1
|
Tyagi A, Choi YY, Shan L, Vinothkanna A, Lee ES, Chelliah R, Barathikannan K, Raman ST, Park SJ, Jia AQ, Choi GP, Oh DH. Limosilactobacillus reuteri fermented brown rice alleviates anxiety improves cognition and modulates gut microbiota in stressed mice. NPJ Sci Food 2025; 9:5. [PMID: 39799113 PMCID: PMC11724862 DOI: 10.1038/s41538-025-00369-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/01/2025] [Indexed: 01/15/2025] Open
Abstract
Chronic stress disrupts gut microbiota homeostasis, contributing to anxiety and depression. This study explored the effects of Limosilactobacillus reuteri fermented brown rice (FBR) on anxiety using an ICR mouse chronic mild stress (CMS) model. Anxiety was assessed through body weight, corticosterone levels, neurotransmitter profiles, and behavioral tests. A four-week FBR regimen reduced corticosterone, restored neurotransmitters like gamma-aminobutyric acid (GABA) and serotonin, and improved anxiety-related behaviors. Metagenomic (16S rRNA) and metabolomic analyses revealed enhanced amino acid metabolism, energy metabolism, and short-chain fatty acid (SCFA) production in FBR-treated mice. FBR-enriched beneficial gut bacteria, aligning the microbiota profile with that of non-stressed mice. FBR also modulated GABA receptor-related gene expression, promoting relaxation. Network pharmacology identified quercetin, GABA, glutamic acid, phenylalanine, and ferulic acid as bioactive compounds with neuroprotective potential. These findings highlight FBR's potential as a gut-brain axis-targeted therapeutic for anxiety and stress-related disorders.
Collapse
Affiliation(s)
- Akanksha Tyagi
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, Purdue, IN, USA
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Yu-Yeong Choi
- Department of Natural Resources and Environmental Science, Kangwon National University, Chuncheon, South Korea
| | - Lingyue Shan
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Annadurai Vinothkanna
- School of Chemistry and Chemical Engineering and Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, Haikou, China
| | - Eun-Seok Lee
- Department of Natural Resources and Environmental Science, Kangwon National University, Chuncheon, South Korea
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
- Saveetha School of Engineering, Saveetha University, Chennai, Tamil Nadu, India
| | | | - Sivakumar Thasma Raman
- School of Food and Biological Engineering, Jiangsu University, Jiangsu, Zhenjiang, PR China
| | - Se Jin Park
- Department of Natural Resources and Environmental Science, Kangwon National University, Chuncheon, South Korea
| | - Ai-Qun Jia
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Geun Pyo Choi
- Department of Barista and Bakery, Gangwon State University, Gangneung, South Korea
| | - Deog Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea.
| |
Collapse
|
2
|
Khattak F, Galgano S, Pedersen NR, Hui Y, Matthiesen R, Houdijk J. Supplementation of lactobacillus-fermented rapeseed meal in broiler diet reduces Campylobacter jejuni cecal colonization and limits the l-tryptophan and l-histidine biosynthesis pathways. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5474-5485. [PMID: 38391155 DOI: 10.1002/jsfa.13378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/04/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Campylobacter jejuni (C. jejuni), a widely distributed global foodborne pathogen, primarily linked with contaminated chicken meat, poses a significant health risk. Reducing the abundance of this pathogen in poultry meat is challenging but essential. This study assessed the impact of Lactobacillus-fermented rapeseed meal (LFRM) on broilers exposed to C. jejuni-contaminated litter, evaluating growth performance, Campylobacter levels, and metagenomic profile. RESULTS By day 35, the litter contamination successfully colonized broilers with Campylobacter spp., particularly C. jejuni. In the grower phase, LFRM improved (P < 0.05) body weight and daily weight gain, resulting in a 9.2% better feed conversion ratio during the pre-challenge period (the period before artificial infection; days 13-20). The LFRM also reduced the C. jejuni concentration in the ceca (P < 0.05), without altering alpha and beta diversity. However, metagenomic data analysis revealed LFRM targeted a reduction in the abundance of C. jejuni biosynthetic pathways of l-tryptophan and l-histidine and gene families associated with transcription and virulence factors while also possibly leading to selected stress-induced resistance mechanisms. CONCLUSION The study demonstrated that LFRM inclusion improved growth and decreased cecal Campylobacter spp. concentration and the relative abundance of pivotal C. jejuni genes. Performance benefits likely resulted from LFRM metabolites. At the molecular level, LFRM may have reduced C. jejuni colonization, likely by decreasing the abundance of energy transduction and l-histidine and l-tryptophan biosynthesis genes otherwise required for bacterial survival and increased virulence. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Farina Khattak
- Monogastric Science Research Centre, SRUC, Edinburgh, UK
| | | | | | - Yan Hui
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | | | - Jos Houdijk
- Monogastric Science Research Centre, SRUC, Edinburgh, UK
| |
Collapse
|
3
|
Liwinski T, Lang UE, Brühl AB, Schneider E. Exploring the Therapeutic Potential of Gamma-Aminobutyric Acid in Stress and Depressive Disorders through the Gut-Brain Axis. Biomedicines 2023; 11:3128. [PMID: 38137351 PMCID: PMC10741010 DOI: 10.3390/biomedicines11123128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Research conducted on individuals with depression reveals that major depressive disorders (MDDs) coincide with diminished levels of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) in the brain, as well as modifications in the subunit composition of the primary receptors (GABAA receptors) responsible for mediating GABAergic inhibition. Furthermore, there is substantial evidence supporting the significant role of GABA in regulating stress within the brain, which is a pivotal vulnerability factor in mood disorders. GABA is readily available and approved as a food supplement in many countries. Although there is substantial evidence indicating that orally ingested GABA may affect GABA receptors in peripheral tissues, there is comparatively less evidence supporting its direct action within the brain. Emerging evidence highlights that oral GABA intake may exert beneficial effects on the brain and psyche through the gut-brain axis. While GABA enjoys wide consumer acceptance in Eastern Asian markets, with many consumers reporting favorable effects on stress regulation, mood, and sleep, rigorous independent research is still largely lacking. Basic research, coupled with initial clinical findings, makes GABA an intriguing neuro-nutritional compound deserving of clinical studies in individuals with depression and other psychological problems.
Collapse
Affiliation(s)
| | | | | | - Else Schneider
- University Psychiatric Clinics Basel, Clinic for Adults, University of Basel, CH-4002 Basel, Switzerland; (T.L.); (U.E.L.); (A.B.B.)
| |
Collapse
|
4
|
Cabello-Olmo M, Krishnan PG, Araña M, Oneca M, Díaz JV, Barajas M, Rovai M. Development, Analysis, and Sensory Evaluation of Improved Bread Fortified with a Plant-Based Fermented Food Product. Foods 2023; 12:2817. [PMID: 37569086 PMCID: PMC10417715 DOI: 10.3390/foods12152817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/14/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
In response to the demand for healthier foods in the current market, this study aimed to develop a new bread product using a fermented food product (FFP), a plant-based product composed of soya flour, alfalfa meal, barley sprouts, and viable microorganisms that showed beneficial effects in previous studies. White bread products prepared with three different substitution levels (5, 10, and 15%) of FFP were evaluated for physical characteristics (loaf peak height, length, width), color indices (lightness, redness/greenness, yellowness/blueness), quality properties (loaf mass, volume, specific volume), protein content, crumb digital image analysis, and sensory characteristics. The results revealed that FFP significantly affected all studied parameters, and in most cases, there was a dose-response effect. FFP supplementation affected the nutritional profile and increased the protein content (p < 0.001). The sensory test indicated that consumer acceptance of the studied sensory attributes differed significantly between groups, and bread with high levels of FFP (10 and 15% FFP) was generally more poorly rated than the control (0%) and 5% FFP for most of the variables studied. Despite this, all groups received acceptable scores (overall liking score ≥ 5) from consumers. The sensory analysis concluded that there is a possible niche in the market for these improved versions of bread products.
