1
|
Doll S, Schweizer L, Bollwein C, Steiger K, Pfarr N, Walker M, Wörtler K, Knebel C, von Eisenhart-Rothe R, Hartmann W, Weichert W, Mann M, Kuhn PH, Specht K. Proteomic Characterization of Undifferentiated Small Round Cell Sarcomas With EWSR1 and CIC::DUX4 Translocations Reveals Diverging Tumor Biology and Distinct Diagnostic Markers. Mod Pathol 2024; 37:100511. [PMID: 38705279 DOI: 10.1016/j.modpat.2024.100511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/11/2024] [Accepted: 04/26/2024] [Indexed: 05/07/2024]
Abstract
Undifferentiated small round cell sarcomas (USRS) of bone and soft tissue are a group of tumors with heterogenic genomic alterations sharing similar morphology. In the present study, we performed a comparative large-scale proteomic analysis of USRS (n = 42) with diverse genomic translocations including classic Ewing sarcomas with EWSR1::FLI1 fusions (n = 24) or EWSR1::ERG fusions (n = 4), sarcomas with an EWSR1 rearrangement (n = 2), CIC::DUX4 fusion (n = 8), as well as tumors classified as USRS with no genetic data available (n = 4). Proteins extracted from formalin-fixed, paraffin-embedded pretherapeutic biopsies were analyzed qualitatively and quantitatively using shotgun mass spectrometry (MS). More than 8000 protein groups could be quantified using data-independent acquisition. Unsupervised hierarchical cluster analysis based on proteomic data allowed stratification of the 42 cases into distinct groups reflecting the different molecular genotypes. Protein signatures that significantly correlated with the respective genomic translocations were identified and used to generate a heatmap of all 42 sarcomas with assignment of cases with unknown molecular genetic data to either the EWSR1- or CIC-rearranged groups. MS-based prediction of sarcoma subtypes was molecularly confirmed in 2 cases where next-generation sequencing was technically feasible. MS also detected proteins routinely used in the immunohistochemical approach for the differential diagnosis of USRS. BCL11B highly expressed in Ewing sarcomas, and BACH2 as well as ETS-1 highly expressed in CIC::DUX4-associated sarcomas, were among proteins identified by the present proteomic study, and were chosen for immunohistochemical confirmation of MS data in our study cohort. Differential expressions of these 3 markers in the 2 genetic groups were further validated in an independent cohort of n = 34 USRS. Finally, our proteomic results point toward diverging signaling pathways in the different USRS subgroups.
Collapse
Affiliation(s)
- Sophia Doll
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Bavaria, Germany; OmicEra Diagnostics GmbH, Planegg, Bavaria, Germany
| | - Lisa Schweizer
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Bavaria, Germany
| | | | - Katja Steiger
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Nicole Pfarr
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Maria Walker
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Klaus Wörtler
- Musculoskeletal Radiology Section, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Carolin Knebel
- Department of Orthopaedic Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | | | - Wilko Weichert
- Institute of Pathology, Technical University of Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner-site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Bavaria, Germany
| | - Peer-Hendrik Kuhn
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Katja Specht
- Institute of Pathology, Technical University of Munich, Munich, Germany.
| |
Collapse
|
2
|
Hu QL, Zeng C. Clinicopathological analysis of EWSR1/FUS::NFATC2 rearranged sarcoma in the left forearm: A case report. World J Clin Cases 2024; 12:2887-2893. [PMID: 38899283 PMCID: PMC11185342 DOI: 10.12998/wjcc.v12.i16.2887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/13/2024] [Accepted: 04/11/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND We present a case of an EWSR1/FUS::NFATC2 rearranged sarcoma in the left forearm and analyze its clinicopathological and molecular features. CASE SUMMARY The patient is a 23-year-old woman. Microscopically, the tumor cells were medium-sized round cells arranged in small nests. The cytoplasm was clear, nuclei were relatively uniform, chromatin was dense, nucleoli were visible, and mitotic figures were rare. Immunohistochemically, the tumor cells were positive for Vimentin, INI-1, CD99, NKX2.2, CyclinD1, friend leukaemia virus integration 1, and NKX3.1. Next-generation sequencing revealed the presence of the EWSR1-NFATC2 fusion gene. EWSR1/FUS::NFATC2 rearranged sarcomas are rare and can easily be misdiagnosed. CONCLUSION Clinical imaging, immunohistochemistry, and molecular pathology should be considered to confirm the diagnosis.
Collapse
Affiliation(s)
- Qiao-Ling Hu
- Department of Pathology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518000, Guangdong Province, China
| | - Chao Zeng
- Department of Pathology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518000, Guangdong Province, China
| |
Collapse
|
3
|
Corredor-Alonso GE, Lino-Silva LS, López-Flores EY, Velásquez-Tovar T, Domínguez-Malagón HR. Ultrastructural differences between synovial sarcoma and solitary fibrous tumor: comparative study in adult patients from the National Cancer Institute of Mexico. Ultrastruct Pathol 2024; 48:213-220. [PMID: 38348820 DOI: 10.1080/01913123.2024.2313742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/30/2024] [Indexed: 04/25/2024]
Abstract
Synovial sarcoma (SS) and solitary fibrous tumor (SFT) are entities with considerable morphological and immunohistochemical similarities that sometimes show a non-confirmatory profile (TLE1 negative, CD34 and focal or negative STAT6 and lack of specific fusion IHC markers), in which the utility ultrastructure is unknown. A cross-sectional, retrospective, analytical, nonexperimental study was carried out by the Department of Pathology of the National Cancer Institute of Mexico (INCan) e from January 1, 2009 to December 31, 2018. With 17 SFT cases with diffuse or focal CD34 and STAT6 positivity and 18 cases of SS with positive FISH molecular test t(X:18) breakapart were studied by electron microscopy of fresh glutaraldehyde fixed or paraffin-embedded tissue. The ultrastructural findings with a significant difference present in the SS were tandem tight junctions, desmosomes and abundance of dilated rough endoplasmic reticulum (RER) cisternae (p < 0.001, 0.003, and 0.001, respectively); while in the (SFT) the presence of abundant glycogen, basal lamina, long and slender cytoplasmic processes, pinocytic vesicles, hemidesmosomes, and/or dense plaques, collagen skein, and microvilli-like buds (p = 0.028, 0.005, and <0.001 for the last five). We then infer that the five distinctive markers of the SFT are the collagen skeins intermingled with cellular processes in a shape of "squid can," and the pinocytic vesicles as they were not observed in any case of SS. Conversely, tandem junctions were not found in any SFT case. Although the presence of multivesicular buds in the SFT was not significant, it had not been previously described.
Collapse
|
4
|
Dashti NK, Schukow CP, Kilpatrick SE. Back to the future! Selected bone and soft tissue neoplasms with shared genetic alterations but differing morphological and immunohistochemical phenotypes. Hum Pathol 2024; 147:129-138. [PMID: 38521373 DOI: 10.1016/j.humpath.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 03/25/2024]
Abstract
Bone and soft tissue tumors (BST) are a highly heterogeneous group largely classified by their line of differentiation, based on their resemblance to their normal counterpart in adult tissue. Yet, rendering a specific diagnosis can be challenging, primarily due to their rarity and overlapping histopathologic features or clinical presentations. Over the past few decades, seemingly histogenetic-specific gene fusions/translocations and amplifications have been discovered, aiding in a more nuanced classification, leading to well-established objective diagnostic criteria and the development of specific surrogate ancillary tests targeting these genetic aberrations (e.g., immunohistochemistry). Ironically, the same research also has revealed that some specific tumor subtypes may be the result of differing and often multiple gene fusions/translocations, but, more interestingly, identical gene fusions may be present in more than one phenotypically and biologically distinct neoplasm, sometimes with entirely different clinical behavior. Prime examples include, EWSR1::ATF1 and, less commonly, EWSR1::CREB1 gene fusions present in both clear cell sarcoma, a malignant high-grade tumor with melanocytic differentiation, and angiomatoid fibrous histiocytoma, a mesenchymal neoplasm of intermediate malignancy with a generally indolent course. Similarly, MDM2 amplification, once deemed to be pathognomonic for atypical lipomatous tumor/well differentiated and dedifferentiated liposarcoma, has been documented in a range of additional distinct tumors, including low grade osteosarcomas (e.g. low grade central and surface parosteal) and high-grade intimal sarcomas, amongst others. Such findings reinforce the importance of careful attention to morphological and clinicoradiological features and correlation with molecular testing before rendering a specific diagnosis. Future classification systems in BST neoplasms cannot be solely based on molecular events and ideally will balance morphologic features with molecular analysis. Herein, we provide a narrative literature review of the more common BST neoplasms with shared genetic events but differing demographics, morphology, immunophenotype, and clinical behavior, re-emphasizing the importance of the hematoxylin and eosin slide and the "eye" of the practicing pathologist.
Collapse
Affiliation(s)
- Nooshin K Dashti
- Department of Pathology and Laboratory Medicine Dartmouth Health, Lebanon, 03766, NH, USA; Geisel School of Medicine at Dartmouth, Lebanon, 03766, NH, USA
| | - Casey P Schukow
- Corewell Health's Beaumont Hospital, Department of Pathology, Royal Oak, MI, 48073, USA
| | - Scott E Kilpatrick
- Department of Pathology & Laboratory Medicine, Cleveland Clinic, L25, 9500 Euclid Ave, Cleveland, OH, 44195, USA.
| |
Collapse
|
5
|
Sittiju P, Wudtiwai B, Chongchai A, Hajitou A, Kongtawelert P, Pothacharoen P, Suwan K. Bacteriophage-based particles carrying the TNF-related apoptosis-inducing ligand (TRAIL) gene for targeted delivery in hepatocellular carcinoma. NANOSCALE 2024; 16:6603-6617. [PMID: 38470366 PMCID: PMC10977282 DOI: 10.1039/d3nr05660k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The TRAIL (Tumour Necrosis Factor-Related Apoptosis-Inducing Ligand) is a promising candidate for cancer treatment due to its unique ability to selectively induce programmed cell death, or apoptosis, in cancer cells while sparing healthy ones. This selectivity arises from the preferential binding of the TRAIL to death receptors on cancer cells, triggering a cascade of events that lead to their demise. However, significant limitations in using the TRAIL for cancer treatment are the administration of the TRAIL protein that can potentially lead to tissue toxicity (off-target) and the short half-life of the TRAIL in the body which may necessitate frequent and sustained administration; these can pose logistical challenges for long-term treatment regimens. We have devised a novel approach for surmounting these limitations by introducing the TRAIL gene directly into cancer cells, enabling them to produce the TRAIL locally and subsequently trigger apoptosis. A novel gene delivery system such as a bacteriophage-based particle TPA (transmorphic phage/AAV) was utilized to address these limitations. TPA is a hybrid M13 filamentous bacteriophage particle encapsulating a therapeutic gene cassette with inverted terminal repeats (ITRs) from adeno-associated viruses (AAVs). The particle also showed a tumour targeting ligand, CDCRGDCFC (RGD4C), on its capsid (RGD4C.TPA) to target the particle to cancer cells. RGD4C selectively binds to αvβ3 and αvβ5 integrins overexpressed on the surface of most of the cancer cells but is barely present on normal cells. Hepatocellular carcinoma (HCC) was chosen as a model because it has one of the lowest survival rates among cancers. We demonstrated that human HCC cell lines (Huh-7 and HepG2) express αvβ5 integrin receptors on their surface. These HCC cells also express death receptors and TRAIL-binding receptors. We showed that the targeted TPA particle carrying the transmembrane TRAIL gene (RGD4C.TPA-tmTRAIL) selectively and efficiently delivered the tmTRAIL gene to HCC cells resulting in the production of tmTRAIL from transduced cells and subsequently induced apoptotic death of HCC cells. This tumour-targeted particle can be an excellent candidate for the targeted gene therapy of HCC.
Collapse
Affiliation(s)
- Pattaralawan Sittiju
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
- Cancer Phage Therapy Group, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK.
| | - Benjawan Wudtiwai
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Aitthiphon Chongchai
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Amin Hajitou
- Cancer Phage Therapy Group, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK.
| | - Prachya Kongtawelert
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Peraphan Pothacharoen
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Keittisak Suwan
- Cancer Phage Therapy Group, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
6
|
Vickridge E, Faraco CCF, Lo F, Rahimian H, Liu Z, Tehrani P, Djerir B, Ramdzan ZM, Leduy L, Maréchal A, Gingras AC, Nepveu A. The function of BCL11B in base excision repair contributes to its dual role as an oncogene and a haplo-insufficient tumor suppressor gene. Nucleic Acids Res 2024; 52:223-242. [PMID: 37956270 PMCID: PMC10783527 DOI: 10.1093/nar/gkad1037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Genetic studies in mice and human cancers established BCL11B as a haploinsufficient tumor suppressor gene. Paradoxically, BCL11B is overexpressed in some human cancers where its knockdown is synthetic lethal. We identified the BCL11B protein in a proximity-dependent biotinylation screen performed with the DNA glycosylase NTHL1. In vitro DNA repair assays demonstrated that both BCL11B and a small recombinant BCL11B213-560 protein lacking transcription regulation potential can stimulate the enzymatic activities of two base excision repair (BER) enzymes: NTHL1 and Pol β. In cells, BCL11B is rapidly recruited to sites of DNA damage caused by laser microirradiation. BCL11B knockdown delays, whereas ectopic expression of BCL11B213-560 accelerates, the repair of oxidative DNA damage. Inactivation of one BCL11B allele in TK6 lymphoblastoid cells causes an increase in spontaneous and radiation-induced mutation rates. In turn, ectopic expression of BCL11B213-560 cooperates with the RAS oncogene in cell transformation by reducing DNA damage and cellular senescence. These findings indicate that BCL11B functions as a BER accessory factor, safeguarding normal cells from acquiring mutations. Paradoxically, it also enables the survival of cancer cells that would otherwise undergo senescence or apoptosis due to oxidative DNA damage resulting from the elevated production of reactive oxygen species.
Collapse
Affiliation(s)
- Elise Vickridge
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
| | - Camila C F Faraco
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
- Department of Biochemistry, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
| | - Fanny Lo
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
- Department of Biochemistry, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
| | - Hedyeh Rahimian
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
| | - Zi Yang Liu
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
- Department of Biochemistry, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
| | - Payman S Tehrani
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario Canada
| | - Billel Djerir
- Department of Biology and Cancer Research Institute, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Zubaidah M Ramdzan
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
| | - Lam Leduy
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
| | - Alexandre Maréchal
- Department of Biology and Cancer Research Institute, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Alain Nepveu
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
- Department of Biochemistry, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
- Department of Medicine, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
- Department of Oncology, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
| |
Collapse
|
7
|
Gouda MA, Zarzour MA, Vaporciyan AA, Kairemo K, Chuang HH, Subbiah V. Activity of pazopanib in EWSR1-NFATC2 translocation-associated bone sarcoma. Oncoscience 2023; 10:44-53. [PMID: 37736255 PMCID: PMC10511123 DOI: 10.18632/oncoscience.587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023] Open
Abstract
Pazopanib is a multi-kinase inhibitor that is currently approved for treatment of advanced renal cell carcinoma and chemotherapy-refractory soft tissue sarcoma. In this case report, we discuss the case of a patient with a EWSR1-NFATC2 fusion positive bone sarcoma who had exceptional tumor control through using pazopanib and surgery for an overall duration exceeding 5 years. We also review the literature on EWSR1-NFATC2 translocation-associated sarcomas and use of pazopanib in bone sarcomas.
