1
|
Denryter K, Stephenson TR, Monteith KL. Migratory behaviours are risk-sensitive to physiological state in an elevational migrant. CONSERVATION PHYSIOLOGY 2024; 12:coae029. [PMID: 38779433 PMCID: PMC11109817 DOI: 10.1093/conphys/coae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
Accretion of body fat by animals is an important physiological adaptation that may underpin seasonal behaviours, especially where it modulates risk associated with a particular behaviour. Using movement data from male Sierra Nevada bighorn sheep (Ovis canadensis sierrae), we tested the hypothesis that migratory behaviours were risk-sensitive to physiological state (indexed by body fat). Sierra bighorn face severe winter conditions at high elevations and higher predation risk at lower elevations. Given that large body fat stores ameliorate starvation risk, we predicted that having small body fat stores would force animals to migrate to lower elevations with more abundant food supplies. We also predicted that body fat stores would influence how far animals migrate, with the skinniest animals migrating the furthest down in elevation (to access the most abundant food supplies at that time of year). Lastly, we predicted that population-level rates of switching between migratory tactics would be inversely related to body fat levels because as body fat levels decrease, animals exhibiting migratory plasticity should modulate their risk of starvation by switching migratory tactics. Consistent with our predictions, probability of migration and elevational distance migrated increased with decreasing body fat, but effects differed amongst metapopulations. Population-level switching rates also were inversely related to population-level measures of body fat prior to migration. Collectively, our findings suggest migration was risk-sensitive to physiological state, and failure to accrete adequate fat may force animals to make trade-offs between starvation and predation risk. In complex seasonal environments, risk-sensitive migration yields a layer of flexibility that should aid long-term persistence of animals that can best modulate their risk by attuning behaviour to physiological state.
Collapse
Affiliation(s)
- Kristin Denryter
- Haub School of Environment and Natural Resources, University of Wyoming, Bim Kendall House 804 E Fremont St, Laramie, WY 82072, USA
| | - Thomas R. Stephenson
- California Department of Fish and Wildlife, Sierra Nevada Bighorn Sheep Recovery Program, 787 N Main St., Bishop, CA 93514, USA
| | - Kevin L. Monteith
- Haub School of Environment and Natural Resources, Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology, University of Wyoming, Bim Kendall House 804 E Fremont St, Laramie, WY 82072, USA
| |
Collapse
|
2
|
Bond ML, Lee DE, Paniw M. Extinction risks and mitigation for a megaherbivore, the giraffe, in a human-influenced landscape under climate change. GLOBAL CHANGE BIOLOGY 2023; 29:6693-6712. [PMID: 37819148 DOI: 10.1111/gcb.16970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023]
Abstract
Megaherbivores play "outsized" roles in ecosystem functioning but are vulnerable to human impacts such as overhunting, land-use changes, and climate extremes. However, such impacts-and combinations of these impacts-on population dynamics are rarely examined using empirical data. To guide effective conservation actions under increasing global-change pressures, we developed a socially structured individual-based model (IBM) using long-term demographic data from female giraffes (Giraffa camelopardalis) in a human-influenced landscape in northern Tanzania, the Tarangire Ecosystem. This unfenced system includes savanna habitats with a wide gradient of anthropogenic pressures, from national parks, a wildlife ranch and community conservation areas, to unprotected village lands. We then simulated and projected over 50 years how realistic environmental and land-use management changes might affect this metapopulation of female giraffes. Scenarios included: (1) anthropogenic land-use changes including roads and agricultural/urban expansion; (2) reduction or improvement in wildlife law enforcement measures; (3) changes in populations of natural predators and migratory alternative prey; and (4) increases in rainfall as predicted for East Africa. The factor causing the greatest risk of rapid declines in female giraffe abundance in our simulations was a reduction in law enforcement leading to more poaching. Other threats decreased abundances of giraffes, but improving law enforcement in both of the study area's protected areas mitigated these impacts: a 0.01 increase in giraffe survival probability from improved law enforcement mitigated a 25% rise in heavy rainfall events by increasing abundance 19%, and mitigated the expansion of towns and blockage of dispersal movements by increasing abundance 22%. Our IBM enabled us to further quantify fine-scale abundance changes among female giraffe social communities, revealing potential source-sink interactions within the metapopulation. This flexible methodology can be adapted to test additional ecological questions in this landscape, or to model populations of giraffes or other species in different ecosystems.
Collapse
Affiliation(s)
- Monica L Bond
- Department of Conservation Biology, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
- Wild Nature Institute, Concord, New Hampshire, USA
| | - Derek E Lee
- Wild Nature Institute, Concord, New Hampshire, USA
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Maria Paniw
- Department of Conservation Biology, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| |
Collapse
|
3
|
Gundermann KP, Diefenbach DR, Walter WD, Corondi AM, Banfield JE, Wallingford BD, Stainbrook DP, Rosenberry CS, Buderman FE. Change-point models for identifying behavioral transitions in wild animals. MOVEMENT ECOLOGY 2023; 11:65. [PMID: 37864238 PMCID: PMC10589947 DOI: 10.1186/s40462-023-00430-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023]
Abstract
Animal behavior can be difficult, time-consuming, and costly to observe in the field directly. Innovative modeling methods, such as hidden Markov models (HMMs), allow researchers to infer unobserved animal behaviors from movement data, and implementations often assume that transitions between states occur multiple times. However, some behavioral shifts of interest, such as parturition, migration initiation, and juvenile dispersal, may only occur once during an observation period, and HMMs may not be the best approach to identify these changes. We present two change-point models for identifying single transitions in movement behavior: a location-based change-point model and a movement metric-based change-point model. We first conducted a simulation study to determine the ability of these models to detect a behavioral transition given different amounts of data and the degree of behavioral shifts. We then applied our models to two ungulate species in central Pennsylvania that were fitted with global positioning system collars and vaginal implant transmitters to test hypotheses related to parturition behavior. We fit these models in a Bayesian framework and directly compared the ability of each model to describe the parturition behavior across species. Our simulation study demonstrated that successful change point estimation using either model was possible given at least 12 h of post-change observations and 15 min fix interval. However, our models received mixed support among deer and elk in Pennsylvania due to behavioral variation between species and among individuals. Our results demonstrate that when the behavior follows the dynamics proposed by the two models, researchers can identify the timing of a behavioral change. Although we refer to detecting parturition events, our results can be applied to any behavior that results in a single change in time.
Collapse
Affiliation(s)
- Kathleen P Gundermann
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA, USA.
| | - D R Diefenbach
- U. S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, Pennsylvania State University, University Park, PA, USA
| | - W D Walter
- U. S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, Pennsylvania State University, University Park, PA, USA
| | - A M Corondi
- Pennsylvania Cooperative Fish and Wildlife Research Unit, Pennsylvania State University, University Park, PA, USA
| | - J E Banfield
- Pennsylvania Game Commission, Harrisburg, PA, USA
| | | | | | | | - F E Buderman
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
4
|
Maneja RH, Miller JD, Flint JB, Alcaria JFA, Basali AU, Flandez AVB, Gopalan J, Duraisamy T, Abrogueña JBR, Bawazier AA, Das PB, Manokaran S, Asiri YY, Qasem A, Asfahani K, Qurban MAB. Extreme conditions reduce hatching success of green turtles (Chelonia mydas L.) at Karan Island, the major nesting site in the Arabian Gulf. MARINE POLLUTION BULLETIN 2023; 190:114801. [PMID: 36965265 DOI: 10.1016/j.marpolbul.2023.114801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Survival in the early life stages is a major factor determining the growth and stability of wildlife populations. For sea turtles, nest location must provide favorable conditions to support embryonic development. Hatching success and incubation environment of green turtle eggs were examined in July 2019 at Karan Island, a major nesting site for the species in the Arabian Gulf. Mean hatching success averaged at 38.8 % (range = 2.5-75.0 %, n = 14). Eggs that suffered early embryonic death (EED) and late embryonic death (LED) represented 19.8 % (range: 3.3-64.2 %) and 41.4 % (range: 4.8-92.6 %) of the clutch on average, respectively. Nest sand was either coarse (0.5-1 mm: mean 44.8 %, range = 30.4-56.9 % by dry weight, n = 14) or medium (0.25-0.5 mm: mean 33.6 %, range = 12.0-45.5 % by dry weight, n = 14). Mean sand moisture (4.0 %, range = 3.2-4.9 %, n = 14) was at the lower margin for successful development. Hatching success was significantly higher in clutches with sand salinity <1500 EC.uS/cm (n = 5) than those above 2500 EC.uS/cm (n = 5). Mean clutch temperatures at 1200 h increased by an average of 5.4 °C during the 50-d post-oviposition from 31.2 °C to 36.6 °C. Embryos experienced lethally high temperatures in addition to impacts of other environmental factors (salinity, moisture, sand grain size), which was related to reduced hatching success. Conservation initiatives must consider the synergistic influence of the above parameters in formulating strategies to improve the overall resilience of the green turtle population in the Arabian Gulf to anthropogenic and climate change-related stressors.
