1
|
González-Ramírez EJ, García-Arribas AB, Artetxe I, Shaw WA, Goñi FM, Alonso A, Jiménez-Rojo N. (1-Deoxy)ceramides in bilayers containing sphingomyelin and cholesterol. Colloids Surf B Biointerfaces 2024; 243:114155. [PMID: 39137529 DOI: 10.1016/j.colsurfb.2024.114155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
The discovery of a novel sphingolipid subclass, the (1-deoxy)sphingolipids, which lack the 1-hydroxy group, attracted considerable attention in the last decade, mainly due to their involvement in disease. They differed in their physico-chemical properties from the canonical (or 1-hydroxy) sphingolipids and they were more toxic when accumulated in cells, inducing neurodegeneration and other dysfunctions. (1-Deoxy)ceramides, (1-deoxy)dihydroceramides, and (1- deoxymethyl)dihydroceramides, the latter two containing a saturated sphingoid chain, have been studied in this work using differential scanning calorimetry, confocal fluorescence and atomic force microscopy, to evaluate their behavior in bilayers composed of mixtures of three or four lipids. When compared to canonical ceramides (Cer), a C16:0 (1-deoxy)Cer shows a lower miscibility in mixtures of the kind C16:0 sphingomyelin/cholesterol/XCer, where XCer is any (1-deoxy)ceramide, giving rise to the coexistence of a liquid-ordered phase and a gel phase. The latter resembles, in terms of thermotropic behavior and nanomechanical resistance, the gel phase of the C16:0 sphingomyelin/cholesterol/C16:0 Cer mixture [Busto et al., Biophys. J. 2014, 106, 621-630]. Differences are seen between the various C16:0 XCer under study in terms of nanomechanical resistance, bilayer thickness and bilayer topography. When examined in a more fluid environment (bilayers based on C24:1 SM), segregated gel phases are still present. Probably related to such lateral separation, XCer preserve the capacity for membrane permeation, but their effects are significantly lower than those of canonical ceramides. Moreover, C24:1 XCer show significantly lower membrane permeation capacity than their C16:0 counterparts. The above data may be relevant in the pathogenesis of certain sphingolipid-related diseases, including certain neuropathies, diabetes, and glycogen storage diseases.
Collapse
Affiliation(s)
- E J González-Ramírez
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry, University of the Basque Country, Leioa, 48940, Spain
| | - A B García-Arribas
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry, University of the Basque Country, Leioa, 48940, Spain
| | - I Artetxe
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry, University of the Basque Country, Leioa, 48940, Spain
| | - W A Shaw
- Avanti Polar Lipids, Alabaster, AL, USA
| | - F M Goñi
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry, University of the Basque Country, Leioa, 48940, Spain
| | - A Alonso
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry, University of the Basque Country, Leioa, 48940, Spain.
| | - N Jiménez-Rojo
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry, University of the Basque Country, Leioa, 48940, Spain.
| |
Collapse
|
2
|
Read H, Benaglia S, Fumagalli L. Structure and thermodynamics of supported lipid membranes on hydrophobic van der Waals surfaces. SOFT MATTER 2024; 20:5724-5732. [PMID: 38979701 PMCID: PMC11268427 DOI: 10.1039/d4sm00365a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024]
Abstract
Understanding the adsorption and physical characteristics of supported lipid membranes is crucial for their effective use as model cell membranes. Their morphological and thermodynamic properties at the nanoscale have traditionally been studied on hydrophilic substrates, such as mica and silicon oxide, which have proved to facilitate the reconstruction of biomembranes. However, in more recent years, with the advent of the van der Waals crystals technology, two-dimensional crystals such as graphene have been proposed as potential substrates in biosensing devices. Membranes formed on these crystals are expected to behave differently owing to their intrinsic hydrophobicity, however thus far knowledge of their morphological and thermodynamic properties is lacking. Here we present a comprehensive nanoscale analysis of the adsorption of phosphatidylcholine lipid monolayers on two of the most commonly used van der Waals crystals, graphite and hexagonal boron nitride. Both morphological and thermodynamic properties of the lipid membranes were investigated using temperature-controlled atomic force microscopy. Our experiments show that the lipids adsorb onto the crystals, forming monolayers with their orientation dependent upon their concentration. Furthermore, we found that the hydrophobicity of van der Waals crystals determines a strong increase in the transition temperature of the lipid monolayer compared to that observed on hydrophilic substrates. These results are important for understanding the properties of lipid membranes at solid surfaces and extending their use to novel drug delivery and biosensing devices made of van der Waals crystals.
Collapse
Affiliation(s)
- Harriet Read
- Department of Physics & Astronomy University of Manchester, Manchester, M13 9PL, UK.
- National Graphene Institute, University of Manchester, Manchester, M13 9PL, UK
| | - Simone Benaglia
- Department of Physics & Astronomy University of Manchester, Manchester, M13 9PL, UK.
- National Graphene Institute, University of Manchester, Manchester, M13 9PL, UK
| | - Laura Fumagalli
- Department of Physics & Astronomy University of Manchester, Manchester, M13 9PL, UK.
- National Graphene Institute, University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|
3
|
Benaglia S, Read H, Fumagalli L. Atomic-scale structure of interfacial water on gel and liquid phase lipid membranes. Faraday Discuss 2024; 249:453-468. [PMID: 37781876 PMCID: PMC10845012 DOI: 10.1039/d3fd00094j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/19/2023] [Indexed: 10/03/2023]
Abstract
Hydration of biological membranes is essential to a wide range of biological processes. In particular, it is intrinsically linked to lipid thermodynamic properties, which in turn influence key cell functions such as ion permeation and protein mobility. Experimental and theoretical studies of the surface of biomembranes have revealed the presence of an interfacial repulsive force, which has been linked to hydration or steric effects. Here, we directly characterise the atomic-scale structure of water near supported lipid membranes of 1,2-dimyristoyl-sn-glycero-3-phosphocholine in their gel and liquid phase through three-dimensional atomic force microscopy (3D AFM). First, we demonstrate the ability to probe the morphology of interfacial water of lipid bilayers in both phases with sub-molecular resolution by using ultrasharp tips. We then visualise the molecular arrangement of water at the lipid surface at different temperatures. Our experiments reveal that water is organised in multiple hydration layers on both the solid-ordered and liquid-disordered lipid phases. Furthermore, we observe a monotonic repulsive force, which becomes relevant only in the liquid phase. These results offer new insights into the water structuring near soft biological surfaces, and demonstrate the importance of investigating it with vertical and lateral sub-molecular resolution.
Collapse
Affiliation(s)
- Simone Benaglia
- Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, UK.
- National Graphene Institute, University of Manchester, M13 9PL, UK
| | - Harriet Read
- Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, UK.
- National Graphene Institute, University of Manchester, M13 9PL, UK
| | - Laura Fumagalli
- Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, UK.
- National Graphene Institute, University of Manchester, M13 9PL, UK
| |
Collapse
|
4
|
Träger J, Meister A, Hause G, Harauz G, Hinderberger D. Shaping membrane interfaces in lipid vesicles mimicking the cytoplasmic leaflet of myelin through variation of cholesterol and myelin basic protein contents. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184179. [PMID: 37244538 DOI: 10.1016/j.bbamem.2023.184179] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/23/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
Myelin basic protein (MBP) is an intrinsically disordered protein and in the central nervous system (CNS) mainly responsible for connecting the cytoplasmic surfaces of the multilamellar, compact myelin. Increased posttranslational modification of MBP is linked to both, the natural development (from adolescent to adult brains) of myelin, and features of multiple sclerosis. Here, we study how a combination of this intrinsically disordered myelin protein with varying the natural cholesterol content may alter the characteristics of myelin-like membranes and interactions between these membranes. Large unilamellar vesicles (LUVs) with a composition mimicking the cytoplasmic leaflet of myelin were chosen as the model system, in which different parameters contributing to the interactions between the lipid membrane and MBP were investigated. While we use cryo-transmission electron microscopy (TEM) for imaging, dynamic light scattering (DLS) and electrophoretic measurements through continuously-monitored phase-analysis light scattering (cmPALS) were used for a more global overview of particle size and charge, and electron paramagnetic resonance (EPR) spectroscopy was utilized for local behavior of lipids in the vesicles' membranes in aqueous solution. The cholesterol content was varied from 060 % in these LUVs and measurements were performed in the presence and absence of MBP. We find that the composition of the lipid layers is relevant to the interaction with MBP. Not only the size, the shape and the aggregation behavior of the vesicles depend on the cholesterol content, but also within each membrane, cholesterol's freedom of movement, its environmental polarity and its distribution were found to depend on the content using the EPR-active spin-labeled cholesterol (CSOSL). In addition, DLS and EPR measurements probing the transition temperatures of the lipid phases allow a correlation of specific behavior with the human body temperature of 37 °C. Overall, our results aid in understanding the importance of the native cholesterol content in the healthy myelin membrane, which serves as the basis for stable and optimum protein-bilayer interactions. Although studied in this specific myelin-like system, from a more general and materials science-oriented point of view, we could establish how membrane and vesicle properties depend on cholesterol and/or MBP content, which might be useful generally when specific membrane and vesicle characteristics are sought for.
Collapse
Affiliation(s)
- Jennica Träger
- Institute of Chemistry, Physical Chemistry - Complex Self-organizing Systems, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Saxony-Anhalt, Germany; Interdisciplinary Research Center HALOmem at the Martin-Luther-Universität Halle-Wittenberg, Germany
| | - Annette Meister
- Interdisciplinary Research Center HALOmem at the Martin-Luther-Universität Halle-Wittenberg, Germany; Institute of Biochemistry, Physical Biotechnology, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Gerd Hause
- Biocenter, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - George Harauz
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Dariush Hinderberger
- Institute of Chemistry, Physical Chemistry - Complex Self-organizing Systems, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Saxony-Anhalt, Germany; Interdisciplinary Research Center HALOmem at the Martin-Luther-Universität Halle-Wittenberg, Germany.
| |
Collapse
|
5
|
González-Ramírez EJ, Etxaniz A, Alonso A, Goñi FM. Phase behaviour of C18-N-acyl sphingolipids, the prevalent species in human brain. Colloids Surf B Biointerfaces 2022; 219:112855. [PMID: 36137336 DOI: 10.1016/j.colsurfb.2022.112855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 10/31/2022]
Abstract
Lipidomic analysis of the N-acyl components of sphingolipids in different mammalian tissues had revealed that brain tissue differed from all the other samples in that SM contained mainly C18:0 and C24:1N-acyl chains, and that the most abundant Cer species was C18:0. Only in the nervous system was C18:0 found in sizable proportions. The high levels of C18:0 and C16:0, respectively in brain and non-brain SM, were important because SM is by far the most abundant sphingolipid in the plasma membrane. In view of these observations, the present paper is devoted to a comparative study of the properties of C16:0 and C18:0 sphingolipids (SM and Cer) pure and in mixtures of increasing complexities, using differential scanning calorimetry, confocal microscopy of giant unilamellar vesicles, and correlative fluorescence microscopy and atomic force microscopy of supported lipid bilayers. Membrane rigidity was measured by force spectroscopy. It was found that in mixtures containing dioleoyl phosphatidylcholine, sphingomyelin and cholesterol, i.e. representing the lipids predominant in the outer monolayer of cell membranes, lateral inhomogeneities occurred, with the formation of rigid domains within a continuous fluid phase. Inclusion of saturated Cer in the system was always found to increase the rigidity of the segregated domains. C18:0-based sphingolipids exhibit hydrocarbon chain-length asymmetry, and some singularities observed with this N-acyl chain, e.g. complex calorimetric endotherms, could be attributed to this property. Moreover, C18:0-based sphingolipids, that are typical of the excitable cells, were less miscible with the fluid phase than their C16:0 counterparts. The results could be interpreted as suggesting that the predominance of C18:0 Cer in the nervous system would contribute to the tightness of its plasma membranes, thus facilitating maintenance of the ion gradients.
