1
|
Khadka P, Dummer J, Hill PC, Das SC. The quest to deliver high-dose rifampicin: can the inhaled approach help? Expert Opin Drug Deliv 2024; 21:31-44. [PMID: 38180078 DOI: 10.1080/17425247.2024.2301931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/02/2024] [Indexed: 01/06/2024]
Abstract
INTRODUCTION Tuberculosis (TB) is a global health problem that poses a challenge to global treatment programs. Rifampicin is a potent and highly effective drug for TB treatment; however, higher oral doses than the standard dose (10 mg/kg/day) rifampicin may offer better efficacy in TB treatment. AREAS COVERED High oral dose rifampicin is not implemented in anti-TB regimens yet and requires about a 3-fold increase in dose for increased efficacy. We discuss inhaled delivery of rifampicin as an alternative or adjunct to oral high-dose rifampicin. Clinical results of safety, tolerability, and patient compliance with antibiotic dry powder inhalers are reviewed. EXPERT OPINION Clinical trials suggest that an approximately 3-fold increase in the standard oral dose of rifampicin may be required for better clinical outcomes. On the other hand, animal studies suggest that inhaled rifampicin can deliver a high concentration of the drug to the lungs and achieve approximately double the plasma concentration than that from oral rifampicin. Clinical trials on inhaled antibiotics suggest that dry powder inhalation is a patient-friendly and well-tolerated approach in treating respiratory infections compared to conventional treatments. Rifampicin, a well-known anti-TB drug given orally, is a good candidate for clinical development as a dry powder inhaler.
Collapse
Affiliation(s)
- Prakash Khadka
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Jack Dummer
- Department of Medicine, Otago Medical School, University of Otago, Dunedin, New Zealand
| | - Philip C Hill
- Centre for International Health, University of Otago, Dunedin, New Zealand
| | - Shyamal C Das
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Fu Y, Dou Q, Smalla K, Wang Y, Johnson TA, Brandt KK, Mei Z, Liao M, Hashsham SA, Schäffer A, Smidt H, Zhang T, Li H, Stedtfeld R, Sheng H, Chai B, Virta M, Jiang X, Wang F, Zhu Y, Tiedje JM. Gut microbiota research nexus: One Health relationship between human, animal, and environmental resistomes. MLIFE 2023; 2:350-364. [PMID: 38818274 PMCID: PMC10989101 DOI: 10.1002/mlf2.12101] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 06/01/2024]
Abstract
The emergence and rapid spread of antimicrobial resistance is of global public health concern. The gut microbiota harboring diverse commensal and opportunistic bacteria that can acquire resistance via horizontal and vertical gene transfers is considered an important reservoir and sink of antibiotic resistance genes (ARGs). In this review, we describe the reservoirs of gut ARGs and their dynamics in both animals and humans, use the One Health perspective to track the transmission of ARG-containing bacteria between humans, animals, and the environment, and assess the impact of antimicrobial resistance on human health and socioeconomic development. The gut resistome can evolve in an environment subject to various selective pressures, including antibiotic administration and environmental and lifestyle factors (e.g., diet, age, gender, and living conditions), and interventions through probiotics. Strategies to reduce the abundance of clinically relevant antibiotic-resistant bacteria and their resistance determinants in various environmental niches are needed to ensure the mitigation of acquired antibiotic resistance. With the help of effective measures taken at the national, local, personal, and intestinal management, it will also result in preventing or minimizing the spread of infectious diseases. This review aims to improve our understanding of the correlations between intestinal microbiota and antimicrobial resistance and provide a basis for the development of management strategies to mitigate the antimicrobial resistance crisis.
Collapse
Affiliation(s)
- Yuhao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qingyuan Dou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Kornelia Smalla
- Julius Kühn Institute (JKI) Federal Research Centre for Cultivated PlantsBraunschweigGermany
| | - Yu Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | | | - Kristian K. Brandt
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
- Sino‐Danish Center (SDC)BeijingChina
| | - Zhi Mei
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
- Department of MicrobiologyUniversity of HelsinkiHelsinkiFinland
| | - Maoyuan Liao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Syed A. Hashsham
- Department of Plant, Soil and Microbial Sciences, Center for Microbial EcologyMichigan State UniversityMichiganUSA
- Department of Civil and Environmental EngineeringMichigan State UniversityMichiganUSA
| | - Andreas Schäffer
- Institute for Environmental ResearchRWTH Aachen UniversityAachenGermany
| | - Hauke Smidt
- Laboratory of MicrobiologyWageningen University & ResearchWageningenThe Netherlands
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil EngineeringThe University of Hong KongPokfulamHong KongChina
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Center for Microbial EcologyMichigan State UniversityMichiganUSA
| | - Robert Stedtfeld
- Department of Civil and Environmental EngineeringMichigan State UniversityMichiganUSA
| | - Hongjie Sheng
- Institute of Agricultural Resources and EnvironmentJiangsu Academy of Agricultural SciencesNanjingChina
| | - Benli Chai
- Department of Plant, Soil and Microbial Sciences, Center for Microbial EcologyMichigan State UniversityMichiganUSA
| | - Marko Virta
- Department of MicrobiologyUniversity of HelsinkiHelsinkiFinland
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yong‐Guan Zhu
- University of Chinese Academy of SciencesBeijingChina
- Key Laboratory of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- State Key Laboratory of Urban and Regional EcologyChinese Academy of SciencesBeijingChina
| | - James M. Tiedje
- Department of Plant, Soil and Microbial Sciences, Center for Microbial EcologyMichigan State UniversityMichiganUSA
| |
Collapse
|
3
|
Drug Combination of Ciprofloxacin and Polymyxin B for the Treatment of Multidrug–Resistant Acinetobacter baumannii Infections: A Drug Pair Limiting the Development of Resistance. Pharmaceutics 2023; 15:pharmaceutics15030720. [PMID: 36986580 PMCID: PMC10056848 DOI: 10.3390/pharmaceutics15030720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Polymyxins are considered as last–resort antibiotics to treat infections caused by Acinetobacter baumannii. However, there are increasing reports of resistance in A. baumannii to polymyxins. In this study, inhalable combinational dry powders consisting of ciprofloxacin (CIP) and polymyxin B (PMB) were prepared by spray–drying. The obtained powders were characterized with respect to the particle properties, solid state, in vitro dissolution and in vitro aerosol performance. The antibacterial effect of the combination dry powders against multidrug–resistant A. baumannii was assessed in a time–kill study. Mutants from the time–kill study were further investigated by population analysis profiling, minimum inhibitory concentration testing, and genomic comparisons. Inhalable dry powders consisting of CIP, PMB and their combination showed a fine particle fraction above 30%, an index of robust aerosol performance of inhaled dry powder formulations in the literature. The combination of CIP and PMB exhibited a synergistic antibacterial effect against A. baumannii and suppressed the development of CIP and PMB resistance. Genome analyses revealed only a few genetic differences of 3–6 SNPs between mutants and the progenitor isolate. This study suggests that inhalable spray–dried powders composed of the combination of CIP and PMB is promising for the treatment of respiratory infections caused by A. baumannii, and this combination can enhance the killing efficiency and suppress the development of drug resistance.
Collapse
|
4
|
Nainwal N. Treatment of respiratory viral infections through inhalation therapeutics: Challenges and opportunities. Pulm Pharmacol Ther 2022; 77:102170. [PMID: 36240985 PMCID: PMC9554202 DOI: 10.1016/j.pupt.2022.102170] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 08/25/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022]
Abstract
Respiratory viral infections are the leading cause of death worldwide. The current pandemic of coronavirus infection (COVID-19) challenged human beings for the treatment and prevention of this respiratory viral infection since its outbreak in 2019. Despite advancements in the medical field, scientists were helpless to give timely treatment and protection against this viral infection. Several drugs, whether antiviral or not, were given to the patients to reduce mortality and morbidity rate. Vaccines from various pharmaceutical manufacturers are now available to give immunization against covid-19. Still, coronavirus is continuously affecting people in the form of variants after mutation. Each new variant increases the infection risk and forces scientists to develop some innovative and effective treatments for this infection. The virus uses the host's cell machinery to grow and multiply in numbers. Therefore, scientists are facing challenges to develop antivirals that stop the virus without damaging the host cells too. The production of suitable antivirals or vaccines for the new virus would take several months, allowing the strain to cause severe damage to life. Inhalable formulation facilitates the delivery of medicinal products directly to the respiratory system without causing unwanted side effects associated with systemic absorption. Scientists are focusing on developing an inhaled version of the existing antivirals for the treatment of respiratory infections. This review focused on the inhalable formulations of antiviral agents in various respiratory viral infections including the ongoing covid-19 pandemic and important findings of the clinical studies. We also reviewed repurposed drugs that have been given through inhalation in covid-19 infection.