Collapse
Affiliation(s)
- Mohamed A. Gouda
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maria A. Zarzour
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ara A. Vaporciyan
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kalevi Kairemo
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hubert H. Chuang
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Sarah Cannon Research Institute, Nashville, TN 37203, USA
| |
Collapse
|
8
|
Dupuy M, Lamoureux F, Mullard M, Postec A, Regnier L, Baud’huin M, Georges S, Brounais-Le Royer B, Ory B, Rédini F, Verrecchia F. Ewing sarcoma from molecular biology to the clinic. Front Cell Dev Biol 2023; 11:1248753. [PMID: 37752913 PMCID: PMC10518617 DOI: 10.3389/fcell.2023.1248753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
In Europe, with an incidence of 7.5 cases per million, Ewing sarcoma (ES) is the second most common primary malignant bone tumor in children, adolescents and young adults, after osteosarcoma. Since the 1980s, conventional treatment has been based on the use of neoadjuvant and adjuvant chemotherapeutic agents combined with surgical resection of the tumor when possible. These treatments have increased the patient survival rate to 70% for localized forms, which drops drastically to less than 30% when patients are resistant to chemotherapy or when pulmonary metastases are present at diagnosis. However, the lack of improvement in these survival rates over the last decades points to the urgent need for new therapies. Genetically, ES is characterized by a chromosomal translocation between a member of the FET family and a member of the ETS family. In 85% of cases, the chromosomal translocation found is (11; 22) (q24; q12), between the EWS RNA-binding protein and the FLI1 transcription factor, leading to the EWS-FLI1 fusion protein. This chimeric protein acts as an oncogenic factor playing a crucial role in the development of ES. This review provides a non-exhaustive overview of ES from a clinical and biological point of view, describing its main clinical, cellular and molecular aspects.
Collapse
Affiliation(s)
- Maryne Dupuy
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, CRCI2NA, Université d'Angers, Nantes, France
| | | | | | | | | | | | | | | | | | | | - Franck Verrecchia
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, CRCI2NA, Université d'Angers, Nantes, France
| |
Collapse
|
9
|
Wang M, Chen Q, Wang S, Xie H, Liu J, Huang R, Xiang Y, Jiang Y, Tian D, Bian E. Super-enhancers complexes zoom in transcription in cancer. J Exp Clin Cancer Res 2023; 42:183. [PMID: 37501079 PMCID: PMC10375641 DOI: 10.1186/s13046-023-02763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
Super-enhancers (SEs) consist of multiple typical enhancers enriched at high density with transcription factors, histone-modifying enzymes and cofactors. Oncogenic SEs promote tumorigenesis and malignancy by altering protein-coding gene expression and noncoding regulatory element function. Therefore, they play central roles in the treatment of cancer. Here, we review the structural characteristics, organization, identification, and functions of SEs and the underlying molecular mechanism by which SEs drive oncogenic transcription in tumor cells. We then summarize abnormal SE complexes, SE-driven coding genes, and noncoding RNAs involved in tumor development. In summary, we believe that SEs show great potential as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- MengTing Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - QingYang Chen
- Department of Clinical MedicineThe Second School of Clinical Medical, Anhui Medical University, Hefei, China
| | - ShuJie Wang
- Department of Clinical MedicineThe Second School of Clinical Medical, Anhui Medical University, Hefei, China
| | - Han Xie
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - Jun Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - RuiXiang Huang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - YuFei Xiang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - YanYi Jiang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China.
| | - DaSheng Tian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China.
| | - ErBao Bian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China.
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
10
|
Daher M, Zalaquett Z, Chalhoub R, Abi Farraj S, Abdo M, Sebaaly A, Kourie HR, Ghanem I. Molecular and biologic biomarkers of Ewing sarcoma: A systematic review. J Bone Oncol 2023; 40:100482. [PMID: 37180735 PMCID: PMC10173001 DOI: 10.1016/j.jbo.2023.100482] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/23/2023] [Accepted: 04/23/2023] [Indexed: 05/16/2023] Open
Abstract
With an annual incidence of less than 1%, Ewing sarcoma mainly occurs in children and young adults. It is not a frequent tumor but is the second most common bone malignancy in children. It has a 5-year survival rate of 65-75%; however, it has a poor prognosis when it relapses in patients. A genomic profile of this tumor can potentially help identify poor prognosis patients earlier and guide their treatment. A systematic review of the articles concerning genetic biomarkers in Ewing sarcoma was conducted using the Google Scholar, Cochrane, and PubMed database. There were 71 articles discovered. Numerous diagnostic, prognostic, and predictive biomarkers were found. However, more research is necessary to confirm the role of some of the mentioned biomarkers. .
Collapse
Affiliation(s)
- Mohammad Daher
- Orthopedic Department, Faculty of Medicine, Saint Joseph University of Beirut, Lebanon
- Corresponding author at: Hotel Dieu de France, Beirut, Lebanon.
| | - Ziad Zalaquett
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University of Beirut, Lebanon
| | - Ralph Chalhoub
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University of Beirut, Lebanon
| | - Sami Abi Farraj
- Orthopedic Department, Faculty of Medicine, Saint Joseph University of Beirut, Lebanon
| | - Majd Abdo
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University of Beirut, Lebanon
| | - Amer Sebaaly
- Orthopedic Department, Faculty of Medicine, Saint Joseph University of Beirut, Lebanon
| | - Hampig-Raphaël Kourie
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University of Beirut, Lebanon
| | - Ismat Ghanem
- Orthopedic Department, Faculty of Medicine, Saint Joseph University of Beirut, Lebanon
| |
Collapse
|
11
|
Kamolphiwong R, Kanokwiroon K, Wongrin W, Chaiyawat P, Klangjorhor J, Settakorn J, Teeyakasem P, Sangphukieo A, Pruksakorn D. Potential target identification for osteosarcoma treatment: Gene expression re-analysis and drug repurposing. Gene X 2023; 856:147106. [PMID: 36513192 DOI: 10.1016/j.gene.2022.147106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 11/18/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Survival rate of osteosarcoma has remained plateaued for the past three decades. New treatment is needed to improve survival rate. Drug repurposing, a method to identify new indications of previous drugs, which saves time and cost compared to the de novo drug discovery. Data mining from gene expression profile was carried out and new potential targets were identified by using drug repurposing strategy. Selected data were newly categorized as pathophysiology and metastasis groups. Data were normalized and calculated the differential gene expression. Genes with log fold change ≥ 2 and adjusted p-value ≤ 0.05 were selected as primary candidate genes (PCGs). PCGs were further enriched to determine the secondary candidate genes (SCGs) by protein interaction analysis, upstream transcription factor and related-protein kinase identification. PCGs and SCGs were further matched with gene targeted of corresponding drugs from the Drug Repurposing Hub. A total of 778 targets were identified (360 from PCGs, and 418 from SCGs). This newly identified KLHL13 is a new candidate target based on its molecular function. KLHL13 was upregulated in clinical samples. We found 256 drugs from matching processes (50anti-cancerand206non-anticancerdrugs). Clinical trials of anti-cancer drugs from 5 targets (CDK4, BCL-2, JUN, SRC, PIK3CA) are being performed for osteosarcoma treatment. Niclosamide and synthetic PPARɣ ligands are candidates for repurposing due to the possibility based on their mechanism and pharmacology properties. Re-analysis of gene expression profile could identify new potential targets, confirm a current implication, and expand the chance of repurposing drugs for osteosarcoma treatment.
Collapse
Affiliation(s)
- Rawikant Kamolphiwong
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Kanyanatt Kanokwiroon
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand.
| | - Weerinrada Wongrin
- Department of Statistics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Parunya Chaiyawat
- Musculoskeletal Science and Translational Research Center, Department of Orthopaedics, Chiang Mai University, Chiang Mai, Thailand; Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Thailand
| | - Jeerawan Klangjorhor
- Musculoskeletal Science and Translational Research Center, Department of Orthopaedics, Chiang Mai University, Chiang Mai, Thailand; Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Thailand
| | - Jongkolnee Settakorn
- Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pimpisa Teeyakasem
- Musculoskeletal Science and Translational Research Center, Department of Orthopaedics, Chiang Mai University, Chiang Mai, Thailand
| | - Apiwat Sangphukieo
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Thailand
| | - Dumnoensun Pruksakorn
- Musculoskeletal Science and Translational Research Center, Department of Orthopaedics, Chiang Mai University, Chiang Mai, Thailand; Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Thailand.
| |
Collapse
|
12
|
Orth MF, Surdez D, Faehling T, Ehlers AC, Marchetto A, Grossetête S, Volckmann R, Zwijnenburg DA, Gerke JS, Zaidi S, Alonso J, Sastre A, Baulande S, Sill M, Cidre-Aranaz F, Ohmura S, Kirchner T, Hauck SM, Reischl E, Gymrek M, Pfister SM, Strauch K, Koster J, Delattre O, Grünewald TGP. Systematic multi-omics cell line profiling uncovers principles of Ewing sarcoma fusion oncogene-mediated gene regulation. Cell Rep 2022; 41:111761. [PMID: 36476851 DOI: 10.1016/j.celrep.2022.111761] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 08/25/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Ewing sarcoma (EwS) is characterized by EWSR1-ETS fusion transcription factors converting polymorphic GGAA microsatellites (mSats) into potent neo-enhancers. Although the paucity of additional mutations makes EwS a genuine model to study principles of cooperation between dominant fusion oncogenes and neo-enhancers, this is impeded by the limited number of well-characterized models. Here we present the Ewing Sarcoma Cell Line Atlas (ESCLA), comprising whole-genome, DNA methylation, transcriptome, proteome, and chromatin immunoprecipitation sequencing (ChIP-seq) data of 18 cell lines with inducible EWSR1-ETS knockdown. The ESCLA shows hundreds of EWSR1-ETS-targets, the nature of EWSR1-ETS-preferred GGAA mSats, and putative indirect modes of EWSR1-ETS-mediated gene regulation, converging in the duality of a specific but plastic EwS signature. We identify heterogeneously regulated EWSR1-ETS-targets as potential prognostic EwS biomarkers. Our freely available ESCLA (http://r2platform.com/escla/) is a rich resource for EwS research and highlights the power of comprehensive datasets to unravel principles of heterogeneous gene regulation by chimeric transcription factors.
Collapse
Affiliation(s)
- Martin F Orth
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, 80337 Munich, Germany
| | - Didier Surdez
- INSERM Unit 830 "Genetics and Biology of Cancers," Institut Curie Research Center, 75005 Paris, France; Balgrist University Hospital, Faculty of Medicine, University of Zürich, 8008 Zürich, Switzerland
| | - Tobias Faehling
- Hopp Children's Cancer Center (KiTZ), 69120 Heidelberg, Germany; Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Anna C Ehlers
- Hopp Children's Cancer Center (KiTZ), 69120 Heidelberg, Germany; Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Aruna Marchetto
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, 80337 Munich, Germany
| | - Sandrine Grossetête
- INSERM Unit 830 "Genetics and Biology of Cancers," Institut Curie Research Center, 75005 Paris, France
| | - Richard Volckmann
- Department of Oncogenomics, Amsterdam University Medical Centers (AUMC), 1105 Amsterdam, the Netherlands
| | - Danny A Zwijnenburg
- Department of Oncogenomics, Amsterdam University Medical Centers (AUMC), 1105 Amsterdam, the Netherlands
| | - Julia S Gerke
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, 80337 Munich, Germany
| | - Sakina Zaidi
- INSERM Unit 830 "Genetics and Biology of Cancers," Institut Curie Research Center, 75005 Paris, France
| | - Javier Alonso
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CB06/07/1009, CIBERER-ISCIII), 28029 Madrid, Spain
| | - Ana Sastre
- Unidad Hemato-oncología Pediátrica, Hospital Infantil Universitario La Paz, 28029 Madrid, Spain
| | - Sylvain Baulande
- Institut Curie Genomics of Excellence (ICGex) Platform, Institut Curie Research Center, 75005 Paris, France
| | - Martin Sill
- Hopp Children's Cancer Center (KiTZ), 69120 Heidelberg, Germany; Division of Pediatric Neuro-Oncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Florencia Cidre-Aranaz
- Hopp Children's Cancer Center (KiTZ), 69120 Heidelberg, Germany; Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Shunya Ohmura
- Hopp Children's Cancer Center (KiTZ), 69120 Heidelberg, Germany; Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Thomas Kirchner
- Institute of Pathology, Faculty of Medicine, LMU Munich, 80337 Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, 80337 Munich, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science and Metabolomics and Proteomics Core, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Eva Reischl
- Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Melissa Gymrek
- Division of Genetics, Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA; Department of Computer Science and Engineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Stefan M Pfister
- Hopp Children's Cancer Center (KiTZ), 69120 Heidelberg, Germany; Division of Pediatric Neuro-Oncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Department of Pediatric Hematology & Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Konstantin Strauch
- Institute of Medical Biometry, Epidemiology, and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), Faculty of Medicine, LMU Munich, 81377 Munich, Germany
| | - Jan Koster
- Department of Oncogenomics, Amsterdam University Medical Centers (AUMC), 1105 Amsterdam, the Netherlands
| | - Olivier Delattre
- INSERM Unit 830 "Genetics and Biology of Cancers," Institut Curie Research Center, 75005 Paris, France
| | - Thomas G P Grünewald
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, 80337 Munich, Germany; Hopp Children's Cancer Center (KiTZ), 69120 Heidelberg, Germany; Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany.
| |
Collapse
|
13
|
Apfelbaum AA, Wrenn ED, Lawlor ER. The importance of fusion protein activity in Ewing sarcoma and the cell intrinsic and extrinsic factors that regulate it: A review. Front Oncol 2022; 12:1044707. [PMID: 36505823 PMCID: PMC9727305 DOI: 10.3389/fonc.2022.1044707] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/27/2022] [Indexed: 11/24/2022] Open
Abstract
Accumulating evidence shows that despite clonal origins tumors eventually become complex communities comprised of phenotypically distinct cell subpopulations. This heterogeneity arises from both tumor cell intrinsic programs and signals from spatially and temporally dynamic microenvironments. While pediatric cancers usually lack the mutational burden of adult cancers, they still exhibit high levels of cellular heterogeneity that are largely mediated by epigenetic mechanisms. Ewing sarcomas are aggressive bone and soft tissue malignancies with peak incidence in adolescence and the prognosis for patients with relapsed and metastatic disease is dismal. Ewing sarcomas are driven by a single pathognomonic fusion between a FET protein and an ETS family transcription factor, the most common of which is EWS::FLI1. Despite sharing a single driver mutation, Ewing sarcoma cells demonstrate a high degree of transcriptional heterogeneity both between and within tumors. Recent studies have identified differential fusion protein activity as a key source of this heterogeneity which leads to profoundly different cellular phenotypes. Paradoxically, increased invasive and metastatic potential is associated with lower EWS::FLI1 activity. Here, we review what is currently understood about EWS::FLI1 activity, the cell autonomous and tumor microenvironmental factors that regulate it, and the downstream consequences of these activity states on tumor progression. We specifically highlight how transcription factor regulation, signaling pathway modulation, and the extracellular matrix intersect to create a complex network of tumor cell phenotypes. We propose that elucidation of the mechanisms by which these essential elements interact will enable the development of novel therapeutic approaches that are designed to target this complexity and ultimately improve patient outcomes.
