1
|
Ang HL, Schulte M, Chan RK, Tan HH, Harrison A, Ryerson CJ, Khor YH. Pulmonary Hypertension in Interstitial Lung Disease: A Systematic Review and Meta-Analysis. Chest 2024; 166:778-792. [PMID: 38821182 DOI: 10.1016/j.chest.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is a key complication in interstitial lung disease (ILD), with recent therapeutic advances. RESEARCH QUESTION What are the diagnostic evaluation, epidemiologic features, associated factors, prognostic significance, and outcome measures in interventional trials for PH in patients with ILD in the current literature? STUDY DESIGN AND METHODS The Ovid MEDLINE, Embase, and CENTRAL databases were searched for original research evaluating PH in participants with ILD of any cause. The definition of PH was based on the investigators' criteria. RESULTS Three hundred two studies were included, with varying diagnostic evaluations used to define PH. Commonly used diagnostic tests were right heart catheterization (56%) and transthoracic echocardiography (50%). The pooled prevalence for PH in general populations with ILD was 36% (95% CI, 30%-42%) using right heart catheterization and 34% (95% CI, 29%-38%) using transthoracic echocardiography. Lower diffusion capacity of the lungs for carbon monoxide, worse oxygenation status, reduced exercise capacity, increased pulmonary artery to aorta ratio and pulmonary artery diameter, and elevated serum brain natriuretic peptide consistently were associated with the presence of PH in at least 60% of reported studies. The presence of PH was associated with increased symptom burden and worse prognosis. Outcome measures in interventional trials of PH in ILD focused on changes in pulmonary vascular hemodynamics and 6-min walk distance. INTERPRETATION PH is a common complication in ILD with significant health impacts. A standardized definition with prospective evaluation of risk-stratified assessments for PH using identified associated risk factors is warranted. Our findings provide an evidence base for validation as surrogate end points in future PH interventional trials in ILD. TRIAL REGISTRY International Prospective Register of Systematic Reviews; No.: CRD42021255394; URL: https://www.crd.york.ac.uk/prospero/.
Collapse
Affiliation(s)
- Hui Li Ang
- Royal Melbourne Hospital, VIC, Australia; Institute for Breathing and Sleep, VIC, Australia
| | - Max Schulte
- Institute for Breathing and Sleep, VIC, Australia
| | | | | | - Amelia Harrison
- Department of Respiratory and Sleep Disorders Medicine, Western Health, St. Albans, VIC, Australia
| | - Christopher J Ryerson
- University of British Columbia, Vancouver, BC, Canada; Centre for Heart Lung Innovation, Vancouver, BC, Canada
| | - Yet Hong Khor
- Institute for Breathing and Sleep, VIC, Australia; School of Translational Medicine, Monash University, Melbourne, VIC, Australia; Department of Respiratory and Sleep Medicine, Austin Health, Heidelberg, VIC, Australia.
| |
Collapse
|
2
|
Zhou A, Zhang X, Lu R, Peng W, Wang Y, Tang H, Pan P. Serum Krebs von den Lungen-6 as a potential biomarker for distinguishing combined pulmonary fibrosis and emphysema from chronic obstructive pulmonary disease: A retrospective study. Heliyon 2024; 10:e35099. [PMID: 39165953 PMCID: PMC11333912 DOI: 10.1016/j.heliyon.2024.e35099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/03/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024] Open
Abstract
Background The presence of fibrotic interstitial lung disease (ILD) is relatively common in patients with emphysema. This has been designated combined pulmonary fibrosis and emphysema (CPFE). CPFE had worse prognosis than emphysema alone. Krebs von den Lungen-6 (KL-6) levels as a biomarker of alveolar type 2 epithelial cell injury, which is widely used to identify the presence of ILD, whether it can differentiate CPFE from COPD remains unknown. Methods 259 patients from Xiangya Hospital with diagnosis of COPD, with or without ILD, and who had KL-6 tests were recruited for this retrospective analysis. Recorded data included demographic information, comorbidities, inflammatory biomarkers. Results of CT and pulmonary function tests were collected one week before or after KL-6 measurements. Results Among 259 patients, 52 patients were diagnosed with CPFE. The mean age was 67.39 ± 8.14 yeas. CPFE patients had higher ratio of rheumatic diseases (21.2 % vs 7.2 %, P = 0.003). CPFE patients exhibited higher values of FEV1 (1.97 vs 1.57, P = 0.002) and FEV1/FVC ratio (69.46 vs 57.64, P < 0.001) compared to COPD patients. CPFE patients had higher eosinophil counts, percentage of eosinophils, lactate dehydrogenase, total bilirubin levels and lower platelet counts. Serum KL-6 levels were higher in CPFE group compared to COPD group (574.95 vs 339.30 U/mL, P < 0.001). Multiple logistic regression showed that KL-6 level was an independent predictive factor for the presence of ILD among COPD patients. The AUC of serum KL-6 levels to differentiate CPFE was 0.711, with 95 % CI being 0.635 to 0.787. The cutoff point of KL-6 level was 550.95 U/mL with 57.7 % sensitivity and 79.7 % specificity for the discrimination of CPFE from COPD. Conclusion CPFE patients show higher KL-6 levels compared to isolated COPD, suggesting the potential of KL-6 as a practical screening tool for interstitial lung disease, specifically CPFE. A KL-6 threshold of 550.95 U/mL in COPD patients may indicate a high need for high-resolution chest computed tomography to detect fibrosis.
Collapse
Affiliation(s)
- Aiyuan Zhou
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China
| | - Xiyan Zhang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China
| | - Rongli Lu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China
| | - Wenzhong Peng
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China
| | - Yanan Wang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China
| | - Haiyun Tang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Pinhua Pan
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China
| |
Collapse
|
3
|
Lee JU, Park JS, Seo E, Kim JS, Lee HU, Chang Y, Park JS, Park CS. Clustering analysis of HRCT parameters measured using a texture-based automated system: relationship with clinical outcomes of IPF. BMC Pulm Med 2024; 24:367. [PMID: 39080584 PMCID: PMC11290077 DOI: 10.1186/s12890-024-03092-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/09/2024] [Indexed: 08/02/2024] Open
Abstract
PURPOSE The extent of honeycombing and reticulation predict the clinical prognosis of IPF. Emphysema, consolidation, and ground glass opacity are visible in HRCT scans. To date, there have been few comprehensive studies that have used these parameters. We conducted automated quantitative analysis to identify predictive parameters for clinical outcomes and then grouped the subjects accordingly. METHODS CT images were obtained while patients held their breath at full inspiration. Parameters were analyzed using an automated lung texture quantification system. Cluster analysis was conducted on 159 IPF patients and clinical profiles were compared between clusters in terms of survival. RESULTS Kaplan-Meier analysis revealed that survival rates declined as fibrosis, reticulation, honeycombing, consolidation, and emphysema scores increased. Cox regression analysis revealed that reticulation had the most significant impact on survival rate, followed by honeycombing, consolidation, and emphysema scores. Hierarchical and K-means cluster analyses revealed 3 clusters. Cluster 1 (n = 126) with the lowest values for all parameters had the longest survival duration, and relatively-well preserved FVC and DLCO. Cluster 2 (n = 15) with high reticulation and consolidation scores had the lowest FVC and DLCO values with a predominance of female, while cluster 3 (n = 18) with high honeycombing and emphysema scores predominantly consisted of male smokers. Kaplan-Meier analysis revealed that cluster 2 had the lowest survival rate, followed by cluster 3 and cluster 1. CONCLUSION Automated quantitative CT analysis provides valuable information for predicting clinical outcomes, and clustering based on these parameters may help identify the high-risk group for management.
Collapse
Affiliation(s)
- Jong-Uk Lee
- Department of Medical Bioscience, Graduate School, Soonchunhyang University, 22, Soonchunhyang-ro, Asan, 31538, Korea.
| | - Jong-Sook Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14584, Republic of Korea
| | - Eunjeong Seo
- Department of Medical Bioscience, Graduate School, Soonchunhyang University, 22, Soonchunhyang-ro, Asan, 31538, Korea
| | - Jin Seol Kim
- Clinical Specialist Coreline Soft, 49 World-Cup Bukro 6-gil, Mapogu, Seoul, 03991, Korea
| | - Hae Ung Lee
- Clinical Specialist Coreline Soft, 49 World-Cup Bukro 6-gil, Mapogu, Seoul, 03991, Korea
| | - Yongjin Chang
- Clinical Specialist Coreline Soft, 49 World-Cup Bukro 6-gil, Mapogu, Seoul, 03991, Korea
| | - Jai Seong Park
- Department of Radiology, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Bucheon, 14584, Korea
| | - Choon-Sik Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14584, Republic of Korea.
| |
Collapse
|
4
|
Pescatore J, Bittner M, D’Alonzo G, Weaver S, Gayen S. Predictors of Mortality in Pulmonary Hypertension-Associated Chronic Lung Disease. J Clin Med 2024; 13:3472. [PMID: 38929999 PMCID: PMC11205208 DOI: 10.3390/jcm13123472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Background/Objectives: Pulmonary hypertension (PH) often accompanies chronic lung diseases. Several chronic lung diseases with PH portends unfavorable outcomes. We investigated which variables in this cohort of patients with chronic lung disease and PH predicts mortality. Methods: This is a retrospective analysis of patients with chronic lung disease and PH at a single tertiary, academic center. The underlying lung disease included were COPD, IPF, other fibrotic ILD, non-fibrotic ILD, fibrotic sarcoidosis, and CPFE. All patients had right heart catheterization diagnostic of PH as well as pulmonary function testing data including 6 min walk testing. Univariable and multivariate Cox regression was performed to identify variables associated with mortality. Results: We identified 793 patients with chronic lung disease and PH. In total, 144 patients died prior to potential lung transplant. In multivariable Cox regression IPF, other fibrotic ILD, non-fibrotic ILD, and CPFE were significantly associated with an increased risk of mortality. Severe PH (PVR > 5 WU), FEV1 < 30% predicted, FVC < 40% predicted, 6 min walk distance < 150 m were also significantly associated with an increased risk of mortality. Conclusions: Carrying a diagnosis of IPF, CPFE, fibrotic ILD, or non-fibrotic ILD with PH has an increased risk of mortality as compared to COPD with PH. Hemodynamic, PVR > 5 WU, 6 min walk test less than 150 m, as well as spirometric data including FEV1 < 30% and FVC < 40% predicted were independently associated with an increased risk of death.
Collapse
Affiliation(s)
| | | | | | | | - Shameek Gayen
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University Hospital, Philadelphia, PA 19140, USA; (J.P.); (M.B.); (S.W.)
| |
Collapse
|
5
|
Tanabe N, Kumamaru H, Tamura Y, Kondoh Y, Nakayama K, Kinukawa N, Kimura T, Nishiyama O, Tsujino I, Shigeta A, Morio Y, Inoue Y, Kuraishi H, Hirata KI, Tanaka K, Kuwana M, Nagaoka T, Handa T, Sugimura K, Sakamaki F, Naito A, Taniguchi Y, Matsubara H, Hanaoka M, Inami T, Hayama N, Nishimura Y, Kimura H, Miyata H, Tatsumi K. Pulmonary Hypertension With Interstitial Pneumonia: Initial Treatment Effectiveness and Severity in a Japan Registry. JACC. ASIA 2024; 4:403-417. [PMID: 38765657 PMCID: PMC11099821 DOI: 10.1016/j.jacasi.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 05/22/2024]
Abstract
Background Recent guidelines discourage the use of pulmonary arterial hypertension (PAH)-targeted therapies in patients with pulmonary hypertension (PH) associated with respiratory diseases. Therefore, stratifications of the effectiveness of PAH-targeted therapies are important for this group. Objectives The authors aimed to identify phenotypes that might benefit from initial PAH-targeted therapies in patients with PH associated with interstitial pneumonia and combined pulmonary fibrosis and emphysema. Methods We categorized 270 patients with precapillary PH (192 interstitial pneumonia, 78 combined pulmonary fibrosis and emphysema) into severe and mild PH using a pulmonary vascular resistance of 5 WU. We investigated the prognostic factors and compared the prognoses of initial (within 2 months after diagnosis) and noninitial treatment groups, as well as responders (improvements in World Health Organization functional class, pulmonary vascular resistance, and 6-minute walk distance) and nonresponders. Results Among 239 treatment-naive patients, 46.0% had severe PH, 51.8% had mild ventilatory impairment (VI), and 40.6% received initial treatment. In the severe PH with mild VI subgroup, the initial treatment group had a favorable prognosis compared with the noninitial treatment group. The response rate in this group was significantly higher than the others (48.2% vs 21.8%, ratio 2.21 [95% CI: 1.17-4.16]). In multivariate analysis, initial treatment was a better prognostic factor for severe PH but not for mild PH. Within the severe PH subgroup, responders had a favorable prognosis. Conclusions This study demonstrated an increased number of responders to initial PAH-targeted therapy, with a favorable prognosis in severe PH cases with mild VI. A survival benefit was not observed in mild PH cases. (Multi-institutional Prospective Registry in Pulmonary Hypertension associated with Respiratory Disease; UMIN000011541).
Collapse
Affiliation(s)
- Nobuhiro Tanabe
- Pulmonary Hypertension Center, Saiseikai Narashino Hospital, Narashino, Chiba, Japan
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiraku Kumamaru
- Department of Healthcare Quality Assessment, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuichi Tamura
- Pulmonary Hypertension Center, International University of Health and Welfare Mita Hospital, Tokyo, Japan
| | - Yasuhiro Kondoh
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto, Aichi, Japan
| | | | - Naoko Kinukawa
- Department of Healthcare Quality Assessment, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoki Kimura
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto, Aichi, Japan
| | - Osamu Nishiyama
- Department of Respiratory Medicine and Allergology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Ichizo Tsujino
- Division of Respiratory and Cardiovascular Innovative Research, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Ayako Shigeta
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoshiteru Morio
- Center for Pulmonary Diseases and Respiratory Disease Division, National Hospital Organization Tokyo National Hospital, Kiyose, Tokyo, Japan
| | - Yoshikazu Inoue
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka, Japan
| | - Hiroshi Kuraishi
- Department of Respiratory Medicine, Nagano Red Cross Hospital, Nagano, Nagano, Japan
| | - Ken-ichi Hirata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kensuke Tanaka
- Department of Chest Medicine, Japan Railway Tokyo General Hospital, Tokyo, Japan
| | - Masataka Kuwana
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, Tokyo, Japan
| | - Tetsutaro Nagaoka
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomohiro Handa
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koichiro Sugimura
- Department of Cardiology, International University of Health and Welfare Narita Hospital, Narita, Japan
| | - Fumio Sakamaki
- Division of Respiratory Disease, Department of Medicine, Tokai University Hachioji Hospital, Hchioji, Japan
| | - Akira Naito
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yu Taniguchi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiromi Matsubara
- Department of Cardiology, Okayama Medical Center, Okayama, Japan
| | - Masayuki Hanaoka
- First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Takumi Inami
- Division of Cardiology Department of Medicine, Kyorin University Hospital, Mitaka, Tokyo, Japan
| | - Naoki Hayama
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Yoshihiro Nishimura
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroshi Kimura
- Department of Respiratory Medicine, Fukujuji Hospital, Japan Anti-Tuberculosis Association (JATA), Kiyose, Tokyo, Japan
| | - Hiroaki Miyata
- Department of Health Policy and Management, Keio University School of Medicine, Tokyo, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - JRPHS Group
- Pulmonary Hypertension Center, Saiseikai Narashino Hospital, Narashino, Chiba, Japan
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Healthcare Quality Assessment, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Pulmonary Hypertension Center, International University of Health and Welfare Mita Hospital, Tokyo, Japan
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto, Aichi, Japan
- Department of Cardiovascular Medicine, Shinko Hospital, Kobe, Japan
- Department of Respiratory Medicine and Allergology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
- Division of Respiratory and Cardiovascular Innovative Research, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Center for Pulmonary Diseases and Respiratory Disease Division, National Hospital Organization Tokyo National Hospital, Kiyose, Tokyo, Japan
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka, Japan
- Department of Respiratory Medicine, Nagano Red Cross Hospital, Nagano, Nagano, Japan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Chest Medicine, Japan Railway Tokyo General Hospital, Tokyo, Japan
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, Tokyo, Japan
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Cardiology, International University of Health and Welfare Narita Hospital, Narita, Japan
- Division of Respiratory Disease, Department of Medicine, Tokai University Hachioji Hospital, Hchioji, Japan
- Department of Cardiology, Okayama Medical Center, Okayama, Japan
- First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
- Division of Cardiology Department of Medicine, Kyorin University Hospital, Mitaka, Tokyo, Japan
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Respiratory Medicine, Fukujuji Hospital, Japan Anti-Tuberculosis Association (JATA), Kiyose, Tokyo, Japan
- Department of Health Policy and Management, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Zhao A, Gudmundsson E, Mogulkoc N, van Moorsel C, Corte TJ, Vasudev P, Romei C, Chapman R, Wallis TJ, Denneny E, Goos T, Savas R, Ahmed A, Brereton CJ, van Es HW, Jo H, De Liperi A, Duncan M, Pontoppidan K, De Sadeleer LJ, van Beek F, Barnett J, Cross G, Procter A, Veltkamp M, Hopkins P, Moodley Y, Taliani A, Taylor M, Verleden S, Tavanti L, Vermant M, Nair A, Stewart I, Janes SM, Young AL, Barber D, Alexander DC, Porter JC, Wells AU, Jones MG, Wuyts WA, Jacob J. Mortality surrogates in combined pulmonary fibrosis and emphysema. Eur Respir J 2024; 63:2300127. [PMID: 37973176 PMCID: PMC7616106 DOI: 10.1183/13993003.00127-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 09/24/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) with coexistent emphysema, termed combined pulmonary fibrosis and emphysema (CPFE) may associate with reduced forced vital capacity (FVC) declines compared to non-CPFE IPF patients. We examined associations between mortality and functional measures of disease progression in two IPF cohorts. METHODS Visual emphysema presence (>0% emphysema) scored on computed tomography identified CPFE patients (CPFE/non-CPFE: derivation cohort n=317/n=183, replication cohort n=358/n=152), who were subgrouped using 10% or 15% visual emphysema thresholds, and an unsupervised machine-learning model considering emphysema and interstitial lung disease extents. Baseline characteristics, 1-year relative FVC and diffusing capacity of the lung for carbon monoxide (D LCO) decline (linear mixed-effects models), and their associations with mortality (multivariable Cox regression models) were compared across non-CPFE and CPFE subgroups. RESULTS In both IPF cohorts, CPFE patients with ≥10% emphysema had a greater smoking history and lower baseline D LCO compared to CPFE patients with <10% emphysema. Using multivariable Cox regression analyses in patients with ≥10% emphysema, 1-year D LCO decline showed stronger mortality associations than 1-year FVC decline. Results were maintained in patients suitable for therapeutic IPF trials and in subjects subgrouped by ≥15% emphysema and using unsupervised machine learning. Importantly, the unsupervised machine-learning approach identified CPFE patients in whom FVC decline did not associate strongly with mortality. In non-CPFE IPF patients, 1-year FVC declines ≥5% and ≥10% showed strong mortality associations. CONCLUSION When assessing disease progression in IPF, D LCO decline should be considered in patients with ≥10% emphysema and a ≥5% 1-year relative FVC decline threshold considered in non-CPFE IPF patients.