Collapse
|
5
|
Pathak V, Park H, Zemlyanov D, Bhujbal SV, Ahmed MU, Azad MAK, Li J, Zhou QT. Improved Aerosolization Stability of Inhalable Tobramycin Powder Formulation by Co-Spray Drying with Colistin. Pharm Res 2022; 39:2781-2799. [PMID: 35915320 PMCID: PMC10019100 DOI: 10.1007/s11095-022-03344-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/13/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE Tobramycin shows synergistic antibacterial activity with colistin and can reduce the toxic effects of colistin. The purpose of this study is to prepare pulmonary powder formulations containing both colistin and tobramycin and to assess their in vitro aerosol performance and storage stability. METHODS The dry powder formulations were manufactured using a lab-scale spray dryer. In vitro aerosol performance was measured using a Next Generation Impactor. The storage stability of the dry powder formulations was measured at 22°C and two relative humidity levels - 20 and 55%. Colistin composition on the particle surface was measured using X-ray photoelectron spectroscopy. RESULTS Two combination formulations, with 1:1 and 1:5 molar ratios of colistin and tobramycin, showed fine particle fractions (FPF) of 85%, which was significantly higher than that of the spray dried tobramycin (45%). FPF of the tobramycin formulation increased significantly when stored for four weeks at both 20% and 55% RH. In contrast, FPF values of both combination formulations and spray dried colistin remained stable at both humidity levels. Particle surface of each combination was significantly enriched in colistin molecules; 1:5 combination showed 77% by wt. colistin. CONCLUSIONS The superior aerosol performance and aerosolization stability of 1:1 and 1:5 combination formulations of colistin and tobramycin could be attributed to enrichment of colistin on the co-spray dried particle surface. The observed powder properties may be the result of a surfactant-like assembly of these colistin molecules during spray drying, thus forming a hydrophobic particle surface.
Collapse
Affiliation(s)
- Vaibhav Pathak
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Heejun Park
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Dmitry Zemlyanov
- Birck Nanotechnology Center, Purdue University, 1205 West State Street, West Lafayette, IN, 47907, USA
| | - Sonal V Bhujbal
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Maizbha Uddin Ahmed
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Mohammad A K Azad
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, 3800, Australia
| | - Jian Li
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, 3800, Australia
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA.
| |
Collapse
|
6
|
Ceschan NE, Scioli-Montoto S, Sbaraglini ML, Ruiz ME, Smyth HD, Bucalá V, Ramírez-Rigo MV. Nebulization of a polyelectrolyte-drug system for systemic hypertension treatment. Eur J Pharm Sci 2022; 170:106108. [DOI: 10.1016/j.ejps.2021.106108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/29/2021] [Accepted: 12/23/2021] [Indexed: 11/03/2022]
|
7
|
Matuszak M, Ochowiak M, Włodarczak S, Krupińska A, Doligalski M. State-of-the-Art Review of The Application and Development of Various Methods of Aerosol Therapy. Int J Pharm 2021; 614:121432. [PMID: 34971755 DOI: 10.1016/j.ijpharm.2021.121432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/09/2021] [Accepted: 12/23/2021] [Indexed: 12/23/2022]
Abstract
Aerosol therapy is a rapidly developing field of science. Due to a number of advantages, the administration of drugs to the body with the use of aerosol therapy is becoming more and more popular. Spraying drugs into the patient's lungs has a significant advantage over other methods of administering drugs to the body, including injection and oral methods. In order to conduct proper and effective aerosol therapy, it is necessary to become familiar with the basic principles and applications of aerosol therapy under various conditions. The effectiveness of inhalation depends on many factors, but most of all on: the physicochemical properties of the sprayed system, the design of the medical inhaler and its correct application, the dynamics of inhalation (i.e. the frequency of breathing and the volume of inhaled air). It is worth emphasizing that respiratory system diseases are one of the most frequently occurring and fastest growing diseases in the world. Accordingly, in recent years, a significant increase in the number of new spraying devices and pharmaceutical drugs for spraying has appeared on the market. It should also be remembered that the process of spraying a liquid is a complicated and complex process, and its efficiency is very often characterized by the use of micro- and macro parameters (including average droplet diameters or the spectrum of droplet diameter distribution). In order to determine the effectiveness of the atomization process and in the delivery of drugs to the patient's respiratory tract, the analysis of the size of the generated aerosol droplets is most often performed. Based on the proposed literature review, it has been shown that many papers dealt with the issues related to aerosol therapy, the selection of an appropriate spraying device, the possibility of modifying the spraying devices in order to increase the effectiveness of inhalation, and the possibility of occurrence of certain discrepancies resulting from the use of various measurement methods to determine the characteristics of the generated aerosol. The literature review presented in the paper was prepared in order to better understand the spraying process. Moreover, it can be helpful in choosing the right medical inhaler for a given liquid with specific rheological properties. The experimental data contained in this study are of great cognitive importance and may be of interest to entities involved in pharmaceutical product engineering (in particular in the case of the production of drugs containing liquids with complex rheological properties).
Collapse
Affiliation(s)
- M Matuszak
- Faculty of Chemical Technology, Poznan University of Technology, Institute of Chemical Technology and Engineering, 4 Berdychowo Street, 60-965 Poznan, Poland.
| | - M Ochowiak
- Faculty of Chemical Technology, Poznan University of Technology, Institute of Chemical Technology and Engineering, 4 Berdychowo Street, 60-965 Poznan, Poland
| | - S Włodarczak
- Faculty of Chemical Technology, Poznan University of Technology, Institute of Chemical Technology and Engineering, 4 Berdychowo Street, 60-965 Poznan, Poland
| | - A Krupińska
- Faculty of Chemical Technology, Poznan University of Technology, Institute of Chemical Technology and Engineering, 4 Berdychowo Street, 60-965 Poznan, Poland
| | - M Doligalski
- Faculty of Computer, Electrical and Control Engineering, University of Zielona Góra, 4a Szafrana Street, 65-516 Zielona Góra, Poland
| |
Collapse
|
8
|
Son YJ, Miller DP, Weers JG. Optimizing Spray-Dried Porous Particles for High Dose Delivery with a Portable Dry Powder Inhaler. Pharmaceutics 2021; 13:pharmaceutics13091528. [PMID: 34575603 PMCID: PMC8470347 DOI: 10.3390/pharmaceutics13091528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
This manuscript critically reviews the design and delivery of spray-dried particles for the achievement of high total lung doses (TLD) with a portable dry powder inhaler. We introduce a new metric termed the product density, which is simply the TLD of a drug divided by the volume of the receptacle it is contained within. The product density is given by the product of three terms: the packing density (the mass of powder divided by the volume of the receptacle), the drug loading (the mass of drug divided by the mass of powder), and the aerosol performance (the TLD divided by the mass of drug). This manuscript discusses strategies for maximizing each of these terms. Spray drying at low drying rates with small amounts of a shell-forming excipient (low Peclet number) leads to the formation of higher density particles with high packing densities. This enables ultrahigh TLD (>100 mg of drug) to be achieved from a single receptacle. The emptying of powder from capsules is directly proportional to the mass of powder in the receptacle, requiring an inhaled volume of about 1 L for fill masses between 40 and 50 mg and up to 3.2 L for a fill mass of 150 mg.
Collapse
Affiliation(s)
- Yoen-Ju Son
- Genentech, South San Francisco, CA 94080, USA;
| | | | - Jeffry G. Weers
- Cystetic Medicines, Inc., Burlingame, CA 94010, USA;
- Correspondence: ; Tel.: +1-650-339-3832
| |
Collapse
|
9
|
Sharma A, Kumar D, Dahiya K, Hawthorne S, Jha SK, Jha NK, Nand P, Girgis S, Raj S, Srivastava R, Goswami VK, Gregoriou Y, El-Zahaby SA, Ojha S, Dureja H, Gupta G, Singh S, Chellappan DK, Dua K. Advances in pulmonary drug delivery targeting microbial biofilms in respiratory diseases. Nanomedicine (Lond) 2021; 16:1905-1923. [PMID: 34348474 DOI: 10.2217/nnm-2021-0057] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The increasing burden of respiratory diseases caused by microbial infections poses an immense threat to global health. This review focuses on the various types of biofilms that affect the respiratory system and cause pulmonary infections, specifically bacterial biofilms. The article also sheds light on the current strategies employed for the treatment of such pulmonary infection-causing biofilms. The potential of nanocarriers as an effective treatment modality for pulmonary infections is discussed, along with the challenges faced during treatment and the measures that may be implemented to overcome these. Understanding the primary approaches of treatment against biofilm infection and applications of drug-delivery systems that employ nanoparticle-based approaches in the disruption of biofilms are of utmost interest which may guide scientists to explore the vistas of biofilm research while determining suitable treatment modalities for pulmonary respiratory infections.