Collapse
Affiliation(s)
- Emilio J González-Ramírez
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry, University of the Basque Country, 48940 Leioa, Spain
| | - Asier Etxaniz
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry, University of the Basque Country, 48940 Leioa, Spain
| | - Alicia Alonso
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry, University of the Basque Country, 48940 Leioa, Spain.
| | - Félix M Goñi
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry, University of the Basque Country, 48940 Leioa, Spain
| |
Collapse
|
6
|
Abou Karam P, Rosenhek‐Goldian I, Ziv T, Ben Ami Pilo H, Azuri I, Rivkin A, Kiper E, Rotkopf R, Cohen SR, Torrecilhas AC, Avinoam O, Rojas A, Morandi MI, Regev‐Rudzki N. Malaria parasites release vesicle subpopulations with signatures of different destinations. EMBO Rep 2022; 23:e54755. [PMID: 35642585 PMCID: PMC9253735 DOI: 10.15252/embr.202254755] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/02/2022] [Accepted: 05/11/2022] [Indexed: 11/09/2022] Open
Abstract
Malaria is the most serious mosquito-borne parasitic disease, caused mainly by the intracellular parasite Plasmodium falciparum. The parasite invades human red blood cells and releases extracellular vesicles (EVs) to alter its host responses. It becomes clear that EVs are generally composed of sub-populations. Seeking to identify EV subpopulations, we subject malaria-derived EVs to size-separation analysis, using asymmetric flow field-flow fractionation. Multi-technique analysis reveals surprising characteristics: we identify two distinct EV subpopulations differing in size and protein content. Small EVs are enriched in complement-system proteins and large EVs in proteasome subunits. We then measure the membrane fusion abilities of each subpopulation with three types of host cellular membranes: plasma, late and early endosome. Remarkably, small EVs fuse to early endosome liposomes at significantly greater levels than large EVs. Atomic force microscope imaging combined with machine-learning methods further emphasizes the difference in biophysical properties between the two subpopulations. These results shed light on the sophisticated mechanism by which malaria parasites utilize EV subpopulations as a communication tool to target different cellular destinations or host systems.
Collapse
Affiliation(s)
- Paula Abou Karam
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | | | - Tamar Ziv
- Smoler Proteomics CenterDepartment of BiologyTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Hila Ben Ami Pilo
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Ido Azuri
- Bioinformatics UnitLife Sciences Core FacilitiesWeizmann Institute of ScienceRehovotIsrael
| | - Anna Rivkin
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Edo Kiper
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Ron Rotkopf
- Bioinformatics UnitLife Sciences Core FacilitiesWeizmann Institute of ScienceRehovotIsrael
| | - Sidney R Cohen
- Department of Chemical Research SupportWeizmann Institute of ScienceRehovotIsrael
| | | | - Ori Avinoam
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Alicia Rojas
- Laboratory of HelminthologyFaculty of MicrobiologyUniversity of Costa RicaSan JoséCosta Rica
| | - Mattia I Morandi
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Neta Regev‐Rudzki
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
7
|
Maleš P, Brkljača Z, Domazet Jurašin D, Bakarić D. New spirit of an old technique: Characterization of lipid phase transitions via UV/Vis spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:121013. [PMID: 35176647 DOI: 10.1016/j.saa.2022.121013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/26/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
One of the advantages of investigating lipid phase transitions by thermoanalytical techniques such as DSC is manifested in the proportionality of the signal strength on a DSC curve, attributed to a particular thermotropic event, and its cooperativity degree. Accordingly, the pretransition of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) is less noticeable than its main phase transition; as a matter of fact, when DSC measurements are performed at low heating rate, such low-cooperativity phase transition could go (almost) unnoticed. The aim of this work is to present temperature-dependent UV/Vis spectroscopy, based on a temperature-dependent change in DPPC suspension turbidity, as a technique applicable for determination of lipid phase transition temperatures. Multivariate analyzes of the acquired UV/Vis spectra show that phase transitions of the low-cooperativity degree, such as pretransitions, can be identified with the same certainty as transitions of a high-cooperativity degree.
Collapse
Affiliation(s)
- Petra Maleš
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia
| | - Zlatko Brkljača
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia
| | - Darija Domazet Jurašin
- Division for Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia
| | - Danijela Bakarić
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia.
| |
Collapse
|
8
|
Khadka NK, Mortimer MF, Marosvari M, Timsina R, Mainali L. Membrane elasticity modulated by cholesterol in model of porcine eye lens-lipid membrane. Exp Eye Res 2022; 220:109131. [PMID: 35636489 PMCID: PMC10131281 DOI: 10.1016/j.exer.2022.109131] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 05/08/2022] [Accepted: 05/22/2022] [Indexed: 11/29/2022]
Abstract
Experimental evidence shows that the eye lens loses its elasticity dramatically with age. It has also been reported that the cholesterol (Chol) content in the eye lens fiber cell plasma membrane increases significantly with age. High Chol content leads to the formation of cholesterol bilayer domains (CBDs) in the lens membrane. The role of high Chol associated with lens elasticity is unclear. The purpose of this research is to investigate the membrane elasticity of the model of porcine lens-lipid (MPLL) membrane with increasing Chol content to elucidate the role of high Chol in lens membrane elasticity. In this study, we used atomic force microscopy (AFM) to study the mechanical properties (breakthrough force and area compressibility modulus (KA)) of the MPLL membrane with increasing Chol content where KA is the measure of membrane elasticity. We varied Chol concentration in Chol/MPLL membrane from 0 to ∼71 mol%. Supported Chol/MPLL membranes were prepared by fusion of small unilamellar vesicles (SUVs) on top of a flat mica surface. SUVs of the Chol/MPLL lipid mixture were prepared with the rapid solvent exchange method followed by probe-tip sonication. For the Chol/MPLL mixing ratio of 0, AFM image showed the formation of two distinct phases of the membrane, i.e., liquid-disordered phase (ld) and solid-ordered phase (so) membrane. However, with Chol/MPLL mixing ratio of 0.5 and above, only liquid-ordered phase (lo) membrane was formed. Also, two distinct breakthrough forces corresponding to ld and so were observed for Chol/MPLL mixing ratio of 0, whereas only one breakthrough force was observed for membranes with Chol/MPLL mixing ratio of 0.5 and above. No significant difference in the membrane surface roughness was measured with increasing Chol content for these membranes; however, breakthrough force and KA for lo membrane increased when Chol/MPLL mixing ratio was increased from 0.5 to 1. Interestingly above the Chol/MPLL mixing ratio of 1, both breakthrough force and KA decreased, indicating the formation of CBDs. Furthermore, these results showed that membrane elasticity increases at high Chol content, suggesting that high Chol content in lens membrane might be responsible for maintaining lens membrane elasticity.
Collapse
Affiliation(s)
- Nawal K Khadka
- Department of Physics, Boise State University, Boise, ID, USA
| | | | - Mason Marosvari
- Department of Physics, Boise State University, Boise, ID, USA
| | - Raju Timsina
- Department of Physics, Boise State University, Boise, ID, USA
| | - Laxman Mainali
- Department of Physics, Boise State University, Boise, ID, USA; Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, USA.
| |
Collapse
|
9
|
Insights into molecular mechanism of action of citrus flavonoids hesperidin and naringin on lipid bilayers using spectroscopic, calorimetric, microscopic and theoretical studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118411] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Vázquez RF, Ovalle-García E, Antillón A, Ortega-Blake I, Muñoz-Garay C, Maté SM. Formation and Nanoscale Characterization of Asymmetric Supported Lipid Bilayers Containing Raft-Like Domains. Methods Mol Biol 2022; 2402:243-256. [PMID: 34854049 DOI: 10.1007/978-1-0716-1843-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of new strategies for achieving stable asymmetric membrane models has turned interleaflet lipid asymmetry into a topic of major interest. Cyclodextrin-mediated lipid exchange constitutes a simple and versatile method for preparing asymmetric membrane models without the need for sophisticated equipment. Here we describe a protocol for preparing asymmetric supported lipid bilayers mimicking membrane rafts by cyclodextrin-mediated lipid exchange and the main guidelines for obtaining structural information and quantitative measures of their mechanical properties using Atomic force microscopy and Force spectroscopy; two powerful techniques that allow membrane characterization at the nanoscale.
Collapse
Affiliation(s)
- Romina F Vázquez
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT-La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina.
- Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.
| | - Erasmo Ovalle-García
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Armando Antillón
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Iván Ortega-Blake
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Carlos Muñoz-Garay
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Sabina M Maté
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT-La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina.
| |
Collapse
|
11
|
Spustova K, Xue L, Ryskulov R, Jesorka A, Gözen I. Manipulation of Lipid Membranes with Thermal Stimuli. Methods Mol Biol 2022; 2402:209-225. [PMID: 34854047 DOI: 10.1007/978-1-0716-1843-1_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We describe a protocol for the assembly and application of infrared (IR-B) laser-based set-ups to be used for localized heating of solid-supported planar and vesicular lipid membrane assemblies.
Collapse
Affiliation(s)
- Karolina Spustova
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Lin Xue
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ruslan Ryskulov
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Aldo Jesorka
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, Sweden.
| | - Irep Gözen
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, Norway.
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
12
|
Sabin J, Alatorre-Meda M, Miñones J, Domínguez-Arca V, Prieto G. New insights on the mechanism of polyethylenimine transfection and their implications on gene therapy and DNA vaccines. Colloids Surf B Biointerfaces 2021; 210:112219. [PMID: 34836707 DOI: 10.1016/j.colsurfb.2021.112219] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/30/2021] [Accepted: 11/12/2021] [Indexed: 12/28/2022]
Abstract
Polyethylenimine (PEI) has been demonstrated as an efficient DNA delivery vehicle both in vitro and in vivo. There is a consensus that PEI-DNA complexes enter the cells by endocytosis and escape from endosomes by the so-called "proton sponge" effect. However, little is known on how and where the polyplexes are de-complexed for DNA transcription and replication to occur inside the cell nucleus. To better understand this issue, we (i) tracked the cell internalization of PEI upon transfection to human epithelial cells and (ii) studied the interaction of PEI with phospholipidic layers mimicking nuclear membranes. Both the biological and physicochemical experiments provided evidence of a strong binding affinity between PEI and the lipidic bilayer. Firstly, confocal microscopy revealed that PEI alone could not penetrate the cell nucleus; instead, it arranged throughout the cytoplasm and formed a sort of aureole surrounding the nuclei periphery. Secondly, surface tension measurements, fluorescence dye leakage assays, and differential scanning calorimetry demonstrated that a combination of hydrophobic and electrostatic interactions between PEI and the phospholipidic monolayers/bilayers led to the formation of stable defects along the model membranes, allowing the intercalation of PEI through the monolayer/bilayer structure. Results are also supported by molecular dynamics simulation of the pore formation in PEI-lipidic bilayers. As discussed throughout the text, these results might shed light on a the mechanism in which the interaction between PEI and the nucleus membrane might play an active role on the DNA release: on the one hand, the PEI-membrane interaction is anticipated to facilitate the DNA disassembly from the polyplex by establishing a competition with DNA for the PEI binding and on the other hand, the forming defects are expected to serve as channels for the entrance of de-complexed DNA into the cell nucleus. A better understanding of the mechanism of transfection of cationic polymers opens paths to development of more efficiency vectors to improve gene therapy treatment and the new generation of DNA vaccines.