Collapse
Affiliation(s)
- Miriam Cabello-Olmo
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
| | - Padmanaban G. Krishnan
- Dairy and Food Science Department, South Dakota State University, Brookings, SD 57007, USA
| | - Miriam Araña
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
| | - Maria Oneca
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
| | - Jesús V. Díaz
- Pentabiol S.L., Polígono Noain-Esquiroz s/n, 31191 Pamplona, Spain
| | - Miguel Barajas
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
| | - Maristela Rovai
- Dairy and Food Science Department, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
5
|
Li K, Burton-Pimentel KJ, Brouwer-Brolsma EM, Blaser C, Badertscher R, Pimentel G, Portmann R, Feskens EJM, Vergères G. Identifying Plasma and Urinary Biomarkers of Fermented Food Intake and Their Associations with Cardiometabolic Health in a Dutch Observational Cohort. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4426-4439. [PMID: 36853956 PMCID: PMC10021015 DOI: 10.1021/acs.jafc.2c05669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Identification of food intake biomarkers (FIBs) for fermented foods could help improve their dietary assessment and clarify their associations with cardiometabolic health. We aimed to identify novel FIBs for fermented foods in the plasma and urine metabolomes of 246 free-living Dutch adults using nontargeted LC-MS and GC-MS. Furthermore, associations between identified metabolites and several cardiometabolic risk factors were explored. In total, 37 metabolites were identified corresponding to the intakes of coffee, wine, and beer (none were identified for cocoa, bread, cheese, or yoghurt intake). While some of these metabolites appeared to originate from raw food (e.g., niacin and trigonelline for coffee), others overlapped different fermented foods (e.g., 4-hydroxybenzeneacetic acid for both wine and beer). In addition, several fermentation-dependent metabolites were identified (erythritol and citramalate). Associations between these identified metabolites with cardiometabolic parameters were weak and inconclusive. Further evaluation is warranted to confirm their relationships with cardiometabolic disease risk.
Collapse
Affiliation(s)
- Katherine
J. Li
- Division
of Human Nutrition and Health, Department of Agrotechnology and Food
Science, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
- Agroscope, Schwarzenburgstrasse 161, CH-3003 Bern, Switzerland
| | | | - Elske M. Brouwer-Brolsma
- Division
of Human Nutrition and Health, Department of Agrotechnology and Food
Science, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Carola Blaser
- Agroscope, Schwarzenburgstrasse 161, CH-3003 Bern, Switzerland
| | | | | | - Reto Portmann
- Agroscope, Schwarzenburgstrasse 161, CH-3003 Bern, Switzerland
| | - Edith J. M. Feskens
- Division
of Human Nutrition and Health, Department of Agrotechnology and Food
Science, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Guy Vergères
- Agroscope, Schwarzenburgstrasse 161, CH-3003 Bern, Switzerland
| |
Collapse
|
6
|
Zengin M, Sur A, İlhan Z, Azman MA, Tavşanlı H, Esen S, Bacaksız OK, Demir E. Effects of fermented distillers grains with solubles, partially replaced with soybean meal, on performance, blood parameters, meat quality, intestinal flora, and immune response in broiler. Res Vet Sci 2022; 150:58-64. [PMID: 35803008 DOI: 10.1016/j.rvsc.2022.06.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 10/17/2022]
Abstract
This study set out to examine the effects of fermented distillers grains with solubles (DDGS) partially replaced with soybean meal on growth performance, some blood parameters, meat quality, intestinal microflora, and immune response in broilers. A total of 504 chicks were randomly allocated into 6 groups with 3 replicates. All chicks were fed with one of the following formulated diets i) basal diet based on the maize-soybean meal (C), ii) partially replaced with non-fermented DDGS (NC), iii) partially replaced fermented DDGS with B. subtilis (BS), iv) partially replaced with BS + multienzyme (BSE), v) partially replaced fermented DDGS with S. cerevisiae (SC), vi) partially replaced with SC + multienzyme (SCE). Results showed no significant difference between groups for body weight, daily weight gain (DWG), and feed intake (FI) (P > 0.05). However, feed conversion ratios (FCR) of BS, BSE, and SCE groups were significantly lower than the C and NC groups (P < 0.001). Albumin, total protein, alanine aminotransferase (P < 0.01), Total antioxidant status, aspartate aminotransferase, high-density lipoprotein, low-density lipoprotein, and uric acid (P < 0.05) were significantly affected by treatments. The meat color of the SC and SCE groups was darker after 24 h compared to the C group (P < 0.01). The highest LAB counts of ileal and cecum were observed in the BSE and SCE groups (P < 0.001). These results suggest that partial replacement of soybean meal with fermented DDGS had a positive effect on FCR without affecting DWG and FI, and combining fermented DDGS with multienzymes decreased FCR and improved immune and gut health status.
Collapse
Affiliation(s)
- Muhittin Zengin
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Balıkesir University, Balıkesir, Turkey.
| | - Aslıhan Sur
- Department of Veterinary, Vocational School of Kepsut, Balıkesir University, Balıkesir, Turkey
| | - Ziya İlhan
- Department of Microbiology, Faculty of Veterinary Medicine, Balıkesir University, Balıkesir, Turkey
| | - Mehmet Ali Azman
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Balıkesir University, Balıkesir, Turkey
| | - Hakan Tavşanlı
- Department of Food Hygiene, Faculty of Veterinary Medicine, Balıkesir University, Balıkesir, Turkey
| | - Selim Esen
- Balikesir Directorate of Provincial Agriculture and Forestry, Republic of Turkey Ministry of Agriculture and Forestry, Balikesir, Turkey
| | - Oğuz Koray Bacaksız
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Balıkesir University, Balıkesir, Turkey
| | - Ergün Demir
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Balıkesir University, Balıkesir, Turkey
| |
Collapse
|
7
|
Saeed F, Afzaal M, Shah YA, Khan MH, Hussain M, Ikram A, Ateeq H, Noman M, Saewan SA, Khashroum AO. Miso: A traditional nutritious & health-endorsing fermented product. Food Sci Nutr 2022; 10:4103-4111. [PMID: 36514754 PMCID: PMC9731531 DOI: 10.1002/fsn3.3029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 12/16/2022] Open
Abstract
Consumer demand for fermented foods with a well-balanced nutrient profile has been increasing owing to their ability to prevent chronic diseases as well as their functional, nutritional, and nutraceutical benefits. Among those functional foods, miso is a well-known traditional fermented food with a distinctive savory flavor and aroma that is most commonly used as a seasoning in miso soup. Among different fermented products, miso is derived from soybeans and grains as a result of the activities of Koji enzymes and beneficial microbes. Additionally, the microbial community of miso is thought to be crucial in enhancing its distinct flavor and texture as well as its nutritional properties. Despite the importance of microorganisms in the production of miso, there has been relatively little research done to characterize and describe the nutritional and medicinal potential of miso. In this review, the potential therapeutic properties, i.e., anticancer, antimicrobial, and antiobesity, of miso have been discussed comprehensively. This review envisions the production technology, its history, microbial population, nutritional properties, and the potential health benefits of miso associated with its consumption.
Collapse
Affiliation(s)
- Farhan Saeed
- Department of Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Muhammad Afzaal
- Department of Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Yasir Abbas Shah
- Department of Food SciencesGovernment College UniversityFaisalabadPakistan
| | | | - Muzzamal Hussain
- Department of Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Ali Ikram
- University Institute of Food Science and Technology, The University of LahoreLahorePakistan
| | - Huda Ateeq
- Department of Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Muhammad Noman
- Department of Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Shamaail A. Saewan
- Department of Food SciencesCollege of Agriculture, University of BasrahBasrahIraq
| | - Ashraf O. Khashroum
- Department of Plant Production and Protection, Faculty of AgricultureJerash UniversityJerashJordan
| |
Collapse
|
8
|
Qin H, Wu H, Shen K, Liu Y, Li M, Wang H, Qiao Z, Mu Z. Fermented Minor Grain Foods: Classification, Functional Components, and Probiotic Potential. Foods 2022; 11:3155. [PMID: 37430904 PMCID: PMC9601907 DOI: 10.3390/foods11203155] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 08/05/2023] Open
Abstract
Fermented minor grain (MG) foods often have unique nutritional value and functional characteristics, which are important for developing dietary culture worldwide. As a kind of special raw material in fermented food, minor grains have special functional components, such as trace elements, dietary fiber, and polyphenols. Fermented MG foods have excellent nutrients, phytochemicals, and bioactive compounds and are consumed as a rich source of probiotic microbes. Thus, the purpose of this review is to introduce the latest progress in research related to the fermentation products of MGs. Specific discussion is focused on the classification of fermented MG foods and their nutritional and health implications, including studies of microbial diversity, functional components, and probiotic potential. Furthermore, this review discusses how mixed fermentation of grain mixtures is a better method for developing new functional foods to increase the nutritional value of meals based on cereals and legumes in terms of dietary protein and micronutrients.