Collapse
Affiliation(s)
- An Zhao
- Satsuma Lab, Centre for Medical Image Computing, UCL, London,
UK
- Centre for Medical Image Computing, UCL, London, UK
| | - Eyjolfur Gudmundsson
- Satsuma Lab, Centre for Medical Image Computing, UCL, London,
UK
- Centre for Medical Image Computing, UCL, London, UK
| | - Nesrin Mogulkoc
- Department of Respiratory Medicine, Ege University Hospital,
Izmir, Turkey
| | - Coline van Moorsel
- Interstitial Lung Diseases Center of Excellence, Department of
Pulmonology, St Antonius Hospital, Nieuwegein, Netherlands
| | - Tamera J. Corte
- Department of Respiratory Medicine, Royal Prince Alfred Hospital
and University of Sydney, Sydney, Australia
| | - Pardeep Vasudev
- Satsuma Lab, Centre for Medical Image Computing, UCL, London,
UK
- Centre for Medical Image Computing, UCL, London, UK
| | - Chiara Romei
- Department of Radiology, Pisa University Hospital, Pisa,
Italy
| | - Robert Chapman
- Interstitial Lung Disease Service, Department of Respiratory
Medicine, University College London Hospitals NHS Foundation Trust, London,
UK
| | - Tim J.M. Wallis
- NIHR Southampton Biomedical Research Centre and Clinical and
Experimental Sciences, University of Southampton, Southampton, UK
| | - Emma Denneny
- Interstitial Lung Disease Service, Department of Respiratory
Medicine, University College London Hospitals NHS Foundation Trust, London,
UK
| | - Tinne Goos
- BREATHE, Department of Chronic Diseases and Metabolism, KU
Leuven, Leuven, Belgium
- Department of Respiratory Diseases, University Hospitals
Leuven, Leuven, Belgium
| | - Recep Savas
- Department of Radiology, Ege University Hospital, Izmir,
Turkey
| | - Asia Ahmed
- Department of Radiology, University College London Hospitals
NHS Foundation Trust, London, UK
| | - Christopher J. Brereton
- NIHR Southampton Biomedical Research Centre and Clinical and
Experimental Sciences, University of Southampton, Southampton, UK
| | - Hendrik W. van Es
- Interstitial Lung Diseases Center of Excellence, Department of
Pulmonology, St Antonius Hospital, Nieuwegein, Netherlands
| | - Helen Jo
- Department of Respiratory Medicine, Royal Prince Alfred Hospital
and University of Sydney, Sydney, Australia
| | | | - Mark Duncan
- Department of Radiology, University College London Hospitals
NHS Foundation Trust, London, UK
| | - Katarina Pontoppidan
- NIHR Southampton Biomedical Research Centre and Clinical and
Experimental Sciences, University of Southampton, Southampton, UK
| | - Laurens J. De Sadeleer
- Department of Respiratory Diseases, University Hospitals
Leuven, Leuven, Belgium
- Institute of Lung Health and Immunity (LHI) / Comprehensive
Pneumology Center (CPC), Helmholtz Zentrum München, Munich, Germany
| | - Frouke van Beek
- Interstitial Lung Diseases Center of Excellence, Department of
Pulmonology, St Antonius Hospital, Nieuwegein, Netherlands
| | - Joseph Barnett
- Department of Radiology, Royal Free London NHS Foundation
Trust, London, UK
| | - Gary Cross
- Department of Radiology, Royal United Hospitals Bath NHS
Foundation Trust, Bath, UK
| | - Alex Procter
- Department of Radiology, University College London Hospitals
NHS Foundation Trust, London, UK
| | - Marcel Veltkamp
- Interstitial Lung Diseases Center of Excellence, Department of
Pulmonology, St Antonius Hospital, Nieuwegein, Netherlands
- Division of Heart and Lungs, University Medical Center,
Utrecht, Netherlands
| | - Peter Hopkins
- Queensland Centre for Pulmonary Transplantation and Vascular
Disease, The Prince Charles Hospital, QLD, Australia
| | - Yuben Moodley
- School of Medicine & Pharmacology, University Western
Australia, WA, Australia
- Fiona Stanley Hospital, Perth, Australia
| | | | - Magali Taylor
- Department of Radiology, University College London Hospitals
NHS Foundation Trust, London, UK
| | - Stijn Verleden
- Antwerp Surgical Training, Anatomy and Research Centre
(ASTARC), Faculty of Medicine and Health Sciences, University of Antwerp,
Edegem, Belgium
| | - Laura Tavanti
- Cardiovascular and Thoracic Department, Pisa University
Hospital, Pisa, Italy
| | - Marie Vermant
- BREATHE, Department of Chronic Diseases and Metabolism, KU
Leuven, Leuven, Belgium
- Department of Respiratory Diseases, University Hospitals
Leuven, Leuven, Belgium
| | - Arjun Nair
- Department of Radiology, University College London Hospitals
NHS Foundation Trust, London, UK
| | - Iain Stewart
- National Heart and Lung Institute, Imperial College London,
London, UK
| | - Sam M. Janes
- Lungs for Living Research Centre, UCL, London, UK
| | - Alexandra L. Young
- Centre for Medical Image Computing, UCL, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology
and Neuroscience, King’s College London, London, UK
| | - David Barber
- Centre for Artificial Intelligence, UCL, London, UK
| | | | - Joanna C. Porter
- Interstitial Lung Disease Service, Department of Respiratory
Medicine, University College London Hospitals NHS Foundation Trust, London,
UK
| | - Athol U. Wells
- Department of Respiratory Medicine, Royal Brompton Hospital,
London, UK
- Imperial College London, London, UK
| | - Mark G. Jones
- NIHR Southampton Biomedical Research Centre and Clinical and
Experimental Sciences, University of Southampton, Southampton, UK
| | - Wim A. Wuyts
- BREATHE, Department of Chronic Diseases and Metabolism, KU
Leuven, Leuven, Belgium
- Department of Respiratory Diseases, University Hospitals
Leuven, Leuven, Belgium
| | - Joseph Jacob
- Satsuma Lab, Centre for Medical Image Computing, UCL, London,
UK
- Centre for Medical Image Computing, UCL, London, UK
- Lungs for Living Research Centre, UCL, London, UK
| |
Collapse
|
7
|
Brixey AG, Oh AS, Alsamarraie A, Chung JH. Pictorial Review of Fibrotic Interstitial Lung Disease on High-Resolution CT Scan and Updated Classification. Chest 2024; 165:908-923. [PMID: 38056824 DOI: 10.1016/j.chest.2023.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/08/2023] Open
Abstract
TOPIC IMPORTANCE Given the recently expanded approval of antifibrotics for various fibrotic interstitial lung diseases (ILDs), early and correct recognition of these diseases is imperative for physicians. Because high-resolution chest CT scan forms the backbone of diagnosis for ILD, this review will discuss evidence-based imaging findings of key fibrotic ILDs and an approach for differentiating these diseases. REVIEW FINDINGS (1) Imaging findings of nonspecific interstitial pneumonia may evolve over time and become indistinguishable from usual interstitial pneumonia. Therefore, if remote imaging can be reviewed, this would increase the likelihood of an accurate imaging diagnosis, particularly if findings appear to represent a usual interstitial pneumonia pattern on the recent examination. (2) Given the difficulty and lack of objectivity in classifying patients with hypersensitivity pneumonitis into acute, subacute, and chronic categories and that prognosis depends primarily on presence or absence of fibrosis, the new set of guidelines released in 2020 categorizes patients with hypersensitivity pneumonitis as either nonfibrotic (purely inflammatory) or fibrotic (either purely fibrotic or mixed fibrotic/inflammatory) based on imaging and/or histologic findings, and the prior temporal terms are no longer used. (3) Interstitial lung abnormalities are incidental CT scan findings that may suggest early ILD in patients without clinical suspicion for ILD. Patients with high-risk features should undergo clinical evaluation for ILD and be actively monitored for disease progression. SUMMARY Fibrotic ILD on high-resolution chest CT scan is a complex topic, but with use of an evidence-based analysis and algorithm as provided in this article, the probability of a correct imaging diagnosis increases.
Collapse
Affiliation(s)
- Anupama Gupta Brixey
- Portland VA Health Care System, Department of Diagnostic Radiology, Section of Cardiothoracic Imaging, Oregon Health & Science University, Portland, OR.
| | - Andrea S Oh
- Department of Diagnostic Radiology, University of California, Los Angeles, Los Angeles, CA
| | - Aseel Alsamarraie
- Department of Internal Medicine, Washington State University, Providence Medical Center, Everett, WA
| | - Jonathan H Chung
- Department of Diagnostic Radiology, The University of California, San Diego, San Diego, CA
| |
Collapse
|
8
|
Wells AU, Jacob J, Sverzellati N, Cross G, Barnett J, De Lauretis A, Antoniou K, Weycker D, Atwood M, Kirchgaessler KU, Cottin V. A formula for predicting emphysema extent in combined idiopathic pulmonary fibrosis and emphysema. Respir Res 2024; 25:33. [PMID: 38238788 PMCID: PMC10795205 DOI: 10.1186/s12931-023-02589-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/30/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND No single pulmonary function test captures the functional effect of emphysema in idiopathic pulmonary fibrosis (IPF). Without experienced radiologists, other methods are needed to determine emphysema extent. Here, we report the development and validation of a formula to predict emphysema extent in patients with IPF and emphysema. METHODS The development cohort included 76 patients with combined IPF and emphysema at the Royal Brompton Hospital, London, United Kingdom. The formula was derived using stepwise regression to generate the weighted combination of pulmonary function data that fitted best with emphysema extent on high-resolution computed tomography. Test cohorts included patients from two clinical trials (n = 455 [n = 174 with emphysema]; NCT00047645, NCT00075998) and a real-world cohort from the Royal Brompton Hospital (n = 191 [n = 110 with emphysema]). The formula is only applicable for patients with IPF and concomitant emphysema and accordingly was not used to detect the presence or absence of emphysema. RESULTS The formula was: predicted emphysema extent = 12.67 + (0.92 x percent predicted forced vital capacity) - (0.65 x percent predicted forced expiratory volume in 1 second) - (0.52 x percent predicted carbon monoxide diffusing capacity). A significant relationship between the formula and observed emphysema extent was found in both cohorts (R2 = 0.25, P < 0.0001; R2 = 0.47, P < 0.0001, respectively). In both, the formula better predicted observed emphysema extent versus individual pulmonary function tests. A 15% emphysema extent threshold, calculated using the formula, identified a significant difference in absolute changes from baseline in forced vital capacity at Week 48 in patients with baseline-predicted emphysema extent < 15% versus ≥ 15% (P = 0.0105). CONCLUSION The formula, designed for use in patients with IPF and emphysema, demonstrated enhanced ability to predict emphysema extent versus individual pulmonary function tests. TRIAL REGISTRATION NCT00047645; NCT00075998.
Collapse
Affiliation(s)
- Athol U Wells
- Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK.
| | - Joseph Jacob
- Department of Respiratory Medicine, University College London, London, UK
- Satsuma Lab, Centre for Medical Image Computing, University College London, London, UK
| | - Nicola Sverzellati
- Scienze Radiologiche, Department of Medicine and Surgery, University Hospital Parma, Parma, Italy
| | | | | | - Angelo De Lauretis
- Department of Respiratory Medicine, University of Insubria, Ospedale di Circolo, Varese, Italy
| | - Katerina Antoniou
- Interstitial Lung Disease Unit, Department of Thoracic Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | | | - Mark Atwood
- Policy Analysis Inc. (PAI), Brookline, MA, USA
| | | | - Vincent Cottin
- National Reference Center for Rare Pulmonary Diseases (OrphaLung), Louis Pradel Hospital, Hospices Civils de Lyon, ERN-LUNG, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
9
|
Shlobin OA, Shen E, Wort SJ, Piccari L, Scandurra JA, Hassoun PM, Nikkho SM, Nathan SD. Pulmonary hypertension in the setting of interstitial lung disease: Approach to management and treatment. A consensus statement from the Pulmonary Vascular Research Institute's Innovative Drug Development Initiative-Group 3 Pulmonary Hypertension. Pulm Circ 2024; 14:e12310. [PMID: 38205098 PMCID: PMC10777777 DOI: 10.1002/pul2.12310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/09/2023] [Accepted: 11/01/2023] [Indexed: 01/12/2024] Open
Abstract
Pulmonary hypertension (PH) due to interstitial lung disease (ILD), a commonly encountered complication of fibrotic ILDs, is associated with significant morbidity and mortality. Until recently, the studies of pulmonary vasodilator therapy in PH-ILD have been largely disappointing, with some even demonstrating the potential for harm. This paper is part of a series of Consensus Statements from the Pulmonary Vascular Research Institute's Innovative Drug Development Initiative for Group 3 Pulmonary Hypertension, with prior publications covering pathogenesis, prevalence, clinical features, phenotyping, clinical trials, and impact of PH-ILD. It offers a comprehensive review of and a holistic approach to treatment of PH-ILD, including the management of underlying interstitial lung diseases, importance of treating the comorbidities, emphasis on importance of exercise and palliation of dyspnea, and review of the most up-to-date guidelines for referral for potential lung transplant work up. It also summarizes the prior, ongoing, and possibly future studies in treatment of the vascular derangement of this morbid condition.
Collapse
Affiliation(s)
- Oksana A. Shlobin
- Advanced Lung Disease and Transplant ProgramInova Health SystemFalls ChurchVirginiaUSA
| | - Eric Shen
- United Therapeutics CorporationResearch Triangle ParkNorth CarolinaUSA
| | - Stephen J. Wort
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Lucilla Piccari
- Department of Pulmonary MedicineHospital del MarBarcelonaSpain
| | | | - Paul M. Hassoun
- Department of Medicine, Division of Pulmonary and Critical Care MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | | | - Steven D. Nathan
- Advanced Lung Disease and Transplant ProgramInova Health SystemFalls ChurchVirginiaUSA
| |
Collapse
|
10
|
Blanco I, Hernández-González F, García A, Torres-Castro R, Barberà JA. Management of Pulmonary Hypertension Associated with Chronic Lung Disease. Semin Respir Crit Care Med 2023; 44:826-839. [PMID: 37487524 DOI: 10.1055/s-0043-1770121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Pulmonary hypertension (PH) is a common complication of chronic lung diseases, particularly in chronic obstructive pulmonary disease (COPD) and interstitial lung diseases (ILD) and especially in advanced disease. It is associated with greater mortality and worse clinical course. Given the high prevalence of some respiratory disorders and because lung parenchymal abnormalities might be present in other PH groups, the appropriate diagnosis of PH associated with respiratory disease represents a clinical challenge. Patients with chronic lung disease presenting symptoms that exceed those expected by the pulmonary disease should be further evaluated by echocardiography. Confirmatory right heart catheterization is indicated in candidates to surgical treatments, suspected severe PH potentially amenable with targeted therapy, and, in general, in those conditions where the result of the hemodynamic assessment will determine treatment options. The treatment of choice for these patients who are hypoxemic is long-term oxygen therapy and pulmonary rehabilitation to improve symptoms. Lung transplant is the only curative therapy and can be considered in appropriate cases. Conventional vasodilators or drugs approved for pulmonary arterial hypertension (PAH) are not recommended in patients with mild-to-moderate PH because they may impair gas exchange and their lack of efficacy shown in randomized controlled trials. Patients with severe PH (as defined by pulmonary vascular resistance >5 Wood units) should be referred to a center with expertise in PH and lung diseases and ideally included in randomized controlled trials. Targeted PAH therapy might be considered in this subset of patients, with careful monitoring of gas exchange. In patients with ILD, inhaled treprostinil has been shown to improve functional ability and to delay clinical worsening.