Collapse
Affiliation(s)
- Ankur Sharma
- Department of Life Science, School of Basic Science & Research (SBSR), Sharda University, Greater Noida, 201310, India
| | - Dhruv Kumar
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University, Uttar Pradesh, Sec-125, Noida, 201313, India
| | - Kajal Dahiya
- Department of Life Science, School of Basic Science & Research (SBSR), Sharda University, Greater Noida, 201310, India
| | - Susan Hawthorne
- School of Pharmacy & Pharmaceutical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA, UK
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, 201310, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, 201310, India
| | - Parma Nand
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, 201310, India
| | - Samuel Girgis
- School of Pharmacy, University of Sunderland, Chester Road, Sunderland, SR1 3SD, UK
| | - Sibi Raj
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University, Uttar Pradesh, Sec-125, Noida, 201313, India
| | - Rashi Srivastava
- Institute of Engineering & Technology, Lucknow, Uttar Pradesh, 226021, India
| | - Vineet Kumar Goswami
- Department of Biological Sciences, School of Basic & Applied Sciences, G.D. Goenka University, Education City, Sohna Road, Gurugram, Haryana, 122103, India
| | - Yiota Gregoriou
- Department of Biological Sciences, Faculty of Pure & Applied Sciences, University of Cyprus, Nicosia, Cyprus
| | - Sally A El-Zahaby
- Department of Pharmaceutics & Pharmaceutical Technology, Pharos University in Alexandria, Egypt
| | - Shreesh Ojha
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, PO Box-17666, United Arab Emirates University, Al Ain, UAE
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Gaurav Gupta
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, Jaipur, 302017, India
| | - Sachin Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144001, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Kuala Lumpur, 57000, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia
| |
Collapse
|
10
|
Sharma A, Kumar D, Dahiya K, Hawthorne S, Jha SK, Jha NK, Nand P, Girgis S, Raj S, Srivastava R, Goswami VK, Gregoriou Y, El-Zahaby SA, Ojha S, Dureja H, Gupta G, Singh S, Chellappan DK, Dua K. Advances in pulmonary drug delivery targeting microbial biofilms in respiratory diseases. Nanomedicine (Lond) 2021. [DOI: https://doi.org/10.2217/nnm-2021-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The increasing burden of respiratory diseases caused by microbial infections poses an immense threat to global health. This review focuses on the various types of biofilms that affect the respiratory system and cause pulmonary infections, specifically bacterial biofilms. The article also sheds light on the current strategies employed for the treatment of such pulmonary infection-causing biofilms. The potential of nanocarriers as an effective treatment modality for pulmonary infections is discussed, along with the challenges faced during treatment and the measures that may be implemented to overcome these. Understanding the primary approaches of treatment against biofilm infection and applications of drug-delivery systems that employ nanoparticle-based approaches in the disruption of biofilms are of utmost interest which may guide scientists to explore the vistas of biofilm research while determining suitable treatment modalities for pulmonary respiratory infections.
Collapse
Affiliation(s)
- Ankur Sharma
- Department of Life Science, School of Basic Science & Research (SBSR), Sharda University, Greater Noida, 201310, India
| | - Dhruv Kumar
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University, Uttar Pradesh, Sec-125, Noida, 201313, India
| | - Kajal Dahiya
- Department of Life Science, School of Basic Science & Research (SBSR), Sharda University, Greater Noida, 201310, India
| | - Susan Hawthorne
- School of Pharmacy & Pharmaceutical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA, UK
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, 201310, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, 201310, India
| | - Parma Nand
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, 201310, India
| | - Samuel Girgis
- School of Pharmacy, University of Sunderland, Chester Road, Sunderland, SR1 3SD, UK
| | - Sibi Raj
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University, Uttar Pradesh, Sec-125, Noida, 201313, India
| | - Rashi Srivastava
- Institute of Engineering & Technology, Lucknow, Uttar Pradesh, 226021, India
| | - Vineet Kumar Goswami
- Department of Biological Sciences, School of Basic & Applied Sciences, G.D. Goenka University, Education City, Sohna Road, Gurugram, Haryana, 122103, India
| | - Yiota Gregoriou
- Department of Biological Sciences, Faculty of Pure & Applied Sciences, University of Cyprus, Nicosia, Cyprus
| | - Sally A El-Zahaby
- Department of Pharmaceutics & Pharmaceutical Technology, Pharos University in Alexandria, Egypt
| | - Shreesh Ojha
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, PO Box-17666, United Arab Emirates University, Al Ain, UAE
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Gaurav Gupta
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, Jaipur, 302017, India
| | - Sachin Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144001, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Kuala Lumpur, 57000, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia
| |
Collapse
|
11
|
The rough inhalable ciprofloxacin hydrochloride microparticles based on silk fibroin for non-cystic fibrosis bronchiectasis therapy with good biocompatibility. Int J Pharm 2021; 607:120974. [PMID: 34358540 DOI: 10.1016/j.ijpharm.2021.120974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/13/2021] [Accepted: 08/01/2021] [Indexed: 01/03/2023]
Abstract
Non-cystic fibrosis bronchiectasis (NCFB) is a chronic respiratory disease, and the thick and viscous mucus covering on respiratory epithelia can entrap the inhaled drugs, resulting in compromised therapeutic efficiency. In order to solve this problem, the inhalable ciprofloxacin hydrochloride microparticles (CMs) based on silk fibroin (SF) and mannitol (MAN) were designed and developed. SF was applied to increase the loading efficiency of ciprofloxacin hydrochloride by strong electrostatic interactions. MAN could facilitate the penetration of drugs through mucus, which ensured the drugs could reach their targets before clearance. Furthermore, the aerodynamic performance of the inhalable microparticles could be tuned by changing the surface roughness to achieve a high fine particle fraction value (45.04%). The antibacterial effects of CMs were also confirmed by measuring the minimum inhibitory concentration against four different bacteria strains. Moreover, a series of experiments both in vitro and in vivo showed that CMs would not affect the lung function and induce the secretion of inflammatory cytokines in lungs, demonstrating their excellent biocompatibility and biosafety. Therefore, CMs might be a promising pulmonary drug delivery system for the treatment of NCFB.
Collapse
|
12
|
A triple combination 'nano' dry powder inhaler for tuberculosis: in vitro and in vivo pulmonary characterization. Drug Deliv Transl Res 2021; 11:1520-1531. [PMID: 34041715 DOI: 10.1007/s13346-021-01005-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2021] [Indexed: 10/21/2022]
Abstract
Inhalation route of drug delivery is the most favorable for pulmonary infections wherein direct drug delivery is desired to the lungs. Tuberculosis is one such infection suffering from poor therapeutic efficacy because of low patient compliance due to high drug dosing and lengthy treatment protocols. The current research work was undertaken to develop a dry powder inhaler (DPI) for administration of three first-line antitubercular antibiotics directly to the lungs to improve the treatment rates. Nanoformulations of isoniazid, pyrazinamide, and rifampicin were prepared, spray-dried to obtain a dry powder system, and blended with inhalation grade lactose to develop the DPI. The DPI was evaluated for its flow properties, pulmonary deposition, dissolution profile, and stability. The DPI possessed excellent flow properties with a fine particle fraction of 45% and a mass median aerodynamic diameter of approximately 5 µm indicating satisfactory lung deposition. In vitro drug release exhibited a sustained release of the formulations. In vivo studies showed a prolonged deposition in the lung at elevated concentrations compared to oral therapy. Stability studies proved that the formulation remained stable at accelerated and long-term stability conditions. The DPI could complement the existing oral therapy in enhancing the therapeutic efficacy in patients.
Collapse
|
13
|
Debnath SK, Srivastava R, Debnath M, Omri A. Status of inhalable antimicrobial agents for lung infection: progress and prospects. Expert Rev Respir Med 2021; 15:1251-1270. [PMID: 33866900 DOI: 10.1080/17476348.2021.1919514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Available parenteral and oral administration of antimicrobial agents (AMAs) in respiratory infections often show less penetration into the lung parenchyma. Due to inappropriate dose availability, the rate of antibiotic resistance is increasing gradually. Inhaled antibiotics intensely improve the availability of drugs at the site of respiratory infections. This targeted delivery minimizes systemic exposure and associated toxicity.Area covers: This review was performed by searching in the scientific database like PubMed and several trusted government sites like fda.gov, cdc.gov, ClinicalTrials.gov, etc. For better understanding, AMAs are classified in different stages of approval. Mechanism and characterization of pulmonary drug deposition section helps to understand the effective delivery of AMAs to the respiratory tract. There is a need for proper adoption of delivery devices for inhalable AMAs. Thus, delivery devices are extensively explained. Inspiratory flow has a remarkable impact on the delivery device that has been explained in detail.Expert opinion: Pulmonary delivery restricts the bulk administration of drugs in comparison with other routes. Therefore, novel AMAs with higher bactericidal activity at lower concentrations need to be synthesized. Extensive research is indeed in developing innovative delivery devices that would able to deliver higher doses of AMAs through the pulmonary route.