Collapse
Affiliation(s)
- Huibin Qin
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| | - Houbin Wu
- Shennong Technology Group Co., Ltd., Jinzhong 030801, China
| | - Ke Shen
- Shennong Technology Group Co., Ltd., Jinzhong 030801, China
| | - Yilin Liu
- Shennong Technology Group Co., Ltd., Jinzhong 030801, China
| | - Meng Li
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| | - Haigang Wang
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| | - Zhijun Qiao
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| | - Zhixin Mu
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| |
Collapse
|
9
|
Li KJ, Burton-Pimentel KJ, Vergères G, Feskens EJM, Brouwer-Brolsma EM. Fermented foods and cardiometabolic health: Definitions, current evidence, and future perspectives. Front Nutr 2022; 9:976020. [PMID: 36204374 PMCID: PMC9530890 DOI: 10.3389/fnut.2022.976020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022] Open
Abstract
Unhealthy diets contribute to the increasing burden of non-communicable diseases. Annually, over 11 million deaths worldwide are attributed to dietary risk factors, with the vast majority of deaths resulting from cardiometabolic diseases (CMDs) including cardiovascular disease (∼10 million) and type II diabetes (∼339,000). As such, defining diets and dietary patterns that mitigate CMD risk is of great public health importance. Recently, the consumption of fermented foods has emerged as an important dietary strategy for improving cardiometabolic health. Fermented foods have been present in the human diet for over 10,000 years, but knowledge on whether their consumption benefits human health, and the molecular and microbiological mechanisms underpinning their purported health benefits, is relatively nascent. This review provides an overview of the definitions of fermented foods, types and qualities of fermented foods consumed in Europe and globally, possible mechanisms between the consumption of fermented foods and cardiometabolic health, as well as the current state of the epidemiological evidence on fermented food intake and cardiometabolic health. Finally, we outline future perspectives and opportunities for improving the role of fermented foods in human diets.
Collapse
Affiliation(s)
- Katherine J. Li
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, Netherlands
- Agroscope, Bern, Switzerland
| | | | | | - Edith J. M. Feskens
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, Netherlands
| | - Elske M. Brouwer-Brolsma
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
10
|
Yang S, Fan W, Xu Y. Melanoidins present in traditional fermented foods and beverages. Compr Rev Food Sci Food Saf 2022; 21:4164-4188. [PMID: 36018462 DOI: 10.1111/1541-4337.13022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/28/2022] [Accepted: 07/21/2022] [Indexed: 01/28/2023]
Abstract
Traditional fermented foods and beverages (TFFB) are an important dietary component consumed in large quantities worldwide. Currently, much attention has been focused on the health benefits of TFFB. Melanoidins, a class of bioactive substance produced in the final stage of the Maillard reaction, not only have a significant impact on sensory properties of TFFB but also contribute to the health effects. Melanoidins formed in the fermentation system with a long reaction time at low temperature could be different from those obtained from high-temperature, short-duration roasted systems due to the multiple formative stages and involvement of microorganisms and enzymes. In this paper, the current state of knowledge regarding the formation, distribution, extraction and purification, physicochemical properties, structure characteristics, and biological activities of TFFB melanoidins are comprehensively reviewed, with predominant focus on TFFB that are typically brown like douchi, miso, cheonggukjang, soy sauce, huangjiu (Chinese rice wine), beer, vinegar, and sweet wine. The current challenges and prospective recommendations for the research of melanoidins in fermented systems are also presented. In future, people should pay more attention to the basic research on TFFB melanoidins, especially purification methods and formation mechanisms, further substantiation of health properties of TFFB melanoidins in vivo, and development of specific melanoidins to fulfill technological, productive, or health needs of consumers.
Collapse
Affiliation(s)
- Shiqi Yang
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu Province, China
| | - Wenlai Fan
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu Province, China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu Province, China
| |
Collapse
|
11
|
Zhang J, Liu M, Zhao Y, Zhu Y, Bai J, Fan S, Zhu L, Song C, Xiao X. Recent Developments in Fermented Cereals on Nutritional Constituents and Potential Health Benefits. Foods 2022; 11:2243. [PMID: 35954011 PMCID: PMC9368413 DOI: 10.3390/foods11152243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 12/16/2022] Open
Abstract
Fermentation is one of the most economical and safe methods to improve the nutritional value, sensory quality and functional characteristics of raw materials, and it is also an important method for cereal processing. This paper reviews the effects of microbial fermentation on cereals, focusing on their nutritional value and health benefits, including the effects of fermentation on the protein, starch, phenolic compounds contents, and other nutrient components of cereals. The bioactive compounds produced by fermented cereals have positive effects on health regulation. Finally, the future market development of fermented cereal products is summarized and prospected.
Collapse
Affiliation(s)
- Jiayan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (M.L.); (Y.Z.); (Y.Z.); (J.B.); (S.F.); (L.Z.); (C.S.)
- Inspection Quarantine Bureau Inspection and Quarantine Technology Center, Zhenjiang 212000, China
| | - Mengting Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (M.L.); (Y.Z.); (Y.Z.); (J.B.); (S.F.); (L.Z.); (C.S.)
| | - Yansheng Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (M.L.); (Y.Z.); (Y.Z.); (J.B.); (S.F.); (L.Z.); (C.S.)
| | - Ying Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (M.L.); (Y.Z.); (Y.Z.); (J.B.); (S.F.); (L.Z.); (C.S.)
| | - Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (M.L.); (Y.Z.); (Y.Z.); (J.B.); (S.F.); (L.Z.); (C.S.)
| | - Songtao Fan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (M.L.); (Y.Z.); (Y.Z.); (J.B.); (S.F.); (L.Z.); (C.S.)
| | - Lin Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (M.L.); (Y.Z.); (Y.Z.); (J.B.); (S.F.); (L.Z.); (C.S.)
| | - Ci Song
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (M.L.); (Y.Z.); (Y.Z.); (J.B.); (S.F.); (L.Z.); (C.S.)
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (M.L.); (Y.Z.); (Y.Z.); (J.B.); (S.F.); (L.Z.); (C.S.)
| |
Collapse
|
12
|
Guerra LS, Cevallos-Cevallos JM, Weckx S, Ruales J. Traditional Fermented Foods from Ecuador: A Review with a Focus on Microbial Diversity. Foods 2022; 11:foods11131854. [PMID: 35804670 PMCID: PMC9265738 DOI: 10.3390/foods11131854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 11/23/2022] Open
Abstract
The development of early civilizations was greatly associated with populations’ ability to exploit natural resources. The development of methods for food preservation was one of the pillars for the economy of early societies. In Ecuador, food fermentation significantly contributed to social advances and fermented foods were considered exclusive to the elite or for religious ceremonies. With the advancement of the scientific research on bioprocesses, together with the implementation of novel sequencing tools for the accurate identification of microorganisms, potential health benefits and the formation of flavor and aroma compounds in fermented foods are progressively being described. This review focuses on describing traditional fermented foods from Ecuador, including cacao and coffee as well as less popular fermented foods. It is important to provide new knowledge associated with nutritional and health benefits of the traditional fermented foods.
Collapse
Affiliation(s)
- Luis Santiago Guerra
- Department of Food Science and Biotechnology, Escuela Politécnica Nacional, P.O. Box 17-01-2759, Quito 170517, Ecuador;
| | - Juan Manuel Cevallos-Cevallos
- Centro de Investigaciones Biotecnologicas del Ecuador (CIBE), Campus Gustavo Galindo, Escuela Superior Politécnica del Litoral (ESPOL), Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil 090112, Ecuador;
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium;
| | - Jenny Ruales
- Department of Food Science and Biotechnology, Escuela Politécnica Nacional, P.O. Box 17-01-2759, Quito 170517, Ecuador;
- Correspondence:
| |
Collapse
|
13
|
Lipoteichoic Acid from Lacticaseibacillus rhamnosus GG Modulates Dendritic Cells and T Cells in the Gut. Nutrients 2022; 14:nu14030723. [PMID: 35277082 PMCID: PMC8839024 DOI: 10.3390/nu14030723] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 02/04/2023] Open
Abstract
Lipoteichoic acid (LTA) from Gram-positive bacteria exerts different immune effects depending on the bacterial source from which it is isolated. Lacticaseibacillus rhamnosus GG LTA (LGG-LTA) oral administration reduces UVB-induced immunosuppression and skin tumor development in mice. In the present work, we evaluate the immunomodulatory effect exerted by LGG-LTA in dendritic cells (DC) and T cells, both in vitro and in the gut-associated lymphoid tissue (GALT). During cell culture, LTA-stimulated BMDC increased CD86 and MHC-II expression and secreted low levels of pro and anti-inflammatory cytokines. Moreover, LTA-treated BMDC increased T cell priming capacity, promoting the secretion of IL-17A. On the other hand, in orally LTA-treated mice, a decrease in mature DC (lamina propria and Peyer’s patches) was observed. Concomitantly, an increase in IL-12p35 and IFN-γ transcription was presented (lamina propria and Peyer’s Patches). Finally, an increase in the number of CD103+ DC was observed in Peyer’s patches. Together, our data demonstrate that LGG-LTA activates DC and T cells. Moreover, we show that a Th1-biased immune response is triggered in vivo after oral LTA administration. These effects justify the oral LTA activity previously observed.