Collapse
Affiliation(s)
- Juan Sabin
- Biophysics and Interfaces Group, Applied Physics Department, Universidade de Santiago de Compostela, Spain; AFFINImeter-Software 4 Science Developments S.L. Edificio Emprendia s/n Campus Vida, Santiago de Compostela, Spain.
| | - Manuel Alatorre-Meda
- Cátedras CONACyT-Tecnológico Nacional de México/I. T. Tijuana, Centro de Graduados e Investigación en Química-Grupo de Biomateriales y Nanomedicina, Blvd. Alberto Limón Padilla S/N, 22510 Tijuana, BC, Mexico
| | - Jose Miñones
- Department of Physical Chemistry, Faculty of Pharmacy Universidade de Santiago de Compostela, Spain
| | - Vicente Domínguez-Arca
- Biophysics and Interfaces Group, Applied Physics Department, Universidade de Santiago de Compostela, Spain.
| | - Gerardo Prieto
- Biophysics and Interfaces Group, Applied Physics Department, Universidade de Santiago de Compostela, Spain
| |
Collapse
|
13
|
Lipid Self-Assemblies under the Atomic Force Microscope. Int J Mol Sci 2021; 22:ijms221810085. [PMID: 34576248 PMCID: PMC8467407 DOI: 10.3390/ijms221810085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/13/2022] Open
Abstract
Lipid model membranes are important tools in the study of biophysical processes such as lipid self-assembly and lipid–lipid interactions in cell membranes. The use of model systems to adequate and modulate complexity helps in the understanding of many events that occur in cellular membranes, that exhibit a wide variety of components, including lipids of different subfamilies (e.g., phospholipids, sphingolipids, sterols…), in addition to proteins and sugars. The capacity of lipids to segregate by themselves into different phases at the nanoscale (nanodomains) is an intriguing feature that is yet to be fully characterized in vivo due to the proposed transient nature of these domains in living systems. Model lipid membranes, instead, have the advantage of (usually) greater phase stability, together with the possibility of fully controlling the system lipid composition. Atomic force microscopy (AFM) is a powerful tool to detect the presence of meso- and nanodomains in a lipid membrane. It also allows the direct quantification of nanomechanical resistance in each phase present. In this review, we explore the main kinds of lipid assemblies used as model membranes and describe AFM experiments on model membranes. In addition, we discuss how these assemblies have extended our knowledge of membrane biophysics over the last two decades, particularly in issues related to the variability of different model membranes and the impact of supports/cytoskeleton on lipid behavior, such as segregated domain size or bilayer leaflet uncoupling.
Collapse
|
14
|
Galluzzi M, Zhang B, Zhang H, Wang L, Lin Y, Yu XF, Chu Z, Li J. Unveiling a Hidden Event in Fluorescence Correlative Microscopy by AFM Nanomechanical Analysis. Front Mol Biosci 2021; 8:669361. [PMID: 34026842 PMCID: PMC8136518 DOI: 10.3389/fmolb.2021.669361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/22/2021] [Indexed: 11/18/2022] Open
Abstract
Fluorescent imaging combined with atomic force microscopy (AFM), namely AFM-fluorescence correlative microscopy, is a popular technology in life science. However, the influence of involved fluorophores on obtained mechanical information is normally underestimated, and such subtle changes are still challenging to detect. Herein, we combined AFM with laser light excitation to perform a mechanical quantitative analysis of a model membrane system labeled with a commonly used fluorophore. Mechanical quantification was additionally validated by finite element simulations. Upon staining, we noticed fluorophores forming a diffuse weakly organized overlayer on phospholipid supported membrane, easily detected by AFM mechanics. The laser was found to cause a degradation of mechanical stability of the membrane synergically with presence of fluorophore. In particular, a 30 min laser irradiation, with intensity similar to that in typical confocal scanning microscopy experiment, was found to result in a ∼40% decrease in the breakthrough force of the stained phospholipid bilayer along with a ∼30% reduction in its apparent elastic modulus. The findings highlight the significance of analytical power provided by AFM, which will allow us to “see” the “unseen” in correlative microscopy, as well as the necessity to consider photothermal effects when using fluorescent dyes to investigate, for example, the deformability and permeability of phospholipid membranes.
Collapse
Affiliation(s)
- Massimiliano Galluzzi
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Bokai Zhang
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,DGene (Dongjin Big Health (Shenzhen)) Co., Ltd., Shenzhen, China.,BenHealth Biopharmaceutical (Shenzhen) Co., Ltd., Shenzhen, China
| | - Han Zhang
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,State Key Laboratory of Traction Power, Southwest Jiaotong Univerisity, Chengdu, China
| | - Lingzhi Wang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong
| | - Yuan Lin
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong.,Advanced Biomedical Instrumentation Centre, Shatin, Hong Kong
| | - Xue-Feng Yu
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering, Joint Appointment with School of Biomedical Sciences, The University of Hong Kong, Hong Kong
| | - Jiangyu Li
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
15
|
Khadka NK, Timsina R, Rowe E, O'Dell M, Mainali L. Mechanical properties of the high cholesterol-containing membrane: An AFM study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183625. [PMID: 33891910 DOI: 10.1016/j.bbamem.2021.183625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/02/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022]
Abstract
Cholesterol (Chol) content in most cellular membranes does not exceed 50 mol%, only in the eye lens's fiber cell plasma membrane, its content surpasses 50 mol%. At this high concentration, Chol induces the formation of pure cholesterol bilayer domains (CBDs), which coexist with the surrounding phospholipid-cholesterol domain (PCD). Here, we applied atomic force microscopy to study the mechanical properties of Chol/phosphatidylcholine membranes where the Chol content was increased from 0 to 75 mol%, relevant to eye lens membranes. The surface roughness of the membrane decreases with an increase of Chol content until it reaches 60 mol%, and roughness increases with a further increment in Chol content. We propose that the increased roughness at higher Chol content results from the formation of CBDs. Force spectroscopy on the membrane with Chol content of 50 mol% or lesser exhibited single breakthrough events, whereas two distinct puncture events were observed for membranes with the Chol content greater than 50 mol%. We propose that the first puncture force corresponds to the membranes containing coexisting PCD and CBDs. In contrast, the second puncture force corresponds to the "CBD water pocket" formed due to coexisting CBDs and PCD. Membrane area compressibility modulus (KA) increases with an increase in Chol content until it reaches 60 mol%, and with further increment in Chol content, CBDs are formed, and KA starts to decrease. Our results report the increase in membrane roughness and decrease KA at very high Chol content (>60 mol%) relevant to the eye lens membrane.
Collapse
Affiliation(s)
- Nawal K Khadka
- Department of Physics, Boise State University, Boise, ID, USA
| | - Raju Timsina
- Department of Physics, Boise State University, Boise, ID, USA
| | - Erica Rowe
- Department of Biology, Boise State University, Boise, ID, USA
| | - Matthew O'Dell
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, USA
| | - Laxman Mainali
- Department of Physics, Boise State University, Boise, ID, USA; Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, USA.
| |
Collapse
|
16
|
Alves D, Sparrow R, Garnier G. Rapidly freeze-dried human red blood cells for pre-transfusion alloantibody testing reagents. J Biomed Mater Res B Appl Biomater 2021; 109:1689-1697. [PMID: 33694280 DOI: 10.1002/jbm.b.34825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/29/2021] [Accepted: 02/22/2021] [Indexed: 11/09/2022]
Abstract
Prior to transfusion of red blood cells (RBCs), recipients must be tested for the presence of alloantibodies to avoid immune complications. Liquid-preserved reagent RBCs with known blood group antigen phenotypes are used for testing. However, these reagents have practical constraints, including limited shelf-life and require constant refrigeration. To address these issues, we explore the effects of rapid freeze-drying conditions with trehalose cryoprotectant (0.1-1 M concentrations) on human RBCs and storage of freeze-dried RBCs (FDRBCs) at room temperature (RT) for up to 12 months. We report that rapid freeze-drying of RBCs for 2.5 hr with 0.5 M trehalose achieves recoverable cells with near-normal morphological shape, although size-reduced. The FDRBCs are metabolically active and functional in antibody-agglutination tests by the column agglutination test (CAT) for ABO and Rhesus-D blood group antigens. Expression of the Duffy blood group protein (CD234) decreases by 50% after freeze-drying RBCs. The initial recovery rate is ≤25%; however, 43% of these FDRBCs are still recoverable after RT storage for 12 months. In this proof-of-principle study, we show that rapid freeze-drying can stabilize RBCs. Further refinements to improve the recovery rate and preservation of antigenic epitopes will make FDRBCs a practical alternative source of reagent RBCs for pre-transfusion alloantibody identification.
Collapse
Affiliation(s)
- Diana Alves
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical Engineering, Monash University, Clayton, Victoria, Australia
| | - Rosemary Sparrow
- Transfusion Research Unit, Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, 3004, Australia
| | - Gil Garnier
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical Engineering, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
17
|
Verbeek SF, Awasthi N, Teiwes NK, Mey I, Hub JS, Janshoff A. How arginine derivatives alter the stability of lipid membranes: dissecting the roles of side chains, backbone and termini. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:127-142. [PMID: 33661339 PMCID: PMC8071801 DOI: 10.1007/s00249-021-01503-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/08/2021] [Accepted: 01/19/2021] [Indexed: 12/22/2022]
Abstract
Arginine (R)-rich peptides constitute the most relevant class of cell-penetrating peptides and other membrane-active peptides that can translocate across the cell membrane or generate defects in lipid bilayers such as water-filled pores. The mode of action of R-rich peptides remains a topic of controversy, mainly because a quantitative and energetic understanding of arginine effects on membrane stability is lacking. Here, we explore the ability of several oligo-arginines R[Formula: see text] and of an arginine side chain mimic R[Formula: see text] to induce pore formation in lipid bilayers employing MD simulations, free-energy calculations, breakthrough force spectroscopy and leakage assays. Our experiments reveal that R[Formula: see text] but not R[Formula: see text] reduces the line tension of a membrane with anionic lipids. While R[Formula: see text] peptides form a layer on top of a partly negatively charged lipid bilayer, R[Formula: see text] leads to its disintegration. Complementary, our simulations show R[Formula: see text] causes membrane thinning and area per lipid increase beside lowering the pore nucleation free energy. Model polyarginine R[Formula: see text] similarly promoted pore formation in simulations, but without overall bilayer destabilization. We conclude that while the guanidine moiety is intrinsically membrane-disruptive, poly-arginines favor pore formation in negatively charged membranes via a different mechanism. Pore formation by R-rich peptides seems to be counteracted by lipids with PC headgroups. We found that long R[Formula: see text] and R[Formula: see text] but not short R[Formula: see text] reduce the free energy of nucleating a pore. In short R[Formula: see text], the substantial effect of the charged termini prevent their membrane activity, rationalizing why only longer [Formula: see text] are membrane-active.
