiro Iwasaku
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shinsaku Tokuda
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takashi Kijima
- Department of Respiratory Medicine and Hematology, School of Medicine, Hyogo Medical University, Nishinomiya, Japan
| | - Koichi Takayama
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
15
|
Li H, Zheng N, Guo A, Tang W, Li M, Cao Y, Ma X, Cao H, Ma Y, Wang H, Zhao S. FSTL3 promotes tumor immune evasion and attenuates response to anti-PD1 therapy by stabilizing c-Myc in colorectal cancer. Cell Death Dis 2024; 15:107. [PMID: 38302412 PMCID: PMC10834545 DOI: 10.1038/s41419-024-06469-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 02/03/2024]
Abstract
Programmed cell death 1 ligand 1 (PDL1)/programmed cell death 1 (PD1) blockade immunotherapy provides a prospective strategy for the treatment of colorectal cancer (CRC), but various constraints on the effectiveness of the treatment are still remaining. As reported in previous studies, follistatin-like 3 (FSTL3) could mediate inflammatory response in macrophages by induction lipid accumulation. Herein, we revealed that FSTL3 were overexpressed in malignant cells in the CRC microenvironment, notably, the expression level of FSTL3 was related to tumor immune evasion and the clinical efficacy of anti-PD1 therapy. Further studies determined that hypoxic tumor microenvironment induced the FSTL3 expression via HIF1α in CRC cells, FSTL3 could bind to the transcription factor c-Myc (354-406 amino acids) to suppress the latter's ubiquitination and increase its stability, thereby to up-regulated the expression of PDL1 and indoleamine 2,3-dioxygenase 1 (IDO1). The results in the immunocompetent tumor models verified that FSLT3 knockout in tumor cells increased the proportion of CD8+ T cells in the tumor microenvironment, reduced the proportion of regulatory T cells (CD25+ Foxp3+) and exhausted T cells (PD1+ CD8+), and synergistically improved the anti-PD1 therapy efficacy. To sum up, FSTL3 enhanced c-Myc-mediated transcriptional regulation to promote immune evasion and attenuates response to anti-PD1 therapy in CRC, suggesting the potential of FSTL3 as a biomarker of immunotherapeutic efficacy as well as a novel immunotherapeutic target in CRC.
Collapse
Affiliation(s)
- Haiyang Li
- Department of general surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Na Zheng
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Anning Guo
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Weiwei Tang
- Hepatobiliary/Liver Transplantation Center, the First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Muxin Li
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yuanyuan Cao
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinhua Ma
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Hongyong Cao
- Department of general surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Yong Ma
- Department of general surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Hanjin Wang
- Department of general surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Shuli Zhao
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China.
| |
Collapse
|
16
|
Cui JW, Li Y, Yang Y, Yang HK, Dong JM, Xiao ZH, He X, Guo JH, Wang RQ, Dai B, Zhou ZL. Tumor immunotherapy resistance: Revealing the mechanism of PD-1 / PD-L1-mediated tumor immune escape. Biomed Pharmacother 2024; 171:116203. [PMID: 38280330 DOI: 10.1016/j.biopha.2024.116203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024] Open
Abstract
Tumor immunotherapy, an innovative anti-cancer therapy, has showcased encouraging outcomes across diverse tumor types. Among these, the PD-1/PD-L1 signaling pathway is a well-known immunological checkpoint, which is significant in the regulation of immune evasion by tumors. Nevertheless, a considerable number of patients develop resistance to anti-PD-1/PD-L1 immunotherapy, rendering it ineffective in the long run. This research focuses on exploring the factors of PD-1/PD-L1-mediated resistance in tumor immunotherapy. Initially, the PD-1/PD-L1 pathway is characterized by its role in facilitating tumor immune evasion, emphasizing its role in autoimmune homeostasis. Next, the primary mechanisms of resistance to PD-1/PD-L1-based immunotherapy are analyzed, including tumor antigen deletion, T cell dysfunction, increased immunosuppressive cells, and alterations in the expression of PD-L1 within tumor cells. The possible ramifications of altered metabolism, microbiota, and DNA methylation on resistance is also described. Finally, possible resolution strategies for dealing with anti-PD-1/PD-L1 immunotherapy resistance are discussed, placing particular emphasis on personalized therapeutic approaches and the exploration of more potent immunotherapy regimens.
Collapse
Affiliation(s)
- Jia-Wen Cui
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China; College of Pharmacy, Jinan University, Guangzhou, China
| | - Yao Li
- College of Pharmacy, Macau University of Science and Technology (MUST), China
| | - Yang Yang
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China; College of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Hai-Kui Yang
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Jia-Mei Dong
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Zhi-Hua Xiao
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China; College of Pharmacy, Jinan University, Guangzhou, China
| | - Xin He
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Jia-Hao Guo
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China; College of Pharmacy, Jinan University, Guangzhou, China
| | - Rui-Qi Wang
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China.
| | - Bo Dai
- Department of Cardiology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan City 528200, Guangdong Province, China.
| | - Zhi-Ling Zhou
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China.
| |
Collapse
|
17
|
Alotaibi F, Alshammari K, Alotaibi BA, Alsaab H. Destabilizing the genome as a therapeutic strategy to enhance response to immune checkpoint blockade: a systematic review of clinical trials evidence from solid and hematological tumors. Front Pharmacol 2024; 14:1280591. [PMID: 38264532 PMCID: PMC10803447 DOI: 10.3389/fphar.2023.1280591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/11/2023] [Indexed: 01/25/2024] Open
Abstract
Background: Genomic instability is increased alterations in the genome during cell division and is common among most cancer cells. Genome instability enhances the risk of initial carcinogenic transformation, generating new clones of tumor cells, and increases tumor heterogeneity. Although genome instability contributes to malignancy, it is also an "Achilles' heel" that constitutes a therapeutically-exploitable weakness-when sufficiently advanced, it can intrinsically reduce tumor cell survival by creating DNA damage and mutation events that overwhelm the capacity of cancer cells to repair those lesions. Furthermore, it can contribute to extrinsic survival-reducing events by generating mutations that encode new immunogenic antigens capable of being recognized by the immune system, particularly when anti-tumor immunity is boosted by immunotherapy drugs. Here, we describe how genome-destabilization can induce immune activation in cancer patients and systematically review the induction of genome instability exploited clinically, in combination with immune checkpoint blockade. Methods: We performed a systematic review of clinical trials that exploited the combination approach to successfully treat cancers patients. We systematically searched PubMed, Cochrane Central Register of Controlled Trials, Clinicaltrials.gov, and publication from the reference list of related articles. The most relevant inclusion criteria were peer-reviewed clinical trials published in English. Results: We identified 1,490 studies, among those 164 were clinical trials. A total of 37 clinical trials satisfied the inclusion criteria and were included in the study. The main outcome measurements were overall survival and progression-free survival. The majority of the clinical trials (30 out of 37) showed a significant improvement in patient outcome. Conclusion: The majority of the included clinical trials reported the efficacy of the concept of targeting DNA repair pathway, in combination with immune checkpoint inhibitors, to create a "ring of synergy" to treat cancer with rational combinations.
Collapse
Affiliation(s)
- Faizah Alotaibi
- College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Alahsa, Saudi Arabia
- King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Kanaan Alshammari
- King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
- Oncology Department, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Badi A. Alotaibi
- King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Hashem Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| |
Collapse
|
18
|
Ricker CA, Meli K, Van Allen EM. Historical perspective and future directions: computational science in immuno-oncology. J Immunother Cancer 2024; 12:e008306. [PMID: 38191244 PMCID: PMC10826578 DOI: 10.1136/jitc-2023-008306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 01/10/2024] Open
Abstract
Immuno-oncology holds promise for transforming patient care having achieved durable clinical response rates across a variety of advanced and metastatic cancers. Despite these achievements, only a minority of patients respond to immunotherapy, underscoring the importance of elucidating molecular mechanisms responsible for response and resistance to inform the development and selection of treatments. Breakthroughs in molecular sequencing technologies have led to the generation of an immense amount of genomic and transcriptomic sequencing data that can be mined to uncover complex tumor-immune interactions using computational tools. In this review, we discuss existing and emerging computational methods that contextualize the composition and functional state of the tumor microenvironment, infer the reactivity and clonal dynamics from reconstructed immune cell receptor repertoires, and predict the antigenic landscape for immune cell recognition. We further describe the advantage of multi-omics analyses for capturing multidimensional relationships and artificial intelligence techniques for integrating omics data with histopathological and radiological images to encapsulate patterns of treatment response and tumor-immune biology. Finally, we discuss key challenges impeding their widespread use and clinical application and conclude with future perspectives. We are hopeful that this review will both serve as a guide for prospective researchers seeking to use existing tools for scientific discoveries and inspire the optimization or development of novel tools to enhance precision, ultimately expediting advancements in immunotherapy that improve patient survival and quality of life.
Collapse
Affiliation(s)
- Cora A Ricker
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kevin Meli
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
19
|
Fiorentino V, Pizzimenti C, Franchina M, Pepe L, Russotto F, Tralongo P, Micali MG, Militi GB, Lentini M. Programmed Cell Death Ligand 1 Immunohistochemical Expression and Cutaneous Melanoma: A Controversial Relationship. Int J Mol Sci 2024; 25:676. [PMID: 38203846 PMCID: PMC10779806 DOI: 10.3390/ijms25010676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024] Open
Abstract
Cutaneous melanoma (CM) is traditionally considered one of the most "immunogenic" tumors, eliciting a high immune response. However, despite the presence of tumor-infiltrating lymphocytes (TILs), melanoma cells use strategies to suppress antitumor immunity and avoid being eliminated by immune surveillance. The PD-1 (programmed death-1)/PD-L1 (programmed death-ligand 1) axis is a well-known immune escape system adopted by neoplastic cells. Therefore, immunotherapy with PD-1 and PD-L1 inhibitors is quickly becoming the main treatment approach for metastatic melanoma patients. However, the clinical utility of PD-L1 expression assessment in CM is controversial, and the interpretation of PD-L1 scores in clinical practice is still a matter of debate. Nonetheless, the recent literature data show that by adopting specific PD-L1 assessment methods in melanoma samples, a correlation between the expression of such a biomarker and a positive response to PD-1-based immunotherapy can be seen. Our review aims to describe the state-of-the-art knowledge regarding the prognostic and predictive role of PD-L1 expression in CM while also referring to possible biological explanations for the variability in its expressions and related treatment responses.
Collapse
Affiliation(s)
- Vincenzo Fiorentino
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (M.F.); (L.P.); (F.R.); (M.G.M.); (M.L.)
| | - Cristina Pizzimenti
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy;
| | - Mariausilia Franchina
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (M.F.); (L.P.); (F.R.); (M.G.M.); (M.L.)
| | - Ludovica Pepe
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (M.F.); (L.P.); (F.R.); (M.G.M.); (M.L.)
| | - Fernanda Russotto
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (M.F.); (L.P.); (F.R.); (M.G.M.); (M.L.)
| | - Pietro Tralongo
- Department of Women, Children and Public Health Sciences, Catholic University of the Sacred Heart, Agostino Gemelli IRCCS University Hospital Foundation, 00168 Rome, Italy;
| | - Marina Gloria Micali
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (M.F.); (L.P.); (F.R.); (M.G.M.); (M.L.)
| | - Gaetano Basilio Militi
- Department of Sciences for Promotion of Health and Mother and Child Care, Anatomic Pathology, University of Palermo, 90133 Palermo, Italy;
| | - Maria Lentini
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (M.F.); (L.P.); (F.R.); (M.G.M.); (M.L.)
| |
Collapse
|
20
|
Meenakshi S, Maharana KC, Nama L, Vadla UK, Dhingra S, Ravichandiran V, Murti K, Kumar N. Targeting Histone 3 Variants Epigenetic Landscape and Inhibitory Immune Checkpoints: An Option for Paediatric Brain Tumours Therapy. Curr Neuropharmacol 2024; 22:1248-1270. [PMID: 37605389 PMCID: PMC10964098 DOI: 10.2174/1570159x21666230809110444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 08/23/2023] Open
Abstract
Despite little progress in survival rates with regular therapies, which do not provide complete care for curing pediatric brain tumors (PBTs), there is an urgent need for novel strategies to overcome the toxic effects of conventional therapies to treat PBTs. The co-inhibitory immune checkpoint molecules, e.g., CTLA-4, PD-1/PD-L1, etc., and epigenetic alterations in histone variants, e.g., H3K27me3 that help in immune evasion at tumor microenvironment have not gained much attention in PBTs treatment. However, key epigenetic mechanistic alterations, such as acetylation, methylation, phosphorylation, sumoylation, poly (ADP)-ribosylation, and ubiquitination in histone protein, are greatly acknowledged. The crucial checkpoints in pediatric brain tumors are cytotoxic T lymphocyte antigen-4 (CTLA-4), programmed cell death protein-1 (PD-1) and programmed death-ligand 1 (PDL1), OX-2 membrane glycoprotein (CD200), and indoleamine 2,3-dioxygenase (IDO). This review covers the state of knowledge on the role of multiple co-inhibitory immunological checkpoint proteins and histone epigenetic alterations in different cancers. We further discuss the processes behind these checkpoints, cell signalling, the current scenario of clinical and preclinical research and potential futuristic opportunities for immunotherapies in the treatment of pediatric brain tumors. Conclusively, this article further discusses the possibilities of these interventions to be used for better therapy options.