Collapse
Affiliation(s)
- R H Maneja
- Center for Environment and Marine Studies, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| | - J D Miller
- Center for Environment and Marine Studies, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - J B Flint
- One Welfare and Sustainability Center, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus 43210, OH, USA
| | - J F A Alcaria
- Center for Environment and Marine Studies, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - A U Basali
- Center for Environment and Marine Studies, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - A V B Flandez
- Center for Environment and Marine Studies, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - J Gopalan
- Center for Environment and Marine Studies, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - T Duraisamy
- Center for Environment and Marine Studies, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - J B R Abrogueña
- Environmental Protection and Control Department, Royal Commission for Jubail and Yanbu, Jazan City for Primary and Downstream Industries, Saudi Arabia
| | - A A Bawazier
- Center for Environment and Marine Studies, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - P B Das
- Center for Environment and Marine Studies, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - S Manokaran
- Center for Environment and Marine Studies, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Y Y Asiri
- Center for Environment and Marine Studies, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - A Qasem
- Environmental Protection Department, Saudi Aramco, Dhahran, Saudi Arabia
| | - K Asfahani
- Environmental Protection Department, Saudi Aramco, Dhahran, Saudi Arabia
| | - M A B Qurban
- National Center for Wildlife, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Struck M, Severud WJ, Chenaux-Ibrahim YM, J. Isaac E, Brown JL, Moore SA, Wolf TM. Refining the moose serum progesterone threshold to diagnose pregnancy. CONSERVATION PHYSIOLOGY 2023; 11:coad003. [PMID: 38026802 PMCID: PMC10660365 DOI: 10.1093/conphys/coad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/25/2022] [Accepted: 01/25/2023] [Indexed: 12/01/2023]
Abstract
Pregnancy determination is necessary for sound wildlife management and understanding population dynamics. Pregnancy rates are sensitive to environmental and physiological factors and may indicate the overall trajectory of a population. Pregnancy can be assessed through direct methods (rectal palpation, sonography) or indicated using hormonal assays (serum progesterone or pregnancy-specific protein B, fecal progestogen metabolites). A commonly used threshold of 2 ng/ml of progesterone in serum has been used by moose biologists to indicate pregnancy but has not been rigorously investigated. To refine this threshold, we examined the relationship between progesterone concentrations in serum samples and pregnancy in 87 moose (Alces alces; 64 female, 23 male) captured from 2010 to 2020 in the Grand Portage Indian Reservation in northeastern Minnesota, USA. Pregnancy was confirmed via rectal palpation (n = 25), necropsy (n = 2), calf observation (n = 25) or characteristic pre-calving behavior (n = 6), with a total of 58 females determined pregnant and 6 not pregnant; 23 males were included to increase the non-pregnant sample size. Using receiver operating characteristic analysis, we identified an optimal threshold of 1.115 ng/ml with a specificity of 0.97 (95% confidence interval [CI] = 0.90-1.00) and a sensitivity of 0.98 (95% CI = 0.95-1.00). Progesterone concentrations were significantly higher in cases of pregnant versus non-pregnant cows, but we did not detect a difference between single and twin births. We applied our newly refined threshold to calculate annual pregnancy rates for all female moose (n = 133) captured in Grand Portage from 2010 to 2021. Mean pregnancy rate during this period was 91% and ranged annually from 69.2 to 100%. Developing a reliable method for determining pregnancy status via serum progesterone analyses will allow wildlife managers to assess pregnancy rates of moose without devoting substantial time and resources to palpation and calf monitoring.
Collapse
Affiliation(s)
- Madeline Struck
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN 55108, USA
| | - William J Severud
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN 55108, USA
| | - Yvette M Chenaux-Ibrahim
- Department of Biology and Environment, Grand Portage Band of Lake Superior Chippewa, Grand Portage, MN 55605, USA
| | - Edmund J. Isaac
- Department of Biology and Environment, Grand Portage Band of Lake Superior Chippewa, Grand Portage, MN 55605, USA
| | - Janine L Brown
- Smithsonian Conservation Biology Institute, Center for Species Survival, National Zoological Park, Front Royal, VA, 22630, USA
| | - Seth A Moore
- Department of Biology and Environment, Grand Portage Band of Lake Superior Chippewa, Grand Portage, MN 55605, USA
| | - Tiffany M Wolf
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN 55108, USA
| |
Collapse
|
6
|
Londe DW, Moeller AK, Lukacs PM, Fuhlendorf SD, Davis CA, Elmore RD, Chitwood MC. Review of range-wide vital rates quantifies eastern wild Turkey population trajectory. Ecol Evol 2023; 13:e9830. [PMID: 36844669 PMCID: PMC9943937 DOI: 10.1002/ece3.9830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
Recent declines in eastern wild turkeys (Meleagris gallopavo silvestris) have prompted increased interest in management and research of this important game species. However, the mechanisms underlying these declines are unclear, leaving uncertainty in how best to manage this species. Foundational to effective management of wildlife species is understanding the biotic and abiotic factors that influence demographic parameters and the contribution of vital rates to population growth. Our objectives for this study were to (1) conduct a literature review to collect all published vital rates for eastern wild turkey over the last 50 years, (2) perform a scoping review of the biotic and abiotic factors that have been studied relative to wild turkey vital rates and highlight areas that require additional research, and (3) use the published vital rates to populate a life-stage simulation analysis (LSA) and identify the vital rates that make the greatest contribution to population growth. Based on published vital rates for eastern wild turkey, we estimated a mean asymptotic population growth rate (λ) of 0.91 (95% CI = 0.71, 1.12). Vital rates associated with after-second-year (ASY) females were most influential in determining population growth. Survival of ASY females had the greatest elasticity (0.53), while reproduction of ASY females had lower elasticity (0.21), but high process variance, causing it to explain a greater proportion of variance in λ. Our scoping review found that most research has focused on the effects of habitat characteristics at nest sites and the direct effects of harvest on adult survival, while research on topics such as disease, weather, predators, or anthropogenic activity on vital rates has received less attention. We recommend that future research take a more mechanistic approach to understanding variation in wild turkey vital rates as this will assist managers in determining the most appropriate management approach.
Collapse
Affiliation(s)
- David W. Londe
- 008c Ag Hall, Department of Natural Resources Ecology and ManagementOklahoma State UniversityStillwaterOklahomaUSA
| | - Anna K. Moeller
- 008c Ag Hall, Department of Natural Resources Ecology and ManagementOklahoma State UniversityStillwaterOklahomaUSA
| | - Paul M. Lukacs
- Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, W.A. Franke College of Forestry and ConservationUniversity of MontanaMissoulaMontanaUSA
| | - Samuel D. Fuhlendorf
- 008c Ag Hall, Department of Natural Resources Ecology and ManagementOklahoma State UniversityStillwaterOklahomaUSA
| | - Craig A. Davis
- 008c Ag Hall, Department of Natural Resources Ecology and ManagementOklahoma State UniversityStillwaterOklahomaUSA
| | - Robert Dwayne Elmore
- 008c Ag Hall, Department of Natural Resources Ecology and ManagementOklahoma State UniversityStillwaterOklahomaUSA
| | - M. Colter Chitwood
- 008c Ag Hall, Department of Natural Resources Ecology and ManagementOklahoma State UniversityStillwaterOklahomaUSA
| |
Collapse
|
7
|
Le Coeur C, Yoccoz NG, Salguero-Gómez R, Vindenes Y. Life history adaptations to fluctuating environments: Combined effects of demographic buffering and lability. Ecol Lett 2022; 25:2107-2119. [PMID: 35986627 DOI: 10.1111/ele.14071] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/03/2022] [Accepted: 06/14/2022] [Indexed: 01/07/2023]
Abstract
Demographic buffering and lability have been identified as adaptive strategies to optimise fitness in a fluctuating environment. These are not mutually exclusive, however, we lack efficient methods to measure their relative importance for a given life history. Here, we decompose the stochastic growth rate (fitness) into components arising from nonlinear responses and variance-covariance of demographic parameters to an environmental driver, which allows studying joint effects of buffering and lability. We apply this decomposition for 154 animal matrix population models under different scenarios to explore how these main fitness components vary across life histories. Faster-living species appear more responsive to environmental fluctuations, either positively or negatively. They have the highest potential for strong adaptive demographic lability, while demographic buffering is a main strategy in slow-living species. Our decomposition provides a comprehensive framework to study how organisms adapt to variability through buffering and lability, and to predict species responses to climate change.
Collapse
Affiliation(s)
- Christie Le Coeur
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Nigel G Yoccoz
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - Yngvild Vindenes
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
8
|
Johnson HE, Lenart EA, Gustine DD, Adams LG, Barboza PS. Survival and reproduction in Arctic caribou are associated with summer forage and insect harassment. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.899585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Investigators have speculated that the climate-driven “greening of the Arctic” may benefit barren-ground caribou populations, but paradoxically many populations have declined in recent years. This pattern has raised concerns about the influence of summer habitat conditions on caribou demographic rates, and how populations may be impacted in the future. The short Arctic summer provides caribou with important forage resources but is also the time they are exposed to intense harassment by insects, factors which are both being altered by longer, warmer growing seasons. To better understand the effects of summer forage and insect activity on Arctic caribou demographic rates, we investigated the influence of estimated forage biomass, digestible energy (DE), digestible nitrogen (DN), and mosquito activity on the reproductive success and survival of adult females in the Central Arctic Herd on the North Slope of Alaska. We tested the hypotheses that greater early summer DN would increase subsequent reproduction (parturition and late June calving success) while greater biomass and DE would increase adult survival (September–May), and that elevated mosquito activity would reduce both demographic rates. Because the period when abundant forage DN is limited and overlaps with the period of mosquito harassment, we also expected years with low DN and high harassment to synergistically reduce caribou reproductive success. Examining these relationships at the individual-level, using GPS-collared females, and at the population-level, using long-term monitoring data, we generally found support for our expectations. Greater early summer DN was associated with increased subsequent calving success, while greater summer biomass was associated with increased adult survival. Mosquito activity was associated with reductions in adult female parturition, late June calving success, and survival, and in years with low DN, had compounding effects on subsequent late June calving success. Our findings indicate that summer nutrition and mosquito activity collectively influence the demographic rates of Arctic caribou, and may impact the dynamics of populations in the future under changing environmental conditions.
Collapse
|
9
|
Forshee SC, Mitchell MS, Stephenson TR. Predator avoidance influences selection of neonatal lambing habitat by Sierra Nevada bighorn sheep. J Wildl Manage 2022. [DOI: 10.1002/jwmg.22311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shannon C. Forshee
- Montana Cooperative Wildlife Research Unit, Wildlife Biology Program University of Montana Missoula MT 59812 USA
| | | | - Thomas R. Stephenson
- Sierra Nevada Bighorn Sheep Recovery Program California Department of Fish and Wildlife 787 N. Main Street, Suite 220 Bishop CA 93514 USA
| |
Collapse
|
10
|
The abundance and persistence of Caprinae populations. Sci Rep 2022; 12:13807. [PMID: 35970998 PMCID: PMC9378773 DOI: 10.1038/s41598-022-17963-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Stable or growing populations may go extinct when their sizes cannot withstand large swings in temporal variation and stochastic forces. Hence, the minimum abundance threshold defining when populations can persist without human intervention forms a key conservation parameter. We identify this threshold for many populations of Caprinae, typically threatened species lacking demographic data. Doing so helps triage conservation and management actions for threatened or harvested populations. Methodologically, we used population projection matrices and simulations, with starting abundance, recruitment, and adult female survival predicting future abundance, growth rate (λ), and population trend. We incorporated mean demographic rates representative of Caprinae populations and corresponding variances from desert bighorn sheep (Ovis canadensis nelsoni), as a proxy for Caprinae sharing similar life histories. We found a population’s minimum abundance resulting in ≤ 0.01 chance of quasi-extinction (QE; population ≤ 5 adult females) in 10 years and ≤ 0.10 QE in 30 years as 50 adult females, or 70 were translocation (removals) pursued. Discovering the threshold required 3 demographic parameters. We show, however, that monitoring populations’ relationships to this threshold requires only abundance and recruitment data. This applied approach avoids the logistical and cost hurdles in measuring female survival, making assays of population persistence more practical.