Collapse
Affiliation(s)
- Sarah F. Verbeek
- Department of Chemistry, Institute of Physical Chemistry, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - Neha Awasthi
- Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - Nikolas K. Teiwes
- Department of Chemistry, Institute of Physical Chemistry, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - Ingo Mey
- Department of Chemistry, Institute of Physical Chemistry, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - Jochen S. Hub
- Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
- Theoretical Physics and Center for Biophyics, Saarland University, 66123 Saarbrücken, Germany
| | - Andreas Janshoff
- Department of Chemistry, Institute of Physical Chemistry, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
18
|
Kamble S, Patil S, Appala VRM. Nano-mechanical characterization of asymmetric DLPC/DSPC supported lipid bilayers. Chem Phys Lipids 2020; 234:105007. [PMID: 33160952 DOI: 10.1016/j.chemphyslip.2020.105007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 10/13/2020] [Accepted: 11/02/2020] [Indexed: 11/25/2022]
Abstract
Asymmetric distribution of lipid molecules in the inner and outer leaflets of the plasma membrane is a common occurrence in the membrane formation. Such asymmetric arrangement is a crucial parameter to manipulate the properties of the cell membrane. It controls signal transduction, endocytosis, exocytosis in the cells. The artificial membrane is often used to study the lateral and transverse arrangement of the lipid molecules in place of the cell membrane. Nano-mechanical characterization of the model membrane helps to understand the mechanical stability of the lipid bilayer. The stability is sensitive to the variations in the lipid composition and their local organization. In this article, we present both topographical and nano-mechanical properties of lipid bilayer characterized by atomic force microscopy (AFM). The results show that the asymmetric lipid bilayer formation is an intrinsic character. We have selected a bi-component fluid-gel phase 1,2-dilauroyl-sn-glycero-3-phosphocholine:1,2-disteroyl-sn-glycero-3-phosphocholine (DLPC: DSPC) system for our studies. We have observed domain formation and phase separation in the bilayer by increasing the composition of the gel phase DSPC. In force spectroscopy studies, we determine the mechanical strength of the bilayer for unique mixtures of DLPC: DSPC by measuring the breakthrough force. These results also show the effect of asymmetry in the lipid bilayer. Besides AFM studies, we have implemented a coarse-grained (CG) molecular dynamics (MD) simulation using the gromacs package at room temperature and 1 bar pressure. The results from the simulation study have been compared with AFM study. It was found that the simulation studies corroborated the findings from AFM such as an increase in the bilayer thickness, change in the phase state, asymmetric and symmetric domain formation in the lipid bilayer.
Collapse
Affiliation(s)
- Sagar Kamble
- Department of Applied Physics, Defence Institute of Advanced Technology (DIAT) DU., Girinagar, Pune, India
| | - Snehal Patil
- Department of Applied Physics, Defence Institute of Advanced Technology (DIAT) DU., Girinagar, Pune, India
| | | |
Collapse
|
19
|
Redondo-Morata L, Losada-Pérez P, Giannotti MI. Lipid bilayers: Phase behavior and nanomechanics. CURRENT TOPICS IN MEMBRANES 2020; 86:1-55. [PMID: 33837691 DOI: 10.1016/bs.ctm.2020.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lipid membranes are involved in many physiological processes like recognition, signaling, fusion or remodeling of the cell membrane or some of its internal compartments. Within the cell, they are the ultimate barrier, while maintaining the fluidity or flexibility required for a myriad of processes, including membrane protein assembly. The physical properties of in vitro model membranes as model cell membranes have been extensively studied with a variety of techniques, from classical thermodynamics to advanced modern microscopies. Here we review the nanomechanics of solid-supported lipid membranes with a focus in their phase behavior. Relevant information obtained by quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM) as complementary techniques in the nano/mesoscale interface is presented. Membrane morphological and mechanical characterization will be discussed in the framework of its phase behavior, phase transitions and coexistence, in simple and complex models, and upon the presence of cholesterol.
Collapse
Affiliation(s)
- Lorena Redondo-Morata
- Center for Infection and Immunity of Lille, INSERM U1019, CNRS UMR 8204, Lille, France
| | - Patricia Losada-Pérez
- Experimental Soft Matter and Thermal Physics (EST) Group, Department of Physics, Université Libre de Bruxelles, Brussels, Belgium
| | - Marina Inés Giannotti
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Institut de Bioenginyeria de Catalunya (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
20
|
Vázquez RF, Ovalle-García E, Antillón A, Ortega-Blake I, Bakás LS, Muñoz-Garay C, Maté SM. Asymmetric bilayers mimicking membrane rafts prepared by lipid exchange: Nanoscale characterization using AFM-Force spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183467. [PMID: 32871116 DOI: 10.1016/j.bbamem.2020.183467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/07/2020] [Accepted: 08/24/2020] [Indexed: 01/03/2023]
Abstract
Sphingolipids-enriched rafts domains are proposed to occur in plasma membranes and to mediate important cellular functions. Notwithstanding, the asymmetric transbilayer distribution of phospholipids that exists in the membrane confers the two leaflets different potentials to form lateral domains as next to no sphingolipids are present in the inner leaflet. How the physical properties of one leaflet can influence the properties of the other and its importance on signal transduction across the membrane are questions still unresolved. In this work, we combined AFM imaging and Force spectroscopy measurements to assess domain formation and to study the nanomechanical properties of asymmetric supported lipid bilayers (SLBs) mimicking membrane rafts. Asymmetric SLBs were formed by incorporating N-palmitoyl-sphingomyelin (16:0SM) into the outer leaflet of preformed 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC)/Cholesterol SLBs through methyl-β-cyclodextrin-mediated lipid exchange. Lipid domains were detected after incorporation of 16:0SM though their phase state varied from gel to liquid ordered (Lo) phase if the procedure was performed at 24 or 37 °C, respectively. When comparing symmetric and asymmetric Lo domains, differences in size and morphology were observed, with asymmetric domains being smaller and more interconnected. Both types of Lo domains showed similar mechanical stability in terms of rupture forces and Young's moduli. Notably, force curves in asymmetric domains presented two rupture events that could be attributed to the sequential rupture of a liquid disordered (Ld) and a Lo phase. Interleaflet coupling in asymmetric Lo domains could also be inferred from those measurements. The experimental approach outlined here would significantly enhance the applicability of membrane models.
Collapse
Affiliation(s)
- Romina F Vázquez
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT- La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, 1900 La Plata, Argentina; Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900 La Plata, Argentina.
| | - Erasmo Ovalle-García
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, México
| | - Armando Antillón
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, México
| | - Iván Ortega-Blake
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, México
| | - Laura S Bakás
- Centro de Investigación en Proteínas Vegetales (CIProVe), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900 La Plata, Argentina
| | - Carlos Muñoz-Garay
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, México
| | - Sabina M Maté
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT- La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, 1900 La Plata, Argentina.
| |
Collapse
|
21
|
González-Ramírez EJ, García-Arribas AB, Sot J, Goñi FM, Alonso A. C24:0 and C24:1 sphingolipids in cholesterol-containing, five- and six-component lipid membranes. Sci Rep 2020; 10:14085. [PMID: 32839481 PMCID: PMC7445262 DOI: 10.1038/s41598-020-71008-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023] Open
Abstract
The biophysical properties of sphingolipids containing lignoceric (C24:0) or nervonic (C24:1) fatty acyl residues have been studied in multicomponent lipid bilayers containing cholesterol (Chol), by means of confocal microscopy, differential scanning calorimetry and atomic force microscopy. Lipid membranes composed of dioleoyl phosphatidylcholine and cholesterol were prepared, with the addition of different combinations of ceramides (C24:0 and/or C24:1) and sphingomyelins (C24:0 and/or C24:1). Results point to C24:0 sphingolipids, namely lignoceroyl sphingomyelin (lSM) and lignoceroyl ceramide (lCer), having higher membrane rigidifying properties than their C24:1 homologues (nervonoyl SM, nSM, or nervonoyl Cer, nCer), although with a similar strong capacity to induce segregated gel phases. In the case of the lSM-lCer multicomponent system, the segregated phases have a peculiar fibrillar or fern-like morphology. Moreover, the combination of C24:0 and C24:1 sphingolipids generates interesting events, such as a generalized bilayer dynamism/instability of supported planar bilayers. In some cases, these sphingolipids give rise to exothermic curves in thermograms. These peculiar features were not present in previous studies of C24:1 combined with C16:0 sphingolipids. Conclusions of our study point to nSM as a key factor governing the relative distribution of ceramides when both lCer and nCer are present. The data indicate that lCer could be easier to accommodate in multicomponent bilayers than its C16:0 counterpart. These results are relevant for events of membrane platform formation, in the context of sphingolipid-based signaling cascades.
Collapse
Affiliation(s)
- Emilio J González-Ramírez
- Instituto Biofisika (CSIC, UPV/EHU), 48940, Leioa, Bilbao, Basque Country, Spain.,Departamento de Bioquímica, University of the Basque Country (UPV/EHU), 48940, Bilbao, Spain
| | - Aritz B García-Arribas
- Instituto Biofisika (CSIC, UPV/EHU), 48940, Leioa, Bilbao, Basque Country, Spain. .,Departamento de Bioquímica, University of the Basque Country (UPV/EHU), 48940, Bilbao, Spain.
| | - Jesús Sot
- Instituto Biofisika (CSIC, UPV/EHU), 48940, Leioa, Bilbao, Basque Country, Spain.,Departamento de Bioquímica, University of the Basque Country (UPV/EHU), 48940, Bilbao, Spain
| | - Félix M Goñi
- Instituto Biofisika (CSIC, UPV/EHU), 48940, Leioa, Bilbao, Basque Country, Spain. .,Departamento de Bioquímica, University of the Basque Country (UPV/EHU), 48940, Bilbao, Spain.
| | - Alicia Alonso
- Instituto Biofisika (CSIC, UPV/EHU), 48940, Leioa, Bilbao, Basque Country, Spain.,Departamento de Bioquímica, University of the Basque Country (UPV/EHU), 48940, Bilbao, Spain
| |
Collapse
|
22
|
Obeid S, Guyomarc'h F. Atomic force microscopy of food assembly: Structural and mechanical insights at the nanoscale and potential opportunities from other fields. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Kalyanram P, Ma H, Marshall S, Goudreau C, Cartaya A, Zimmermann T, Stadler I, Nangia S, Gupta A. Interaction of amphiphilic coumarin with DPPC/DPPS lipid bilayer: effects of concentration and alkyl tail length. Phys Chem Chem Phys 2020; 22:15197-15207. [PMID: 32420558 DOI: 10.1039/d0cp00696c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In this work, interactions between amphiphilic amino methyl coumarin and dipalmitoyl-sn-glycero-3-phosphocholine/dipalmitoyl-sn-glycero-3-phosphoserine (DPPC/DPPS) lipid bilayer were investigated. A combination of experimental techniques (zeta potential, fluorescence spectroscopy, and differential scanning calorimetry) along with molecular dynamics simulations was employed to examine the influence of alkyl tail length and concentration of the amphiphilic coumarin on the lipid bilayer. Alkyl tails comprising 5(C5), 9(C9), and 12(C12) carbon atoms were conjugated to amino methyl coumarin via a single-step process. The binding and insertion mechanisms of the amphiphilic coumarins were studied in increasing concentrations for short-tailed (C5) and long-tailed (C12) coumarins. The simulation results show that C5 coumarin molecules penetrate the lipid bilayer, but owing to the short alkyl tail, they interact primarily with the lipid head groups resulting in lipid bilayer thinning; however, at high concentrations, the C5 coumarins undergo continuous insertion-ejection from the outer leaflet of the lipid bilayer. In contrast, C12 coumarins interact favorably with the hydrophobic lipid tails and lack the ejection-reinsertion behavior. Instead, the C12 coumarin molecules undergo flip-flops between the outer and inner leaflets of the lipid bilayer. At high concentrations, the high-frequency flip-flops lead to lipid destabilization, causing the lipid bilayer to rupture. The simulation results are in excellent agreement with the toxicity of amphiphilic coumarin activity in cancer cells. The efficacy of amphiphilic coumarins in liposomal lipid bilayers demonstrates the promise of these molecules as a tool in the treatment of cancer.
