1
|
Bakhtiarizade MR, Heidari M, Ghanatghestani AHM. Comprehensive circular RNA profiling in various sheep tissues. Sci Rep 2024; 14:26238. [PMID: 39482374 PMCID: PMC11527890 DOI: 10.1038/s41598-024-76940-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/17/2024] [Indexed: 11/03/2024] Open
Abstract
Despite the scientific relevance of circular RNAs (circRNAs), the study of these RNAs in non-model organisms, especially in sheep, is still in its infancy. On the other hand, while some studies have focused on sheep circRNA identification in a limited number of tissues, there is a lack of comprehensive analysis that profile circRNA expression patterns across the tissues not yet investigated. In this study, 61 public RNA sequencing datasets from 12 different tissues were uniformly analyzed to identify circRNAs, profile their expression and investigate their various characteristics. We reported for the first time a circRNA expression landscape with functional annotation in sheep tissues not yet investigated including hippocampus, BonMarrowMacrophage, left-ventricle, thymus, ileum, reticulum and 23-day-embryo. A stringent computational pipeline was employed and 8919 exon-derived circRNAs with high confidence were identified, including 88 novel circRNAs. Tissue-specificity analysis revealed that 3059 circRNAs were tissue-specific, which were also more specific to the tissues than linear RNAs. The highest number of tissue-specific circRNAs was found in kidney, hippocampus and thymus, respectively. Co-expression analysis revealed that expression of circRNAs may not be affected by their host genes. While most of the host genes produced more than one isoform, only one isoform had dominant expression across the tissues. The host genes of the tissue-specific circRNAs were significantly enriched in biological/pathways terms linked to the important functions of their corresponding tissues, suggesting potential roles of circRNAs in modulating physiological activity of those tissues. Interestingly, functional terms related to the regulation and various signaling pathways were significantly enriched in all tissues, suggesting some common regulatory mechanisms of circRNAs to modulate the physiological functions of tissues. Finding of the present study provide a valuable resource for depicting the complexity of circRNAs expression across tissues of sheep, which can be useful for the field of sheep genomic and veterinary research.
Collapse
Affiliation(s)
| | - Maryam Heidari
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | | |
Collapse
|
2
|
Mardinoglu A, Palsson BØ. Genome-scale models in human metabologenomics. Nat Rev Genet 2024:10.1038/s41576-024-00768-0. [PMID: 39300314 DOI: 10.1038/s41576-024-00768-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/22/2024]
Abstract
Metabologenomics integrates metabolomics with other omics data types to comprehensively study the genetic and environmental factors that influence metabolism. These multi-omics data can be incorporated into genome-scale metabolic models (GEMs), which are highly curated knowledge bases that explicitly account for genes, transcripts, proteins and metabolites. By including all known biochemical reactions catalysed by enzymes and transporters encoded in the human genome, GEMs analyse and predict the behaviour of complex metabolic networks. Continued advancements to the scale and scope of GEMs - from cells and tissues to microbiomes and the whole body - have helped to design effective treatments and develop better diagnostic tools for metabolic diseases. Furthermore, increasing amounts of multi-omics data are incorporated into GEMs to better identify the underlying mechanisms, biomarkers and potential drug targets of metabolic diseases.
Collapse
Affiliation(s)
- Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK.
| | - Bernhard Ø Palsson
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
- Department of Paediatrics, University of California, San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA.
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
3
|
Sugiyama K, Shimano H, Takahashi M, Shimura Y, Shimura A, Furuya T, Tomabechi R, Shirasaka Y, Higuchi K, Kishimoto H, Inoue K. The Use of Carboxyfluorescein Reveals the Transport Function of MCT6/SLC16A5 Associated with CD147 as a Chloride-Sensitive Organic Anion Transporter in Mammalian Cells. J Pharm Sci 2024; 113:1113-1120. [PMID: 38160712 DOI: 10.1016/j.xphs.2023.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/25/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Oral drug absorption involves drug permeation across the apical and basolateral membranes of enterocytes. Although transporters mediating the influx of anionic drugs in the apical membranes have been identified, transporters responsible for efflux in the basolateral membranes remain unclear. Monocarboxylate transporter 6 (MCT6/SLC16A5) has been reported to localize to the apical and basolateral membranes of human enterocytes and to transport organic anions such as bumetanide and nateglinide in the Xenopus oocyte expression system; however, its transport functions have not been elucidated in detail. In this study, we characterized the function of MCT6 expressed in HEK293T cells and explored fluorescent probes to more easily evaluate MCT6 function. The results illustrated that MCT6 interacts with CD147 to localize at the plasma membrane. When the uptake of various fluorescein derivatives was examined in NaCl-free uptake buffer (pH 5.5), the uptake of 5-carboxyfluorescein (5-CF) was significantly greater in MCT6 and CD147-expressing cells. MCT6-mediated 5-CF uptake was saturable with a Km of 1.07 mM and inhibited by several substrates/inhibitors of organic anion transporters and extracellular Cl ion with an IC50 of 53.7 mM. These results suggest that MCT6 is a chloride-sensitive organic anion transporter that can be characterized using 5-CF as a fluorescent probe.
Collapse
Affiliation(s)
- Koki Sugiyama
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hiroe Shimano
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Masaki Takahashi
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yuta Shimura
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Asuka Shimura
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Takahito Furuya
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Ryuto Tomabechi
- Laboratory of Pharmaceutics, Kitasato University School of Pharmacy, Tokyo, Japan
| | - Yoshiyuki Shirasaka
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Kei Higuchi
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hisanao Kishimoto
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Katsuhisa Inoue
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.
| |
Collapse
|
4
|
Muroňová J, Kherraf ZE, Giordani E, Lambert E, Eckert S, Cazin C, Amiri-Yekta A, Court M, Chevalier G, Martinez G, Neirijnck Y, Kühne F, Wehrli L, Klena N, Hamel V, De Macedo L, Escoffier J, Guichard P, Coutton C, Mustapha SFB, Kharouf M, Bouin AP, Zouari R, Thierry-Mieg N, Nef S, Geimer S, Loeuillet C, Ray PF, Arnoult C. Lack of CCDC146, a ubiquitous centriole and microtubule-associated protein, leads to non-syndromic male infertility in human and mouse. eLife 2024; 12:RP86845. [PMID: 38441556 PMCID: PMC10942651 DOI: 10.7554/elife.86845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
From a cohort of 167 infertile patients suffering from multiple morphological abnormalities of the flagellum (MMAF), pathogenic bi-allelic mutations were identified in the CCDC146 gene. In somatic cells, CCDC146 is located at the centrosome and at multiple microtubule-related organelles during mitotic division, suggesting that it is a microtubule-associated protein (MAP). To decipher the molecular pathogenesis of infertility associated with CCDC146 mutations, a Ccdc146 knock-out (KO) mouse line was created. KO male mice were infertile, and sperm exhibited a phenotype identical to CCDC146 mutated patients. CCDC146 expression starts during late spermiogenesis. In the spermatozoon, the protein is conserved but is not localized to centrioles, unlike in somatic cells, rather it is present in the axoneme at the level of microtubule doublets. Expansion microscopy associated with the use of the detergent sarkosyl to solubilize microtubule doublets suggests that the protein may be a microtubule inner protein (MIP). At the subcellular level, the absence of CCDC146 impacted all microtubule-based organelles such as the manchette, the head-tail coupling apparatus (HTCA), and the axoneme. Through this study, a new genetic cause of infertility and a new factor in the formation and/or structure of the sperm axoneme were characterized.
Collapse
Affiliation(s)
- Jana Muroňová
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
| | - Zine Eddine Kherraf
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
- UM GI-DPI, CHU Grenoble AlpesGrenobleFrance
| | - Elsa Giordani
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
| | - Emeline Lambert
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
| | - Simon Eckert
- Cell Biology/ Electron Microscopy, University of BayreuthBayreuthGermany
| | - Caroline Cazin
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
- UM GI-DPI, CHU Grenoble AlpesGrenobleFrance
| | - Amir Amiri-Yekta
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECRTehranIslamic Republic of Iran
| | - Magali Court
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
| | - Geneviève Chevalier
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
| | - Guillaume Martinez
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
- UM de Génétique Chromosomique, Hôpital Couple-Enfant, CHU Grenoble AlpesGrenobleFrance
| | - Yasmine Neirijnck
- Department of Genetic Medicine and Development, University of Geneva Medical SchoolGenevaSwitzerland
| | - Francoise Kühne
- Department of Genetic Medicine and Development, University of Geneva Medical SchoolGenevaSwitzerland
| | - Lydia Wehrli
- Department of Genetic Medicine and Development, University of Geneva Medical SchoolGenevaSwitzerland
| | - Nikolai Klena
- University of Geneva, Department of Molecular and Cellular Biology, Sciences IIIGenevaSwitzerland
| | - Virginie Hamel
- University of Geneva, Department of Molecular and Cellular Biology, Sciences IIIGenevaSwitzerland
| | - Lisa De Macedo
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
| | - Jessica Escoffier
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
| | - Paul Guichard
- University of Geneva, Department of Molecular and Cellular Biology, Sciences IIIGenevaSwitzerland
| | - Charles Coutton
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
- UM de Génétique Chromosomique, Hôpital Couple-Enfant, CHU Grenoble AlpesGrenobleFrance
| | | | - Mahmoud Kharouf
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain NordTunisTunisia
| | - Anne-Pacale Bouin
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
| | - Raoudha Zouari
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain NordTunisTunisia
| | - Nicolas Thierry-Mieg
- Laboratoire TIMC/MAGe, CNRS UMR 5525, Pavillon Taillefer, Faculté de MedecineLa TroncheFrance
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva Medical SchoolGenevaSwitzerland
| | - Stefan Geimer
- Cell Biology/ Electron Microscopy, University of BayreuthBayreuthGermany
| | - Corinne Loeuillet
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
| | - Pierre F Ray
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
- UM GI-DPI, CHU Grenoble AlpesGrenobleFrance
| | - Christophe Arnoult
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
| |
Collapse
|
5
|
Shimohata A, Rai D, Akagi T, Usui S, Ogiwara I, Kaneda M. The intracellular C-terminal domain of mGluR6 contains ER retention motifs. Mol Cell Neurosci 2023; 126:103875. [PMID: 37352898 DOI: 10.1016/j.mcn.2023.103875] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023] Open
Abstract
Metabotropic glutamate receptor 6 (mGluR6) predominantly localizes to the postsynaptic sites of retinal ON-bipolar cells, at which it recognizes glutamate released from photoreceptors. The C-terminal domain (CTD) of mGluR6 contains a cluster of basic amino acids resembling motifs for endoplasmic reticulum (ER) retention. We herein investigated whether these basic residues are involved in regulating the subcellular localization of mGluR6 in 293T cells expressing mGluR6 CTD mutants using immunocytochemistry, immunoprecipitation, and flow cytometry. We showed that full-length mGluR6 localized to the ER and cell surface, whereas mGluR6 mutants with 15- and 20-amino acid deletions from the C terminus localized to the ER, but were deficient at the cell surface. We also demonstrated that the cell surface deficiency of mGluR6 mutants was rescued by introducing an alanine substitution at basic residues within the CTD. The surface-deficient mGluR6 mutant still did not localize to the cell surface and was retained in the ER when co-expressed with surface-expressible constructs, including full-length mGluR6, even though surface-deficient and surface-expressible constructs formed heteromeric complexes. The co-expression of the surface-deficient mGluR6 mutant reduced the surface levels of surface-expressible constructs. These results indicate that basic residues in the mGluR6 CTD served as ER retention signals. We suggest that exposed ER retention motifs in the aberrant assembly containing truncated or misfolded mGluR6 prevent these protein complexes from being transported to the cell surface.