Collapse
Affiliation(s)
- Sujit Kumar Debnath
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Mumbai, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Mumbai, India
| | - Monalisha Debnath
- School of Medical Sciences and Technology, Indian Institute of Technology, Kharagpur, India
| | - Abdelwahab Omri
- Chemistry and Biochemistry, Laurentian University, Sudbury, Canada
| |
Collapse
|
14
|
Mehrabani Yeganeh E, Bagheri H, Mahjub R. Preparation, Statistical Optimization and In-vitro Characterization of a Dry Powder Inhaler (DPI) Containing Solid Lipid Nanoparticles Encapsulating Amphotericin B: Ion Paired Complexes with Distearoyl Phosphatidylglycerol. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 19:45-62. [PMID: 33680009 PMCID: PMC7757990 DOI: 10.22037/ijpr.2019.15208.12963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The aim of this study was to prepare dry powder inhalers (DPIs) containing amphotericin B-loaded solid lipid nanoparticles (AMB-SLNs) as an alternative approach for prevention of pulmonary aspergillosis. For solubilizing AMB in small amounts of organic solvents ion paired complexes were firstly formed by establishing electrostatic interaction between AMB and distearoyl phosphatidylglycerol (DSPG). The SLN formulations containing AMB-DSPG complexes were prepared using glycerol monostearate (GMS) as the lipid matrix and soybean lecithin and tween 80 as the surfactants by solvent emulsification-evaporation technique. The nanoparticles were optimized through a fractional factorial design. DPIs were prepared by lyophilization technique using lactose as the inhalational carrier and then after, the formulations were evaluated in terms of aerodynamic particle size distribution using an Andersen cascade impactor. The morphology of the particles was examined using scanning electron microscopy (SEM) and in-vitro drug release profiles were evaluated. Following the statistical results, the particle size, Poly dispersity index (PdI), zeta potential, entrapment efficiency (EE%), and drug loading (DL%) of the optimized SLNs were 187.04 ± 11.97 nm, 0.188 ± 0.028, -30.16 ± 1.6 mV, 89.3 ± 3.47 % and 2.76 ± 0.32 %, respectively. Formulation containing 10% w/v of lactose with the calculated fine particle fraction value as 72.57 ± 4.33% exhibited the appropriate aerodynamic characteristics for pulmonary drug delivery. SEM images revealed de-agglomerated particles. In-vitro release studies showed sustained release of AMB from the carriers and the release kinetics were best fitted to the first order kinetic model.
Collapse
Affiliation(s)
- Ehsan Mehrabani Yeganeh
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hossein Bagheri
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reza Mahjub
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
15
|
Douafer H, Andrieu V, Brunel JM. Scope and limitations on aerosol drug delivery for the treatment of infectious respiratory diseases. J Control Release 2020; 325:276-292. [PMID: 32652109 DOI: 10.1016/j.jconrel.2020.07.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 01/24/2023]
Abstract
The rise of antimicrobial resistance has created an urgent need for the development of new methods for antibiotics delivery to patients with pulmonary infections in order to mainly increase the effectiveness of the drugs administration, to minimize the risk of emergence of resistant strains, and to prevent patients reinfection. Since bacterial resistance is often related to antibiotic concentration, their pulmonary administration could eradicate strains resistant to the same drug at the concentration achieved through the systemic circulation. Pulmonary administration offers several advantages; it directly targets the site of the infection which allows the inhaled dose of the drug to be reduced compared to that administered orally or parenterally while keeping the same local effect. The review article is made with an objective to compile information about various existing modern technologies developed to provide greater patient compliance and reduce the undesirable side effect of the drugs. In conclusion, aerosol antibiotic delivery appears as one of the best technologies for the treatment of pulmonary infectious diseases and able to limit the systemic adverse effects related to the high drug dose and to make life easier for the patients.
Collapse
Affiliation(s)
- Hana Douafer
- Aix Marseille Univ, INSERM, SSA, MCT, 13385 Marseille, France
| | - Véronique Andrieu
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, 13385 Marseille, France
| | | |
Collapse
|
16
|
Desprez I, Boyer C, Servely JL, Carlet-Lejallé A, Reyes-Gomez E, Donnelly TM, Pignon C. Assessment of the Respiratory Tract Distribution of Fluorescein by Nebulization in Rats (Rattus norvegicus). J Exot Pet Med 2019. [DOI: 10.1053/j.jepm.2018.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Liu C, Lin L, Huang Z, Wu Q, Jiang J, Lv L, Yu X, Quan G, Li G, Wu C. Novel Inhalable Ciprofloxacin Dry Powders for Bronchiectasis Therapy: Mannitol-Silk Fibroin Binary Microparticles with High-Payload and Improved Aerosolized Properties. AAPS PharmSciTech 2019; 20:85. [PMID: 30673901 DOI: 10.1208/s12249-019-1291-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/28/2018] [Indexed: 11/30/2022] Open
Abstract
Non-cystic fibrosis bronchiectasis (NCFB) is a chronic respiratory disease associated with the high morbidity and mortality. Long-term intermittent therapy by inhalable antibiotics has recently emerged as an effective approach for NCFB treatment. However, the effective delivery of antibiotics to the lung requires administering a high dose to the site of infection. Herein, we investigated the novel inhalable silk-based microparticles as a promising approach to deliver high-payload ciprofloxacin (CIP) for NCFB therapy. Silk fibroin (SF) was applied to improve drug-payload and deposit efficiency of the dry powder particles. Mannitol was added as a mucokinetic agent. The dry powder inhaler (DPI) formulations of CIP microparticles were evaluated in vitro in terms of the aerodynamic performance, particle size distribution, drug loading, morphology, and their solid state. The optimal formulation (highest drug loading, 80%) exhibited superior aerosolization performance in terms of fine particle fraction (45.04 ± 0.84%), emitted dose (98.10 ± 1.27%), mass median aerodynamic diameter (3.75 ± 0.03 μm), and geometric standard deviation (1.66 ± 0.10). The improved drug loading was due to the electrostatic interactions between the SF and CIP by adsorption, and the superior aerosolization efficiency would be largely attributed to the fluffy and porous cotton-like property and low-density structure of SF. The presented results indicated the novel inhalable silk-based DPI microparticles of CIP could provide a promising strategy for the treatment of NCFB.
Collapse
|
18
|
Mangal S, Xu R, Park H, Zemlyanov D, Shetty N, Lin YW, Morton D, Chan HK, Li J, Zhou QT. Understanding the Impacts of Surface Compositions on the In-Vitro Dissolution and Aerosolization of Co-Spray-Dried Composite Powder Formulations for Inhalation. Pharm Res 2018; 36:6. [PMID: 30406281 DOI: 10.1007/s11095-018-2527-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/17/2018] [Indexed: 01/26/2023]
Abstract
PURPOSE Dissolution behavior of dry powder inhaler (DPI) antibiotic formulations in the airways may affect their efficacy especially for poorly-soluble antibiotics such as azithromycin. The main objective of this study was to understand the effects of surface composition on the dissolution of spray dried azithromycin powders by itself and in combination with colistin. METHODS Composite formulations of azithromycin (a poorly water-soluble molecule) and colistin (a water-soluble molecule) were produced by spray drying. The resultant formulations were characterized for particle size, morphology, surface composition, solid-state properties, solubility and dissolution. RESULTS The results demonstrate that surfaces composition has critical impacts on the dissolution of composite formulations. Colistin was shown to increase the solubility of azithromycin. For composite formulations with no surface colistin, azithromycin released at a similar dissolution rate as the spray-dried azithromycin alone. An increase in surface colistin concentration was shown to accelerate the dissolution of azithromycin. The dissolution of colistin from the composite formulations was significantly slower than the spray-dried pure colistin. In addition, FTIR spectrum showed intermolecular interactions between azithromycin and colistin in the composite formulations, which could contribute to the enhanced solubility and dissolution of azithromycin. CONCLUSIONS Our study provides fundamental understanding of the effects of surface concentration of colistin on azithromycin dissolution of co-spray-dried composite powder formulations.