Collapse
Affiliation(s)
- Poornima Kalyanram
- College of Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Poonia N, Lather V, Narang JK, Beg S, Pandita D. Resveratrol-loaded folate targeted lipoprotein-mimetic nanoparticles with improved cytotoxicity, antioxidant activity and pharmacokinetic profile. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111016. [PMID: 32993976 DOI: 10.1016/j.msec.2020.111016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 12/21/2022]
Abstract
The aim of present study was to develop folate receptor targeted lipoprotein-mimetic nanoparticles of resveratrol (RSV). Lipoprotein-mimicking nanocarrier (RSV-FA-LNPs) comprising of phosphatidyl choline, cholesterol, stearyl amine and folic acid-tagged bovine serum albumin (FA-BSA) were prepared. Folic acid was conjugated to bovine serum albumin by amide bond at a binding rate of 9.46 ± 0.49 folate molecules per bovine serum albumin. The particle size and entrapment efficiency of the developed nanoparticles was found to be 291.37 ± 3.81 nm and 91.96 ± 1.83%, respectively. The in vitro release study depicted that developed nanocarrier prolonged the drug release till 72 h in phosphate buffer saline (pH 7.4). The anticancer potential of RSV in case of RSV-FA-LNPs was found to be substantially improved against MCF-7 cells overexpressing folate receptors compared to non-targeted nanoparticles. The pharmacokinetics studies after intravenous administration in healthy Wistar rats depicted that lipoprotein mimicking nanoparticles presented the longer circulation time (>48 h) compared to free drug which disappeared in few hours (6 h). The in vitro and preclinical findings of the present study demonstrated the applicability of lipoprotein mimicking nanocarriers for the safer and effective delivery of bioactives.
Collapse
Affiliation(s)
- Neelam Poonia
- Department of Pharmaceutics, Jan Nayak Ch. Devi Lal Memorial College of Pharmacy, Sirsa 125055, Haryana, India; I. K. Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Viney Lather
- Amity Institute of Pharmacy, Amity University, Sector-125, Noida 201313, India
| | - Jasjeet Kaur Narang
- Department of Pharmaceutics, Khalsa College of Pharmacy, Amritsar, Punjab, India
| | - Sarwar Beg
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Deepti Pandita
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida 201313, India.
| |
Collapse
|
25
|
Clifton LA, Campbell RA, Sebastiani F, Campos-Terán J, Gonzalez-Martinez JF, Björklund S, Sotres J, Cárdenas M. Design and use of model membranes to study biomolecular interactions using complementary surface-sensitive techniques. Adv Colloid Interface Sci 2020; 277:102118. [PMID: 32044469 DOI: 10.1016/j.cis.2020.102118] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 01/07/2023]
Abstract
Cellular membranes are complex structures and simplified analogues in the form of model membranes or biomembranes are used as platforms to understand fundamental properties of the membrane itself as well as interactions with various biomolecules such as drugs, peptides and proteins. Model membranes at the air-liquid and solid-liquid interfaces can be studied using a range of complementary surface-sensitive techniques to give a detailed picture of both the structure and physicochemical properties of the membrane and its resulting interactions. In this review, we will present the main planar model membranes used in the field to date with a focus on monolayers at the air-liquid interface, supported lipid bilayers at the solid-liquid interface and advanced membrane models such as tethered and floating membranes. We will then briefly present the principles as well as the main type of information on molecular interactions at model membranes accessible using a Langmuir trough, quartz crystal microbalance with dissipation monitoring, ellipsometry, atomic force microscopy, Brewster angle microscopy, Infrared spectroscopy, and neutron and X-ray reflectometry. A consistent example for following biomolecular interactions at model membranes is used across many of the techniques in terms of the well-studied antimicrobial peptide Melittin. The overall objective is to establish an understanding of the information accessible from each technique, their respective advantages and limitations, and their complementarity.
Collapse
Affiliation(s)
- Luke A Clifton
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 OQX, United Kingdom
| | - Richard A Campbell
- Division of Pharmacy and Optometry, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Federica Sebastiani
- Department of Biomedical Science and Biofilms - Research Center for Biointerfaces, Malmö University, 20506 Malmö, Sweden
| | - José Campos-Terán
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe, Delegación Cuajimalpa de Morelos, 05348, Mexico; Lund Institute of advanced Neutron and X-ray Science, Lund University, Scheelevägen 19, 223 70 Lund, Sweden
| | - Juan F Gonzalez-Martinez
- Department of Biomedical Science and Biofilms - Research Center for Biointerfaces, Malmö University, 20506 Malmö, Sweden
| | - Sebastian Björklund
- Department of Biomedical Science and Biofilms - Research Center for Biointerfaces, Malmö University, 20506 Malmö, Sweden
| | - Javier Sotres
- Department of Biomedical Science and Biofilms - Research Center for Biointerfaces, Malmö University, 20506 Malmö, Sweden
| | - Marité Cárdenas
- Department of Biomedical Science and Biofilms - Research Center for Biointerfaces, Malmö University, 20506 Malmö, Sweden.
| |
Collapse
|
26
|
Adhyapak P, Srivatsav AT, Mishra M, Singh A, Narayan R, Kapoor S. Dynamical Organization of Compositionally Distinct Inner and Outer Membrane Lipids of Mycobacteria. Biophys J 2020; 118:1279-1291. [PMID: 32061274 DOI: 10.1016/j.bpj.2020.01.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 12/21/2022] Open
Abstract
Mycobacterium species, including Mycobacterium tuberculosis, employs atypical long (C60-90) and branched lipids to produce a complex cell wall and localizes these toward distinct spatial locations, inner membrane (IM) and outer membrane (OM), thus forming a robust permeability barrier. The properties and functional roles of these spatially orchestrated membrane platforms remain unknown. Herein, we report the distinctive lateral organization, fluidity, and lipid domain architecture of protein-free membranes reconstituted from IM and OM lipids in vitro from M. smegmatis (Msm) underscored by their lipid packing and lipid dynamics. We show that Msm OM, against common notion, is more dynamic and fluid compared with IM and reveal the role of cell wall-associated peptidoglycans and lipoarabinomannan on the Msm OM organization. Overall, these studies indicate that mycobacterial species may regulate their overall membrane functionality by regulating the synthesis of these complex arrays of lipids. Based on the structure-function relationship drawn here, documented alteration in the mycobacterial lipidome during cellular infection and/or drug treatment could reflect a mechanism to fine-tune M. tuberculosis membrane properties to its advantage. These findings are expected to inspire development of lipid-centric therapeutic approaches targeted toward its membrane.
Collapse
Affiliation(s)
- Pranav Adhyapak
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Aswin T Srivatsav
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Manjari Mishra
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Abhishek Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Rishikesh Narayan
- School of Chemical and Biological Sciences, Indian Institute of Technology Goa, Goa, India
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India; Wadhwani Research Center for Bioengineering, Indian Institute of Technology Bombay, Mumbai, India.
| |
Collapse
|
27
|
Redeker C, Briscoe WH. Interactions between Mutant Bacterial Lipopolysaccharide (LPS-Ra) Surface Layers: Surface Vesicles, Membrane Fusion, and Effect of Ca 2+and Temperature. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15739-15750. [PMID: 31604373 DOI: 10.1021/acs.langmuir.9b02609] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lipopolysaccharides (LPS) are a major component of the protective outer membrane of Gram-negative bacteria. Understanding how the solution conditions may affect LPS-containing membranes is important to optimizing the design of antibacterial agents (ABAs) which exploit electrostatic and hydrophobic interactions to disrupt the bacteria membrane. Here, interactions between surface layers of LPS (Ra mutants) in aqueous media have been studied using a surface force apparatus (SFA), exploring the effects of temperature and divalent Ca2+ cations. Complementary dynamic light scattering (DLS) characterization suggests that vesicle-like aggregates of diameter ∼28-80 nm are formed by LPS-Ra in aqueous media. SFA results show that LPS-Ra vesicles adsorb weakly onto mica in pure water at room temperature (RT) and the surface layers are readily squeezed out as the two surfaces approach each other. However, upon addition of calcium (Ca2+) cations at near physiological concentration (2.5 mM) at RT, LPS multilayers or deformed LPS liposomes on mica are observed, presumably due to bridging between LPS phosphate groups and between LPS phosphates and negatively charged mica mediated by Ca2+, with a hard wall repulsion at surface separation D0 ∼ 30-40 nm. At 40 °C, which is above the LPS-Ra β-α acyl chain melting temperature (Tm = 36 °C), fusion events between the surface layers under compression could be observed, evident from δD ∼ 8-10 nm steps in the force-distance profiles attributed to LPS-bilayers being squeezed out due to enhanced fluidity of the LPS acyl-chain, with a final hard wall surface separation D0 ∼ 8-10 nm corresponding to the thickness of a single bilayer confined between the surfaces. These unprecedented SFA results reveal intricate structural responses of LPS surface layers to temperature and Ca2+, with implications to our fundamental understanding of the structures and interactions of bacterial membranes.
Collapse
Affiliation(s)
- Christian Redeker
- School of Chemistry , University of Bristol , Cantock's Close, Bristol BS8 1TS , United Kingdom
| | - Wuge H Briscoe
- School of Chemistry , University of Bristol , Cantock's Close, Bristol BS8 1TS , United Kingdom
| |
Collapse
|
28
|
Physical and electrochemical characterization of a Cu-based oxygen reduction electrocatalyst inside and outside a lipid membrane with controlled proton transfer kinetics. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134611] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
29
|
Et-Thakafy O, Guyomarc'h F, Lopez C. Young modulus of supported lipid membranes containing milk sphingomyelin in the gel, fluid or liquid-ordered phase, determined using AFM force spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1523-1532. [DOI: 10.1016/j.bbamem.2019.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/12/2019] [Accepted: 07/04/2019] [Indexed: 10/26/2022]
|
30
|
Richard-Lacroix M, Umuhire KN, Lister E, Pellerin C, Badia A. Selective Isotopic Labeling Resolves the Gel-to-Fluid Phase Transitions of the Individual Leaflets of a Planar-Supported Phospholipid Bilayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9912-9922. [PMID: 31277548 DOI: 10.1021/acs.langmuir.9b00747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Knowledge of the thermotropic phase behavior of solid-supported bilayer lipid assemblies is essential to mimick the molecular organization and lateral fluidity of cell membranes. The gel-to-fluid phase transitions in a homologous series of single phospholipid bilayers supported on planar silicon substrates were investigated by temperature-controlled atomic force microscopy and attenuated total reflection infrared spectroscopy to obtain complementary information at the mesoscopic and molecular scales. Symmetric bilayers of dipalmitoylphosphatidylcholine (DPPC) and vertically asymmetric bilayers composed of a leaflet of DPPC and another of acyl-chain-deuterated DPPC (DPPC-d62) were prepared by the Langmuir-Blodgett technique. The selective deuteration of one of the bilayer leaflets enabled the simultaneous monitoring by IR spectroscopy of the acyl chain melting in each leaflet via the spectrally isolated CH2 and CD2 stretching vibrations. Two gel-to-fluid transitions were discerned for both the symmetric and asymmetric bilayers in ultrapure water. The deuterium isotope effect observed in free-standing membranes was maintained for the supported bilayers. IR spectroscopy revealed that the melting of one leaflet promotes the disordering of the acyl chains in the adjacent one. The findings suggest that the two leaflet phase transitions do not evolve in isolation. This work sheds insight into the nature of leaflet-leaflet interactions and the thermodynamic properties of surface-confined phospholipid bilayers.