Collapse
|
14
|
Wu Y, Ye Z, Feng P, Li R, Chen X, Tian X, Han R, Kakade A, Liu P, Li X. Limosilactobacillus fermentum JL-3 isolated from "Jiangshui" ameliorates hyperuricemia by degrading uric acid. Gut Microbes 2022; 13:1-18. [PMID: 33764849 PMCID: PMC8007157 DOI: 10.1080/19490976.2021.1897211] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Recent studies into the beneficial effects of fermented foods have shown that this class of foods are effective in managing hyperuricemia and gout. In this study, the uric acid (UA) degradation ability of Limosilactobacillus fermentum JL-3 strain, isolated from "Jiangshui" (a fermented Chinese food), was investigated. In vitro results showed that JL-3 strain exhibited high degradation capacity and selectivity toward UA. After oral administration to mice for 15 days, JL-3 colonization was continuously detected in the feces of mice. The UA level in urine of mice fed with JL-3 was similar with the control group mice. And the serum UA level of the former was significantly lower (31.3%) than in the control, further confirmed the UA-lowering effect of JL-3 strain. Limosilactobacillus fermentum JL-3 strain also restored some of the inflammatory markers and oxidative stress indicators (IL-1β, MDA, CRE, blood urea nitrogen) related to hyperuricemia, while the gut microbial diversity results showed that JL-3 could regulate gut microbiota dysbiosis caused by hyperuricemia. Therefore, the probiotic Limosilactobacillus fermentum JL-3 strain is effective in lowering UA levels in mice and could be used as a therapeutic adjunct agent in treating hyperuricemia.
Collapse
Affiliation(s)
- Ying Wu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China,Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Ze Ye
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Pengya Feng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Rong Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China,Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Xiao Chen
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Xiaozhu Tian
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China,Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Rong Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Apurva Kakade
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China,CONTACT Xiangkai Li Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Xiangkai Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China,Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| |
Collapse
|
15
|
Abstract
Several products consist of probiotics that are available in markets, and their potential uses are growing day by day, mainly because some strains of probiotics promote the health of gut microbiota, especially Furmicutes and Bacteroidetes, and may prevent certain gastrointestinal tract (GIT) problems. Some common diseases are inversely linked with the consumption of probiotics, i.e., obesity, type 2 diabetes, autism, osteoporosis, and some immunological disorders, for which the disease progression gets delayed. In addition to disease mitigating properties, these microbes also improve oral, nutritional, and intestinal health, followed by a robust defensive mechanism against particular gut pathogens, specifically by antimicrobial substances and peptides producing probiotics (AMPs). All these positive attributes of probiotics depend upon the type of microbial strains dispensed. Lactic acid bacteria (LAB) and Bifidobacteria are the most common microbes used, but many other microbes are available, and their use depends upon origin and health-promoting properties. This review article focuses on the most common probiotics, their health benefits, and the alleviating mechanisms against chronic kidney diseases (CKD), type 1 diabetes (T1D), type 2 diabetes (T2D), gestational diabetes mellitus (GDM), and obesity.
Collapse
|
16
|
Mannaa M, Han G, Seo YS, Park I. Evolution of Food Fermentation Processes and the Use of Multi-Omics in Deciphering the Roles of the Microbiota. Foods 2021; 10:2861. [PMID: 34829140 PMCID: PMC8618017 DOI: 10.3390/foods10112861] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 12/22/2022] Open
Abstract
Food fermentation has been practised since ancient times to improve sensory properties and food preservation. This review discusses the process of fermentation, which has undergone remarkable improvement over the years, from relying on natural microbes and spontaneous fermentation to back-slopping and the use of starter cultures. Modern biotechnological approaches, including genome editing using CRISPR/Cas9, have been investigated and hold promise for improving the fermentation process. The invention of next-generation sequencing techniques and the rise of meta-omics tools have advanced our knowledge on the characterisation of microbiomes involved in food fermentation and their functional roles. The contribution and potential advantages of meta-omics technologies in understanding the process of fermentation and examples of recent studies utilising multi-omics approaches for studying food-fermentation microbiomes are reviewed. Recent technological advances in studying food fermentation have provided insights into the ancient wisdom in the practice of food fermentation, such as the choice of substrates and fermentation conditions leading to desirable properties. This review aims to stimulate research on the process of fermentation and the associated microbiomes to produce fermented food efficiently and sustainably. Prospects and the usefulness of recent advances in molecular tools and integrated multi-omics approaches are highlighted.
Collapse
Affiliation(s)
- Mohamed Mannaa
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (M.M.); (G.H.)
- Department of Plant Pathology, Cairo University, Giza 12613, Egypt
| | - Gil Han
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (M.M.); (G.H.)
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (M.M.); (G.H.)
| | - Inmyoung Park
- School of Culinary Arts, Youngsan University, Busan 48015, Korea
| |
Collapse
|
17
|
Akpinar A, Yerlikaya O. Some potential beneficial properties of
Lacticaseibacillus paracasei
subsp.
paracasei
and
Leuconostoc mesenteroides
strains originating from raw milk and kefir grains. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Asli Akpinar
- Faculty of Engineering Department of Food Engineering Manisa Celal Bayar University Manisa Turkey
| | - Oktay Yerlikaya
- Faculty of Agriculture Department of Dairy Technology Ege University Izmir Turkey
| |
Collapse
|
18
|
Rahman MS, Rana MS, Hosen MB, Habib MA, Nur A, Kaly MK, Matin MN, Nasirujjaman K, Rahman MM. Isolation and characterization of bacteria from fermented cooked-rice. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00753-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Garrido-Galand S, Asensio-Grau A, Calvo-Lerma J, Heredia A, Andrés A. The potential of fermentation on nutritional and technological improvement of cereal and legume flours: A review. Food Res Int 2021; 145:110398. [PMID: 34112401 DOI: 10.1016/j.foodres.2021.110398] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/16/2021] [Accepted: 05/06/2021] [Indexed: 12/18/2022]
Abstract
Nowadays there is an increasing demand for vegetable protein sources as an alternative to that of animal origin, not only for its greater environmental sustainability but also for its relationship with lower risk of suffering cardiovascular diseases. Legumes, cereals and seeds are seen as a good proteinaceous source providing as well dietetic fiber and phytochemicals with antioxidant properties. However, their digestibility and bioavailability are limited by the presence of anti-nutritional factors (ANFs) but susceptible of being improved by soaking, cooking or fermentation. The objective of this work is to review the solid-state and submerged fermentation effect on nutritional and functional properties of legumes, cereals and seeds. The microorganisms involved (bacteria, fungus and yeasts) are able to produce enzymes that degrade ANFs giving rise to more digestible flours with a more interesting nutritional, sensorial and technological profile. Solid-state fermentation is more commonly used for its higher efficiency, accepting agro-industrial residues as substrates and its lower volume of effluents. Fermented legumes had their technological properties enhanced while an increment in antioxidant properties was characteristic of cereals. The present review highlights fermentation of cereals and legumes mainly as a key process that at industrial scale could generate new products with enhanced nutritional and technological properties.
Collapse
Affiliation(s)
- S Garrido-Galand
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo (IU-IAD), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - A Asensio-Grau
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo (IU-IAD), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - J Calvo-Lerma
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo (IU-IAD), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - A Heredia
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo (IU-IAD), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| | - A Andrés
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo (IU-IAD), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
20
|
Zhou M, Bu T, Zheng J, Liu L, Yu S, Li S, Wu J. Peptides in Brewed Wines: Formation, Structure, and Function. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2647-2657. [PMID: 33621074 DOI: 10.1021/acs.jafc.1c00452] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The traditional low-alcoholic beverages, such as grape wine, sake, and rice wine, have been consumed all over the world for thousands of years, each with their unique methods of production that have been practiced for centuries. Moderate consumption of wine is generally touted as beneficial for health, although there is ongoing debate for the responsible components in wine. In this review, the structural and functional characteristics, the formation mechanisms, and their health-promoting activities of peptides in three brewed wines, grape wine, Chinese rice wine (also called Chinese Huangjiu or Chinese yellow wine), and Japanese sake, are discussed. The formation of peptides in wine imparts sensorial, technological, and biological attributes. Prospects on future research, with an emphasis on the peptide characterization, formation mechanism, physiological activity, and molecular mechanisms of action, are presented.