Collapse
|
11
|
Denryter K, Conner MM, Stephenson TR, German DW, Monteith KL. Survival of the fattest: how body fat and migration influence survival in highly seasonal environments. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Kristin Denryter
- Haub School of Environment and Natural Resources University of Wyoming, 804 East Fremont Laramie WY USA
| | - Mary M. Conner
- Utah State University Department of Wildland Resources, 5320 Old Main Hill Logan UT USA
- California Department of Fish and Wildlife, 787 North Main Street, Suite 220 Bishop CA USA
| | - Thomas R. Stephenson
- California Department of Fish and Wildlife, Sierra Nevada Bighorn Sheep Recovery Program, 787 North Main Street, Suite 220 Bishop CA USA
| | - David W. German
- California Department of Fish and Wildlife, Sierra Nevada Bighorn Sheep Recovery Program, 787 North Main Street, Suite 220 Bishop CA USA
| | - Kevin L. Monteith
- Haub School of Environment and Natural Resources Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology, University of Wyoming, 804 East Fremont Laramie WY USA
| |
Collapse
|
12
|
Paterson JT, Proffitt KM, Rotella JJ. Incorporating vital rates and harvest into stochastic population models to forecast elk population dynamics. J Wildl Manage 2022. [DOI: 10.1002/jwmg.22189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Kelly M. Proffitt
- Montana Department of Fish, Wildlife, and Parks Bozeman 59718 MT USA
| | - Jay J. Rotella
- Montana State University 310 Lewis Hall Bozeman MT 59718 USA
| |
Collapse
|
13
|
Spatial ecology of female bighorn sheep in a prairie landscape in Nebraska. J Wildl Manage 2022. [DOI: 10.1002/jwmg.22201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Wagler BL, Smiley RA, Courtemanch AB, Anderson G, Lutz D, McWhirter D, Brimeyer D, Hnilicka P, Massing CP, German DW, Stephenson TR, Monteith KL. Effects of helicopter net‐gunning on survival of bighorn sheep. J Wildl Manage 2022. [DOI: 10.1002/jwmg.22181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Brittany L. Wagler
- Haub School of the Environment and Natural Resources, Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology University of Wyoming 804 E Fremont Street Laramie WY 82071 USA
| | - Rachel A. Smiley
- Haub School of the Environment and Natural Resources, Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology University of Wyoming 804 E Fremont Street Laramie WY 82071 USA
| | | | - Gregory Anderson
- Wyoming Game and Fish Department 260 Buena Vista Drive Lander WY 82520 USA
| | - Daryl Lutz
- Wyoming Game and Fish Department 260 Buena Vista Drive Lander WY 82520 USA
| | - Doug McWhirter
- Wyoming Game and Fish Department 420 N Cache Street Jackson WY 83001 USA
| | - Doug Brimeyer
- Wyoming Game and Fish Department 5400 Bishop Boulevard Cheyenne WY 82006 USA
| | - Patrick Hnilicka
- US Fish and Wildlife Service 170 N First Street Lander WY 82520 USA
| | - Cody P. Massing
- Sierra Nevada Bighorn Sheep Recovery Program California Department of Fish and Wildlife, 787 N Main Street, Suite 220, Bishop CA 93514 USA
| | - David W. German
- Sierra Nevada Bighorn Sheep Recovery Program California Department of Fish and Wildlife, 787 N Main Street, Suite 220, Bishop CA 93514 USA
| | - Thomas R. Stephenson
- Sierra Nevada Bighorn Sheep Recovery Program California Department of Fish and Wildlife, 787 N Main Street, Suite 220, Bishop CA 93514 USA
| | - Kevin L. Monteith
- Haub School of the Environment and Natural Resources, Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology University of Wyoming 804 E Fremont Street Laramie WY 82071 USA
| |
Collapse
|
15
|
Berger DJ, German DW, John C, Hart R, Stephenson TR, Avgar T. Seeing Is Be-Leaving: Perception Informs Migratory Decisions in Sierra Nevada Bighorn Sheep (Ovis canadensis sierrae). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.742275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Seasonal migration is a behavioral response to predictable variation in environmental resources, risks, and conditions. In behaviorally plastic migrants, migration is a conditional strategy that depends, in part, on an individual’s informational state. The cognitive processes that underlie how facultative migrants understand and respond to their environment are not well understood. We compared perception of the present environment to memory and omniscience as competing cognitive mechanisms driving altitudinal migratory decisions in an endangered ungulate, the Sierra Nevada bighorn sheep (Ovis canadensis sierrae) using 1,298 animal years of data, encompassing 460 unique individuals. We built a suite of statistical models to partition variation in fall migratory status explained by cognitive predictors, while controlling for non-cognitive drivers. To approximate attribute memory, we included lagged attributes of the range an individual experienced in the previous year. We quantified perception by limiting an individual’s knowledge of migratory range to the area and attributes visible from its summer range, prior to migrating. Our results show that perception, in addition to the migratory propensity of an individual’s social group, and an individual’s migratory history are the best predictors of migration in our system. Our findings suggest that short-distance altitudinal migration is, in part, a response to an individual’s perception of conditions on alterative winter range. In long-distance partial migrants, exploration of migratory decision-making has been limited, but it is unlikely that migratory decisions would be based on sensory cues from a remote target range. Differing cognitive mechanisms underpinning short and long-distance migratory decisions will result in differing levels of behavioral plasticity in response to global climate change and anthropogenic disturbance, with important implications for management and conservation of migratory species.
Collapse
|
16
|
Allen AM, Jongejans E, van de Pol M, Ens BJ, Frauendorf M, van der Sluijs M, de Kroon H. The demographic causes of population change vary across four decades in a long-lived shorebird. Ecology 2021; 103:e3615. [PMID: 34921394 PMCID: PMC9286424 DOI: 10.1002/ecy.3615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 07/29/2021] [Accepted: 09/24/2021] [Indexed: 11/07/2022]
Abstract
Understanding which factors cause populations to decline begins with identifying which parts of the life cycle, and which vital rates, have changed over time. However, in a world where humans are altering the environment both rapidly and in different ways, the demographic causes of decline likely vary over time. Identifying temporal variation in demographic causes of decline is crucial to assure that conservation actions target current and not past threats. However, this has rarely been studied as it requires long time series. Here we investigate how the demography of a long‐lived shorebird (the Eurasian Oystercatcher Haematopus ostralegus) has changed in the past four decades, resulting in a shift from stable dynamics to strong declines (−9% per year), and recently back to a modest decline. Since individuals of this species are likely to respond differently to environmental change, we captured individual heterogeneity through three state variables: age, breeding status, and lay date (using integral projection models). Timing of egg‐laying explained significant levels of variation in reproduction, with a parabolic relationship of maximal productivity near the average lay date. Reproduction explained most variation in population growth rates, largely due to poor nest success and hatchling survival. However, the demographic causes of decline have also been in flux over the last three decades: hatchling survival was low in the 2000s but improved in the 2010s, while adult survival declined in the 2000s and remains low today. Overall, the joint action of several key demographic variables explain the decline of the oystercatcher, and improvements in a single vital rate cannot halt the decline. Conservations actions will thus need to address threats occurring at different stages of the oystercatcher's life cycle. The dynamic nature of the threat landscape is further supported by the finding that the average individual no longer has the highest performance in the population, and emphasizes how individual heterogeneity in vital rates can play an important role in modulating population growth rates. Our results indicate that understanding population decline in the current era requires disentangling demographic mechanisms, individual variability, and their changes over time.
Collapse
Affiliation(s)
- Andrew M. Allen
- Department of Animal EcologyNetherlands Institute for Ecology (NIOO‐KNAW)WageningenThe Netherlands
- Department of Animal Ecology and PhysiologyRadboud UniversityNijmegenThe Netherlands
- Centre for Avian Population StudiesWageningenThe Netherlands
| | - Eelke Jongejans
- Department of Animal EcologyNetherlands Institute for Ecology (NIOO‐KNAW)WageningenThe Netherlands
- Department of Animal Ecology and PhysiologyRadboud UniversityNijmegenThe Netherlands
- Centre for Avian Population StudiesWageningenThe Netherlands
| | - Martijn van de Pol
- Department of Animal EcologyNetherlands Institute for Ecology (NIOO‐KNAW)WageningenThe Netherlands
- Centre for Avian Population StudiesWageningenThe Netherlands
- College of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
| | - Bruno J. Ens
- Centre for Avian Population StudiesWageningenThe Netherlands
- Sovon Dutch Centre for Field OrnithologySovon‐TexelTexelThe Netherlands
| | - Magali Frauendorf
- Department of Animal EcologyNetherlands Institute for Ecology (NIOO‐KNAW)WageningenThe Netherlands
- Centre for Avian Population StudiesWageningenThe Netherlands
| | - Martijn van der Sluijs
- Department of Animal EcologyNetherlands Institute for Ecology (NIOO‐KNAW)WageningenThe Netherlands
- Centre for Avian Population StudiesWageningenThe Netherlands
| | - Hans de Kroon
- Centre for Avian Population StudiesWageningenThe Netherlands
- Department of Experimental Plant EcologyRadboud UniversityNijmegenThe Netherlands
| |
Collapse
|
17
|
Gueye M, Brandlová K, Rabeil T, Diop MM, Diop B, Hejcmanová P. Spatially restricted occurrence and low abundance as key tools for conservation of critically endangered large antelope in West African savannah. Sci Rep 2021; 11:19397. [PMID: 34588514 PMCID: PMC8481223 DOI: 10.1038/s41598-021-98649-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/06/2021] [Indexed: 11/09/2022] Open
Abstract
The effective conservation of mammals on the brink of extinction requires an integrated socio-ecological approach, yet the updated ecological knowledge of species remains fundamental. This study brings spatiotemporal behaviour, population structure, age-specific survival rates, and population size estimate of the Western Derby eland (WDE) in the Niokolo Koba National Park (NKNP), Senegal, investigated during dry seasons 2017 and 2018. WDE was strongly localised in the core area of NKNP (< 5%), active throughout the day with the highest peak in the hottest daytime, with a mean group size 7.6 ± SE 8.9. The adult sex ratio was female-biased and showed low annual adult male survival rates. The population consisted of high proportion of juveniles, whilst adults did not exceed 40%. The estimated population density was 0.138 WDE/km2 (± 0.0102) and estimated size 195 WDE in NKNP (CI95 from 54 to 708 individuals). Findings highlighted that the WDE population has potential to expand in the NKNP, due to an underutilized capacity. The age-specific vital rates indicate adult males as the most vulnerable; suggesting either an increase in the large predators' population, livestock encroachment pressure, and/or poaching. Findings imply that targeted monitoring with science-based interpretation may bring forward strong conservation solutions to the protected area management decision-makers.