Collapse
Affiliation(s)
- Isabel Blanco
- Department of Pulmonary Medicine, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic-University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
- European Reference Network on Rare Pulmonary Diseases (ERN-LUNG), Spain
| | - Fernanda Hernández-González
- Department of Pulmonary Medicine, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic-University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
- European Reference Network on Rare Pulmonary Diseases (ERN-LUNG), Spain
| | - Agustín García
- Department of Pulmonary Medicine, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic-University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
- European Reference Network on Rare Pulmonary Diseases (ERN-LUNG), Spain
| | - Rodrigo Torres-Castro
- Department of Pulmonary Medicine, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic-University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
- European Reference Network on Rare Pulmonary Diseases (ERN-LUNG), Spain
| | - Joan A Barberà
- Department of Pulmonary Medicine, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic-University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
- European Reference Network on Rare Pulmonary Diseases (ERN-LUNG), Spain
| |
Collapse
|
11
|
Olsson KM, Corte TJ, Kamp JC, Montani D, Nathan SD, Neubert L, Price LC, Kiely DG. Pulmonary hypertension associated with lung disease: new insights into pathomechanisms, diagnosis, and management. THE LANCET. RESPIRATORY MEDICINE 2023; 11:820-835. [PMID: 37591300 DOI: 10.1016/s2213-2600(23)00259-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 08/19/2023]
Abstract
Patients with chronic lung diseases, particularly interstitial lung disease and chronic obstructive pulmonary disease, frequently develop pulmonary hypertension, which results in clinical deterioration, worsening of oxygen uptake, and an increased mortality risk. Pulmonary hypertension can develop and progress independently from the underlying lung disease. The pulmonary vasculopathy is distinct from that of other forms of pulmonary hypertension, with vascular ablation due to loss of small pulmonary vessels being a key feature. Long-term tobacco exposure might contribute to this type of pulmonary vascular remodelling. The distinct pathomechanisms together with the underlying lung disease might explain why treatment options for this condition remain scarce. Most drugs approved for pulmonary arterial hypertension have shown no or sometimes harmful effects in pulmonary hypertension associated with lung disease. An exception is inhaled treprostinil, which improves exercise capacity in patients with interstitial lung disease and pulmonary hypertension. There is a pressing need for safe, effective treatment options and for reliable, non-invasive diagnostic tools to detect and characterise pulmonary hypertension in patients with chronic lung disease.
Collapse
Affiliation(s)
- Karen M Olsson
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hanover (BREATH), German Center for Lung Research, Hannover, Germany.
| | - Tamera J Corte
- Department of Respiratory Medicine, Royal Prince Alfred Hospital and University of Sydney, Sydney, NSW, Australia
| | - Jan C Kamp
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hanover (BREATH), German Center for Lung Research, Hannover, Germany
| | - David Montani
- Department of Respiratory and Intensive Care Medicine, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, INSERM Unité Mixte de Recherche 999, Université Paris-Saclay, Paris, France
| | - Steven D Nathan
- Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, VA, USA
| | - Lavinia Neubert
- Institute of Pathology, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hanover (BREATH), German Center for Lung Research, Hannover, Germany
| | - Laura C Price
- National Heart and Lung Institute, Imperial College London, London, UK; National Pulmonary Hypertension Service, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - David G Kiely
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK; Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK; NIHR Biomedical Research Centre, Sheffield, UK
| |
Collapse
|
12
|
Ohkawa Y, Kanto N, Nakano M, Fujinawa R, Kizuka Y, Johnson EL, Harada Y, Tamura JI, Taniguchi N. Involvement of langerin in the protective function of a keratan sulfate-based disaccharide in an emphysema mouse model. J Biol Chem 2023; 299:105052. [PMID: 37454739 PMCID: PMC10448169 DOI: 10.1016/j.jbc.2023.105052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/22/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD), which includes emphysema and chronic bronchitis, is now the third cause of death worldwide, and COVID-19 infection has been reported as an exacerbation factor of them. In this study, we report that the intratracheal administration of the keratan sulfate-based disaccharide L4 mitigates the symptoms of elastase-induced emphysema in a mouse model. To know the molecular mechanisms, we performed a functional analysis of a C-type lectin receptor, langerin, a molecule that binds L4. Using mouse BMDCs (bone marrow-derived dendritic cells) as langerin-expressing cells, we observed the downregulation of IL-6 and TNFa and the upregulation of IL-10 after incubation with L4. We also identified CapG (a macrophage-capping protein) as a possible molecule that binds langerin by immunoprecipitation combined with a mass spectrometry analysis. We identified a portion of the CapG that was localized in the nucleus and binds to the promoter region of IL-6 and the TNFa gene in BMDCs, suggesting that CapG suppresses the gene expression of IL-6 and TNFa as an inhibitory transcriptional factor. To examine the effects of L4 in vivo, we also generated langerin-knockout mice by means of genome editing technology. In an emphysema mouse model, the administration of L4 did not mitigate the symptoms of emphysema as well as the inflammatory state of the lung in the langerin-knockout mice. These data suggest that the anti-inflammatory effect of L4 through the langerin-CapG axis represents a potential therapeutic target for the treatment of emphysema and COPD.
Collapse
Affiliation(s)
- Yuki Ohkawa
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan
| | - Noriko Kanto
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan
| | - Miyako Nakano
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Reiko Fujinawa
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Yasuhiko Kizuka
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Emma Lee Johnson
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan; Department of Molecular Biochemistry and Clinical Investigation, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoichiro Harada
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan
| | - Jun-Ichi Tamura
- Department of Life and Environmental Agricultural Sciences, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Naoyuki Taniguchi
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan.
| |
Collapse
|
13
|
Douglas D, Keating L, Strykowski R, Lee CT, Garcia N, Selvan K, Kaushik N, Bauer Ventura I, Jablonski R, Vij R, Chung JH, Bellam S, Strek ME, Adegunsoye A. Tobacco smoking is associated with combined pulmonary fibrosis and emphysema and worse outcomes in interstitial lung disease. Am J Physiol Lung Cell Mol Physiol 2023; 325:L233-L243. [PMID: 37366539 PMCID: PMC10396279 DOI: 10.1152/ajplung.00083.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023] Open
Abstract
Tobacco smoking is an established cause of pulmonary disease whose contribution to interstitial lung disease (ILD) is incompletely characterized. We hypothesized that compared with nonsmokers, subjects who smoked tobacco would differ in their clinical phenotype and have greater mortality. We performed a retrospective cohort study of tobacco smoking in ILD. We evaluated demographic and clinical characteristics, time to clinically meaningful lung function decline (LFD), and mortality in patients stratified by tobacco smoking status (ever vs. never) within a tertiary center ILD registry (2006-2021) and replicated mortality outcomes across four nontertiary medical centers. Data were analyzed by two-sided t tests, Poisson generalized linear models, and Cox proportional hazard models adjusted for age, sex, forced vital capacity (FVC), diffusion capacity of the lung for carbon monoxide (DLCO), ILD subtype, antifibrotic therapy, and hospital center. Of 1,163 study participants, 651 were tobacco smokers. Smokers were more likely to be older, male, have idiopathic pulmonary fibrosis (IPF), coronary artery disease, CT honeycombing and emphysema, higher FVC, and lower DLCO than nonsmokers (P < 0.01). Time to LFD in smokers was shorter (19.7 ± 20 mo vs. 24.8 ± 29 mo; P = 0.038) and survival time was decreased [10.75 (10.08-11.50) yr vs. 20 (18.67-21.25) yr; adjusted mortality HR = 1.50, 95%CI 1.17-1.92; P < 0.0001] compared with nonsmokers. Smokers had 12% greater odds of death for every additional 10 pack yr of smoking (P < 0.0001). Mortality outcomes remained consistent in the nontertiary cohort (HR = 1.51, 95%CI = 1.03-2.23; P = 0.036). Tobacco smokers with ILD have a distinct clinical phenotype strongly associated with the syndrome of combined PF and emphysema, shorter time to LFD, and decreased survival. Smoking prevention may improve ILD outcomes.NEW & NOTEWORTHY Smoking in ILD is associated with combined pulmonary fibrosis and emphysema and worse clinical outcomes.
Collapse
Affiliation(s)
- Dylan Douglas
- Section of Pulmonary and Critical Care, Department of Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Layne Keating
- Section of Pulmonary and Critical Care, Department of Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Rachel Strykowski
- Section of Pulmonary and Critical Care, Department of Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Cathryn T Lee
- Section of Pulmonary and Critical Care, Department of Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Nicole Garcia
- Section of Pulmonary and Critical Care, Department of Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Kavitha Selvan
- Section of Pulmonary and Critical Care, Department of Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Neha Kaushik
- Division of Pulmonary and Critical Care, Department of Medicine, NorthShore University HealthSystem, Evanston, Illinois, United States
| | - Iazsmin Bauer Ventura
- Section of Pulmonary and Critical Care, Department of Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Renea Jablonski
- Section of Pulmonary and Critical Care, Department of Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Rekha Vij
- Section of Pulmonary and Critical Care, Department of Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Jonathan H Chung
- Department of Radiology, The University of Chicago, Chicago, Illinois, United States
| | - Shashi Bellam
- Division of Pulmonary and Critical Care, Department of Medicine, NorthShore University HealthSystem, Evanston, Illinois, United States
| | - Mary E Strek
- Section of Pulmonary and Critical Care, Department of Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Ayodeji Adegunsoye
- Section of Pulmonary and Critical Care, Department of Medicine, The University of Chicago, Chicago, Illinois, United States
- Committee on Clinical Pharmacology and Pharmacogenomics, The University of Chicago, Chicago, Illinois, United States
| |
Collapse
|
14
|
Khor YH, Cottin V, Holland AE, Inoue Y, McDonald VM, Oldham J, Renzoni EA, Russell AM, Strek ME, Ryerson CJ. Treatable traits: a comprehensive precision medicine approach in interstitial lung disease. Eur Respir J 2023; 62:2300404. [PMID: 37263752 PMCID: PMC10626565 DOI: 10.1183/13993003.00404-2023] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023]
Abstract
Interstitial lung disease (ILD) is a diverse group of inflammatory and fibrotic lung conditions causing significant morbidity and mortality. A multitude of factors beyond the lungs influence symptoms, health-related quality of life, disease progression and survival in patients with ILD. Despite an increasing emphasis on multidisciplinary management in ILD, the absence of a framework for assessment and delivery of comprehensive patient care poses challenges in clinical practice. The treatable traits approach is a precision medicine care model that operates on the premise of individualised multidimensional assessment for distinct traits that can be targeted by specific interventions. The potential utility of this approach has been described in airway diseases, but has not been adequately considered in ILD. Given the similar disease heterogeneity and complexity between ILD and airway diseases, we explore the concept and potential application of the treatable traits approach in ILD. A framework of aetiological, pulmonary, extrapulmonary and behavioural and lifestyle treatable traits relevant to clinical care and outcomes for patients with ILD is proposed. We further describe key research directions to evaluate the application of the treatable traits approach towards advancing patient care and health outcomes in ILD.
Collapse
Affiliation(s)
- Yet H Khor
- Respiratory Research@Alfred, Central Clinical School, Monash University, Melbourne, Australia
- Department of Respiratory and Sleep Medicine, Austin Health, Heidelberg, Australia
- Institute for Breathing and Sleep, Heidelberg, Australia
- Faculty of Medicine, University of Melbourne, Melbourne, Australia
| | - Vincent Cottin
- National Coordinating Reference Centre for Rare Pulmonary Diseases, OrphaLung, Louis Pradel Hospital, Hospices Civils de Lyon, ERN-LUNG, Lyon, France
- UMR 754, Claude Bernard University Lyon 1, INRAE, Lyon, France
| | - Anne E Holland
- Respiratory Research@Alfred, Central Clinical School, Monash University, Melbourne, Australia
- Institute for Breathing and Sleep, Heidelberg, Australia
- Department of Respiratory and Sleep Medicine, Alfred Health, Melbourne, Australia
- Department of Physiotherapy, Alfred Health, Melbourne, Australia
| | - Yoshikazu Inoue
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai City, Japan
| | - Vanessa M McDonald
- National Health and Medical Research Council Centre for Research Excellence in Treatable Traits, New Lambton Heights, Australia
- Asthma and Breathing Research Centre, Hunter Medical Research Institute, New Lambton Heights, Australia
- School of Nursing and Midwifery, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, Australia
| | - Justin Oldham
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Elisabetta A Renzoni
- Interstitial Lung Disease Unit, Royal Brompton and Harefield Clinical Group, Guy's and St Thomas' NHS Foundation Trust, London, UK
- Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - Anne Marie Russell
- Exeter Respiratory Innovation Centre, University of Exeter, Exeter, UK
- Royal Devon University Hospitals, NHS Foundation Trust, Devon, UK
- Faculty of Medicine, Imperial College Healthcare NHS Trust, London, UK
| | - Mary E Strek
- Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, USA
| | - Christopher J Ryerson
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| |
Collapse
|
15
|
Ni H, Wei Y, Yang L, Wang Q. An increased risk of pulmonary hypertension in patients with combined pulmonary fibrosis and emphysema: a meta-analysis. BMC Pulm Med 2023; 23:221. [PMID: 37344866 DOI: 10.1186/s12890-023-02425-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/07/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND AND AIM Pulmonary hypertension (PH) is a common complication of combined pulmonary fibrosis and emphysema (CPFE). Whether the incidence of PH is increased in CPFE compared with pure pulmonary fibrosis or emphysema remains unclear. This meta-analysis aimed to evaluate the risk of PH in patients with CPFE compared to those with IPF or COPD/emphysema. METHODS We searched the PubMed, Embase, Cochrane Library, and CNKI databases for relevant studies focusing on the incidence of PH in patients with CPFE and IPF or emphysema. Pooled odds ratios (ORs) and standard mean differences (SMD) with 95% confidence intervals (95% CIs) were used to evaluate the differences in the clinical characteristics presence and severity of PH between patients with CPFE, IPF, or emphysema. The survival impact of PH in patients with CPFE was assessed using hazard ratios (HRs). RESULTS A total of 13 eligible studies were included in the meta-analysis, involving 560, 720, and 316 patients with CPFE, IPF, and emphysema, respectively. Patients with CPFE had an increased PH risk with a higher frequency of pulmonary hypertension and higher estimated systolic pulmonary artery pressure (esPAP), compared with those with IPF (OR: 2.66; 95% CI: 1.55-4.57; P < 0.01; SMD: 0.86; 95% CI: 0.52-1.19; P < 0.01) or emphysema (OR: 3.19; 95% CI: 1.42-7.14; P < 0.01; SMD: 0.73; 95% CI: 0.50-0.96; P < 0.01). In addition, the patients with CPFE combined with PH had a poor prognosis than patients with CPFE without PH (HR: 6.16; 95% CI: 2.53-15.03; P < 0.01). CONCLUSIONS Our meta-analysis showed that patients with CPFE were associated with a significantly higher risk of PH compared with those with IPF or emphysema alone. The presence of PH was a poor predictor of mortality.
Collapse
Affiliation(s)
- Hangqi Ni
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Yuying Wei
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Liuqing Yang
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Qing Wang
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang, 310003, People's Republic of China.
| |
Collapse
|
16
|
Calaras D, Mathioudakis AG, Lazar Z, Corlateanu A. Combined Pulmonary Fibrosis and Emphysema: Comparative Evidence on a Complex Condition. Biomedicines 2023; 11:1636. [PMID: 37371731 DOI: 10.3390/biomedicines11061636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Combined pulmonary fibrosis and emphysema (CPFE) is a clinical syndrome characterized by upper lobe emphysema and lower lobe fibrosis manifested by exercise hypoxemia, normal lung volumes, and severe reduction of diffusion capacity of carbon monoxide. It has varying prevalence worldwide with a male predominance, and with smoking history of more than 40 pack-years being a common risk factor. The unique imaging features of CPFE emphasize its distinct entity, aiding in the timely detection of pulmonary hypertension and lung cancer, both of which are common complications. High-resolution computed tomography (HRCT) is an important diagnostic and prognostic tool, while lung cancer is an independent factor that alters the prognosis in CPFE patients. Treatment options for CPFE are limited, but smoking cessation, usual treatments of pulmonary fibrosis and emphysema, and avoidance of environmental exposures are encouraged.