Collapse
Affiliation(s)
| | | | - Elizabeth R. Lawlor
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute and Department of Pediatrics, University of Washington, Seattle, WA, United States
| |
Collapse
|
14
|
Neomorphic DNA-binding enables tumor-specific therapeutic gene expression in fusion-addicted childhood sarcoma. Mol Cancer 2022; 21:199. [PMID: 36229873 PMCID: PMC9558418 DOI: 10.1186/s12943-022-01641-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
Chimeric fusion transcription factors are oncogenic hallmarks of several devastating cancer entities including pediatric sarcomas, such as Ewing sarcoma (EwS) and alveolar rhabdomyosarcoma (ARMS). Despite their exquisite specificity, these driver oncogenes have been considered largely undruggable due to their lack of enzymatic activity. Here, we show in the EwS model that – capitalizing on neomorphic DNA-binding preferences – the addiction to the respective fusion transcription factor EWSR1-FLI1 can be leveraged to express therapeutic genes. We genetically engineered a de novo enhancer-based, synthetic and highly potent expression cassette that can elicit EWSR1-FLI1-dependent expression of a therapeutic payload as evidenced by episomal and CRISPR-edited genomic reporter assays. Combining in silico screens and immunohistochemistry, we identified GPR64 as a highly specific cell surface antigen for targeted transduction strategies in EwS. Functional experiments demonstrated that anti-GPR64-pseudotyped lentivirus harboring our expression cassette can specifically transduce EwS cells to promote the expression of viral thymidine kinase sensitizing EwS for treatment to otherwise relatively non-toxic (Val)ganciclovir and leading to strong anti-tumorigenic, but no adverse effects in vivo. Further, we prove that similar vector designs can be applied in PAX3-FOXO1-driven ARMS, and to express immunomodulatory cytokines, such as IL-15 and XCL1, in tumor entities typically considered to be immunologically ‘cold’. Collectively, these results generated in pediatric sarcomas indicate that exploiting, rather than suppressing, the neomorphic functions of chimeric transcription factors may open inroads to innovative and personalized therapies, and that our highly versatile approach may be translatable to other cancers addicted to oncogenic transcription factors with unique DNA-binding properties.
Collapse
|
15
|
Abstract
Undifferentiated small round cell sarcomas (SRCSs) of bone and soft tissue comprise a heterogeneous group of highly aggressive tumours associated with a poor prognosis, especially in metastatic disease. SRCS entities mainly occur in the third decade of life and can exhibit striking disparities regarding preferentially affected sex and tumour localization. SRCSs comprise new entities defined by specific genetic abnormalities, namely EWSR1-non-ETS fusions, CIC-rearrangements or BCOR genetic alterations, as well as EWSR1-ETS fusions in the prototypic SRCS Ewing sarcoma. These gene fusions mainly encode aberrant oncogenic transcription factors that massively rewire the transcriptome and epigenome of the as yet unknown cell or cells of origin. Additional mutations or copy number variants are rare at diagnosis and, depending on the tumour entity, may involve TP53, CDKN2A and others. Histologically, these lesions consist of small round cells expressing variable levels of CD99 and specific marker proteins, including cyclin B3, ETV4, WT1, NKX3-1 and aggrecan, depending on the entity. Besides locoregional treatment that should follow standard protocols for sarcoma management, (neo)adjuvant treatment is as yet ill-defined but generally follows that of Ewing sarcoma and is associated with adverse effects that might compromise quality of life. Emerging studies on the molecular mechanisms of SRCSs and the development of genetically engineered animal models hold promise for improvements in early detection, disease monitoring, treatment-related toxicity, overall survival and quality of life.
Collapse
|
16
|
Deng Q, Natesan R, Cidre-Aranaz F, Arif S, Liu Y, Rasool RU, Wang P, Mitchell-Velasquez E, Das CK, Vinca E, Cramer Z, Grohar PJ, Chou M, Kumar-Sinha C, Weber K, Eisinger-Mathason TK, Grillet N, Grünewald T, Asangani IA. Oncofusion-driven de novo enhancer assembly promotes malignancy in Ewing sarcoma via aberrant expression of the stereociliary protein LOXHD1. Cell Rep 2022; 39:110971. [PMID: 35705030 PMCID: PMC9716578 DOI: 10.1016/j.celrep.2022.110971] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 04/05/2022] [Accepted: 05/24/2022] [Indexed: 01/16/2023] Open
Abstract
Ewing sarcoma (EwS) is a highly aggressive tumor of bone and soft tissues that mostly affects children and adolescents. The pathognomonic oncofusion EWSR1::FLI1 transcription factor drives EwS by orchestrating an oncogenic transcription program through de novo enhancers. By integrative analysis of thousands of transcriptomes representing pan-cancer cell lines, primary cancers, metastasis, and normal tissues, we identify a 32-gene signature (ESS32 [Ewing Sarcoma Specific 32]) that stratifies EwS from pan-cancer. Among the ESS32, LOXHD1, encoding a stereociliary protein, is the most highly expressed gene through an alternative transcription start site. Deletion or silencing of EWSR1::FLI1 bound upstream de novo enhancer results in loss of the LOXHD1 short isoform, altering EWSR1::FLI1 and HIF1α pathway genes and resulting in decreased proliferation/invasion of EwS cells. These observations implicate LOXHD1 as a biomarker and a determinant of EwS metastasis and suggest new avenues for developing LOXHD1-targeted drugs or cellular therapies for this deadly disease.
Collapse
Affiliation(s)
- Qu Deng
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA 19104, USA,These authors contributed equally
| | - Ramakrishnan Natesan
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA 19104, USA,These authors contributed equally
| | - Florencia Cidre-Aranaz
- Max-Eder Research Group of Pediatric Sarcoma Biology, Institute of Pathology, LMU Munich, Munich, Germany,Hopp Children’s Cancer Center (KiTZ) Heidelberg, Heidelberg, Germany
| | - Shehbeel Arif
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA 19104, USA
| | - Ying Liu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, BRBII/III, Philadelphia, PA, USA
| | - Reyaz ur Rasool
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA 19104, USA
| | - Pei Wang
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - Erick Mitchell-Velasquez
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA 19104, USA
| | - Chandan Kanta Das
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA 19104, USA
| | - Endrit Vinca
- Hopp Children’s Cancer Center (KiTZ) Heidelberg, Heidelberg, Germany,Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Hopp Children’s Cancer Center (KiTZ), Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Zvi Cramer
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA 19104, USA
| | | | - Margaret Chou
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, BRBII/III, Philadelphia, PA, USA
| | - Chandan Kumar-Sinha
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Kristy Weber
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - T.S. Karin Eisinger-Mathason
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, BRBII/III, Philadelphia, PA, USA,Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicolas Grillet
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - Thomas Grünewald
- Max-Eder Research Group of Pediatric Sarcoma Biology, Institute of Pathology, LMU Munich, Munich, Germany,Hopp Children’s Cancer Center (KiTZ) Heidelberg, Heidelberg, Germany,Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Hopp Children’s Cancer Center (KiTZ), Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany,Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Irfan A. Asangani
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA 19104, USA,Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,Lead contact,Correspondence:
| |
Collapse
|
17
|
Hamilton G. Comparative characteristics of small cell lung cancer and Ewing's sarcoma: a narrative review. Transl Lung Cancer Res 2022; 11:1185-1198. [PMID: 35832443 PMCID: PMC9271444 DOI: 10.21037/tlcr-22-58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/23/2022] [Indexed: 12/24/2022]
Abstract
Background and Objective Small cell lung cancer (SCLC) and Ewing's sarcoma (ES) at the disseminated stage are not amenable to therapy and have a dismal prognosis with low survival rates. Despite representing different tumor entities, treatment for both malignancies relies on cytotoxic chemotherapy that has not considerably changed for the past decades. The genomic background has been extensively studied and found to comprise inactivation of p53 and RB1 in case of SCLC and EWSR1/FLI1 rearrangement in case of ES resulting in aggressive tumors in adults with heavy tobacco consumption and as bone tumor in juveniles, respectively. New therapeutic modalities are urgently needed to improve the outcomes of both tumor entities, especially in patients with metastatic disease or recurrences. This review summarizes the common cell biologic and clinical characteristics of difficult-to-treat SCLC and ES and discusses their refractoriness and options to improve the therapeutic efficacy. Methods PubMed and Euro PMC were searched from January 1st, 2012 to January 16th, 2022 using the following key words: "SCLC", "Ewing´s sarcoma", "Genomics" and "Chemoresistance" as well as own work. Key Content and Findings Therapy of SCLC and ES involves the use of undirected cytotoxic drugs in multimodal chemotherapy and administration of topotecan for 2nd line SCLC regimens. Despite highly aggressive chemotherapies, outcomes are dismal for patients with disseminated tumors. A host of unrelated drugs and targeted therapeutics have failed to result in progress for the patients and the underlying mechanisms of chemoresistance are still not clear. Identification of chemoresistance-reversing modulators in vitro and patient-derived xenografts of SCLC and ES has not translated into new therapies. Conclusions The global chemoresistance of SCLC and ES may be explained by physiological resistance at the tumor level and formation of larger spheroids that contain quiescent and hypoxic tumor cells in regions that occlude therapeutics. This type of chemoresistance is difficult to overcome and prevent the accumulation of effective drug concentration at the tumor cell level to a significant degree leaving therapeutic interventions of any kind ineffective.
Collapse
Affiliation(s)
- Gerhard Hamilton
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
18
|
A Massive Ewing Sarcoma of the Rib: A Case Report with Literature Review. Case Rep Pediatr 2022; 2022:6921004. [PMID: 35607700 PMCID: PMC9124152 DOI: 10.1155/2022/6921004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/03/2022] [Indexed: 11/18/2022] Open
Abstract
A 9-year-old boy with a 16 cm chest wall mass, presenting with progressive cough and exertional dyspnea, was finally diagnosed with Ewing sarcoma of the rib. Such massive tumors usually present with metastasis and carry a bad prognosis. Fortunately, we present here a successful treatment approach for Ewing sarcoma of the ribs, defeating the overwhelming obstacles commonly faced in chest wall tumors. Delays in diagnosis, misdiagnosis, difficulty with general anesthesia, opportunistic infections, disruptions in chemotherapy delivery, and debilitating chest wall deformities are all potential challenges that could complicate the course of treatment.
Collapse
|
19
|
Buchou C, Laud-Duval K, van der Ent W, Grossetête S, Zaidi S, Gentric G, Corbé M, Müller K, Del Nery E, Surdez D, Delattre O. Upregulation of the Mevalonate Pathway through EWSR1-FLI1/EGR2 Regulatory Axis Confers Ewing Cells Exquisite Sensitivity to Statins. Cancers (Basel) 2022; 14:2327. [PMID: 35565457 PMCID: PMC9100622 DOI: 10.3390/cancers14092327] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Ewing sarcoma (EwS) is an aggressive primary bone cancer in children and young adults characterized by oncogenic fusions between genes encoding FET-RNA-binding proteins and ETS transcription factors, the most frequent fusion being EWSR1-FLI1. We show that EGR2, an Ewing-susceptibility gene and an essential direct target of EWSR1-FLI1, directly regulates the transcription of genes encoding key enzymes of the mevalonate (MVA) pathway. Consequently, Ewing sarcoma is one of the tumors that expresses the highest levels of mevalonate pathway genes. Moreover, genome-wide screens indicate that MVA pathway genes constitute major dependencies of Ewing cells. Accordingly, the statin inhibitors of HMG-CoA-reductase, a rate-limiting enzyme of the MVA pathway, demonstrate cytotoxicity in EwS. Statins induce increased ROS and lipid peroxidation levels, as well as decreased membrane localization of prenylated proteins, such as small GTP proteins. These metabolic effects lead to an alteration in the dynamics of S-phase progression and to apoptosis. Statin-induced effects can be rescued by downstream products of the MVA pathway. Finally, we further show that statins impair tumor growth in different Ewing PDX models. Altogether, the data show that statins, which are off-patent, well-tolerated, and inexpensive compounds, should be strongly considered in the therapeutic arsenal against this deadly childhood disease.
Collapse
Affiliation(s)
- Charlie Buchou
- INSERM U830, Équipe Labellisée LNCC, Diversity & Plasticity of Childhood Tumors Laboratory, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, 26 rue d’ULM, 75005 Paris, France; (C.B.); (K.L.-D.); (W.v.d.E.); (S.G.); (S.Z.); (D.S.)
| | - Karine Laud-Duval
- INSERM U830, Équipe Labellisée LNCC, Diversity & Plasticity of Childhood Tumors Laboratory, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, 26 rue d’ULM, 75005 Paris, France; (C.B.); (K.L.-D.); (W.v.d.E.); (S.G.); (S.Z.); (D.S.)
| | - Wietske van der Ent
- INSERM U830, Équipe Labellisée LNCC, Diversity & Plasticity of Childhood Tumors Laboratory, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, 26 rue d’ULM, 75005 Paris, France; (C.B.); (K.L.-D.); (W.v.d.E.); (S.G.); (S.Z.); (D.S.)
| | - Sandrine Grossetête
- INSERM U830, Équipe Labellisée LNCC, Diversity & Plasticity of Childhood Tumors Laboratory, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, 26 rue d’ULM, 75005 Paris, France; (C.B.); (K.L.-D.); (W.v.d.E.); (S.G.); (S.Z.); (D.S.)
| | - Sakina Zaidi
- INSERM U830, Équipe Labellisée LNCC, Diversity & Plasticity of Childhood Tumors Laboratory, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, 26 rue d’ULM, 75005 Paris, France; (C.B.); (K.L.-D.); (W.v.d.E.); (S.G.); (S.Z.); (D.S.)
| | - Géraldine Gentric
- INSERM U830, Équipe Labellisée LNCC, Stress and Cancer Laboratory, PSL Research University, Institut Curie Research Center, 26 rue d’ULM, 75005 Paris, France;
| | - Maxime Corbé
- Department of Translational Research, The Biophenics High-Content Screening Laboratory, PSL Research University, Institut Curie Research Center, 26 rue d’ULM, 75005 Paris, France; (M.C.); (K.M.); (E.D.N.)
| | - Kévin Müller
- Department of Translational Research, The Biophenics High-Content Screening Laboratory, PSL Research University, Institut Curie Research Center, 26 rue d’ULM, 75005 Paris, France; (M.C.); (K.M.); (E.D.N.)
| | - Elaine Del Nery
- Department of Translational Research, The Biophenics High-Content Screening Laboratory, PSL Research University, Institut Curie Research Center, 26 rue d’ULM, 75005 Paris, France; (M.C.); (K.M.); (E.D.N.)
| | - Didier Surdez
- INSERM U830, Équipe Labellisée LNCC, Diversity & Plasticity of Childhood Tumors Laboratory, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, 26 rue d’ULM, 75005 Paris, France; (C.B.); (K.L.-D.); (W.v.d.E.); (S.G.); (S.Z.); (D.S.)