Collapse
Affiliation(s)
- Sarasa Meenakshi
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| | - Krushna Ch Maharana
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| | - Lokesh Nama
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| | - Udaya Kumar Vadla
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| | - Sameer Dhingra
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| | - Velayutham Ravichandiran
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| | - Nitesh Kumar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| |
Collapse
|
21
|
Tønnesen EMT, Stougaard M, Meldgaard P, Lade-Keller J. Prognostic value of KRAS mutations, TP53 mutations and PD-L1 expression among lung adenocarcinomas treated with immunotherapy. J Clin Pathol 2023; 77:54-60. [PMID: 36410939 DOI: 10.1136/jcp-2022-208574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/25/2022] [Indexed: 11/22/2022]
Abstract
AIMS The aim of this study was to investigate the association between oncogenic alterations and programmed cell death ligand 1 (PD-L1) expression in lung adenocarcinomas, as well as the prognostic value of KRAS and/or TP53 mutations in patients treated with immunotherapy. METHODS This study is a retrospective cohort study of 519 patients with lung adenocarcinomas analysed for mutations and PD-L1 expression. Data were collected from electronic pathology record system, next-generation sequencing system, and clinical databases. Association between mutations and PD-L1 expression was investigated, as well as survival statistics of the 65 patients treated with immunotherapy. RESULTS 41% of the samples contained a KRAS mutation, predominantly together with mutations in TP53 (41%) or STK11 (10%). Higher expression of PD-L1 was seen among patients with KRAS mutations (p=0.002) and EGFR wild type (p=0.006). For patients treated with immunotherapy, there was no statistically significant difference for overall survival (OS) and progression-free survival (PFS) according to KRAS mutation status, TP53 mutation status or PD-L1 expression. The HR for concomitant mutations in TP53 and KRAS was 0.78 (95% CI 0.62 to 0.99) for OS and 0.43 (0.21 to 0.88) for PFS. Furthermore, concomitant TP53 and KRAS mutations predicted a better PFS (p=0.015) and OS (p=0.029) compared with no mutations or a single mutation in either TP53 or KRAS. CONCLUSION Mutations in TP53 together with KRAS may serve as a potential biomarker for survival benefits with immunotherapy.
Collapse
Affiliation(s)
- Ea Maria Tønning Tønnesen
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
- Department of Pathology, Viborg Regional Hospital, Viborg, Denmark
| | - Magnus Stougaard
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Peter Meldgaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Johanne Lade-Keller
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
22
|
Anastasiou M, Kyriazoglou A, Kotsantis I, Economopoulou P, Kyrkasiadou M, Giannopoulou A, Kosmidou A, Smerdi D, Moutafi M, Gavrielatou N, Psyrri A. Immune checkpoint inhibitors in sarcomas: a systematic review. IMMUNO-ONCOLOGY TECHNOLOGY 2023; 20:100407. [PMID: 38192615 PMCID: PMC10772240 DOI: 10.1016/j.iotech.2023.100407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Sarcomas are tumors that originate from mesenchymal cells. The variety of sarcomas' response to chemotherapy and the wide range of prognosis reflect their heterogeneity. In order to improve the rates of response, the research has been orientated toward other forms of therapy, such as targeted therapies and immunotherapy or toward combinations of them. Immune checkpoint inhibitors (ICIs) have been the highlight of immunotherapy in the last decade. Although ICIs are already included in the guidelines of different malignancies, their clinical benefit in sarcomas is still under study. Alveolar soft part sarcomas, undifferentiated pleomorphic sarcomas and other subtypes of sarcoma with high presence of tertiary lymphoid structures tend to respond to ICIs, but further investigation is still needed. Furthermore, the search of predictive biomarkers to determine the type of sarcomas that are sensitive to ICIs is still very challenging. This review will focus on the results of clinical trials, which examine the effect of ICIs and their combination with chemotherapy, targeted therapies and other forms of immunotherapy in sarcomas.
Collapse
Affiliation(s)
- M. Anastasiou
- Section of Medical Oncology, 2nd Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - A. Kyriazoglou
- Section of Medical Oncology, 2nd Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - I. Kotsantis
- Section of Medical Oncology, 2nd Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - P. Economopoulou
- Section of Medical Oncology, 2nd Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - M. Kyrkasiadou
- Section of Medical Oncology, 2nd Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - A. Giannopoulou
- Section of Medical Oncology, 2nd Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - A. Kosmidou
- Section of Medical Oncology, 2nd Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - D. Smerdi
- Section of Medical Oncology, 2nd Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - M. Moutafi
- Section of Medical Oncology, 2nd Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - N. Gavrielatou
- Section of Medical Oncology, 2nd Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - A. Psyrri
- Section of Medical Oncology, 2nd Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| |
Collapse
|
23
|
Hall J, Lui K, Tan X, Shumway J, Collichio F, Moschos S, Sengupta S, Chaudhary R, Quinsey C, Jaikumar S, Forbes J, Andaluz N, Zuccarello M, Struve T, Vatner R, Pater L, Breneman J, Weiner A, Wang K, Shen C. Factors associated with radiation necrosis and intracranial control in patients treated with immune checkpoint inhibitors and stereotactic radiotherapy. Radiother Oncol 2023; 189:109920. [PMID: 37769968 DOI: 10.1016/j.radonc.2023.109920] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND AND PURPOSE Emerging data suggest immune checkpoint inhibitors (ICI) and stereotactic radiosurgery (SRS) or radiotherapy (SRT) may work synergistically, potentially increasing both efficacy and toxicity. This manuscript characterizes factors associated with intracranial control and radiation necrosis in this group. MATERIALS AND METHODS All patients had non-small cell lung cancer, renal cell carcinoma, or melanoma and were treated from 2013 to 2021 at two institutions with ICI and SRS/SRT. Univariate and multivariate analysis were used to analyze factors associated with local failure (LF) and grade 2+ (G2 + ) radiation necrosis. RESULTS There were 179 patients with 549 metastases. The median follow up from SRS/SRT was 14.7 months and the median tumor size was 7 mm (46 tumors ≥ 20 mm). Rates of LF and G2 + radiation necrosis per metastasis were 5.8% (32/549) and 6.9% (38/549), respectively. LF rates for ICI +/- 1 month from time of radiation versus not were 3% (8/264) and 8% (24/285) (p = 0.01), respectively. G2 + radiation necrosis rates for PD-L1 ≥ 50% versus < 50% were 17% (11/65) and 3% (5/203) (p=<0.001), respectively. PD-L1 ≥ 50% remained significantly associated with G2 + radiation necrosis on multivariate analysis (p = 0.03). Rates of intracranial failure were 54% (80/147) and 17% (4/23) (p = 0.001) for those without and with G2 + radiation necrosis, respectively. CONCLUSIONS PD-L1 expression (≥50%) may be associated with higher rates of G2 + radiation necrosis, and there may be improved intracranial control following the development of radiation necrosis. Administration of ICIs with SRS/SRT is overall safe, and there may be some local control benefit to delivering these concurrently.
Collapse
Affiliation(s)
- Jacob Hall
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, NC, USA.
| | - Kevin Lui
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, OH, USA
| | - Xianming Tan
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
| | - John Shumway
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, NC, USA
| | - Frances Collichio
- Department of Medicine, Division of Oncology, University of North Carolina, Chapel Hill, NC, USA
| | - Stergios Moschos
- Department of Medicine, Division of Oncology, University of North Carolina, Chapel Hill, NC, USA
| | - Soma Sengupta
- Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| | - Rekha Chaudhary
- Department of Medicine, Division of Oncology, University of Cincinnati, Cincinnati, OH, USA
| | - Carolyn Quinsey
- Department of Neurosurgery, University of North Carolina, Chapel Hill, NC, USA
| | - Sivakumar Jaikumar
- Department of Neurosurgery, University of North Carolina, Chapel Hill, NC, USA
| | - Jonathan Forbes
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, USA
| | - Norberto Andaluz
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, USA
| | - Mario Zuccarello
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, USA
| | - Timothy Struve
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, OH, USA
| | - Ralph Vatner
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, OH, USA
| | - Luke Pater
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, OH, USA
| | - John Breneman
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, OH, USA
| | - Ashley Weiner
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, NC, USA
| | - Kyle Wang
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, OH, USA
| | - Colette Shen
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
24
|
Liu Y, Wang Z, Hao H, Wang Y, Hua L. Insight into immune checkpoint inhibitor therapy for colorectal cancer from the perspective of circadian clocks. Immunology 2023; 170:13-27. [PMID: 37114514 DOI: 10.1111/imm.13647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 04/02/2023] [Indexed: 04/29/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumours and the third most common cause of cancer deaths worldwide, with high morbidity and mortality. Circadian clocks are widespread in humans and temporally regulate physiologic functions to maintain homeostasis. Recent studies showed that circadian components were strong regulators of the tumour immune microenvironment (TIME) and the immunogenicity of CRC cells. Therefore, insight into immunotherapy from the perspective of circadian clocks can be promising. Although immunotherapy, especially immune checkpoint inhibitor (ICI) treatment, has been a milestone in cancer treatment, greater accuracy is still needed for selecting patients who will respond positively to immunotherapy with minimal side effects. In addition, there were few reviews focusing on the role of the circadian components in the TIME and the immunogenicity of CRC cells. Therefore, this review highlights the crosstalk between the TIME in CRC and the immunogenicity of CRC cells based on the circadian clocks. With the goal to achieve the possibility that patients with CRC can benefit most from the ICI treatment, we provide potential evidence and a novel idea for building a predictive framework combined with circadian factors, searching for enhancers of ICIs targeting circadian components and clinically implementing the timing of ICI treatment for patients with CRC.
Collapse
Affiliation(s)
- Yanhong Liu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zeqin Wang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Hankun Hao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yaping Wang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Luchun Hua
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Mönch S, Heimer MM, Winkelmann M, Guertler A, Schlaak M, Tufman A, Ben Khaled N, de Toni E, Westphalen CB, von Bergwelt-Baildon M, Dinkel J, Kazmierczak PM, Ingrisch M, Mansour N, Unterrainer M, Heinzerling L, Ricke J, Kunz WG. Patterns of pseudoprogression across different cancer entities treated with immune checkpoint inhibitors. Cancer Imaging 2023; 23:58. [PMID: 37291665 DOI: 10.1186/s40644-023-00580-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND Pseudoprogression (PsPD) is a rare response pattern to immune checkpoint inhibitor (ICI) therapy in oncology. This study aims to reveal imaging features of PsPD, and their association to other relevant findings. METHODS Patients with PsPD who had at least three consecutive cross-sectional imaging studies at our comprehensive cancer center were retrospectively analyzed. Treatment response was assessed according to immune Response Evaluation Criteria in Solid Tumors (iRECIST). PsPD was defined as the occurrence of immune unconfirmed progressive disease (iUPD) without follow-up confirmation. Target lesions (TL), non-target lesions (NTL), new lesions (NL) were analyzed over time. Tumor markers and immune-related adverse events (irAE) were correlated. RESULTS Thirty-two patients were included (mean age: 66.7 ± 13.6 years, 21.9% female) with mean baseline STL of 69.7 mm ± 55.6 mm. PsPD was observed in twenty-six patients (81.3%) at FU1, and no cases occurred after FU4. Patients with iUPD exhibited the following: TL increase in twelve patients, (37.5%), NTL increase in seven patients (21.9%), NL appearance in six patients (18.8%), and combinations thereof in four patients (12.5%). The mean and maximum increase for first iUPD in sum of TL was 19.8 and 96.8 mm (+ 700.8%). The mean and maximum decrease in sum of TL between iUPD and consecutive follow-up was - 19.1 mm and - 114.8 mm (-60.9%) respectively. The mean and maximum sum of new TL at first iUPD timepoint were 7.6 and 82.0 mm respectively. In two patients (10.5%), tumor-specific serologic markers were elevated at first iUPD, while the rest were stable or decreased among the other PsPD cases (89.5%). In fourteen patients (43.8%), irAE were observed. CONCLUSIONS PsPD occurred most frequently at FU1 after initiation of ICI treatment. The two most prevalent reasons for PsPD were TL und NTL progression, with an increase in TL diameter commonly below + 100%. In few cases, PsPD was observed even if tumor markers were rising compared to baseline. Our findings also suggest a correlation between PsPD and irAE. These findings may guide decision-making of ICI continuation in suspected PsPD.