Collapse
Affiliation(s)
- Atsushi Shimohata
- Department of Physiology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Dilip Rai
- Department of Physiology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Takumi Akagi
- Department of Physiology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Sumiko Usui
- Department of Physiology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Ikuo Ogiwara
- Department of Physiology, Nippon Medical School, Tokyo 113-8602, Japan.
| | - Makoto Kaneda
- Department of Physiology, Nippon Medical School, Tokyo 113-8602, Japan
| |
Collapse
|
6
|
Li T, Roberts R, Liu Z, Tong W. TransOrGAN: An Artificial Intelligence Mapping of Rat Transcriptomic Profiles between Organs, Ages, and Sexes. Chem Res Toxicol 2023; 36:916-925. [PMID: 37200521 PMCID: PMC10433534 DOI: 10.1021/acs.chemrestox.3c00037] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Indexed: 05/20/2023]
Abstract
Animal studies are required for the evaluation of candidate drugs to ensure patient and volunteer safety. Toxicogenomics is often applied in these studies to gain understanding of the underlying mechanisms of toxicity, which is usually focused on critical organs such as the liver or kidney in young male rats. There is a strong ethical reason to reduce, refine and replace animal use (the 3Rs), where the mapping of data between organs, sexes and ages could reduce the cost and time of drug development. Herein, we proposed a generative adversarial network (GAN)-based framework entitled TransOrGAN that allowed the molecular mapping of gene expression profiles in different rodent organ systems and across sex and age groups. We carried out a proof-of-concept study based on rat RNA-seq data from 288 samples in 9 different organs of both sexes and 4 developmental stages. First, we demonstrated that TransOrGAN could infer transcriptomic profiles between any 2 of the 9 organs studied, yielding an average cosine similarity of 0.984 between synthetic transcriptomic profiles and their corresponding real profiles. Second, we found that TransOrGAN could infer transcriptomic profiles observed in females from males, with an average cosine similarity of 0.984. Third, we found that TransOrGAN could infer transcriptomic profiles in juvenile, adult, and aged animals from adolescent animals with an average cosine similarity of 0.981, 0.983, and 0.989, respectively. Altogether, TransOrGAN is an innovative approach to infer transcriptomic profiles between ages, sexes, and organ systems, offering the opportunity to reduce animal usage and to provide an integrated assessment of toxicity in the whole organism irrespective of sex or age.
Collapse
Affiliation(s)
- Ting Li
- National
Center for Toxicological Research, Food
and Drug Administration, Jefferson, Arkansas 72079, United States
| | - Ruth Roberts
- ApconiX Ltd, Alderley Park, Alderley Edge SK10 4TG, United Kingdom
- University
of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
| | - Zhichao Liu
- Integrative
Toxicology, Nonclinical Drug Safety, Boehringer
Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877, United States
| | - Weida Tong
- National
Center for Toxicological Research, Food
and Drug Administration, Jefferson, Arkansas 72079, United States
| |
Collapse
|
7
|
Spatial transcriptome analysis of long non-coding RNAs reveals tissue specificity and functional roles in cancer. J Zhejiang Univ Sci B 2023; 24:15-31. [PMID: 36632748 PMCID: PMC9837373 DOI: 10.1631/jzus.b2200206] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Long non-coding RNAs (lncRNAs) play a significant role in maintaining tissue morphology and functions, and their precise regulatory effectiveness is closely related to expression patterns. However, the spatial expression patterns of lncRNAs in humans are poorly characterized. Here, we constructed five comprehensive transcriptomic atlases of human lncRNAs covering thousands of major tissue samples in normal and disease states. The lncRNA transcriptomes exhibited high consistency within the same tissues across resources, and even higher complexity in specialized tissues. Tissue-elevated (TE) lncRNAs were identified in each resource and robust TE lncRNAs were refined by integrative analysis. We detected 1 to 4684 robust TE lncRNAs across tissues; the highest number was in testis tissue, followed by brain tissue. Functional analyses of TE lncRNAs indicated important roles in corresponding tissue-related pathways. Moreover, we found that the expression features of robust TE lncRNAs made them be effective biomarkers to distinguish tissues; TE lncRNAs also tended to be associated with cancer, and exhibited differential expression or were correlated with patient survival. In summary, spatial classification of lncRNAs is the starting point for elucidating the function of lncRNAs in both maintenance of tissue morphology and progress of tissue-constricted diseases.
Collapse
|
8
|
Mokou M, Narayanasamy S, Stroggilos R, Balaur IA, Vlahou A, Mischak H, Frantzi M. A Drug Repurposing Pipeline Based on Bladder Cancer Integrated Proteotranscriptomics Signatures. Methods Mol Biol 2023; 2684:59-99. [PMID: 37410228 DOI: 10.1007/978-1-0716-3291-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Delivering better care for patients with bladder cancer (BC) necessitates the development of novel therapeutic strategies that address both the high disease heterogeneity and the limitations of the current therapeutic modalities, such as drug low efficacy and patient resistance acquisition. Drug repurposing is a cost-effective strategy that targets the reuse of existing drugs for new therapeutic purposes. Such a strategy could open new avenues toward more effective BC treatment. BC patients' multi-omics signatures can be used to guide the investigation of existing drugs that show an effective therapeutic potential through drug repurposing. In this book chapter, we present an integrated multilayer approach that includes cross-omics analyses from publicly available transcriptomics and proteomics data derived from BC tissues and cell lines that were investigated for the development of disease-specific signatures. These signatures are subsequently used as input for a signature-based repurposing approach using the Connectivity Map (CMap) tool. We further explain the steps that may be followed to identify and select existing drugs of increased potential for repurposing in BC patients.
Collapse
Affiliation(s)
- Marika Mokou
- Department of Biomarker Research, Mosaiques Diagnostics, Hannover, Germany.
| | - Shaman Narayanasamy
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Rafael Stroggilos
- Systems Biology Center, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Irina-Afrodita Balaur
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Antonia Vlahou
- Systems Biology Center, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Harald Mischak
- Department of Biomarker Research, Mosaiques Diagnostics, Hannover, Germany
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Maria Frantzi
- Department of Biomarker Research, Mosaiques Diagnostics, Hannover, Germany
| |
Collapse
|
9
|
Gopalakrishnan S, Joshi CJ, Valderrama-Gómez MÁ, Icten E, Rolandi P, Johnson W, Kontoravdi C, Lewis NE. Guidelines for extracting biologically relevant context-specific metabolic models using gene expression data. Metab Eng 2023; 75:181-191. [PMID: 36566974 PMCID: PMC10258867 DOI: 10.1016/j.ymben.2022.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/01/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Genome-scale metabolic models comprehensively describe an organism's metabolism and can be tailored using omics data to model condition-specific physiology. The quality of context-specific models is impacted by (i) choice of algorithm and parameters and (ii) alternate context-specific models that equally explain the -omics data. Here we quantify the influence of alternate optima on microbial and mammalian model extraction using GIMME, iMAT, MBA, and mCADRE. We find that metabolic tasks defining an organism's phenotype must be explicitly and quantitatively protected. The scope of alternate models is strongly influenced by algorithm choice and the topological properties of the parent genome-scale model with fatty acid metabolism and intracellular metabolite transport contributing much to alternate solutions in all models. mCADRE extracted the most reproducible context-specific models and models generated using MBA had the most alternate solutions. There were fewer qualitatively different solutions generated by GIMME in E. coli, but these increased substantially in the mammalian models. Screening ensembles using a receiver operating characteristic plot identified the best-performing models. A comprehensive evaluation of models extracted using combinations of extraction methods and expression thresholds revealed that GIMME generated the best-performing models in E. coli, whereas mCADRE is better suited for complex mammalian models. These findings suggest guidelines for benchmarking -omics integration algorithms and motivate the development of a systematic workflow to enumerate alternate models and extract biologically relevant context-specific models.
Collapse
Affiliation(s)
| | - Chintan J Joshi
- Department of Pediatrics, University of California San Diego, United States
| | | | - Elcin Icten
- Digital Integration and Predictive Technologies, Amgen Inc, United States
| | - Pablo Rolandi
- Digital Integration and Predictive Technologies, Amgen Inc, United States
| | - William Johnson
- Digital Integration and Predictive Technologies, Amgen Inc, United States
| | - Cleo Kontoravdi
- Department of Chemical Engineering, Imperial College London, UK
| | - Nathan E Lewis
- Department of Pediatrics, University of California San Diego, United States; Department of Bioengineering, University of California San Diego, United States.
| |
Collapse
|
10
|
Cfap91-Dependent Stability of the RS2 and RS3 Base Proteins and Adjacent Inner Dynein Arms in Tetrahymena Cilia. Cells 2022; 11:cells11244048. [PMID: 36552811 PMCID: PMC9776847 DOI: 10.3390/cells11244048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Motile cilia and eukaryotic flagella are specific cell protrusions that are conserved from protists to humans. They are supported by a skeleton composed of uniquely organized microtubules-nine peripheral doublets and two central singlets (9 × 2 + 2). Microtubules also serve as docking sites for periodically distributed multiprotein ciliary complexes. Radial spokes, the T-shaped ciliary complexes, repeat along the outer doublets as triplets and transduce the regulatory signals from the cilium center to the outer doublet-docked dynein arms. Using the genetic, proteomic, and microscopic approaches, we have shown that lack of Tetrahymena Cfap91 protein affects stable docking/positioning of the radial spoke RS3 and the base of RS2, and adjacent inner dynein arms, possibly due to the ability of Cfap91 to interact with a molecular ruler protein, Ccdc39. The localization studies confirmed that the level of RS3-specific proteins, Cfap61 and Cfap251, as well as RS2-associated Cfap206, are significantly diminished in Tetrahymena CFAP91-KO cells. Cilia of Tetrahymena cells with knocked-out CFAP91 beat in an uncoordinated manner and their beating frequency is dramatically reduced. Consequently, CFAP91-KO cells swam about a hundred times slower than wild-type cells. We concluded that Tetrahymena Cfap91 localizes at the base of radial spokes RS2 and RS3 and likely plays a role in the radial spoke(s) positioning and stability.
Collapse
|
11
|
Tung KF, Lin WC. TEx-MST: tissue expression profiles of MANE select transcripts. Database (Oxford) 2022; 2022:6726258. [PMID: 36170113 PMCID: PMC9518666 DOI: 10.1093/database/baac089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 12/05/2022]
Abstract
Recently, a new reference transcript dataset [Matched Annotation from the NCBI and EMBL-EBI (MANE) select] was released by NCBI and EMBL-EBI to make available a new unified representative transcript for human protein-coding genes. While the main purpose of MANE project is to provide a harmonized gene and transcript information standard, there is no explicit tissue expression information about these MANE select transcripts. In this report, we tried to provide useful expression profiles of MANE select transcripts in various normal human tissues to allow further interrogation of their molecular modulations and functional significance. We obtained the new V9 transcript expression dataset from the Genotype-Tissue Expression (GTEx) web portal. This new GTEx dataset, based on a long-read sequencing platform, affords better assessment of the expression of alternative spliced transcripts. This tissue expression profiles of MANE select transcripts (TEx-MST) database not only provides the basic information of MANE select transcripts but also tissue expression profiles on alternative transcripts in protein-coding genes. Users can initiate the interrogation by gene symbol searches or by browsing the MANE genes with various criteria (such as genome locations or expression rankings). We further utilized the GENCODE biotype feature to identify the top-ranked protein-coding transcripts by choosing the most expressed protein-coding transcripts from GTEx datasets (both V8 and V9 datasets). In summary, there are 18 083 genes matched between MANE and GTEx. Among them, 13 245 MANE select transcripts matched with the top-ranked protein-coding transcripts in GTEx V9 dataset, which underlined the dominate expression of MANE select transcripts. This TEx-MST web bioinformatic database provides a visualized user interface for the normal tissue expression patterns of MANE select transcripts using the newly released GTEx dataset. Database URL: TEx-MST is available at https://texmst.ibms.sinica.edu.tw/
Collapse
Affiliation(s)
- Kuo-Feng Tung
- Institute of Biomedical Sciences, Academia Sinica , Taipei 115, Taiwan, R.O.C
| | - Wen-chang Lin
- Institute of Biomedical Sciences, Academia Sinica , Taipei 115, Taiwan, R.O.C
- Institute of Biomedical Informatics, National Yang-Ming Chiao Tung University , Taipei 112, Taiwan, R.O.C
| |
Collapse
|
12
|
Lindskog C, Méar L, Virhammar J, Fällmar D, Kumlien E, Hesselager G, Casar-Borota O, Rostami E. Protein Expression Profile of ACE2 in the Normal and COVID-19-Affected Human Brain. J Proteome Res 2022; 21:2137-2145. [PMID: 35901083 PMCID: PMC9364976 DOI: 10.1021/acs.jproteome.2c00184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Indexed: 12/30/2022]
Abstract
SARS-coronavirus 2 (SARS-CoV-2) that caused the coronavirus disease 2019 (COVID-19) pandemic has posed to be a global challenge. An increasing number of neurological symptoms have been linked to the COVID-19 disease, but the underlying mechanisms of such symptoms and which patients could be at risk are not yet established. The suggested key receptor for host cell entry is angiotensin I converting enzyme 2 (ACE2). Previous studies on limited tissue material have shown no or low protein expression of ACE2 in the normal brain. Here, we used stringently validated antibodies and immunohistochemistry to examine the protein expression of ACE2 in all major regions of the normal brain. The expression pattern was compared with the COVID-19-affected brain of patients with a varying degree of neurological symptoms. In the normal brain, the expression was restricted to the choroid plexus and ependymal cells with no expression in any other brain cell types. Interestingly, in the COVID-19-affected brain, an upregulation of ACE2 was observed in endothelial cells of certain patients, most prominently in the white matter and with the highest expression observed in the patient with the most severe neurological symptoms. The data shows differential expression of ACE2 in the diseased brain and highlights the need to further study the role of endothelial cells in COVID-19 disease in relation to neurological symptoms.