- Balgrist University Hospital, University of Zurich, Zurich, Forchstrasse 340, 8008 Zürich, Switzerland
| | - Olivier Delattre
- INSERM U830, Équipe Labellisée LNCC, Diversity & Plasticity of Childhood Tumors Laboratory, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, 26 rue d’ULM, 75005 Paris, France; (C.B.); (K.L.-D.); (W.v.d.E.); (S.G.); (S.Z.); (D.S.)
| |
Collapse
|
20
|
Wu Y, Mao A, Wang J. Primary Ewing's sarcoma (ES)/peripheral primitive neuroectodermal tumor (pPNET) of the tongue in a child: A case report. Oral Oncol 2022; 128:105818. [DOI: 10.1016/j.oraloncology.2022.105818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/10/2022] [Indexed: 10/18/2022]
|
21
|
Sittiju P, Chaiyawat P, Pruksakorn D, Klangjorhor J, Wongrin W, Phinyo P, Kamolphiwong R, Phanphaisarn A, Teeyakasem P, Kongtawelert P, Pothacharoen P. Osteosarcoma-Specific Genes as a Diagnostic Tool and Clinical Predictor of Tumor Progression. BIOLOGY 2022; 11:biology11050698. [PMID: 35625426 PMCID: PMC9138411 DOI: 10.3390/biology11050698] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/12/2022] [Accepted: 04/28/2022] [Indexed: 01/15/2023]
Abstract
Simple Summary The standard method for the diagnosis and monitoring of osteosarcoma is biopsy and tumor imaging, which causes discomfort to patients and is difficult to repeat. A blood sample can be used as a non-invasive method for monitoring tumor material. Vimentin and ezrin show clinical significance in samples obtained from OS patients but need circulating tumor cell purification, since they are expressed in leukocytes. Due to the low-temperature storage of the samples, it proved impossible to perform purification to remove the contamination. We propose that novel or OS-specific biomarkers using differential gene expression from the Gene Expression Omnibus (GEO) database is a promising approach for developing diagnostic and tumor progression strategies. Seven genes from the database showed significant expression in OS cell lines/primary cells compared to a normal blood donor, together with ezrin and VIM. The expression of the five candidate genes together with ezrin and vimentin were quantified by qRT-PCR and analyzed using a mathematical model with high efficiency to discriminate between OS patients and normal samples, resulting in the selection of three candidate genes: COL5A2 (one of the five from the database) as well as ezrin and VIM. Our study demonstrates that these genes in retrospective samples could serve as tools of OS detection and predictors of disease progression. Abstract A liquid biopsy is currently an interesting tool for measuring tumor material with the advantage of being non-invasive. The overexpression of vimentin and ezrin genes was associated with epithelial-mesenchymal transition (EMT), a key process in metastasis and progression in osteosarcoma (OS). In this study, we identified other OS-specific genes by calculating differential gene expression using the Gene Expression Omnibus (GEO) database, confirmed by using quantitative reverse transcription-PCR (qRT-PCR) to detect OS-specific genes, including VIM and ezrin in the buffy coat, which were obtained from the whole blood of OS patients and healthy donors. Furthermore, the diagnostic model for OS detection was generated by utilizing binary logistic regression with a multivariable fractional polynomial (MFP) algorithm. The model incorporating VIM, ezrin, and COL5A2 genes exhibited outstanding discriminative ability, as determined by the receiver operating characteristic curve (AUC = 0.9805, 95% CI 0.9603, 1.000). At the probability cut-off value of 0.3366, the sensitivity and the specificity of the model for detecting OS were 98.63% (95% CI 90.5, 99.7) and 94.94% (95% CI 87.5, 98.6), respectively. Bioinformatic analysis and qRT-PCR, in our study, identified three candidate genes that are potential diagnostic and prognostic genes for OS.
Collapse
Affiliation(s)
- Pattaralawan Sittiju
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (P.K.)
| | - Parunya Chaiyawat
- Musculoskeletal Science and Translational Research Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.C.); (D.P.); (J.K.); (P.P.); (A.P.); (P.T.)
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Dumnoensun Pruksakorn
- Musculoskeletal Science and Translational Research Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.C.); (D.P.); (J.K.); (P.P.); (A.P.); (P.T.)
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jeerawan Klangjorhor
- Musculoskeletal Science and Translational Research Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.C.); (D.P.); (J.K.); (P.P.); (A.P.); (P.T.)
| | - Weerinrada Wongrin
- Department of Statistics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Phichayut Phinyo
- Musculoskeletal Science and Translational Research Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.C.); (D.P.); (J.K.); (P.P.); (A.P.); (P.T.)
- Center for Clinical Epidemiology and Clinical Statistics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Rawikant Kamolphiwong
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Areerak Phanphaisarn
- Musculoskeletal Science and Translational Research Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.C.); (D.P.); (J.K.); (P.P.); (A.P.); (P.T.)
| | - Pimpisa Teeyakasem
- Musculoskeletal Science and Translational Research Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.C.); (D.P.); (J.K.); (P.P.); (A.P.); (P.T.)
| | - Prachya Kongtawelert
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (P.K.)
| | - Peraphan Pothacharoen
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (P.K.)
- Correspondence: ; Tel.: +66-53-94-5325 (ext. 206)
| |
Collapse
|
22
|
Ali A, Vaikari VP, Alachkar H. CD99 in malignant hematopoiesis. Exp Hematol 2022; 106:40-46. [PMID: 34920053 PMCID: PMC9450008 DOI: 10.1016/j.exphem.2021.12.363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 02/03/2023]
Abstract
The CD99 gene encodes a transmembrane protein that is involved in cell differentiation, adhesion, migration, and protein trafficking. CD99 is differentially expressed on the surface of hematopoietic cells both in the myeloid and lymphoid lineages. CD99 has two isoforms, the long and short isoforms that play different roles depending on the cellular context. There has been extensive evidence supporting the role of CD99 in myeloid and lymphoblastic leukemias. Here we review research findings related to the CD99 in malignant hematopoiesis. We also summarize the significance of CD99 as a therapeutic target in hematological malignancies.
Collapse
MESH Headings
- 12E7 Antigen/analysis
- 12E7 Antigen/genetics
- 12E7 Antigen/metabolism
- Animals
- Gene Expression Regulation, Leukemic
- Hematopoiesis
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/metabolism
- Leukemia, Myeloid/pathology
- Leukemia, Myeloid/therapy
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy
Collapse
Affiliation(s)
- Atham Ali
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA
| | - Vijaya Pooja Vaikari
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA
| | - Houda Alachkar
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA.
| |
Collapse
|
23
|
Cidre-Aranaz F, Li J, Hölting TLB, Orth MF, Imle R, Kutschmann S, Ammirati G, Ceranski K, Carreño-Gonzalez MJ, Kasan M, Marchetto A, Funk CM, Bestvater F, Bersini S, Arrigoni C, Moretti M, Thiel U, Baumhoer D, Sahm F, Pfister SM, Hartmann W, Dirksen U, Romero-Pérez L, Banito A, Ohmura S, Musa J, Kirchner T, Knott MML, Grünewald TGP. Integrative gene network and functional analyses identify a prognostically relevant key regulator of metastasis in Ewing sarcoma. Mol Cancer 2022; 21:1. [PMID: 34980141 PMCID: PMC8722160 DOI: 10.1186/s12943-021-01470-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/24/2021] [Indexed: 12/22/2022] Open
Affiliation(s)
- Florencia Cidre-Aranaz
- Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Translational Pediatric Sarcoma Research (B410), German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany
| | - Jing Li
- Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Translational Pediatric Sarcoma Research (B410), German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany
| | - Tilman L B Hölting
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Martin F Orth
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Roland Imle
- Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany
- Soft-Tissue Sarcoma Junior Research Group, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Division of Pediatric Surgery, Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefanie Kutschmann
- Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Translational Pediatric Sarcoma Research (B410), German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany
| | - Giulia Ammirati
- Regenerative Medicine Technologies Laboratory, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
| | - Katharina Ceranski
- Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Translational Pediatric Sarcoma Research (B410), German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany
| | - Martha Julia Carreño-Gonzalez
- Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Translational Pediatric Sarcoma Research (B410), German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany
| | - Merve Kasan
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Aruna Marchetto
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Cornelius M Funk
- Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Translational Pediatric Sarcoma Research (B410), German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany
| | - Felix Bestvater
- Light Microscopy Facility (W210), German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Simone Bersini
- Regenerative Medicine Technologies Laboratory, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
| | - Chiara Arrigoni
- Regenerative Medicine Technologies Laboratory, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
| | - Matteo Moretti
- Regenerative Medicine Technologies Laboratory, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
- Biomedical Sciences Faculty, Università della Svizzera Italiana (USI), Lugano, Switzerland
| | - Uwe Thiel
- Technical University of Munich, School of Medicine, Department of Pediatrics and Children's Cancer Research Center, Munich, Germany
| | - Daniel Baumhoer
- Bone Tumor Reference Center, Institute of Pathology of the University Hospital of Basel, Basel, Switzerland
| | - Felix Sahm
- Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Neuropathology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan M Pfister
- Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-Oncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Wolfgang Hartmann
- Division of Translational Pathology, Gerhard-Domagk-Institute for Pathology, University Hospital Münster, Münster, Germany
| | - Uta Dirksen
- Pediatrics III, AYA Unit, West German Cancer Centre, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen, Essen, Germany
| | - Laura Romero-Pérez
- Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Translational Pediatric Sarcoma Research (B410), German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany
| | - Ana Banito
- Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany
- Soft-Tissue Sarcoma Junior Research Group, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Shunya Ohmura
- Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Translational Pediatric Sarcoma Research (B410), German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany
| | - Julian Musa
- Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Translational Pediatric Sarcoma Research (B410), German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Kirchner
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Maximilian M L Knott
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Thomas G P Grünewald
- Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany.
- Division of Translational Pediatric Sarcoma Research (B410), German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany.
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany.
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
24
|
Le Loarer F, Baud J, Azmani R, Michot A, Karanian M, Pissaloux D. Advances in the classification of round cell sarcomas. Histopathology 2021; 80:33-53. [PMID: 34958508 DOI: 10.1111/his.14547] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 12/25/2022]
Abstract
Round cell sarcomas represent a diagnostic challenge for pathologists, owing to the poorly differentiated features of these high-grade tumours. The diagnosis of round cell sarcoma requires large immunohistochemical panels and molecular testing in many cases. This spectrum of malignancies is largely dominated by Ewing sarcomas (ESs), which represent the most common family of these tumours. Nonetheless, new families have been delineated in the past few years, with the addition of two additional families in the 2020 World Health Organization classification of bone and soft tissue tumours, namely sarcomas with CIC rearrangements and sarcomas with BCOR alterations. EWSR1, one of the genes involved in the driver fusion of ESs, is also implicated in the translocation of many other tumours with heterogeneous lineages and variable levels of aggressiveness. Round cell sarcomas associated with fusions inwhichEWSR1is partnered with genes encoding transcription factors distinct from those of the 'Ewing family' represent a heterogeneous group of rare tumours that require further study to determine whether their fusions may or not define a specific subgroup. They include mainly sarcomas with NFATc2 rearrangements and sarcomas with PATZ1 rearrangements. At this point, PATZ1 fusions seem to be associated with tumours of high clinical and morphological heterogeneity. Molecular studies have also helped in the identification of more consistent biomarkers that give tremendous help to pathologists in triaging, if not diagnosing, these tumours in practice. This review compiles the latest accumulated evidence regarding round cell sarcomas, and discusses the areas that are still under investigation.
Collapse
Affiliation(s)
- Francois Le Loarer
- Université de Bordeaux, Talence, France.,Département de Biopathologie, Bordeaux, France.,INSERM U1218, ACTION, Bordeaux, France
| | - Jessica Baud
- Université de Bordeaux, Talence, France.,INSERM U1218, ACTION, Bordeaux, France
| | | | - Audrey Michot
- Université de Bordeaux, Talence, France.,INSERM U1218, ACTION, Bordeaux, France.,Department of Surgery, Institut Bergonie, Bordeaux, France
| | - Marie Karanian
- Département de Biopathologie, Centre Leon Berard, Lyon, France.,INSERM U1052, Cancer Research Centre of Lyon, Lyon, France
| | - Daniel Pissaloux
- Département de Biopathologie, Centre Leon Berard, Lyon, France.,INSERM U1052, Cancer Research Centre of Lyon, Lyon, France
| |
Collapse
|
25
|
Aracil Moreno I, Caballero Martín S, Ceballos Medina A, Díaz-Crespo FJ, Navarro Fos S, Ortega Abad V, de León-Luis JA, Mata Fernández C. Perinatal findings and outcomes in a very rare congenital bulky retroperitoneal Ewing sarcoma: A case report. PEDIATRIC HEMATOLOGY ONCOLOGY JOURNAL 2021. [DOI: 10.1016/j.phoj.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
26
|
Nakamura K, Shiozaki A, Kosuga T, Shimizu H, Kudou M, Ohashi T, Arita T, Konishi H, Komatsu S, Kubota T, Fujiwara H, Okamoto K, Kishimoto M, Konishi E, Otsuji E. The expression of the alpha1 subunit of Na +/K +-ATPase is related to tumor development and clinical outcomes in gastric cancer. Gastric Cancer 2021; 24:1278-1292. [PMID: 34251542 DOI: 10.1007/s10120-021-01212-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND The Na+/K+-ATPase alpha1 subunit (ATP1A1) is a critical component of Na+/K+-ATPase (NKA), a membrane pump that maintains a low intracellular Na+/K+ ratio and retains cellular volume and osmolarity. ATP1A1 was recently implicated in tumor behavior. Therefore, the present study investigated the role of ATP1A1 in patients with gastric cancer (GC). METHODS Knockdown experiments were conducted on human GC cell lines using ATP1A1 siRNA, and its effects on proliferation, the cell cycle, apoptosis, and cellular movement were examined. Gene expression profiling was performed by a microarray analysis. Primary tumor samples from 192 GC patients who underwent gastrectomy were subjected to an immunohistochemical analysis. RESULTS High ATP1A1 expression levels were observed in NUGC4 and MKN74 cells. Cell proliferation was suppressed and apoptosis was induced by the siRNA-induced knockdown of ATP1A1. The microarray analysis showed that knockdown of ATP1A1 leads to the up-regulated expression of genes involved in the interferon (IFN) signaling pathway, such as STAT1, STAT2, IRF1, and IRF9. Furthermore, the depletion of ATP1A1 altered the phosphorylation of the MAPK pathway. The immunohistochemical analysis revealed that the expression of ATP1A1 was associated with the histological type, venous invasion, and the pathological T stage. Furthermore, the prognostic analysis showed a relationship between high ATP1A1 expression levels and poor postoperative survival. CONCLUSIONS ATP1A1 appears to regulate tumor progression by altering IFN signaling, and high ATP1A1 expression levels were associated with poor postoperative survival in GC patients. The present results provide novel insights into the function of ATP1A1 as a mediator and/or biomarker of GC.