Collapse
Affiliation(s)
- Mallé Gueye
- Direction Des Parcs Nationaux du Sénégal, route des Pères maristes, BP 5135, Dakar Hann, Senegal.,Department of HydroSciences and Environment, University Iba Der Thiam de Thiès, Thiès, Senegal
| | - Karolína Brandlová
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague - Suchdol, 16500, Czech Republic
| | - Thomas Rabeil
- Wild Africa Conservation, 27 rue de D'Esbly, 77240, Cesson, France
| | - Maniang Mamadou Diop
- Direction Des Parcs Nationaux du Sénégal, route des Pères maristes, BP 5135, Dakar Hann, Senegal
| | - Babacar Diop
- Direction Des Parcs Nationaux du Sénégal, route des Pères maristes, BP 5135, Dakar Hann, Senegal
| | - Pavla Hejcmanová
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague - Suchdol, 16500, Czech Republic.
| |
Collapse
|
18
|
Dȩbicki IT, Mittell EA, Kristjánsson BK, Leblanc CA, Morrissey MB, Terzić K. Re-identification of individuals from images using spot constellations: a case study in Arctic charr ( Salvelinus alpinus). ROYAL SOCIETY OPEN SCIENCE 2021; 8:201768. [PMID: 34295512 PMCID: PMC8292754 DOI: 10.1098/rsos.201768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
The ability to re-identify individuals is fundamental to the individual-based studies that are required to estimate many important ecological and evolutionary parameters in wild populations. Traditional methods of marking individuals and tracking them through time can be invasive and imperfect, which can affect these estimates and create uncertainties for population management. Here we present a photographic re-identification method that uses spot constellations in images to match specimens through time. Photographs of Arctic charr (Salvelinus alpinus) were used as a case study. Classical computer vision techniques were compared with new deep-learning techniques for masks and spot extraction. We found that a U-Net approach trained on a small set of human-annotated photographs performed substantially better than a baseline feature engineering approach. For matching the spot constellations, two algorithms were adapted, and, depending on whether a fully or semi-automated set-up is preferred, we show how either one or a combination of these algorithms can be implemented. Within our case study, our pipeline both successfully identified unmarked individuals from photographs alone and re-identified individuals that had lost tags, resulting in an approximately 4% increase in our estimate of survival rate. Overall, our multi-step pipeline involves little human supervision and could be applied to many organisms.
Collapse
Affiliation(s)
- Ignacy T. Dȩbicki
- School of Computer Science, University of St Andrews, St Andrews, UK
| | - Elizabeth A. Mittell
- School of Biology, University of St Andrews, St Andrews, UK
- Department of Aquaculture and Fish Biology, Hólar University, Sauðárkrókur, Iceland
| | | | - Camille A. Leblanc
- Department of Aquaculture and Fish Biology, Hólar University, Sauðárkrókur, Iceland
| | | | - Kasim Terzić
- School of Computer Science, University of St Andrews, St Andrews, UK
| |
Collapse
|
19
|
Paterson JT, Proffitt K, Rotella J, McWhirter D, Garrott R. Drivers of variation in the population dynamics of bighorn sheep. Ecosphere 2021. [DOI: 10.1002/ecs2.3679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Kelly Proffitt
- Montana Department of Fish, Wildlife and Parks Bozeman Montana USA
| | - Jay Rotella
- Department of Ecology Montana State University Bozeman Montana USA
| | | | - Robert Garrott
- Department of Ecology Montana State University Bozeman Montana USA
| |
Collapse
|
20
|
Brackel KL, Michel ES, Gullikson BS, Jenks JA, Jensen WF. Capture method affects survival estimates and subsequent interpretation of ecological covariates for a long-lived cervid. Ecol Evol 2021; 11:6444-6455. [PMID: 34141230 PMCID: PMC8207354 DOI: 10.1002/ece3.7494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/08/2021] [Indexed: 11/10/2022] Open
Abstract
Understanding what variables affect ungulate neonate survival is imperative to successful conservation and management of the species. Predation is commonly cited as a cause-specific source of mortality, and ecological covariates often influence neonate survival. However, variation in survival estimates related to capture methodology has been documented with opportunistically captured neonates generally displaying greater survival than those captured via aid of vaginal implant transmitters (VITs), likely because of increased left truncation observed in the opportunistically captured datasets. Our goal was to assess whether 3- and 6-month survival estimates varied by capture method while simultaneously assessing whether capture method affected model selection and interpretation of ecological covariates for white-tailed deer neonates captured from three study sites from 2014 to 2015 in North Dakota and South Dakota, USA. We found survival varied by capture method for 3-month neonate survival with opportunistically captured neonates displaying up to 26% greater survival than their counterparts captured via VITs; however, this relationship was not present for 6-month survival. We also found model selection and subsequent interpretation of ecological covariates varied when analyzing datasets comprised of neonates captured via VITs, neonates captured opportunistically, and all neonates combined regardless of capture method. When interpreting results from our VIT-only analysis for 3-month survival, we found survival varied by three time intervals and was lowest in the first two weeks of life. Capture method did not affect 6-month survival, which was most influenced by total precipitation occurring during 3 - 8 weeks of a neonate's life and percent canopy cover found at a neonate's capture site. Our results support previous research that capture method must be accounted for when deriving survival estimates for ungulate neonates as it can impact derived estimates and subsequent interpretation of results.
Collapse
Affiliation(s)
| | - Eric S. Michel
- Farmland Wildlife Populations and Research GroupMinnesota Department of Natural ResourcesMadeliaUSA
| | | | - Jonathan A. Jenks
- Department of Natural Resource ManagementSouth Dakota State UniversityUSA
| | | |
Collapse
|
21
|
Horswill C, Manica A, Daunt F, Newell M, Wanless S, Wood M, Matthiopoulos J. Improving assessments of data‐limited populations using life‐history theory. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13863] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Cat Horswill
- Institute of Biodiversity Animal Health & Comparative Medicine University of Glasgow Glasgow UK
- Department of Zoology University of Cambridge Cambridge UK
- ZSL Institute of Zoology London UK
- Centre for Biodiversity and Environmental Research Department of Genetics, Evolution and Environment University College London London UK
| | - Andrea Manica
- Department of Zoology University of Cambridge Cambridge UK
| | | | - Mark Newell
- UK Centre for Ecology & Hydrology Penicuik UK
| | | | - Matthew Wood
- School of Natural and Social Sciences University of Gloucestershire Cheltenham UK
| | - Jason Matthiopoulos
- Institute of Biodiversity Animal Health & Comparative Medicine University of Glasgow Glasgow UK
| |
Collapse
|
22
|
Robinson OJ, Ruiz‐Gutierrez V, Meese RJ, Graves EE, Holyoak M, Wilson CR, Wyckoff AC, Merriell BD, Snyder C, Cooch EG. Multi‐scale demographic analysis reveals range contraction via pseudo‐source and sink population structure. Ecosphere 2021. [DOI: 10.1002/ecs2.3521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- O. J. Robinson
- Cornell Lab of Ornithology Cornell University Ithaca New York14850USA
| | - V. Ruiz‐Gutierrez
- Cornell Lab of Ornithology Cornell University Ithaca New York14850USA
| | - R. J. Meese
- Department of Environmental Science & Policy University of California Davis California95616USA
| | - E. E. Graves
- Department of Environmental Science & Policy University of California Davis California95616USA
| | - M. Holyoak
- Department of Environmental Science & Policy University of California Davis California95616USA
| | - C. R. Wilson
- Conservation Ecology LLC Hendersonville North Carolina28739USA
| | | | - B. D. Merriell
- Department of Natural Resources Cornell University Ithaca New York14853USA
| | - C. Snyder
- Department of Natural Resources Cornell University Ithaca New York14853USA
| | - E. G. Cooch
- Department of Natural Resources Cornell University Ithaca New York14853USA
| |
Collapse
|
23
|
Bond ML, König B, Ozgul A, Farine DR, Lee DE. Socially Defined Subpopulations Reveal Demographic Variation in a Giraffe Metapopulation. J Wildl Manage 2021. [DOI: 10.1002/jwmg.22044] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Monica L. Bond
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - Barbara König
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - Arpat Ozgul
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - Damien R. Farine
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - Derek E. Lee
- Department of Biology Pennsylvania State University, University Park Pennsylvania USA
| |
Collapse
|
24
|
Proffitt KM, Courtemanch AB, Dewey SR, Lowrey B, McWhirter DE, Monteith K, Paterson JT, Rotella J, White PJ, Garrott RA. Regional variability in pregnancy and survival rates of Rocky Mountain bighorn sheep. Ecosphere 2021. [DOI: 10.1002/ecs2.3410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Kelly M. Proffitt
- Montana Department of Fish Wildlife, and Parks 1400 South 19th Avenue Bozeman Montana59718USA
| | | | - Sarah R. Dewey
- Grand Teton National Park P.O. Box 170 Moose Wyoming83012USA
| | - Blake Lowrey
- Fish and Wildlife Ecology and Management Program Department of Ecology Montana State University 310 Lewis Hall Bozeman Montana59717USA
| | | | - Kevin.L. Monteith
- Haub School of Environment and Natural Resources Wyoming Cooperative Fish and Wildlife Research Unit Department of Zoology and Physiology University of Wyoming 804 East Fremont Street Laramie Wyoming82072USA
| | - J. Terrill Paterson
- Fish and Wildlife Ecology and Management Program Department of Ecology Montana State University 310 Lewis Hall Bozeman Montana59717USA
| | - Jay Rotella
- Fish and Wildlife Ecology and Management Program Department of Ecology Montana State University 310 Lewis Hall Bozeman Montana59717USA
| | - Patrick J. White
- Yellowstone Center for Resources Yellowstone National Park National Park Service Mammoth Wyoming82190USA
| | - Robert A. Garrott
- Fish and Wildlife Ecology and Management Program Department of Ecology Montana State University 310 Lewis Hall Bozeman Montana59717USA
| |
Collapse
|
25
|
Davison RJ, Gurven MD. Human uniqueness? Life history diversity among small-scale societies and chimpanzees. PLoS One 2021; 16:e0239170. [PMID: 33617556 PMCID: PMC7899333 DOI: 10.1371/journal.pone.0239170] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/27/2021] [Indexed: 11/29/2022] Open
Abstract
Background Humans life histories have been described as “slow”, patterned by slow growth, delayed maturity, and long life span. While it is known that human life history diverged from that of a recent common chimpanzee-human ancestor some ~4–8 mya, it is unclear how selection pressures led to these distinct traits. To provide insight, we compare wild chimpanzees and human subsistence societies in order to identify the age-specific vital rates that best explain fitness variation, selection pressures and species divergence. Methods We employ Life Table Response Experiments to quantify vital rate contributions to population growth rate differences. Although widespread in ecology, these methods have not been applied to human populations or to inform differences between humans and chimpanzees. We also estimate correlations between vital rate elasticities and life history traits to investigate differences in selection pressures and test several predictions based on life history theory. Results Chimpanzees’ earlier maturity and higher adult mortality drive species differences in population growth, whereas infant mortality and fertility variation explain differences between human populations. Human fitness is decoupled from longevity by postreproductive survival, while chimpanzees forfeit higher potential lifetime fertility due to adult mortality attrition. Infant survival is often lower among humans, but lost fitness is recouped via short birth spacing and high peak fertility, thereby reducing selection on infant survival. Lastly, longevity and delayed maturity reduce selection on child survival, but among humans, recruitment selection is unexpectedly highest in longer-lived populations, which are also faster-growing due to high fertility. Conclusion Humans differ from chimpanzees more because of delayed maturity and lower adult mortality than from differences in juvenile mortality or fertility. In both species, high child mortality reflects bet-hedging costs of quality/quantity tradeoffs borne by offspring, with high and variable child mortality likely regulating human population growth over evolutionary history. Positive correlations between survival and fertility among human subsistence populations leads to selection pressures in human subsistence societies that differ from those in modern populations undergoing demographic transition.