Collapse
Affiliation(s)
- Cecilia Lindskog
- Department
of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Loren Méar
- Department
of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Johan Virhammar
- Department
of Neuroscience, Neurology, Uppsala University, 751 85 Uppsala, Sweden
| | - David Fällmar
- Department
of Surgical Sciences, Radiology, Uppsala
University, 751 85 Uppsala, Sweden
| | - Eva Kumlien
- Department
of Neuroscience, Neurology, Uppsala University, 751 85 Uppsala, Sweden
| | - Göran Hesselager
- Department
of Neuroscience, Neurosurgery, Uppsala University, 751 85 Uppsala, Sweden
| | - Olivera Casar-Borota
- Department
of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
- Department
of Clinical Pathology and Cytology, Uppsala
University Hospital, 751
85 Uppsala, Sweden
| | - Elham Rostami
- Department
of Neuroscience, Neurosurgery, Uppsala University, 751 85 Uppsala, Sweden
| |
Collapse
|
13
|
Bulanenkova SS, Filyukova OB, Snezhkov EV, Akopov SB, Nikolaev LG. Suppression of the Testis-Specific Transcription of the ZBTB32 and ZNF473 Genes in Germ Cell Tumors. Acta Naturae 2022; 14:85-94. [PMID: 36348719 PMCID: PMC9611863 DOI: 10.32607/actanaturae.11620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/22/2022] [Indexed: 11/21/2022] Open
Abstract
The family of genes containing C2H2 zinc finger domains, which has more than 700 members, is one of the largest in the genome. Of particular interest are C2H2 genes with potential tissue-specific transcription, which determine the functional properties of individual cell types, including those associated with pathological processes. The aim of this work was to identify C2H2 family genes with tissue-specific transcription and analyze changes in their activity during tumor progression. To search for these genes, we used four databases containing data on gene transcription in human tissues obtained by RNA-Seq analysis. The analysis showed that, although the major part of the C2H2 family genes is transcribed in virtually all tissues, a group of genes has tissue-specific transcription, with most of the transcripts being found in the testis. After having compared all four databases, we identified nine such genes. The testis-specific transcription was confirmed for two of them, namely ZBTB32 and ZNF473, using quantitative PCR of cDNA samples from different organs. A decrease in ZBTB32 and ZNF473 transcription levels was demonstrated in germ cell tumors. The studied genes can serve as candidate markers in germ cell tumors.
Collapse
Affiliation(s)
- S. S. Bulanenkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| | - O. B. Filyukova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| | - E. V. Snezhkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| | - S. B. Akopov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| | - L. G. Nikolaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| |
Collapse
|
14
|
Niu L, Geyer PE, Gupta R, Santos A, Meier F, Doll S, Wewer Albrechtsen NJ, Klein S, Ortiz C, Uschner FE, Schierwagen R, Trebicka J, Mann M. Dynamic human liver proteome atlas reveals functional insights into disease pathways. Mol Syst Biol 2022; 18:e10947. [PMID: 35579278 PMCID: PMC9112488 DOI: 10.15252/msb.202210947] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/12/2022] Open
Abstract
Deeper understanding of liver pathophysiology would benefit from a comprehensive quantitative proteome resource at cell type resolution to predict outcome and design therapy. Here, we quantify more than 150,000 sequence-unique peptides aggregated into 10,000 proteins across total liver, the major liver cell types, time course of primary cell cultures, and liver disease states. Bioinformatic analysis reveals that half of hepatocyte protein mass is comprised of enzymes and 23% of mitochondrial proteins, twice the proportion of other liver cell types. Using primary cell cultures, we capture dynamic proteome remodeling from tissue states to cell line states, providing useful information for biological or pharmaceutical research. Our extensive data serve as spectral library to characterize a human cohort of non-alcoholic steatohepatitis and cirrhosis. Dramatic proteome changes in liver tissue include signatures of hepatic stellate cell activation resembling liver cirrhosis and providing functional insights. We built a web-based dashboard application for the interactive exploration of our resource (www.liverproteome.org).
Collapse
Affiliation(s)
- Lili Niu
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | - Philipp E Geyer
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
- Present address:
OmicEra Diagnostics GmbHPlaneggGermany
| | - Rajat Gupta
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Present address:
Pfizer Worldwide Research and DevelopmentSan DiegoCAUSA
| | - Alberto Santos
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Center for Health Data ScienceFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
- Big Data InstituteNuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Florian Meier
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
- Present address:
Functional ProteomicsJena University HospitalJenaGermany
| | - Sophia Doll
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
- Present address:
OmicEra Diagnostics GmbHPlaneggGermany
| | - Nicolai J Wewer Albrechtsen
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Clinical BiochemistryRigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | - Sabine Klein
- Department of Internal Medicine IGoethe University Clinic FrankfurtFrankfurtGermany
- Department of Internal Medicine BWW University MünsterMünsterGermany
| | - Cristina Ortiz
- Department of Internal Medicine IGoethe University Clinic FrankfurtFrankfurtGermany
| | - Frank E Uschner
- Department of Internal Medicine IGoethe University Clinic FrankfurtFrankfurtGermany
- Department of Internal Medicine BWW University MünsterMünsterGermany
| | - Robert Schierwagen
- Department of Internal Medicine IGoethe University Clinic FrankfurtFrankfurtGermany
- Department of Internal Medicine BWW University MünsterMünsterGermany
| | - Jonel Trebicka
- Department of Internal Medicine IGoethe University Clinic FrankfurtFrankfurtGermany
- Department of Internal Medicine BWW University MünsterMünsterGermany
- European Foundation for the Study of Chronic Failure, EFCLIFBarcelonaSpain
| | - Matthias Mann
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| |
Collapse
|
15
|
Martinez G, Coutton C, Loeuillet C, Cazin C, Muroňová J, Boguenet M, Lambert E, Dhellemmes M, Chevalier G, Hograindleur JP, Vilpreux C, Neirijnck Y, Kherraf ZE, Escoffier J, Nef S, Ray PF, Arnoult C. Oligogenic heterozygous inheritance of sperm abnormalities in mouse. eLife 2022; 11:75373. [PMID: 35451961 PMCID: PMC9071268 DOI: 10.7554/elife.75373] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Male infertility is an important health concern that is expected to have a major genetic etiology. Although high-throughput sequencing has linked gene defects to more than 50% of rare and severe sperm anomalies, less than 20% of common and moderate forms are explained. We hypothesized that this low success rate could at least be partly due to oligogenic defects – the accumulation of several rare heterozygous variants in distinct, but functionally connected, genes. Here, we compared fertility and sperm parameters in male mice harboring one to four heterozygous truncating mutations of genes linked to multiple morphological anomalies of the flagellum (MMAF) syndrome. Results indicated progressively deteriorating sperm morphology and motility with increasing numbers of heterozygous mutations. This first evidence of oligogenic inheritance in failed spermatogenesis strongly suggests that oligogenic heterozygosity could explain a significant proportion of asthenoteratozoospermia cases. The findings presented pave the way to further studies in mice and man.
Collapse
Affiliation(s)
| | | | - Corinne Loeuillet
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| | | | - Jana Muroňová
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| | - Magalie Boguenet
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| | - Emeline Lambert
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| | - Magali Dhellemmes
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| | - Geneviève Chevalier
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| | | | - Charline Vilpreux
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| | - Yasmine Neirijnck
- Department of Genetic Medicine and Development, University of Geneva Medical School, Genève, Switzerland
| | - Zine Eddine Kherraf
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| | - Jessica Escoffier
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Pierre F Ray
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| | - Christophe Arnoult
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| |
Collapse
|
16
|
Plasmolipin regulates basolateral-to-apical transcytosis of ICAM-1 and leukocyte adhesion in polarized hepatic epithelial cells. Cell Mol Life Sci 2022; 79:61. [PMID: 34999972 PMCID: PMC8743267 DOI: 10.1007/s00018-021-04095-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/30/2022]
Abstract
Apical localization of Intercellular Adhesion Receptor (ICAM)-1 regulates the adhesion and guidance of leukocytes across polarized epithelial barriers. Here, we investigate the molecular mechanisms that determine ICAM-1 localization into apical membrane domains of polarized hepatic epithelial cells, and their effect on lymphocyte-hepatic epithelial cell interaction. We had previously shown that segregation of ICAM-1 into apical membrane domains, which form bile canaliculi and bile ducts in hepatic epithelial cells, requires basolateral-to-apical transcytosis. Searching for protein machinery potentially involved in ICAM-1 polarization we found that the SNARE-associated protein plasmolipin (PLLP) is expressed in the subapical compartment of hepatic epithelial cells in vitro and in vivo. BioID analysis of ICAM-1 revealed proximal interaction between this adhesion receptor and PLLP. ICAM-1 colocalized and interacted with PLLP during the transcytosis of the receptor. PLLP gene editing and silencing increased the basolateral localization and reduced the apical confinement of ICAM-1 without affecting apicobasal polarity of hepatic epithelial cells, indicating that ICAM-1 transcytosis is specifically impaired in the absence of PLLP. Importantly, PLLP depletion was sufficient to increase T-cell adhesion to hepatic epithelial cells. Such an increase depended on the epithelial cell polarity and ICAM-1 expression, showing that the epithelial transcytotic machinery regulates the adhesion of lymphocytes to polarized epithelial cells. Our findings strongly suggest that the polarized intracellular transport of adhesion receptors constitutes a new regulatory layer of the epithelial inflammatory response.
Collapse
|
17
|
Eliseeva IA, Sogorina EM, Smolin EA, Kulakovskiy IV, Lyabin DN. Diverse Regulation of YB-1 and YB-3 Abundance in Mammals. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S48-S167. [PMID: 35501986 DOI: 10.1134/s000629792214005x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 06/14/2023]
Abstract
YB proteins are DNA/RNA binding proteins, members of the family of proteins with cold shock domain. Role of YB proteins in the life of cells, tissues, and whole organisms is extremely important. They are involved in transcription regulation, pre-mRNA splicing, mRNA translation and stability, mRNA packaging into mRNPs, including stress granules, DNA repair, and many other cellular events. Many processes, from embryonic development to aging, depend on when and how much of these proteins have been synthesized. Here we discuss regulation of the levels of YB-1 and, in part, of its homologs in the cell. Because the amount of YB-1 is immediately associated with its functioning, understanding the mechanisms of regulation of the protein amount invariably reveals the events where YB-1 is involved. Control over the YB-1 abundance may allow using this gene/protein as a therapeutic target in cancers, where an increased expression of the YBX1 gene often correlates with the disease severity and poor prognosis.
Collapse
Affiliation(s)
- Irina A Eliseeva
- Institute of Protein Research, Pushchino, Moscow Region, 142290, Russia.
| | | | - Egor A Smolin
- Institute of Protein Research, Pushchino, Moscow Region, 142290, Russia.
| | - Ivan V Kulakovskiy
- Institute of Protein Research, Pushchino, Moscow Region, 142290, Russia.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Moscow, 119991, Russia
| | - Dmitry N Lyabin
- Institute of Protein Research, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
18
|
Zhang B, Chen S, Liu J, Yan YB, Chen J, Li D, Liu JY. A High-Quality Haplotype-Resolved Genome of Common Bermudagrass ( Cynodon dactylon L.) Provides Insights Into Polyploid Genome Stability and Prostrate Growth. FRONTIERS IN PLANT SCIENCE 2022; 13:890980. [PMID: 35548270 PMCID: PMC9081840 DOI: 10.3389/fpls.2022.890980] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/04/2022] [Indexed: 05/03/2023]
Abstract
Common bermudagrass (Cynodon dactylon L.) is an important perennial warm-season turfgrass species with great economic value. However, the reference genome is still deficient in C. dactylon, which severely impedes basic studies and breeding studies. In this study, a high-quality haplotype-resolved genome of C. dactylon cultivar Yangjiang was successfully assembled using a combination of multiple sequencing strategies. The assembled genome is approximately 1.01 Gb in size and is comprised of 36 pseudo chromosomes belonging to four haplotypes. In total, 76,879 protein-coding genes and 529,092 repeat sequences were annotated in the assembled genome. Evolution analysis indicated that C. dactylon underwent two rounds of whole-genome duplication events, whereas syntenic and transcriptome analysis revealed that global subgenome dominance was absent among the four haplotypes. Genome-wide gene family analyses further indicated that homologous recombination-regulating genes and tiller-angle-regulating genes all showed an adaptive evolution in C. dactylon, providing insights into genome-scale regulation of polyploid genome stability and prostrate growth. These results not only facilitate a better understanding of the complex genome composition and unique plant architectural characteristics of common bermudagrass, but also offer a valuable resource for comparative genome analyses of turfgrasses and other plant species.