Collapse
Affiliation(s)
- Kei Nakamura
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Toshiyuki Kosuga
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hiroki Shimizu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Michihiro Kudou
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Takuma Ohashi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tomohiro Arita
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Shuhei Komatsu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Takeshi Kubota
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hitoshi Fujiwara
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kazuma Okamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Mitsuo Kishimoto
- Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.,Department of Pathology, Kyoto City Hospital, Kyoto, 604-8845, Japan
| | - Eiichi Konishi
- Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
27
|
Li J, Ohmura S, Marchetto A, Orth MF, Imle R, Dallmayer M, Musa J, Knott MML, Hölting TLB, Stein S, Funk CM, Sastre A, Alonso J, Bestvater F, Kasan M, Romero-Pérez L, Hartmann W, Ranft A, Banito A, Dirksen U, Kirchner T, Cidre-Aranaz F, Grünewald TGP. Therapeutic targeting of the PLK1-PRC1-axis triggers cell death in genomically silent childhood cancer. Nat Commun 2021; 12:5356. [PMID: 34531368 PMCID: PMC8445938 DOI: 10.1038/s41467-021-25553-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
Chromosomal instability (CIN) is a hallmark of cancer1. Yet, many childhood cancers, such as Ewing sarcoma (EwS), feature remarkably 'silent' genomes with minimal CIN2. Here, we show in the EwS model how uncoupling of mitosis and cytokinesis via targeting protein regulator of cytokinesis 1 (PRC1) or its activating polo-like kinase 1 (PLK1) can be employed to induce fatal genomic instability and tumor regression. We find that the EwS-specific oncogenic transcription factor EWSR1-FLI1 hijacks PRC1, which physiologically safeguards controlled cell division, through binding to a proximal enhancer-like GGAA-microsatellite, thereby promoting tumor growth and poor clinical outcome. Via integration of transcriptome-profiling and functional in vitro and in vivo experiments including CRISPR-mediated enhancer editing, we discover that high PRC1 expression creates a therapeutic vulnerability toward PLK1 inhibition that can repress even chemo-resistant EwS cells by triggering mitotic catastrophe.Collectively, our results exemplify how aberrant PRC1 activation by a dominant oncogene can confer malignancy but provide opportunities for targeted therapy, and identify PRC1 expression as an important determinant to predict the efficacy of PLK1 inhibitors being used in clinical trials.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Line, Tumor
- Child
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- HEK293 Cells
- Humans
- Kaplan-Meier Estimate
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- RNA Interference
- RNAi Therapeutics/methods
- Sarcoma, Ewing/genetics
- Sarcoma, Ewing/metabolism
- Sarcoma, Ewing/therapy
- Signal Transduction/genetics
- Xenograft Model Antitumor Assays/methods
- Polo-Like Kinase 1
- Mice
Collapse
Affiliation(s)
- Jing Li
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
| | - Shunya Ohmura
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
| | - Aruna Marchetto
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Martin F Orth
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Roland Imle
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Soft tissue sarcoma Junior Research Group, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Division of Pediatric Surgery, Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Marlene Dallmayer
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
- Department of General Pediatrics, University Hospital Münster, Münster, Germany
| | - Julian Musa
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Maximilian M L Knott
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Tilman L B Hölting
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Stefanie Stein
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Cornelius M Funk
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
| | - Ana Sastre
- Unidad Hemato-oncología Pediátrica, Hospital Infantil Universitario La Paz, Madrid, Spain
| | - Javier Alonso
- Pediatric Solid Tumour Laboratory, Institute of Rare Diseases Research (IIER), Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (CB06/07/1009; CIBERER-ISCIII), Madrid, Spain
| | - Felix Bestvater
- Light Microscopy Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Merve Kasan
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Laura Romero-Pérez
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
| | - Wolfgang Hartmann
- Division of Translational Pathology, Gerhard-Domagk-Institute for Pathology, University Hospital Münster, Münster, Germany
| | - Andreas Ranft
- Pediatrics III, AYA Unit, West German Cancer Centre, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen, Essen, Germany
| | - Ana Banito
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Soft tissue sarcoma Junior Research Group, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Uta Dirksen
- Pediatrics III, AYA Unit, West German Cancer Centre, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen, Essen, Germany
| | - Thomas Kirchner
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
| | - Florencia Cidre-Aranaz
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
| | - Thomas G P Grünewald
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany.
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany.
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
28
|
Sole A, Grossetête S, Heintzé M, Babin L, Zaïdi S, Revy P, Renouf B, De Cian A, Giovannangeli C, Pierre-Eugène C, Janoueix-Lerosey I, Couronné L, Kaltenbach S, Tomishima M, Jasin M, Grünewald TGP, Delattre O, Surdez D, Brunet E. Unraveling Ewing sarcoma tumorigenesis originating from patient-derived Mesenchymal Stem Cells. Cancer Res 2021; 81:4994-5006. [PMID: 34341072 DOI: 10.1158/0008-5472.can-20-3837] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/04/2021] [Accepted: 07/28/2021] [Indexed: 01/04/2023]
Abstract
Ewing sarcoma (EwS) is characterized by pathognomonic translocations, most frequently fusing EWSR1 with FLI1. An estimated 30% of EwS tumors also display genetic alterations in STAG2, TP53, or CDKN2A (SPC). Numerous attempts to develop relevant EwS models from primary human cells have been unsuccessful in faithfully recapitulating the phenotypic, transcriptomic and epigenetic features of EwS. In this study, by engineering the t(11;22)(q24;q12) translocation together with a combination of SPC mutations, we generated a wide collection of immortalized cells (EWIma cells) tolerating EWSR1-FLI1 expression from primary mesenchymal stem cells (MSC) derived from an EwS patient. Within this model, SPC alterations strongly favored EwS oncogenicity. Xenograft experiments with independent EWIma cells induced tumors and metastases in mice, which displayed bona fide features of EwS. EWIma cells presented balanced but also more complex translocation profiles mimicking chromoplexy, which is frequently observed in EwS and other cancers. Collectively, these results demonstrate that bone marrow-derived MSCs are a source of origin for EwS and also provide original experimental models to investigate Ewing sarcomagenesis.
Collapse
Affiliation(s)
- Anna Sole
- Laboratory of Genome Dynamics in the Immune System,INSERM, UMR 1163, Imagine Institute for Genetic Diseases
| | | | - Maxime Heintzé
- Laboratory of Genome Dynamics in the Immune System,INSERM, UMR 1163, Imagine Institute for Genetic Diseases
| | | | | | | | | | - Anne De Cian
- INSERM U1154, Museum National d'Histoire Naturelle
| | | | | | | | | | - Sophie Kaltenbach
- Cytogenetics, H�'pital Necker - Enfants Malades, Assistance Publique - H�'pitaux de Paris (AP-HP), Université Paris Descartes Sorbonne Cité
| | | | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center
| | - Thomas G P Grünewald
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center
| | - Olivier Delattre
- Genetics and biology of pediatric tumors, Institut Curie - Centre de Recherche
| | - Didier Surdez
- INSERM U830, Équipe Labellisé LNCC, PSL Université, SIREDO Oncology Centre, Institut Curie, Institute Curie
| | - Erika Brunet
- Laboratory of Genome Dynamics in the Immune System,INSERM, UMR 1163, Imagine Institute for Genetic Diseases
| |
Collapse
|
29
|
Surdez D, Zaidi S, Grossetête S, Laud-Duval K, Ferre AS, Mous L, Vourc'h T, Tirode F, Pierron G, Raynal V, Baulande S, Brunet E, Hill V, Delattre O. STAG2 mutations alter CTCF-anchored loop extrusion, reduce cis-regulatory interactions and EWSR1-FLI1 activity in Ewing sarcoma. Cancer Cell 2021; 39:810-826.e9. [PMID: 33930311 DOI: 10.1016/j.ccell.2021.04.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 08/31/2020] [Accepted: 04/02/2021] [Indexed: 12/19/2022]
Abstract
STAG2, a cohesin family gene, is among the most recurrently mutated genes in cancer. STAG2 loss of function (LOF) is associated with aggressive behavior in Ewing sarcoma, a childhood cancer driven by aberrant transcription induced by the EWSR1-FLI1 fusion oncogene. Here, using isogenic Ewing cells, we show that, while STAG2 LOF profoundly changes the transcriptome, it does not significantly impact EWSR1-FLI1, CTCF/cohesin, or acetylated H3K27 DNA binding patterns. In contrast, it strongly alters the anchored dynamic loop extrusion process at boundary CTCF sites and dramatically decreases promoter-enhancer interactions, particularly affecting the expression of genes regulated by EWSR1-FLI1 at GGAA microsatellite neo-enhancers. Down-modulation of cis-mediated EWSR1-FLI1 activity, observed in STAG2-LOF conditions, is associated with enhanced migration and invasion properties of Ewing cells previously observed in EWSR1-FLI1low cells. Our study illuminates a process whereby STAG2-LOF fine-tunes the activity of an oncogenic transcription factor through altered CTCF-anchored loop extrusion and cis-mediated enhancer mechanisms.
Collapse
MESH Headings
- Bone Neoplasms/genetics
- Bone Neoplasms/mortality
- Bone Neoplasms/pathology
- CCCTC-Binding Factor/chemistry
- CCCTC-Binding Factor/genetics
- CCCTC-Binding Factor/metabolism
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Line, Tumor
- Cell Movement/genetics
- Chromatin Immunoprecipitation
- Chromosomal Proteins, Non-Histone/metabolism
- Enhancer Elements, Genetic
- Gene Expression Regulation, Neoplastic
- Histones/metabolism
- Humans
- Loss of Function Mutation
- Lysine/metabolism
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Promoter Regions, Genetic
- Sarcoma, Ewing/genetics
- Sarcoma, Ewing/mortality
- Sarcoma, Ewing/pathology
- Cohesins
Collapse
Affiliation(s)
- Didier Surdez
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, 75005 Paris, France.
| | - Sakina Zaidi
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, 75005 Paris, France
| | - Sandrine Grossetête
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, 75005 Paris, France
| | - Karine Laud-Duval
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, 75005 Paris, France
| | - Anna Sole Ferre
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue contre le Cancer and Université de Paris, Imagine Institute, 75005 Paris, France
| | - Lieke Mous
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, 75005 Paris, France
| | - Thomas Vourc'h
- UMR 168, Biology Inspired Physics at Mesoscales, PSL Research University, Institut Curie Research Centre, 75005 Paris, France
| | - Franck Tirode
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS 5286, INSERM U1052, Cancer Research Center of Lyon, 69008 Lyon, France
| | - Gaelle Pierron
- Unité de Génétique Somatique, Service d'oncogénétique, Institut Curie, Centre Hospitalier, 75005 Paris, France
| | - Virginie Raynal
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, 75005 Paris, France; Institut Curie Genomics of Excellence (ICGex) Platform, PSL Université, Institut Curie Research Centre, 75005 Paris, France
| | - Sylvain Baulande
- Institut Curie Genomics of Excellence (ICGex) Platform, PSL Université, Institut Curie Research Centre, 75005 Paris, France
| | - Erika Brunet
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue contre le Cancer and Université de Paris, Imagine Institute, 75005 Paris, France
| | - Véronique Hill
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, 75005 Paris, France
| | - Olivier Delattre
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, 75005 Paris, France; Unité de Génétique Somatique, Service d'oncogénétique, Institut Curie, Centre Hospitalier, 75005 Paris, France.
| |
Collapse
|
30
|
Seligson ND, Maradiaga RD, Stets CM, Katzenstein HM, Millis SZ, Rogers A, Hays JL, Chen JL. Multiscale-omic assessment of EWSR1-NFATc2 fusion positive sarcomas identifies the mTOR pathway as a potential therapeutic target. NPJ Precis Oncol 2021; 5:43. [PMID: 34021224 PMCID: PMC8140100 DOI: 10.1038/s41698-021-00177-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 04/16/2021] [Indexed: 12/19/2022] Open
Abstract
Sarcomas harboring EWSR1-NFATc2 fusions have historically been categorized and treated as Ewing sarcoma. Emerging evidence suggests unique molecular characteristics and chemotherapy sensitivities in EWSR1-NFATc2 fusion positive sarcomas. Comprehensive genomic profiles of 1024 EWSR1 fusion positive sarcomas, including 14 EWSR1-NFATc2 fusions, were identified in the FoundationCore® database. Additional data from the Gene Expression Omnibus, the Genomics of Drug Sensitivity in Cancer and The Cancer Genome Atlas datasets were included for analysis. EWSR1-NFATc2 fusion positive sarcomas were genomically distinct from traditional Ewing sarcoma and demonstrated upregulation of the mTOR pathway. We also present a case of a 58-year-old male patient with metastatic EWSR1-NFATc2 fusion positive sarcoma who achieved 47 months of disease stabilization when treated with combination mTOR and VEGF inhibition. EWSR1-NFATc2 fusion positive sarcomas are molecularly distinct entities with overactive mTOR signaling; which may be therapeutically targetable. These findings support the use of precision medicine in the Ewing family of tumors.
Collapse
Affiliation(s)
- Nathan D Seligson
- Department of Pharmacotherapy and Translational Research, The University of Florida, Jacksonville, FL, USA.,Department of Pharmacogenomics and Translational Research, Nemours Children's Specialty Care, Jacksonville, FL, USA.,Division of Pediatric Hematology/Oncology, Department of Pediatrics, Nemours Children's Specialty Care, Jacksonville, FL, USA
| | - Richard D Maradiaga
- The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Colin M Stets
- The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Howard M Katzenstein
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Nemours Children's Specialty Care, Jacksonville, FL, USA
| | | | - Alan Rogers
- Department of Radiology, The Ohio State University, Columbus, OH, USA
| | - John L Hays
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA.,Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The Ohio State University, Columbus, OH, USA
| | - James L Chen
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA. .,Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
31
|
Zöllner SK, Amatruda JF, Bauer S, Collaud S, de Álava E, DuBois SG, Hardes J, Hartmann W, Kovar H, Metzler M, Shulman DS, Streitbürger A, Timmermann B, Toretsky JA, Uhlenbruch Y, Vieth V, Grünewald TGP, Dirksen U. Ewing Sarcoma-Diagnosis, Treatment, Clinical Challenges and Future Perspectives. J Clin Med 2021; 10:1685. [PMID: 33919988 PMCID: PMC8071040 DOI: 10.3390/jcm10081685] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 02/08/2023] Open
Abstract
Ewing sarcoma, a highly aggressive bone and soft-tissue cancer, is considered a prime example of the paradigms of a translocation-positive sarcoma: a genetically rather simple disease with a specific and neomorphic-potential therapeutic target, whose oncogenic role was irrefutably defined decades ago. This is a disease that by definition has micrometastatic disease at diagnosis and a dismal prognosis for patients with macrometastatic or recurrent disease. International collaborations have defined the current standard of care in prospective studies, delivering multiple cycles of systemic therapy combined with local treatment; both are associated with significant morbidity that may result in strong psychological and physical burden for survivors. Nevertheless, the combination of non-directed chemotherapeutics and ever-evolving local modalities nowadays achieve a realistic chance of cure for the majority of patients with Ewing sarcoma. In this review, we focus on the current standard of diagnosis and treatment while attempting to answer some of the most pressing questions in clinical practice. In addition, this review provides scientific answers to clinical phenomena and occasionally defines the resulting translational studies needed to overcome the hurdle of treatment-associated morbidities and, most importantly, non-survival.