Collapse
Affiliation(s)
- Marie Richard-Lacroix
- Département de chimie, Centre québécois sur les matériaux fonctionnels , Université de Montréal , C.P. 6128, succursale Centre-ville , Montréal , QC H3C 3J7 , Canada
| | - Kayiganwa Natyvella Umuhire
- Département de chimie, Centre québécois sur les matériaux fonctionnels , Université de Montréal , C.P. 6128, succursale Centre-ville , Montréal , QC H3C 3J7 , Canada
| | - Eugénie Lister
- Département de chimie, Centre québécois sur les matériaux fonctionnels , Université de Montréal , C.P. 6128, succursale Centre-ville , Montréal , QC H3C 3J7 , Canada
| | - Christian Pellerin
- Département de chimie, Centre québécois sur les matériaux fonctionnels , Université de Montréal , C.P. 6128, succursale Centre-ville , Montréal , QC H3C 3J7 , Canada
| | - Antonella Badia
- Département de chimie, Centre québécois sur les matériaux fonctionnels , Université de Montréal , C.P. 6128, succursale Centre-ville , Montréal , QC H3C 3J7 , Canada
| |
Collapse
|
31
|
Abraham S, Heckenthaler T, Morgenstern Y, Kaufman Y. Effect of Temperature on the Structure, Electrical Resistivity, and Charge Capacitance of Supported Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8709-8715. [PMID: 31244251 DOI: 10.1021/acs.langmuir.9b00726] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Supported lipid bilayers with incorporated membrane proteins have promising potential for diverse applications, such as filtration processes, drug delivery, and biosensors. For these applications, the continuity (lack of defects), electrical resistivity, and charge capacitance of the lipid bilayers are crucial. Here, we highlight the effects of temperature changes and the rate of temperature changes on the vertical and lateral expansion and contraction of lipid bilayers, which in turn affect the lipid bilayer resistivity and capacitance. We focused on lipid bilayers that consist of 50 mol % dimyristoyl- sn-glycero-3-phosphocholine (zwitterionic lipid) and 50 mol % dimyristoyl-3-trimethylammonium-propane (positively charged lipid) lipids. This lipid mixture is known to self-assemble into a continuous lipid bilayer on silicon wafers. It is shown experimentally and explained theoretically that slow cooling (e.g., -0.4 °C min-1) increases the resistivity significantly and reduces the capacitance of lipid bilayers, and these trends are reversed by heating. However, fast cooling (∼ -10 °C min-1 or faster) damages the membrane and reduces the resistivity and capacitance of lipid bilayers to practically zero. Importantly, the addition of 50 mol % cholesterol to lipid bilayers prevents the resistivity and capacitance reduction after fast cooling. It is argued that the ratio of lipid diffusion coefficient to thermal expansion/contraction rate (proportional to the heating/cooling rate) is the crucial parameter that determines the effects of temperature changes on lipids bilayers. A high ratio (fast lipid diffusion) increases the lipid bilayer resistivity and decreases the capacitance upon cooling and vice versa. Similar trends are expected for lipid membranes that consist of other lipids or lipidlike mixtures.
Collapse
Affiliation(s)
- Shiju Abraham
- The Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research , Ben-Gurion University of the Negev , Sde Boqer 8499000 , Israel
| | - Tabea Heckenthaler
- The Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research , Ben-Gurion University of the Negev , Sde Boqer 8499000 , Israel
| | - Yakov Morgenstern
- The Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research , Ben-Gurion University of the Negev , Sde Boqer 8499000 , Israel
| | - Yair Kaufman
- The Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research , Ben-Gurion University of the Negev , Sde Boqer 8499000 , Israel
- Center for Bioengineering , University of California Santa Barbara , Santa Barbara , California 93106 , United States
| |
Collapse
|
32
|
Corrales Chahar F, Díaz S, Ben Altabef A, Gervasi C, Alvarez P. Interactions of valproic acid with lipid membranes of 1,2-dimyristoyl-sn-glycero-3-phosphocholine. Chem Phys Lipids 2019; 218:125-135. [DOI: 10.1016/j.chemphyslip.2018.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/06/2018] [Accepted: 12/20/2018] [Indexed: 11/25/2022]
|
33
|
Gumí-Audenis B, Illa-Tuset S, Grimaldi N, Pasquina-Lemonche L, Ferrer-Tasies L, Sanz F, Veciana J, Ratera I, Faraudo J, Ventosa N, Giannotti MI. Insights into the structure and nanomechanics of a quatsome membrane by force spectroscopy measurements and molecular simulations. NANOSCALE 2018; 10:23001-23011. [PMID: 30500043 DOI: 10.1039/c8nr07110a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Quatsomes (QS) are unilamellar nanovesicles constituted by quaternary ammonium surfactants and sterols in defined molar ratios. Unlike conventional liposomes, QS are stable upon long storage such as for several years, they show outstanding vesicle-to-vesicle homogeneity regarding size and lamellarity, and they have the structural and physicochemical requirements to be a potential platform for site-specific delivery of hydrophilic and lipophilic molecules. Knowing in detail the structure and mechanical properties of the QS membrane is of great importance for the design of deformable and flexible nanovesicle alternatives, highly pursued in nanomedicine applications such as the transdermal administration route. In this work, we report the first study on the detailed structure of the cholesterol : CTAB QS membrane at the nanoscale, using atomic force microscopy (AFM) and spectroscopy (AFM-FS) in a controlled liquid environment (ionic medium and temperature) to assess the topography of supported QS membranes (SQMs) and to evaluate the local membrane mechanics. We further perform molecular dynamics (MD) simulations to provide an atomistic interpretation of the obtained results. Our results are direct evidence of the bilayer nature of the QS membrane, with characteristics of a fluid-like membrane, compact and homogeneous in composition, and with structural and mechanical properties that depend on the surrounding environment. We show how ions alter the lateral packing, modifying the membrane mechanics. We observe that according to the ionic environment and temperature, different domains may coexist in the QS membranes, ascribed to variations in molecular tilt angles. Our results indicate that QS membrane properties may be easily tuned by altering the lateral interactions with either different environmental ions or counterions.
Collapse
Affiliation(s)
- Berta Gumí-Audenis
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Casein interaction with lipid membranes: Are the phase state or charge density of the phospholipids affecting protein adsorption? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2588-2598. [DOI: 10.1016/j.bbamem.2018.09.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/11/2018] [Accepted: 09/26/2018] [Indexed: 01/03/2023]
|
35
|
Pathological transitions in myelin membranes driven by environmental and multiple sclerosis conditions. Proc Natl Acad Sci U S A 2018; 115:11156-11161. [PMID: 30322944 PMCID: PMC6217380 DOI: 10.1073/pnas.1804275115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In demyelination diseases, such as multiple sclerosis, the structure of the axons’ protective sheaths is disrupted. Due to the proximity of cytoplasmic myelin membrane to structural phase transition, minor alterations in the local environmental conditions can have devastating results. Using small-angle X-ray scattering and cryogenic transmission electron microscopy, we show that drastic structural reorganization and instabilities of myelin membrane are linked to specific environmental conditions and molecular composition in healthy and diseased states. These instabilities involve phase transition from the healthy lamellar membranes to pathological inverted hexagonal phase. These results highlight that local environmental conditions are critical for myelin function and should be considered as alternative routes for early pathology and as a means to avoid the initiation of demyelination. Multiple sclerosis (MS) is an autoimmune disease, leading to the destruction of the myelin sheaths, the protective layers surrounding the axons. The etiology of the disease is unknown, although there are several postulated environmental factors that may contribute to it. Recently, myelin damage was correlated to structural phase transition from a healthy stack of lamellas to a diseased inverted hexagonal phase as a result of the altered lipid stoichiometry and low myelin basic protein (MBP) content. In this work, we show that environmental conditions, such as buffer salinity and temperature, induce the same pathological phase transition as in the case of the lipid composition in the absence of MBP. These phase transitions have different transition points, which depend on the lipid’s compositions, and are ion specific. In extreme environmental conditions, we find an additional dense lamellar phase and that the native lipid composition results in similar pathology as the diseased composition. These findings demonstrate that several local environmental changes can trigger pathological structural changes. We postulate that these structural modifications result in myelin membrane vulnerability to the immune system attacks and thus can help explain MS etiology.
Collapse
|
36
|
Liu X. Interactions of Silver Nanoparticles Formed in Situ on AFM Tips with Supported Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10774-10781. [PMID: 30109936 DOI: 10.1021/acs.langmuir.8b01545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A facile approach for functionalizing atomic force microscopy (AFM) tips with nanoparticles (NPs) will provide exciting opportunities in the field of tip-enhanced vibrational spectroscopy and in probing the interactions between NPs and biological systems. In this study, through successive exposure to polydopamine and AgNO3 solutions, the apex of AFM tips was functionalized with silver nanoparticles (AgNPs). The AgNP-modified AFM tips were used to measure the interaction forces between AgNPs and supported lipid bilayers (SLBs) formed on mica, as well as to probe the penetration of SLBs by AgNPs, with an emphasis on the effect of human serum albumin (HSA) proteins. AgNPs experienced predominantly repulsive forces when approaching SLBs. The presence of HSA resulted in an enhancement in the repulsive interactions between AgNPs and SLBs, likely through steric repulsion. Finally, the forces required for AgNPs to penetrate SLBs were higher in the presence of HSA probably due to the increase in the effective size of the nanoscale protuberances on the AFM tip stemming from the formation of protein coronas around the AgNPs.
Collapse
Affiliation(s)
- Xitong Liu
- Department of Environmental Health and Engineering , Johns Hopkins University , Baltimore , Maryland 21218-2686 , United States
| |
Collapse
|
37
|
Gumí-Audenis B, Costa L, Ferrer-Tasies L, Ratera I, Ventosa N, Sanz F, Giannotti MI. Pulling lipid tubes from supported bilayers unveils the underlying substrate contribution to the membrane mechanics. NANOSCALE 2018; 10:14763-14770. [PMID: 30043793 DOI: 10.1039/c8nr03249a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cell processes like endocytosis, membrane resealing, signaling and transcription involve conformational changes which depend on the chemical composition and the physicochemical properties of the lipid membrane. The better understanding of the mechanical role of lipids in cell membrane force-triggered and sensing mechanisms has recently become the focus of attention. Different membrane models and experimental methodologies are commonly explored. While general approaches involve controlled vesicle deformation using micropipettes or optical tweezers, due to the local and dynamic nature of the membrane, high spatial resolution atomic force microscopy (AFM) has been widely used to study the mechanical compression and indentation of supported lipid bilayers (SLBs). However, the substrate contribution remains unkown. Here, we demonstrate how pulling lipid tubes with an AFM out of model SLBs can be used to assess the nanomechanics of SLBs through the evaluation of the tube growing force (Ftube), allowing for very local evaluation with high spatial and force resolution of the lipid membrane tension. We first validate this approach to determine the contribution of different phospholipids, by varying the membrane composition, in both one-component and phase-segregated membranes. Finally, we successfully assess the contribution of the underlying substrate to the membrane mechanics, demonstrating that SLB models may represent an intermediate scenario between a free membrane (blebs) and a cytoskeleton supported membrane.