Collapse
Affiliation(s)
- Bing Zhang
- School of Life Sciences, Tsinghua University, Beijing, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Si Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jianxiu Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Yong-Bin Yan
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Jingbo Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Dandan Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Jin-Yuan Liu
- School of Life Sciences, Tsinghua University, Beijing, China
- *Correspondence: Jin-Yuan Liu,
| |
Collapse
|
19
|
Pailleux F, Maes P, Jaquinod M, Barthelon J, Darnaud M, Lacoste C, Vandenbrouck Y, Gilquin B, Louwagie M, Hesse AM, Kraut A, Garin J, Leroy V, Zarski JP, Bruley C, Couté Y, Samuel D, Ichai P, Faivre J, Brun V. Mass Spectrometry-Based Proteomics Reveal Alcohol Dehydrogenase 1B as a Blood Biomarker Candidate to Monitor Acetaminophen-Induced Liver Injury. Int J Mol Sci 2021; 22:ijms222011071. [PMID: 34681731 PMCID: PMC8540689 DOI: 10.3390/ijms222011071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/03/2021] [Accepted: 10/11/2021] [Indexed: 12/18/2022] Open
Abstract
Acute liver injury (ALI) is a severe disorder resulting from excessive hepatocyte cell death, and frequently caused by acetaminophen intoxication. Clinical management of ALI progression is hampered by the dearth of blood biomarkers available. In this study, a bioinformatics workflow was developed to screen omics databases and identify potential biomarkers for hepatocyte cell death. Then, discovery proteomics was harnessed to select from among these candidates those that were specifically detected in the blood of acetaminophen-induced ALI patients. Among these candidates, the isoenzyme alcohol dehydrogenase 1B (ADH1B) was massively leaked into the blood. To evaluate ADH1B, we developed a targeted proteomics assay and quantified ADH1B in serum samples collected at different times from 17 patients admitted for acetaminophen-induced ALI. Serum ADH1B concentrations increased markedly during the acute phase of the disease, and dropped to undetectable levels during recovery. In contrast to alanine aminotransferase activity, the rapid drop in circulating ADH1B concentrations was followed by an improvement in the international normalized ratio (INR) within 10–48 h, and was associated with favorable outcomes. In conclusion, the combination of omics data exploration and proteomics revealed ADH1B as a new blood biomarker candidate that could be useful for the monitoring of acetaminophen-induced ALI.
Collapse
Affiliation(s)
- Floriane Pailleux
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France; (F.P.); (P.M.); (M.J.); (J.B.); (Y.V.); (B.G.); (M.L.); (A.-M.H.); (A.K.); (J.G.); (C.B.); (Y.C.)
| | - Pauline Maes
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France; (F.P.); (P.M.); (M.J.); (J.B.); (Y.V.); (B.G.); (M.L.); (A.-M.H.); (A.K.); (J.G.); (C.B.); (Y.C.)
| | - Michel Jaquinod
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France; (F.P.); (P.M.); (M.J.); (J.B.); (Y.V.); (B.G.); (M.L.); (A.-M.H.); (A.K.); (J.G.); (C.B.); (Y.C.)
| | - Justine Barthelon
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France; (F.P.); (P.M.); (M.J.); (J.B.); (Y.V.); (B.G.); (M.L.); (A.-M.H.); (A.K.); (J.G.); (C.B.); (Y.C.)
- Clinique Universitaire d’Hépato-gastroentérologie, Centre Hospitalier Universitaire Grenoble, 38000 Grenoble, France; (V.L.); (J.-P.Z.)
| | - Marion Darnaud
- Hepatobiliary Centre, Paul-Brousse University Hospital, INSERM U1193, 94800 Villejuif, France; (M.D.); (C.L.); (D.S.); (P.I.)
- Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Claire Lacoste
- Hepatobiliary Centre, Paul-Brousse University Hospital, INSERM U1193, 94800 Villejuif, France; (M.D.); (C.L.); (D.S.); (P.I.)
- Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Yves Vandenbrouck
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France; (F.P.); (P.M.); (M.J.); (J.B.); (Y.V.); (B.G.); (M.L.); (A.-M.H.); (A.K.); (J.G.); (C.B.); (Y.C.)
| | - Benoît Gilquin
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France; (F.P.); (P.M.); (M.J.); (J.B.); (Y.V.); (B.G.); (M.L.); (A.-M.H.); (A.K.); (J.G.); (C.B.); (Y.C.)
- Univ. Grenoble Alpes, CEA, LETI, Clinatec, 38000 Grenoble, France
| | - Mathilde Louwagie
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France; (F.P.); (P.M.); (M.J.); (J.B.); (Y.V.); (B.G.); (M.L.); (A.-M.H.); (A.K.); (J.G.); (C.B.); (Y.C.)
| | - Anne-Marie Hesse
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France; (F.P.); (P.M.); (M.J.); (J.B.); (Y.V.); (B.G.); (M.L.); (A.-M.H.); (A.K.); (J.G.); (C.B.); (Y.C.)
| | - Alexandra Kraut
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France; (F.P.); (P.M.); (M.J.); (J.B.); (Y.V.); (B.G.); (M.L.); (A.-M.H.); (A.K.); (J.G.); (C.B.); (Y.C.)
| | - Jérôme Garin
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France; (F.P.); (P.M.); (M.J.); (J.B.); (Y.V.); (B.G.); (M.L.); (A.-M.H.); (A.K.); (J.G.); (C.B.); (Y.C.)
| | - Vincent Leroy
- Clinique Universitaire d’Hépato-gastroentérologie, Centre Hospitalier Universitaire Grenoble, 38000 Grenoble, France; (V.L.); (J.-P.Z.)
- Institute for Advanced Biosciences, Université Grenoble Alpes, CNRS, INSERM U1209, 38000 Grenoble, France
| | - Jean-Pierre Zarski
- Clinique Universitaire d’Hépato-gastroentérologie, Centre Hospitalier Universitaire Grenoble, 38000 Grenoble, France; (V.L.); (J.-P.Z.)
- Institute for Advanced Biosciences, Université Grenoble Alpes, CNRS, INSERM U1209, 38000 Grenoble, France
| | - Christophe Bruley
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France; (F.P.); (P.M.); (M.J.); (J.B.); (Y.V.); (B.G.); (M.L.); (A.-M.H.); (A.K.); (J.G.); (C.B.); (Y.C.)
| | - Yohann Couté
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France; (F.P.); (P.M.); (M.J.); (J.B.); (Y.V.); (B.G.); (M.L.); (A.-M.H.); (A.K.); (J.G.); (C.B.); (Y.C.)
| | - Didier Samuel
- Hepatobiliary Centre, Paul-Brousse University Hospital, INSERM U1193, 94800 Villejuif, France; (M.D.); (C.L.); (D.S.); (P.I.)
- Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Philippe Ichai
- Hepatobiliary Centre, Paul-Brousse University Hospital, INSERM U1193, 94800 Villejuif, France; (M.D.); (C.L.); (D.S.); (P.I.)
- Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Jamila Faivre
- Hepatobiliary Centre, Paul-Brousse University Hospital, INSERM U1193, 94800 Villejuif, France; (M.D.); (C.L.); (D.S.); (P.I.)
- Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Pôle de Biologie Médicale, Paul-Brousse University Hospital, 94800 Villejuif, France
- Correspondence: (J.F.); (V.B.)
| | - Virginie Brun
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France; (F.P.); (P.M.); (M.J.); (J.B.); (Y.V.); (B.G.); (M.L.); (A.-M.H.); (A.K.); (J.G.); (C.B.); (Y.C.)
- Univ. Grenoble Alpes, CEA, LETI, Clinatec, 38000 Grenoble, France
- Correspondence: (J.F.); (V.B.)
| |
Collapse
|
20
|
Parrello D, Vlasenok M, Kranz L, Nechaev S. Targeting the Transcriptome Through Globally Acting Components. Front Genet 2021; 12:749850. [PMID: 34603400 PMCID: PMC8481634 DOI: 10.3389/fgene.2021.749850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Transcription is a step in gene expression that defines the identity of cells and its dysregulation is associated with diseases. With advancing technologies revealing molecular underpinnings of the cell with ever-higher precision, our ability to view the transcriptomes may have surpassed our knowledge of the principles behind their organization. The human RNA polymerase II (Pol II) machinery comprises thousands of components that, in conjunction with epigenetic and other mechanisms, drive specialized programs of development, differentiation, and responses to the environment. Parts of these programs are repurposed in oncogenic transformation. Targeting of cancers is commonly done by inhibiting general or broadly acting components of the cellular machinery. The critical unanswered question is how globally acting or general factors exert cell type specific effects on transcription. One solution, which is discussed here, may be among the events that take place at genes during early Pol II transcription elongation. This essay turns the spotlight on the well-known phenomenon of promoter-proximal Pol II pausing as a step that separates signals that establish pausing genome-wide from those that release the paused Pol II into the gene. Concepts generated in this rapidly developing field will enhance our understanding of basic principles behind transcriptome organization and hopefully translate into better therapies at the bedside.
Collapse
Affiliation(s)
- Damien Parrello
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND, United States
| | - Maria Vlasenok
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Lincoln Kranz
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND, United States
| | - Sergei Nechaev
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND, United States
| |
Collapse
|
21
|
Lavoie RR, Gargollo PC, Ahmed ME, Kim Y, Baer E, Phelps DA, Charlesworth CM, Madden BJ, Wang L, Houghton PJ, Cheville J, Dong H, Granberg CF, Lucien F. Surfaceome Profiling of Rhabdomyosarcoma Reveals B7-H3 as a Mediator of Immune Evasion. Cancers (Basel) 2021; 13:cancers13184528. [PMID: 34572755 PMCID: PMC8466404 DOI: 10.3390/cancers13184528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 12/18/2022] Open
Abstract
Novel therapeutic strategies are needed for the treatment of rhabdomyosarcoma (RMS), the most common soft-tissue sarcoma in children. By using a combination of cell surface proteomics and transcriptomic profiling of RMS and normal muscle, we generated a catalog of targetable cell surface proteins enriched in RMS tumors. Among the top candidates, we identified B7-H3 as the major immunoregulatory molecule expressed by RMS tumors. By using a large cohort of tissue specimens, we demonstrated that B7-H3 is expressed in a majority of RMS tumors while not detected in normal human tissues. Through a deconvolution analysis of the RMS tumor RNA-seq data, we showed that B7-H3-rich tumors are enriched in macrophages M1, NK cells, and depleted in CD8+-T cells. Furthermore, in vitro functional assays showed that B7-H3 knockout in RMS tumor cells increases T-cell mediated cytotoxicity. Altogether, our study uncovers new potential targets for the treatment of RMS and provides the first biological insights into the role of B7-H3 in RMS biology, paving the way for the development of next-generation immunotherapies.
Collapse
Affiliation(s)
- Roxane R. Lavoie
- Department of Urology, Mayo Clinic, Rochester, MN 55902, USA; (R.R.L.); (P.C.G.); (M.E.A.); (Y.K.); (E.B.); (H.D.); (C.F.G.)
| | - Patricio C. Gargollo
- Department of Urology, Mayo Clinic, Rochester, MN 55902, USA; (R.R.L.); (P.C.G.); (M.E.A.); (Y.K.); (E.B.); (H.D.); (C.F.G.)
| | - Mohamed E. Ahmed
- Department of Urology, Mayo Clinic, Rochester, MN 55902, USA; (R.R.L.); (P.C.G.); (M.E.A.); (Y.K.); (E.B.); (H.D.); (C.F.G.)
| | - Yohan Kim
- Department of Urology, Mayo Clinic, Rochester, MN 55902, USA; (R.R.L.); (P.C.G.); (M.E.A.); (Y.K.); (E.B.); (H.D.); (C.F.G.)
| | - Emily Baer
- Department of Urology, Mayo Clinic, Rochester, MN 55902, USA; (R.R.L.); (P.C.G.); (M.E.A.); (Y.K.); (E.B.); (H.D.); (C.F.G.)
| | - Doris A. Phelps
- Greehey Children’s Cancer Research Institute, San Antonio, TX 78229, USA; (D.A.P.); (P.J.H.)
| | | | - Benjamin J. Madden
- Proteomic Core, Mayo Clinic, Rochester, MN 55902, USA; (C.M.C.); (B.J.M.)
| | - Liguo Wang
- Division of Computational Biology, Mayo Clinic, Rochester, MN 55902, USA;
| | - Peter J. Houghton
- Greehey Children’s Cancer Research Institute, San Antonio, TX 78229, USA; (D.A.P.); (P.J.H.)
| | - John Cheville
- Department of Anatomic Pathology, Mayo Clinic, Rochester, MN 55902, USA;
| | - Haidong Dong
- Department of Urology, Mayo Clinic, Rochester, MN 55902, USA; (R.R.L.); (P.C.G.); (M.E.A.); (Y.K.); (E.B.); (H.D.); (C.F.G.)