Collapse
Affiliation(s)
- Stefan K. Zöllner
- Pediatrics III, University Hospital Essen, 45147 Essen, Germany;
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
| | - James F. Amatruda
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA;
| | - Sebastian Bauer
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Department of Medical Oncology, Sarcoma Center, University Hospital Essen, 45147 Essen, Germany
| | - Stéphane Collaud
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Department of Thoracic Surgery, Ruhrlandklinik, University of Essen-Duisburg, 45239 Essen, Germany
| | - Enrique de Álava
- Institute of Biomedicine of Sevilla (IbiS), Virgen del Rocio University Hospital, CSIC, University of Sevilla, CIBERONC, 41013 Seville, Spain;
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Steven G. DuBois
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA 02215, USA; (S.G.D.); (D.S.S.)
| | - Jendrik Hardes
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Department of Musculoskeletal Oncology, Sarcoma Center, 45147 Essen, Germany
| | - Wolfgang Hartmann
- Division of Translational Pathology, Gerhard-Domagk Institute of Pathology, University Hospital Münster, 48149 Münster, Germany;
- West German Cancer Center (WTZ), Network Partner Site, University Hospital Münster, 48149 Münster, Germany
| | - Heinrich Kovar
- St. Anna Children’s Cancer Research Institute and Medical University Vienna, 1090 Vienna, Austria;
| | - Markus Metzler
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, 91054 Erlangen, Germany;
| | - David S. Shulman
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA 02215, USA; (S.G.D.); (D.S.S.)
| | - Arne Streitbürger
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Department of Musculoskeletal Oncology, Sarcoma Center, 45147 Essen, Germany
| | - Beate Timmermann
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre, 45147 Essen, Germany
| | - Jeffrey A. Toretsky
- Departments of Oncology and Pediatrics, Georgetown University, Washington, DC 20057, USA;
| | - Yasmin Uhlenbruch
- St. Josefs Hospital Bochum, University Hospital, 44791 Bochum, Germany;
| | - Volker Vieth
- Department of Radiology, Klinikum Ibbenbüren, 49477 Ibbenbühren, Germany;
| | - Thomas G. P. Grünewald
- Division of Translational Pediatric Sarcoma Research, Hopp-Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany;
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Core Center, 69120 Heidelberg, Germany
| | - Uta Dirksen
- Pediatrics III, University Hospital Essen, 45147 Essen, Germany;
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
| |
Collapse
|
32
|
Grünewald TGP. [Integrative molecular pathology of cancer]. DER PATHOLOGE 2021; 41:67-69. [PMID: 33263807 DOI: 10.1007/s00292-020-00870-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The field of molecular pathology has revolutionized our understanding of relevant oncogenic alterations in cancer and yielded new diagnostic tools and therapeutic approaches for personalized oncology, especially for malignancies of adulthood. However, many pediatric tumors, such as Ewing sarcoma, are characterized by a remarkable paucity of recurrent driver mutations, which are usually not suitable as drug targets. Despite the relative homogeneity of the somatic mutational profiles, these tumors nevertheless exhibit a relatively strong clinical heterogeneity, indicating additional modulating factors. In this regard, a recent study could demonstrate that the mode of action of the EWSR1-FLI1 (Ewing sarcoma breakpoint region 1-Friend leukema integration 1) fusion oncoprotein, which is pathognomonic for Ewing sarcoma, is influenced by inherited genetic variants in regulatory DNA elements, which may ultimately affect the course of the disease and also enable new therapeutic options. Thus, these investigations demonstrate in the Ewing sarcoma model that the function of a driver mutation needs to be interpreted in its germline context, which should be taken into account in an integrative approach by the molecular pathology of the future.
Collapse
Affiliation(s)
- Thomas G P Grünewald
- Abteilung Translationale Pädiatrische Sarkomforschung, Deutsches Krebsforschungszentrum (DKFZ), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Deutschland. .,Hopp-Kinderturmorzentrum (KiTZ), Heidelberg, Deutschland. .,Allgemeine Pathologie und Pathologische Anatomie, Pathologisches Institut, Universitätsklinikum Heidelberg, Heidelberg, Deutschland.
| |
Collapse
|
33
|
Abstract
Ewing sarcoma (EWS) is a rare malignant pediatric tumor and patient derived xenografts (PDXs) could represent a possibility to increase the number of available models to study this disease. Compared to cell derived xenografts (CDX), PDXs are reported to better recapitulate tumor microenvironment, heterogeneity, genetic and epigenetic features and are considered reliable models for their better predictive value when comparing preclinical efficacy and treatment response in patients. In this chapter, we extensively describe a method for generating Ewing sarcoma PDX models, for their validation and molecular characterization.
Collapse
|
34
|
Marcilla D, Machado I, Grünewald TGP, Llombart-Bosch A, de Álava E. (Immuno)histological Analysis of Ewing Sarcoma. Methods Mol Biol 2021; 2226:49-64. [PMID: 33326093 DOI: 10.1007/978-1-0716-1020-6_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The diagnosis of Ewing sarcoma requires the integration of the information generated from numerous techniques, some of them being very sophisticated. However, the first steps of the diagnostic process are crucial to achieve the maximum possible diagnostic performance. In this chapter we will review how to handle the diagnostic specimen from its collection, how to prepare it for diagnosis, how to make a complete pathology report, and provide guidance for the reasonable use of immunohistochemical techniques in this malignancy.
Collapse
Affiliation(s)
- David Marcilla
- Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC, Seville, Spain
| | - Isidro Machado
- Pathology Department, Instituto Valenciano de Oncología, Valencia, Spain.,Pathology Department, Patologika Hospital Quirón Valencia, Valencia, Spain
| | - Thomas G P Grünewald
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
| | | | - Enrique de Álava
- Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC, Seville, Spain. .,Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, Seville, Spain.
| |
Collapse
|
35
|
NKX3-1 Is a Useful Immunohistochemical Marker of EWSR1-NFATC2 Sarcoma and Mesenchymal Chondrosarcoma. Am J Surg Pathol 2020; 44:719-728. [PMID: 31972596 DOI: 10.1097/pas.0000000000001441] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
NK3 homeobox 1 (NKX3-1) is widely accepted as a highly sensitive and specific marker for prostatic adenocarcinoma. Prompted by published transcriptome data showing upregulation of NKX3-1 mRNA expression in EWSR1-NFATC2 sarcoma, we explored the utility of NKX3-1 immunohistochemistry in sarcoma diagnosis. We applied NKX3-1 immunohistochemistry to 11 EWSR1-NFATC2 sarcomas and 168 mimics using whole tissue sections. All EWSR1-NFATC2 sarcomas consisted of uniform small round or ovoid cells, all except 1 showing at least focally the typical growth pattern of nests, cords, or trabeculae within a fibrous/myxoid background. A variable eosinophilic infiltrate was common. NKX3-1 was expressed in 9 of 11 (82%) EWSR1-NFATC2 sarcomas, often diffuse and of moderate or strong intensity. All 12 mesenchymal chondrosarcomas tested were also positive for NKX3-1, with over half showing diffuse staining and moderate or strong intensity. The positive staining was seen only in the primitive small round cell component, whereas the cartilaginous component was mostly negative. Although 1 of 30 osteosarcomas showed focal NKX3-1 positivity, all the remaining 155 cases tested, including 20 Ewing sarcomas, 20 myoepithelial tumors, 11 ossifying fibromyxoid tumors, and 1 FUS-NFATC2 sarcoma were negative for NKX3-1. Our study provides the first evidence that EWSR1-NFATC2 sarcoma and Ewing sarcoma could be distinguished immunohistochemically, adding to the accumulating data that these tumors are phenotypically distinct. We suggest that NKX3-1 may have a diagnostic utility in the evaluation of sarcoma and we also call attention to potential pitfalls in the use of this well-known marker of prostatic adenocarcinoma.
Collapse
|
36
|
Perret R, Escuriol J, Velasco V, Mayeur L, Soubeyran I, Delfour C, Aubert S, Polivka M, Karanian M, Meurgey A, Le Guellec S, Weingertner N, Hoeller S, Coindre JM, Larousserie F, Pierron G, Tirode F, Le Loarer F. NFATc2-rearranged sarcomas: clinicopathologic, molecular, and cytogenetic study of 7 cases with evidence of AGGRECAN as a novel diagnostic marker. Mod Pathol 2020; 33:1930-1944. [PMID: 32327700 DOI: 10.1038/s41379-020-0542-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 12/19/2022]
Abstract
NFATc2-rearranged sarcomas (NFATc2-Sarcomas) are infrequent round cell tumors characterized by EWSR1-NFATc2 fusions and FUS-NFATc2 fusions. Although our knowledge on these neoplasms has increased recently, novel diagnostic tools and more comprehensive series are still needed. Here, we describe the features of a series of seven molecularly confirmed NFATc2-Sarcomas (EWSR1-NFATc2, n = 4; FUS-NFATc2, n = 3) and demonstrate the utility of AGGRECAN immunohistochemistry for their identification. Patients were four males and three females, ranging in age from 19 to 66 years (median: 33). All were primary bone tumors (femur, n = 4; tibia, n = 2; ilium, n = 1), frequently infiltrating the surrounding soft tissues. Treatment often consisted of neoadjuvant chemotherapy and surgery. Follow-up was available for six patients (median 18 months, range 5-102 months), three patients died of disease and four patients are currently alive. Histologically, tumors consisted of monotonous round cells growing in lobules and sheets in variable amounts of fibrous to myxoid stroma. Other findings included spindle cells, corded and trabecular architecture, nuclear pleomorphism, cartilaginous differentiation, and osteoid-like matrix. Histological response to neoadjuvant chemotherapy was poor in all resection specimens available for review (n = 4). Tumors were diffusely positive for AGGRECAN and CD99 (7/7), and a subset expressed Pan-Keratin (AE1-AE3; 3/6), S100 (2/6), BCOR (2/6), ETV-4 (2/5), WT1 (2/6), and ERG (2/5). Desmin, NKX3-1, and SATB2 were negative (0/6). Diffuse AGGRECAN staining was also seen in 8/129 round cell sarcomas used for comparison, including mesenchymal chondrosarcoma (7/26) and CIC-sarcoma (1/26). Array-CGH showed complex karyotypes with recurrent deletions of tumor suppressor genes (CDKN2A/B, TUSC7, and DMD) in three FUS-NFATC2 cases and a simpler profile without homozygous losses in one EWSR1-NFATc2 case. Segmental chromosomal gains covering the loci of the fusion genes were detected in both variants. Overall, our study confirms and expands previous observations on NFATc2-sarcomas and supports that AGGRECAN is a useful biomarker of these tumors.
Collapse
Affiliation(s)
- Raul Perret
- Department of Biopathology, Bergonie Institute, Bordeaux, France.
| | - Julien Escuriol
- Department of Biopathology, Bergonie Institute, Bordeaux, France.,Bordeaux University, Talence, France
| | - Valérie Velasco
- Department of Biopathology, Bergonie Institute, Bordeaux, France
| | - Laetitia Mayeur
- Department of Biopathology, Bergonie Institute, Bordeaux, France
| | - Isabelle Soubeyran
- Department of Biopathology, Bergonie Institute, Bordeaux, France.,INSERM U1218, ACTION Unit, Bordeaux, France
| | - Christophe Delfour
- Department of Pathology, Montpellier University Hospital, Montpellier, France
| | - Sébastien Aubert
- Department of Pathology, Institut de Pathologie, Univ. Lille, CHU Lille, F-59000, Lille, France
| | - Marc Polivka
- Department of Pathology, APHP, Hôpital Cochin, DMU Imagina, Université de Paris, F-75014, Paris, France
| | - Marie Karanian
- Department of Pathology, Leon Berard Center, Lyon, France.,Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | | | - Sophie Le Guellec
- Department of Pathology, Claudius Regaud Institute, Toulouse-Oncopole, Toulouse, France
| | - Noelle Weingertner
- Department of Pathology, Strasbourg Regional University Hospital (Hautepierre Hospital), Strasbourg, France
| | - Sylvia Hoeller
- Department of Pathology, Hospital of the University of Basel, Basel, Switzerland
| | - Jean-Michel Coindre
- Department of Biopathology, Bergonie Institute, Bordeaux, France.,Bordeaux University, Talence, France
| | | | - Gaëlle Pierron
- Department of Tumor Biology, Curie Institute, Paris, France
| | - Franck Tirode
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - François Le Loarer
- Department of Biopathology, Bergonie Institute, Bordeaux, France. .,Bordeaux University, Talence, France. .,INSERM U1218, ACTION Unit, Bordeaux, France.
| |
Collapse
|
37
|
Ewing sarcoma family of tumors-derived small extracellular vesicle proteomics identify potential clinical biomarkers. Oncotarget 2020; 11:2995-3012. [PMID: 32821345 PMCID: PMC7415402 DOI: 10.18632/oncotarget.27678] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/20/2020] [Indexed: 01/03/2023] Open
Abstract
PURPOSE Ewing Sarcoma Family of Tumors (ESFT), the second most common pediatric osseous malignancy, are characterized by the pathognomonic chromosomal EWS-ETS translocation. Outside of tumor biopsy, no clinically relevant ESFT biomarkers exist. Additionally, tumor burden assessment at diagnosis, monitoring of disease responsiveness to therapy, and detection of disease recurrence are limited to radiographic imaging. To identify new, clinically relevant biomarkers we evaluated the proteome of a subset of ESFT-derived small extracellular vesicles (sEVs). MATERIALS AND METHODS We performed the first high quality proteomic study of ESFT-derived sEVs from 5 ESFT cell lines representing the most common EWS-ETS fusion types and identified 619 proteins composing the core ESFT sEV proteome. We compared these core proteins to databases of common plasma-based proteins and sEV-associated proteins found within healthy plasma to identify proteins unique or enriched within ESFT. RESULTS From these analyses, two membrane bound proteins with biomarker potential were selected, CD99/MIC2 and NGFR, to develop a liquid-based assay enriching of ESFT-associated sEVs and detection of sEV mRNA cargo (i.e., EWS-ETS transcripts). We employed this immuno-enrichment approach to diagnosis of ESFT utilizing plasma (250 μl) from both localized and metastatic ESFT pediatric patients and cancer-free controls, and showed significant diagnostic power [AUC = 0.92, p = 0.001 for sEV numeration, with a PPV = 1.00, 95% CI = (0.63, 1.00) and a NPV = 0.67, 95% CI = (0.30, 0.93)]. CONCLUSIONS In this study, we demonstrate utilization of circulating ESFT-associated sEVs in pediatric patients as a source of minimally invasive diagnostic and potentially prognostic biomarkers.
Collapse
|
38
|
Qu J, Ouyang Z, Wu W, Li G, Wang J, Lu Q, Li Z. Functions and Clinical Significance of Super-Enhancers in Bone-Related Diseases. Front Cell Dev Biol 2020; 8:534. [PMID: 32714929 PMCID: PMC7344144 DOI: 10.3389/fcell.2020.00534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
Super-enhancers (SEs) are a large cluster of cis-regulatory DNA elements that contain many binding motifs, which master transcription factors and cofactors bind to with high density. SEs usually regulate the expression of genes that can control the cell identity and fate, and SEs can be used to explain the patterns of the expression of cell-specific genes. Hence, it shows great potential for application in the treatment of diseases like cancer. At present, the clinical treatments for osteosarcoma, Ewing sarcoma, and other bone-related diseases remain challenging. The poor prognosis and difficult treatment of these diseases imposes heavy economic burden on patients and society. In recent years, research on SEs with respect to bone-related diseases has attracted increasing attention. In this paper, we first review the identification and functional mechanisms of SEs. Then, we integrate the findings of the emerging studies on SEs in bone-related diseases. Finally, we summarize recent strategies for targeting SEs for the treatment of bone-related diseases. This review aims to provide comprehensive insights into the roles of SEs in bone-related diseases.