Collapse
Affiliation(s)
- Mengjie Zhou
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Tingting Bu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Jiexia Zheng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Ling Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Songfeng Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Shanshan Li
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 410 Agriculture/Forestry Centre, Edmonton, Alberta T6G 2P5, Canada
| |
Collapse
|
21
|
Liang Y, Liu C, Yan S, Wang P, Wu B, Jiang C, Li X, Liu Y, Li X. A novel polysaccharide from plant fermentation extracts and its immunomodulatory activity in macrophage RAW264.7 cells. FOOD AGR IMMUNOL 2021. [DOI: 10.1080/09540105.2021.1874884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Yan Liang
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, People’s Republic of China
| | - Chunhua Liu
- Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen, People’s Republic of China
| | - Shuxia Yan
- Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen, People’s Republic of China
| | - Pu Wang
- Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen, People’s Republic of China
| | - Binbin Wu
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
- Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen, People’s Republic of China
| | - Chengzi Jiang
- Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen, People’s Republic of China
| | - Xiaoqing Li
- Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen, People’s Republic of China
| | - Yanwen Liu
- Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen, People’s Republic of China
| | - Xiang Li
- Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen, People’s Republic of China
| |
Collapse
|
22
|
Li KJ, Brouwer-Brolsma EM, Burton KJ, Vergères G, Feskens EJM. Prevalence of fermented foods in the Dutch adult diet and validation of a food frequency questionnaire for estimating their intake in the NQplus cohort. BMC Nutr 2020; 6:69. [PMID: 33292738 PMCID: PMC7712622 DOI: 10.1186/s40795-020-00394-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/29/2020] [Indexed: 01/10/2023] Open
Abstract
Background Humans have a long history of consuming fermented foods. However, their prevalence in human diets remains largely undetermined, and there is a lack of validated dietary assessment tools assessing the intake of different fermented products. This study aimed to identify fermented foods consumed in The Netherlands and determine the relative validity of a food frequency questionnaire (FFQ) compared to multiple 24-h recalls for estimating their intake. Methods The validation population consisted of 809 participants (53.1 ± 11.9 years) from a Dutch observational cohort (NQplus) who completed a FFQ and multiple 24-h recalls. Fermented foods from the FFQ and recalls were identified and aggregated into conventional food groups. Percent difference in mean intakes, quintile cross-classification, Spearman’s correlations, and Bland-Altman analyses were used to evaluate the agreement between the two dietary assessment methods. Results Approximately 16–18% of foods consumed by this population were fermented, and a further 9–14% were dishes containing a fermented ingredient. Fermented foods with the highest consumption included coffee (~ 453 g/day;~ 0.5% of daily energy intake), yoghurts (~ 88 g/day;~ 2.2%), beer (~ 84 g/day;~ 1.7%), wholegrain bread (~ 81 g/day;~ 9.4%), wine (~ 65 g/day;~ 2.7%), and cheese (~ 32 g/day;~ 5.0%). Mean percent difference between the FFQ and recalls was small for fermented beverages (coffee), breads (brown, white, wholegrain, rye), and fermented dairy (cheeses) (0.3–2.8%), but large for buttermilk and quark (≥53%). All fermented food groups had > 50% of participants classified into the same or adjacent quintile of intake (58%-buttermilk to 89%-fermented beverages). Strong Spearman’s correlations (crude/energy-adjusted rs ≥ 0.50) were obtained for fermented beverages (coffee, beer, wine), cereals/grains (wholegrain bread), and dairy (yoghurts). For ‘other bread’, quark, and buttermilk, correlations were low (rs < 0.20). Bland-Altman analyses revealed good agreement for fermented beverages (coffee, beer), breads (brown, wholegrain, rye, other), pastries, chocolate, and fermented dairy (cheeses) (mean difference: 0.1–9.3). Conclusions Fermented food groups with acceptable or good validity across all measures included commonly consumed foods in The Netherlands: fermented beverages (coffee), wholegrain and rye bread, and fermented dairy (cheeses). However, for less frequently consumed foods, such as quark and buttermilk, the levels of agreement were poor and estimates of intake should be interpreted with caution. This report provides the basis for developing a FFQ specific for fermented foods. Supplementary Information The online version contains supplementary material available at 10.1186/s40795-020-00394-z.
Collapse
Affiliation(s)
- Katherine J Li
- Division of Human Nutrition and Health, Department of Agrotechnology and Food Science, Wageningen University & Research, P.O. Box 17, 6700 AA, Wageningen, Netherlands. .,Food Microbial Systems Research Division, Agroscope, Federal Office for Agriculture (FOAG), Federal Department of Economic Affairs, Education and Research (EAER), Bern, Switzerland.
| | - Elske M Brouwer-Brolsma
- Division of Human Nutrition and Health, Department of Agrotechnology and Food Science, Wageningen University & Research, P.O. Box 17, 6700 AA, Wageningen, Netherlands
| | - Kathryn J Burton
- Food Microbial Systems Research Division, Agroscope, Federal Office for Agriculture (FOAG), Federal Department of Economic Affairs, Education and Research (EAER), Bern, Switzerland
| | - Guy Vergères
- Food Microbial Systems Research Division, Agroscope, Federal Office for Agriculture (FOAG), Federal Department of Economic Affairs, Education and Research (EAER), Bern, Switzerland
| | - Edith J M Feskens
- Division of Human Nutrition and Health, Department of Agrotechnology and Food Science, Wageningen University & Research, P.O. Box 17, 6700 AA, Wageningen, Netherlands
| |
Collapse
|
23
|
Zommiti M, Feuilloley MGJ, Connil N. Update of Probiotics in Human World: A Nonstop Source of Benefactions till the End of Time. Microorganisms 2020; 8:E1907. [PMID: 33266303 PMCID: PMC7760123 DOI: 10.3390/microorganisms8121907] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Lactic acid bacteria (LAB) are known for their biotechnological potential. Moreover, LAB are distinguished by amazing criteria: Adjusting the intestinal environment, inhibiting pathogenic microbes in the gastrointestinal tract, ability to reduce pathogen adhesion activity, improving the balance of the microbiota inside the intestine, capabilities of regulating intestinal mucosal immunity, and maintaining intestinal barrier function. The escalating number of research and studies about beneficial microorganisms and their impact on promoting health has attracted a big interest in the last decades. Since antiquity, various based fermented products of different kinds have been utilized as potential probiotic products. Nevertheless, the current upsurge in consumers' interest in bioalternatives has opened new horizons for the probiotic field in terms of research and development. The present review aims at shedding light on the world of probiotics, a continuous story of astonishing success in various fields, in particular, the biomedical sector and pharmaceutical industry, as well as to display the importance of probiotics and their therapeutic potential in purpose to compete for sturdy pathogens and to struggle against diseases and acute infections. Shadows and future trends of probiotics use are also discussed.
Collapse
Affiliation(s)
- Mohamed Zommiti
- Unité de Protéomique Fonctionnelle et Potentiel Nutraceutique de la Biodiversité de Tunisie, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université Tunis El-Manar, Tunis 1006, Tunisia
| | - Marc G. J. Feuilloley
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Université de Rouen Normandie, Normandie Université, F-27000 Evreux, France; (M.G.J.F.); (N.C.)
| | - Nathalie Connil
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Université de Rouen Normandie, Normandie Université, F-27000 Evreux, France; (M.G.J.F.); (N.C.)
| |
Collapse
|
24
|
Al-Khalaifah HS, Shahin SE, Omar AE, Mohammed HA, Mahmoud HI, Ibrahim D. Effects of graded levels of microbial fermented or enzymatically treated dried brewer's grains on growth, digestive and nutrient transporter genes expression and cost effectiveness in broiler chickens. BMC Vet Res 2020; 16:424. [PMID: 33153443 PMCID: PMC7643478 DOI: 10.1186/s12917-020-02603-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/30/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Poultry feed consists mainly of conventional grains and protein supplements, however, using treated unconventional agro-industrial by-products as replacements of corn soybean-based diet can minimize production costs and improve productivity. Therefore, in this study, the effects of fermented or enzymatically treated dried brewer grains (DBG) on growth, expression of digestive enzymes and nutrient transporters genes and the profitability of the rations were evaluated. A total of 1600 one-day-old Ross 308 broiler chicks were randomly distributed in 2 × 4 factorial arrangement (eight treatments with ten replicates, 20 birds/replicate). Experimental diets included two controls; negative control (basal corn-soybean diet; NC) and positive control (basal corn-soybean diet with exogenous enzymes; PC), and six diets in which basal diet was replaced by three levels of fermented DBG (FDBG; 5, 10 or 15%), or enzyme-treated DBG (DBG 5, 10 or 15%+Enz), for 38 days. RESULTS The results described that feeding FDBG (three levels) or DBG5%+Enz improved (P < 0.05) BW gain and feed efficiency of broilers. Also, feeding FDBG10% yielded the best improvement in weight gain (10%), compared to NC group. Increasing the inclusion levels of DBG either fermented or enzymatically treated up-regulated (p < 0.01) expression of digestive-genes in proventriculus (PGC and PGA5, range 1.4-1.8 fold), pancreas (AMY2A, PNLIP, CELA1, and CCK; range 1.2-2.3 fold) and duodenum (CAT1, CAT2, GLUT1, GLUT2, LAT1, Pep1; range 1.3-3 fold) when compared to NC group. Feeding treated DBG significantly increased (p < 0.05, range 4.5-13.6%) gizzard relative weight compared to NC and PC groups. An additional benefit was lower (p < 0.01) cholesterol content from 66.9 mg/100 mg (NC) to 62.8 mg/100 mg (FDBG5 or 10%) in thigh meat. Furthermore, the least cost feed/kg body gain was achieved in FDBG10% and DBG5%+Enz groups, with approx. 16% reduction compared to NC cost, leading to increasing the income gross margin by 47% and 40% in FDBG10% and DBG5%+Enz groups, respectively. CONCLUSIONS Substitution of corn-soybean based diet with 10% FDBG or 5% DBG+Enz resulted in better growth and higher economic efficiency of broilers chickens.