Collapse
Affiliation(s)
- Sharad Mangal
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana, 47907, USA
| | - Rongkun Xu
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana, 47907, USA
| | - Heejun Park
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana, 47907, USA
| | - Dmitry Zemlyanov
- Birck Nanotechnology Center, Purdue University, 1205 West State Street, West Lafayette, Indiana, 47907, USA
| | - Nivedita Shetty
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana, 47907, USA
| | - Yu-Wei Lin
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, 3800, Australia
| | - David Morton
- Drug Delivery, Dynamics & Deposition, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, 3800, Australia
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana, 47907, USA.
| |
Collapse
|
19
|
Mangal S, Park H, Zeng L, Yu HH, Lin YW, Velkov T, Denman JA, Zemlyanov D, Li J, Zhou QT. Composite particle formulations of colistin and meropenem with improved in-vitro bacterial killing and aerosolization for inhalation. Int J Pharm 2018; 548:443-453. [PMID: 30008433 PMCID: PMC6086597 DOI: 10.1016/j.ijpharm.2018.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/25/2018] [Accepted: 07/02/2018] [Indexed: 10/28/2022]
Abstract
Antibiotic combination therapy is promising for the treatment of lower respiratory tract infections caused by multi-drug resistant Gram-negative pathogens. Inhaled antibiotic therapy offers the advantage of direct delivery of the drugs to the site of infection, as compared to the parenteral administrations. In this study, we developed composite particle formulations of colistin and meropenem. The formulations were characterized for particle size, morphology, specific surface area, surface chemical composition, in-vitro aerosolization performance and in-vitro antibacterial activity. The combinations demonstrated enhanced antibacterial activity against clinical isolates of Acinetobacter baumannii N16870 and Pseudomonas aeruginosa 19147, when compared with antibiotic monotherapy. Spray-dried meropenem alone showed a poor aerosolization performance as indicated by a low fine particle fraction (FPF) of 32.5 ± 3.3%. Co-spraying with colistin improved the aerosolization of meropenem with up to a two-fold increase in the FPF. Such improvements in aerosolization can be attributed to the enrichment of colistin on the surface of composite particles as indicated by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS), and the increases in particle porosity. Intermolecular interactions between colistin and meropenem were observed for the combination formulations as measured by FT-IR. In conclusion, our results show that co-spray drying with colistin improves the antibacterial activity and aerosol performance of meropenem and produces a formulation with synergistic bacterial killing.
Collapse
Affiliation(s)
- Sharad Mangal
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Heejun Park
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Lingfei Zeng
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Heidi H Yu
- Monash Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Yu-Wei Lin
- Monash Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - John A Denman
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Dmitry Zemlyanov
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Jian Li
- Monash Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
20
|
Zaichik S, Steinbring C, Menzel C, Knabl L, Orth-Höller D, Ellemunter H, Niedermayr K, Bernkop-Schnürch A. Development of self-emulsifying drug delivery systems (SEDDS) for ciprofloxacin with improved mucus permeating properties. Int J Pharm 2018; 547:282-290. [DOI: 10.1016/j.ijpharm.2018.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/30/2018] [Accepted: 06/03/2018] [Indexed: 12/11/2022]
|
21
|
Abstract
This review discusses recent developments in the manufacture of inhalable dry powder formulations. Pulmonary drugs have distinct advantages compared with other drug administration routes. However, requirements of drugs properties complicate the manufacture. Control over crystallization to make particles with the desired properties in a single step is often infeasible, which calls for micronization techniques. Although spray drying produces particles in the desired size range, a stable solid state may not be attainable. Supercritical fluids may be used as a solvent or antisolvent, which significantly reduces solvent waste. Future directions include application areas such as biopharmaceuticals for dry powder inhalers and new processing strategies to improve the control over particle formation such as continuous manufacturing with in-line process analytical technologies.
Collapse
|
22
|
Bahamondez-Canas TF, Ferrati S, Moraga-Espinoza DF, Smyth HDC. Development, Characterization, and In Vitro Testing of Co-Delivered Antimicrobial Dry Powder Formulation for the Treatment of Pseudomonas aeruginosa Biofilms. J Pharm Sci 2018; 107:2172-2178. [PMID: 29698726 DOI: 10.1016/j.xphs.2018.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/27/2018] [Accepted: 04/17/2018] [Indexed: 12/14/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic bacteria responsible for recurrent lung infections. Previously, we demonstrated that certain materials improved the activity of tobramycin (Tob) against P. aeruginosa biofilms in vitro. We aimed to develop prototype dry powder formulations comprising Tob and a mixture of excipients and test its aerodynamic properties and antimicrobial activity. First, we evaluated different combinations of excipients with Tob in solution against P. aeruginosa biofilms. We selected the compositions with the highest activity, to prepare dry powders by spray drying. The powders were characterized by morphology, bulk density, water content, and particle size distributions. Finally, the antimicrobial activity of the powders was tested. The combinations of Tob (64 μg/mL) with l-alanine and l-proline (at 10 and 20 mM; formulations 1 and 2, respectively) and with l-alanine and succinic acid (at 20 mM; formulation 3) showed the highest efficacies in vitro and were prepared as dry powders. Formulation 1 had the best aerodynamic performance as indicated by the fine particle fraction and the best in vitro activity against P. aeruginosa biofilms. Formulation 3 represents a good candidate for further optimization because it demonstrated good dispersibility potential and optimization of the particle size distribution may achieve high delivery efficiencies.
Collapse
Affiliation(s)
- Tania F Bahamondez-Canas
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712
| | - Silvia Ferrati
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712
| | - Daniel F Moraga-Espinoza
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712; Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile; Centro de Investigación Farmacopea Chilena, Universidad de Valparaíso, Valparaíso, Chile
| | - Hugh D C Smyth
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712; LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, Texas 78712.
| |
Collapse
|
23
|
Cookson WOCM, Cox MJ, Moffatt MF. New opportunities for managing acute and chronic lung infections. Nat Rev Microbiol 2017; 16:111-120. [PMID: 29062070 DOI: 10.1038/nrmicro.2017.122] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lung diseases caused by microbial infections affect hundreds of millions of children and adults throughout the world. In Western populations, the treatment of lung infections is a primary driver of antibiotic resistance. Traditional therapeutic strategies have been based on the premise that the healthy lung is sterile and that infections grow in a pristine environment. As a consequence, rapid advances in our understanding of the composition of the microbiota of the skin and bowel have not yet been matched by studies of the respiratory tree. The recognition that the lungs are as populated with microorganisms as other mucosal surfaces provides the opportunity to reconsider the mechanisms and management of lung infections. Molecular analyses of the lung microbiota are revealing profound adverse responses to widespread antibiotic use, urbanization and globalization. This Opinion article proposes how technologies and concepts flowing from the Human Microbiome Project can transform the diagnosis and treatment of common lung diseases.
Collapse
Affiliation(s)
- William O C M Cookson
- Asmarley Centre for Genomic Medicine, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London SW3 6LY, UK
| | - Michael J Cox
- Asmarley Centre for Genomic Medicine, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London SW3 6LY, UK
| | - Miriam F Moffatt
- Asmarley Centre for Genomic Medicine, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London SW3 6LY, UK
| |
Collapse
|
24
|
Gupta PV, Nirwane AM, Belubbi T, Nagarsenker MS. Pulmonary delivery of synergistic combination of fluoroquinolone antibiotic complemented with proteolytic enzyme: A novel antimicrobial and antibiofilm strategy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017. [DOI: 10.1016/j.nano.2017.06.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
25
|
The development of a single-use, capsule-free multi-breath tobramycin dry powder inhaler for the treatment of cystic fibrosis. Int J Pharm 2016; 514:392-398. [DOI: 10.1016/j.ijpharm.2016.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 03/30/2016] [Accepted: 04/04/2016] [Indexed: 11/17/2022]
|
26
|
Gaspar MC, Grégoire N, Sousa JJ, Pais AA, Lamarche I, Gobin P, Olivier JC, Marchand S, Couet W. Pulmonary pharmacokinetics of levofloxacin in rats after aerosolization of immediate-release chitosan or sustained-release PLGA microspheres. Eur J Pharm Sci 2016; 93:184-91. [DOI: 10.1016/j.ejps.2016.08.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/21/2016] [Accepted: 08/11/2016] [Indexed: 01/08/2023]
|
27
|
Zhou QT, Loh ZH, Yu J, Sun SP, Gengenbach T, Denman JA, Li J, Chan HK. How Much Surface Coating of Hydrophobic Azithromycin Is Sufficient to Prevent Moisture-Induced Decrease in Aerosolisation of Hygroscopic Amorphous Colistin Powder? AAPS J 2016; 18:1213-1224. [PMID: 27255350 PMCID: PMC5308613 DOI: 10.1208/s12248-016-9934-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/12/2016] [Indexed: 12/30/2022] Open
Abstract
Aerosolisation performance of hygroscopic particles of colistin could be compromised at elevated humidity due to increased capillary forces. Co-spray drying colistin with a hydrophobic drug is known to provide a protective coating on the composite particle surfaces against moisture-induced reduction in aerosolisation performance; however, the effects of component ratio on surface coating quality and powder aerosolisation at elevated relative humidities are unknown. In this study, we have systematically examined the effects of mass ratio of hydrophobic azithromycin on surface coating quality and aerosolisation performance of the co-spray dried composite particles. Four combination formulations with varying drug ratios were prepared by co-spray drying drug solutions. Both of the drugs in each combination formulation had similar in vitro deposition profiles, suggesting that each composite particle comprises two drugs in the designed mass ratio, which is supported by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) data. XPS and ToF-SIMS measurements also revealed that 50% by weight (or 35% by molecular fraction) of azithromycin in the formulation provided a near complete coating of 96.5% (molar fraction) on the composite particle surface, which is sufficient to prevent moisture-induced reduction in fine particle fraction (FPF)recovered and FPFemitted. Higher azithromycin content did not increase coating coverage, while contents of azithromycin lower than 20% w/w did not totally prevent the negative effects of humidity on aerosolisation performance. This study has highlighted that a critical amount of azithromycin is required to sufficiently coat the colistin particles for short-term protection against moisture.