Collapse
Affiliation(s)
- Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhanbo Ouyang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wenqiang Wu
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guohua Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiaojiao Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiong Lu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhihong Li
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
39
|
Immunohistochemical Analysis of CD99 and PAX8 in a Series of 15 Molecularly Confirmed Cases of Ewing Sarcoma. Sarcoma 2020; 2020:3180798. [PMID: 32675940 PMCID: PMC7341420 DOI: 10.1155/2020/3180798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/28/2020] [Indexed: 12/20/2022] Open
Abstract
Ewing sarcomas are an uncommon group of malignant neoplasms. A multidisciplinary approach is highly recommended to reach a correct diagnosis, considering the clinical, radiological, and histopathological aspects. Since in up to 90% of cases, the translocation t (11; 22) (q24; q12) occurs resulting in a chimeric fusion transcript EWSR1-FLI-1. The pathologist has several tools in addition to conventional techniques (hematoxylin and eosin), such as immunohistochemistry, which plays a very important role in the differential diagnosis. We present a series of 15 cases of molecularly confirmed ES, in which we found a sensitivity of 100% for CD99 and 80% for PAX8 by immunohistochemistry. This indicates a high sensitivity; however, it is known that both CD99 and PAX8 are also expressed in other tumours. Therefore, molecular confirmation should be performed in all cases.
Collapse
|
40
|
Orth MF, Buecklein VL, Kampmann E, Subklewe M, Noessner E, Cidre-Aranaz F, Romero-Pérez L, Wehweck FS, Lindner L, Issels R, Kirchner T, Altendorf-Hofmann A, Grünewald TGP, Knösel T. A comparative view on the expression patterns of PD-L1 and PD-1 in soft tissue sarcomas. Cancer Immunol Immunother 2020; 69:1353-1362. [PMID: 32222780 DOI: 10.1007/s00262-020-02552-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/17/2020] [Indexed: 12/28/2022]
Abstract
Soft tissue sarcomas (STSs) are heterogeneous cancers associated with poor prognosis due to high rates of local recurrence and metastasis. The programmed death receptor ligand 1 (PD-L1) is expressed in several cancers. PD-L1 interacts with its receptor, PD-1, on the surface of tumor-infiltrating lymphocytes (TILs), thereby attenuating anti-cancer immune response. Immune checkpoint inhibitors targeting this interaction have been established as effective anti-cancer drugs. However, studies on the PD-L1 and PD-1 expression status in STS are commonly limited by small sample size, analysis of single STS subtypes, or lack of combinatorial marker assessment. To overcome these limitations, we evaluated the expression patterns of intratumoral PD-L1, the number of TILs, their PD-1 expression, and associations with clinicopathological parameters in a large and comprehensive cohort of 225 samples comprising six STS subtypes. We found that nearly all STS subtypes showed PD-L1 expression on the tumor cells, albeit with a broad range of positivity across subtypes (50% angiosarcomas to 3% synovial sarcomas). Co-expression and correlation analyses uncovered that PD-L1 expression was associated with more PD-1-positive TILs (P < 0.001), higher tumor grading (P = 0.016), and worse patients' 5-year overall survival (P = 0.028). The results were in line with several publications on single STS subtypes, especially when comparing findings for STS with low and high mutational burden. In sum, the substantial portion of PD-L1 positivity, the co-occurrence of PD-1-positive TILs, and the association of PD-L1 with unfavorable clinical outcome provide rationales for immune checkpoint inhibition in patients with PD-L1-positive STS.
Collapse
Affiliation(s)
- Martin F Orth
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Veit Leonhard Buecklein
- Department of Internal Medicine III, Faculty of Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Eric Kampmann
- Department of Internal Medicine III, Faculty of Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Marion Subklewe
- Department of Internal Medicine III, Faculty of Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Elfriede Noessner
- Institute of Molecular Immunology, Helmholtz Center, Munich, Germany
| | - Florencia Cidre-Aranaz
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Laura Romero-Pérez
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Fabienne Sophie Wehweck
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians University Munich, Munich, Germany
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians University Munich, Thalkirchner Str. 36, 80337, Munich, Germany
| | - Lars Lindner
- Department of Internal Medicine III, Faculty of Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Rolf Issels
- Department of Internal Medicine III, Faculty of Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Thomas Kirchner
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians University Munich, Thalkirchner Str. 36, 80337, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Thomas G P Grünewald
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians University Munich, Munich, Germany.
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians University Munich, Thalkirchner Str. 36, 80337, Munich, Germany.
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Thomas Knösel
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians University Munich, Thalkirchner Str. 36, 80337, Munich, Germany.
| |
Collapse
|
41
|
High Specificity of BCL11B and GLG1 for EWSR1-FLI1 and EWSR1-ERG Positive Ewing Sarcoma. Cancers (Basel) 2020; 12:cancers12030644. [PMID: 32164354 PMCID: PMC7139395 DOI: 10.3390/cancers12030644] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/07/2020] [Accepted: 03/08/2020] [Indexed: 12/15/2022] Open
Abstract
Ewing sarcoma (EwS) is an aggressive cancer displaying an undifferentiated small-round-cell histomorphology that can be easily confused with a broad spectrum of differential diagnoses. Using comparative transcriptomics and immunohistochemistry (IHC), we previously identified BCL11B and GLG1 as potential specific auxiliary IHC markers for EWSR1-FLI1-positive EwS. Herein, we aimed at validating the specificity of both markers in a far larger and independent cohort of EwS (including EWSR1-ERG-positive cases) and differential diagnoses. Furthermore, we evaluated their intra-tumoral expression heterogeneity. Thus, we stained tissue microarrays from 133 molecularly confirmed EwS cases and 320 samples from morphological mimics, as well as a series of patient-derived xenograft (PDX) models for BCL11B, GLG1, and CD99, and systematically assessed the immunoreactivity and optimal cut-offs for each marker. These analyses demonstrated that high BCL11B and/or GLG1 immunoreactivity in CD99-positive cases had a specificity of 97.5% and an accuracy of 87.4% for diagnosing EwS solely by IHC, and that the markers were expressed by EWSR1-ERG-positive EwS. Only little intra-tumoral heterogeneity in immunoreactivity was observed for differential diagnoses. These results indicate that BCL11B and GLG1 may help as specific auxiliary IHC markers in diagnosing EwS in conjunction with CD99, especially if confirmatory molecular diagnostics are not available.
Collapse
|
42
|
Gajdzis P, Laé M, Pierron G, Brisse HJ, Orbach D, Fréneaux P, Laurence V, Klijanienko J. Fine-Needle Aspiration Features of BCOR-CCNB3 Sarcoma. Am J Clin Pathol 2020; 153:315-321. [PMID: 31679010 DOI: 10.1093/ajcp/aqz159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES BCOR-CCNB3 sarcoma (BCS) is an undifferentiated tumor that has some clinical and morphologic similarity to classic Ewing sarcoma, but it is characterized by a distinct BCOR-CCNB3 gene fusion. There are no reports describing its cytomorphologic findings. METHODS We describe cytologic findings of five molecularly proven BCS cases (four males and one female, aged 8.5-22 years). RESULTS Smears showed mainly round cells, but some spindle cells and rhabdoid-like cells were also observed. Dispersed cells dominated in smears, but also distinct pseudopapillary structures with vascular cores were noted in four cases. Scant connective tissue fragments were found in four cases. There was no rosette formation in any case. CONCLUSIONS BCS should be differentiated from other round cell tumors. Some cytologic features, especially rhabdoid-like cells, connective tissue fragments, and pseudopapillary formations, combined with immunohistochemical and molecular studies, may be helpful in making the appropriate diagnosis.
Collapse
Affiliation(s)
- Pawel Gajdzis
- Department of Pathology, Institut Curie, Paris, France
- Department of Pathomorphology and Oncological Cytology, Medical University of Wroclaw, Wroclaw, Poland
| | - Marick Laé
- Department of Pathology, Institut Curie, Paris, France
- Service de Pathologie, Centre Henri Becquerel, Rouen, France
| | | | | | - Daniel Orbach
- SIREDO (Care, Innovation and Research for Children, Adolescents and Young Adults With Cancer) Oncology Center, Institut Curie, Paris, France
- PSL University, Paris, France
| | - Paul Fréneaux
- Department of Pathology, Institut Curie, Paris, France
| | | | | |
Collapse
|
43
|
Fernandez KS, Turski ML, Shah AT, Bastian BC, Horvai A, Hardee S, Sweet-Cordero EA. Ewing sarcoma in a child with neurofibromatosis type 1. Cold Spring Harb Mol Case Stud 2019; 5:mcs.a004580. [PMID: 31645347 PMCID: PMC6824249 DOI: 10.1101/mcs.a004580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 08/28/2019] [Indexed: 12/02/2022] Open
Abstract
We report here on a case of Ewing sarcoma (ES) occurring in a child with neurofibromatosis type 1. The sarcoma had an EWSR1-ERG translocation as well as loss of the remaining wild-type allele of NF1. Loss of the NF1 wild-type allele in the tumor suggests that activation of the Ras pathway contributed to its evolution. Review of available public data suggests that secondary mutations in the Ras pathway are found in ∼3% of ESs. This case suggests that Ras pathway activation may play a role in tumor progression in a subset of ESs.
Collapse
Affiliation(s)
- Karen S Fernandez
- Division of Hematology/Oncology, Valley Children's Hospital, Madera, California 93636, USA
| | - Michelle L Turski
- Molecular Oncology Initiative, University of California, San Francisco, San Francisco, California 94158, USA
| | - Avanthi Tayi Shah
- Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco, San Francisco, California 94158, USA
| | - Boris C Bastian
- Departments of Dermatology and Pathology, University of California, San Francisco, San Francisco, California 94158, USA
| | - Andrew Horvai
- Department of Pathology, University of California, San Francisco, San Francisco, California 94158, USA
| | - Steven Hardee
- Division of Pathology, Valley Children's Hospital, Madera, California 93636, USA
| | - E Alejandro Sweet-Cordero
- Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
44
|
Musa J, Cidre-Aranaz F, Aynaud MM, Orth MF, Knott MML, Mirabeau O, Mazor G, Varon M, Hölting TLB, Grossetête S, Gartlgruber M, Surdez D, Gerke JS, Ohmura S, Marchetto A, Dallmayer M, Baldauf MC, Stein S, Sannino G, Li J, Romero-Pérez L, Westermann F, Hartmann W, Dirksen U, Gymrek M, Anderson ND, Shlien A, Rotblat B, Kirchner T, Delattre O, Grünewald TGP. Cooperation of cancer drivers with regulatory germline variants shapes clinical outcomes. Nat Commun 2019; 10:4128. [PMID: 31511524 PMCID: PMC6739408 DOI: 10.1038/s41467-019-12071-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/16/2019] [Indexed: 12/02/2022] Open
Abstract
Pediatric malignancies including Ewing sarcoma (EwS) feature a paucity of somatic alterations except for pathognomonic driver-mutations that cannot explain overt variations in clinical outcome. Here, we demonstrate in EwS how cooperation of dominant oncogenes and regulatory germline variants determine tumor growth, patient survival and drug response. Binding of the oncogenic EWSR1-FLI1 fusion transcription factor to a polymorphic enhancer-like DNA element controls expression of the transcription factor MYBL2 mediating these phenotypes. Whole-genome and RNA sequencing reveals that variability at this locus is inherited via the germline and is associated with variable inter-tumoral MYBL2 expression. High MYBL2 levels sensitize EwS cells for inhibition of its upstream activating kinase CDK2 in vitro and in vivo, suggesting MYBL2 as a putative biomarker for anti-CDK2-therapy. Collectively, we establish cooperation of somatic mutations and regulatory germline variants as a major determinant of tumor progression and highlight the importance of integrating the regulatory genome in precision medicine.
Collapse
Affiliation(s)
- Julian Musa
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Florencia Cidre-Aranaz
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Marie-Ming Aynaud
- INSERM U830, Équipe Labellisée LNCC Genetics and Biology of Pediatric Cancers, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, Paris, France
| | - Martin F Orth
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Maximilian M L Knott
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
- Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Olivier Mirabeau
- INSERM U830, Équipe Labellisée LNCC Genetics and Biology of Pediatric Cancers, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, Paris, France
| | - Gal Mazor
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Mor Varon
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tilman L B Hölting
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Sandrine Grossetête
- INSERM U830, Équipe Labellisée LNCC Genetics and Biology of Pediatric Cancers, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, Paris, France
| | - Moritz Gartlgruber
- Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Didier Surdez
- INSERM U830, Équipe Labellisée LNCC Genetics and Biology of Pediatric Cancers, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, Paris, France
| | - Julia S Gerke
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Shunya Ohmura
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Aruna Marchetto
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Marlene Dallmayer
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Michaela C Baldauf
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Stefanie Stein
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Giuseppina Sannino
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Jing Li
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Laura Romero-Pérez
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Frank Westermann
- Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfgang Hartmann
- Division of Translational Pathology, Gerhard-Domagk Institute of Pathology, University Hospital of Münster, Münster, Germany
| | - Uta Dirksen
- Department of Pediatric Hematology and Oncology, University Hospital of Essen, Essen, Germany
| | - Melissa Gymrek
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Nathaniel D Anderson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Adam Shlien
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Barak Rotblat
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Thomas Kirchner
- Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner site Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Olivier Delattre
- INSERM U830, Équipe Labellisée LNCC Genetics and Biology of Pediatric Cancers, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, Paris, France
| | - Thomas G P Grünewald
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany.
- Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany.