Collapse
Affiliation(s)
- Berta Gumí-Audenis
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10-12, 08028 Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
38
|
Poursoroush A, Sperotto MM, Laradji M. Phase behavior of supported lipid bilayers: A systematic study by coarse-grained molecular dynamics simulations. J Chem Phys 2018; 146:154902. [PMID: 28433014 DOI: 10.1063/1.4981008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Solid-supported lipid bilayers are utilized by experimental scientists as models for biological membranes because of their stability. However, compared to free standing bilayers, their close proximity to the substrate may affect their phase behavior. As this is still poorly understood, and few computational studies have been performed on such systems thus far, here we present the results from a systematic study based on molecular dynamics simulations of an implicit-solvent model for solid-supported lipid bilayers with varying lipid-substrate interactions. The attractive interaction between the substrate and the lipid head groups that are closest to the substrate leads to an increased translocation of the lipids from the distal to the proximal bilayer-leaflet. This thereby leads to a transbilayer imbalance of the lipid density, with the lipid density of the proximal leaflet higher than that of the distal leaflet. Consequently, the order parameter of the proximal leaflet is found to be higher than that of the distal leaflet, the higher the strength of lipid interaction is, the stronger the effect. The proximal leaflet exhibits gel and fluid phases with an abrupt melting transition between the two phases. In contrast, below the melting temperature of the proximal leaflet, the distal leaflet is inhomogeneous with coexisting gel and fluid domains. The size of the fluid domains increases with increasing the strength of the lipid interaction. At low temperatures, the inhomogeneity of the distal leaflet is due to its reduced lipid density.
Collapse
Affiliation(s)
- Asma Poursoroush
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, USA
| | - Maria Maddalena Sperotto
- DTU Bioinformatics, Department of Bio and Health Informatics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Mohamed Laradji
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, USA
| |
Collapse
|
39
|
Li Z, Wang Z, Du X, Shi C, Cui X. Sonochemistry-Assembled Stimuli-Responsive Polymer Microcapsules for Drug Delivery. Adv Healthc Mater 2018. [PMID: 29527834 DOI: 10.1002/adhm.201701326] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Stimuli-responsive polymer microcapsules (PMs) fabricated by the sonochemical method have emerged for developing useful drug delivery systems, and the latest developments are mainly focusing on the synthetic strategies and properties such as structure, size, stability, loading capacity, drug delivery, and release. There, the primary attribution of sonochemistry is to offer a simple and practical approach for the preparation of PMs. Structure, size, stability, and properties of PMs are designed mainly according to synthetic materials, implementation schemes, or specific demands. Numerous functionalities of PMs based on different stimuli are demonstrated: targeting motion in a magnetic field or adhering to the living cells with sensitive sites through molecular recognition, and stimuli-triggered release including enzymatic catalysis, chemical reaction as well as physical or mechanical process. The current review discusses the basic principles and mechanisms of stimuli effects, and describes the progress in the application such as targeted drug systems and controlled drug systems, and also gives an outlook on the future challenges and opportunities for drug delivery and theranostics.
Collapse
Affiliation(s)
- Zhanfeng Li
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials; Laboratory of Fiber Materials and Modern Textile; The Growing Base for State Key Laboratory; Qingdao University; 266071 Qingdao China
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials; Laboratory of Fiber Materials and Modern Textile; The Growing Base for State Key Laboratory; Qingdao University; 266071 Qingdao China
| | - Xiaoyu Du
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials; Laboratory of Fiber Materials and Modern Textile; The Growing Base for State Key Laboratory; Qingdao University; 266071 Qingdao China
| | - Chao Shi
- College of Chemistry; Jilin University; 130012 Changchun China
| | - Xuejun Cui
- College of Chemistry; Jilin University; 130012 Changchun China
| |
Collapse
|
40
|
Schoch RL, Barel I, Brown FLH, Haran G. Lipid diffusion in the distal and proximal leaflets of supported lipid bilayer membranes studied by single particle tracking. J Chem Phys 2018; 148:123333. [DOI: 10.1063/1.5010341] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Rafael L. Schoch
- Department of Chemical and Biological Physics, Weizmann Institute of Science, P.O. Box 26, Rehovot 7610001, Israel
| | - Itay Barel
- Department of Chemistry and Biochemistry and Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | - Frank L. H. Brown
- Department of Chemistry and Biochemistry and Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | - Gilad Haran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, P.O. Box 26, Rehovot 7610001, Israel
| |
Collapse
|
41
|
Bhojoo U, Chen M, Zou S. Temperature induced lipid membrane restructuring and changes in nanomechanics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:700-709. [DOI: 10.1016/j.bbamem.2017.12.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/17/2017] [Accepted: 12/08/2017] [Indexed: 11/26/2022]
|
42
|
Zhang Q, Ou C, Ye S, Song X, Luo S. Construction of nanoscale liposomes loaded with melatonin via supercritical fluid technology. J Microencapsul 2017; 34:687-698. [PMID: 28866966 DOI: 10.1080/02652048.2017.1376001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Melatonin-loaded liposomes (MLL) were successfully prepared using rapid expansion of supercritical solution technology. The effects of supercritical pressure on encapsulation efficiency (EE) and average particle size were then analysed. Meanwhile, temperature, formation time and ethanol concentration in the products were studied and optimised based on the response surface methodology (RSM). An in vitro simulated digestion model was also established to evaluate the release performance of MLL. The results showed that 140 bar was the best pressure for maximising the EE value using RSM optimisation, reaching up to 82.2%. MLL characterisations were performed using analytic techniques including infrared spectroscopy, transmission electron microscopy, a laser scattering particle size analyser and gas chromatograph-mass spectrometer. The size distribution was uniform, with an average diameter of 66 nm. Stability tests proved that MLL maintained good preservation duration, and residual solvent experiments indicated that only 1.03% (mass ratio) of ethanol remained in the products. Simulated release experiments indicated the slow release feature in early digestive stages and more thorough characteristics in later stages of simulated digestion.
Collapse
Affiliation(s)
- Quan Zhang
- a College of Food Science , South China Agricultural University , Guangzhou , Guangdong , P. R. China
| | - Chunfeng Ou
- a College of Food Science , South China Agricultural University , Guangzhou , Guangdong , P. R. China
| | - Shengying Ye
- a College of Food Science , South China Agricultural University , Guangzhou , Guangdong , P. R. China
| | - Xianliang Song
- a College of Food Science , South China Agricultural University , Guangzhou , Guangdong , P. R. China
| | - Shucan Luo
- a College of Food Science , South China Agricultural University , Guangzhou , Guangdong , P. R. China
| |
Collapse
|
43
|
Böni LJ, Zurflüh R, Widmer M, Fischer P, Windhab EJ, Rühs PA, Kuster S. Hagfish slime exudate stabilization and its effect on slime formation and functionality. Biol Open 2017; 6:1115-1122. [PMID: 28619721 PMCID: PMC5550916 DOI: 10.1242/bio.025528] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/02/2017] [Indexed: 01/16/2023] Open
Abstract
Hagfish produce vast amounts of slime when under attack. The slime is the most dilute hydrogel known to date, and is a highly interesting material for biomaterial research. It forms from a glandular secrete, called exudate, which deploys upon contact with seawater. To study slime formation ex vivo and to characterize its material properties, stabilization of the sensitive slime exudate is crucial. In this study, we compared the two main stabilization methods, dispersion in high osmolarity citrate/PIPES (CP) buffer and immersion in oil, and tested the influence of time, temperature and pH on the stability of the exudate and functionality of the slime. Using water retention measurements to assess slime functionality, we found that CP buffer and oil preserved the exudate within the first 5 hours without loss of functionality. For longer storage times, slime functionality decreased for both stabilization methods, for which the breakdown mechanisms differed. Stabilization in oil likely favored temperature-sensitive osmotic-driven swelling and rupture of the mucin vesicles, causing the exudate to gel and clump. Extended storage in CP buffer resulted in an inhibited unraveling of skeins. We suggest that a water soluble protein glue, which mediates skein unraveling in functional skeins, denatures and gradually becomes insoluble during storage in CP buffer. The breakdown was accentuated when the pH of the CP buffer was raised from pH 6.7 to pH 8.5, probably caused by increased denaturation of the protein glue or by inferior vesicle stabilization. However, when fresh exudate was mixed into seawater or phosphate buffer at pH 6-9, slime functionality was not affected, showing pH insensitivity of the slime formation around a neutral pH. These insights on hagfish exudate stabilization mechanisms will support hagfish slime research at a fundamental level, and contribute to resolve the complex mechanisms of skein unraveling and slime formation.
Collapse
Affiliation(s)
- L J Böni
- Department of Health Science and Technology, ETH Zürich, 8092 Zürich, Switzerland
| | - R Zurflüh
- Department of Health Science and Technology, ETH Zürich, 8092 Zürich, Switzerland
| | - M Widmer
- Department of Health Science and Technology, ETH Zürich, 8092 Zürich, Switzerland
| | - P Fischer
- Department of Health Science and Technology, ETH Zürich, 8092 Zürich, Switzerland
| | - E J Windhab
- Department of Health Science and Technology, ETH Zürich, 8092 Zürich, Switzerland
| | - P A Rühs
- Department of Materials, ETH Zürich, 8093 Zürich, Switzerland
| | - S Kuster
- Department of Health Science and Technology, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
44
|
García-Arribas AB, González-Ramírez EJ, Sot J, Areso I, Alonso A, Goñi FM. Complex Effects of 24:1 Sphingolipids in Membranes Containing Dioleoylphosphatidylcholine and Cholesterol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:5545-5554. [PMID: 28510438 DOI: 10.1021/acs.langmuir.7b00162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The effects of C24:1 sphingolipids have been tested in phospholipid bilayers containing cholesterol. Confocal microscopy, differential scanning calorimetry, and atomic force microscopy imaging and force curves have been used. More precisely, the effects of C24:1 ceramide (nervonoyl ceramide, nCer) were evaluated and compared to those of C16:0 ceramide (palmitoyl ceramide, pCer) in bilayers composed basically of dioleoylphosphatidylcholine, sphingomyelin (either C24:1, nSM or C16:0, pSM) and cholesterol. Combination of equimolecular amounts of C24:1 and C16:0 sphingolipids were also studied under the same conditions. Results show that both pCer and nCer are capable of forming segregated gel domains. Force spectroscopy data point to nCer having a lower stiffening effect than pCer, while the presence of nSM reduces the stiffness. DSC reveals Tm reduction by nSM in every case. Furthermore, pSM seems to better accommodate both ceramides in a single phase of intermediate properties, while nSM partial accommodation of ceramides generates different gel phases with higher stiffnesses caused by interceramide cooperation. If both pSM and nSM are present, a clear preference of both ceramides toward pSM is observed. These findings show the sharp increase in complexity when membranes exhibit different sphingolipids of varying N-acyl chains, which should be a common issue in an actual cell membrane environment.