Collapse
Affiliation(s)
- Raziel J. Davison
- Integrative Anthropological Sciences, Department of Anthropology, University of California, Santa Barbara, Santa Barbara, CA, United States of America
- Broom Center for Demography, University of California, Santa Barbara, Santa Barbara, CA, United States of America
- * E-mail:
| | - Michael D. Gurven
- Integrative Anthropological Sciences, Department of Anthropology, University of California, Santa Barbara, Santa Barbara, CA, United States of America
- Broom Center for Demography, University of California, Santa Barbara, Santa Barbara, CA, United States of America
| |
Collapse
|
26
|
Oates BA, Monteith KL, Goheen JR, Merkle JA, Fralick GL, Kauffman MJ. Detecting Resource Limitation in a Large Herbivore Population Is Enhanced With Measures of Nutritional Condition. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2020.522174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Resource limitation at the population level is a function of forage quality and its abundance relative to its per capita availability, which in turn, determines nutritional condition of individuals. Effects of resource limitation on population dynamics in ungulates often occur through predictable and sequential changes in vital rates, which can enable assessments of how resource limitation influences population growth. We tested theoretical predictions of bottom-up (i.e., resource limitation) forcing on moose (Alces alces) through the lens of vital rates by quantifying the relative influence of intrinsic measures of nutritional condition and extrinsic measures of remotely sensed environmental data on demographic rates. We measured rates of pregnancy, parturition, juvenile, and adult survival for 82 adult females in a population where predators largely were absent. Life stage simulation analyses (LSAs) indicated that interannual fluctuations in adult survival contributed to most of the variability in λ. We then extended the LSA to estimate vital rates as a function of bottom-up covariates to evaluate their influence on λ. We detected weak signatures of effects from environmental covariates that were remotely sensed and spatially explicit to each seasonal range. Instead, nutritional condition strongly influenced rates of pregnancy, parturition, and overwinter survival of adults, clearly implicating resource limitation on λ. Our findings depart from the classic life-history paradigm of population dynamics in ungulates in that adult survival was highly variable and generated most of the variability in population growth rates. At the surface, lack of variation explained by environmental covariates may suggest weak evidence of resource limitation in the population, when nutritional condition actually underpinned most demographics. We suggest that variability in vital rates and effects of resource limitation may depend on context more than previously appreciated, and density dependence can obfuscate the relationships between remotely sensed data and demographic rates.
Collapse
|
27
|
Walker PD, Rodgers AR, Shuter JL, Thompson ID, Fryxell JM, Cook JG, Cook RC, Merrill EH. Comparison of Woodland Caribou Calving Areas Determined by Movement Patterns Across Northern Ontario. J Wildl Manage 2020. [DOI: 10.1002/jwmg.21961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Philip D. Walker
- Department of Biological Sciences University of Alberta Edmonton AB T6G 2E9 Canada
| | - Arthur R. Rodgers
- Ontario Ministry of Natural Resources and Forestry Centre for Northern Forest Ecosystem Research 103‐421 James Street South Thunder Bay ON P7E 2V6 Canada
| | - Jennifer L. Shuter
- Ontario Ministry of Natural Resources and Forestry Centre for Northern Forest Ecosystem Research 103‐421 James Street South Thunder Bay ON P7E 2V6 Canada
| | - Ian D. Thompson
- Canadian Forest Service (Retired) 1219 Queen Street E, Sault Ste. Marie ON P6A 2E5 Canada
| | - John M. Fryxell
- Department of Integrative Biology University of Guelph Guelph ON N1G 2W1 Canada
| | - John G. Cook
- National Council for Air and Stream Improvement Forestry and Range Science Laboratory 1401 Gekeler Lane La Grande OR 97850 USA
| | - Rachel C. Cook
- National Council for Air and Stream Improvement Forestry and Range Science Laboratory 1401 Gekeler Lane La Grande OR 97850 USA
| | - Eveyln H. Merrill
- Department of Biological Sciences University of Alberta Edmonton AB T6G 2E9 Canada
| |
Collapse
|
28
|
Stephenson TR, German DW, Cassirer EF, Walsh DP, Blum ME, Cox M, Stewart KM, Monteith KL. Linking population performance to nutritional condition in an alpine ungulate. J Mammal 2020; 101:1244-1256. [PMID: 33335453 PMCID: PMC7733374 DOI: 10.1093/jmammal/gyaa091] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 07/10/2020] [Indexed: 11/14/2022] Open
Abstract
Bighorn sheep (Ovis canadensis) can live in extremely harsh environments and subsist on submaintenance diets for much of the year. Under these conditions, energy stored as body fat serves as an essential reserve for supplementing dietary intake to meet metabolic demands of survival and reproduction. We developed equations to predict ingesta-free body fat in bighorn sheep using ultrasonography and condition scores in vivo and carcass measurements postmortem. We then used in vivo equations to investigate the relationships between body fat, pregnancy, overwinter survival, and population growth in free-ranging bighorn sheep in California and Nevada. Among 11 subpopulations that included alpine winter residents and migrants, mean ingesta-free body fat of lactating adult females during autumn ranged between 8.8% and 15.0%; mean body fat for nonlactating females ranged from 16.4% to 20.9%. In adult females, ingesta-free body fat > 7.7% during January (early in the second trimester) corresponded with a > 90% probability of pregnancy and ingesta-free body fat > 13.5% during autumn yielded a probability of overwinter survival > 90%. Mean ingesta-free body fat of lactating females in autumn was positively associated with finite rate of population increase (λ) over the subsequent year in bighorn sheep subpopulations that wintered in alpine landscapes. Bighorn sheep with ingesta-free body fat of 26% in autumn and living in alpine environments possess energy reserves sufficient to meet resting metabolism for 83 days on fat reserves alone. We demonstrated that nutritional condition can be a pervasive mechanism underlying demography in bighorn sheep and characterizes the nutritional value of their occupied ranges. Mountain sheep are capital survivors in addition to being capital breeders, and because they inhabit landscapes with extreme seasonal forage scarcity, they also can be fat reserve obligates. Quantifying nutritional condition is essential for understanding the quality of habitats, how it underpins demography, and the proximity of a population to a nutritional threshold.
Collapse
Affiliation(s)
- Thomas R Stephenson
- Sierra Nevada Bighorn Sheep Recovery Program, California Department of Fish and Wildlife, Bishop, CA, USA
| | - David W German
- Sierra Nevada Bighorn Sheep Recovery Program, California Department of Fish and Wildlife, Bishop, CA, USA
| | | | | | - Marcus E Blum
- Department of Natural Resources and Environmental Science, University of Nevada, Reno, NV, USA
| | - Mike Cox
- Nevada Department of Wildlife, Reno, NV, USA
| | - Kelley M Stewart
- Department of Natural Resources and Environmental Science, University of Nevada, Reno, NV, USA
| | - Kevin L Monteith
- Haub School of the Environment, Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA (KLM)
| |
Collapse
|
29
|
Johnson HE, Lewis DL, Breck SW. Individual and population fitness consequences associated with large carnivore use of residential development. Ecosphere 2020. [DOI: 10.1002/ecs2.3098] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Heather E. Johnson
- Alaska Science Center U.S. Geological Survey 4210 University Drive Anchorage Alaska 99508 USA
| | - David L. Lewis
- Colorado Parks and Wildlife 415 Turner Drive Durango Colorado 81303 USA
| | - Stewart W. Breck
- USDA National Wildlife Research Center 4101 La Porte Ave Fort Collins Colorado 80521 USA
| |
Collapse
|
30
|
Messerman AF, Semlitsch RD, Leal M. Estimating Survival for Elusive Juvenile Pond‐Breeding Salamanders. J Wildl Manage 2020. [DOI: 10.1002/jwmg.21815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Manuel Leal
- University of Missouri 612 Hitt Street, 209 Tucker Hall Columbia MO 65211 USA
| |
Collapse
|
31
|
Paterson JT, Proffitt K, Rotella J, Garrott R. An improved understanding of ungulate population dynamics using count data: Insights from western Montana. PLoS One 2019; 14:e0226492. [PMID: 31869366 PMCID: PMC6927647 DOI: 10.1371/journal.pone.0226492] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 11/27/2019] [Indexed: 11/18/2022] Open
Abstract
Understanding the dynamics of ungulate populations is critical given their ecological and economic importance. In particular, the ability to evaluate the evidence for potential drivers of variation in population trajectories is important for informed management. However, the use of age ratio data (e.g., juveniles:adult females) as an index of variation in population dynamics is hindered by a lack of statistical power and difficult interpretation. Here, we show that the use of a population model based on count, classification and harvest data can dramatically improve the understanding of ungulate population dynamics by: 1) providing estimates of vital rates (e.g., per capita recruitment and population growth) that are easier to interpret and more useful to managers than age ratios and 2) increasing the power to assess potential sources of variation in key vital rates. We used a time series of elk (Cervus canadensis) spring count and classification data (2004 to 2016) and fall harvest data from hunting districts in western Montana to construct a population model to estimate vital rates and assess evidence for an association between a series of environmental covariates and indices of predator abundance on per capita recruitment rates of elk calves. Our results suggest that per capita recruitment rates were negatively associated with cold and wet springs, and severe winters, and positively associated with summer precipitation. In contrast, an analysis of the raw age ratio data failed to detect these relationships. Our approach based on a population model provided estimates of the region-wide mean per capita recruitment rate (mean = 0.25, 90% CI = 0.21, 0.29), temporal variation in hunting-district-specific recruitment rates (minimum = 0.09; 90% CI = [0.07, 0.11], maximum = 0.43; 90% CI = [0.38, 0.48]), and annual population growth rates (minimum = 0.83; 90% CI = [0.78, 0.87], maximum = 1.20; 90% CI = [1.11, 1.29]). We recommend using routinely collected population count and classification data and a population modeling approach rather than interpreting estimated age ratios as a substantial improvement in understanding population dynamics.