- German Cancer Consortium (DKTK), Partner site Munich, Munich, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
45
|
Sannino G, Marchetto A, Ranft A, Jabar S, Zacherl C, Alba-Rubio R, Stein S, Wehweck FS, Kiran MM, Hölting TLB, Musa J, Romero-Pérez L, Cidre-Aranaz F, Knott MML, Li J, Jürgens H, Sastre A, Alonso J, Da Silveira W, Hardiman G, Gerke JS, Orth MF, Hartmann W, Kirchner T, Ohmura S, Dirksen U, Grünewald TGP. Gene expression and immunohistochemical analyses identify SOX2 as major risk factor for overall survival and relapse in Ewing sarcoma patients. EBioMedicine 2019; 47:156-162. [PMID: 31427232 PMCID: PMC6796576 DOI: 10.1016/j.ebiom.2019.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Up to 30-40% of Ewing sarcoma (EwS) patients with non-metastatic disease develop local or metastatic relapse within a time span of 2-10 years. This is in part caused by the absence of prognostic biomarkers that can identify high-risk patients and thus assign them to risk-adapted monitoring and treatment regimens. Since cancer stemness has been associated with tumour relapse and poor patient outcomes, we investigated in the current study the prognostic potential SOX2 (sex determining region Y box 2) - a major transcription factor involved in development and stemness - which was previously described to contribute to the undifferentiated phenotype of EwS. METHODS Two independent patient cohorts, one consisting of 189 retrospectively collected EwS tumours with corresponding mRNA expression data (test-cohort) and the other consisting of 141 prospectively collected formalin-fixed and paraffin-embedded resected tumours (validation and cohort), were employed to analyse SOX2 expression levels through DNA microarrays or immunohistochemistry, respectively, and to compare them with clinical parameters and patient outcomes. Two methods were employed to test the validity of the results at both the mRNA and protein levels. FINDINGS Both cohorts showed that only a subset of EwS patients (16-20%) expressed high SOX2 mRNA or protein levels, which significantly correlated with poor overall survival. Multivariate analyses of our validation-cohort revealed that high SOX2 expression represents a major risk-factor for poor survival (HR = 3·19; 95%CI 1·74-5·84; p < 0·01) that is independent from metastasis and other known clinical risk-factors at the time of diagnosis. Univariate analyses demonstrated that SOX2-high expression was correlated with tumour relapse (p = 0·002). The median first relapse was at 14·7 months (range: 3·5-180·7). INTERPRETATION High SOX2 expression constitutes an independent prognostic biomarker for EwS patients with poor outcomes. This may help to identify patients with localised disease who are at high risk for tumour relapse within the first two years after diagnosis. FUNDING The laboratory of T. G. P. Grünewald is supported by grants from the 'Verein zur Förderung von Wissenschaft und Forschung an der Medizinischen Fakultät der LMU München (WiFoMed)', by LMU Munich's Institutional Strategy LMUexcellent within the framework of the German Excellence Initiative, the 'Mehr LEBEN für krebskranke Kinder - Bettina-Bräu-Stiftung', the Walter Schulz Foundation, the Wilhelm Sander-Foundation (2016.167.1), the Friedrich-Baur foundation, the Matthias-Lackas foundation, the Barbara & Hubertus Trettner foundation, the Dr. Leopold & Carmen Ellinger foundation, the Gert & Susanna Mayer foundation, the Deutsche Forschungsgemeinschaft (DFG 391665916), and by the German Cancer Aid (DKH-111886 and DKH-70112257). J. Li was supported by a scholarship of the China Scholarship Council (CSC), J. Musa was supported by a scholarship of the Kind-Philipp foundation, and T. L. B. Hölting by a scholarship of the German Cancer Aid. M. F. Orth and M. M. L. Knott were supported by scholarships of the German National Academic Foundation. G. Sannino was supported by a scholarship from the Fritz-Thyssen Foundation (FTF-40.15.0.030MN). The work of U. Dirksen is supported by grants from the German Cancer Aid (DKH-108128, DKH-70112018, and DKH-70113419), the ERA-Net-TRANSCAN consortium (project number 01KT1310), and Euro Ewing Consortium (EEC, project number EU-FP7 602,856), both funded under the European Commission Seventh Framework Program FP7-HEALTH (http://cordis.europa.eu/), the Barbara & Hubertus Trettner foundation, and the Gert & Susanna Mayer foundation. G. Hardiman was supported by grants from the National Science Foundation (SC EPSCoR) and National Institutes of Health (U01-DA045300). The laboratory of J. Alonso was supported by Instituto de Salud Carlos III (PI12/00816; PI16CIII/00026); Asociación Pablo Ugarte (TPY-M 1149/13; TRPV 205/18), ASION (TVP 141/17), Fundación Sonrisa de Alex & Todos somos Iván (TVP 1324/15).
Collapse
Affiliation(s)
- Giuseppina Sannino
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Aruna Marchetto
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Andreas Ranft
- Department of Pediatrics III, West German Cancer Centre, University Hospital Essen, Essen, Germany
| | - Susanne Jabar
- Department of Pediatrics III, West German Cancer Centre, University Hospital Essen, Essen, Germany
| | - Constanze Zacherl
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Rebeca Alba-Rubio
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Stefanie Stein
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Fabienne S Wehweck
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Merve M Kiran
- Department of Pathology, Medical Faculty, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Tilman L B Hölting
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Julian Musa
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Laura Romero-Pérez
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Florencia Cidre-Aranaz
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Maximilian M L Knott
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Jing Li
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Heribert Jürgens
- Department of Pediatric Hematology and Oncology, University Hospital Münster, Münster, Germany
| | - Ana Sastre
- Unidad hemato-oncología pediátrica, Hospital Infantil Universitario La Paz, Madrid, Spain
| | - Javier Alonso
- Pediatric Solid Tumour Laboratory, Institute of Rare Diseases Research (IIER), Instituto de Salud Carlos III, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (CB06/07/1009; CIBERER-ISCIII), Spain
| | - Willian Da Silveira
- Center for Genomics Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Gary Hardiman
- Center for Genomics Medicine, Medical University of South Carolina, Charleston, SC, USA; School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Julia S Gerke
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Martin F Orth
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Wolfgang Hartmann
- Gerhard-Domagk Institute of Pathology, University Hospital of Münster, Münster, Germany
| | - Thomas Kirchner
- Institute of Pathology, Faculty of Medicine, LMU Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Shunya Ohmura
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Uta Dirksen
- Department of Pediatrics III, West German Cancer Centre, University Hospital Essen, Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, Germany.
| | - Thomas G P Grünewald
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
46
|
Diaz-Perez JA, Nielsen GP, Antonescu C, Taylor MS, Lozano-Calderon SA, Rosenberg AE. EWSR1/FUS-NFATc2 rearranged round cell sarcoma: clinicopathological series of 4 cases and literature review. Hum Pathol 2019; 90:45-53. [PMID: 31078563 PMCID: PMC6714048 DOI: 10.1016/j.humpath.2019.05.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/05/2019] [Indexed: 12/27/2022]
Abstract
The classification of bone neoplasms composed of small round cells is experiencing a transformation after the discovery of various gene fusion rearrangements that determine diagnosis, behavior, and response to therapy. We present herein 4 new cases of small round cell tumor of the bone that harbor NFATc2 rearrangements involving either EWSR1 or FUS genes. We studied the clinical presentation, pathologic features, genetics (FISH, targeted RNA sequencing) and outcome in these 4 patients. We also reviewed the literature describing similar cases. All our patients were male. The median age at diagnosis was 33.5 years. All tumors presented in long bones of the extremities as a large destructive mass with a mean size of 12.5 cm. All cases were hypercellular with prominent collagenous stroma and consisted of small to medium size round cells arranged in cords, thin trabeculae, and pseudoacinar structures. Most cases showed focal or diffuse membrane staining for CD99; whereas S100, synaptophysin and chromogranin were negative. EMA showed cytoplasmic staining in one case. Genetic studies identified EWSR1-NFATc2 fusion in 3 cases, and FUS-NFATc2 fusion in one case. Two patients were treated with neoadjuvant chemotherapy using Ewing sarcoma regimens, and surgical excision was performed on 3 patients; necrosis was minimal. Follow-up is limited; after a median follow-up of 8.7 months, one patient developed local recurrence and metastases to the lungs. Poorly differentiated round cell sarcoma with EWSR1/FUS-NFATc2 fusions are uncommon. The tumors have consistent clinical findings, morphology, and immunoprofile that in combination are distinctive and differ from that of Ewing sarcoma. Importantly, these tumors do not respond to Ewing sarcoma chemotherapy regimens.
Collapse
Affiliation(s)
- Julio A Diaz-Perez
- Department of Pathology and Laboratory Medicine, Miller School of Medicine, University of Miami, Miami, FL
| | - G Petur Nielsen
- Department of Pathology and Laboratory Medicine, Massachusetts General Hospital, Harvard University, Boston, MA
| | - Cristina Antonescu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Martin S Taylor
- Department of Pathology and Laboratory Medicine, Massachusetts General Hospital, Harvard University, Boston, MA
| | | | - Andrew E Rosenberg
- Department of Pathology and Laboratory Medicine, Miller School of Medicine, University of Miami, Miami, FL.
| |
Collapse
|
47
|
Abstract
BCOR is a gene that encodes for an epigenetic regulator involved in the specification of cell differentiation and body structure development and takes part in the noncanonical polycomb repressive complex 1. This review provides a comprehensive summary of BCOR’s involvement in oncology, illustrating that various BCOR aberrations, such as the internal tandem duplications of the PCGF Ub-like fold discriminator domain and different gene fusions (mainly BCOR–CCNB3, BCOR–MAML3 and ZC3H7B–BCOR), represent driver elements of various sarcomas such as clear cell sarcoma of the kidney, primitive mesenchymal myxoid tumor of infancy, small round blue cell sarcoma, endometrial stromal sarcoma and histologically heterogeneous CNS neoplasms group with similar genomic methylation patterns known as CNS-HGNET-BCOR. Furthermore, other BCOR alterations (often loss of function mutations) recur in a large variety of mesenchymal, epithelial, neural and hematological tumors, suggesting a central role in cancer evolution.
Collapse
Affiliation(s)
- Annalisa Astolfi
- 'Giorgio Prodi' Cancer Research Center, University of Bologna, 40138 Bologna, Italy
| | - Michele Fiore
- Pediatric Oncology & Hematology Unit 'Lalla Seràgnoli', S Orsola-Malpighi Hospital, 40138 Bologna, Italy
| | - Fraia Melchionda
- Pediatric Oncology & Hematology Unit 'Lalla Seràgnoli', S Orsola-Malpighi Hospital, 40138 Bologna, Italy
| | - Valentina Indio
- 'Giorgio Prodi' Cancer Research Center, University of Bologna, 40138 Bologna, Italy
| | - Salvatore N Bertuccio
- Pediatric Oncology & Hematology Unit 'Lalla Seràgnoli', S Orsola-Malpighi Hospital, 40138 Bologna, Italy
| | - Andrea Pession
- Pediatric Oncology & Hematology Unit 'Lalla Seràgnoli', S Orsola-Malpighi Hospital, 40138 Bologna, Italy.,Department of Medical & Surgical Sciences, University of Bologna, S Orsola-Malpighi Hospital, 40138 Bologna, Italy
| |
Collapse
|
48
|
Berger GK, Nisson PL, James WS, Kaiser KN, Hurlbert RJ. Outcomes in different age groups with primary Ewing sarcoma of the spine: a systematic review of the literature. J Neurosurg Spine 2019; 30:664-673. [PMID: 30771777 DOI: 10.3171/2018.10.spine18795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/04/2018] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Ewing sarcoma (ES) is among the most prevalent of bone sarcomas in young people. Less often, it presents as a primary lesion of the spine (5%-15% of patients with ES). METHODS A systematic literature search was performed, querying several scientific databases per PRISMA guidelines. Inclusion criteria specified all studies of patients with surgically treated ES located in the spine. Patient age was categorized into three groups: 0-13 years (age group 1), 14-20 years (age group 2), and > 21 (age group 3). RESULTS Eighteen studies were included, yielding 28 patients with ES of the spine. Sixty-seven percent of patients experienced a favorable outcome, with laminectomies representing the most common (46%) of surgical interventions. One-, 2-, and 5-year survival rates were 82% (n = 23), 75% (n = 21), and 57% (n = 16), respectively. Patients in age group 2 experienced the greatest mortality rate (75%) compared to age group 1 (9%) and age group 3 (22%). The calculated relative risk score indicated patients in age group 2 were 7.5 times more likely to die than other age groups combined (p = 0.02). CONCLUSIONS Primary ES of the spine is a rare, debilitating disease in which the role of surgery and its impact on one's quality of life and independence status has not been well described. This study found the majority of patients experienced a favorable outcome with respect to independence status following surgery and adjunctive treatment. An increased risk of recurrence and death was also present among the adolescent age group (14-20 years).
Collapse
Affiliation(s)
- Garrett K Berger
- 1College of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Whitney S James
- 3Division of Neurosurgery, High Desert Surgery Center, Prescott, Arizona
| | - Kristen N Kaiser
- 1College of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - R John Hurlbert
- 4Division of Neurosurgery, University of Arizona, Tucson; and
| |
Collapse
|
49
|
Bode-Lesniewska B, Fritz C, Exner GU, Wagner U, Fuchs B. EWSR1-NFATC2 and FUS-NFATC2 Gene Fusion-Associated Mesenchymal Tumors: Clinicopathologic Correlation and Literature Review. Sarcoma 2019; 2019:9386390. [PMID: 31049020 PMCID: PMC6458862 DOI: 10.1155/2019/9386390] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 03/10/2019] [Indexed: 11/28/2022] Open
Abstract
The spectrum of mesenchymal tumors associated with rearrangements of the EWSR1 gene has been growing in recent years due to progress in molecular detection techniques. Originally identified as the gene involved in the pathogenesis of Ewing sarcoma, the EWSR1 gene is now known to be rearranged in diverse clinical and histopathological entities. The NFATC2 gene is one of the many translocation partners of EWSR1 in gene fusions in a morphologically typical, albeit rare, subgroup of mesenchymal tumors. Little is known about the clinical characteristics of tumors containing NFATC2 gene rearrangements since most of the few reports published describe molecular rather than clinical aspects. In the current study, we report three patients with tumors carrying the EWSR1-NFATC2 gene translocation, including one rare primary tumor of soft tissues. Another patient with a benign-appearing bone tumor with a unique FUS-NFATC2 gene translocation is described. In various mesenchymal tumors (e.g., myxoid/round cell liposarcoma, low-grade fibromyxoid sarcoma, or angiomatoid fibrous histiocytoma), the FUS gene, as a member of the TET family, may be alternatively rearranged instead of the EWSR1 gene without any noticeable influence on the microscopical appearance or clinical outcome. This fact seems not to apply to mesenchymal tumors with the involvement of the NFATC2 gene because both in our experience and according to the extensive literature review, they have different properties on the morphological and molecular level. Both ESWSR1-NFATC2 and FUS-NFATC2 fusion-carrying tumors do not show microscopical or clinical features of Ewing sarcoma.
Collapse
Affiliation(s)
- Beata Bode-Lesniewska
- Institute of Pathology and Molecular Pathology, University Hospital, Zurich, Switzerland
| | - Christine Fritz
- Institute of Pathology and Molecular Pathology, University Hospital, Zurich, Switzerland
| | | | - Ulrich Wagner
- Institute of Pathology and Molecular Pathology, University Hospital, Zurich, Switzerland
| | - Bruno Fuchs
- Department of Plastic and Reconstructive Surgery, University Hospital, Zurich, Switzerland
- Department of Orthopedic Surgery, Cantonal Hospitals, Winterthur and Luzern, Switzerland
| |
Collapse
|
50
|
DNA methylation profiling distinguishes Ewing-like sarcoma with EWSR1-NFATc2 fusion from Ewing sarcoma. J Cancer Res Clin Oncol 2019; 145:1273-1281. [PMID: 30895378 DOI: 10.1007/s00432-019-02895-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/12/2019] [Indexed: 01/11/2023]
Abstract
PURPOSE Recent studies revealed divergent gene expression patterns in Ewing sarcoma (EwS) with canonical EWSR1-ETS gene fusions and undifferentiated round cell sarcomas (URCS) with EWSR1 rearrangements fused to the non-ETS gene NFATc2. Thus, the question arises whether the latter tumors really belong to EwS. METHODS We collected five cases matching the group of URCS with EWSR1-NFATc2 fusion and performed DNA methylation and copy number profiling. Results were compared to methylation data of 30 EwS with various EWSR1-ETS fusions and one EwS with FUS-ERG fusion, 16 URCS with CIC rearrangement and 10 URCS with BCOR alteration and a total of 81 EWSR1-associated soft tissue sarcomas including 7 angiomatoid fibrous histiocytomas, 7 clear cell sarcomas of the soft tissue, 28 desmoplastic small round cell tumors, 10 extraskeletal myxoid chondrosarcomas and 29 myxoid liposarcomas. RESULTS Unsupervised hierarchical clustering and t-distributed stochastic neighbor embedding analysis of DNA methylation data revealed a homogeneous methylation cluster for URCS with EWSR1-NFATc2 fusion, which clearly segregated from EwS and the other subtypes. Copy number profiles of EWSR1-NFATc2 cases showed recurrent losses on chromosome 9q and segmental gains on 20q13 and 22q12 involving the EWSR1 and NFATc2 loci, respectively. CONCLUSION In summary, URCS with EWSR1-NFATc2 fusion share a distinct DNA methylation signature and carry characteristic copy number alterations, which emphasizes that these sarcomas should be considered separately from EwS.
Collapse
|