Collapse
Affiliation(s)
- Aritz B García-Arribas
- Instituto Biofisika (CSIC, UPV/EHU) , 48940, Bilbao, Spain
- Departamento de Bioquímica, University of the Basque Country (UPV/EHU) , 48940, Bilbao, Spain
| | - Emilio J González-Ramírez
- Instituto Biofisika (CSIC, UPV/EHU) , 48940, Bilbao, Spain
- Departamento de Bioquímica, University of the Basque Country (UPV/EHU) , 48940, Bilbao, Spain
| | - Jesús Sot
- Instituto Biofisika (CSIC, UPV/EHU) , 48940, Bilbao, Spain
- Departamento de Bioquímica, University of the Basque Country (UPV/EHU) , 48940, Bilbao, Spain
| | - Itziar Areso
- Instituto Biofisika (CSIC, UPV/EHU) , 48940, Bilbao, Spain
- Departamento de Bioquímica, University of the Basque Country (UPV/EHU) , 48940, Bilbao, Spain
| | - Alicia Alonso
- Instituto Biofisika (CSIC, UPV/EHU) , 48940, Bilbao, Spain
- Departamento de Bioquímica, University of the Basque Country (UPV/EHU) , 48940, Bilbao, Spain
| | - Félix M Goñi
- Instituto Biofisika (CSIC, UPV/EHU) , 48940, Bilbao, Spain
- Departamento de Bioquímica, University of the Basque Country (UPV/EHU) , 48940, Bilbao, Spain
| |
Collapse
|
45
|
Et-Thakafy O, Delorme N, Gaillard C, Mériadec C, Artzner F, Lopez C, Guyomarc'h F. Mechanical Properties of Membranes Composed of Gel-Phase or Fluid-Phase Phospholipids Probed on Liposomes by Atomic Force Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:5117-5126. [PMID: 28475345 DOI: 10.1021/acs.langmuir.7b00363] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In many liposome applications, the nanomechanical properties of the membrane envelope are essential to ensure, e.g., physical stability, protection, or penetration into tissues. Of all factors, the lipid composition and its phase behavior are susceptible to tune the mechanical properties of membranes. To investigate this, small unilamellar vesicles (SUV; diameter < 200 nm), referred to as liposomes, were produced using either unsaturated 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or saturated 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) in aqueous buffer at pH 6.7. The respective melting temperatures of these phospholipids were -20 and 41 °C. X-ray diffraction analysis confirmed that at 20 °C DOPC was in the fluid phase and DPPC was in the gel phase. After adsorption of the liposomes onto flat silicon substrates, atomic force microscopy (AFM) was used to image and probe the mechanical properties of the liposome membrane. The resulting force-distance curves were treated using an analytical model based on the shell theory to yield the Young's modulus (E) and the bending rigidity (kC) of the curved membranes. The mechanical investigation showed that DPPC membranes were much stiffer (E = 116 ± 45 MPa) than those of DOPC (E = 13 ± 9 MPa) at 20 °C. The study demonstrates that the employed methodology allows discrimination of the respective properties of gel- or fluid-phase membranes when in the shape of liposomes. It opens perspectives to map the mechanical properties of liposomes containing both fluid and gel phases or of biological systems.
Collapse
Affiliation(s)
| | - Nicolas Delorme
- UMR CNRS 6283 Institut des Molécules et Matériaux du Mans, Université du Maine, Université Bretagne-Loire, 72000 Le Mans, France
| | - Cédric Gaillard
- UR BIA 1268 Biopolymères Interactions Assemblages, INRA, 44316 Nantes, France
| | - Cristelle Mériadec
- Institut de Physique de Rennes, UMR 6251, CNRS, Université de Rennes 1, 263 Av. Général Leclerc, 35042 Rennes, France
| | - Franck Artzner
- Institut de Physique de Rennes, UMR 6251, CNRS, Université de Rennes 1, 263 Av. Général Leclerc, 35042 Rennes, France
| | | | | |
Collapse
|
46
|
Gumí-Audenis B, Costa L, Carlá F, Comin F, Sanz F, Giannotti MI. Structure and Nanomechanics of Model Membranes by Atomic Force Microscopy and Spectroscopy: Insights into the Role of Cholesterol and Sphingolipids. MEMBRANES 2016; 6:E58. [PMID: 27999368 PMCID: PMC5192414 DOI: 10.3390/membranes6040058] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 11/17/2022]
Abstract
Biological membranes mediate several biological processes that are directly associated with their physical properties but sometimes difficult to evaluate. Supported lipid bilayers (SLBs) are model systems widely used to characterize the structure of biological membranes. Cholesterol (Chol) plays an essential role in the modulation of membrane physical properties. It directly influences the order and mechanical stability of the lipid bilayers, and it is known to laterally segregate in rafts in the outer leaflet of the membrane together with sphingolipids (SLs). Atomic force microscope (AFM) is a powerful tool as it is capable to sense and apply forces with high accuracy, with distance and force resolution at the nanoscale, and in a controlled environment. AFM-based force spectroscopy (AFM-FS) has become a crucial technique to study the nanomechanical stability of SLBs by controlling the liquid media and the temperature variations. In this contribution, we review recent AFM and AFM-FS studies on the effect of Chol on the morphology and mechanical properties of model SLBs, including complex bilayers containing SLs. We also introduce a promising combination of AFM and X-ray (XR) techniques that allows for in situ characterization of dynamic processes, providing structural, morphological, and nanomechanical information.
Collapse
Affiliation(s)
- Berta Gumí-Audenis
- Nanoprobes and Nanoswitches group, Institute for Bioengineering of Catalunya (IBEC), Barcelona 08028, Spain.
- Physical Chemistry Department, Universitat de Barcelona, Barcelona 08028, Spain.
- European Synchrotron Radiation Facility (ESRF), Grenoble 38043, France.
- Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28028, Spain.
| | - Luca Costa
- Structure and Dynamics of Nucleoproteic and Membrane Assemblies, Centre de Biochimie Structurale (CBS), Montpellier 34090, France.
| | - Francesco Carlá
- European Synchrotron Radiation Facility (ESRF), Grenoble 38043, France.
| | - Fabio Comin
- European Synchrotron Radiation Facility (ESRF), Grenoble 38043, France.
| | - Fausto Sanz
- Nanoprobes and Nanoswitches group, Institute for Bioengineering of Catalunya (IBEC), Barcelona 08028, Spain.
- Physical Chemistry Department, Universitat de Barcelona, Barcelona 08028, Spain.
- Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28028, Spain.
| | - Marina I Giannotti
- Nanoprobes and Nanoswitches group, Institute for Bioengineering of Catalunya (IBEC), Barcelona 08028, Spain.
- Physical Chemistry Department, Universitat de Barcelona, Barcelona 08028, Spain.
- Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28028, Spain.
| |
Collapse
|
47
|
Kawahara Y, Ichiura H, Ohtani Y. Preparation of a temperature-responsive smart paper using a molecularly imprinted polymer and lipid bimolecular membrane. J Appl Polym Sci 2016. [DOI: 10.1002/app.44530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yu Kawahara
- Faculty of Agriculture and Marine Science; Kochi University; 200 Monobe-Otsu Nankoku, Kochi 783-8502 Japan
| | - Hideaki Ichiura
- Faculty of Agriculture and Marine Science; Kochi University; 200 Monobe-Otsu Nankoku, Kochi 783-8502 Japan
| | - Yoshito Ohtani
- Faculty of Agriculture and Marine Science; Kochi University; 200 Monobe-Otsu Nankoku, Kochi 783-8502 Japan
| |
Collapse
|
48
|
García-Arribas AB, Ahyayauch H, Sot J, López-González PL, Alonso A, Goñi FM. Ceramide-Induced Lamellar Gel Phases in Fluid Cell Lipid Extracts. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:9053-9063. [PMID: 27486830 DOI: 10.1021/acs.langmuir.6b01579] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The effects of increasing amounts of palmitoylceramide (pCer) on human red blood cell lipid membranes have been studied using atomic force microscopy of supported lipid bilayers, in both imaging (bilayer thickness) and force-spectroscopy (nanomechanical resistance) modes. Membranes appeared homogeneous with pCer concentrations up to 10 mol % because of the high concentration of cholesterol (Chol) present in the membrane (∼45 mol %). However, the presence of pCer at 30 mol % gave rise to a clearly distinguishable segregated phase with a nanomechanical resistance 7-fold higher than the continuous phase. These experiments were validated using differential scanning calorimetry. Furthermore, Chol depletion of the bilayers caused lipid domain generation in the originally homogeneous samples, and Chol-depleted domain stiffness significantly increased with higher amounts of pCer. These results point to the possibility of different kinds of transient and noncompositionally constant, complex gel-like phases present in RBC lipid membranes rich in both pCer and Chol, in contrast to the widespread opinion about the displacements between pCer-enriched "gel-like" domains and liquid-ordered "raft-like" Chol-enriched phases. Changes in the biophysical properties of these complex gel-like phases governed by local modulation of pCer:Chol ratios could be a cell mechanism for fine-tuning the properties of membranes as required.
Collapse
Affiliation(s)
- Aritz B García-Arribas
- Biofisika Institute (CSIC, UPV/EHU) , 48940 Leioa, Spain
- Departamento de Bioquímica, University of the Basque Country (UPV/EHU) , 48940 Leioa, Spain
| | - Hasna Ahyayauch
- Biofisika Institute (CSIC, UPV/EHU) , 48940 Leioa, Spain
- Departamento de Bioquímica, University of the Basque Country (UPV/EHU) , 48940 Leioa, Spain
- Institut Supérieur Des Professions Infirmières Et Des Techniques De Santé Rabat, Km 4.5 route de Casa, Rabat, Morocco
| | - Jesús Sot
- Biofisika Institute (CSIC, UPV/EHU) , 48940 Leioa, Spain
- Departamento de Bioquímica, University of the Basque Country (UPV/EHU) , 48940 Leioa, Spain
| | - Pablo L López-González
- Biofisika Institute (CSIC, UPV/EHU) , 48940 Leioa, Spain
- Departamento de Bioquímica, University of the Basque Country (UPV/EHU) , 48940 Leioa, Spain
| | - Alicia Alonso
- Biofisika Institute (CSIC, UPV/EHU) , 48940 Leioa, Spain
- Departamento de Bioquímica, University of the Basque Country (UPV/EHU) , 48940 Leioa, Spain
| | - Félix M Goñi
- Biofisika Institute (CSIC, UPV/EHU) , 48940 Leioa, Spain
- Departamento de Bioquímica, University of the Basque Country (UPV/EHU) , 48940 Leioa, Spain
| |
Collapse
|
49
|
The temperature-dependent physical state of polar lipids and their miscibility impact the topography and mechanical properties of bilayer models of the milk fat globule membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2181-2190. [DOI: 10.1016/j.bbamem.2016.06.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/19/2016] [Accepted: 06/22/2016] [Indexed: 11/23/2022]
|
50
|
Augustyńska D, Burda K, Jemioła-Rzemińska M, Strzałka K. Temperature-dependent bifurcation of cooperative interactions in pure and enriched in β-carotene DPPC liposomes. Chem Biol Interact 2016; 256:236-48. [DOI: 10.1016/j.cbi.2016.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 06/17/2016] [Accepted: 07/11/2016] [Indexed: 11/16/2022]
|