Collapse
Affiliation(s)
- Sebastian Mönch
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, Munich, 81377, Germany
| | - Maurice M Heimer
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, Munich, 81377, Germany
| | - Michael Winkelmann
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, Munich, 81377, Germany
| | - Anne Guertler
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Cancer Center München-LMU (CCCM LMU ), LMU Munich, Munich, Germany
| | - Max Schlaak
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Cancer Center München-LMU (CCCM LMU ), LMU Munich, Munich, Germany
- Department of Dermatology, Venerology and Allergology, Charité - University hospital Berlin, Berlin, Germany
| | - Amanda Tufman
- Department of Medicine V, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Cancer Center München-LMU (CCCM LMU ), LMU Munich, Munich, Germany
| | - Najib Ben Khaled
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Cancer Center München-LMU (CCCM LMU ), LMU Munich, Munich, Germany
| | - Enrico de Toni
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Cancer Center München-LMU (CCCM LMU ), LMU Munich, Munich, Germany
| | - Christoph B Westphalen
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Cancer Center München-LMU (CCCM LMU ), LMU Munich, Munich, Germany
| | - Michael von Bergwelt-Baildon
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Cancer Center München-LMU (CCCM LMU ), LMU Munich, Munich, Germany
| | - Julien Dinkel
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, Munich, 81377, Germany
| | - Philipp M Kazmierczak
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, Munich, 81377, Germany
| | - Michael Ingrisch
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, Munich, 81377, Germany
- Clinical Data Science, LMU Munich, Munich, Germany
| | - Nabeel Mansour
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, Munich, 81377, Germany
| | - Marcus Unterrainer
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, Munich, 81377, Germany
| | - Lucie Heinzerling
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Cancer Center München-LMU (CCCM LMU ), LMU Munich, Munich, Germany
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, Munich, 81377, Germany
- Comprehensive Cancer Center München-LMU (CCCM LMU ), LMU Munich, Munich, Germany
| | - Wolfgang G Kunz
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, Munich, 81377, Germany.
- Comprehensive Cancer Center München-LMU (CCCM LMU ), LMU Munich, Munich, Germany.
| |
Collapse
|
26
|
Bure IV, Nemtsova MV. Mutual Regulation of ncRNAs and Chromatin Remodeling Complexes in Normal and Pathological Conditions. Int J Mol Sci 2023; 24:ijms24097848. [PMID: 37175555 PMCID: PMC10178202 DOI: 10.3390/ijms24097848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Chromatin remodeling is the one of the main epigenetic mechanisms of gene expression regulation both in normal cells and in pathological conditions. In recent years, a growing number of investigations have confirmed that epigenetic regulators are tightly connected and form a comprehensive network of regulatory pathways and feedback loops. Genes encoding protein subunits of chromatin remodeling complexes are often mutated and change their expression in diseases, as well as non-coding RNAs (ncRNAs). Moreover, different mechanisms of their mutual regulation have already been described. Further understanding of these processes may help apply their clinical potential for establishment of the diagnosis, prognosis, and treatment of the diseases. The therapeutic targeting of the chromatin structure has many limitations because of the complexity of its regulation, with the involvement of a large number of genes, proteins, non-coding transcripts, and other intermediary molecules. However, several successful strategies have been proposed to target subunits of chromatin remodeling complexes and genes encoding them, as well as the ncRNAs that regulate the operation of these complexes and direct them to the target gene regions. In our review, we focus on chromatin remodeling complexes and ncRNAs, their mutual regulation, role in cellular processes and potential clinical application.
Collapse
Affiliation(s)
- Irina V Bure
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Marina V Nemtsova
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Epigenetics, Research Centre for Medical Genetics, 115522 Moscow, Russia
| |
Collapse
|
27
|
Cole K, Al-Kadhimi Z, Talmadge JE. Highlights into historical and current immune interventions for cancer. Int Immunopharmacol 2023; 117:109882. [PMID: 36848790 PMCID: PMC10355273 DOI: 10.1016/j.intimp.2023.109882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 03/01/2023]
Abstract
Immunotherapy is an additional pillar when combined with traditional standards of care such as chemotherapy, radiotherapy, and surgery for cancer patients. It has revolutionized cancer treatment and rejuvenated the field of tumor immunology. Several types of immunotherapies, including adoptive cellular therapy (ACT) and checkpoint inhibitors (CPIs), can induce durable clinical responses. However, their efficacies vary, and only subsets of cancer patients benefit from their use. In this review, we address three goals: to provide insight into the history of these approaches, broaden our understanding of immune interventions, and discuss current and future approaches. We highlight how cancer immunotherapy has evolved and discuss how personalization of immune intervention may address present limitations. Cancer immunotherapy is considered a recent medical achievement and in 2013 was selected as the "Breakthrough of the Year" by Science. While the breadth of immunotherapeutics has been rapidly expanding, to include the use of chimeric antigen receptor (CAR) T-cell therapy and immune checkpoint inhibitor (ICI) therapy, immunotherapy dates back over 3000 years. The expansive history of immunotherapy, and related observations, have resulted in several approved immune therapeutics beyond the recent emphasis on CAR-T and ICI therapies. In addition to other classical forms of immune intervention, including human papillomavirus (HPV), hepatitis B, and the Mycobacterium bovis Bacillus Calmette-Guérin (BCG) tuberculosis vaccines, immunotherapies have had a broad and durable impact on cancer therapy and prevention. One classic example of immunotherapy was identified in 1976 with the use of intravesical administration of BCG in patients with bladder cancer; resulting in a 70 % eradication rate and is now standard of care. However, a greater impact from the use of immunotherapy is documented by the prevention of HPV infections that are responsible for 98 % of cervical cancer cases. In 2020, the World Health Organization (WHO) estimated that 341,831 women died from cervical cancer [1]. However, administration of a single dose of a bivalent HPV vaccine was shown to be 97.5 % effective in preventing HPV infections. These vaccines not only prevent cervical squamous cell carcinoma and adenocarcinoma, but also oropharyngeal, anal, vulvar, vaginal, and penile squamous cell carcinomas. The breadth, response and durability of these vaccines can be contrasted with CAR-T-cell therapies, which have significant barriers to their widespread use including logistics, manufacturing limitations, toxicity concerns, financial burden and lasting remissions observed in only 30 to 40 % of responding patients. Another, recent immunotherapy focus are ICIs. ICIs are a class of antibodies that can increase the immune responses against cancer cells in patients. However, ICIs are only effective against tumors with a high mutational burden and are associated with a broad spectrum of toxicities requiring interruption of administration and/or administration corticosteroids; both of which limit immune therapy. In summary, immune therapeutics have a broad impact worldwide, utilizing numerous mechanisms of action and when considered in their totality are more effective against a broader range of tumors than initially considered. These new cancer interventions have tremendous potential notability when multiple mechanisms of immune intervention are combined as well as with standard of care modalities.
Collapse
Affiliation(s)
- Kathryn Cole
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zaid Al-Kadhimi
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - James E Talmadge
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
28
|
Abe Y, Sano T, Tanaka N. The Role of PRMT5 in Immuno-Oncology. Genes (Basel) 2023; 14:678. [PMID: 36980950 PMCID: PMC10048035 DOI: 10.3390/genes14030678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy has caused a paradigm shift in cancer therapeutic strategy. However, this therapy only benefits a subset of patients. The difference in responses to ICIs is believed to be dependent on cancer type and its tumor microenvironment (TME). The TME is favorable for cancer progression and metastasis and can also help cancer cells to evade immune attacks. To improve the response to ICIs, it is crucial to understand the mechanism of how the TME is maintained. Protein arginine methyltransferase 5 (PRMT5) di-methylates arginine residues in its substrates and has essential roles in the epigenetic regulation of gene expression, signal transduction, and the fidelity of mRNA splicing. Through these functions, PRMT5 can support cancer cell immune evasion. PRMT5 is necessary for regulatory T cell (Treg) functions and promotes cancer stemness and the epithelial-mesenchymal transition. Specific factors in the TME can help recruit Tregs, tumor-associated macrophages, and myeloid-derived suppressor cells into tumors. In addition, PRMT5 suppresses antigen presentation and the production of interferon and chemokines, which are necessary to recruit T cells into tumors. Overall, PRMT5 supports an immunosuppressive TME. Therefore, PRMT5 inhibition would help recover the immune cycle and enable the immune system-mediated elimination of cancer cells.
Collapse
Affiliation(s)
| | | | - Nobuyuki Tanaka
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-Ku, Tokyo 113-8602, Japan
| |
Collapse
|
29
|
Vranic S, Gatalica Z. PD-L1 testing by immunohistochemistry in immuno-oncology. BIOMOLECULES AND BIOMEDICINE 2023; 23:15-25. [PMID: 35964287 PMCID: PMC9901897 DOI: 10.17305/bjbms.2022.7953] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 08/06/2022] [Indexed: 02/08/2023]
Abstract
Immunotherapy, based on immune checkpoint inhibitors targeting the Programmed cell death ligand 1 (PD-L1) and/or Programmed Death Receptor 1 (PD-1), has substantially improved the outcomes of patients with various cancers. However, only ~30% of patients benefit from immune checkpoint inhibitors. Tumor PD-L1 expression, assessed by immunohistochemistry, is the most widely validated and used predictive biomarker to guide the selection of patients for immune checkpoint inhibitors. PD-L1 assessment may be challenging due to the necessity for different companion diagnostic assays for required specific immune checkpoint inhibitors and a relatively high level of inter-assay variability in terms of performance and cutoff levels. In this review, we discuss the role of PD-L1 immunohistochemistry as a predictive test in immunotherapy (immuno-oncology), highlight the complexity of the PD-L1 testing landscape, discuss various preanalytical, analytical and clinical issues that are associated with PD-L1 assays, and provide some insights into optimization of PD-L1 as a predictive biomarker in immuno-oncology.
Collapse
Affiliation(s)
- Semir Vranic
- College of Medicine, QU Health, Qatar University, Doha, Qatar,Correspondence to Semir Vranic:
| | - Zoran Gatalica
- Department of Pathology, University of Oklahoma College of Medicine, Oklahoma City, OK, United States
| |
Collapse
|
30
|
Xu L, Zhang L, Liang B, Zhu S, Lv G, Qiu L, Lin J. Design, Synthesis, and Biological Evaluation of a Small-Molecule PET Agent for Imaging PD-L1 Expression. Pharmaceuticals (Basel) 2023; 16:213. [PMID: 37259361 PMCID: PMC9968138 DOI: 10.3390/ph16020213] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/10/2023] [Accepted: 01/23/2023] [Indexed: 10/29/2023] Open
Abstract
Immunotherapy blocking programmed cell death protein 1/programmed death ligand 1 (PD-1/PD-L1) pathway has achieved great therapeutic effect in the clinic, but the overall response rate is not satisfactory. Early studies showed that response to treatment and overall survival could be positively related to PD-L1 expression in tumors. Therefore, accurate measurement of PD-L1 expression will help to screen cancer patients and improve the overall response rate. A small molecular positron emission tomography (PET) probe [18F]LP-F containing a biphenyl moiety was designed and synthesized for measurement of PD-L1 expression in tumors. The PET probe [18F]LP-F was obtained with a radiochemical yield of 12.72 ± 1.98%, a radiochemical purity of above 98% and molar activity of 18.8 GBq/μmol. [18F]LP-F had good stability in phosphate buffer saline (PBS) and mouse serum. In vitro assay indicated that [18F]LP-F showed moderate affinity to PD-L1. Micro-PET results showed that the tumor accumulation of [18F]LP-F in A375 tumor was inferior to that in A375-hPD-L1 tumor. All the results demonstrated that [18F]LP-F could specifically bind to PD-L1 and had a potential application in non-invasive evaluation of PD-L1 expression in tumors.