Collapse
Affiliation(s)
- J. Terrill Paterson
- Department of Ecology, Montana State University, Bozeman, Montana, United States of America
- * E-mail:
| | - Kelly Proffitt
- Montana Department of Fish, Wildlife and Parks, Bozeman, Montana, United States of America
| | - Jay Rotella
- Department of Ecology, Montana State University, Bozeman, Montana, United States of America
| | - Robert Garrott
- Department of Ecology, Montana State University, Bozeman, Montana, United States of America
| |
Collapse
|
32
|
Bennitt E, Hubel TY, Bartlam-Brooks HLA, Wilson AM. Possible causes of divergent population trends in sympatric African herbivores. PLoS One 2019; 14:e0213720. [PMID: 30861044 PMCID: PMC6421633 DOI: 10.1371/journal.pone.0213720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/27/2019] [Indexed: 11/19/2022] Open
Abstract
Sympatric herbivores experience similar environmental conditions but can vary in their population trends. Identifying factors causing these differences could assist conservation efforts aimed at maintaining fully functional ecosystems. From 1996-2013, tsessebe and wildebeest populations in the Okavango Delta, Botswana, declined by 73% and 90%, respectively, whereas zebra populations remained stable. These sympatric, medium sized herbivores are exposed to similar natural and anthropogenic pressures, but apparently differ in their responses to those pressures. To identify factors that could cause these differences, we fitted GPS-enabled collars to six zebra, eight tsessebe and seven wildebeest in the Moremi Game Reserve, Botswana. We calculated utilisation distributions (UDs) from GPS data, and used 95% isopleths to compare seasonal home range size between species. We calculated utilisation intensity (UI) from the UDs and generated spatial layers representing resources and disturbances, and then used model averaging to identify factors affecting UI for each species. We calculated second and third order habitat selection ratios to determine whether species were habitat specialists or generalists. Zebra occupied larger home ranges than tsessebe and wildebeest, showed weaker responses to spatial variables and displayed no third order habitat selection; zebra social systems are also more fluid, allowing for information exchange between stable harems. Herbivore species that are sedentary, occupy small home ranges, are habitat specialists and exist in relatively isolated groups are likely to be less resistant and resilient to the rapid pace of environmental change forecast by climate change scenarios. Resources contained within existing protected areas are unlikely to maintain populations of such species at sufficiently high levels, potentially leading to functional extinction. Special precautions may be needed to ensure that such species can persist in the wild, such as buffer zones around existing protected areas, which would allow greater potential for adaptive movement should current environmental conditions change.
Collapse
Affiliation(s)
- Emily Bennitt
- Okavango Research Institute, University of Botswana, Maun,
Botswana
- * E-mail:
| | - Tatjana Y. Hubel
- Structure and Motion Lab, Royal Veterinary College, London, United
Kingdom
| | | | - Alan M. Wilson
- Structure and Motion Lab, Royal Veterinary College, London, United
Kingdom
| |
Collapse
|
33
|
Manlik O. The Importance of Reproduction for the Conservation of Slow-Growing Animal Populations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1200:13-39. [PMID: 31471793 DOI: 10.1007/978-3-030-23633-5_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Both survival and reproduction are important fitness components, and thus critical to the viability of wildlife populations. Preventing one death (survival) or contributing one newborn (reproduction), has arguably the same effect on population dynamics-in each instance the population grows or is maintained by one additional member. However, for the conservation of slow-growing animal populations, the importance of reproduction is sometimes overlooked when evaluating wildlife management options. This has to do with the use of demographic sensitivity analyses, which quantify the relative contribution of vital rates to population growth. For slow-growing populations, the results of such analyses typically show that growth rates are more sensitive to changes in survival than to equal proportional changes in reproduction. Consequently, for slow-growing taxa, survival has been labelled a better fitness surrogate than reproduction. However, such a generalization, derived from conventional sensitivity analyses, is based on flawed approaches, such as omitting appropriate scaling of vital rates, and sometimes misinterpretations. In this chapter, I make the case that for the conservation of slow-growing species the role of reproduction is considerably greater than conventional sensitivity analyses would suggest. This is illustrated by case studies on wildlife populations that underscore the importance of reproduction for the conservation of slow-growing birds, ungulates, carnivores, and cetaceans.
Collapse
Affiliation(s)
- Oliver Manlik
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates. .,Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
34
|
Spitz D, Hebblewhite M, Stephenson T, German D. How plastic is migratory behavior? Quantifying elevational movement in a partially migratory alpine ungulate, the Sierra Nevada bighorn sheep (Ovis canadensis sierrae). CAN J ZOOL 2018. [DOI: 10.1139/cjz-2017-0367] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Migratory species face well-documented global declines, but the causes of these declines remain unclear. One obstacle to better understanding these declines is uncertainty surrounding how migratory behavior is maintained. Most migratory populations are partially migratory, displaying both migrant and resident behaviors. Theory only provides two possible explanations for this coexistence of migration and residency: either these behaviors are fixed at the individual level or both behaviors are part of a single conditional strategy in which an individual’s migratory status (adoption of migrant or resident behavior) is plastic. Here we test for plasticity in migratory status and tactics (timing, distance, and duration of migration) in a federally endangered mountain caprid, the Sierra Nevada bighorn sheep (Ovis canadensis sierrae Grinnell, 1912). We used nonlinear modeling to quantitatively describe migratory behavior, analyzing 262 animal-years of GPS location data collected between 2005 and 2016 from 161 females across 14 subpopulations. Migratory tactics and prevalence varied by subpopulation. On average, individuals from partially migratory subpopulations switched migratory status every 4 years. Our results support the hypothesis that partial migration is maintained through a single conditional strategy. Understanding plasticity in migratory behavior will improve monitoring efforts and provide a rigorous basis for evaluating threats, particularly those associated with changing climate.
Collapse
Affiliation(s)
- D.B. Spitz
- Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, W.A. Franke College of Forestry and Conservation, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA
| | - M. Hebblewhite
- Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, W.A. Franke College of Forestry and Conservation, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA
| | - T.R. Stephenson
- Sierra Nevada Bighorn Sheep Recovery Program, California Department of Fish and Wildlife, 787 North Main Street, Suite 220, Bishop, CA 93514, USA
| | - D.W. German
- Sierra Nevada Bighorn Sheep Recovery Program, California Department of Fish and Wildlife, 787 North Main Street, Suite 220, Bishop, CA 93514, USA
| |
Collapse
|
35
|
Robinson SG. Effects of Landscape Characteristics on Annual Survival of Lesser Prairie-Chickens. AMERICAN MIDLAND NATURALIST 2018. [DOI: 10.1674/0003-0031-180.1.66] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Zhang L, Ameca y Juárez EI, Jiang Z. Viability analysis of the wild sika deer ( Cervus nippon ) population in China: Threats of habitat loss and effectiveness of management interventions. J Nat Conserv 2018. [DOI: 10.1016/j.jnc.2018.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
37
|
Conner MM, Stephenson TR, German DW, Monteith KL, Few AP, Bair EH. Survival analysis: Informing recovery of Sierra Nevada bighorn sheep. J Wildl Manage 2018. [DOI: 10.1002/jwmg.21490] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mary M. Conner
- Utah State University; Department of Wildland Resources; 5320 Old Main Hill Logan UT 84322 USA
| | - Thomas R. Stephenson
- California Department of Fish and Wildlife; Sierra Nevada Bighorn Sheep Recovery Program; 787 North Main Street, Suite 220 Bishop CA 93515 USA
| | - David W. German
- California Department of Fish and Wildlife; Sierra Nevada Bighorn Sheep Recovery Program; 787 North Main Street, Suite 220 Bishop CA 93515 USA
| | - Kevin L. Monteith
- Haub School of Environment and Natural Resources, Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology; University of Wyoming; 804 East Fremont Laramie WY 82072 USA
| | - Alexandra P. Few
- California Department of Fish and Wildlife; Sierra Nevada Bighorn Sheep Recovery Program; 787 North Main Street, Suite 220 Bishop CA 93515 USA
| | - Edward H. Bair
- University of California; Earth Research Institute; 6832 Ellison Hall Santa Barbara CA 93106-3060 USA
| |
Collapse
|
38
|
Ali AH, Kauffman MJ, Amin R, Kibara A, King J, Mallon D, Musyoki C, Goheen JR. Demographic drivers of a refugee species: large-scale experiments guide strategies for reintroductions of hirola. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2018; 28:275-283. [PMID: 29222956 DOI: 10.1002/eap.1664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/28/2017] [Accepted: 10/02/2017] [Indexed: 06/07/2023]
Abstract
Effective reintroduction strategies require accurate estimates of vital rates and the factors that influence them. The hirola (Beatragus hunteri) is the rarest antelope on Earth, with a global population size of <500 individuals restricted to the Kenya-Somali border. We estimated vital rates of hirola populations exposed to varying levels of predation and rangeland quality from 2012 to 2015, and then built population matrices to estimate the finite rate of population change (λ) and demographic sensitivities. Mean survival for all age classes and population growth was highest in the low-predation-high-rangeland-quality setting (λ = 1.08 ± 0.03 [mean ± SE]), and lowest in the high-predation-low-rangeland-quality setting (λ = 0.70 ± 0.22). Retrospective demographic analyses revealed that increased fecundity (the number of female calves born to adult females annually) and female calf survival were responsible for higher population growth where large carnivores were absent. In contrast, variation in adult female survival was the primary contributor to differences in population growth attributable to rangeland quality. Our analyses suggest that hirola demography is driven by a combination of top-down (predation) and bottom-up (rangeland quality) forces, with populations in the contemporary geographic range impacted both by declining rangeland quality and predation. To enhance the chances of successful reintroductions, conservationists can consider rangeland restoration to boost both the survival and fecundity of adult females within the hirola's historical range.