Collapse
Affiliation(s)
- Hanan S Al-Khalaifah
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box:24885, 13109, Safat, Kuwait.
| | - Sara E Shahin
- Department of Animal Wealth Development, Veterinary Economics and Farm Management, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Anaam E Omar
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Haiam A Mohammed
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Hala I Mahmoud
- Department of Animal Wealth Development, Biostatistics, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
25
|
Understanding the interaction of isoleucine paired with other amino acids in soy whey alcohol fermentation using Torulaspora delbrueckii. Int J Food Microbiol 2020; 333:108802. [DOI: 10.1016/j.ijfoodmicro.2020.108802] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/02/2020] [Accepted: 07/27/2020] [Indexed: 11/21/2022]
|
26
|
In Silico Comparison Shows that the Pan-Genome of a Dairy-Related Bacterial Culture Collection Covers Most Reactions Annotated to Human Microbiomes. Microorganisms 2020; 8:microorganisms8070966. [PMID: 32605102 PMCID: PMC7409220 DOI: 10.3390/microorganisms8070966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 01/22/2023] Open
Abstract
The diversity of the human microbiome is positively associated with human health. However, this diversity is endangered by Westernized dietary patterns that are characterized by a decreased nutrient variety. Diversity might potentially be improved by promoting dietary patterns rich in microbial strains. Various collections of bacterial cultures resulting from a century of dairy research are readily available worldwide, and could be exploited to contribute towards this end. We have conducted a functional in silico analysis of the metagenome of 24 strains, each representing one of the species in a bacterial culture collection composed of 626 sequenced strains, and compared the pathways potentially covered by this metagenome to the intestinal metagenome of four healthy, although overweight, humans. Remarkably, the pan-genome of the 24 strains covers 89% of the human gut microbiome’s annotated enzymatic reactions. Furthermore, the dairy microbial collection covers biological pathways, such as methylglyoxal degradation, sulfate reduction, γ-aminobutyric (GABA) acid degradation and salicylate degradation, which are differently covered among the four subjects and are involved in a range of cardiometabolic, intestinal, and neurological disorders. We conclude that microbial culture collections derived from dairy research have the genomic potential to complement and restore functional redundancy in human microbiomes.
Collapse
|
27
|
Li SC, Lin HP, Chang JS, Shih CK. Lactobacillus acidophilus-Fermented Germinated Brown Rice Suppresses Preneoplastic Lesions of the Colon in Rats. Nutrients 2019; 11:2718. [PMID: 31717536 PMCID: PMC6893647 DOI: 10.3390/nu11112718] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/03/2019] [Accepted: 11/07/2019] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a cancer associated with chronic inflammation. Whole grains and probiotics play a protective role against CRC. Fermented grains are receiving increased attention due to their anti-inflammatory and anti-cancer activities. Our previous study found that a combination of germinated brown rice (GBR) with probiotics suppressed colorectal carcinogenesis in rats. However, the cancer-preventive effect of probiotic-fermented GBR has not been reported. This study investigated the preventive effect and possible mechanism of GBR fermented by Lactobacillus acidophilus (FGBR) on colorectal carcinogenesis in rats induced by 1,2-dimethylhydrazine (DMH) and dextran sulfate sodium (DSS). DMH/DSS treatment induced preneoplastic aberrant crypt foci (ACF), elevated serum levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β, as well as decreased pro-apoptotic Bax expression. GBR and FGBR reduced the primary ACF number and decreased TNF-α, IL-6 and IL-1β levels. GBR and FGBR at the 2.5% level increased pro-apoptotic cleaved caspase-3 and decreased anti-apoptotic B-cell lymphoma 2 (Bcl-2) expressions. FGBR at the 2.5% level further reduced the number of sialomucin-producing ACF (SIM-ACF) and increased Bax expression. These results suggest that FGBR may inhibit preneoplastic lesions of the colon via activating the apoptotic pathway. This fermented rice product may have the potential to be developed as a novel dietary supplement for CRC chemoprevention.
Collapse
Affiliation(s)
- Sing-Chung Li
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (S.-C.L.); (H.-P.L.); (J.-S.C.)
| | - Han-Pei Lin
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (S.-C.L.); (H.-P.L.); (J.-S.C.)
| | - Jung-Su Chang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (S.-C.L.); (H.-P.L.); (J.-S.C.)
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Chun-Kuang Shih
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (S.-C.L.); (H.-P.L.); (J.-S.C.)
- School of Food Safety, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- Master Program in Food Safety, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
28
|
Farag MA, El Hawary EA, Elmassry MM. Rediscovering acidophilus milk, its quality characteristics, manufacturing methods, flavor chemistry and nutritional value. Crit Rev Food Sci Nutr 2019; 60:3024-3041. [DOI: 10.1080/10408398.2019.1675584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mohamed A. Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| | - Enas A. El Hawary
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| | - Moamen M. Elmassry
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
29
|
Shiferaw Terefe N, Augustin MA. Fermentation for tailoring the technological and health related functionality of food products. Crit Rev Food Sci Nutr 2019; 60:2887-2913. [PMID: 31583891 DOI: 10.1080/10408398.2019.1666250] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fermented foods are experiencing a resurgence due to the consumers' growing interest in foods that are natural and health promoting. Microbial fermentation is a biotechnological process which transforms food raw materials into palatable, nutritious and healthy food products. Fermentation imparts unique aroma, flavor and texture to food, improves digestibility, degrades anti-nutritional factors, toxins and allergens, converts phytochemicals such as polyphenols into more bioactive and bioavailable forms, and enriches the nutritional quality of food. Fermentation also modifies the physical functional properties of food materials, rendering them differentiated ingredients for use in formulated foods. The science of fermentation and the technological and health functionality of fermented foods is reviewed considering the growing interest worldwide in fermented foods and beverages and the huge potential of the technology for reducing food loss and improving nutritional food security.
Collapse
|
30
|
Kumaunang M, Sanchart C, Suyotha W, Maneerat S. Virgibacillus halodenitrificans MSK-10P, a Potential Protease-producing Starter Culture for Fermented Shrimp Paste (kapi) Production. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2019. [DOI: 10.1080/10498850.2019.1652874] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Maureen Kumaunang
- Biotechnology for Bioresource Utilization Laboratory, Department of Industrial Biotechnology, Faculty of Agro‑Industry, Prince of Songkla University, HatYai, Thailand
- Department of Chemistry, Faculty of Mathematics and Natural Science, Sam Ratulangi University, Manado, Indonesia
| | - Chatthaphisuth Sanchart
- Biotechnology for Bioresource Utilization Laboratory, Department of Industrial Biotechnology, Faculty of Agro‑Industry, Prince of Songkla University, HatYai, Thailand
| | - Wasana Suyotha
- Biotechnology for Bioresource Utilization Laboratory, Department of Industrial Biotechnology, Faculty of Agro‑Industry, Prince of Songkla University, HatYai, Thailand
| | - Suppasil Maneerat
- Biotechnology for Bioresource Utilization Laboratory, Department of Industrial Biotechnology, Faculty of Agro‑Industry, Prince of Songkla University, HatYai, Thailand
| |
Collapse
|
31
|
Ketogenic Diet and Microbiota: Friends or Enemies? Genes (Basel) 2019; 10:genes10070534. [PMID: 31311141 PMCID: PMC6678592 DOI: 10.3390/genes10070534] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/06/2019] [Accepted: 07/10/2019] [Indexed: 12/12/2022] Open
Abstract
Over the last years, a growing body of evidence suggests that gut microbial communities play a fundamental role in many aspects of human health and diseases. The gut microbiota is a very dynamic entity influenced by environment and nutritional behaviors. Considering the influence of such a microbial community on human health and its multiple mechanisms of action as the production of bioactive compounds, pathogens protection, energy homeostasis, nutrients metabolism and regulation of immunity, establishing the influences of different nutritional approach is of pivotal importance. The very low carbohydrate ketogenic diet is a very popular dietary approach used for different aims: from weight loss to neurological diseases. The aim of this review is to dissect the complex interactions between ketogenic diet and gut microbiota and how this large network may influence human health.