Collapse
Affiliation(s)
- Liang Xu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Lixia Zhang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Beibei Liang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Shiyu Zhu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Gaochao Lv
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Ling Qiu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Jianguo Lin
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| |
Collapse
|
31
|
Alwosaibai K, Aalmri S, Mashhour M, Ghandorah S, Alshangiti A, Azam F, Selwi W, Gharaibeh L, Alatawi Y, Alruwaii Z, Alsaab HO. PD-L1 is highly expressed in ovarian cancer and associated with cancer stem cells populations expressing CD44 and other stem cell markers. BMC Cancer 2023; 23:13. [PMID: 36604635 PMCID: PMC9814309 DOI: 10.1186/s12885-022-10404-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitors, including PD-L1 (programmed death ligand-1) inhibitors have well documented anticancer therapeutic effect in most types of cancers but its use in the treatment of ovarian cancer is not yet proven. The aim of our study is to explore the predictive biomarkers in ovarian cancer and its association with the outcomes. We have investigated the role of PD-L1 expressions in the tumor microenvironment cells including immune cells and cancer stem cells in different types of ovarian cancer. METHODS A total of 119 surgical archived ovarian cancer samples were collected from the pathology department at King Fahad Specialist Hospital, Dammam, Saudi Arabia that included serous carcinomas, clear cell carcinomas, mucinous carcinomas, endometrioid carcinomas, and granulosa cell tumors. Immunohistochemistry (IHC) staining was performed using (i) PD-L1 antibodies to detect PD-L1 expressions; (ii) CD8 and CD4 to detect Tumor Infiltrating Lymphocytes (TILs); and (iii) CD44, LGR5, and ALDH2 to detect stem cell markers. The clinicopathological data were collected from patients' medical record to investigate the association with PD-L1, TILs, and stem cells expressions. RESULTS We report high PD-L1 expressions in 47.8% of ovarian cancer samples. PD-L1 expressions were detected in different types of epithelial ovarian cancer and were not associated with poor prognosis of ovarian cancer. However, determining the expression levels of TILs in the ovarian cancer tissues found that 81% (n = 97) of ovarian cancer samples have TILs that express both of CD8 and CD4 and significantly associated with high PD-L1 expressions. Interestingly, we have found that ovarian cancer tissues with high expressions of PD-L1 were associated with high expressions of stem cells expressing CD44 and LGR5. CONCLUSIONS PD-L1 is highly expressed in the serous type of ovarian carcinomas and the overall expression of PD-L1 is not associated with poor survival rate. Furthermore, PD-L1 expressions are strongly associated with TILs and stem cell markers in ovarian cancer. Inhibiting the PD-L1 using immune checkpoint inhibitors might downregulate stem cell population that known to be associated with cancer recurrence.
Collapse
Affiliation(s)
- Kholoud Alwosaibai
- grid.415280.a0000 0004 0402 3867Research Center, Biomedical Research Department, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Salmah Aalmri
- grid.415280.a0000 0004 0402 3867Research Center, Biomedical Research Department, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Miral Mashhour
- grid.415280.a0000 0004 0402 3867Department of Pathology and Lab Medicine, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Salim Ghandorah
- grid.415280.a0000 0004 0402 3867Department of Pathology and Lab Medicine, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Abdulraheem Alshangiti
- grid.415280.a0000 0004 0402 3867Department of Medical Oncology, King Fahad Specialist Hospital-Dammam, Dammam, Saudi Arabia
| | - Faisal Azam
- grid.415280.a0000 0004 0402 3867Department of Medical Oncology, King Fahad Specialist Hospital-Dammam, Dammam, Saudi Arabia
| | - Waleed Selwi
- grid.415280.a0000 0004 0402 3867Department of Medical Oncology, King Fahad Specialist Hospital-Dammam, Dammam, Saudi Arabia
| | - Lubna Gharaibeh
- grid.116345.40000000406441915Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Yasser Alatawi
- grid.440760.10000 0004 0419 5685Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Zainab Alruwaii
- Department of Anatomic Pathology, Dammam Regional Laboratory and Blood Bank, Dammam, Saudi Arabia
| | - Hashem O. Alsaab
- grid.412895.30000 0004 0419 5255Department of Pharmaceutics and Pharmaceutical Technology, Taif University, P.O BOX 11099, Taif, Saudi Arabia
| |
Collapse
|
32
|
Hamilton AM, Van Alsten SC, Gao X, Nsonwu-Farley J, Calhoun BC, Love MI, Troester MA, Hoadley KA. Incorporating RNA-based Risk Scores for Genomic Instability to Predict Breast Cancer Recurrence and Immunogenicity in a Diverse Population. CANCER RESEARCH COMMUNICATIONS 2023; 3:12-20. [PMID: 36968228 PMCID: PMC10035450 DOI: 10.1158/2767-9764.crc-22-0267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/26/2022] [Accepted: 12/19/2022] [Indexed: 04/12/2023]
Abstract
Markers of genomic instability, including TP53 status and homologous recombination deficiency (HRD), are candidate biomarkers of immunogenicity and immune-mediated survival, but little is known about the distribution of these markers in large, population-based cohorts of racially diverse patients with breast cancer. In prior clinical trials, DNA-based approaches have been emphasized, but recent data suggest that RNA-based assessment can capture pathway differences conveniently and may be streamlined with other RNA-based genomic risk scores. Thus, we used RNA expression to study genomic instability (HRD and TP53 pathways) in context of the breast cancer immune microenvironment in three datasets (total n = 4,892), including 1,942 samples from the Carolina Breast Cancer Study, a population-based study that oversampled Black (n = 1,026) and younger women (n = 1,032). Across all studies, 36.9% of estrogen receptor (ER)-positive and 92.6% of ER-negative breast cancer had presence of at least one genomic instability signature. TP53 and HRD status were significantly associated with immune expression in both ER-positive and ER-negative breast cancer. RNA-based genomic instability signatures were associated with higher PD-L1, CD8 T-cell marker, and global and multimarker immune cell expression. Among tumors with genomic instability signatures, adaptive immune response was associated with improved recurrence-free survival regardless of ER status, highlighting genomic instability as a candidate marker for predicting immunotherapy response. Leveraging a convenient, integrated RNA-based approach, this analysis shows that genomic instability interacts with immune response, an important target in breast cancer overall and in Black women who experience higher frequency of TP53 and HR deficiency. Significance Despite promising advances in breast cancer immunotherapy, predictive biomarkers that are valid across diverse populations and breast cancer subtypes are needed. Genomic instability signatures can be coordinated with other RNA-based scores to define immunogenic breast cancers and may have value in stratifying immunotherapy trial participants.
Collapse
Affiliation(s)
- Alina M. Hamilton
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Sarah C. Van Alsten
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Xiaohua Gao
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Joseph Nsonwu-Farley
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Benjamin C. Calhoun
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael I. Love
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Melissa A. Troester
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Katherine A. Hoadley
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
33
|
Willis JE, Eyerer F, Walk EE, Vasalos P, Bradshaw G, Yohe SL, Laser JS. Companion Diagnostics: Lessons Learned and the Path Forward From the Programmed Death Ligand-1 Rollout. Arch Pathol Lab Med 2023; 147:62-70. [PMID: 35472701 DOI: 10.5858/arpa.2021-0151-cp] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2021] [Indexed: 12/31/2022]
Abstract
CONTEXT.— Programmed death ligand-1 (PD-L1) immunohistochemistry companion diagnostic assays play a crucial role as predictive markers in patients being considered for immune checkpoint inhibitor therapy. However, because of a convergence of several factors, including recognition of increased types of cancers susceptible to immunotherapy, increasing numbers of immune checkpoint inhibitors, and release of multiple PD-L1 immunohistochemistry antibodies with differing reporting systems, this complex testing environment has led to significant levels of confusion for pathologists and medical oncologists. OBJECTIVE.— To identify which processes and procedures have contributed to the current challenges surrounding programmed death receptor-1 (PD-1)/PD-L1 companion diagnostics and to propose potential remedies to this issue. This is based upon input from key industrial stakeholders in conjunction with the College of American Pathologists Personalized Health Care Committee. DESIGN.— A meeting of representatives of pharmaceutical and in vitro diagnostic companies along with the Personalized Health Care Committee reviewed the process of release of the PD-L1 companion diagnostic assays using a modified root cause analysis format. The modified root cause analysis envisioned an ideal circumstance of development and implementation of a companion diagnostic to identify shortcomings in the rollout of the PD-L1 assay and to suggest actions to improve future companion diagnostic assay releases. RESULTS.— The group recommended improvements to key principles in companion diagnostics implementation related to multi-stakeholder communication, increased regulatory flexibility to incorporate postapproval medical knowledge, improved cross-disciplinary information exchange between medical oncology and pathology societies, and enhanced postmarket training programs. CONCLUSIONS.— The rapidly changing nature of and increasing complexity associated with companion diagnostics require a fundamental review of processes related to their design, implementation, and oversight.
Collapse
Affiliation(s)
- Joseph E Willis
- From the Department of Pathology, University Hospitals Cleveland Medical Center/Case Western Reserve University, Cleveland, Ohio (Willis)
| | - Frederick Eyerer
- The Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, Burlington (Eyerer)
| | - Eric E Walk
- Roche Diagnostics Medical and Scientific Affairs, Tucson, Arizona (Walk)
| | - Patricia Vasalos
- Proficiency Testing, College of American Pathologists, Northfield, Illinois (Vasalos, Bradshaw)
| | - Georganne Bradshaw
- Proficiency Testing, College of American Pathologists, Northfield, Illinois (Vasalos, Bradshaw)
| | - Sophia Louise Yohe
- The Department of Laboratory Medicine and Pathology, M Health Fairview-University of Minnesota, Minneapolis (Yohe)
| | - Jordan S Laser
- The Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Laser). Walk is now with the Department of Medical, Regulatory and Clinical Affairs, PathAI, Boston, Massachussets. Laser is now with Everly Health, Austin, Texas
| |
Collapse
|
34
|
Development of a radiolabeled site-specific single-domain antibody positron emission tomography probe for monitoring PD-L1 expression in cancer. J Pharm Anal 2022; 12:869-878. [PMID: 36605578 PMCID: PMC9805943 DOI: 10.1016/j.jpha.2022.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 01/07/2023] Open
Abstract
Despite advances in immunotherapy for the treatment of cancers, not all patients can benefit from programmed cell death ligand 1 (PD-L1) immune checkpoint blockade therapy. Anti-PD-L1 therapeutic effects reportedly correlate with the PD-L1 expression level; hence, accurate detection of PD-L1 expression can guide immunotherapy to achieve better therapeutic effects. Therefore, based on the high affinity antibody Nb109, a new site-specifically radiolabeled tracer, 68Ga-NODA-cysteine, aspartic acid, and valine (CDV)-Nb109, was designed and synthesized to accurately monitor PD-L1 expression. The tracer 68Ga-NODA-CDV-Nb109 was obtained using a site-specific conjugation strategy with a radiochemical yield of about 95% and radiochemical purity of 97%. It showed high affinity for PD-L1 with a dissociation constant of 12.34 ± 1.65 nM. Both the cell uptake assay and positron emission tomography (PET) imaging revealed higher tracer uptake in PD-L1-positive A375-hPD-L1 and U87 tumor cells than in PD-L1-negative A375 tumor cells. Meanwhile, dynamic PET imaging of a NCI-H1299 xenograft indicated that doxorubicin could upregulate PD-L1 expression, allowing timely interventional immunotherapy. In conclusion, this tracer could sensitively and dynamically monitor changes in PD-L1 expression levels in different cancers and help screen patients who can benefit from anti-PD-L1 immunotherapy.