Collapse
Affiliation(s)
- Diana Calaras
- Department of Pulmonology and Allergology, State University of Medicine and Pharmacy "Nicolae Testemitanu", MD-2004 Chisinau, Moldova
| | - Alexander G Mathioudakis
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester M13 9PL, UK
| | - Zsofia Lazar
- Department of Pulmonology, Semmelweis University, 1083 Budapest, Hungary
| | - Alexandru Corlateanu
- Department of Pulmonology and Allergology, State University of Medicine and Pharmacy "Nicolae Testemitanu", MD-2004 Chisinau, Moldova
| |
Collapse
|
17
|
Fabyan KD, Chandel A, King CS. Pulmonary Hypertension in Interstitial Lung Disease: Management Options to Move Beyond Supportive Care. CURRENT PULMONOLOGY REPORTS 2023; 12:1-8. [PMID: 37362782 PMCID: PMC10200699 DOI: 10.1007/s13665-023-00311-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2023] [Indexed: 06/28/2023]
Abstract
Purpose of Review This review delineates current diagnostic and management strategies for pulmonary hypertension due to interstitial lung disease (PH-ILD). Recent Findings The INCREASE trial, a phase III multicenter, randomized, placebo-controlled trial demonstrated both improved 6-min walk distance and decreased disease progression with inhaled treprostinil. This pivotal trial led to inhaled treprostinil becoming the first FDA approved medication for treatment of PH-ILD. The availability of this treatment has generated subsequent recommendations for the screening for PH in patients with ILD. As a result, it is becoming increasingly important for clinicians to gain awareness and familiarity with the evolving management options for PH-ILD. Summary The management of PH-ILD has its roots in goal-directed treatment of the underlying lung disease. However, recent medication advances and ongoing clinical studies are opening opportunities for more disease-specific treatment.
Collapse
Affiliation(s)
- Kimberly D. Fabyan
- Department of Pulmonary and Critical Care, Walter Reed National Military Medical Center, 8901, Rockville Pike, Bethesda, MD 20889 USA
| | - Abhimanyu Chandel
- Department of Pulmonary and Critical Care, Walter Reed National Military Medical Center, 8901, Rockville Pike, Bethesda, MD 20889 USA
| | - Christopher S. King
- Advanced Lung Disease and Transplant Program, Inova Heart and Vascular Institute, Inova Fairfax Hospital, 3330 Gallows Road, Falls Church, VA 22003 USA
| |
Collapse
|
18
|
Gredic M, Karnati S, Ruppert C, Guenther A, Avdeev SN, Kosanovic D. Combined Pulmonary Fibrosis and Emphysema: When Scylla and Charybdis Ally. Cells 2023; 12:1278. [PMID: 37174678 PMCID: PMC10177208 DOI: 10.3390/cells12091278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Combined pulmonary fibrosis and emphysema (CPFE) is a recently recognized syndrome that, as its name indicates, involves the existence of both interstitial lung fibrosis and emphysema in one individual, and is often accompanied by pulmonary hypertension. This debilitating, progressive condition is most often encountered in males with an extensive smoking history, and is presented by dyspnea, preserved lung volumes, and contrastingly impaired gas exchange capacity. The diagnosis of the disease is based on computed tomography imaging, demonstrating the coexistence of emphysema and interstitial fibrosis in the lungs, which might be of various types and extents, in different areas of the lung and several relative positions to each other. CPFE bears high mortality and to date, specific and efficient treatment options do not exist. In this review, we will summarize current knowledge about the clinical attributes and manifestations of CPFE. Moreover, we will focus on pathophysiological and pathohistological lung phenomena and suspected etiological factors of this disease. Finally, since there is a paucity of preclinical research performed for this particular lung pathology, we will review existing animal studies and provide suggestions for the development of additional in vivo models of CPFE syndrome.
Collapse
Affiliation(s)
- Marija Gredic
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, 35392 Giessen, Germany
| | - Srikanth Karnati
- Institute for Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, 97070 Würzburg, Germany
| | - Clemens Ruppert
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, 35392 Giessen, Germany
- UGMLC Giessen Biobank & European IPF Registry/Biobank, 35392 Giessen, Germany
| | - Andreas Guenther
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, 35392 Giessen, Germany
- UGMLC Giessen Biobank & European IPF Registry/Biobank, 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
- Lung Clinic, Evangelisches Krankenhaus Mittelhessen, 35398 Giessen, Germany
| | - Sergey N. Avdeev
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Djuro Kosanovic
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
19
|
Bleinc A, Blin T, Legue S, Mankikian J, Plantier L, Marchand-Adam S. [Real-life survival of idiopathic pulmonary fibrosis with anti-fibrotic medication]. Rev Mal Respir 2023; 40:371-381. [PMID: 37117065 DOI: 10.1016/j.rmr.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 03/13/2023] [Indexed: 04/30/2023]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is an irreversible fibrosing disease with median survival at diagnosis of 2-5 years. That said, pirfenidone and nintedanib slow down the gradual decline in respiratory function. Clinical trials have shown that while they are not curative, these drugs reduce mortality and increase survival time compared to placebo. This objective of this work was to compare the real-life survival of patients with IPF diagnosed at the Tours University Hospital depending on whether or not they took anti-fibrotic medication. METHODS This is a monocentric retrospective study involving 176 patients diagnosed with IPF starting from 1997. Out of these 176 patients, 100 were treated with anti-fibrotic agents and 76 did not receive any anti-fibrotic treatment. RESULTS Survival significantly increased in the group with anti-fibrotic medication, with median survival of 59 months [46-87] versus 39 months [29-65] (P=0.022). Predictive factors for death were neoplasia, IPF exacerbation and decreased DLCO. CONCLUSION Our study corroborates the beneficial result observed in clinical trials by showing longer survival in patients using anti-fibrotic agents.
Collapse
Affiliation(s)
- Alexandre Bleinc
- Service de pneumologie et des explorations fonctionnelles respiratoires, CHRU de Tours, Tours, France.
| | - Timothée Blin
- Service de pneumologie et des explorations fonctionnelles respiratoires, CHRU de Tours, Tours, France; Inserm UMR 1100, université François-Rabelais, faculté de médecine de Tours, Tours, France
| | - Sylvie Legue
- Service de pneumologie et des explorations fonctionnelles respiratoires, CHRU de Tours, Tours, France
| | - Julie Mankikian
- Service de pneumologie et des explorations fonctionnelles respiratoires, CHRU de Tours, Tours, France
| | - Laurent Plantier
- Service de pneumologie et des explorations fonctionnelles respiratoires, CHRU de Tours, Tours, France; Inserm UMR 1100, université François-Rabelais, faculté de médecine de Tours, Tours, France
| | - Sylvain Marchand-Adam
- Service de pneumologie et des explorations fonctionnelles respiratoires, CHRU de Tours, Tours, France; Inserm UMR 1100, université François-Rabelais, faculté de médecine de Tours, Tours, France
| |
Collapse
|
20
|
Piccari L, Allwood B, Antoniou K, Chung JH, Hassoun PM, Nikkho SM, Saggar R, Shlobin OA, Vitulo P, Nathan SD, Wort SJ. Pathogenesis, clinical features, and phenotypes of pulmonary hypertension associated with interstitial lung disease: A consensus statement from the Pulmonary Vascular Research Institute's Innovative Drug Development Initiative - Group 3 Pulmonary Hypertension. Pulm Circ 2023; 13:e12213. [PMID: 37025209 PMCID: PMC10071306 DOI: 10.1002/pul2.12213] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/03/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
Pulmonary hypertension (PH) is a frequent complication of interstitial lung disease (ILD). Although PH has mostly been described in idiopathic pulmonary fibrosis, it can manifest in association with many other forms of ILD. Associated pathogenetic mechanisms are complex and incompletely understood but there is evidence of disruption of molecular and genetic pathways, with panvascular histopathologic changes, multiple pathophysiologic sequelae, and profound clinical ramifications. While there are some recognized clinical phenotypes such as combined pulmonary fibrosis and emphysema and some possible phenotypes such as connective tissue disease associated with ILD and PH, the identification of further phenotypes of PH in ILD has thus far proven elusive. This statement reviews the current evidence on the pathogenesis, recognized patterns, and useful diagnostic tools to detect phenotypes of PH in ILD. Distinct phenotypes warrant recognition if they are characterized through either a distinct presentation, clinical course, or treatment response. Furthermore, we propose a set of recommendations for future studies that might enable the recognition of new phenotypes.
Collapse
Affiliation(s)
- Lucilla Piccari
- Department of Pulmonary Medicine Hospital del Mar Barcelona Spain
| | - Brian Allwood
- Department of Medicine, Division of Pulmonology Stellenbosch University & Tygerberg Hospital Cape Town South Africa
| | - Katerina Antoniou
- Department of Thoracic Medicine University of Crete School of Medicine Heraklion Crete Greece
| | - Jonathan H Chung
- Department of Radiology The University of Chicago Medicine Chicago Illinois USA
| | - Paul M Hassoun
- Department of Medicine, Division of Pulmonary and Critical Care Medicine Johns Hopkins University Baltimore Maryland USA
| | | | - Rajan Saggar
- Lung & Heart-Lung Transplant and Pulmonary Hypertension Programs University of California Los Angeles David Geffen School of Medicine Los Angeles California USA
| | - Oksana A Shlobin
- Advanced Lung Disease and Transplant Program, Inova Health System Falls Church Virginia USA
| | - Patrizio Vitulo
- Department of Pulmonary Medicine IRCCS Mediterranean Institute for Transplantation and Advanced Specialized Therapies Palermo Sicilia Italy
| | - Steven D Nathan
- Advanced Lung Disease and Transplant Program, Inova Health System Falls Church Virginia USA
| | - Stephen John Wort
- National Pulmonary Hypertension Service at the Royal Brompton Hospital London UK
- National Heart and Lung Institute, Imperial College London UK
| |
Collapse
|
21
|
Alarcon-Calderon A, Vassallo R, Yi ES, Ryu JH. Smoking-Related Interstitial Lung Diseases. Immunol Allergy Clin North Am 2023; 43:273-287. [PMID: 37055089 DOI: 10.1016/j.iac.2023.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Smoking-related interstitial lung diseases (ILDs) are a group of heterogeneous, diffuse pulmonary parenchymal disease processes associated with tobacco exposure. These disorders include pulmonary Langerhans cell histiocytosis, respiratory bronchiolitis-associated ILD, desquamative interstitial pneumonia, acute eosinophilic pneumonia, and combined pulmonary fibrosis and emphysema. This review summarizes the current evidence of pathogenesis, clinical manifestations, diagnostic approach, prognosis, and treatment modalities for these diseases. We also discuss the interstitial lung abnormalities incidentally detected in radiologic studies and smoking-related fibrosis identified on lung biopsies.
Collapse
Affiliation(s)
- Amarilys Alarcon-Calderon
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine and Science, 200 1st Street, Southwest, Rochester, MN 55905, USA
| | - Robert Vassallo
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine and Science, 200 1st Street, Southwest, Rochester, MN 55905, USA
| | - Eunhee S Yi
- Department of Laboratory Medicine & Pathology, Mayo Clinic College of Medicine and Science, 200 1st Street, Southwest, Rochester, MN 55905, USA
| | - Jay H Ryu
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine and Science, 200 1st Street, Southwest, Rochester, MN 55905, USA.
| |
Collapse
|
22
|
Narula T, Martin AK, Asif AA, Fritz AV, Li Z, Erasmus DB, Alvarez F, Thomas M. Outcomes of Lung Transplantation in Patients With Combined Pulmonary Fibrosis and Emphysema: A Single-Center Experience. Transplant Proc 2023; 55:449-455. [PMID: 36849338 DOI: 10.1016/j.transproceed.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/24/2022] [Accepted: 01/24/2023] [Indexed: 02/27/2023]
Abstract
BACKGROUND Combined pulmonary fibrosis and emphysema (CPFE) is a distinct clinical entity that can progress to end-stage lung disease. Patients with CPFE may develop pulmonary hypertension and face a predicted 1-year mortality of 60%. Lung transplantation is the only curative therapeutic option for CPFE. This report describes our experience after lung transplantation in patients with CPFE. METHODS This retrospective, single-center study describes short- and long-term outcomes for adult patients who underwent lung transplant for CPFE. RESULTS The study included 19 patients with explant pathology-proven diagnosis of CPFE. The patients were transplanted between July 2005 and December 2018. Sixteen recipients (84%) had pulmonary hypertension before transplant. Of the 19 patients, 7 (37%) had primary graft dysfunction at 72 hours post-transplant. 1-, 3-, and 5-year freedom from bronchiolitis obliterans syndrome was 100%, 91% (95% CI, 75%-100%), and 82% (95% CI, 62%-100%), respectively. One-, 3-, and 5-year survival was 94% (95% CI, 84%-100%), 82% (95% CI, 65%-100%), and 74% (95% CI, 54%-100%), respectively. CONCLUSION Our experience demonstrates the safety and feasibility of lung transplant for patients with CPFE. Significant morbidity and mortality without lung transplant coupled with favorable post-transplant outcomes merit prioritization of CPFE in the Lung Allocation Score algorithm for lung transplant candidacy.
Collapse
Affiliation(s)
- Tathagat Narula
- Department of Transplantation, Mayo Clinic, Jacksonville, Florida.
| | - Archer K Martin
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida
| | - Abuzar A Asif
- Internal Medicine, University of Illinois College of Medicine, Peoria, Illinois
| | - Ashley V Fritz
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida
| | - Zhuo Li
- Department of Biostatistics, Mayo Clinic, Jacksonville, Florida
| | - David B Erasmus
- Division of Allergy, Pulmonary, and Critical Care Medicine and The Vanderbilt Lung Institute
| | | | - Mathew Thomas
- Department of Cardiothoracic Surgery, Mayo Clinic, Jacksonville, Florida
| |
Collapse
|
23
|
Serrano Gotarredona MP, Navarro Herrero S, Gómez Izquierdo L, Rodríguez Portal JA. Smoking-related interstitial lung disease. RADIOLOGIA 2022; 64 Suppl 3:277-289. [PMID: 36737166 DOI: 10.1016/j.rxeng.2022.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/22/2022] [Indexed: 02/05/2023]
Abstract
Exposure to smoke is associated with the development of diseases of the airways and lung parenchyma. Apart from chronic obstructive pulmonary disease (COPD), in some individuals, tobacco smoke can also trigger mechanisms of interstitial damage that result in various pathological changes and pulmonary fibrosis. A causal relation has been established between tobacco smoke and a group of entities that includes respiratory bronchiolitis-associated interstitial lung disease (RB-ILD), desquamative interstitial pneumonia (DIP), Langerhans cell histiocytosis (LCH), and acute eosinophilic pneumonia (AEP). Smoking is considered a risk factor for idiopathic pulmonary fibrosis (IPF); however, the role and impact of smoking in the development of this differentiated clinical entity, which has also been called combined pulmonary fibrosis and emphysema (CPFE) as well as nonspecific interstitial pneumonia (NIP), remains to be determined. The definition of smoking-related interstitial fibrosis (SRIF) is relatively recent, with differentiated histological characteristics. The likely interconnection between the mechanisms involved in inflammation and pulmonary fibrosis in all these processes often results in an overlapping of clinical, radiological, and histological features in the same patient that can sometimes lead to radiological patterns of interstitial lung disease that are impossible to classify. For this reason, a combined approach to diagnosis is recommendable. This combined approach should be based on the joint interpretation of the histological and radiological findings while taking the clinical context into consideration. This paper aims to describe the high-resolution computed tomography (HRCT) findings in this group of disease entities in correlation with the clinical manifestations and histological changes underlying the radiological pattern.