Collapse
|
32
|
Byakika S, Mukisa IM, Byaruhanga YB, Male D, Muyanja C. Influence of food safety knowledge, attitudes and practices of processors on microbiological quality of commercially produced traditional fermented cereal beverages, a case of Obushera in Kampala. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.01.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Toxins in Fermented Foods: Prevalence and Preventions-A Mini Review. Toxins (Basel) 2018; 11:toxins11010004. [PMID: 30586849 PMCID: PMC6356804 DOI: 10.3390/toxins11010004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/08/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022] Open
Abstract
Fermented foods (FF) are widely consumed around the world, and FF are one of the prime sources of toxins and pathogenic microbes that are associated with several foodborne outbreaks. Mycotoxins (aflatoxins, fumonisins, sterigmatocystin, nivalenol, deoxynivalenol, zearalenone, ochratoxin, and alternariol), bacterial toxins (shiga toxin and botulinum), biogenic amines, and cyanogenic glycosides are the common toxins found in FF in addition to the pathogenic microbes. Fermented milk products and meat sausages are extremely vulnerable to contamination. Cumulative updated information about a specific topic such as toxins in FF is essential for the improvement of safer preparation and consumption of fermented foods. Accordingly, the current manuscript summarizes the reported mycotoxins, bacterial toxins, and/or toxins from other sources; detection methods and prevention of toxins in FF (use of specific starter culture, optimized fermentation process, and pre- and post-processing treatments); and major clinical outbreaks. This literature survey was made in Scopus, Web of Science, NCBI-PubMed, and Google Scholar using the search terms "Toxins" and "Fermented Foods" as keywords. The appropriate scientific documents were screened for relevant information and they were selected without any chronological restrictions.
Collapse
|
34
|
Sivamaruthi BS, Kesika P, Prasanth MI, Chaiyasut C. A Mini Review on Antidiabetic Properties of Fermented Foods. Nutrients 2018; 10:E1973. [PMID: 30551623 PMCID: PMC6316541 DOI: 10.3390/nu10121973] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/29/2018] [Accepted: 12/06/2018] [Indexed: 12/25/2022] Open
Abstract
In general, fermented foods (FFs) are considered as functional foods. Since the awareness about the health benefits of FFs has increased, the consumption of FF also improved significantly in recent decades. Diabetes is one of the leading threats of the health span of an individual. The present manuscript details the general methods of the production of FFs, and the results of various studies (in vitro, in vivo, and clinical studies) on the antidiabetic properties of FFs. The fermentation method and the active microbes involved in the process play a crucial role in the functional properties of FFs. Several in vitro and in vivo studies have been reported on the health-promoting properties of FFs, such as anti-inflammation, anticancer, antioxidant properties, improved cognitive function and gastrointestinal health, and the reduced presence of metabolic disorders. The studies on the functional properties of FFs by randomized controlled clinical trials using human volunteers are very limited for several reasons, including ethical reasons, safety concerns, approval from the government, etc. Several scientific teams are working on the development of complementary and alternative medicines to improve the treatment strategies for hyperglycemia.
Collapse
Affiliation(s)
- Bhagavathi Sundaram Sivamaruthi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Periyanaina Kesika
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Mani Iyer Prasanth
- Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
35
|
Sugiharto S, Ranjitkar S. Recent advances in fermented feeds towards improved broiler chicken performance, gastrointestinal tract microecology and immune responses: A review. ACTA ACUST UNITED AC 2018; 5:1-10. [PMID: 30899804 PMCID: PMC6407077 DOI: 10.1016/j.aninu.2018.11.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 10/06/2018] [Accepted: 11/12/2018] [Indexed: 12/20/2022]
Abstract
Previously, fermentation has been associated with methods that improve the nutritional value of unconventional feed ingredients for broilers. In recent decades, the fermentation process has been employed to produce functional feeds that have the potential to improve broiler gastrointestinal tract microecology, health and production performance. Some of the functional ingredients found in fermented feed include lactic acid bacteria (LAB), lactic acid and other organic acids, and appear to play major roles in determining the beneficial effects of fermented feed on broiler gut health and performance. Unlike the pig, the available literature on broiler fermented feed is still rather limited. This review describes recent advances in the use of fermented feed (on the basis of conventional and unconventional feed ingredients) in broilers. Similarly, this review also shows that additional research is necessary to exploit fermented feed as a viable food source in broiler nutrition.
Collapse
Affiliation(s)
- Sugiharto Sugiharto
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Diponegoro University, Semarang, Central Java 50275, Indonesia
| | - Samir Ranjitkar
- Department of Animal Science (Immunology and Microbiology), Aarhus University, Tjele DK-8830, Denmark
| |
Collapse
|
36
|
Bell V, Ferrão J, Pimentel L, Pintado M, Fernandes T. One Health, Fermented Foods, and Gut Microbiota. Foods 2018; 7:foods7120195. [PMID: 30513869 PMCID: PMC6306734 DOI: 10.3390/foods7120195] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 02/07/2023] Open
Abstract
Changes in present-day society such as diets with more sugar, salt, and saturated fat, bad habits and unhealthy lifestyles contribute to the likelihood of the involvement of the microbiota in inflammatory diseases, which contribute to global epidemics of obesity, depression, and mental health concerns. The microbiota is presently one of the hottest areas of scientific and medical research, and exerts a marked influence on the host during homeostasis and disease. Fermented foods and beverages are generally defined as products made by microbial organisms and enzymatic conversions of major and minor food components. Further to the commonly-recognized effects of nutrition on the digestive health (e.g., dysbiosis) and well-being, there is now strong evidence for the impact of fermented foods and beverages (e.g., yoghurt, pickles, bread, kefir, beers, wines, mead), produced or preserved by the action of microorganisms, on general health, namely their significance on the gut microbiota balance and brain functionality. Fermented products require microorganisms, i.e., Saccharomyces yeasts and lactic acid bacteria, yielding alcohol and lactic acid. Ingestion of vibrant probiotics, especially those contained in fermented foods, is found to cause significant positive improvements in balancing intestinal permeability and barrier function. Our guts control and deal with every aspect of our health. How we digest our food and even the food sensitivities we have is linked with our mood, behavior, energy, weight, food cravings, hormone balance, immunity, and overall wellness. We highlight some impacts in this domain and debate calls for the convergence of interdisciplinary research fields from the United Nations’ initiative. Worldwide human and animal medicine are practiced separately; veterinary science and animal health are generally neither considered nor inserted within national or international Health discussions. The absence of a clear definition and subsequent vision for the future of One Health may act as a barrier to transdisciplinary collaboration. The point of this mini review is to highlight the role of fermented foods and beverages on gut microbiota and debate if the need for confluence of transdisciplinary fields of One Health is feasible and achievable, since they are managed by separate sectors with limited communication.