Collapse
|
35
|
Alkholifi FK, Alsaffar RM. Dostarlimab an Inhibitor of PD-1/PD-L1: A New Paradigm for the Treatment of Cancer. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1572. [PMID: 36363529 PMCID: PMC9694305 DOI: 10.3390/medicina58111572] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 07/04/2024]
Abstract
Immunomodulation checkpoints usually adopted by healthy cells by tumors might cause an imbalance between host surveillance and tumor progression. Several tumors are incredibly resistant to standard treatment. The dynamic and long-lasting tumor regressions caused by antibodies targeting the PD-1/PD-L1 checkpoint have suggested a rebalancing of the host-tumor relationship. Checkpoint antibody inhibitors, like anti-PD-1/PD-L1, are unique inhibitors that reduce tumor growth by modulating the interaction between immune cells and tumor cells. These checkpoint inhibitors are swiftly emerging as a highly promising strategy for treating cancer because they produce impressive antitumor responses while having a limited number of adverse effects. Over the past several years, numerous checkpoint antibody inhibitors pointing to PD-1, PDL-1, and CTLA-4 have been available on the market. Despite its enormous success and usefulness, the anti-PD treatment response is restricted to certain kinds of cancer. This restriction can be attributed to the inadequate and diverse PD-1 expression in the tumor (MET) micro-environment. Dostarlimab (TSR-042), a drug that interferes with the PD-1/PD-L1 pathway, eliminates a crucial inhibitory response of an immune system and, as a result, has the potential to cause severe or deadly immune-mediated adverse effects. As cancer immunotherapy, dostarlimab enhances the antitumor immune response of the body.
Collapse
Affiliation(s)
- Faisal K. Alkholifi
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | | |
Collapse
|
36
|
Yang Z, Sun JKL, Lee MM, Chan MK. Restoration of p53 activity via intracellular protein delivery sensitizes triple negative breast cancer to anti-PD-1 immunotherapy. J Immunother Cancer 2022; 10:jitc-2022-005068. [PMID: 36104100 PMCID: PMC9476161 DOI: 10.1136/jitc-2022-005068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2022] [Indexed: 11/15/2022] Open
Abstract
Background Although immune checkpoint inhibitors (ICIs) have been shown to yield promising therapeutic outcomes in a small subset of patients with triple negative breast cancer (TNBC), the majority of patients either do not respond or subsequently develop resistance. Recent studies have revealed the critical role of TP53 gene in cancer immunology. Loss or mutation of p53 in cancer cells has been found to promote their immune escape. Given the high mutation frequency of TP53 in TNBC cells, restoration of p53 function could be a potential strategy to overcome their resistance to anti-programmed cell death protein 1 (PD-1)/programmed cell death ligand 1 (PD-L1) therapy. Herein, we have assessed the use of Pos3Aa crystal-based platform to mediate the intracellular delivery of p53 protein to restore p53 activity in p53 null tumors and consequently augment anti-PD-1 activity. Methods The efficiency of Pos3Aa-p53 crystals in delivering p53 protein was evaluated using confocal imaging, immunofluorescence staining, flow cytometry and RNA-seq. The ability of Pos3Aa-p53 crystals to remodel tumor microenvironment was investigated by examining the markers of immunogenic cell death (ICD) and the expression of PD-L1, indoleamine 2,3-dioxygenase 1, tryptophan 2,3-dioxygenase 2 and type I interferon (IFN). Finally, both unilateral and bilateral 4T1 tumor mouse models were utilized to assess the efficacy of Pos3Aa-p53 crystal-mediated p53 restoration in enhancing the antitumor activity of ICIs. T cells in tumor tissues and spleens were analyzed, and the in vivo biosafety of the Pos3Aa-p53 crystal/anti-PD-1 antibody combination was also evaluated. Results Delivery of p53 protein into p53-null TNBC 4T1 cells via Pos3Aa-p53 crystals restored the p53 activity, and therefore led to the induction of ICD, activation of type I IFN signaling and upregulation of PD-L1 expression. Pos3Aa-p53 crystals significantly enhanced T cell infiltration and activation in 4T1 tumors, thereby sensitizing them to anti-PD-1 therapy. The combination of Pos3Aa-p53 crystals with anti-PD-1 antibody also induced a systemic antitumor immunity resulting in the inhibition of distal tumor growth with minimal toxicity. Conclusion This study validates that p53 restoration can be an effective approach to overcome ICI resistance and demonstrates that intracellular delivery of p53 protein can be an efficient, safe and potentially universal strategy to restore p53 activity in tumors carrying TP53 mutation.
Collapse
Affiliation(s)
- Zaofeng Yang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.,Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, Hong Kong
| | | | - Marianne M Lee
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong .,Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Michael K Chan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong .,Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
37
|
Kumar S, Chatterjee M, Ghosh P, Ganguly KK, Basu M, Ghosh MK. Targeting PD-1/PD-L1 in cancer immunotherapy: an effective strategy for treatment of triple-negative breast cancer (TNBC) patients. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
38
|
Tiako Meyo M, Chen J, Goldwasser F, Hirsch L, Huillard O. A Profile of Avelumab Plus Axitinib in the Treatment of Renal Cell Carcinoma. Ther Clin Risk Manag 2022; 18:683-698. [PMID: 35837579 PMCID: PMC9275425 DOI: 10.2147/tcrm.s263832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/02/2022] [Indexed: 11/23/2022] Open
Abstract
Until recently, the approved first-line treatment for metastatic RCC (mRCC) consisted of tyrosine kinase inhibitors (TKI) targeting the vascular endothelial growth factor receptors (VEGFR) monotherapy. The landscape of first-line treatment has been transformed in the last few years with the advent of immune checkpoint inhibitors (ICI) or VEGFR TKI plus ICI combinations. This article focuses on the profile of one of these ICI plus VEGFR TKI combination, avelumab plus axitinib. We detail the characteristics of each drug separately, and then we explore the rationale for their association, its efficacy and the resulting toxicity. Finally, we examine the factors associated with avelumab plus axitinib outcomes, and their impact on therapeutic strategy.
Collapse
Affiliation(s)
- Manuela Tiako Meyo
- Department of Medical Oncology, Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Hôpital Cochin, Paris, France.,Immunomodulatory Therapies Multidisciplinary Study Group (CERTIM), AP-HP, APHP.Centre, Hôpital Cochin, Paris, France
| | - Jeanne Chen
- Department of Medical Oncology, Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Hôpital Cochin, Paris, France.,Immunomodulatory Therapies Multidisciplinary Study Group (CERTIM), AP-HP, APHP.Centre, Hôpital Cochin, Paris, France
| | - Francois Goldwasser
- Department of Medical Oncology, Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Hôpital Cochin, Paris, France.,Immunomodulatory Therapies Multidisciplinary Study Group (CERTIM), AP-HP, APHP.Centre, Hôpital Cochin, Paris, France
| | - Laure Hirsch
- Department of Medical Oncology, Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Hôpital Cochin, Paris, France.,Immunomodulatory Therapies Multidisciplinary Study Group (CERTIM), AP-HP, APHP.Centre, Hôpital Cochin, Paris, France
| | - Olivier Huillard
- Department of Medical Oncology, Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Hôpital Cochin, Paris, France.,Immunomodulatory Therapies Multidisciplinary Study Group (CERTIM), AP-HP, APHP.Centre, Hôpital Cochin, Paris, France
| |
Collapse
|
39
|
Zhu M, Chen C, Foster NR, Hartley C, Mounajjed T, Salomao MA, Fruth BF, Beamer SE, Kim Y, Harrington SM, Pitot HC, Sanhueza CT, Feng Y, Herrmann J, McWilliams RR, Lucien F, Huang BQ, Ma WW, Bekaii-Saab TS, Dong H, Wigle D, Ahn DH, Hallemeier CL, Blackmon S, Yoon HH. Pembrolizumab in Combination with Neoadjuvant Chemoradiotherapy for Patients with Resectable Adenocarcinoma of the Gastroesophageal Junction. Clin Cancer Res 2022; 28:3021-3031. [PMID: 35552651 PMCID: PMC10853040 DOI: 10.1158/1078-0432.ccr-22-0413] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/07/2022] [Accepted: 05/09/2022] [Indexed: 01/21/2023]
Abstract
PURPOSE This phase Ib/2 trial investigated pembrolizumab-containing trimodality therapy in patients with gastroesophageal junction (GEJ) adenocarcinoma. PATIENTS AND METHODS Patients with GEJ adenocarcinoma (cT1-3NanyM0) received neoadjuvant pembrolizumab-containing chemoradiation (CROSS regimen) followed by surgical resection and adjuvant pembrolizumab. The primary endpoints were tolerability in the first 16 patients and pathologic complete response [pCR (ypT0N0)]. Secondary endpoints included progression-free survival (PFS) and overall survival (OS). An independent propensity-score-matched cohort (treated with CROSS without immunotherapy) was used for comparison. Exploratory analyses included immune biomarkers in the tumor microenvironment (TME) and plasma. RESULTS We enrolled 31 eligible patients, of whom 29 received all expected doses of neoadjuvant pembrolizumab and 28 underwent R0 resection. Safety endpoints were met. The primary efficacy endpoint was not met [7/31 (22.6%) achieved pCR]. Patients with high [i.e., combined positive score (CPS) ≥ 10] baseline expression of programmed death (PD)-L1 in the TME had a significantly higher pCR rate than those with low expression [50.0% (4/8) vs. 13.6% (3/22); P = 0.046]. Patients with high PD-L1 expression also experienced longer PFS and OS than propensity-score-matched patients. Among trial patients with PD-L1 CPS < 10, unprespecified analysis explored whether extracellular vesicles (EV) could identify further responders: an elevated plasma level of PD-L1-expressing EVs was significantly associated with higher pCR. CONCLUSIONS Adding pembrolizumab to trimodality therapy showed acceptable tolerability but did not meet the pre-specified pCR endpoint. Exploratory analyses suggested that high PD-L1 expression in the TME and/or on EVs may identify patients most likely to achieve tumor response.
Collapse
Affiliation(s)
- Mojun Zhu
- Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | - Chunhua Chen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Nathan R. Foster
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Christopher Hartley
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | - Marcela A. Salomao
- Division of Anatomic Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Phoenix, Arizona
| | - Briant F. Fruth
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Staci E. Beamer
- Department of Cardiovascular Surgery, Mayo Clinic, Phoenix, Arizona
| | - Yohan Kim
- Department of Urology, Mayo Clinic, Rochester, Minnesota
| | | | - Henry C. Pitot
- Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | - Cristobal T. Sanhueza
- Medical Oncology, Facultad de Medicina, Clinica Alemana Universidad del Desarrollo, Concepción, Chile
| | - Yening Feng
- Internal Medicine Residency Program, Department of Medicine, BronxCare Health System, Bronx, New York
| | - Joerg Herrmann
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | | | - Fabrice Lucien
- Department of Urology, Mayo Clinic, Rochester, Minnesota
| | - Bing Q. Huang
- Microscopy and Cell Analysis Core, Mayo Clinic, Rochester, Minnesota
| | - Wen Wee Ma
- Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | - Tanios S. Bekaii-Saab
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Scottsdale, Arizona
| | - Haidong Dong
- Department of Urology, Mayo Clinic, Rochester, Minnesota
| | - Dennis Wigle
- Department of Thoracic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Daniel H. Ahn
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Scottsdale, Arizona
| | | | - Shanda Blackmon
- Department of Thoracic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Harry H. Yoon
- Department of Oncology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
40
|
Kawahara T, Kawai K, Kojima T, Nagumo Y, Sakka S, Kandori S, Negoro H, Mathis BJ, Maruo K, Miura K, Sakamoto N, Shinohara N, Yamashita S, Yonemori K, Kishida T, Ukimura O, Nishimura K, Kobayashi Y, Nishiyama H. Phase II trial of nivolumab monotherapy and biomarker screening in patients with chemo‐refractory germ cell tumors. Int J Urol 2022; 29:741-747. [PMID: 35462438 PMCID: PMC9545636 DOI: 10.1111/iju.14885] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/21/2022] [Indexed: 12/12/2022]
Abstract
Objectives Germ cell tumors are highly susceptible to chemotherapy; however, there is a lack of established treatments for consistently relapsing germ cell tumor. Therefore, in this phase II study, we evaluated the efficacy and safety of nivolumab for relapsed germ cell tumor. Methods Seventeen adult patients (median age 34 years) with refractory primary germ cell tumor after second‐line or higher chemotherapy were enrolled. Nivolumab was administered over 30 min at 240 mg/body every 2 weeks until disease progression or intolerable adverse event occurrence. The primary endpoint was the overall response rate. Result We performed a biomarker analysis of programmed death ligand‐1 expression and genomic sequencing. Tumor histology revealed nonseminoma and seminoma in 14 and three patients, respectively. Patients were pretreated with a median of three chemotherapy lines, and three patients received high‐dose chemotherapy. The median number of nivolumab doses was 3 (range 2–46). One patient showed a partial response and three showed stable disease. Responses were durable in one patient with a partial response and one patient with stable disease (median 90 and 68 weeks, respectively). Nivolumab was well‐tolerated, with only two Grade 3 adverse events observed. Programmed death ligand‐1 expression was not associated with objective responses. Genomic sequencing revealed a high tumor mutation burden in a patient with a durable partial response. While a small subset of chemorefractory germ cell tumors may respond to nivolumab, programmed death ligand‐1 is unreliable to measure response. Conclusions Tumor mutation burden is a potential biomarker for future testing of germ cell tumor response.