Collapse
Affiliation(s)
- Abdullahi H Ali
- Program in Ecology and Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
- National Museums of Kenya, Nairobi, Kenya
- Hirola Conservation Programme, Garissa, Kenya
| | - Matthew J Kauffman
- Program in Ecology and Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
- U.S. Geological Survey, Wyoming Cooperative Fish and Wildlife Research Unit, Laramie, Wyoming, 82071, USA
| | - Rajan Amin
- Conservation Programmes, Zoological Society of London, London, United Kingdom
| | - Amos Kibara
- Hirola Conservation Programme, Garissa, Kenya
| | | | - David Mallon
- IUCN SSP Antelope Specialist Group, Manchester Metropolitan University, Glossop, United Kingdom
| | | | - Jacob R Goheen
- Program in Ecology and Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
| |
Collapse
|
39
|
Manlik O, Lacy RC, Sherwin WB. Applicability and limitations of sensitivity analyses for wildlife management. J Appl Ecol 2017. [DOI: 10.1111/1365-2664.13044] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Oliver Manlik
- School of Biological, Earth and Environmental Sciences; Evolution and Ecology Research Centre; University of New South Wales; Sydney NSW Australia
| | | | - William B. Sherwin
- School of Biological, Earth and Environmental Sciences; Evolution and Ecology Research Centre; University of New South Wales; Sydney NSW Australia
| |
Collapse
|
40
|
Schmidt JH, Rattenbury KL. An open‐population distance sampling framework for assessing population dynamics in group‐dwelling species. Methods Ecol Evol 2017. [DOI: 10.1111/2041-210x.12932] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Eacker DR, Lukacs PM, Proffitt KM, Hebblewhite M. Assessing the importance of demographic parameters for population dynamics using Bayesian integrated population modeling. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2017; 27:1280-1293. [PMID: 28188660 DOI: 10.1002/eap.1521] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/11/2017] [Indexed: 06/06/2023]
Abstract
To successfully respond to changing habitat, climate or harvest, managers need to identify the most effective strategies to reverse population trends of declining species and/or manage harvest of game species. A classic approach in conservation biology for the last two decades has been the use of matrix population models to determine the most important vital rates affecting population growth rate (λ), that is, sensitivity. Ecologists quickly realized the critical role of environmental variability in vital rates affecting λ by developing approaches such as life-stage simulation analysis (LSA) that account for both sensitivity and variability of a vital rate. These LSA methods used matrix-population modeling and Monte Carlo simulation methods, but faced challenges in integrating data from different sources, disentangling process and sampling variation, and in their flexibility. Here, we developed a Bayesian integrated population model (IPM) for two populations of a large herbivore, elk (Cervus canadensis) in Montana, USA. We then extended the IPM to evaluate sensitivity in a Bayesian framework. We integrated known-fate survival data from radio-marked adults and juveniles, fecundity data, and population counts in a hierarchical population model that explicitly accounted for process and sampling variance. Next, we tested the prevailing paradigm in large herbivore population ecology that juvenile survival of neonates <90 d old drives λ using our Bayesian LSA approach. In contrast to the prevailing paradigm in large herbivore ecology, we found that adult female survival explained more of the variation in λ than elk calf survival, and that summer and winter elk calf survival periods were nearly equivalent in importance for λ. Our Bayesian IPM improved precision of our vital rate estimates and highlighted discrepancies between count and vital rate data that could refine population monitoring, demonstrating that combining sensitivity analysis with population modeling in a Bayesian framework can provide multiple advantages. Our Bayesian LSA framework will provide a useful approach to addressing conservation challenges across a variety of species and data types.
Collapse
Affiliation(s)
- Daniel R Eacker
- Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, W. A. Franke College of Forestry and Conservation, University of Montana, Missoula, Montana, 59812, USA
| | - Paul M Lukacs
- Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, W. A. Franke College of Forestry and Conservation, University of Montana, Missoula, Montana, 59812, USA
| | - Kelly M Proffitt
- Montana Department of Fish, Wildlife and Parks, 1400 South 19th Street, Bozeman, Montana, 59718, USA
| | - Mark Hebblewhite
- Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, W. A. Franke College of Forestry and Conservation, University of Montana, Missoula, Montana, 59812, USA
| |
Collapse
|
42
|
Plăiaşu R, Ozgul A, Schmidt BR, Băncilă RI. Estimation of apparent survival probability of the harvestman Paranemastoma sillii sillii (Herman, 1871) from two caves. ANIM BIOL 2017. [DOI: 10.1163/15707563-00002529] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Reliable estimates of population parameters are lacking for most cave-dwelling species. This lack of knowledge may hinder the appropriate management of caves and populations of cave-dwelling species. Using monthly capture-recapture data and Cormack-Jolly-Seber models, we (i) estimated the apparent survival of individuals in two cave populations of the harvestman Paranemastoma sillii sillii (Herman, 1871) from the Mehedinti Mountains in south-western Romania; (ii) investigated temporal variation in apparent survival; (iii) tested if surface weather conditions affect apparent survival of cave-dwelling harvestmen through their influence upon cave environmental conditions and (iv) tested for sex differences in apparent survival. Our results show that the apparent monthly survival estimates were high for both studied cave populations and there was a significant sex effect on survival. Males had lower survival than females, and the survival difference between caves was larger in males than in females. Temporal (i.e., monthly) variation in apparent survival was low and the weather conditions at the surface had little influence on apparent survival as the environment inside the caves is well buffered against weather fluctuations outside the caves. Our results indicate that caves stabilize survival of facultative cave-dwelling species and may serve as microrefugia for epigean species. We suggest that caves should be considered for conservation because they may serve as a refuge for some epigean species during harsh weather conditions.
Collapse
Affiliation(s)
- Rodica Plăiaşu
- “Emil Racoviţă” Institute of Speleology of Romanian Academy, 13 Septembrie Road, No. 13, 050711 Bucharest, Romania
| | - Arpat Ozgul
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Benedikt R. Schmidt
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
- KARCH, Passage Maximilien-de-Meuron 6, CH-2000 Neuchâtel, Switzerland
| | - Raluca I. Băncilă
- “Emil Racoviţă” Institute of Speleology of Romanian Academy, 13 Septembrie Road, No. 13, 050711 Bucharest, Romania
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
- University Ovidius Constanţa, Faculty of Natural Sciences, Al. Universităţii, Corp B, Constanţa, Romania
| |
Collapse
|
43
|
Nobert B, Milligan S, Stenhouse G, Finnegan L. Seeking sanctuary: the neonatal calving period among central mountain woodland caribou (Rangifer tarandus caribou). CAN J ZOOL 2016. [DOI: 10.1139/cjz-2015-0262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Woodland caribou (Rangifer tarandus caribou (Gmelin, 1788)) populations have declined throughout their range. With the goal of better understanding habitat selection and fidelity during the neonatal calving period (0–4 weeks), we applied a noninvasive method that estimates calving events and subsequent survival based on changes in movement rates among GPS-collared female caribou. We examined a long-term GPS-collar data set (1998–2014) collected from 81 adult female caribou in two central mountain herds in Alberta and British Columbia, Canada. Although we were unable to validate our results with aerial surveys and pregnancy tests, our estimates of parturition rates, survival rates, calving dates, and habitat selection were consistent with previous studies. We identified 83 calving sites. Female caribou selected calving sites and postparturition habitat on high-elevation ridgetops with gradual slopes and avoided anthropogenic linear features. Female caribou displayed low fidelity to interannual calving ranges with a mean distance of 8.7 km between calving ranges. Fidelity was lower in areas with high seismic-line density. Conservation of high-elevation habitat with limited anthropogenic disturbance is likely to provide the greatest benefit to central mountain caribou during the neonatal calving period, and represents a potential management strategy for population recovery efforts.
Collapse
Affiliation(s)
- B.R. Nobert
- Caribou Program, fRI Research, 1176 Switzer Drive, Hinton, AB T7V 1V3, Canada
| | - S. Milligan
- Caribou and Grizzly Bear Programs, fRI Research, 1176 Switzer Drive, Hinton, AB T7V 1V3, Canada
| | - G.B. Stenhouse
- Grizzly Bear Program, fRI Research, 1176 Switzer Drive, Hinton, AB T7V 1V3, Canada
| | - L. Finnegan
- Caribou Program, fRI Research, 1176 Switzer Drive, Hinton, AB T7V 1V3, Canada
| |
Collapse
|
44
|
Lee DE, Bond ML, Kissui BM, Kiwango YA, Bolger DT. Spatial variation in giraffe demography: a test of 2 paradigms. J Mammal 2016. [DOI: 10.1093/jmammal/gyw086] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Examination of spatial variation in demography among or within populations of the same species is a topic of growing interest in ecology. We examined whether spatial variation in demography of a tropical megaherbivore followed the “temporal paradigm” or the “adult survival paradigm” of ungulate population dynamics formulated from temperate-zone studies. We quantified spatial variation in demographic rates for giraffes (Giraffa camelopardalis) at regional and continental scales. Regionally, we used photographic capture-mark-recapture data from 860 adult females and 449 calves to estimate adult female survival, calf survival, and reproduction at 5 sites in the Tarangire ecosystem of Tanzania. We examined potential mechanisms for spatial variation in regional demographic rates. At the continental scale, we synthesized demographic estimates from published studies across the range of the species. We created matrix population models for all sites at both scales and used prospective and retrospective analyses to determine which vital rate was most important to variation in population growth rate. Spatial variability of demographic parameters at the continental scale was in agreement with the temporal paradigm of low variability in adult survival and more highly variable reproduction and calf survival. In contrast, at the regional scale, adult female survival had higher spatial variation, in agreement with the adult survival paradigm. At both scales, variation in adult female survival made the greatest contribution to variation in local population growth rates. Our work documented contrasting patterns of spatial variation in demographic rates of giraffes at 2 spatial scales, but at both scales, we found the same vital rate was most important. We also found anthropogenic impacts on adult females are the most likely mechanism of regional population trajectories.
Collapse
|
45
|
Manlik O, McDonald JA, Mann J, Raudino HC, Bejder L, Krützen M, Connor RC, Heithaus MR, Lacy RC, Sherwin WB. The relative importance of reproduction and survival for the conservation of two dolphin populations. Ecol Evol 2016; 6:3496-3512. [PMID: 28725349 PMCID: PMC5513288 DOI: 10.1002/ece3.2130] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 03/19/2016] [Accepted: 03/21/2016] [Indexed: 11/23/2022] Open
Abstract
It has been proposed that in slow‐growing vertebrate populations survival generally has a greater influence on population growth than reproduction. Despite many studies cautioning against such generalizations for conservation, wildlife management for slow‐growing populations still often focuses on perturbing survival without careful evaluation as to whether those changes are likely or feasible. Here, we evaluate the relative importance of reproduction and survival for the conservation of two bottlenose dolphin (Tursiops cf aduncus) populations: a large, apparently stable population and a smaller one that is forecast to decline. We also assessed the feasibility and effectiveness of wildlife management objectives aimed at boosting either reproduction or survival. Consistent with other analytically based elasticity studies, survival had the greatest effect on population trajectories when altering vital rates by equal proportions. However, the findings of our alternative analytical approaches are in stark contrast to commonly used proportional sensitivity analyses and suggest that reproduction is considerably more important. We show that in the stable population reproductive output is higher, and adult survival is lower; the difference in viability between the two populations is due to the difference in reproduction; reproductive rates are variable, whereas survival rates are relatively constant over time; perturbations on the basis of observed, temporal variation indicate that population dynamics are much more influenced by reproduction than by adult survival; for the apparently declining population, raising reproductive rates would be an effective and feasible tool to reverse the forecast population decline; increasing survival would be ineffective.