- Department of Immunology, Mayo Clinic, Rochester, MN 55902, USA
| | - Candace F. Granberg
- Department of Urology, Mayo Clinic, Rochester, MN 55902, USA; (R.R.L.); (P.C.G.); (M.E.A.); (Y.K.); (E.B.); (H.D.); (C.F.G.)
| | - Fabrice Lucien
- Department of Urology, Mayo Clinic, Rochester, MN 55902, USA; (R.R.L.); (P.C.G.); (M.E.A.); (Y.K.); (E.B.); (H.D.); (C.F.G.)
- Correspondence:
| |
Collapse
|
22
|
Kumar G, Kumar R, Pal MK, Pramanik N, Lahiri T, Gupta A, Pandey S. APT: An Automated Probe Tracker From Gene Expression Data. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:1864-1874. [PMID: 31825870 DOI: 10.1109/tcbb.2019.2958345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Out of currently available semi-automatic tools for detecting diagnostic probes relevant to a pathophysiological condition, ArrayMining and GEO2R of NCBI are most popular. The shortcomings of ArrayMining and GEO2R are that both tools list the probes ordering them on the basis of their individual statistical level of significances with only difference of statistical methods used by them. While the latest tool GEO2R outputs either top 250 or all genes following its own ranking mechanism, ArrayMining requires number of probes to be inputted by the user. This study provided a way for automatic selection of probe-set that can be obtained from the voting of outputs resulted from statistical methods, t-Test, Mann-Whitney Test and Empirical Bayes Moderated t-test. It was also intriguing to find that the parameters of these statistical methods can be represented as a mathematical function of group fisher's discriminant ratio of a disease-control expression data-pair. Result of this fully automatic method, APT shows 88.97 percent success in comparison to 80.40 and 87.60 percent successes of ArrayMining and GEO2R respectively to include reported probes. Furthermore, out of 10 fold cross validation and 5 new test cases, APT shows a better performance than both ArrayMining and GEO2R in regards to sensitivity and specificity.
Collapse
|
23
|
Chen S, Xu X, Ma Z, Liu J, Zhang B. Organ-Specific Transcriptome Analysis Identifies Candidate Genes Involved in the Stem Specialization of Bermudagrass ( Cynodon dactylon L.). Front Genet 2021; 12:678673. [PMID: 34249097 PMCID: PMC8260954 DOI: 10.3389/fgene.2021.678673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/01/2021] [Indexed: 11/17/2022] Open
Abstract
As an important warm-season turfgrass and forage grass species with wide applications, bermudagrass (Cynodon dactylon L.) simultaneously has shoot, stolon and rhizome, three types of stems with different physiological functions. To better understand how the three types of stems differentiate and specialize, we generated an organ-specific transcriptome dataset of bermudagrass encompassing 114,169 unigenes, among which 100,878 and 65,901 could be assigned to the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the Gene Ontology (GO) terms, respectively. Using the dataset, we comprehensively analyzed the gene expression of different organs, especially the shoot, stolon and rhizome. The results indicated that six organs of bermudagrass all contained more than 52,000 significantly expressed unigenes, however, only 3,028 unigenes were enrich-expressed in different organs. Paired comparison analyses further indicated that 11,762 unigenes were differentially expressed in the three types of stems. Gene enrichment analysis revealed that 39 KEGG pathways were enriched with the differentially expressed unigenes (DEGs). Specifically, 401 DEGs were involved in plant hormone signal transduction, whereas 1,978 DEGs were transcription factors involved in gene expression regulation. Furthermore, in agreement with the starch content and starch synthase assay results, DEGs encoding starch synthesis-related enzymes all showed the highest expression level in the rhizome. These results not only provided new insights into the specialization of stems in bermudagrass but also made solid foundation for future gene functional studies in this important grass species and other stoloniferous/rhizomatous plants.
Collapse
Affiliation(s)
- Si Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xin Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ziyan Ma
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jianxiu Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Bing Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
24
|
Cook JH, Melloni GEM, Gulhan DC, Park PJ, Haigis KM. The origins and genetic interactions of KRAS mutations are allele- and tissue-specific. Nat Commun 2021; 12:1808. [PMID: 33753749 PMCID: PMC7985210 DOI: 10.1038/s41467-021-22125-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
Mutational activation of KRAS promotes the initiation and progression of cancers, especially in the colorectum, pancreas, lung, and blood plasma, with varying prevalence of specific activating missense mutations. Although epidemiological studies connect specific alleles to clinical outcomes, the mechanisms underlying the distinct clinical characteristics of mutant KRAS alleles are unclear. Here, we analyze 13,492 samples from these four tumor types to examine allele- and tissue-specific genetic properties associated with oncogenic KRAS mutations. The prevalence of known mutagenic mechanisms partially explains the observed spectrum of KRAS activating mutations. However, there are substantial differences between the observed and predicted frequencies for many alleles, suggesting that biological selection underlies the tissue-specific frequencies of mutant alleles. Consistent with experimental studies that have identified distinct signaling properties associated with each mutant form of KRAS, our genetic analysis reveals that each KRAS allele is associated with a distinct tissue-specific comutation network. Moreover, we identify tissue-specific genetic dependencies associated with specific mutant KRAS alleles. Overall, this analysis demonstrates that the genetic interactions of oncogenic KRAS mutations are allele- and tissue-specific, underscoring the complexity that drives their clinical consequences.
Collapse
Affiliation(s)
- Joshua H Cook
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Giorgio E M Melloni
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Doga C Gulhan
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| | - Kevin M Haigis
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute, Cambridge, MA, USA.
- Harvard Digestive Disease Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Omenn GS. Reflections on the HUPO Human Proteome Project, the Flagship Project of the Human Proteome Organization, at 10 Years. Mol Cell Proteomics 2021; 20:100062. [PMID: 33640492 PMCID: PMC8058560 DOI: 10.1016/j.mcpro.2021.100062] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 02/08/2023] Open
Abstract
We celebrate the 10th anniversary of the launch of the HUPO Human Proteome Project (HPP) and its major milestone of confident detection of at least one protein from each of 90% of the predicted protein-coding genes, based on the output of the entire proteomics community. The Human Genome Project reached a similar decadal milestone 20 years ago. The HPP has engaged proteomics teams around the world, strongly influenced data-sharing, enhanced quality assurance, and issued stringent guidelines for claims of detecting previously "missing proteins." This invited perspective complements papers on "A High-Stringency Blueprint of the Human Proteome" and "The Human Proteome Reaches a Major Milestone" in special issues of Nature Communications and Journal of Proteome Research, respectively, released in conjunction with the October 2020 virtual HUPO Congress and its celebration of the 10th anniversary of the HUPO HPP.
Collapse
Affiliation(s)
- Gilbert S Omenn
- University of Michigan Medical School, Departments of Computational Medicine & Bioinformatics, Internal Medicine, Human Genetics, and School of Public Health, Ann Arbor, Michigan, USA.
| |
Collapse
|
26
|
Stuparević I, Novačić A, Rahmouni AR, Fernandez A, Lamb N, Primig M. Regulation of the conserved 3'-5' exoribonuclease EXOSC10/Rrp6 during cell division, development and cancer. Biol Rev Camb Philos Soc 2021; 96:1092-1113. [PMID: 33599082 DOI: 10.1111/brv.12693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 01/31/2023]
Abstract
The conserved 3'-5' exoribonuclease EXOSC10/Rrp6 processes and degrades RNA, regulates gene expression and participates in DNA double-strand break repair and control of telomere maintenance via degradation of the telomerase RNA component. EXOSC10/Rrp6 is part of the multimeric nuclear RNA exosome and interacts with numerous proteins. Previous clinical, genetic, biochemical and genomic studies revealed the protein's essential functions in cell division and differentiation, its RNA substrates and its relevance to autoimmune disorders and oncology. However, little is known about the regulatory mechanisms that control the transcription, translation and stability of EXOSC10/Rrp6 during cell growth, development and disease and how these mechanisms evolved from yeast to human. Herein, we provide an overview of the RNA- and protein expression profiles of EXOSC10/Rrp6 during cell division, development and nutritional stress, and we summarize interaction networks and post-translational modifications across species. Additionally, we discuss how known and predicted protein interactions and post-translational modifications influence the stability of EXOSC10/Rrp6. Finally, we explore the idea that different EXOSC10/Rrp6 alleles, which potentially alter cellular protein levels or affect protein function, might influence human development and disease progression. In this review we interpret information from the literature together with genomic data from knowledgebases to inspire future work on the regulation of this essential protein's stability in normal and malignant cells.
Collapse
Affiliation(s)
- Igor Stuparević
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, 10000, Croatia
| | - Ana Novačić
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, 10000, Croatia
| | - A Rachid Rahmouni
- Centre de Biophysique Moléculaire, UPR4301 du CNRS, Orléans, 45071, France
| | - Anne Fernandez
- Institut de Génétique Humaine, UMR 9002 CNRS, Montpellier, France
| | - Ned Lamb
- Institut de Génétique Humaine, UMR 9002 CNRS, Montpellier, France
| | - Michael Primig
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, 35000, France
| |
Collapse
|
27
|
Forés-Martos J, Forte A, García-Martínez J, Pérez-Ortín JE. A Trans-Omics Comparison Reveals Common Gene Expression Strategies in Four Model Organisms and Exposes Similarities and Differences between Them. Cells 2021; 10:334. [PMID: 33562654 PMCID: PMC7914595 DOI: 10.3390/cells10020334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/01/2022] Open
Abstract
The ultimate goal of gene expression regulation is on the protein level. However, because the amounts of mRNAs and proteins are controlled by their synthesis and degradation rates, the cellular amount of a given protein can be attained by following different strategies. By studying omics data for six expression variables (mRNA and protein amounts, plus their synthesis and decay rates), we previously demonstrated the existence of common expression strategies (CESs) for functionally related genes in the yeast Saccharomyces cerevisiae. Here we extend that study to two other eukaryotes: the yeast Schizosaccharomyces pombe and cultured human HeLa cells. We also use genomic data from the model prokaryote Escherichia coli as an external reference. We show that six-variable profiles (6VPs) can be constructed for every gene and that these 6VPs are similar for genes with similar functions in all the studied organisms. The differences in 6VPs between organisms can be used to establish their phylogenetic relationships. The analysis of the correlations among the six variables supports the hypothesis that most gene expression control occurs in actively growing organisms at the transcription rate level, and that translation plays a minor role. We propose that living organisms use CESs for the genes acting on the same physiological pathways, especially for those belonging to stable macromolecular complexes, but CESs have been modeled by evolution to adapt to the specific life circumstances of each organism.
Collapse
Affiliation(s)
- Jaume Forés-Martos
- Instituto de Biotecnología y Biomedicina (Biotecmed), Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain;
| | - Anabel Forte
- Departamento de Estadística e Investigación Operativa, Facultad de Matemáticas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain;
| | - José García-Martínez
- Instituto de Biotecnología y Biomedicina (Biotecmed), Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain;
| | - José E. Pérez-Ortín
- Instituto de Biotecnología y Biomedicina (Biotecmed), Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain;
| |
Collapse
|
28
|
Binder H, Schmidt M, Loeffler-Wirth H, Mortensen LS, Kunz M. Melanoma Single-Cell Biology in Experimental and Clinical Settings. J Clin Med 2021; 10:506. [PMID: 33535416 PMCID: PMC7867095 DOI: 10.3390/jcm10030506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 01/05/2023] Open
Abstract
Cellular heterogeneity is regarded as a major factor for treatment response and resistance in a variety of malignant tumors, including malignant melanoma. More recent developments of single-cell sequencing technology provided deeper insights into this phenomenon. Single-cell data were used to identify prognostic subtypes of melanoma tumors, with a special emphasis on immune cells and fibroblasts in the tumor microenvironment. Moreover, treatment resistance to checkpoint inhibitor therapy has been shown to be associated with a set of differentially expressed immune cell signatures unraveling new targetable intracellular signaling pathways. Characterization of T cell states under checkpoint inhibitor treatment showed that exhausted CD8+ T cell types in melanoma lesions still have a high proliferative index. Other studies identified treatment resistance mechanisms to targeted treatment against the mutated BRAF serine/threonine protein kinase including repression of the melanoma differentiation gene microphthalmia-associated transcription factor (MITF) and induction of AXL receptor tyrosine kinase. Interestingly, treatment resistance mechanisms not only included selection processes of pre-existing subclones but also transition between different states of gene expression. Taken together, single-cell technology has provided deeper insights into melanoma biology and has put forward our understanding of the role of tumor heterogeneity and transcriptional plasticity, which may impact on innovative clinical trial designs and experimental approaches.