Collapse
Affiliation(s)
- Takashi Kawahara
- Department of Urology University of Tsukuba Tsukuba Ibaraki Japan
| | - Koji Kawai
- Department of Urology International University of Health and Welfare Narita Chiba Japan
| | - Takahiro Kojima
- Department of Urology University of Tsukuba Tsukuba Ibaraki Japan
| | - Yoshiyuki Nagumo
- Department of Urology University of Tsukuba Tsukuba Ibaraki Japan
| | - Shotarou Sakka
- Department of Urology University of Tsukuba Tsukuba Ibaraki Japan
| | - Shuya Kandori
- Department of Urology University of Tsukuba Tsukuba Ibaraki Japan
| | - Hiromitsu Negoro
- Department of Urology University of Tsukuba Tsukuba Ibaraki Japan
| | - Bryan J Mathis
- International Medical Center University of Tsukuba Affiliated Hospital Tsukuba Ibaraki Japan
| | - Kazushi Maruo
- Department of Clinical Trial and Clinical Epidemiology, Faculty of Medicine University of Tsukuba Tsukuba Ibaraki Japan
| | - Koji Miura
- Tsukuba Clinical Research and Development Organization (T‐CReDO), Faculty of Medicine University of Tsukuba Tsukuba Ibaraki Japan
| | - Noriaki Sakamoto
- Department of Pathology, Faculty of Medicine University of Tsukuba Tsukuba Ibaraki Japan
| | - Nobuo Shinohara
- Department of Urology Hokkaido University Graduate School of Medicine Sapporo Hokkaido Japan
| | - Shinichi Yamashita
- Department of Urology Tohoku University Graduate School of Medicine Sendai Miyagi Japan
| | - Kan Yonemori
- Department of Breast and Medical Oncology National Cancer Center Hospital Chuo‐ku Tokyo Japan
| | - Takeshi Kishida
- Department of Urology Kanagawa Cancer Center Yokohama Kanagawa Japan
| | - Osamu Ukimura
- Department of Urology Kyoto Prefectural University of Medicine Kyoto Kyoto Japan
| | - Kazuo Nishimura
- Department of Urology Osaka International Cancer Institute Osaka Osaka Japan
| | - Yasuyuki Kobayashi
- Department of Urology Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama Okayama Japan
| | | |
Collapse
|
41
|
Chen H, Luo Y, Lin M, Peng X, Liu M, Wang Y, Li S, Yang D, Yang Z. Serum exosomal
miR
‐16‐5p functions as a tumor inhibitor and a new biomarker for
PD‐L1
inhibitor‐dependent immunotherapy in lung adenocarcinoma by regulating
PD‐L1
expression. Cancer Med 2022; 11:2627-2643. [PMID: 35347894 PMCID: PMC9249988 DOI: 10.1002/cam4.4638] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 12/13/2022] Open
Abstract
Objectives We aimed at investigating whether serum exosomal miR‐16‐5p could be utilized as an immunotherapy biomarker in lung adenocarcinoma (LUAD) patients administered by programmed cell death ligand‐1 (PD‐L1) inhibitors, and to evaluate its functions in LUAD progression. Methods Sixty LUAD sufferers and 20 healthy controls (HCs) were covered in this work. We applied both IHC and WB to examine PD‐L1 level in clinical tissue samples and utilized WB to quantify PD‐L1 expression in LUAD cells and LUAD xenograft tissues, respectively. Transmission electron microscopy (TEM), WB, and nanoparticle tracking analysis (NTA) were executed to confirm the exosomes isolated from serum specimens and cell culture media. To quantify of exosomal miR‐16‐5p level from serum and culture medium of cultured cell, qRT‐PCR experiment was utilized. The connection between tissue PD‐L1 level and serum exosomal miR‐16‐5p expression in PD‐L1‐positive sufferers administered by PD‐L1 inhibitors was verified using Spearman correlation coefficient analysis. In addition, the overall survival (OS) and progression‐free survival (PFS) rates among PD‐L1 inhibitor managed sufferers were acquired through a follow‐up visit. Finally, we used a group of assays, including 5‐bromo‐2′‐dexoyuridine (BrdU) and colony formation test, wound healing experiment, flow cytometry, and nude mice xenograft experiment, to explore the functions of circulating exosomal miR‐16‐5p on LUAD cell proliferation, apoptosis, and migration, as well as tumor development, respectively. Results PD‐L1 expression was positively related to T stage (tumor size stage), and PD‐L1 inhibitor treatment reduced the PD‐L1 expression and mitigated T stage in PD‐L1‐positive LUAD sufferers. For PD‐L1‐positive LUAD sufferers, elevated PD‐L1 expression or reduced serum exosomal miR‐16‐5p level were linked to longer PFS and OS upon PD‐L1 inhibitor treatment. The number of exosomes in patient's serum was more than that in the serum of healthy individuals, and PD‐L1 inhibitor treatment decreased the number of serum‐derived exosomes in PD‐L1‐positive LUAD sufferers. Exosome‐derived miR‐16‐5p was downregulated in patient's serum and cell culture medium, and this was negatively linked to tumor stage and PD‐L1 expression. Meanwhile, PD‐L1 inhibitor treatment could increase the serum exosomal miR‐16‐5p expression, and the expression change of serum exosomal miR‐16‐5p was diametrically related to PD‐L1 after the treatment. Moreover, the overexpression of PD‐L1 accelerated tumor growth and decreased the exosomal miR‐16‐5p content in cell culture media, while exosomal miR‐16‐5p overexpression in cell culture media inhibited tumor development by decreasing the PD‐L1 expression. Exosomal miR‐16‐5p overexpression in cell culture media also depressed LUAD cell proliferation and migration, and stimulated cell apoptosis, especially in the cells which cultured in the mediums with PD‐L1 inhibitor in vitro. Conclusions Serum exosomal miR‐16‐5p may be a latent tumor inhibitor and a new biomarker for PD‐L1 inhibitor‐dependent immunotherapy in LUAD by regulating the PD‐L1 expression.
Collapse
Affiliation(s)
- Hua‐Lin Chen
- Department of Pulmonary Oncology Affiliated Hospital of Guangdong Medical University Zhanjiang China
| | - Yi‐Ping Luo
- Department of Oncology Affiliated Hospital of Guangdong Medical University Zhanjiang China
| | - Mu‐Wen Lin
- Department of Pulmonary Oncology Affiliated Hospital of Guangdong Medical University Zhanjiang China
| | - Xiao‐Xia Peng
- Department of Pulmonary Oncology Affiliated Hospital of Guangdong Medical University Zhanjiang China
| | - Mei‐Liang Liu
- Department of Pulmonary Oncology Affiliated Hospital of Guangdong Medical University Zhanjiang China
| | - Yong‐Cun Wang
- Department of Pulmonary Oncology Affiliated Hospital of Guangdong Medical University Zhanjiang China
| | - Shu‐Jun Li
- Department of Pulmonary Oncology Affiliated Hospital of Guangdong Medical University Zhanjiang China
| | - Dong‐Hong Yang
- Department of Oncology Affiliated Hospital of Guangdong Medical University Zhanjiang China
| | - Zhi‐Xiong Yang
- Department of Pulmonary Oncology Affiliated Hospital of Guangdong Medical University Zhanjiang China
| |
Collapse
|
42
|
Darmon-Novello M, Adam J, Lamant L, Battistella M, Ortonne N, Balme B, de la Fouchardière A, Chaltiel L, Gerard E, Franchet C, Vergier B. Harmonization of PD-L1 immunohistochemistry and mRNA expression scoring in metastatic melanoma: a multicenter analysis. Histopathology 2022; 80:1091-1101. [PMID: 35322452 DOI: 10.1111/his.14651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/21/2022] [Accepted: 03/21/2022] [Indexed: 11/29/2022]
Abstract
AIMS This multicenter study sought to harmonize programmed death ligand 1 (PD-L1) immunohistochemistry (IHC) data and melanoma scoring. To provide a reference for PD-L1 expression independent of the IHC protocol, PD-L1 mRNA expression was determined then compared to IHC. METHODS Standardized PD-L1 assays (22C3, 28-8, SP142, and SP263) and laboratory-developed tests (QR1 and 22C3) were evaluated on three IHC platforms using a training set of 7 cases. mRNA expression was determined via RNAscope (CD274/PD-L1 probe) and analyzed by image analysis. PD-L1 IHC findings were scored by seven blinded pathologists using the tumor proportion score (TPS), combined positive score (CPS), and MELscore. This method was validated by three blinded pathologists on 40 metastatic melanomas. RESULTS Concordances among various antibody/platforms were high across antibodies (ICC > 0.80 for CPS), except for SP142. Two levels of immunostaining intensities were observed: high (QR1 and SP263) and low (28-8, 22C3, and SP142). Reproducibilities across pathologists were higher for QR1 and SP263 (ICC ≥ 0.87 and ≥ 0.85 for TPS and CPS, respectively). QR1, SP263, and 28-8 showed the highest concordance with mRNA expression (ICC ≥ 0.81 for CPS). We developed a standardized method for PD-L1 immunodetection and scoring, tested on 40 metastatic melanomas. Concordances among antibodies were excellent for all criteria, and concordances among pathologists were better for the MELscore than for other scores. CONCLUSION Harmonization of PD-L1 staining and scoring in melanomas with good concordance is achievable using the PD-L1 IHC protocols applied to other cancers; this reproducible approach can simplify daily practice.
Collapse
Affiliation(s)
- M Darmon-Novello
- Department of Pathology, Bordeaux University Hospital and INSERM U1053, Bordeaux, France
| | - J Adam
- Department of Pathology, Gustave Roussy Institute, Paris, France
| | - L Lamant
- Department of Pathology, Oncopole University Hospital Toulouse, France
| | - M Battistella
- Department of Pathology, Hôpital Saint-Louis, AP-HP, Université de Paris, INSERM U976 HIPI, Paris, France
| | - N Ortonne
- Department of Pathology, University Hospital Henri Mondor, Creteil-, Paris, France
| | - B Balme
- Department of Pathology, University Hospital Lyon, France
| | | | - L Chaltiel
- Department of Biostatistics, Institut Claudius Regaud IUCT-O, Toulouse, France
| | - E Gerard
- Department of Dermatology, Bordeaux University Hospital, Bordeaux, France
| | - C Franchet
- Department of Pathology, Oncopole University Hospital Toulouse, France
| | - B Vergier
- Department of Pathology, Bordeaux University Hospital and INSERM U1053, Bordeaux, France
| |
Collapse
|
43
|
Recent Advances and Next Breakthrough in Immunotherapy for Cancer Treatment. J Immunol Res 2022; 2022:8052212. [PMID: 35340585 PMCID: PMC8956433 DOI: 10.1155/2022/8052212] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/02/2022] [Indexed: 12/15/2022] Open
Abstract
With the huge therapeutic potential, cancer immunotherapy is expected to become the mainstream of cancer treatment. In the current field of cancer immunotherapy, there are mainly five types. Immune checkpoint blockade therapy is one of the most promising directions. Adoptive cell therapy is an important component of cancer immunotherapy. The therapy with the cancer vaccine is promising cancer immunotherapy capable of cancer prevention. Cytokine therapy is one of the pillars of cancer immunotherapy. Oncolytic immunotherapy is a promising novel component of cancer immunotherapy, which with significantly lower incidence of serious adverse reactions. The recent positive results of many clinical trials with cancer immunotherapy may herald good clinical prospects. But there are still many challenges in the broad implementation of immunotherapy. Such as the immunotherapy cannot act on all tumors, and it has serious adverse effects including but not limited to nonspecific and autoimmunity inflammation. Here, we center on recent progress made within the last 5 years in cancer immunotherapy. And we discuss the theoretical background, as well as the opportunities and challenges of cancer immunotherapy.