Collapse
Affiliation(s)
- M P Serrano Gotarredona
- Unidad de Imagen Cardiotorácica, Servicio de Radiodiagnóstico, Hospital Universitario Virgen del Rocío, Sevilla, Spain.
| | - S Navarro Herrero
- Unidad de Imagen Cardiotorácica, Servicio de Radiodiagnóstico, Hospital Universitario Virgen del Rocío, Sevilla, Spain.
| | - L Gómez Izquierdo
- Servicio de Anatomía Patológica, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - J A Rodríguez Portal
- Unidad de Patología Intersticial, Servicio de Neumología, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| |
Collapse
|
24
|
Serrano Gotarredona M, Navarro Herrero S, Gómez Izquierdo L, Rodríguez Portal J. Enfermedades pulmonares intersticiales relacionadas con el tabaco. RADIOLOGIA 2022. [DOI: 10.1016/j.rx.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Patel H, Shah JR, Patel DR, Avanthika C, Jhaveri S, Gor K. Idiopathic pulmonary fibrosis: Diagnosis, biomarkers and newer treatment protocols. Dis Mon 2022:101484. [DOI: 10.1016/j.disamonth.2022.101484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Horio Y, Takihara T, Takahashi F, Enokida K, Nakamura N, Tanaka J, Tomomatsu K, Niimi K, Tajiri S, Hayama N, Ito Y, Oguma T, Asano K. Prognosis of acute exacerbation in idiopathic pulmonary fibrosis with pulmonary emphysema: a retrospective cohort study in Japan. BMJ Open 2022; 12:e062236. [PMID: 36123101 PMCID: PMC9486357 DOI: 10.1136/bmjopen-2022-062236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES To analyse the clinical characteristics and prognosis of acute exacerbation (AE) in patients with idiopathic pulmonary fibrosis (IPF) and pulmonary emphysema. DESIGN A multicentre retrospective cohort study SETTING: Two university hospitals in Japan PARTICIPANTS: Patients admitted to hospitals due to AE of IPF diagnosed based on a multidisciplinary discussion. INTERVENTIONS None PRIMARY AND SECONDARY OUTCOME MEASURES: 90-day mortality rate METHODS: We retrospectively analysed consecutive patients with AE of IPF, with or without pulmonary emphysema, admitted to two university hospitals between 2007 and 2018. RESULTS Among 62 patients (median age, 75 years; 48 men) admitted for AE of IPF, 29 patients (46%) presented with concomitant pulmonary emphysema. There was no significant difference in the arterial partial oxygen pressure/fraction of inhaled oxygen (P/F) ratio or other laboratory and radiographic data between patients with and without emphysema. The 90-day mortality rate was significantly lower in patients with emphysema than in those with IPF alone (23% vs 52%, p=0.03). The median survival time was significantly longer in patients with emphysema than in those with IPF alone (405 vs 242 days, p=0.02). CONCLUSION Patients with IPF and emphysema had better short-term survival after AE than those with non-emphysematous IPF.
Collapse
Affiliation(s)
- Yukihiro Horio
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Takahisa Takihara
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Fuminari Takahashi
- Department of Medicine, Tokai University Oiso Hospital, Naka-gun, Kanagawa, Japan
| | - Keito Enokida
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Noriko Nakamura
- Department of Radiology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Jun Tanaka
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Katsuyoshi Tomomatsu
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Kyoko Niimi
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Sakurako Tajiri
- Department of Medicine, Tokai University Oiso Hospital, Naka-gun, Kanagawa, Japan
| | - Naoki Hayama
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Yoko Ito
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Tsuyoshi Oguma
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Koichiro Asano
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| |
Collapse
|
27
|
Cottin V, Bonniaud P, Cadranel J, Crestani B, Jouneau S, Marchand-Adam S, Nunes H, Wémeau-Stervinou L, Bergot E, Blanchard E, Borie R, Bourdin A, Chenivesse C, Clément A, Gomez E, Gondouin A, Hirschi S, Lebargy F, Marquette CH, Montani D, Prévot G, Quetant S, Reynaud-Gaubert M, Salaun M, Sanchez O, Trumbic B, Berkani K, Brillet PY, Campana M, Chalabreysse L, Chatté G, Debieuvre D, Ferretti G, Fourrier JM, Just N, Kambouchner M, Legrand B, Le Guillou F, Lhuillier JP, Mehdaoui A, Naccache JM, Paganon C, Rémy-Jardin M, Si-Mohamed S, Terrioux P. [French practical guidelines for the diagnosis and management of IPF - 2021 update, full version]. Rev Mal Respir 2022; 39:e35-e106. [PMID: 35752506 DOI: 10.1016/j.rmr.2022.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND Since the previous French guidelines were published in 2017, substantial additional knowledge about idiopathic pulmonary fibrosis has accumulated. METHODS Under the auspices of the French-speaking Learned Society of Pulmonology and at the initiative of the coordinating reference center, practical guidelines for treatment of rare pulmonary diseases have been established. They were elaborated by groups of writers, reviewers and coordinators with the help of the OrphaLung network, as well as pulmonologists with varying practice modalities, radiologists, pathologists, a general practitioner, a head nurse, and a patients' association. The method was developed according to rules entitled "Good clinical practice" in the overall framework of the "Guidelines for clinical practice" of the official French health authority (HAS), taking into account the results of an online vote using a Likert scale. RESULTS After analysis of the literature, 54 recommendations were formulated, improved, and validated by the working groups. The recommendations covered a wide-ranging aspects of the disease and its treatment: epidemiology, diagnostic modalities, quality criteria and interpretation of chest CT, indication and modalities of lung biopsy, etiologic workup, approach to familial disease entailing indications and modalities of genetic testing, evaluation of possible functional impairments and prognosis, indications for and use of antifibrotic therapy, lung transplantation, symptom management, comorbidities and complications, treatment of chronic respiratory failure, diagnosis and management of acute exacerbations of fibrosis. CONCLUSION These evidence-based guidelines are aimed at guiding the diagnosis and the management in clinical practice of idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- V Cottin
- Centre national coordonnateur de référence des maladies pulmonaires rares, service de pneumologie, hôpital Louis-Pradel, Hospices Civils de Lyon (HCL), Lyon, France; UMR 754, IVPC, INRAE, Université de Lyon, Université Claude-Bernard Lyon 1, Lyon, France; Membre d'OrphaLung, RespiFil, Radico-ILD2, et ERN-LUNG, Lyon, France.
| | - P Bonniaud
- Centre de référence constitutif des maladies pulmonaires rares, service de pneumologie et soins intensifs respiratoires, centre hospitalo-universitaire de Bourgogne et faculté de médecine et pharmacie, université de Bourgogne-Franche Comté, Dijon ; Inserm U123-1, Dijon, France
| | - J Cadranel
- Centre de référence constitutif des maladies pulmonaires rares, service de pneumologie et oncologie thoracique, Assistance publique-Hôpitaux de Paris (AP-HP), hôpital Tenon, Paris ; Sorbonne université GRC 04 Theranoscan, Paris, France
| | - B Crestani
- Centre de référence constitutif des maladies pulmonaires rares, service de pneumologie A, AP-HP, hôpital Bichat, Paris, France
| | - S Jouneau
- Centre de compétence pour les maladies pulmonaires rares de l'adulte, service de pneumologie, hôpital Pontchaillou, Rennes ; IRSET UMR1085, université de Rennes 1, Rennes, France
| | - S Marchand-Adam
- Centre de compétence pour les maladies pulmonaires rares de l'adulte, hôpital Bretonneau, service de pneumologie, CHRU, Tours, France
| | - H Nunes
- Centre de référence constitutif des maladies pulmonaires rares, service de pneumologie, AP-HP, hôpital Avicenne, Bobigny ; université Sorbonne Paris Nord, Bobigny, France
| | - L Wémeau-Stervinou
- Centre de référence constitutif des maladies pulmonaires rares, Institut Cœur-Poumon, service de pneumologie et immuno-allergologie, CHRU de Lille, Lille, France
| | - E Bergot
- Centre de compétence pour les maladies pulmonaires rares de l'adulte, service de pneumologie et oncologie thoracique, hôpital Côte de Nacre, CHU de Caen, Caen, France
| | - E Blanchard
- Centre de compétence pour les maladies pulmonaires rares de l'adulte, service de pneumologie, hôpital Haut Levêque, CHU de Bordeaux, Pessac, France
| | - R Borie
- Centre de référence constitutif des maladies pulmonaires rares, service de pneumologie A, AP-HP, hôpital Bichat, Paris, France
| | - A Bourdin
- Centre de compétence pour les maladies pulmonaires rares de l'adulte, département de pneumologie et addictologie, hôpital Arnaud-de-Villeneuve, CHU de Montpellier, Montpellier ; Inserm U1046, CNRS UMR 921, Montpellier, France
| | - C Chenivesse
- Centre de référence constitutif des maladies pulmonaires rares, service de pneumologie et d'immuno-allergologie, hôpital Albert Calmette ; CHRU de Lille, Lille ; centre d'infection et d'immunité de Lille U1019 - UMR 9017, Université de Lille, CHU Lille, CNRS, Inserm, Institut Pasteur de Lille, Lille, France
| | - A Clément
- Centre de ressources et de compétence de la mucoviscidose pédiatrique, centre de référence des maladies respiratoires rares (RespiRare), service de pneumologie pédiatrique, hôpital d'enfants Armand-Trousseau, CHU Paris Est, Paris ; Sorbonne université, Paris, France
| | - E Gomez
- Centre de compétence pour les maladies pulmonaires rares, département de pneumologie, hôpitaux de Brabois, CHRU de Nancy, Vandoeuvre-les Nancy, France
| | - A Gondouin
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie, CHU Jean-Minjoz, Besançon, France
| | - S Hirschi
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie, Nouvel Hôpital civil, Strasbourg, France
| | - F Lebargy
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie, CHU Maison Blanche, Reims, France
| | - C-H Marquette
- Centre de compétence pour les maladies pulmonaires rares, FHU OncoAge, département de pneumologie et oncologie thoracique, hôpital Pasteur, CHU de Nice, Nice cedex 1 ; Université Côte d'Azur, CNRS, Inserm, Institute of Research on Cancer and Aging (IRCAN), Nice, France
| | - D Montani
- Centre de compétence pour les maladies pulmonaires rares, centre national coordonnateur de référence de l'hypertension pulmonaire, service de pneumologie et soins intensifs pneumologiques, AP-HP, DMU 5 Thorinno, Inserm UMR S999, CHU Paris-Sud, hôpital de Bicêtre, Le Kremlin-Bicêtre ; Université Paris-Saclay, Faculté de médecine, Le Kremlin-Bicêtre, France
| | - G Prévot
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie, CHU Larrey, Toulouse, France
| | - S Quetant
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie et physiologie, CHU Grenoble Alpes, Grenoble, France
| | - M Reynaud-Gaubert
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie, AP-HM, CHU Nord, Marseille ; Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - M Salaun
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie, oncologie thoracique et soins intensifs respiratoires & CIC 1404, hôpital Charles Nicole, CHU de Rouen, Rouen ; IRIB, laboratoire QuantiIF-LITIS, EA 4108, université de Rouen, Rouen, France
| | - O Sanchez
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie et soins intensifs, hôpital européen Georges-Pompidou, AP-HP, Paris, France
| | | | - K Berkani
- Clinique Pierre de Soleil, Vetraz Monthoux, France
| | - P-Y Brillet
- Université Paris 13, UPRES EA 2363, Bobigny ; service de radiologie, AP-HP, hôpital Avicenne, Bobigny, France
| | - M Campana
- Service de pneumologie et oncologie thoracique, CHR Orléans, Orléans, France
| | - L Chalabreysse
- Service d'anatomie-pathologique, groupement hospitalier est, HCL, Bron, France
| | - G Chatté
- Cabinet de pneumologie et infirmerie protestante, Caluire, France
| | - D Debieuvre
- Service de pneumologie, GHRMSA, hôpital Emile-Muller, Mulhouse, France
| | - G Ferretti
- Université Grenoble Alpes, Grenoble ; service de radiologie diagnostique et interventionnelle, CHU Grenoble Alpes, Grenoble, France
| | - J-M Fourrier
- Association Pierre-Enjalran Fibrose Pulmonaire Idiopathique (APEFPI), Meyzieu, France
| | - N Just
- Service de pneumologie, CH Victor-Provo, Roubaix, France
| | - M Kambouchner
- Service de pathologie, AP-HP, hôpital Avicenne, Bobigny, France
| | - B Legrand
- Cabinet médical de la Bourgogne, Tourcoing ; Université de Lille, CHU Lille, ULR 2694 METRICS, CERIM, Lille, France
| | - F Le Guillou
- Cabinet de pneumologie, pôle santé de l'Esquirol, Le Pradet, France
| | - J-P Lhuillier
- Cabinet de pneumologie, La Varenne Saint-Hilaire, France
| | - A Mehdaoui
- Service de pneumologie et oncologie thoracique, CH Eure-Seine, Évreux, France
| | - J-M Naccache
- Service de pneumologie, allergologie et oncologie thoracique, GH Paris Saint-Joseph, Paris, France
| | - C Paganon
- Centre national coordonnateur de référence des maladies pulmonaires rares, service de pneumologie, hôpital Louis-Pradel, Hospices Civils de Lyon (HCL), Lyon, France
| | - M Rémy-Jardin
- Institut Cœur-Poumon, service de radiologie et d'imagerie thoracique, CHRU de Lille, Lille, France
| | - S Si-Mohamed
- Département d'imagerie cardiovasculaire et thoracique, hôpital Louis-Pradel, HCL, Bron ; Université de Lyon, INSA-Lyon, Université Claude-Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Villeurbanne, France
| | | |
Collapse
|
28
|
Kypreos M, Batra K, Glazer CS, Adams TN. Impact of number and type of identified antigen on transplant-free survival in hypersensitivity pneumonitis. PLoS One 2022; 17:e0273544. [PMID: 36048790 PMCID: PMC9436128 DOI: 10.1371/journal.pone.0273544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/10/2022] [Indexed: 11/26/2022] Open
Abstract
Background Identification of inciting antigen can affect diagnostic confidence, quality of life, and prognosis in patients with HP. It is unknown whether the number and type of antigen affect results of diagnostic testing or prognosis, whether antigen identified by clinical history alone affects prognosis, and whether feather exposure is associated with outcomes similar to those of other antigens. Methods To evaluate whether the number or type of antigen identified by clinical history alone affects clinical outcomes, we evaluated a retrospective cohort of patients with a high or definite probability of HP based on recent guidelines. Results In our retrospective cohort, 136 patients met high or definite probability of HP and were included in the analysis. Median transplant-free survival was better in patients with antigen identified on clinical history alone than patients without identified antigen. Feather exposure was associated with improved TFS compared to patients without antigen identified; there was no difference in TFS between patients with feather exposure and either mold or live bird exposure. Mold antigen was associated with increased risk of fibrotic HP compared to avian antigen. Among patients with identified antigen, the number and type of antigen did not affect TFS. Discussion Our study suggests that clinical history is adequate for providing prognostic information to patients with HP and classifying the diagnostic probability of HP according to recent guidelines. Feather exposure should be considered an inciting antigen in patients with ILD.
Collapse
Affiliation(s)
- Margaret Kypreos
- Division of Pulmonary and Critical Care Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Kiran Batra
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Craig S. Glazer
- Division of Pulmonary and Critical Care Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Traci N. Adams
- Division of Pulmonary and Critical Care Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
- * E-mail:
| |
Collapse
|
29
|
Raucherassoziierte interstitielle Lungenerkrankungen. DIE RADIOLOGIE 2022; 62:738-746. [PMID: 35736996 PMCID: PMC9433357 DOI: 10.1007/s00117-022-01025-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 11/07/2022]
Abstract
Klinisches Problem Raucherassoziierte interstitielle Lungenerkrankungen umfassen heterogene pulmonale Pathologien, deren korrekte Diagnostik prognostische und therapeutische Konsequenzen hat. In diesem Artikel werden die gängigsten raucherassoziierten interstitiellen Lungenerkrankungen beschrieben sowie eine strukturierte Herangehensweise präsentiert, welche den diagnostischen Arbeitsprozess erleichtern kann. Empfehlungen für die Praxis Die Computertomographie (CT) besitzt einen hohen Stellenwert in der Diagnose der raucherassoziierten interstitiellen Lungenerkrankungen und kann dazu beitragen, Lungenbiopsien zu verhindern. Um eine hohe diagnostische Genauigkeit zu erreichen, sollten standardisierte Untersuchungsprotokolle sowie eine strukturierte Herangehensweise in der Befundung zur Anwendung kommen. In den entzündlich dominierten Stadien der respiratorischen Bronchiolitis (RB), der respiratorischen Bronchiolitis mit interstitieller Lungenerkrankung (RB-ILD) sowie der desquamativen interstitiellen Pneumonie (DIP) haben die Beendigung des Rauchens sowie Steroide den größten therapeutischen Effekt. Bei fibrotischen Veränderungen (z. B. im Rahmen einer idiopathischen pulmonalen Fibrose [IPF]) können antifibrotische Therapien mit Pirfenidon und Nintedanib zum Einsatz kommen. Patienten mit dem Verdacht auf raucherassoziierte interstitielle Lungenerkrankung sollten in multidisziplinären Boards abgeklärt und behandelt werden.