Collapse
Affiliation(s)
- Hans Binder
- Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107 Leipzig, Germany; (H.B.); (M.S.); (H.L.-W.); (L.S.M.)
| | - Maria Schmidt
- Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107 Leipzig, Germany; (H.B.); (M.S.); (H.L.-W.); (L.S.M.)
| | - Henry Loeffler-Wirth
- Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107 Leipzig, Germany; (H.B.); (M.S.); (H.L.-W.); (L.S.M.)
| | - Lena Suenke Mortensen
- Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107 Leipzig, Germany; (H.B.); (M.S.); (H.L.-W.); (L.S.M.)
| | - Manfred Kunz
- Department of Dermatology, Venereology and Allergology, University of Leipzig Medical Center, Philipp-Rosenthal-Str. 23-25, 04103 Leipzig, Germany
| |
Collapse
|
29
|
Jamin SP, Hikmet F, Mathieu R, Jégou B, Lindskog C, Chalmel F, Primig M. Combined RNA/tissue profiling identifies novel Cancer/testis genes. Mol Oncol 2021; 15:3003-3023. [PMID: 33426787 PMCID: PMC8564638 DOI: 10.1002/1878-0261.12900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/19/2020] [Accepted: 12/24/2020] [Indexed: 11/14/2022] Open
Abstract
Cancer/Testis (CT) genes are induced in germ cells, repressed in somatic cells, and derepressed in somatic tumors, where these genes can contribute to cancer progression. CT gene identification requires data obtained using standardized protocols and technologies. This is a challenge because data for germ cells, gonads, normal somatic tissues, and a wide range of cancer samples stem from multiple sources and were generated over substantial periods of time. We carried out a GeneChip‐based RNA profiling analysis using our own data for testis and enriched germ cells, data for somatic cancers from the Expression Project for Oncology, and data for normal somatic tissues from the Gene Omnibus Repository. We identified 478 candidate loci that include known CT genes, numerous genes associated with oncogenic processes, and novel candidates that are not referenced in the Cancer/Testis Database (www.cta.lncc.br). We complemented RNA expression data at the protein level for SPESP1, GALNTL5, PDCL2, and C11orf42 using cancer tissue microarrays covering malignant tumors of breast, uterus, thyroid, and kidney, as well as published RNA profiling and immunohistochemical data provided by the Human Protein Atlas (www.proteinatlas.org). We report that combined RNA/tissue profiling identifies novel CT genes that may be of clinical interest as therapeutical targets or biomarkers. Our findings also highlight the challenges of detecting truly germ cell‐specific mRNAs and the proteins they encode in highly heterogenous testicular, somatic, and tumor tissues.
Collapse
Affiliation(s)
- Soazik P Jamin
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S, Univ Rennes, France
| | - Feria Hikmet
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Sweden
| | - Romain Mathieu
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S, Univ Rennes, France.,Department of Urology, University Hospital, Rennes, France
| | - Bernard Jégou
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S, Univ Rennes, France
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Sweden
| | - Frédéric Chalmel
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S, Univ Rennes, France
| | - Michael Primig
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S, Univ Rennes, France
| |
Collapse
|
30
|
Digre A, Lindskog C. The Human Protein Atlas-Spatial localization of the human proteome in health and disease. Protein Sci 2021; 30:218-233. [PMID: 33146890 PMCID: PMC7737765 DOI: 10.1002/pro.3987] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022]
Abstract
For a complete understanding of a system's processes and each protein's role in health and disease, it is essential to study protein expression with a spatial resolution, as the exact location of proteins at tissue, cellular, or subcellular levels is tightly linked to protein function. The Human Protein Atlas (HPA) project is a large-scale initiative aiming at mapping the entire human proteome using antibody-based proteomics and integration of various other omics technologies. The publicly available knowledge resource www.proteinatlas.org is one of the world's most visited biological databases and has been extensively updated during the last few years. The current version is divided into six main sections, each focusing on particular aspects of the human proteome: (a) the Tissue Atlas showing the distribution of proteins across all major tissues and organs in the human body; (b) the Cell Atlas showing the subcellular localization of proteins in single cells; (c) the Pathology Atlas showing the impact of protein levels on survival of patients with cancer; (d) the Blood Atlas showing the expression profiles of blood cells and actively secreted proteins; (e) the Brain Atlas showing the distribution of proteins in human, mouse, and pig brain; and (f) the Metabolic Atlas showing the involvement of proteins in human metabolism. The HPA constitutes an important resource for further understanding of human biology, and the publicly available datasets hold much promise for integration with other emerging efforts focusing on single cell analyses, both at transcriptomic and proteomic level.
Collapse
Affiliation(s)
- Andreas Digre
- Department of Immunology, Genetics and PathologyRudbeck Laboratory, Uppsala UniversityUppsalaSweden
| | - Cecilia Lindskog
- Department of Immunology, Genetics and PathologyRudbeck Laboratory, Uppsala UniversityUppsalaSweden
| |
Collapse
|
31
|
Le Blévec E, Muroňová J, Ray PF, Arnoult C. Paternal epigenetics: Mammalian sperm provide much more than DNA at fertilization. Mol Cell Endocrinol 2020; 518:110964. [PMID: 32738444 DOI: 10.1016/j.mce.2020.110964] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/16/2022]
Abstract
The spermatozoon is a highly differentiated cell with unique characteristics: it is mobile, thanks to its flagellum, and is very compact. The sperm cytoplasm is extremely reduced, containing no ribosomes, and therefore does not allow translation, and its nucleus contains very closed chromatin, preventing transcription. This DNA compaction is linked to the loss of nucleosomes and the replacement of histones by protamines. Based on these characteristics, sperm was considered to simply deliver paternal DNA to the oocyte. However, some parts of the sperm DNA remain organized in a nucleosomal format, and bear epigenetic information. In addition, the nucleus and the cytoplasm contain a multitude of RNAs of different types, including non-coding RNAs (ncRNAs) which also carry epigenetic information. For a long time, these RNAs were considered residues of spermatogenesis. After briefly describing the mechanisms of compaction of sperm DNA, we focus this review on the origin and function of the different ncRNAs. We present studies demonstrating the importance of these RNAs in embryonic development and transgenerational adaptation to stress. We also look at other epigenetic marks, such as DNA methylation or post-translational modifications of histones, and show that they are sensitive to environmental stress and transmissible to offspring. The post-fertilization role of certain sperm-borne proteins is also discussed.
Collapse
Affiliation(s)
- Emilie Le Blévec
- Université Grenoble Alpes, Grenoble, F-38000, France; Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, F-38000, France; IMV Technologies, ZI N° 1 Est, L'Aigle, F-61300, France
| | - Jana Muroňová
- Université Grenoble Alpes, Grenoble, F-38000, France; Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, F-38000, France
| | - Pierre F Ray
- Université Grenoble Alpes, Grenoble, F-38000, France; Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, F-38000, France; CHU de Grenoble, UM GI-DPI, Grenoble, F-38000, France
| | - Christophe Arnoult
- Université Grenoble Alpes, Grenoble, F-38000, France; Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, F-38000, France.
| |
Collapse
|
32
|
Zhang Y, Zhang K, Bu F, Hao P, Yang H, Liu S, Ren Y. D283 Med, a Cell Line Derived from Peritoneal Metastatic Medulloblastoma: A Good Choice for Missing Protein Discovery. J Proteome Res 2020; 19:4857-4866. [DOI: 10.1021/acs.jproteome.0c00743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yuanliang Zhang
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Yantian District, Shenzhen, Guangdong 518083, China
- BGI-Genomics, BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Keren Zhang
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Yantian District, Shenzhen, Guangdong 518083, China
- BGI-Genomics, BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Fanyu Bu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, Guangdong 518083, China
| | - Piliang Hao
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Huanming Yang
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Yantian District, Shenzhen, Guangdong 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Siqi Liu
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Yantian District, Shenzhen, Guangdong 518083, China
- BGI-Genomics, BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Yan Ren
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Yantian District, Shenzhen, Guangdong 518083, China
- BGI-Genomics, BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| |
Collapse
|
33
|
Rai D, Akagi T, Shimohata A, Ishii T, Gangi M, Maruyama T, Wada-Kiyama Y, Ogiwara I, Kaneda M. Involvement of the C-terminal domain in cell surface localization and G-protein coupling of mGluR6. J Neurochem 2020; 158:837-848. [PMID: 33067823 DOI: 10.1111/jnc.15217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 05/25/2020] [Accepted: 10/11/2020] [Indexed: 01/05/2023]
Abstract
Metabotropic glutamate receptor 6, mGluR6, interacts with scaffold proteins and Gβγ subunits via its intracellular C-terminal domain (CTD). The mGluR6 pathway is critically involved in the retinal processing of visual signals. We herein investigated whether the CTD (residues 840-871) was necessary for mGluR6 cell surface localization and G-protein coupling using mGluR6-CTD mutants with immunocytochemistry, surface biotinylation assays, and electrophysiological approaches. We used 293T cells and primary hippocampal neurons as model systems. We examined C-terminally truncated mGluR6 and showed that the removal of up to residue 858 did not affect surface localization or glutamate-induced G-protein-mediated responses, whereas a 15-amino acid deletion (Δ857-871) impaired these functions. However, a 21-amino acid deletion (Δ851-871) restored surface localization and glutamate-dependent responses, which were again attenuated when the entire CTD was removed. The sequence alignment of group III mGluRs showed conserved amino acids resembling an ER retention motif in the CTD. These results suggest that the intracellular CTD is required for the cell surface transportation and receptor function of mGluR6, whereas it may contain regulatory elements for intracellular trafficking and signaling.
Collapse
Affiliation(s)
- Dilip Rai
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Takumi Akagi
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | | | - Toshiyuki Ishii
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Mie Gangi
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Takuma Maruyama
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | | | - Ikuo Ogiwara
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | | |
Collapse
|
34
|
Qiao J, Li W, Bao J, Peng Q, Wen D, Wang J, Sun B. The expression of SARS-CoV-2 receptor ACE2 and CD147, and protease TMPRSS2 in human and mouse brain cells and mouse brain tissues. Biochem Biophys Res Commun 2020; 533:867-871. [PMID: 33008593 PMCID: PMC7489930 DOI: 10.1016/j.bbrc.2020.09.042] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 12/15/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been discovered as the pathogenic cause of the coronavirus disease 19 (COVID-19). Cellular entry of SARS-CoV-2 are mediated by the spike glycoprotein of virus, and the host specific receptors and proteases. Recently, besides pulmonary complications as the chief symptom, investigations have also revealed that SARS-CoV-2 can trigger neurological manifestations. Herein, to investigate the expression level of receptors and related proteases is important for understanding the neuropathy in COVID-19. We determined the expression levels of receptor ACE2 and CD147, and serine protease TMPRSS2 in human and mouse brain cell lines and mouse different region of brain tissues with qRT-PCR and Western blot. The results showed that the expression pattern of all them was very different to that of lung. ACE2 is lower but CD147 is higher expressed in mostly brain cell lines and mouse brain tissues comparing with lung cell line and tissue, and TMPRSS2 has consistent expression in brain cell lines and mouse lung tissues. It is suggested that SARS-CoV-2 might have a different way of infection to cerebral nervous system. Our finding will offer the clues to predict the possibility of SARS-CoV-2 infection to human brain nervous system and pathogenicity.
Collapse
Affiliation(s)
- Jialu Qiao
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Weiling Li
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Jian Bao
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Qian Peng
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Dongmei Wen
- School of Life Sciences, Jianghan University, Wuhan, 430056, China
| | - Jianing Wang
- School of Life Sciences, Jianghan University, Wuhan, 430056, China
| | - Binlian Sun
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China.
| |
Collapse
|
35
|
Jiang C, Ding N, Li J, Jin X, Li L, Pan T, Huo C, Li Y, Xu J, Li X. Landscape of the long non-coding RNA transcriptome in human heart. Brief Bioinform 2020; 20:1812-1825. [PMID: 29939204 DOI: 10.1093/bib/bby052] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/02/2018] [Indexed: 12/15/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been revealed to play essential roles in the human cardiovascular system. However, information about their mechanisms is limited, and a comprehensive view of cardiac lncRNAs is lacking from a multiple tissues perspective to date. Here, the landscape of the lncRNA transcriptome in human heart was summarized. We summarized all lncRNA transcripts from publicly available human transcriptome resources (156 heart samples and 210 samples from 29 other tissues) and systematically analysed all annotated and novel lncRNAs expressed in heart. A total of 7485 lncRNAs whose expression was elevated in heart (HE lncRNAs) and 453 lncRNAs expressed in all 30 analysed tissues (EIA lncRNAs) were extracted. Using various bioinformatics resources, methods and tools, the features of these lncRNAs were discussed from various perspectives, including genomic structure, conservation, dynamic variation during heart development, cis-regulation, differential expression in cardiovascular diseases and cancers as well as regulation at transcriptional and post-transcriptional levels. Afterwards, all the features discussed above were integrated into a user-friendly resource named CARDIO-LNCRNAS (http://bio-bigdata.hrbmu.edu.cn/CARDIO-LNCRNAS/ or http://www.bio-bigdata.net/CARDIO-LNCRNAS/). This study represents the first global view of lncRNAs in the human cardiovascular system based on multiple tissues and sheds light on the role of lncRNAs in developments and heart disorders.