Collapse
Affiliation(s)
- Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana, 47907-2091, USA
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Zhi Hui Loh
- Technical Development, Glaxo Wellcome Manufacturing Pte Ltd, 1, Pioneer Sector 1, Jurong, Singapore, 628413, Singapore
| | - Jiaqi Yu
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Si-Ping Sun
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Thomas Gengenbach
- CSIRO Manufacturing, Bayview Avenue, Clayton, Victoria, 3168, Australia
| | - John A Denman
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
| | - Jian Li
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, 19 Innovation Walk, Melbourne, Victoria, 3800, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
28
|
Thomas N, Thorn C, Richter K, Thierry B, Prestidge C. Efficacy of Poly-Lactic-Co-Glycolic Acid Micro- and Nanoparticles of Ciprofloxacin Against Bacterial Biofilms. J Pharm Sci 2016; 105:3115-3122. [PMID: 27519649 DOI: 10.1016/j.xphs.2016.06.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/27/2016] [Accepted: 06/24/2016] [Indexed: 12/13/2022]
Abstract
Bacterial biofilms are associated with a number of recurring infectious diseases and are a major cause for antibiotic resistance. Despite the broad use of polymeric microparticles and nanoparticles in biomedical research, it is not clear which particle size is more effective against biofilms. The purpose of this study was to evaluate the efficacy of sustained release poly-lactic-co-glycolic acid (PLGA) micro- and nanoparticles containing ciprofloxacin against biofilms of Staphylococcus aureus and Pseudomonas aeruginosa. The PLGA particles were prepared by the double emulsion solvent evaporation method. The resulting microparticles (12 μm) and nanoparticles (300 nm) contained drug loads of 7.3% and 4.5% (wt/wt) ciprofloxacin, respectively. Drug release was complete within 1 week following comparable release profiles for both particle sizes. Micro- and nanoparticles demonstrated a similar in vitro antibiofilm performance against mature P aeruginosa and S aureus with marked differences between the 2 strains. The sustained release of ciprofloxacin from micro- and nanoparticles over 6 days was equally effective as the continuous treatment with ciprofloxacin solution over the same period resulting in the eradication of culturable S aureus suggesting that reformulation of ciprofloxacin as sustained release PLGA micro- and nanoparticles might be valuable formulation approaches for the treatment of biofilms.
Collapse
Affiliation(s)
- Nicky Thomas
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia; Basil Hetzel Institute for Translational Health Research, Woodville South, SA 5011, Australia.
| | - Chelsea Thorn
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Katharina Richter
- Basil Hetzel Institute for Translational Health Research, Woodville South, SA 5011, Australia; Department of Otolaryngology Head and Neck Surgery, University of Adelaide, Adelaide, SA 5000, Australia
| | - Benjamin Thierry
- Future Industries Institute, University of South Australia, Mawson Lakes, Adelaide, SA 5095, Australia
| | - Clive Prestidge
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia
| |
Collapse
|
29
|
Lee SH, Teo J, Heng D, Ng WK, Zhao Y, Tan RB. Tailored Antibiotic Combination Powders for Inhaled Rotational Antibiotic Therapy. J Pharm Sci 2016; 105:1501-12. [DOI: 10.1016/j.xphs.2016.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/28/2016] [Accepted: 02/05/2016] [Indexed: 12/28/2022]
|
30
|
Stigliani M, Haghi M, Russo P, Young PM, Traini D. Antibiotic transport across bronchial epithelial cells: Effects of molecular weight, LogP and apparent permeability. Eur J Pharm Sci 2016; 83:45-51. [DOI: 10.1016/j.ejps.2015.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 09/24/2015] [Accepted: 12/07/2015] [Indexed: 10/22/2022]
|
31
|
Magalhães AP, Azevedo NF, Pereira MO, Lopes SP. The cystic fibrosis microbiome in an ecological perspective and its impact in antibiotic therapy. Appl Microbiol Biotechnol 2015; 100:1163-1181. [PMID: 26637419 DOI: 10.1007/s00253-015-7177-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/11/2015] [Accepted: 11/13/2015] [Indexed: 01/24/2023]
Abstract
The recent focus on the cystic fibrosis (CF) complex microbiome has led to the recognition that the microbes can interact between them and with the host immune system, affecting the disease progression and treatment routes. Although the main focus remains on the interactions between traditional pathogens, growing evidence supports the contribution and the role of emergent species. Understanding the mechanisms and the biological effects involved in polymicrobial interactions may be the key to improve effective therapies and also to define new strategies for disease control. This review focuses on the interactions between microbe-microbe and host-microbe, from an ecological point of view, discussing their impact on CF disease progression. There are increasing indications that these interactions impact the success of antimicrobial therapy. Consequently, a new approach where therapy is personalized to patients by taking into account their individual CF microbiome is suggested.
Collapse
Affiliation(s)
- Andreia P Magalhães
- CEB-Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Nuno F Azevedo
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465, Porto, Portugal
| | - Maria O Pereira
- CEB-Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Susana P Lopes
- CEB-Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
32
|
Kwok PCL, Grabarek A, Chow MYT, Lan Y, Li JCW, Casettari L, Mason AJ, Lam JKW. Inhalable spray-dried formulation of D-LAK antimicrobial peptides targeting tuberculosis. Int J Pharm 2015; 491:367-74. [PMID: 26151107 DOI: 10.1016/j.ijpharm.2015.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/29/2015] [Accepted: 07/01/2015] [Indexed: 10/23/2022]
Abstract
Tuberculosis (TB) is a global disease that is becoming more difficult to treat due to the emergence of multidrug resistant (MDR) Mycobacterium tuberculosis. Inhalable antimicrobial peptides (AMPs) are potentially useful alternative anti-TB agents because they can overcome resistance against classical antibiotics, reduce systemic adverse effects, and achieve local targeting. The aims of the current study were to produce inhalable dry powders containing d-enantiomeric AMPs (D-LAK120-HP13 and D-LAK120-A) and evaluate their solid state properties, aerosol performance, and structural conformation. These two peptides were spray dried with mannitol as a bulking agent at three mass ratios (peptide:mannitol 1:99, 1:49, and 1:24) from aqueous solutions. The resultant particles were spherical, with those containing D-LAK120-HP13 being more corrugated than those with D-LAK120-A. The median volumetric diameter of the particles was approximately 3μm. The residual water content of all powders were <3% w/w and crystalline, due to the low hygroscopicity and crystallinity of mannitol, respectively. The mannitol changed from a mixture of alpha- and beta-forms to delta form with an increasing proportion of AMP in the formulation. The emitted fraction and fine particle fraction of the powders when dispersed from an Osmohaler(®) at 90L/min were about 80% and 50-60% of the loaded dose, respectively, indicating good aerosol performance. Circular dichroism data showed that D-LAK120-HP13 dissolved in Tris buffer at pH 7.15 was of a disordered conformation. In contrast, D-LAK120-A showed greater α-helical conformation. Since the conformations of the AMPs were comparable to the controls (unprocessed peptides), the spray drying process did not substantially affect their secondary structures. In conclusion, spray dried powders containing d-enantiomeric AMPs with preserved secondary molecular structures and good aerosol performance could be successfully produced. They may potentially be used for treating MDR-TB when delivered by inhalation.