Collapse
|
44
|
Miyai Y, Sugiyama D, Hase T, Asai N, Taki T, Nishida K, Fukui T, Chen-Yoshikawa TF, Kobayashi H, Mii S, Shiraki Y, Hasegawa Y, Nishikawa H, Ando Y, Takahashi M, Enomoto A. Meflin-positive cancer-associated fibroblasts enhance tumor response to immune checkpoint blockade. Life Sci Alliance 2022; 5:5/6/e202101230. [PMID: 35236758 PMCID: PMC8897596 DOI: 10.26508/lsa.202101230] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 12/18/2022] Open
Abstract
Meflin/ISLR is the marker of a cancer-associated fibroblast subset that enhances tumor response to immune checkpoint blockade therapy. Cancer-associated fibroblasts (CAFs) are an integral component of the tumor microenvironment (TME). Most CAFs shape the TME toward an immunosuppressive milieu and attenuate the efficacy of immune checkpoint blockade (ICB) therapy. However, the detailed mechanism of how heterogeneous CAFs regulate tumor response to ICB therapy has not been defined. Here, we show that a recently defined CAF subset characterized by the expression of Meflin, a glycosylphosphatidylinositol-anchored protein marker of mesenchymal stromal/stem cells, is associated with survival and favorable therapeutic response to ICB monotherapy in patients with non-small cell lung cancer (NSCLC). The prevalence of Meflin-positive CAFs was positively correlated with CD4-positive T-cell infiltration and vascularization within non-small cell lung cancer tumors. Meflin deficiency and CAF-specific Meflin overexpression resulted in defective and enhanced ICB therapy responses in syngeneic tumors in mice, respectively. These findings suggest the presence of a CAF subset that promotes ICB therapy efficacy, which adds to our understanding of CAF functions and heterogeneity.
Collapse
Affiliation(s)
- Yuki Miyai
- Department of Pathology, Nagoya University Hospital, Nagoya, Japan.,Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital, Nagoya, Japan
| | - Daisuke Sugiyama
- Department of Immunology, Nagoya University Hospital, Nagoya, Japan
| | - Tetsunari Hase
- Department of Respiratory Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Naoya Asai
- Department of Pathology, Nagoya University Hospital, Nagoya, Japan
| | - Tetsuro Taki
- Department of Pathology, Nagoya University Hospital, Nagoya, Japan
| | - Kazuki Nishida
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Takayuki Fukui
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Hiroki Kobayashi
- Department of Pathology, Nagoya University Hospital, Nagoya, Japan
| | - Shinji Mii
- Department of Pathology, Nagoya University Hospital, Nagoya, Japan
| | - Yukihiro Shiraki
- Department of Pathology, Nagoya University Hospital, Nagoya, Japan
| | - Yoshinori Hasegawa
- Department of Respiratory Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Hiroyoshi Nishikawa
- Department of Immunology, Nagoya University Hospital, Nagoya, Japan.,Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Tokyo, Japan
| | - Yuichi Ando
- Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital, Nagoya, Japan
| | | | - Atsushi Enomoto
- Department of Pathology, Nagoya University Hospital, Nagoya, Japan
| |
Collapse
|
45
|
Karaboué A, Collon T, Pavese I, Bodiguel V, Cucherousset J, Zakine E, Innominato PF, Bouchahda M, Adam R, Lévi F. Time-Dependent Efficacy of Checkpoint Inhibitor Nivolumab: Results from a Pilot Study in Patients with Metastatic Non-Small-Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14040896. [PMID: 35205644 PMCID: PMC8870559 DOI: 10.3390/cancers14040896] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/01/2022] [Accepted: 02/09/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Initial clinical observations revealed strikingly longer follow-up for metastatic non-small-cell lung cancer (NSCLC) patients receiving nivolumab infusions predominantly in the morning as compared to those treated in the afternoon. Prior experimental and human studies have demonstrated the temporal distributions of immune cells’ proliferation, trafficking, and antigen recognition and destruction over the 24 h. Here, we hypothesized that circadian timing could play an important role in nivolumab’s efficacy, as previously shown for the toxicity and/or efficacy of chronomodulated chemotherapy in colorectal and lung cancer patients. Following project validation by an internal scientific review board, the dosing times of each of the 1818 nivolumab infusions given to 95 consecutive patients as a standard treatment for metastatic NSCLC were retrieved from the day-hospital records. Adverse events and radiologically documented tumor responses were retrieved and reviewed from patients’ clinical charts. Patients were allocated to ‘morning’ (N = 48 patients) or ‘afternoon’ (N = 47 patients) groups, according to whether they had received the majority of nivolumab infusions before or after 12:54, i.e., the median time of all infusions, respectively. ‘Morning’ nivolumab dosing nearly quadrupled median progression-free and overall survival as compared to ‘afternoon’ dosing. ‘Morning’ nivolumab was significantly more effective irrespective of age, sex, performance status, prior treatments, tumor histology, or PD-L1 expression. In contrast, nivolumab primary resistance was most often observed following ‘afternoon’ dosing. Randomized trials are warranted both to further identify the optimal timing of checkpoint inhibitors in individual cancer patients, and to determine the main mechanisms that precisely drive immunotherapy efficacy and resistance along the circadian timescale. Abstract Hypothesis: Prior experimental and human studies have demonstrated the circadian organization of immune cells’ proliferation, trafficking, and antigen recognition and destruction. Nivolumab targets T(CD8) cells, the functions, and trafficking of which are regulated by circadian clocks, hence suggesting possible daily changes in nivolumab’s efficacy. Worse progression-free survival (PFS), and overall survival (OS) were reported for malignant melanoma patients receiving more than 20% of their immune checkpoint inhibitor infusions after 16:30 as compared to earlier in the day. Methods: Consecutive metastatic non-small-cell cancer (NSCLC) patients received nivolumab (240 mg iv q 2 weeks) at a daily time that was ‘randomly’ allocated for each course on a logistical basis by the day-hospital coordinators. The median time of all nivolumab administrations was computed for each patient. The study population was split into two timing groups based upon the median value of the median treatment times of all patients. CTCAE-toxicity rates, iRECIST-tumor responses, PFS and OS were computed according to nivolumab timing. PFS and OS curves were compared and hazard ratios (HR) were computed for all major categories of characteristics. Multivariable and sensitivity analyses were also performed. Results: The study accrued 95 stage-IV NSCLC patients (PS 0–1, 96%), aged 41–83 years. The majority of nivolumab administrations occurred between 9:27 and 12:54 for 48 patients (‘morning’ group) and between 12:55 and 17:14 for the other 47 (‘afternoon’ group). Median PFS (95% CL) was 11.3 months (5.5–17.1) for the ‘morning’ group and 3.1 months (1.5–4.6) for the ‘afternoon’ one (p < 0.001). Median OS was 34.2 months (15.1–53.3) and 9.6 months (4.9–14.4) for the ‘morning’ group and the ‘afternoon’ one, respectively (p < 0.001). Multivariable analyses identified ‘morning’ timing as a significant predictor of longer PFS and OS, with respective HR values of 0.26 (0.11–0.58) and 0.17 (0.08–0.37). The timing effect was consistent across all patient subgroups tested. Conclusions: Nivolumab was nearly four times as effective following ‘morning’ as compared to ‘afternoon’ dosing in this cohort of NSCLC patients. Prospective timing-studies are needed to minimize the risk of resistance and to maximize the benefits from immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Abdoulaye Karaboué
- Medical Oncology Unit, GHT Paris Grand Nord-Est, Le Raincy-Montfermeil, 93770 Montfermeil, France; (T.C.); (I.P.)
- UPR “Chronotherapy, Cancer and Transplantation”, Medical School, Paris-Saclay University, 94800 Villejuif, France; (P.F.I.); (M.B.); (R.A.)
- Correspondence: (A.K.); (F.L.); Tel.: +33-(0)-629369829 (A.K.); +33-(0)-609130780 (F.L.)
| | - Thierry Collon
- Medical Oncology Unit, GHT Paris Grand Nord-Est, Le Raincy-Montfermeil, 93770 Montfermeil, France; (T.C.); (I.P.)
| | - Ida Pavese
- Medical Oncology Unit, GHT Paris Grand Nord-Est, Le Raincy-Montfermeil, 93770 Montfermeil, France; (T.C.); (I.P.)
| | - Viviane Bodiguel
- Pathology Unit, GHT Paris Grand Nord-Est, Le Raincy-Montfermeil, 93370 Montfermeil, France; (V.B.); (J.C.); (E.Z.)
| | - Joel Cucherousset
- Pathology Unit, GHT Paris Grand Nord-Est, Le Raincy-Montfermeil, 93370 Montfermeil, France; (V.B.); (J.C.); (E.Z.)
| | - Elda Zakine
- Pathology Unit, GHT Paris Grand Nord-Est, Le Raincy-Montfermeil, 93370 Montfermeil, France; (V.B.); (J.C.); (E.Z.)
| | - Pasquale F. Innominato
- UPR “Chronotherapy, Cancer and Transplantation”, Medical School, Paris-Saclay University, 94800 Villejuif, France; (P.F.I.); (M.B.); (R.A.)
- North Wales Cancer Centre, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor LL57 2PW, UK
- Cancer Chronotherapy Team, Cancer Research Centre, Division of Biomedical Sciences, Warwick Medical School, Coventry CV4 7AL, UK
| | - Mohamed Bouchahda
- UPR “Chronotherapy, Cancer and Transplantation”, Medical School, Paris-Saclay University, 94800 Villejuif, France; (P.F.I.); (M.B.); (R.A.)
- Medical Oncology Department, Paul Brousse Hospital, 94800 Villejuif, France
- Medical Oncology Unit, Clinique Saint Jean L’Ermitage, 77000 Melun, France
- Medical Oncology Unit, Clinique du Mousseau, 91000 Evry, France
| | - René Adam
- UPR “Chronotherapy, Cancer and Transplantation”, Medical School, Paris-Saclay University, 94800 Villejuif, France; (P.F.I.); (M.B.); (R.A.)
- Centre Hépato Biliaire, AP-HP, Hôpital Paul Brousse (APHP), 94800 Villejuif, France
| | - Francis Lévi
- UPR “Chronotherapy, Cancer and Transplantation”, Medical School, Paris-Saclay University, 94800 Villejuif, France; (P.F.I.); (M.B.); (R.A.)
- Cancer Chronotherapy Team, Cancer Research Centre, Division of Biomedical Sciences, Warwick Medical School, Coventry CV4 7AL, UK
- Centre Hépato Biliaire, AP-HP, Hôpital Paul Brousse (APHP), 94800 Villejuif, France
- Correspondence: (A.K.); (F.L.); Tel.: +33-(0)-629369829 (A.K.); +33-(0)-609130780 (F.L.)
| |
Collapse
|
46
|
Mahoney KM, Ross-Macdonald P, Yuan L, Song L, Veras E, Wind-Rotolo M, McDermott DF, Stephen Hodi F, Choueiri TK, Freeman GJ. Soluble PD-L1 as an early marker of progressive disease on nivolumab. J Immunother Cancer 2022; 10:e003527. [PMID: 35131863 PMCID: PMC8823247 DOI: 10.1136/jitc-2021-003527] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Soluble PD-L1 (sPD-L1) has been associated with worse prognosis in numerous solid tumors. We determined sPD-L1 levels before and during nivolumab treatment in two prospective clinical trials of metastatic clear cell renal cell carcinoma (RCC) and melanoma patients, and investigated its relationship to clinical factors, biomarkers, and outcome. METHODS Using a new Single Molecule Array assay, serum sPD-L1 level were determined in RCC (CheckMate 009, n=91) and melanoma (CheckMate 038-Part 1, n=78) prior to, and at two time points on treatment. Gene expression data was obtained from biopsies taken prior to, and at day 28 on treatment. Results were integrated with clinical variables, tumor PD-L1 status from immuno-histochemistry, and genomic mutation status. RESULTS In RCC patients, sPD-L1 levels were higher in patients with progressive disease as their best response. For both RCC and melanoma patients, progressive or stable disease was associated with an increase in sPD-L1 on nivolumab therapy, whereas mean sPD-L1 levels did not change or declined in patients with objective responses. By categorizing RCC patients into transcriptomic molecular subtypes, we identified a subgroup where the associations between sPD-L1 and progressive disease were particularly evident. In baseline biopsies, we identified six biological processes that were associated with sPD-L1 level in both RCC and melanoma: higher sPD-L1 is associated with lower tumor expression of the Hallmark gene sets 'hypoxia', 'fatty acid metabolism', 'glycolysis', 'MTORC1 signaling' and 'androgen response', and with higher expression of 'KRAS signaling_Down'. CONCLUSION Baseline and on-therapy sPD-L1 levels in RCC have the potential to predict progressive disease on PD-1 inhibitor nivolumab. In a hypothesis-generating analysis of tumor gene expression, high baseline sPD-L1 is associated with a tumor metabolic state reflecting potentially targetable processes in both melanoma and RCC. In both trials, we observed associations between change in sPD-L1 on treatment and outcome metrics. sPD-L1 levels may further refine a nivolumab-refractory subtype of RCC within transcriptionally based subtypes of RCC.