Collapse
Affiliation(s)
- Chunjie Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang, China
| | - Na Ding
- College of Bioinformatics Science and Technology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang, China
| | - Junyi Li
- College of Bioinformatics Science and Technology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang, China
| | - Xiyun Jin
- College of Bioinformatics Science and Technology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang, China
| | - Lili Li
- College of Bioinformatics Science and Technology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang, China
| | - Tao Pan
- College of Bioinformatics Science and Technology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang, China
| | - Caiqin Huo
- College of Bioinformatics Science and Technology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang, China
| | - Yongsheng Li
- College of Bioinformatics Science and Technology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang, China
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang, China
| |
Collapse
|
36
|
Hikmet F, Méar L, Edvinsson Å, Micke P, Uhlén M, Lindskog C. The protein expression profile of ACE2 in human tissues. Mol Syst Biol 2020; 16:e9610. [PMID: 32715618 PMCID: PMC7383091 DOI: 10.15252/msb.20209610] [Citation(s) in RCA: 665] [Impact Index Per Article: 166.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 01/08/2023] Open
Abstract
The novel SARS-coronavirus 2 (SARS-CoV-2) poses a global challenge on healthcare and society. For understanding the susceptibility for SARS-CoV-2 infection, the cell type-specific expression of the host cell surface receptor is necessary. The key protein suggested to be involved in host cell entry is angiotensin I converting enzyme 2 (ACE2). Here, we report the expression pattern of ACE2 across > 150 different cell types corresponding to all major human tissues and organs based on stringent immunohistochemical analysis. The results were compared with several datasets both on the mRNA and protein level. ACE2 expression was mainly observed in enterocytes, renal tubules, gallbladder, cardiomyocytes, male reproductive cells, placental trophoblasts, ductal cells, eye, and vasculature. In the respiratory system, the expression was limited, with no or only low expression in a subset of cells in a few individuals, observed by one antibody only. Our data constitute an important resource for further studies on SARS-CoV-2 host cell entry, in order to understand the biology of the disease and to aid in the development of effective treatments to the viral infection.
Collapse
Affiliation(s)
- Feria Hikmet
- Rudbeck LaboratoryDepartment of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| | - Loren Méar
- Rudbeck LaboratoryDepartment of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| | - Åsa Edvinsson
- Rudbeck LaboratoryDepartment of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| | - Patrick Micke
- Rudbeck LaboratoryDepartment of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| | - Mathias Uhlén
- Science for Life LaboratorySchool of Engineering Sciences in Chemistry, Biotechnology and HealthKTH ‐ Royal Institute of TechnologyStockholmSweden
- Department of NeuroscienceKarolinska InstitutetStockholmSweden
| | - Cecilia Lindskog
- Rudbeck LaboratoryDepartment of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| |
Collapse
|
37
|
Hikmet F, Méar L, Edvinsson Å, Micke P, Uhlén M, Lindskog C. The protein expression profile of ACE2 in human tissues. Mol Syst Biol 2020. [PMID: 32715618 DOI: 10.1101/2020.03.31.016048v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023] Open
Abstract
The novel SARS-coronavirus 2 (SARS-CoV-2) poses a global challenge on healthcare and society. For understanding the susceptibility for SARS-CoV-2 infection, the cell type-specific expression of the host cell surface receptor is necessary. The key protein suggested to be involved in host cell entry is angiotensin I converting enzyme 2 (ACE2). Here, we report the expression pattern of ACE2 across > 150 different cell types corresponding to all major human tissues and organs based on stringent immunohistochemical analysis. The results were compared with several datasets both on the mRNA and protein level. ACE2 expression was mainly observed in enterocytes, renal tubules, gallbladder, cardiomyocytes, male reproductive cells, placental trophoblasts, ductal cells, eye, and vasculature. In the respiratory system, the expression was limited, with no or only low expression in a subset of cells in a few individuals, observed by one antibody only. Our data constitute an important resource for further studies on SARS-CoV-2 host cell entry, in order to understand the biology of the disease and to aid in the development of effective treatments to the viral infection.
Collapse
Affiliation(s)
- Feria Hikmet
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Loren Méar
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Åsa Edvinsson
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Patrick Micke
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Lindskog
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
38
|
Wang Y, Wang Y, Luo W, Huang L, Xiao J, Li F, Qin S, Song X, Wu Y, Zeng Q, Jin F, Wang Y. A comprehensive investigation of the mRNA and protein level of ACE2, the putative receptor of SARS-CoV-2, in human tissues and blood cells. Int J Med Sci 2020; 17:1522-1531. [PMID: 32669955 PMCID: PMC7359402 DOI: 10.7150/ijms.46695] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
The outbreak of pneumonia caused by SARS-CoV-2 posed a great threat to global human health, which urgently requires us to understand comprehensively the mechanism of SARS-CoV-2 infection. Angiotensin-converting enzyme 2 (ACE2) was identified as a functional receptor for SARS-CoV-2, distribution of which may indicate the risk of different human organs vulnerable to SARS-CoV-2 infection. Previous studies investigating the distribution of ACE2 mRNA in human tissues only involved a limited size of the samples and a lack of determination for ACE2 protein. Given the heterogeneity among humans, the datasets covering more tissues with a larger size of samples should be analyzed. Indeed, ACE2 is a membrane and secreted protein, while the expression of ACE2 in blood and common blood cells remains unknown. Herein, the proteomic data in HIPED and the antibody-based immunochemistry result in HPA were collected to analyze the distribution of ACE2 protein in human tissues. The bulk RNA-seq profiles from three separate public datasets including HPA tissue Atlas, GTEx, and FANTOM5 CAGE were also obtained to determine the expression of ACE2 in human tissues. Moreover, the abundance of ACE2 in human blood and blood cells was determined by analyzing the data in the PeptideAtlas and the HPA Blood Atlas. We found that the mRNA expression cannot reflect the abundance of ACE2 factor due to the strong differences between mRNA and protein quantities of ACE2 within and across tissues. Our results suggested that ACE2 protein is mainly expressed in the small intestine, kidney, gallbladder, and testis, while the abundance of which in brain-associated tissues and blood common cells is low. HIPED revealed enrichment of ACE2 protein in the placenta and ovary despite a low mRNA level. Further, human secretome shows that the average concentration of ACE2 protein in the plasma of males is higher than those in females. Our research will be beneficial for understanding the transmission routes and sex-based differences in susceptibility of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yiliang Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
- Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou 510632, P.R, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou 510632, P.R, China
| | - Yun Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, PR China
| | - Weisheng Luo
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
- Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou 510632, P.R, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou 510632, P.R, China
| | - Lianzhou Huang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
- Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou 510632, P.R, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou 510632, P.R, China
| | - Ji Xiao
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
- Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou 510632, P.R, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou 510632, P.R, China
| | - Feng Li
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
- Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou 510632, P.R, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou 510632, P.R, China
| | - Shurong Qin
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
- Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou 510632, P.R, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou 510632, P.R, China
| | - Xiaowei Song
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
- Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou 510632, P.R, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou 510632, P.R, China
| | - Yanting Wu
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
- Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou 510632, P.R, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou 510632, P.R, China
| | - Qiongzhen Zeng
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
- Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou 510632, P.R, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou 510632, P.R, China
| | - Fujun Jin
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
- Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou 510632, P.R, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou 510632, P.R, China
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
- Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou 510632, P.R, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou 510632, P.R, China
| |
Collapse
|
39
|
Sanchez A, Kuras M, Murillo JR, Pla I, Pawlowski K, Szasz AM, Gil J, Nogueira FCS, Perez-Riverol Y, Eriksson J, Appelqvist R, Miliotis T, Kim Y, Baldetorp B, Ingvar C, Olsson H, Lundgren L, Ekedahl H, Horvatovich P, Sugihara Y, Welinder C, Wieslander E, Kwon HJ, Domont GB, Malm J, Rezeli M, Betancourt LH, Marko-Varga G. Novel functional proteins coded by the human genome discovered in metastases of melanoma patients. Cell Biol Toxicol 2020; 36:261-272. [PMID: 31599373 PMCID: PMC7320927 DOI: 10.1007/s10565-019-09494-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/02/2019] [Indexed: 12/18/2022]
Abstract
In the advanced stages, malignant melanoma (MM) has a very poor prognosis. Due to tremendous efforts in cancer research over the last 10 years, and the introduction of novel therapies such as targeted therapies and immunomodulators, the rather dark horizon of the median survival has dramatically changed from under 1 year to several years. With the advent of proteomics, deep-mining studies can reach low-abundant expression levels. The complexity of the proteome, however, still surpasses the dynamic range capabilities of current analytical techniques. Consequently, many predicted protein products with potential biological functions have not yet been verified in experimental proteomic data. This category of 'missing proteins' (MP) is comprised of all proteins that have been predicted but are currently unverified. As part of the initiative launched in 2016 in the USA, the European Cancer Moonshot Center has performed numerous deep proteomics analyses on samples from MM patients. In this study, nine MPs were clearly identified by mass spectrometry in MM metastases. Some MPs significantly correlated with proteins that possess identical PFAM structural domains; and other MPs were significantly associated with cancer-related proteins. This is the first study to our knowledge, where unknown and novel proteins have been annotated in metastatic melanoma tumour tissue.
Collapse
Affiliation(s)
- Aniel Sanchez
- Section for Clinical Chemistry, Department of Translational Medicine, Skåne University Hospital Malmö, Lund University, 205 02, Malmö, Sweden.
| | - Magdalena Kuras
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Jimmy Rodriguez Murillo
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Indira Pla
- Section for Clinical Chemistry, Department of Translational Medicine, Skåne University Hospital Malmö, Lund University, 205 02, Malmö, Sweden
| | - Krzysztof Pawlowski
- Section for Clinical Chemistry, Department of Translational Medicine, Skåne University Hospital Malmö, Lund University, 205 02, Malmö, Sweden
- Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - A Marcell Szasz
- Cancer Center, Semmelweis University, Budapest, 1083, Hungary
| | - Jeovanis Gil
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Fábio C S Nogueira
- Proteomics Unit, Department of Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Proteomics, LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yasset Perez-Riverol
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, CB10 1SD Hinxton, Cambridge, UK
| | - Jonatan Eriksson
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Roger Appelqvist
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | | | - Yonghyo Kim
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Bo Baldetorp
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden
| | - Christian Ingvar
- Department of Surgery, Clinical Sciences, Skåne University Hospital, Lund University, Lund, Sweden
| | - Håkan Olsson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden
| | - Lotta Lundgren
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Henrik Ekedahl
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden
| | - Peter Horvatovich
- Department of Analytical Biochemistry, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Yutaka Sugihara
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden
| | - Charlotte Welinder
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden
| | - Elisabet Wieslander
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden
| | - Ho Jeong Kwon
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Gilberto B Domont
- Proteomics Unit, Department of Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Johan Malm
- Section for Clinical Chemistry, Department of Translational Medicine, Skåne University Hospital Malmö, Lund University, 205 02, Malmö, Sweden
| | - Melinda Rezeli
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Lazaro Hiram Betancourt
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden.
| | - György Marko-Varga
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| |
Collapse
|
40
|
Lv D, Xu K, Jin X, Li J, Shi Y, Zhang M, Jin X, Li Y, Xu J, Li X. LncSpA: LncRNA Spatial Atlas of Expression across Normal and Cancer Tissues. Cancer Res 2020; 80:2067-2071. [DOI: 10.1158/0008-5472.can-19-2687] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/23/2019] [Accepted: 03/09/2020] [Indexed: 11/16/2022]
|
41
|
Mass-spectrometry-based draft of the Arabidopsis proteome. Nature 2020; 579:409-414. [PMID: 32188942 DOI: 10.1038/s41586-020-2094-2] [Citation(s) in RCA: 261] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 01/17/2020] [Indexed: 01/05/2023]
Abstract
Plants are essential for life and are extremely diverse organisms with unique molecular capabilities1. Here we present a quantitative atlas of the transcriptomes, proteomes and phosphoproteomes of 30 tissues of the model plant Arabidopsis thaliana. Our analysis provides initial answers to how many genes exist as proteins (more than 18,000), where they are expressed, in which approximate quantities (a dynamic range of more than six orders of magnitude) and to what extent they are phosphorylated (over 43,000 sites). We present examples of how the data may be used, such as to discover proteins that are translated from short open-reading frames, to uncover sequence motifs that are involved in the regulation of protein production, and to identify tissue-specific protein complexes or phosphorylation-mediated signalling events. Interactive access to this resource for the plant community is provided by the ProteomicsDB and ATHENA databases, which include powerful bioinformatics tools to explore and characterize Arabidopsis proteins, their modifications and interactions.