Collapse
Affiliation(s)
- Philip Chi Lip Kwok
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, 21 Sassoon Road, Hong Kong
| | - Adam Grabarek
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N A1X, United Kingdom
| | - Michael Y T Chow
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, 21 Sassoon Road, Hong Kong
| | - Yun Lan
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, 21 Sassoon Road, Hong Kong
| | - Johnny C W Li
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, 21 Sassoon Road, Hong Kong
| | - Luca Casettari
- Department of Biomolecular Sciences, University of Urbino, Piazza Rinascimento, 6, Urbino 61029, Italy
| | - A James Mason
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Jenny K W Lam
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, 21 Sassoon Road, Hong Kong.
| |
Collapse
|
33
|
Zhu B, Young PM, Ong HX, Crapper J, Flodin C, Qiao EL, Phillips G, Traini D. Tuning Aerosol Performance Using the Multibreath Orbital® Dry Powder Inhaler Device: Controlling Delivery Parameters and Aerosol Performance via Modification of Puck Orifice Geometry. J Pharm Sci 2015; 104:2169-76. [DOI: 10.1002/jps.24458] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 03/25/2015] [Accepted: 03/31/2015] [Indexed: 11/07/2022]
|
34
|
Mukker JK, Singh RSP, Derendorf H. Pharmacokinetic and pharmacodynamic implications in inhalable antimicrobial therapy. Adv Drug Deliv Rev 2015; 85:57-64. [PMID: 25770775 DOI: 10.1016/j.addr.2015.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 02/14/2015] [Accepted: 03/04/2015] [Indexed: 10/23/2022]
Abstract
Inhaled antimicrobials provide a promising alternative to the systemically delivered drugs for the treatment of acute and chronic lung infections. The delivery of antimicrobials via inhalation route decreases the systemic exposure while increasing the local concentration in the lungs, enabling the use of antimicrobials with severe systemic side effects. The inhalation route of administration has several challenges in pharmacokinetic (PK) and pharmacodynamic (PD) assessments. This review discusses various issues that need to be considered during study, data analysis, and interpretation of PK and PD of inhaled antimicrobials. Advancements overcoming the challenges are also discussed.
Collapse
|
35
|
Zhou QT, Leung SSY, Tang P, Parumasivam T, Loh ZH, Chan HK. Inhaled formulations and pulmonary drug delivery systems for respiratory infections. Adv Drug Deliv Rev 2015; 85:83-99. [PMID: 25451137 DOI: 10.1016/j.addr.2014.10.022] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/15/2014] [Accepted: 10/18/2014] [Indexed: 11/16/2022]
Abstract
Respiratory infections represent a major global health problem. They are often treated by parenteral administrations of antimicrobials. Unfortunately, systemic therapies of high-dose antimicrobials can lead to severe adverse effects and this calls for a need to develop inhaled formulations that enable targeted drug delivery to the airways with minimal systemic drug exposure. Recent technological advances facilitate the development of inhaled anti-microbial therapies. The newer mesh nebulisers have achieved minimal drug residue, higher aerosolisation efficiencies and rapid administration compared to traditional jet nebulisers. Novel particle engineering and intelligent device design also make dry powder inhalers appealing for the delivery of high-dose antibiotics. In view of the fact that no new antibiotic entities against multi-drug resistant bacteria have come close to commercialisation, advanced formulation strategies are in high demand for combating respiratory 'super bugs'.
Collapse
Affiliation(s)
- Qi Tony Zhou
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sharon Shui Yee Leung
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Patricia Tang
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Thaigarajan Parumasivam
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Zhi Hui Loh
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
36
|
Lee SH, Teo J, Heng D, Zhao Y, Ng WK, Chan HK, Tan LT, Tan RB. A novel inhaled multi-pronged attack against respiratory bacteria. Eur J Pharm Sci 2015; 70:37-44. [DOI: 10.1016/j.ejps.2015.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/26/2014] [Accepted: 01/10/2015] [Indexed: 01/01/2023]
|
37
|
Siekmeier R, Hofmann T, Scheuch G. Inhalation of macrolides: a novel approach to treatment of pulmonary infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 839:13-24. [PMID: 25252902 DOI: 10.1007/5584_2014_50] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Systemic antibiotic treatment is established for many pulmonary diseases, e.g., cystic fibrosis (CF), bronchiectasis and chronic obstructive pulmonary disease (COPD) where recurrent bacterial infections cause a progressive decline in lung function. In the last decades inhalative administration of antibiotics was introduced into clinical routine, especially tobramycin, colistin, and aztreonam for treatment of CF and bronchiectasis. Even though they are important in systemic treatment of these diseases due to their antimicrobial spectrum and anti-inflammatory and immunomodulatory properties, macrolides (e.g., azithromycin, clarithromycin, erythromycin, and telithromycin) up to now are not administered by inhalation. The number of in vitro aerosol studies and in vivo inhalation studies is also sparse. We analyzed publications on preparation and administration of macrolide aerosols available in PUBMED focusing on recent publications. Studies with solutions and dry powder aerosols were published. Publications investigating physicochemical properties of aerosols demonstrated that macrolide aerosols may serve for inhalation and will achieve sufficient lung deposition and that the bitter taste can be masked. In vivo studies in rats demonstrated high concentrations and areas under the curve sufficient for antimicrobial treatment in alveolar macrophages and epithelial lining fluid without lung toxicity. The obtained data demonstrate the feasibility of macrolide inhalation which should be further investigated.
Collapse
Affiliation(s)
- R Siekmeier
- Drug Regulatory Affairs, Pharmaceutical Institute, University Bonn, Bonn, Germany,
| | | | | |
Collapse
|
38
|
Liang W, Chow MYT, Lau PN, Zhou QT, Kwok PCL, Leung GPH, Mason AJ, Chan HK, Poon LLM, Lam JKW. Inhalable dry powder formulations of siRNA and pH-responsive peptides with antiviral activity against H1N1 influenza virus. Mol Pharm 2015; 12:910-21. [PMID: 25599953 DOI: 10.1021/mp500745v] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pulmonary delivery of siRNA has considerable therapeutic potential for treating viral respiratory infectious diseases including influenza. By introducing siRNA that targets the conserved region of viral genes encoding nucleocapsid protein (NP), viral mRNAs can be degraded and viral replication can be inhibited in mammalian cells. To enable siRNA to be used as an antiviral agent, the nucleic acid delivery barrier must be overcome. Effective local delivery of siRNA to lung tissues is required to reduce the therapeutic dose and minimize systemic adverse effects. To develop a formulation suited for clinical application, complexes of pH-responsive peptides, containing either histidine or 2,3-diaminopropionic acid (Dap), and siRNA were prepared into dry powders by spray drying with mannitol, which was used as a bulking agent. The spray-dried (SD) powders were characterized and found to be suitable for inhalation with good stability, preserving the integrity of the siRNA as well as the biological and antiviral activities. The formulations mediated highly effective in vitro delivery of antiviral siRNA into mammalian lung epithelial cells, leading to significant inhibition of viral replication when the transfected cells were subsequently challenged with H1N1 influenza virus. SD siRNA powders containing pH-responsive peptides are a promising inhalable formulation to deliver antiviral siRNA against influenza and are readily adapted for the treatment of other respiratory diseases.
Collapse
Affiliation(s)
- Wanling Liang
- Department of Pharmacology & Pharmacy, ‡School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong , 21 Sassoon Road, Pokfulam, Hong Kong
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Zhou Q(T, Sun SP, Chan JGY, Wang P, Barraud N, Rice SA, Wang J, Li J, Chan HK. Novel Inhaled Combination Powder Containing Amorphous Colistin and Crystalline Rifapentine with Enhanced Antimicrobial Activities against Planktonic Cells and Biofilm of Pseudomonas aeruginosa for Respiratory Infections. Mol Pharm 2014; 12:2594-603. [DOI: 10.1021/mp500586p] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Qi (Tony) Zhou
- Advanced
Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Si-Ping Sun
- Advanced
Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - John Gar Yan Chan
- Advanced
Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
- JHL Biotech, Inc., Zhubei City, Hsinchu County 302, Taiwan, R.O.C
| | - Ping Wang
- Advanced
Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Nicolas Barraud
- Centre
for Marine Bio-Innovation and School of Biotechnology and Biomolecular
Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Scott A. Rice
- Centre
for Marine Bio-Innovation and School of Biotechnology and Biomolecular
Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
- Singapore
Centre on Environmental Life Sciences Engineering, and the School
of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jiping Wang
- Drug
Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Jian Li
- Drug
Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Hak-Kim Chan
- Advanced
Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
40
|
Xiong MH, Bao Y, Yang XZ, Zhu YH, Wang J. Delivery of antibiotics with polymeric particles. Adv Drug Deliv Rev 2014; 78:63-76. [PMID: 24548540 DOI: 10.1016/j.addr.2014.02.002] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 01/29/2014] [Accepted: 02/07/2014] [Indexed: 12/29/2022]
Abstract
Despite the wide use of antibiotics, bacterial infection is still one of the leading causes of hospitalization and mortality. The clinical failure of antibiotic therapy is linked with low bioavailability, poor penetration to bacterial infection sites, and the side effects of antibiotics, as well as the antibiotic resistance properties of bacteria. Antibiotics encapsulated in nanoparticles or microparticles made up of a biodegradable polymer have shown great potential in replacing the administration of antibiotics in their "free" form. Polymeric particles provide protection to antibiotics against environmental deactivation and alter antibiotic pharmacokinetics and biodistribution. Polymeric particles can overcome tissue and cellular barriers and deliver antibiotics into very dense tissues and inaccessible target cells. Polymeric particles can be modified to target or respond to particular tissues, cells, and even bacteria, and thereby facilitate the selective concentration or release of the antibiotic at infection sites, respectively. Thus, the delivery of antibiotics with polymeric particles augments the level of the bioactive drug at the site of infection while reducing the dosage and the dosing frequency. The end results are improved therapeutic effects as well as decreased "pill burden" and drug side effects in patients. The main objective of this review is to analyze recent advances and current perspectives in the use of polymeric antibiotic delivery systems in the treatment of bacterial infection.