Our findings highlight the importance of reproduction – even in slow‐growing populations – and the need to assess the effect of natural variation in vital rates on population viability. We echo others in cautioning against generalizations based on life‐history traits and recommend that population modeling for conservation should also take into account the magnitude of vital rate changes that could be attained under alternative management scenarios.
Collapse
Affiliation(s)
- Oliver Manlik
- Evolution and Ecology Research Centre School of Biological, Earth and Environmental Sciences University of New South Wales Sydney New South Wales 2052 Australia
| | - Jane A McDonald
- Evolution and Ecology Research Centre School of Biological, Earth and Environmental Sciences University of New South Wales Sydney New South Wales 2052 Australia.,Present address: School of Biological Sciences University of Queensland St Lucia Queensland 4067 Australia
| | - Janet Mann
- Evolution and Ecology Research Centre School of Biological, Earth and Environmental Sciences University of New South Wales Sydney New South Wales 2052 Australia.,Department of Biology and Psychology Georgetown University 37th and O St. NW Washington DC 20057
| | - Holly C Raudino
- Cetacean Research Unit School of Veterinary and Life Sciences Murdoch University South Street Murdoch Western Australia 6150 Australia.,Marine Science Program Department of Parks and Wildlife 17 Dick Perry Avenue. Perth Western Australia 6151 Australia
| | - Lars Bejder
- Cetacean Research Unit School of Veterinary and Life Sciences Murdoch University South Street Murdoch Western Australia 6150 Australia
| | - Michael Krützen
- Evolution and Ecology Research Centre School of Biological, Earth and Environmental Sciences University of New South Wales Sydney New South Wales 2052 Australia.,Anthropological Institute and Museum University of Zurich Winterthurerstrasse 1908057 Zurich Switzerland
| | - Richard C Connor
- Evolution and Ecology Research Centre School of Biological, Earth and Environmental Sciences University of New South Wales Sydney New South Wales 2052 Australia.,Biology Department UMASS-Dartmouth Dartmouth Massachusetts 02747
| | - Michael R Heithaus
- Department of Biological Science School of Environment Arts and Society Florida International University North Miami Florida 33181
| | - Robert C Lacy
- Chicago Zoological Society Brookfield Illinois 60513
| | - William B Sherwin
- Evolution and Ecology Research Centre School of Biological, Earth and Environmental Sciences University of New South Wales Sydney New South Wales 2052 Australia.,Cetacean Research Unit School of Veterinary and Life Sciences Murdoch University South Street Murdoch Western Australia 6150 Australia
| |
Collapse
|
46
|
Hansen EC, Scherer RD, White GC, Dickson BG, Fleishman E. Estimates of Survival Probability from Two Populations of Giant Gartersnakes in California’s Great Central Valley. COPEIA 2015. [DOI: 10.1643/ce-15-233] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
DeCesare NJ, Hebblewhite M, Lukacs PM, Hervieux D. Evaluating sources of censoring and truncation in telemetry-based survival data. J Wildl Manage 2015. [DOI: 10.1002/jwmg.991] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Mark Hebblewhite
- Wildlife Biology Program; Department of Ecosystem and Conservation Sciences; College of Forestry and Conservation, University of Montana, Missoula, MT 59812 USA
| | - Paul M. Lukacs
- Wildlife Biology Program; Department of Ecosystem and Conservation Sciences; College of Forestry and Conservation, University of Montana, Missoula, MT 59812 USA
| | - David Hervieux
- Operations Division (Fisheries and Wildlife); Alberta Environment and Sustainable Resource Development; Grande Prairie, AB, T8V 6J4 Canada
| |
Collapse
|
48
|
Hernández-Camacho CJ, Bakker VJ, Aurioles-Gamboa D, Laake J, Gerber LR. The Use of Surrogate Data in Demographic Population Viability Analysis: A Case Study of California Sea Lions. PLoS One 2015; 10:e0139158. [PMID: 26413746 PMCID: PMC4587556 DOI: 10.1371/journal.pone.0139158] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 09/08/2015] [Indexed: 11/18/2022] Open
Abstract
Reliable data necessary to parameterize population models are seldom available for imperiled species. As an alternative, data from populations of the same species or from ecologically similar species have been used to construct models. In this study, we evaluated the use of demographic data collected at one California sea lion colony (Los Islotes) to predict the population dynamics of the same species from two other colonies (San Jorge and Granito) in the Gulf of California, Mexico, for which demographic data are lacking. To do so, we developed a stochastic demographic age-structured matrix model and conducted a population viability analysis for each colony. For the Los Islotes colony we used site-specific pup, juvenile, and adult survival probabilities, as well as birth rates for older females. For the other colonies, we used site-specific pup and juvenile survival probabilities, but used surrogate data from Los Islotes for adult survival probabilities and birth rates. We assessed these models by comparing simulated retrospective population trajectories to observed population trends based on count data. The projected population trajectories approximated the observed trends when surrogate data were used for one colony but failed to match for a second colony. Our results indicate that species-specific and even region-specific surrogate data may lead to erroneous conservation decisions. These results highlight the importance of using population-specific demographic data in assessing extinction risk. When vital rates are not available and immediate management actions must be taken, in particular for imperiled species, we recommend the use of surrogate data only when the populations appear to have similar population trends.
Collapse
Affiliation(s)
| | - Victoria. J. Bakker
- Department of Ecology, Montana State University, Bozeman, Montana, United States of America
| | - David Aurioles-Gamboa
- Laboratorio de Ecología de Pinnípedos ‘‘Burney J. Le Boeuf”, Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional, La Paz, Baja California Sur, México
| | - Jeff Laake
- National Marine Mammal Laboratory, Alaska Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, Washington, United States of America
| | - Leah R. Gerber
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
49
|
Davis AJ, Phillips ML, Doherty PF. Nest Success of Gunnison Sage-Grouse in Colorado, USA. PLoS One 2015; 10:e0136310. [PMID: 26287996 PMCID: PMC4542206 DOI: 10.1371/journal.pone.0136310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 08/02/2015] [Indexed: 11/19/2022] Open
Abstract
Gunnison Sage-Grouse (Centrocercus minimus) is a species of concern for which little demographic information exists. To help fill this information gap, we investigated factors affecting nest success in two populations of Gunnison Sage-Grouse. We assessed the relative effects of (1) vegetation characteristics (e.g., shrub height, shrub cover, grass cover, and grass height), (2) temporal factors (e.g., year, timing of incubation initiation, and nest age), (3) precipitation, and (4) age of the nesting female (yearling or adult) on nest success rates. We found 177 nests in the Gunnison Basin population (that contains 85-90% of the species) from 2005-2010 and 20 nests in the San Miguel population (that contains < 10% of the species) from 2007-2010. Temporal factors had the greatest impact on nest success compared to vegetation characteristics, precipitation, and female age. Nest success varied considerably among years ranging from 4.0%-60.2% in Gunnison Basin and from 12.9%- 51.9% in San Miguel. Nests that were initiated earlier in the breeding season had higher nest success (at least one egg hatches). Daily nest survival rates decreased during the course of incubation. None of the vegetation characteristics we examined were strongly related to nest success.
Collapse
Affiliation(s)
- Amy J. Davis
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| | - Michael L. Phillips
- Colorado Parks and Wildlife, Fort Collins, Colorado, United States of America
| | - Paul F. Doherty
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
50
|
Unglaub B, Steinfartz S, Drechsler A, Schmidt BR. Linking habitat suitability to demography in a pond-breeding amphibian. Front Zool 2015; 12:9. [PMID: 25977702 PMCID: PMC4430901 DOI: 10.1186/s12983-015-0103-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/21/2015] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Elucidating the relationship between habitat characteristics and population parameters is critical for effective conservation. Habitat suitability index (HSI) models are often used in wildlife management and conservation practice assuming that they predict species occurrence, abundance and demography. However, the relationship between vital rates such as survival and reproduction and habitat suitability has rarely been evaluated. In this study, we used pond occupancy and mark-recapture data to test whether HSI predicts occupancy, reproduction and survival probabilities. Our model species is the great crested newt (Triturus cristatus), a pond-breeding amphibian protected under the European Habitats Directive. RESULTS Our results show a positive relationship between the HSI and reproduction probability, whereas pond occupancy and survival probabilities were not related to HSI. Mortality was found to be higher during breeding seasons when newts are in ponds than during terrestrial phases of adult newts. CONCLUSION Habitat suitability models are increasingly applied to wildlife management and conservation practice. We found that the HSI model predicted reproduction probability, rather than occurrence or survival. If HSI models indicate breeding populations rather than mere species occurrences, they may be used to identify habitats of higher priority for conservation. Future HSI models might be improved through modelling breeding populations vs. non-breeding populations rather than presence/absence data. However, according to our results the most suitable habitat is not necessarily the habitat where demographic performance is best. We recommend that conservation practitioners should use HSI models cautiously because there may be no direct link between habitat suitability, demography and consequently, population viability.
Collapse
Affiliation(s)
- Bianca Unglaub
- />Zoological Institute, Department of Evolutionary Biology, Unit Molecular Ecology, Technische Universität Braunschweig, Mendelssohnstraße 4, Braunschweig, 38106 Germany
- />Department of Animal Ecology and Conservation, Biocentre Grindel, University of Hamburg, Martin-Luther-King Platz 3, Hamburg, 20146 Germany
| | - Sebastian Steinfartz
- />Zoological Institute, Department of Evolutionary Biology, Unit Molecular Ecology, Technische Universität Braunschweig, Mendelssohnstraße 4, Braunschweig, 38106 Germany
| | - Axel Drechsler
- />Department of Animal Behaviour, Bielefeld University, Morgenbreede 45, Bielefeld, 33619 Germany
| | - Benedikt R Schmidt
- />Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, 8057 Switzerland
- />KARCH, Passage Maximilien-de-Meuron 6, Neuchâtel, 2000 Switzerland
| |
Collapse
|