Collapse
Affiliation(s)
- Kathleen M Mahoney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | - Long Yuan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA
| | - Linan Song
- Quanterix Corporation, Billerica, Massachusetts, USA
| | - Eliseo Veras
- Quanterix Corporation, Billerica, Massachusetts, USA
| | | | - David F McDermott
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - F Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Toni K Choueiri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
47
|
Herlea V, Roșulescu A, Calotă VC, Croitoru V, Stoica Mustafa E, Vasilescu C, Alexandrescu S, Dumitrașcu T, Popescu I, Dima SO, Sajin M. Combined Positive Score for Programmed Death Ligand-1 Expression and Inflammatory Microenvironment in Gastrointestinal Stromal Tumors. Medicina (B Aires) 2022; 58:medicina58020174. [PMID: 35208498 PMCID: PMC8924898 DOI: 10.3390/medicina58020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Objectives: GISTs are the most frequent type of mesenchymal neoplasm of the digestive tract. The prognosis is mainly determined by tumor dimensions, mitotic rate and location, but other less well-documented factors can influence evolution and survival. The immune microenvironment and checkpoint molecule expression were proven to impact the prognosis in different types of cancer. The aim of this study was to determine PD-L1 expression in GISTs and to evaluate the level of intratumoral immune infiltration in relation to prognostic variables and survival. Materials and Methods: Sixty-five GISTs diagnosed in the same institution between 2015 and 2018 were immunohistochemically tested for PD-L1 and evaluated using CPS. Immune cells were emphasized, with CD3, CD4, CD8, CD20 and CD68 antibodies and quantified. All data were processed using statistical tools. Results: The median age was 61 years (range, 28–78) and 36 patients (55.4%) were males. The location of the tumors was predominantly gastric (46%), followed by the small bowel (17%) and colorectal (6%). In addition, 11% were EGISTs and 20% were secondary tumors (11% metastases and 9% local recurrences). PD-L1 had a variable expression in tumor and inflammatory cells, with a CPS ranging from 0 to 100. Moreover, 64.6% of cases were PD-L1 positive with no significant differences among categories of variables, such as the age and the sex of the patient, tumor location, the primary or secondary character of the tumor, dimensions, mitotic rate, the risk of disease progression and tumor cell type. Immune cells had a variable distribution throughout the tumors. CD3+ lymphocytes were the most frequent type. CD20+ cells were identified in a larger number in tumors ≤5 cm (p = 0.038). PD-L1-positive tumors had a higher number of immune cells, particularly CD3+, CD20+ and CD68+, in comparison to PD-L1-negative ones (p = 0.032, p = 0.051, p = 0.008). Epithelioid and mixed cell-type tumors had a higher number of CD68+ cells. Survival was not influenced by PD-L1 expression; instead, it was decreased in multifocal tumors (p = 0.0001) and in cases with Ki67 ≥ 50% (p = 0.008). Conclusions: PD-L1-positive expression and the presence of different immune cell types, in variable quantities, can contribute to a better understanding of the complex interactions between tumor cells and the microenvironment, with a possible therapeutic role in GISTs.
Collapse
Affiliation(s)
- Vlad Herlea
- Department of Pathology, Fundeni Clinical Institute, 022328 Bucharest, Romania; (A.R.); (E.S.M.)
- Faculty of Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania;
- Center of Excellence for Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania
- Correspondence: (V.H.); (S.O.D.)
| | - Alexandra Roșulescu
- Department of Pathology, Fundeni Clinical Institute, 022328 Bucharest, Romania; (A.R.); (E.S.M.)
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.V.); (S.A.); (T.D.); (M.S.)
| | | | - Vlad Croitoru
- Department of Oncology, Fundeni Clinical Institute, 022328 Bucharest, Romania;
| | - Elena Stoica Mustafa
- Department of Pathology, Fundeni Clinical Institute, 022328 Bucharest, Romania; (A.R.); (E.S.M.)
| | - Cătălin Vasilescu
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.V.); (S.A.); (T.D.); (M.S.)
- Center of General Surgery and Liver Transplantation, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Sorin Alexandrescu
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.V.); (S.A.); (T.D.); (M.S.)
- Center of General Surgery and Liver Transplantation, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Traian Dumitrașcu
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.V.); (S.A.); (T.D.); (M.S.)
- Center of General Surgery and Liver Transplantation, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Irinel Popescu
- Faculty of Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania;
- Center of Excellence for Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania
- Center of General Surgery and Liver Transplantation, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Simona Olimpia Dima
- Center of Excellence for Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania
- Center of General Surgery and Liver Transplantation, Fundeni Clinical Institute, 022328 Bucharest, Romania
- Correspondence: (V.H.); (S.O.D.)
| | - Maria Sajin
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.V.); (S.A.); (T.D.); (M.S.)
| |
Collapse
|
48
|
Nguyen TT, Lee HS, Burt BM, Wu J, Zhang J, Amos CI, Cheng C. A lepidic gene signature predicts patient prognosis and sensitivity to immunotherapy in lung adenocarcinoma. Genome Med 2022; 14:5. [PMID: 35016696 PMCID: PMC8753834 DOI: 10.1186/s13073-021-01010-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 11/24/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lung adenocarcinoma, the most common type of lung cancer, has a high level of morphologic heterogeneity and is composed of tumor cells of multiple histological subtypes. It has been reported that immune cell infiltration significantly impacts clinical outcomes of patients with lung adenocarcinoma. However, it is unclear whether histologic subtyping can reflect the tumor immune microenvironment, and whether histologic subtyping can be applied for therapeutic stratification of the current standard of care. METHODS We inferred immune cell infiltration levels using a histological subtype-specific gene expression dataset. From differential gene expression analysis between different histological subtypes, we developed two gene signatures to computationally determine the relative abundance of lepidic and solid components (denoted as the L-score and S-score, respectively) in lung adenocarcinoma samples. These signatures enabled us to investigate the relationship between histological composition and clinical outcomes in lung adenocarcinoma using previously published datasets. RESULTS We found dramatic immunological differences among histological subtypes. Differential gene expression analysis showed that the lepidic and solid subtypes could be differentiated based on their gene expression patterns while the other subtypes shared similar gene expression patterns. Our results indicated that higher L-scores were associated with prolonged survival, and higher S-scores were associated with shortened survival. L-scores and S-scores were also correlated with global genomic features such as tumor mutation burdens and driver genomic events. Interestingly, we observed significantly decreased L-scores and increased S-scores in lung adenocarcinoma samples with EGFR gene amplification but not in samples with EGFR gene mutations. In lung cancer cell lines, we observed significant correlations between L-scores and cell sensitivity to a number of targeted drugs including EGFR inhibitors. Moreover, lung cancer patients with higher L-scores were more likely to benefit from immune checkpoint blockade therapy. CONCLUSIONS Our findings provided further insights into evaluating histology composition in lung adenocarcinoma. The established signatures reflected that lepidic and solid subtypes in lung adenocarcinoma would be associated with prognosis, genomic features, and responses to targeted therapy and immunotherapy. The signatures therefore suggested potential clinical translation in predicting patient survival and treatment responses. In addition, our framework can be applied to other types of cancer with heterogeneous histological subtypes.
Collapse
Affiliation(s)
- Thinh T Nguyen
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hyun-Sung Lee
- Division of General Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Bryan M Burt
- Division of General Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jia Wu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Imaging Physics, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Chao Cheng
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
49
|
Guo E, Xiao R, Wu Y, Lu F, Liu C, Yang B, Li X, Fu Y, Wang Z, Li Y, Huang Y, Li F, Wu X, You L, Qin T, Lu Y, Huang X, Ma D, Mills GB, Sun C, Chen G. WEE1 inhibition induces anti-tumor immunity by activating ERV and the dsRNA pathway. J Exp Med 2022; 219:e20210789. [PMID: 34825915 PMCID: PMC8628262 DOI: 10.1084/jem.20210789] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 08/10/2021] [Accepted: 10/06/2021] [Indexed: 12/11/2022] Open
Abstract
Targeted therapies represent attractive combination partners with immune checkpoint blockade (ICB) to increase the population of patients who benefit or to interdict the emergence of resistance. We demonstrate that targeting WEE1 up-regulates immune signaling through the double-stranded RNA (dsRNA) viral defense pathway with subsequent responsiveness to immune checkpoint blockade even in cGAS/STING-deficient tumors, which is a typical phenotype across multiple cancer types. WEE1 inhibition increases endogenous retroviral elements (ERVs) expression by relieving SETDB1/H3K9me3 repression through down-regulating FOXM1. ERVs trigger dsRNA stress and interferon response, increasing recruitment of anti-tumor T cells with concurrent PD-L1 elevation in multiple tumor models. Furthermore, combining WEE1 inhibition and PD-L1 blockade induced striking tumor regression in a CD8+ T cell-dependent manner. A WEE1 inhibition-induced viral defense signature provides a potentially informative biomarker for patient selection for combination therapy with WEE1 and ICB. WEE1 inhibition stimulates anti-tumor immunity and enhances sensitivity to ICB, providing a rationale for the combination of WEE1 inhibitors and ICB in clinical trials.
Collapse
MESH Headings
- A549 Cells
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Cycle Proteins/antagonists & inhibitors
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Line, Tumor
- Endogenous Retroviruses/genetics
- Endogenous Retroviruses/metabolism
- Enzyme Inhibitors/administration & dosage
- Enzyme Inhibitors/pharmacology
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- HCT116 Cells
- Humans
- Immune Checkpoint Inhibitors/administration & dosage
- Immune Checkpoint Inhibitors/pharmacology
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, SCID
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/immunology
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- Pyrazoles/administration & dosage
- Pyrazoles/pharmacology
- Pyrimidinones/administration & dosage
- Pyrimidinones/pharmacology
- RNA, Double-Stranded/genetics
- RNA, Double-Stranded/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Tumor Burden/drug effects
- Tumor Burden/genetics
- Tumor Burden/immunology
- Mice
Collapse
Affiliation(s)
- Ensong Guo
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rourou Xiao
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifan Wu
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gynecology and Obstetrics, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Funian Lu
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Liu
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Yang
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Li
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Fu
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zizhuo Wang
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Li
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhan Huang
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuxia Li
- Department of Gynecology Oncology, Guangzhou Women and Children’s Hospital, Guangzhou, China
| | - Xue Wu
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lixin You
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianyu Qin
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiling Lu
- Department of Systems Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Xiaoyuan Huang
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Ma
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gordon B. Mills
- Department of Cell, Development and Cancer Biology, Knight Cancer Institute, Oregon Health and Sciences University, Portland, OR
| | - Chaoyang Sun
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Chen
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
50
|
Immuno-Oncology for Gynecologic Malignancies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1342:193-232. [PMID: 34972966 DOI: 10.1007/978-3-030-79308-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Patients with advanced and/or recurrent gynecologic cancers derive limited benefit from currently available cytotoxic and targeted therapies. Successes of immunotherapy in other difficult-to-treat malignancies such as metastatic melanoma and advanced lung cancer have led to intense interest in clinical testing of these treatments in patients with gynecologic cancers. Currently, in the realm of gynecologic oncology, the FDA-approved use of immune checkpoint inhibitors is limited to microsatellite instability-high cancers, cancers with high tumor mutational burden, and PD-L1-positive cervical cancer. However, there has been an exponential growth of clinical trials testing immunotherapy approaches both alone and in combination with chemotherapy and/or targeted agents in patients with gynecologic cancers. This chapter will review some of the major reported and ongoing immunotherapy clinical trials in patients with endometrial, cervical, and epithelial ovarian cancer.
Collapse
|