Collapse
Affiliation(s)
- Meng-Hua Xiong
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yan Bao
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xian-Zhu Yang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yan-Hua Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jun Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China; High Magnetic Field Laboratory of CAS, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
41
|
de Boer AH, Hagedoorn P. The role of disposable inhalers in pulmonary drug delivery. Expert Opin Drug Deliv 2014; 12:143-57. [DOI: 10.1517/17425247.2014.952626] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
Merchant Z, Taylor KMG, Stapleton P, Razak SA, Kunda N, Alfagih I, Sheikh K, Saleem IY, Somavarapu S. Engineering hydrophobically modified chitosan for enhancing the dispersion of respirable microparticles of levofloxacin. Eur J Pharm Biopharm 2014; 88:816-29. [PMID: 25305582 DOI: 10.1016/j.ejpb.2014.09.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 09/15/2014] [Accepted: 09/18/2014] [Indexed: 01/05/2023]
Abstract
The potential of amphiphilic chitosan formed by grafting octanoyl chains on the chitosan backbone for pulmonary delivery of levofloxacin has been studied. The success of polymer synthesis was confirmed using FT-IR and NMR, whilst antimicrobial activity was assessed against Pseudomonas aeruginosa. Highly dispersible dry powders for delivery as aerosols were prepared with different amounts of chitosan and octanoyl chitosan to study the effect of hydrophobic modification and varying concentration of polymer on aerosolization of drug. Powders were prepared by spray-drying from an aqueous solution containing levofloxacin and chitosan/amphiphilic octanoyl chitosan. l-leucine was also used to assess its effect on aerosolization. Following spray-drying, the resultant powders were characterized using scanning electron microscopy, laser diffraction, dynamic light scattering, HPLC, differential scanning calorimetry, thermogravimetric analysis and X-ray powder diffraction. The in vitro aerosolization profile was determined using a Next Generation Impactor, whilst in vitro antimicrobial assessment was performed using MIC assay. Microparticles of chitosan have the property of mucoadhesion leading to potential increased residence time in the pulmonary mucus, making it important to test the toxicity of these formulations. In-vitro cytotoxicity evaluation using MTT assay was performed on A549 cell line to determine the toxicity of formulations and hence feasibility of use. The MTT assay confirmed that the polymers and the formulations were non-cytotoxic. Hydrophobically modifying chitosan showed significantly lower MIC (4-fold) than the commercial chitosan against P. aeruginosa. The powders generated were of suitable aerodynamic size for inhalation having a mass median aerodynamic diameter less than 4.5μm for formulations containing octanoyl chitosan. These highly dispersible powders have minimal moisture adsorption and hence an emitted dose of more than 90% and a fine particle fraction (FPF) of 52%. Powders with non-modified chitosan showed lower dispersibility, with an emitted dose of 72% and FPF of 20%, as a result of high moisture adsorption onto the chitosan matrix leading to cohesiveness and subsequently decreased dispersibility.
Collapse
Affiliation(s)
- Zahra Merchant
- University College London School of Pharmacy, London, United Kingdom
| | - Kevin M G Taylor
- University College London School of Pharmacy, London, United Kingdom
| | - Paul Stapleton
- University College London School of Pharmacy, London, United Kingdom
| | - Sana A Razak
- University College London School of Pharmacy, London, United Kingdom
| | - Nitesh Kunda
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Iman Alfagih
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Department of Pharmaceutics, King Saud University, Riyadh, Saudi Arabia
| | - Khalid Sheikh
- University College London School of Pharmacy, London, United Kingdom
| | - Imran Y Saleem
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | | |
Collapse
|
43
|
Hoppentocht M, Hoste C, Hagedoorn P, Frijlink H, de Boer A. In vitro evaluation of the DP-4M PennCentury™ insufflator. Eur J Pharm Biopharm 2014; 88:153-9. [DOI: 10.1016/j.ejpb.2014.06.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/20/2014] [Accepted: 06/23/2014] [Indexed: 11/24/2022]
|
44
|
Affiliation(s)
- Nathalie Wauthoz
- Laboratory of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy; Université Libre de Bruxelles (ULB); Brussels Belgium
| | - Karim Amighi
- Laboratory of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy; Université Libre de Bruxelles (ULB); Brussels Belgium
| |
Collapse
|
45
|
Lee SH, Teo J, Heng D, Zhao Y, Wai Kiong N, Chan HK, Tan RB. Steroid-Decorated Antibiotic Microparticles for Inhaled Anti-Infective Therapy. J Pharm Sci 2014; 103:1115-25. [DOI: 10.1002/jps.23874] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/23/2013] [Accepted: 01/03/2014] [Indexed: 11/06/2022]
|
46
|
Young PM, Crapper J, Philips G, Sharma K, Chan HK, Traini D. Overcoming Dose Limitations Using the Orbital® Multi-Breath Dry Powder Inhaler. J Aerosol Med Pulm Drug Deliv 2014; 27:138-47. [DOI: 10.1089/jamp.2013.1080] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Paul M. Young
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, The University of Sydney, NSW 2037, Australia
| | - John Crapper
- Pharmaxis Ltd., Frenchs Forest, Sydney, NSW 2086, Australia
| | - Gary Philips
- Pharmaxis Ltd., Frenchs Forest, Sydney, NSW 2086, Australia
| | - Ketan Sharma
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, The University of Sydney, NSW 2037, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Faculty of Pharmacy (A15), University of Sydney, Sydney, NSW 2006, Australia
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, The University of Sydney, NSW 2037, Australia
| |
Collapse
|
47
|
Hoppentocht M, Hagedoorn P, Frijlink H, de Boer A. Developments and strategies for inhaled antibiotic drugs in tuberculosis therapy: A critical evaluation. Eur J Pharm Biopharm 2014; 86:23-30. [DOI: 10.1016/j.ejpb.2013.10.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 10/21/2013] [Accepted: 10/28/2013] [Indexed: 01/17/2023]
|
48
|
Pomázi A, Ambrus R, Szabó-Révész P. Physicochemical stability and aerosolization performance of mannitol-based microcomposites. J Drug Deliv Sci Technol 2014. [DOI: 10.1016/s1773-2247(14)50080-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Zhou QT, Gengenbach T, Denman JA, Yu HH, Li J, Chan HK. Synergistic antibiotic combination powders of colistin and rifampicin provide high aerosolization efficiency and moisture protection. AAPS JOURNAL 2013; 16:37-47. [PMID: 24129586 DOI: 10.1208/s12248-013-9537-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 09/17/2013] [Indexed: 11/30/2022]
Abstract
For many respiratory infections caused by multidrug-resistant Gram-negative bacteria, colistin is the only effective antibiotic despite its nephrotoxicity. A novel inhaled combination formulation of colistin with a synergistic antimicrobial component of rifampicin was prepared via co-spray drying, aiming to deliver the drug directly to the respiratory tract and minimize drug resistance and adverse effects. Synergistic antibacterial activity against Acinetobacter baumannii was demonstrated for the combination formulation with high emitted doses (96%) and fine particle fraction total (FPFtotal; 92%). Storage of the spray-dried colistin alone formulation in the elevated relative humidity (RH) of 75% resulted in a substantial deterioration in the aerosolization performance because the amorphous colistin powders absorbed significant amount of water up to 30% by weight. In contrast, the FPFtotal values of the combination formulation stored at various RH were unchanged, which was similar to the aerosolization behavior of the spray-dried rifampicin-alone formulation. Advanced surface chemistry measurements by XPS and ToF-SIMS demonstrated a dominance of rifampicin on the combination particle surfaces, which contributed to the moisture protection at the elevated RH. This study shows a novel inhalable powder formulation of antibiotic combination with the combined beneficial properties of synergistic antibacterial activity, high aerosolization efficiency, and moisture protection.
Collapse
Affiliation(s)
- Qi Tony Zhou
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| | | | | | | | | | | |
Collapse
|
50
|
Shahbazi Niaz M, Traini D, Young PM, Ghadiri M, Rohanizadeh R. Investigation into physical–chemical variables affecting the manufacture and dissolution of wet-milled clarithromycin nanoparticles. Pharm Dev Technol 2013; 19:911-21. [DOI: 10.3109/10837450.2013.840844] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|