Collapse
|
30
|
Cottin V, Selman M, Inoue Y, Wong AW, Corte TJ, Flaherty KR, Han MK, Jacob J, Johannson KA, Kitaichi M, Lee JS, Agusti A, Antoniou KM, Bianchi P, Caro F, Florenzano M, Galvin L, Iwasawa T, Martinez FJ, Morgan RL, Myers JL, Nicholson AG, Occhipinti M, Poletti V, Salisbury ML, Sin DD, Sverzellati N, Tonia T, Valenzuela C, Ryerson CJ, Wells AU. Syndrome of Combined Pulmonary Fibrosis and Emphysema: An Official ATS/ERS/JRS/ALAT Research Statement. Am J Respir Crit Care Med 2022; 206:e7-e41. [PMID: 35969190 PMCID: PMC7615200 DOI: 10.1164/rccm.202206-1041st] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: The presence of emphysema is relatively common in patients with fibrotic interstitial lung disease. This has been designated combined pulmonary fibrosis and emphysema (CPFE). The lack of consensus over definitions and diagnostic criteria has limited CPFE research. Goals: The objectives of this task force were to review the terminology, definition, characteristics, pathophysiology, and research priorities of CPFE and to explore whether CPFE is a syndrome. Methods: This research statement was developed by a committee including 19 pulmonologists, 5 radiologists, 3 pathologists, 2 methodologists, and 2 patient representatives. The final document was supported by a focused systematic review that identified and summarized all recent publications related to CPFE. Results: This task force identified that patients with CPFE are predominantly male, with a history of smoking, severe dyspnea, relatively preserved airflow rates and lung volumes on spirometry, severely impaired DlCO, exertional hypoxemia, frequent pulmonary hypertension, and a dismal prognosis. The committee proposes to identify CPFE as a syndrome, given the clustering of pulmonary fibrosis and emphysema, shared pathogenetic pathways, unique considerations related to disease progression, increased risk of complications (pulmonary hypertension, lung cancer, and/or mortality), and implications for clinical trial design. There are varying features of interstitial lung disease and emphysema in CPFE. The committee offers a research definition and classification criteria and proposes that studies on CPFE include a comprehensive description of radiologic and, when available, pathological patterns, including some recently described patterns such as smoking-related interstitial fibrosis. Conclusions: This statement delineates the syndrome of CPFE and highlights research priorities.
Collapse
Affiliation(s)
- Vincent Cottin
- National Reference Center for Rare Pulmonary Diseases, Louis Pradel Hospital, Hospices Civils de Lyon, University of Lyon, INRAE, Lyon, France
| | - Moises Selman
- Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | | | | | - Tamera J. Corte
- Royal Prince Alfred Hospital and University of Sydney, Sydney, Australia
| | | | | | - Joseph Jacob
- University College London, London, United Kingdom
| | - Kerri A. Johannson
- Department of Medicine and Community Health Sciences, University of Calgary, Calgary, AB, Canada
| | | | - Joyce S. Lee
- University of Colorado Denver Anschutz Medical Campus, School of Medicine, Aurora, CO, USA
| | - Alvar Agusti
- Respiratory Institute, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERES, Barcelona, Spain
| | - Katerina M. Antoniou
- Laboratory of Molecular and Cellular Pneumonology, Department of Respiratory Medicine, University of Crete, Heraklion, Greece
| | | | - Fabian Caro
- Hospital de Rehabilitación Respiratoria "María Ferrer", Buenos Aires, Argentina
| | | | - Liam Galvin
- European idiopathic pulmonary fibrosis and related disorders federation
| | - Tae Iwasawa
- Kanagawa Cardiovascular and Respiratory Center, Yokohama, Japan
| | | | | | | | - Andrew G. Nicholson
- Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust and National Heart and Lung Institute, Imperial College, London, United Kingdom
| | | | | | | | - Don D. Sin
- University of British Columbia, Vancouver, Canada
| | - Nicola Sverzellati
- Scienze Radiologiche, Department of Medicine and Surgery, University of Parma, Italy
| | - Thomy Tonia
- Institute of Social and Preventive Medicine, University of Bern, Switzerland
| | - Claudia Valenzuela
- Pulmonology Department, Hospital Universitario de la Princesa, Departamento Medicina, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | |
Collapse
|
31
|
French practical guidelines for the diagnosis and management of idiopathic pulmonary fibrosis - 2021 update. Full-length version. Respir Med Res 2022; 83:100948. [PMID: 36630775 DOI: 10.1016/j.resmer.2022.100948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Since the latest 2017 French guidelines, knowledge about idiopathic pulmonary fibrosis has evolved considerably. METHODS Practical guidelines were drafted on the initiative of the Coordinating Reference Center for Rare Pulmonary Diseases, led by the French Language Pulmonology Society (SPLF), by a coordinating group, a writing group, and a review group, with the involvement of the entire OrphaLung network, pulmonologists practicing in various settings, radiologists, pathologists, a general practitioner, a health manager, and a patient association. The method followed the "Clinical Practice Guidelines" process of the French National Authority for Health (HAS), including an online vote using a Likert scale. RESULTS After a literature review, 54 guidelines were formulated, improved, and then validated by the working groups. These guidelines addressed multiple aspects of the disease: epidemiology, diagnostic procedures, quality criteria and interpretation of chest CT scans, lung biopsy indication and procedures, etiological workup, methods and indications for family screening and genetic testing, assessment of the functional impairment and prognosis, indication and use of antifibrotic agents, lung transplantation, management of symptoms, comorbidities and complications, treatment of chronic respiratory failure, diagnosis and management of acute exacerbations of fibrosis. CONCLUSION These evidence-based guidelines are intended to guide the diagnosis and practical management of idiopathic pulmonary fibrosis.
Collapse
|
32
|
Rahaghi FF, Kolaitis NA, Adegunsoye A, de Andrade JA, Flaherty KR, Lancaster LH, Lee JS, Levine DJ, Preston IR, Safdar Z, Saggar R, Sahay S, Scholand MB, Shlobin OA, Zisman DA, Nathan SD. Screening Strategies for Pulmonary Hypertension in Patients With Interstitial Lung Disease: A Multidisciplinary Delphi Study. Chest 2022; 162:145-155. [PMID: 35176276 PMCID: PMC9993339 DOI: 10.1016/j.chest.2022.02.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/20/2022] [Accepted: 02/07/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is a common complication of interstitial lung disease (ILD) and is associated with worse outcomes and increased mortality. Evaluation of PH is recommended in lung transplant candidates, but there are currently no standardized screening approaches. Trials have identified therapies that are effective in this setting, providing another rationale to routinely screen patients with ILD for PH. RESEARCH QUESTION What screening strategies for identifying PH in patients with ILD are supported by expert consensus? STUDY DESIGN AND METHODS The study convened a panel of 16 pulmonologists with expertise in PH and ILD, and used a modified Delphi consensus process with three surveys to identify PH screening strategies. Survey 1 consisted primarily of open-ended questions. Surveys 2 and 3 were developed from responses to survey 1 and contained statements about PH screening that panelists rated from -5 (strongly disagree) to 5 (strongly agree). RESULTS Panelists reached consensus on several triggers for suspicion of PH including the following: symptoms, clinical signs, findings on chest CT scan or other imaging, abnormalities in pulse oximetry, elevations in brain natriuretic peptide (BNP) or N-terminal pro-brain natriuretic peptide (NT-proBNP), and unexplained worsening in pulmonary function tests or 6-min walk distance. Echocardiography and BNP/NT-proBNP were identified as screening tools for PH. Right heart catheterization was deemed essential for confirming PH. INTERPRETATION Many patients with ILD may benefit from early evaluation of PH now that an approved therapy is available. Protocols to evaluate patients with ILD often overlap with evaluations for pulmonary hypertension-interstitial lung disease and can be used to assess the risk of PH. Because standardized approaches are lacking, this consensus statement is intended to aid physicians in the identification of patients with ILD and possible PH, and provide guidance for timely right heart catheterization.
Collapse
Affiliation(s)
- Franck F Rahaghi
- Advanced Lung Disease Clinic, Cleveland Clinic Florida, Weston, FL
| | | | - Ayodeji Adegunsoye
- Section of Pulmonary & Critical Care, The University of Chicago School of Medicine, Chicago, IL
| | - Joao A de Andrade
- Vanderbilt Lung Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Kevin R Flaherty
- Michigan Medicine Interstitial Lung Disease Program, University of Michigan, Ann Arbor, MI
| | | | - Joyce S Lee
- Pulmonary Sciences & Critical Care, University of Colorado School of Medicine, Aurora, CO
| | - Deborah J Levine
- Pulmonary Hypertension Center, UT Health San Antonio, San Antonio, TX
| | - Ioana R Preston
- Pulmonary Hypertension Center, Tufts Medical Center, Boston, MA
| | | | - Rajan Saggar
- Pulmonary and Critical Care Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA
| | | | | | - Oksana A Shlobin
- Inova Fairfax Heart & Lung Transplant Program, Inova Medical Group, Falls Church, VA
| | | | - Steven D Nathan
- Advanced Lung Disease Program, Lung Transplant Program, Inova Fairfax Hospital, Falls Church, VA.
| |
Collapse
|
33
|
Li C, Wang Y, Liu Q, Zhang H, Xu F, Gao Z, Wang X, Tao G, Chen Y, Rong W, Yu H, Li F. Clinical, radiologic and physiologic features of idiopathic pulmonary fibrosis (IPF) with and without emphysema. Expert Rev Respir Med 2022; 16:813-821. [PMID: 35731004 DOI: 10.1080/17476348.2022.2093717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) can combine with emphysema, a condition termed as IPF with emphysema (IPFE). We compared the clinical, radiologic and physiologic features of IPF and IPFE. RESEARCH DESIGN AND METHODS Newly diagnosed IPF (n=57) and IPFE (n=44) were recruited between January 2018 and September 2020. Symptoms, high resolution computed tomography (HRCT), pulmonary function test (PFT) data, composite physiologic index (CPI), gender-age-physiology (GAP) scores, and follow-up data were obtained. RESULTS The IPFE group had greater proportion of male smoking subjects, and of lung cancer cases. The IPFE group had higher VC, FVC FEV1, and lower FEV1/FVC and DLCO and lower percent fibrosis on HRCT. Both groups had similar symptoms and mortality. Mortality rate was associated with inability to perform PFT, CPI, GAP scores, percent fibrosis, VC, FVC, FEV1 and DLCO, serum SCC-Ag and CA125, and anti-fibrotic therapy (≥12months) in IPF, while it was associated with inability to perform PFT, CPI, percent fibrosis, DLCO, serum CEA, CYFRA21-1 and CA125, and anti-fibrotic therapy (≥12months) in IPFE. CONCLUSION IPF and IPFE patients are different in smoking history, physiologic indices, HRCT patterns and prognostic factors, however, they have similar mortality. Anti-fibrotic therapy could improve the survival rate in both IPF and IPFE.
Collapse
Affiliation(s)
- Chenfei Li
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P.R.China
| | - Yan Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P.R.China.,Department of Respiratory Medicine, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, 750011, P.R.China
| | - Qi Liu
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P.R.China
| | - Hai Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P.R.China
| | - Fei Xu
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P.R.China.,Department of Internal Medicine, Shanghai Electric Power Hospital, 937 West Yan'an Road, Shanghai, 200050, P.R.China
| | - Zhenyun Gao
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P.R.China.,Department of Respiratory Medicine, Nanjing Lishui people's Hospital, Lishui, Nanjing, Jiangsu, 211200, P.R.China
| | - Xiaohui Wang
- Department of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200030, P.R.China
| | - Guangyu Tao
- Department of Radiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P.R.China
| | - Yuqing Chen
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P.R.China
| | - Wenwen Rong
- Statistics Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P.R.China
| | - Hong Yu
- Department of Radiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P.R.China
| | - Feng Li
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P.R.China
| |
Collapse
|
34
|
Abstract
Pulmonary hypertension (PH) because of chronic lung disease is categorized as Group 3 PH in the most recent classification system. Prevalence of these diseases is increasing over time, creating a growing need for effective therapeutic options. Recent approval of the first pulmonary arterial hypertension therapy for the treatment of Group 3 PH related to interstitial lung disease represents an encouraging advancement. This review focuses on molecular mechanisms contributing to pulmonary vasculopathy in chronic hypoxia, the pathology and epidemiology of Group 3 PH, the right ventricular dysfunction observed in this population and clinical trial data that inform the use of pulmonary vasodilators in Group 3 PH.
Collapse
Affiliation(s)
- Navneet Singh
- Division of Pulmonary, Critical Care and Sleep Medicine (N.S., C.E.V.), Brown University, Providence, RI
| | - Peter Dorfmüller
- Department of Pathology, Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig University, Germany (P.D.).,German Center for Lung Research (DZL), Giessen, Germany (P.D.)
| | - Oksana A Shlobin
- Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, VA (O.A.S.)
| | - Corey E Ventetuolo
- Division of Pulmonary, Critical Care and Sleep Medicine (N.S., C.E.V.), Brown University, Providence, RI.,Department of Health Services, Policy and Practice (C.E.V.), Brown University, Providence, RI
| |
Collapse
|
35
|
Baughman RP, Shlobin OA, Gupta R, Engel PJ, Stewart JI, Lower EE, Rahaghi FF, Zeigler J, Nathan SD. Riociguat for Sarcoidosis-Associated Pulmonary Hypertension: Results of a 1-Year Double-Blind, Placebo-Controlled Trial. Chest 2022; 161:448-457. [PMID: 34363816 PMCID: PMC9005858 DOI: 10.1016/j.chest.2021.07.2162] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/30/2021] [Accepted: 07/24/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Riociguat is effective in delaying the time to clinical worsening (TCW) in patients with groups 1 and 4 pulmonary hypertension. RESEARCH QUESTION Is riociguat more effective than placebo in prolonging TCW in sarcoidosis-associated pulmonary hypertension (SAPH)? STUDY DESIGN AND METHODS This was a double-blind placebo-controlled trial. Patients with SAPH confirmed by right heart catheterization were randomized 1:1 to riociguat or placebo. Patients underwent 6-min walk distance (6MWD) and spirometry testing every 8 weeks. The primary end point was TCW, which was defined by the time to the first of the following: (1) all-cause mortality, (2) need for hospitalization because of worsening cardiopulmonary status attributable to progression of disease, (3) > 50 m decrease in the 6MWD test, or (4) worsening of World Health Organization functional class. RESULTS A total of 16 patients were randomized to riociguat (n = 8) or placebo (n = 8). No difference was found in pulmonary artery mean, pulmonary vascular resistance, initial 6MWD, or FVC between the two groups. Five of eight patients who received placebo met TCW criteria, whereas none of the patients who received riociguat experienced a qualifying event. By log-rank analysis, patients who received riociguat were in the study for a significantly longer period (χ 2 = 6.259; P = .0124). The 6MWD decreased in the placebo group (median, -55.9 m; range, -176.8 to 60 m), but rose in the riociguat group (median, +42.7 m; range, -7.5 to +91.4 m; P = .0149), with a placebo-corrected difference of 94 m (P < .01). Four of eight patients who received riociguat, but only 1 of 8 patients who received placebo, showed a > 30-m improvement in 6MWD (P > .05). No significant adverse events associated with riociguat occurred. INTERPRETATION Over the 1 year of the study, riociguat was effective in preventing clinical worsening and improving exercise capacity in patients with SAPH. TRIAL REGISTRY ClinicalTrials.gov; No.: NCT02625558; URL: www.clinicaltrials.gov.
Collapse
Affiliation(s)
- Robert P. Baughman
- Department of Medicine, University of Cincinnati Medical Center, Cincinnati, OH,CORRESPONDENCE TO: Robert P. Baughman, MD
| | - Oksana A. Shlobin
- Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, VA
| | - Rohit Gupta
- Department of Thoracic Medicine and Surgery, Temple University Hospital, Philadelphia, PA
| | | | - Jeffrey I. Stewart
- Department of Thoracic Medicine and Surgery, Temple University Hospital, Philadelphia, PA
| | - Elyse E. Lower
- Department of Medicine, University of Cincinnati Medical Center, Cincinnati, OH
| | | | - Joyce Zeigler
- Department of Medicine, University of Cincinnati Medical Center, Cincinnati, OH
| | - Steven D. Nathan
- Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, VA
| |
Collapse
|
36
|
Kim HJ, Snyder LD, Neely ML, Hellkamp AS, Hotchkin DL, Morrison LD, Bender S, Leonard TB, Culver DA. Clinical Outcomes of Patients with Combined Idiopathic Pulmonary Fibrosis and Emphysema in the IPF-PRO Registry. Lung 2022; 200:21-29. [PMID: 34997268 PMCID: PMC8881259 DOI: 10.1007/s00408-021-00506-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/13/2021] [Indexed: 11/26/2022]
Abstract
Purpose To assess the impact of concomitant emphysema on outcomes in patients with idiopathic pulmonary fibrosis (IPF). Methods The IPF-PRO Registry is a US registry of patients with IPF. The presence of combined pulmonary fibrosis and emphysema (CPFE) at enrollment was determined by investigators’ review of an HRCT scan. Associations between emphysema and clinical outcomes were analyzed using Cox proportional hazards models. Results Of 934 patients, 119 (12.7%) had CPFE. Compared with patients with IPF alone, patients with CPFE were older (median 72 vs 70 years); higher proportions were current/former smokers (88.2% vs 63.7%), used oxygen with activity (49.6% vs 31.9%) or at rest (30.8% vs 18.4%), had congestive heart failure (13.6% vs 4.8%) and had prior respiratory hospitalization (25.0% vs 16.7%); they had higher FVC (median 71.8 vs 69.4% predicted) and lower DLco (median 35.3 vs 43.6% predicted). In patients with CPFE and IPF alone, respectively, at 1 year, rates of death or lung transplant were 17.5% (95% CI: 11.7, 25.8) and 11.2% (9.2, 13.6) and rates of hospitalization were 21.6% (14.6, 29.6) and 20.6% (17.9, 23.5). There were no significant associations between emphysema and any outcome after adjustment for baseline variables. No baseline variable predicted outcomes better in IPF alone than in CPFE. Conclusion Approximately 13% of patients in the IPF-PRO Registry had CPFE. Physiologic characteristics and comorbidities of patients with CPFE differed from those of patients with IPF alone, but the presence of emphysema did not drive outcomes after adjustment for baseline covariates. Trial registration ClinicalTrials.gov, NCT01915511; registered August 5, 2013. Supplementary Information The online version contains supplementary material available at 10.1007/s00408-021-00506-x.