Collapse
|
42
|
Kataka E, Zaucha J, Frishman G, Ruepp A, Frishman D. Edgetic perturbation signatures represent known and novel cancer biomarkers. Sci Rep 2020; 10:4350. [PMID: 32152446 PMCID: PMC7062722 DOI: 10.1038/s41598-020-61422-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/20/2020] [Indexed: 02/07/2023] Open
Abstract
Isoform switching is a recently characterized hallmark of cancer, and often translates to the loss or gain of domains mediating protein interactions and thus, the re-wiring of the interactome. Recent computational tools leverage domain-domain interaction data to resolve the condition-specific interaction networks from RNA-Seq data accounting for the domain content of the primary transcripts expressed. Here, we used The Cancer Genome Atlas RNA-Seq datasets to generate 642 patient-specific pairs of interactomes corresponding to both the tumor and the healthy tissues across 13 cancer types. The comparison of these interactomes provided a list of patient-specific edgetic perturbations of the interactomes associated with the cancerous state. We found that among the identified perturbations, select sets are robustly shared between patients at the multi-cancer, cancer-specific and cancer sub-type specific levels. Interestingly, the majority of the alterations do not directly involve significantly mutated genes, nevertheless, they strongly correlate with patient survival. The findings (available at EdgeExplorer: “http://webclu.bio.wzw.tum.de/EdgeExplorer”) are a new source of potential biomarkers for classifying cancer types and the proteins we identified are potential anti-cancer therapy targets.
Collapse
Affiliation(s)
- Evans Kataka
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Maximus-von-Imhof-Forum 3, 85354, Freising, Germany
| | - Jan Zaucha
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Maximus-von-Imhof-Forum 3, 85354, Freising, Germany
| | - Goar Frishman
- Institute of Experimental Genetics (IEG), Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Andreas Ruepp
- Institute of Experimental Genetics (IEG), Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Dmitrij Frishman
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Maximus-von-Imhof-Forum 3, 85354, Freising, Germany. .,Laboratory of Bioinformatics, RASA Research Center, St Petersburg State Polytechnic University, St Petersburg, 195251, Russia.
| |
Collapse
|
43
|
Chronister WD, Burbulis IE, Wierman MB, Wolpert MJ, Haakenson MF, Smith ACB, Kleinman JE, Hyde TM, Weinberger DR, Bekiranov S, McConnell MJ. Neurons with Complex Karyotypes Are Rare in Aged Human Neocortex. Cell Rep 2020; 26:825-835.e7. [PMID: 30673605 DOI: 10.1016/j.celrep.2018.12.107] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/04/2018] [Accepted: 12/26/2018] [Indexed: 11/26/2022] Open
Abstract
A subset of human neocortical neurons harbors complex karyotypes wherein megabase-scale copy-number variants (CNVs) alter allelic diversity. Divergent levels of neurons with complex karyotypes (CNV neurons) are reported in different individuals, yet genome-wide and familial studies implicitly assume a single brain genome when assessing the genetic risk architecture of neurological disease. We assembled a brain CNV atlas using a robust computational approach applied to a new dataset (>800 neurons from 5 neurotypical individuals) and to published data from 10 additional neurotypical individuals. The atlas reveals that the frequency of neocortical neurons with complex karyotypes varies widely among individuals, but this variability is not readily accounted for by tissue quality or CNV detection approach. Rather, the age of the individual is anti-correlated with CNV neuron frequency. Fewer CNV neurons are observed in aged individuals than in young individuals.
Collapse
Affiliation(s)
- William D Chronister
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Ian E Burbulis
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Universidad San Sebastian, Escuela de Medicina, Sede de la Patagonia, Puerto Montt, Chile
| | - Margaret B Wierman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Matthew J Wolpert
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Mark F Haakenson
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Aiden C B Smith
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Michael J McConnell
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Child Health Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
44
|
Ponce-de-León M, Apaolaza I, Valencia A, Planes FJ. On the inconsistent treatment of gene-protein-reaction rules in context-specific metabolic models. Bioinformatics 2020; 36:1986-1988. [PMID: 31722383 PMCID: PMC8662768 DOI: 10.1093/bioinformatics/btz832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 10/22/2019] [Accepted: 11/12/2019] [Indexed: 11/12/2022] Open
Abstract
Supplementary information:Supplementary data are
available at Bioinformatics online.
Collapse
Affiliation(s)
- Miguel Ponce-de-León
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona 08034, Spain
| | - Iñigo Apaolaza
- Tecnun School of Engineering, University of Navarra, San Sebastián 20018, Spain
| | - Alfonso Valencia
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona 08034, Spain.,ICREA, Barcelona 08010, Spain
| | - Francisco J Planes
- Tecnun School of Engineering, University of Navarra, San Sebastián 20018, Spain
| |
Collapse
|
45
|
Hekselman I, Yeger-Lotem E. Mechanisms of tissue and cell-type specificity in heritable traits and diseases. Nat Rev Genet 2020; 21:137-150. [DOI: 10.1038/s41576-019-0200-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2019] [Indexed: 02/07/2023]
|
46
|
Rawls K, Dougherty BV, Papin J. Metabolic Network Reconstructions to Predict Drug Targets and Off-Target Effects. Methods Mol Biol 2020; 2088:315-330. [PMID: 31893380 DOI: 10.1007/978-1-0716-0159-4_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The drug development pipeline has stalled because of the difficulty in identifying new drug targets while minimizing off-target effects. Computational methods, such as the use of metabolic network reconstructions, may provide a cost-effective platform to test new hypotheses for drug targets and prevent off-target effects. Here, we summarize available methods to identify drug targets and off-target effects using either reaction-centric, gene-centric, or metabolite-centric approaches with genome-scale metabolic network reconstructions.
Collapse
Affiliation(s)
- Kristopher Rawls
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Bonnie V Dougherty
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Jason Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
47
|
Abstract
The metabolic activity of a mammalian cell changes dynamically over time and is tied to the changing metabolic demands of cellular processes such as cell differentiation and proliferation. While experimental tools like time-course metabolomics and flux tracing can measure the dynamics of a few pathways, they are unable to infer fluxes at the whole network level. To address this limitation, we have developed the Dynamic Flux Activity (DFA) algorithm, a genome-scale modeling approach that uses time-course metabolomics to predict dynamic flux rewiring during transitions between metabolic states. This chapter provides a protocol for applying DFA to characterize the dynamic metabolic activity of various cancer cell lines.
Collapse
|
48
|
Zhang Y, Lin Z, Tan Y, Bu F, Hao P, Zhang K, Yang H, Liu S, Ren Y. Exploration of Missing Proteins by a Combination Approach to Enrich the Low-Abundance Hydrophobic Proteins from Four Cancer Cell Lines. J Proteome Res 2019; 19:401-408. [DOI: 10.1021/acs.jproteome.9b00590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Yuanliang Zhang
- BGI-Shenzhen, Beishan Industrial Zone, 11th Building, Yantian District, Shenzhen 518083, Guangdong, China
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen 518083, China
| | - Zhilong Lin
- BGI-Shenzhen, Beishan Industrial Zone, 11th Building, Yantian District, Shenzhen 518083, Guangdong, China
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen 518083, China
| | - Yifan Tan
- BGI-Shenzhen, Beishan Industrial Zone, 11th Building, Yantian District, Shenzhen 518083, Guangdong, China
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen 518083, China
| | - Fanyu Bu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, Guangdong, China
| | - Piliang Hao
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Keren Zhang
- BGI-Shenzhen, Beishan Industrial Zone, 11th Building, Yantian District, Shenzhen 518083, Guangdong, China
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen 518083, China
| | - Huanming Yang
- BGI-Shenzhen, Beishan Industrial Zone, 11th Building, Yantian District, Shenzhen 518083, Guangdong, China
- James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Siqi Liu
- BGI-Shenzhen, Beishan Industrial Zone, 11th Building, Yantian District, Shenzhen 518083, Guangdong, China
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen 518083, China
| | - Yan Ren
- BGI-Shenzhen, Beishan Industrial Zone, 11th Building, Yantian District, Shenzhen 518083, Guangdong, China
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen 518083, China
| |
Collapse
|
49
|
Vandenbrouck Y, Christiany D, Combes F, Loux V, Brun V. Bioinformatics Tools and Workflow to Select Blood Biomarkers for Early Cancer Diagnosis: An Application to Pancreatic Cancer. Proteomics 2019; 19:e1800489. [DOI: 10.1002/pmic.201800489] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/11/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Yves Vandenbrouck
- University of Grenoble Alpes, INSERM, CEA, IRIG‐BGE, U1038 Grenoble 38000 France
| | - David Christiany
- University of Grenoble Alpes, INSERM, CEA, IRIG‐BGE, U1038 Grenoble 38000 France
- MaIAGE, INRA, Université Paris‐Saclay Jouy‐en‐Josas 78350 France
| | - Florence Combes
- University of Grenoble Alpes, INSERM, CEA, IRIG‐BGE, U1038 Grenoble 38000 France
| | - Valentin Loux
- MaIAGE, INRA, Université Paris‐Saclay Jouy‐en‐Josas 78350 France
| | - Virginie Brun
- University of Grenoble Alpes, INSERM, CEA, IRIG‐BGE, U1038 Grenoble 38000 France
| |
Collapse
|
50
|
Bazzell BG, Rainey WE, Auchus RJ, Zocco D, Bruttini M, Hummel SL, Byrd JB. Human Urinary mRNA as a Biomarker of Cardiovascular Disease. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 11:e002213. [PMID: 30354328 PMCID: PMC6760265 DOI: 10.1161/circgen.118.002213] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Supplemental Digital Content is available in the text. Background mRNA in urine supernatant (US-mRNA) might encode information about renal and cardiorenal pathophysiology, including hypertension. H, whether the US-mRNA transcriptome reflects that of renal tissues and whether changes in renal physiology are detectable using US-mRNA is unknown. Methods We compared transcriptomes of human urinary extracellular vesicles and human renal cortex. To avoid similarities attributable to ubiquitously expressed genes, we separately analyzed ubiquitously expressed and highly kidney-enriched genes. To determine whether US-mRNA reflects changes in renal gene expression, we assayed cell-depleted urine for transcription factor activity of mineralocorticoid receptors (MR) using probe-based quantitative polymerase chain reaction. The urine was collected from prehypertensive individuals (n=18) after 4 days on low-sodium diet to stimulate MR activity and again after suppression of MR activity via sodium infusion. Results In comparing this US-mRNA and human kidney cortex, expression of 55 highly kidney-enriched genes correlated strongly (rs=0.82) while 8457 ubiquitously expressed genes correlated moderately (rs=0.63). Standard renin-angiotensin-aldosterone system phenotyping confirmed the expected response to sodium loading. Cycle threshold values for MR-regulated targets (SCNN1A, SCNN1G, TSC22D3) changed after sodium loading, and MR-regulated targets (SCNN1A, SCNN1G, SGK1, and TSC22D3) correlated significantly with serum aldosterone and inversely with urinary sodium excretion. Conclusions RNA-sequencing of urinary extracellular vesicles shows concordance with human kidney. Perturbation in human endocrine signaling (MR activation) was accompanied by changes in mRNA in urine supernatant. Our findings could be useful for individualizing pharmacological therapy in patients with disorders of mineralocorticoid signaling, such as resistant hypertension. More generally, these insights could be used to noninvasively identify putative biomarkers of disordered renal and cardiorenal physiology.
Collapse
Affiliation(s)
- Brian G Bazzell
- Departments of Internal Medicine, University of Michigan, Ann Arbor (B.G.B., R.J.A., S.L.H., J.B.B.)
| | - William E Rainey
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor (W.E.R.)
| | - Richard J Auchus
- Departments of Internal Medicine, University of Michigan, Ann Arbor (B.G.B., R.J.A., S.L.H., J.B.B.)
| | | | - Marco Bruttini
- Department of Life Sciences, Università degli Studi di Siena, Italy (M.B.)
| | - Scott L Hummel
- Departments of Internal Medicine, University of Michigan, Ann Arbor (B.G.B., R.J.A., S.L.H., J.B.B.).,Section of Cardiology, Ann Arbor Veterans Affairs Medical Center, MI (S.L.H.)
| | - James Brian Byrd
- Departments of Internal Medicine, University of Michigan, Ann Arbor (B.G.B., R.J.A., S.L.H., J.B.B.)
| |
Collapse
|