Collapse
Affiliation(s)
- Hyun J Kim
- University of Minnesota, Minneapolis, MN, USA.
| | - Laurie D Snyder
- Duke Clinical Research Institute, Durham, NC, USA
- Duke University Medical Center, Durham, NC, USA
| | - Megan L Neely
- Duke Clinical Research Institute, Durham, NC, USA
- Duke University Medical Center, Durham, NC, USA
| | - Anne S Hellkamp
- Duke Clinical Research Institute, Durham, NC, USA
- Duke University Medical Center, Durham, NC, USA
| | - David L Hotchkin
- Division of Pulmonary, Critical Care & Sleep Medicine, The Oregon Clinic, Portland, OR, USA
| | | | - Shaun Bender
- Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, CT, USA
| | | | | |
Collapse
|
37
|
Zheng Q, Cox IA, Campbell JA, Xia Q, Otahal P, de Graaff B, Corte TJ, Teoh AK, Walters EH, Palmer AJ. Mortality and survival in idiopathic pulmonary fibrosis: a systematic review and meta-analysis. ERJ Open Res 2022; 8:00591-2021. [PMID: 35295232 PMCID: PMC8918939 DOI: 10.1183/23120541.00591-2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/09/2022] [Indexed: 11/05/2022] Open
Abstract
Background There are substantial advances in diagnosis and treatment for idiopathic pulmonary fibrosis (IPF), but without much evidence available on recent mortality and survival trends. Methods A narrative synthesis approach was used to investigate the mortality trends, then meta-analyses for survival trends were carried out based on various time periods. Results Six studies reported the mortality data for IPF in 22 countries, and 62 studies (covering 63 307 patients from 20 countries) reported survival data for IPF. Age-standardised mortality for IPF varied from ∼0.5 to ∼12 per 100 000 population per year after year 2000. There were increased mortality trends for IPF in Australia, Brazil, Belgium, Canada, Czech Republic, Finland, France, Germany, Hungary, Italy, Lithuania, the Netherlands, Poland, Portugal, Spain, Sweden and UK, while Austria, Croatia, Denmark, Romania and the USA showed decreased mortality trends. The overall 3-year and 5-year cumulative survival rates (CSRs) were 61.8% (95% CI 58.7-64.9; I2=97.1%) and 45.6% (95% CI 41.5-49.7; I2=97.7%), respectively. Prior to 2010, the pooled 3-year CSR was 59.9% (95% CI 55.8-64.1; I2=95.8%), then not significantly (p=0.067) increased to 66.2% (95% CI 62.9-69.5; I2=92.6%) in the 2010s decade. After excluding three studies in which no patients received antifibrotics after year 2010, the pooled 3-year CSRs significantly (p=0.039) increased to 67.4% (95% CI 63.9-70.9; I2=93.1%) in the 2010s decade. Discussion IPF is a diagnosis associated with high mortality. There was no observed increasing survival trend for patients with IPF before year 2010, with then a switch to an improvement, which is probably multifactorial.
Collapse
Affiliation(s)
- Qiang Zheng
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
- NHMRC Centre of Research Excellence for Pulmonary Fibrosis, Camperdown, Australia
- Dept of Anesthesiology (High-Tech Branch), the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ingrid A. Cox
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
- NHMRC Centre of Research Excellence for Pulmonary Fibrosis, Camperdown, Australia
| | - Julie A. Campbell
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Qing Xia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Petr Otahal
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Barbara de Graaff
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Tamera J. Corte
- NHMRC Centre of Research Excellence for Pulmonary Fibrosis, Camperdown, Australia
- Central Clinical School, The University of Sydney, Camperdown, Australia
- Dept of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, Australia
| | - Alan K.Y. Teoh
- NHMRC Centre of Research Excellence for Pulmonary Fibrosis, Camperdown, Australia
- Central Clinical School, The University of Sydney, Camperdown, Australia
- Dept of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, Australia
| | - E. Haydn Walters
- School of Medicine, University of Tasmania, Hobart, Australia
- School of Population and Global Health, University of Melbourne, Melbourne, Australia
- These authors contributed equally
| | - Andrew J. Palmer
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
- NHMRC Centre of Research Excellence for Pulmonary Fibrosis, Camperdown, Australia
- School of Population and Global Health, University of Melbourne, Melbourne, Australia
- These authors contributed equally
| |
Collapse
|
38
|
Cai H, Liu H. Immune infiltration landscape and immune-marker molecular typing of pulmonary fibrosis with pulmonary hypertension. BMC Pulm Med 2021; 21:383. [PMID: 34823498 PMCID: PMC8614041 DOI: 10.1186/s12890-021-01758-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/18/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PH) secondary to pulmonary fibrosis (PF) is one of the most common complications in PF patients, it causes severe disease and usually have a poor prognosis. Whether the combination of PH and PF is a unique disease phenotype is unclear. We aimed to screen the key modules associated with PH-PF immune infiltration based on WGCNA and identify the hub genes for molecular typing. METHOD Using the gene expression profile GSE24988 of PF patients with or without PH from the Gene Expression Omnibus (GEO) database, we evaluated immune cell infiltration using Cibersortx and immune cell gene signature files. Different immune cell types were screened using the Wilcoxon test; differentially expressed genes were screened using samr. The molecular pathways implicated in these differential responses were identified using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional enrichment analyses. A weighted co-expression network of the differential genes was constructed, relevant co-expression modules were identified, and relationships between modules and differential immune cell infiltration were calculated. The modules most relevant to this disease were identified using weighted correlation network analysis. From these, we constructed a co-expression network; using the STRING database, we integrated the values into the human protein-protein interaction network before constructing a co-expression interaction subnet, screening genes associated with immunity and unsupervised molecular typing, and analyzing the immune cell infiltration and expression of key genes in each disease type. RESULTS Of the 22 immune cell types from the PF GEO data, 20 different immune cell types were identified. There were 1622 differentially expressed genes (295 upregulated and 1327 downregulated). The resulting weighted co-expression network identified six co-expression modules. These were screened to identify the modules most relevant to the disease phenotype (the green module). By calculating the correlations between modules and the differentially infiltrated immune cells, extracting the green module co-expression network (46 genes), extracting 25 key genes using gene significance and module-membership thresholds, and combining these with the 10 key genes in the human protein-protein interaction network, we identified five immune cell-related marker genes that might be applied as biomarkers. Using these marker genes, we evaluated these disease samples using unsupervised clustering molecular typing. CONCLUSION Our results demonstrated that all PF combined with PH samples belonged to four categories. Studies on the five key genes are required to validate their diagnostic and prognostic value.
Collapse
Affiliation(s)
- Haomin Cai
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hongcheng Liu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
39
|
Yuan X, Jin J, Xu X. Development of a nomogram for predicting the presence of combined pulmonary fibrosis and emphysema. BMC Pulm Med 2021; 21:349. [PMID: 34743726 PMCID: PMC8573897 DOI: 10.1186/s12890-021-01725-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022] Open
Abstract
Background In the clinical management of patients with combined pulmonary fibrosis and emphysema (CPFE), early recognition and appropriate treatment is essential. This study was designed to develop an accurate prognostic nomogram model to predict the presence of CPFE. Methods We retrospectively enrolled 85 patients with CPFE and 128 patients with idiopathic pulmonary fibrosis (IPF) between January 2015 and January 2020. Clinical characteristics were compared between groups. A multivariable logistic regression analysis was performed to identify risk factors for CPFE. Then, and a nomogram to predict the presence of CPFE was constructed for clinical use. Concordance index (C-index), area under the receiver operating characteristic curve (AUC), and calibration plot was used to evaluate the efficiency of the nomogram. Results Compared to the IPF group, the proportion of patients with male, smoking and allergies were significantly higher in the CPFE group. In terms of pulmonary function tests, patients with CPFE had lower FEV1/FVC%, DLCO/VA% pred, and higher RV, RV%pred, VC, VC%pred, TLC%pred, VA, TLC, TLC%pred, FVC, FVC%pred and FEV1 with significant difference than the other group. Positive correlation was found between DLCO and VA%, RV%, TLC% in patients with IPF but not in patients with CPFE. By multivariate analysis, male, smoking, allergies, FEV1/FVC% and DLCO/VA%pred were identified as independent predictors of the presence of CPFE. The nomogram was then developed using these five variables. After 1000 internal validations of bootstrap resampling, the C-index of the nomogram was 0.863 (95% CI 0.795–0.931) and the AUC was 0.839 (95% CI 0.764–0.913). Moreover, the calibration plot showed good concordance of incidence of CPFE between nomogram prediction and actual observation (Hosmer–Lemeshow test: P = 0.307). Conclusions Patients of CPFE have a characteristic lung function profile including relatively preserved lung volumes and ventilating function, contrasting with a disproportionate reduction of carbon monoxide transfer. By incorporating clinical risk factors, we created a nomogram to predict the presence of CPFE, which may serve as a potential tool to guide personalized treatment.
Collapse
Affiliation(s)
- Xueting Yuan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing, 100730, People's Republic of China
| | - Jin Jin
- Department of Pulmonary and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Xiaomao Xu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing, 100730, People's Republic of China. .,Department of Pulmonary and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.
| |
Collapse
|
40
|
Doubkova M, Kriegova E, Littnerova S, Schneiderova P, Sterclova M, Bartos V, Plackova M, Zurkova M, Bittenglova R, Lostaková V, Siskova L, Lisa P, Suldova H, Doubek M, Psikalova J, Snizek T, Musilova P, Vasakova M. DSP rs2076295 variants influence nintedanib and pirfenidone outcomes in idiopathic pulmonary fibrosis: a pilot study. Ther Adv Respir Dis 2021; 15:17534666211042529. [PMID: 34515605 DOI: 10.1177/17534666211042529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The antifibrotic drugs nintedanib and pirfenidone are used for the treatment of idiopathic pulmonary fibrosis (IPF). We analysed the association of common profibrotic polymorphisms in MUC5B (mucin 5B, rs35705950) and DSP (desmoplakin, rs2076295) on antifibrotic treatment outcomes in IPF. METHODS MUC5B rs35705950 and DSP rs2076295 were assessed in IPF patients (n = 210, 139 men/71 women) from the Czech EMPIRE registry and age- or sex-matched healthy individuals (n = 205, 125 men/80 women). Genetic data were collated with overall survival (OS), acute exacerbation episodes, worsening lung function and antifibrotic treatment. RESULTS We confirmed overexpression of the MUC5B rs35705950*T allele (55.2% versus 20.9%, p < 0.001) and the DSP rs2076295*G allele (80.4% versus 68.3%, p < 0.001) in IPF compared with controls. On antifibrotic drugs, lower mortability was observed in IPF patients with DSP G* allele (p = 0.016) and MUC5B T* allele (p = 0.079). Carriers of the DSP rs2076295*G allele benefitted from nintedanib treatment compared with TT genotype by a longer OS [hazard ratio (HR) = 7.99; 95% confidence interval (CI) = 1.56-40.90; p = 0.013] and a slower decline in lung function (HR = 8.51; 95% CI = 1.68-43.14; p = 0.010). Patients with a TT genotype (rs2076295) benefitted from treatment with pirfenidone by prolonged OS (p = 0.040; HR = 0.35; 95% CI = 0.13-0.95) compared with nintedanib treatment. Both associations were confirmed by cross-validation analysis. After stratifying by MUC5B rs35705950*T allele carriage, no difference in treatment outcome was observed for nintedanib or pirfenidone (p = 0.784). In the multivariate model, smoking, age, forced vital capacity (FVC) and DLCO (diffuse lung capacity) at the IPF diagnosis were associated with survival. CONCLUSION Our real-world study showed that IPF patients with MUC5B T* allele or DSP G* allele profit from antifibrotic treatment by lower mortability. Moreover, carriers of the DSP rs2076295*G allele benefit from treatment with nintedanib, and TT genotype from treatment with pirfenidone. MUC5B rs35705950 did not impact the outcome of treatment with either nintedanib or pirfenidone. Our single-registry pilot study should be confirmed with an independent patient cohort.
Collapse
Affiliation(s)
- Martina Doubkova
- Department of Pulmonology and Physiology, Faculty of Medicine, Masaryk University and University Hospital Brno, Jihlavská 20, 625 00 Brno, Czech Republic
| | - Eva Kriegova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University in Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - Simona Littnerova
- Institute of Biostatistics and Analyses, Masaryk University, Brno, Czech Republic
| | - Petra Schneiderova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University in Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - Martina Sterclova
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Vladimir Bartos
- Department of Pneumology, Faculty of Medicine in Hradec Králové, Charles University, Prague, Czech Republic
| | - Martina Plackova
- Department of Pneumology, Faculty of Medicine, University Hospital in Ostrava, Ostrava, Czech Republic
| | - Monika Zurkova
- Department of Respiratory Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - Radka Bittenglova
- Department of Respiratory Diseases, Faculty of Medicine in Pilsen, Charles University and University Hospital Pilsen, Pilsen, Czech Republic
| | - Vladimira Lostaková
- Department of Respiratory Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - Lenka Siskova
- Department of Respiratory Diseases, Tomáš Baťa Regional Hospital, Zlín, Czech Republic
| | - Pavlina Lisa
- Department of Pneumology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Hana Suldova
- Pulmonary Department, České Budějovice Hospital, Ceske Budejovice, Czech Republic
| | - Michael Doubek
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Jana Psikalova
- PneumoAllergology Department, Kroměříž Hospital, Kromeriz, Czech Republic
| | - Tomas Snizek
- Department of Respiratory Diseases, Jihlava Hospital, Jihlava, Czech Republic
| | - Pavlina Musilova
- Department of Respiratory Diseases, Jihlava Hospital, Jihlava, Czech Republic
| | - Martina Vasakova
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| |
Collapse
|
41
|
Zhao A, Gudmundsson E, Mogulkoc N, Jones MG, van Moorsel C, Corte TJ, Romei C, Savas R, Brereton CJ, van Es HW, Jo H, De Liperi A, Unat O, Pontoppidan K, van Beek F, Veltkamp M, Hopkins P, Moodley Y, Taliani A, Tavanti L, Gholipour B, Nair A, Janes S, Stewart I, Barber D, Alexander DC, Wells AU, Jacob J. Mortality in combined pulmonary fibrosis and emphysema patients is determined by the sum of pulmonary fibrosis and emphysema. ERJ Open Res 2021; 7:00316-2021. [PMID: 34435039 PMCID: PMC8381266 DOI: 10.1183/23120541.00316-2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/15/2021] [Indexed: 12/01/2022] Open
Abstract
Emphysema is one of the most common pulmonary comorbidities of idiopathic pulmonary fibrosis (IPF), presenting in about one-third of IPF patients [1]. The term combined pulmonary fibrosis and emphysema (CPFE) has been used to describe a potential phenotype characterised by the coexistence of upper lobe-predominant emphysema, lower lobe-predominant fibrosis and relative preservation of lung volumes (forced vital capacity; FVC) in the context of a disproportionately reduced gas transfer (diffusing capacity of the lung for carbon monoxide; DLCO) [1–3]. With regard to patient survival, it remains unclear whether mortality in patients with CPFE reflects the cumulative effects of two disease processes (emphysema and fibrosis), or whether CPFE represents a distinct disease phenotype where outcome is worse than the sum of disease parts (emphysema and fibrosis). In patients with combined pulmonary fibrosis and emphysema, emphysema and fibrosis do not have a synergistic effect that results in worsened survival when compared to IPF patients without emphysemahttps://bit.ly/35EJMo6
Collapse
Affiliation(s)
- An Zhao
- Centre for Medical Image Computing, UCL, London, UK
| | | | - Nesrin Mogulkoc
- Dept of Respiratory Medicine, Ege University Hospital, Izmir, Turkey
| | - Mark G Jones
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton and NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | | | - Tamera J Corte
- Dept of Respiratory Medicine, Royal Prince Alfred Hospital, Camperdown, Australia
| | - Chiara Romei
- Dept of Radiology, Pisa University Hospital, Pisa, Italy
| | - Recep Savas
- Dept of Radiology, Ege University Hospital, Izmir, Turkey
| | - Christopher J Brereton
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton and NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Hendrik W van Es
- Dept of Radiology, St Antonius Hospital, Nieuwegein, The Netherlands
| | - Helen Jo
- Dept of Respiratory Medicine, Royal Prince Alfred Hospital, Camperdown, Australia
| | | | - Omer Unat
- Dept of Respiratory Medicine, Ege University Hospital, Izmir, Turkey
| | - Katarina Pontoppidan
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton and NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Frouke van Beek
- Dept of Radiology, St Antonius Hospital, Nieuwegein, The Netherlands
| | - Marcel Veltkamp
- Dept of Pulmonology, Interstitial Lung Diseases Center of Excellence, St Antonius Hospital, Nieuwegein, The Netherlands.,Division of Heart and Lungs, University Medical Center, Utrecht, The Netherlands
| | - Peter Hopkins
- Queensland Centre for Pulmonary Transplantation and Vascular Disease, The Prince Charles Hospital, Chermside, Australia
| | - Yuben Moodley
- School of Medicine and Pharmacology, University Western Australia, Perth, Australia.,Fiona Stanley Hospital, Perth, Australia
| | | | - Laura Tavanti
- Cardiovascular and Thoracic Dept, Pisa University Hospital, Pisa, Italy
| | - Bahareh Gholipour
- Dept of Radiology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Arjun Nair
- Dept of Radiology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Sam Janes
- Lungs for Living Research Centre, UCL, London, UK
| | - Iain Stewart
- National Heart and Lung Institute, Imperial College London, London, UK
| | - David Barber
- Centre for Artificial Intelligence, UCL, London, UK
| | | | - Athol U Wells
- Dept of Respiratory Medicine, Royal Brompton Hospital, London, UK.,Imperial College London, London, UK
| | - Joseph Jacob
- Centre for Medical Image Computing, UCL, London, UK.,Lungs for Living Research Centre, UCL, London, UK
| |
Collapse
|
42
|
Diagnostic Features in Combined Pulmonary Fibrosis and Emphysema: A Systematic Review. Ann Am Thorac Soc 2021; 17:1333-1336. [PMID: 32610025 DOI: 10.1513/annalsats.202002-122rl] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
43
|
Shioleno AM, Ruopp NF. Group 3 Pulmonary Hypertension: A Review of Diagnostics and Clinical Trials. Clin Chest Med 2021; 42:59-70. [PMID: 33541617 DOI: 10.1016/j.ccm.2020.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Group 3 pulmonary hypertension (PH) is a known sequelae of chronic lung disease. Diagnosis and classification can be challenging in the background of chronic lung disease and often requires expert interpretation of numerous diagnostic studies to ascertain the true nature of the PH. Stabilization of the underlying lung disease and adjunctive therapies such as oxygen remain the mainstays of therapy, as there are no Food and Drug Administration-approved therapies for group 3 PH. Referral to PH centers for individualized management and clinical trial enrollment is paramount.
Collapse
Affiliation(s)
- Andrea M Shioleno
- Division of Pulmonary and Critical Care Medicine, University of Miami, 1801 Northwest 9th Avenue, Miami, FL 33136, USA
| | - Nicole F Ruopp
- Division of Pulmonary, Critical Care, and Sleep Medicine, Tufts Medical Center, 800 Washington Street, #257 (Tupper 3), Boston, MA 02111, USA.
| |
Collapse
|
44
|
Wilkins MR. Personalized Medicine for Pulmonary Hypertension:: The Future Management of Pulmonary Hypertension Requires a New Taxonomy. Clin Chest Med 2021; 42:207-216. [PMID: 33541614 DOI: 10.1016/j.ccm.2020.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pulmonary hypertension is a convergent phenotype that presents late in the natural history of the condition. The current clinical classification of patients lacks granularity, and this impacts on the development and deployment of treatment. Deep molecular phenotyping using platform 'omic' technologies is beginning to reveal the genetic and molecular architecture that underlies the phenotype, promising better targeting of patients with new treatments. The future treatment of pulmonary hypertension depends on the integration of clinical and molecular information to create a new taxonomy that defines patient groups coupled to druggable targets.
Collapse
Affiliation(s)
- Martin R Wilkins
- National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
45
|
Automated Diseased Lung Volume Percentage Calculation in Quantitative CT Evaluation of Chronic Obstructive Pulmonary Disease and Idiopathic Pulmonary Fibrosis. J Comput Assist Tomogr 2021; 45:649-658. [PMID: 34176875 DOI: 10.1097/rct.0000000000001182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Several software-based quantitative computed tomography (CT) analysis methods have been developed for assessing emphysema and interstitial lung disease. Although the texture classification method appeared to be more successful than the other methods, the software programs are not commercially available, to our knowledge. Therefore, this study aimed to investigate the usefulness of a commercially available software program for quantitative CT analyses. METHODS This prospective cohort study included 80 patients with chronic obstructive pulmonary disease (COPD) or idiopathic pulmonary fibrosis (IPF). RESULTS The percentage of low attenuation volume and high attenuation volume had high sensitivity and high specificity for detecting emphysema and pulmonary fibrosis, respectively. The percentage of diseased lung volume (DLV%) was significantly correlated with the lung diffusion capacity for carbon monoxide in all patients with COPD and IPF patients. CONCLUSIONS The quantitative CT analysis may improve the precision of the assessment of DLV%, which itself could be a useful tool in predicting lung diffusion capacity in patients with the clinical diagnosis of COPD or IPF.
Collapse
|
46
|
Takahashi T, Terada Y, Pasque MK, Liu J, Byers DE, Witt CA, Nava RG, Puri V, Kozower BD, Meyers BF, Kreisel D, Patterson GA, Hachem RR. Clinical features and outcomes of combined pulmonary fibrosis and emphysema after lung transplantation. Chest 2021; 160:1743-1750. [PMID: 34186034 DOI: 10.1016/j.chest.2021.06.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Combined pulmonary fibrosis and emphysema (CPFE) is recognized as a characteristic syndrome of smoking-related interstitial lung disease that has a worse prognosis than idiopathic pulmonary fibrosis (IPF). However, outcomes after lung transplantation for CPFE have not been reported. The aim of this study is to describe the clinical features and outcomes of CPFE after lung transplantation. RESEARCH QUESTION What are the clinical features and outcomes of CPFE after lung transplantation? STUDY DESIGN AND METHODS This is a single-center retrospective cohort study of patients with CPFE and IPF who underwent lung transplantation at our center between January 2011 and December 2016. We defined CPFE as ≥ 10% emphysema in the upper lung fields combined with fibrosis on high-resolution computed tomography scan. We characterized the clinical features of patients with CPFE and compared their outcomes after lung transplantation to those with IPF. RESULTS 27 of 172 (16%) patients with IPF met criteria for CPFE. Severe pulmonary hypertension was present in 16 of 27 (59%) patients with CPFE. On logistic regression analysis, CPFE was significantly associated with primary graft dysfunction (PGD) grade 3 (odds ratio: 3.14, 95% confidence interval [CI]: 1.18-8.37, p=0.02). On competing risk regression analysis, CPFE was associated with acute cellular rejection (ACR) grade ≥ A2, and chronic lung allograft dysfunction (CLAD) (hazard ratio [HR]: 1.89, 95% CI: 1.10-3.25, p=0.02, HR: 1.96, 95% CI: 1.02-3.77, p=0.04, respectively). 5-year survival was 79.0% for the CPFE group and 75.4% for the IPF group, respectively (log rank p = 0.684). INTERPRETATION After transplant, patients with CPFE were more likely to develop PGD, ACR, and CLAD compared to those with IPF. However, survival was not significantly different between the 2 groups.
Collapse
Affiliation(s)
- Tsuyoshi Takahashi
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Yuriko Terada
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael K Pasque
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Jingxia Liu
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Derek E Byers
- Division of Pulmonary & Critical Care, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Chad A Witt
- Division of Pulmonary & Critical Care, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ruben G Nava
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Varun Puri
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Benjamin D Kozower
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Bryan F Meyers
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel Kreisel
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - G Alexander Patterson
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Ramsey R Hachem
- Division of Pulmonary & Critical Care, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
47
|
Sangani R, Ghio A, Culp S, Patel Z, Sharma S. Combined Pulmonary Fibrosis Emphysema: Role of Cigarette Smoking and Pulmonary Hypertension in a Rural Cohort. Int J Chron Obstruct Pulmon Dis 2021; 16:1873-1885. [PMID: 34188464 PMCID: PMC8232869 DOI: 10.2147/copd.s307192] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/20/2021] [Indexed: 12/24/2022] Open
Abstract
Background Disease heterogeneity in idiopathic pulmonary fibrosis (IPF) often complicates the systematic study of disease, management of patients and clinical investigations. Objective To describe combined pulmonary fibrosis emphysema (CPFE) phenotype in a rural Appalachian IPF cohort with the highest smoking rates in the United States. Methods CPFE patients (n = 60) in a developed IPF cohort (n = 153) were characterized. Groups (CPFE vs IPF without emphysema) were categorized based on the predominant HRCT patterns of UIP (n = 109). Demographics, clinical variables, and treatment details were recorded. Kaplan–Meier survival and multivariate logistic regression analysis were performed. Results The prevalence of CPFE in our IPF cohort was 45% (n = 49). The CPFE group was younger (73.9 vs 78.2), had a more extensive smoking history (93.9% vs 53.3%) with greater mean smoking pack years (49.09 vs 15.39) and had lower percentage predicted DLCO on presentation (38.35 vs 51.09) compared to IPF without emphysema group. Both groups shared equivalent higher burden of comorbidities, including pulmonary hypertension (PH) (46.9% vs 33.3%). One-fifth of patients were prescribed antifibrotics and only a subset (5%) of patients underwent lung transplantation. There was a non-significant trend towards reduced survival in CPFE (p = 0.076). Smoking status and DLCO predicted CPFE in our cohort. Body mass index (BMI), PH, and pirfenidone use were significant predictors of mortality. Conclusion CPFE was highly prevalent in our rural IPF cohort. In contrast to previous studies, CPFE group was older and had higher female (approx. 30%) occurrence. A greater exposure to cigarette smoke and reduced DLCO at diagnosis predicted CPFE. Lower BMI and PH predicted higher mortality whereas use of pirfenidone improved survival in our cohort. This study highlights a complex interaction of cigarette smoking, advanced fibrosis of UIP, PH and potential utility of antifibrotic agents in CPFE phenotype. Substantial burden of comorbidities, older age, and the limited utilization of advanced therapeutics in the cohort emphasize the challenges faced by rural Appalachian patients.
Collapse
Affiliation(s)
- Rahul Sangani
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, West Virginia University, Morgantown, WV, USA
| | - Andrew Ghio
- Human Studies Facility, US Environmental Protection Agency, Chapel Hill, NC, USA
| | - Stacey Culp
- Department of Biostatistics, West Virginia University, Morgantown, WV, USA
| | - Zalak Patel
- Department of Radiology, West Virginia University, Morgantown, WV, USA
| | - Sunil Sharma
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
48
|
Gonzalez-Garcia M, Rincon-Alvarez E, Alberti ML, Duran M, Caro F, Venero MDC, Liberato YE, Buendia-Roldan I. Comorbidities of Patients With Idiopathic Pulmonary Fibrosis in Four Latin American Countries. Are There Differences by Country and Altitude? Front Med (Lausanne) 2021; 8:679487. [PMID: 34222287 PMCID: PMC8245671 DOI: 10.3389/fmed.2021.679487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/25/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Comorbidities in idiopathic pulmonary fibrosis (IPF) affect quality of life, symptoms, disease progression and survival. It is unknown what are the comorbidities in patients with IPF in Latin America (LA) and if there are differences between countries. Our objective was to compare IPF comorbidities in four countries and analyze possible differences by altitude. Methods: Patients with IPF according 2012 ATS/ERS/JRS/ALAT guidelines, from two cities with an altitude of ≥2,250 m: Mexico City (Mexico) and Bogotá (Colombia) and from three at sea level: Buenos Aires (Argentina) and Lima and Trujillo (Peru). Comorbidities and pulmonary function tests were taken from clinical records. Possible pulmonary hypertension (PH) was defined by findings in the transthoracic echocardiogram of systolic pulmonary arterial pressure (sPAP) >36 mmHg or indirect signs of PH in the absence of other causes of PH. Emphysema as the concomitant finding of IPF criteria on chest tomography plus emphysema in the upper lobes. ANOVA or Kruskal Wallis and χ2-tests were used for comparison. Results: Two hundred and seventy-six patients were included, 50 from Argentina, 86 from Colombia, 91 from Mexico and 49 from Peru. There prevalence of PH was higher in Colombia and Mexico (p < 0.001), systemic arterial hypertension in Argentina (p < 0.015), gastro-esophageal reflux and dyslipidemia in Colombia and Argentina (p < 0.001) and diabetes mellitus in Mexico (p < 0.007). Other comorbidities were obesity (28.4%), coronary artery disease (15.2%) and emphysema (14.9%), with no differences between countries. There was more PH in the altitude cities than those at sea level (51.7 vs. 15.3%, p < 0.001). In patients from Bogotá and Mexico City, arterial oxygen pressure, saturation (p < 0.001) and carbon monoxide diffusing capacity (p = 0.004) were significantly lower than in cities at sea level. Conclusions: In this study with a significant number of patients, we were able to describe and compare the comorbidities of IPF in four LA countries, which contributes to the epidemiological data of this disease in the region. The main results were the differences in comorbidities between the countries and more PH in the subjects residing in the cities of higher altitude, a finding that should be validated in future studies.
Collapse
Affiliation(s)
| | | | | | | | - Fabian Caro
- Hospital María Ferrer, Buenos Aires, Argentina
| | | | | | - Ivette Buendia-Roldan
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, Mexico
| |
Collapse
|
49
|
Pulmonary hypertension in interstitial lung disease: screening, diagnosis and treatment. Curr Opin Pulm Med 2021; 27:396-404. [PMID: 34127619 DOI: 10.1097/mcp.0000000000000790] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Pulmonary vascular disease resulting in pulmonary hypertension in the context of interstitial lung disease (PH-ILD) is a common complication that presents many challenges in clinical practice. Despite recent advances, the pathogenetic interplay between parenchymal and vascular disease in ILD is not fully understood. This review provides an overview of the current knowledge and recent advances in the field. RECENT FINDINGS Clinical trials employing the phosphodiesterase-5-inhibitor sildenafil delivered negative results whereas riociguat showed harmful effects in the PH-ILD population. More recently, inhaled treprostinil showed positive effects on the primary endpoint (six-min walk-distance) in the largest prospective randomized placebo-controlled trial to date in this patient population. Additionally, a pilot trial of ambulatory inhaled nitric oxide suggests beneficial effects based on the novel endpoint of actigraphy. SUMMARY In view of these novel developments this review provides an overview of the status quo of screening, diagnosis and management of pulmonary vascular disease and PH in patients with ILD.
Collapse
|
50
|
Clusters of comorbidities in idiopathic pulmonary fibrosis. Respir Med 2021; 185:106490. [PMID: 34130097 DOI: 10.1016/j.rmed.2021.106490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Comorbidities are common in patients with idiopathic pulmonary fibrosis (IPF) and negatively impact health-related quality of life, health-care costs and mortality. Retrospective studies have focused on individual comorbidities, but clusters of multiple comorbidities have rarely been analysed. This study aimed to comprehensively and prospectively assess comorbidities in a multicentre, real-world cohort of patients with IPF, including prespecified conditions of special interest and to analyse clusters of comorbidities and examine characteristics, disease course and mortality of the clusters. METHODS Several measurements, questionnaires, medications and medical history were combined to assess comorbidities. Using self-organizing maps, clusters of comorbidities were identified and phenotypes characterized. Disease course was assessed using mixed effects models and mortality using Cox regression. RESULTS One-hundred and fifty IPF patients were included prospectively. All except one patient suffered from at least one comorbidity and multimorbidity was common. Arterial hypertension, gastro-oesophageal reflux disease, hypercholesterolemia, emphysema and obstructive sleep apnea were most prevalent. Four comorbidity clusters were identified. Each cluster had distinct comorbidity profiles, patient characteristics, symptom burden and disease severity. Patients with fewer comorbidities had better exercise capacity and less dyspnea at baseline, but a trend towards faster deterioration was observed. Mortality analyses showed no significant differences between clusters. CONCLUSIONS Multimorbidity is prevalent in patients with IPF. Four specific clusters of comorbidities may represent phenotypes in IPF. A trend towards faster decline in exercise capacity and dyspnea was observed in patients with fewer comorbidities. Increased knowledge of comorbidities facilitates prevention and treatment of comorbidities in patients with IPF.
Collapse
|