Collapse
Affiliation(s)
- Victoria Bell
- Faculdade de Farmácia, Universidade de Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| | - Jorge Ferrão
- Universidade Pedagógica, Rua João Carlos Raposo Beirão 135, Maputo 1000-001, Mozambique.
| | - Lígia Pimentel
- CBQF-Centro de Biotecnologia e Química Fina, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal.
| | - Manuela Pintado
- CBQF-Centro de Biotecnologia e Química Fina, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal.
| | - Tito Fernandes
- Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal.
| |
Collapse
|
37
|
El Sheikha AF, Hu DM. Molecular techniques reveal more secrets of fermented foods. Crit Rev Food Sci Nutr 2018; 60:11-32. [DOI: 10.1080/10408398.2018.1506906] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Aly Farag El Sheikha
- Jiangxi Agricultural University, Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Nanchang, China
- McMaster University, Department of Biology, Hamilton, Ontario, Canada
- Minufiya University, Faculty of Agriculture, Department of Food Science and Technology, Shibin El Kom, Minufiya Government, Egypt
| | - Dian-Ming Hu
- Jiangxi Agricultural University, Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Nanchang, China
| |
Collapse
|
38
|
Ogidi CO, Oyetayo VO, Akinyele BJ, De Carvalho CA, Kasuya MCM. Food Value and Safety Status of Raw (Unfermented) and Fermented Higher Basidiomycetes, Lenzites quercina (L) P. Karsten. Prev Nutr Food Sci 2018; 23:228-234. [PMID: 30386751 PMCID: PMC6195889 DOI: 10.3746/pnf.2018.23.3.228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/31/2018] [Indexed: 11/17/2022] Open
Abstract
Food value and safety of a wild macrofungus, Lenzites quercina were investigated. The proximate and mineral composition of raw and fermented L. quercina were assessed using standard methods. Brine shrimp lethality bioassay was adopted for assessment of the toxicological property of the extracts obtained from raw and fermented L. quercina. The result of proximate composition revealed higher protein content (26.15%) in fermented L. quercina, while the value of carbohydrate (38.3%), crude fibre (27.6%), and ash contents (6.5%) were higher (P<0.05) in raw L. quercina when compared to fermented L. quercina. The macro and micro elements in the raw and fermented L. quercina were in decreasing order of Ca> K> Zn> Fe> Na> Mg> Pb> Cu with values ranging from 4.04 mg/g to 721.6 mg/g. The amino acids in raw and fermented L. quercina ranged from 0.05 mg/g to 23.78 mg/g, while the fatty acids ranged from 0.11% to 38.5%. The mortality rate of the Artemia salina against the extracts was from 8.0% to 38.0% with lethal dose at 50% of population within 49.11 and 250.50 μg/mL. The results from this study revealed that L. quercina possesses essential amino acids, fatty acids, and substantial micro elements, which may be useful in the formulation of functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Clement Olusola Ogidi
- Department of Microbiology, The Federal University of Technology, Akure 340001,
Nigeria
- Departamento de Microbiologia/Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000,
Brazil
- Biotechnology Unit, Department of Biological Sciences, Kings University, Odeomu 221102,
Nigeria
| | | | | | - Camilo Amaro De Carvalho
- Departamento de Medicina e Enfermagem, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000,
Brazil
| | | |
Collapse
|
39
|
Younes M, Aggett P, Aguilar F, Crebelli R, Dusemund B, Filipič M, Frutos MJ, Galtier P, Gott D, Gundert-Remy U, Kuhnle GG, Lambré C, Leblanc JC, Lillegaard IT, Moldeus P, Mortensen A, Oskarsson A, Stankovic I, Waalkens-Berendsen I, Woutersen RA, Andrade RJ, Fortes C, Mosesso P, Restani P, Pizzo F, Smeraldi C, Wright M. Scientific opinion on the safety of monacolins in red yeast rice. EFSA J 2018; 16:e05368. [PMID: 32626016 PMCID: PMC7009499 DOI: 10.2903/j.efsa.2018.5368] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The Panel on Food Additives and Nutrient Sources added to Food (ANS) was asked to deliver a scientific opinion on the safety of monacolins in red yeast rice (RYR) and to provide advice on a dietary intake of monacolins that does not give rise to concerns about harmful effects to health. The Panel reviewed the scientific evidences available as well as the information provided by interested parties in response of a public 'Call for data' launched by EFSA. The Panel considered that monacolin K in lactone form is identical to lovastatin, the active ingredient of several medicinal products authorised for the treatment of hypercholesterolaemia in the EU. On the basis of the information available, the Panel concluded that intake of monacolins from RYR via food supplements, could lead to estimated exposure to monacolin K within the range of the therapeutic doses of lovastatin. The Panel considered that the available information on the adverse effects reported in humans were judged to be sufficient to conclude that monacolins from RYR when used as food supplements were of significant safety concern at the use level of 10 mg/day. The Panel further considered that individual cases of severe adverse reactions have been reported for monacolins from RYR at intake levels as low as 3 mg/day. The Panel concluded that exposure to monacolin K from RYR could lead to severe adverse effects on musculoskeletal system, including rhabdomyolysis, and on the liver. In the reported cases, the product contained other ingredients in addition to RYR. However, these reported effects in particular musculoskeletal effects, have both occurred after ingestion of monacolin K and lovastatin independently. On the basis of the information available and several uncertainties highlighted in this opinion, the Panel was unable to identify a dietary intake of monacolins from RYR that does not give rise to concerns about harmful effects to health, for the general population, and as appropriate, for vulnerable subgroups of the population.
Collapse
|
40
|
The Effects of Fermentation Process on the Chemical Composition and Biological Activity of Spider Flower (Gynandropsis gynandra). JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.2.08] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
41
|
Fermented Food and Non-Communicable Chronic Diseases: A Review. Nutrients 2018; 10:nu10040448. [PMID: 29617330 PMCID: PMC5946233 DOI: 10.3390/nu10040448] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/27/2018] [Accepted: 04/02/2018] [Indexed: 02/07/2023] Open
Abstract
Fermented foods represent a significant fraction of human diets. Although their impact on health is positively perceived, an objective evaluation is still missing. We have, therefore, reviewed meta-analyses of randomized controlled trials (RCT) investigating the relationship between fermented foods and non-transmissible chronic diseases. Overall, after summarizing 25 prospective studies on dairy products, the association of fermented dairy with cancer was found to be neutral, whereas it was weakly beneficial, though inconsistent, for specific aspects of cardio-metabolic health, in particular stroke and cheese intake. The strongest evidence for a beneficial effect was for yoghurt on risk factors of type 2 diabetes. Although mechanisms explaining this association have not been validated, an increased bioavailability of insulinotropic amino acids and peptides as well as the bacterial biosynthesis of vitamins, in particular vitamin K2, might contribute to this beneficial effect. However, the heterogeneity in the design of the studies and the investigated foods impedes a definitive assessment of these associations. The literature on fermented plants is characterized by a wealth of in vitro data, whose positive results are not corroborated in humans due to the absence of RCTs. Finally, none of the RCTs were specifically designed to address the impact of food fermentation on health. This question should be addressed in future human studies.
Collapse
|
42
|
Camarasa C, Chiron H, Daboussi F, Della Valle G, Dumas C, Farines V, Floury J, Gagnaire V, Gorret N, Leonil J, Mouret JR, O'Donohue MJ, Sablayrolles JM, Salmon JM, Saulnier L, Truan G. INRA's research in industrial biotechnology: For food, chemicals, materials and fuels. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2017.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
43
|
Kavitake D, Kandasamy S, Devi PB, Shetty PH. Recent developments on encapsulation of lactic acid bacteria as potential starter culture in fermented foods – A review. FOOD BIOSCI 2018. [DOI: 10.1016/j.fbio.2017.11.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
44
|
Huh E, Lim S, Kim HG, Ha SK, Park HY, Huh Y, Oh MS. Ginger fermented with Schizosaccharomyces pombe alleviates memory impairment via protecting hippocampal neuronal cells in amyloid beta 1-42 plaque injected mice. Food Funct 2018; 9:171-178. [PMID: 29171599 DOI: 10.1039/c7fo01149k] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ginger, which has been widely used for dietary condiment, has been reported to improve memory dysfunction in an animal model of Alzheimer's disease (AD). Recently, a few trials have been carried out to enhance the effects of ginger by improving the bioavailability of its relevant components via fermentation. Some reports have suggested that the fermented ginger has the ability to affect the AD in vitro systems; however, its anti-amnesic effects on an in vivo model still remain to be investigated. In the present study, we aimed to investigate the neuroprotective effects of ginger fermented with Schizosaccharomyces pombe (FG) in the in vivo models of AD. The neuroprotective effects were investigated by employing behavioral, western blotting, and immunohistochemical assays. The administration of FG improved recognition memory, impaired by scopolamine injection, than that of non-fermented ginger. In addition, FG ameliorated memory impairment in amyloid beta1-42 (Aβ1-42) plaque-injected mice via protecting neuronal cells in the CA3 area of the mouse hippocampus. Moreover, FG reinstated the pre- and postsynaptic protein levels decreased by Aβ1-42 plaque-toxicity. Overall, these data suggest that FG attenuates memory impairment in Aβ1-42 plaque-induced AD mice through inhibition of neuronal cell loss and synaptic disruption.
Collapse
Affiliation(s)
- Eugene Huh
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
45
|
Affiliation(s)
- Nevin Şanlier
- Biruni University, Faculty of Health Sciences, Nutrition and Dietetics Department, İstanbul, Turkey
| | - Büşra Başar Gökcen
- Gazi University, Faculty of Health Sciences, Nutrition and Dietetics Department, Ankara, Turkey
| | - Aybüke Ceyhun Sezgin
- Gazi University, Faculty of Tourism, Department of Gastronomy and Culinary Art, Gölbaşı/Ankara, Turkey
| |
Collapse
|
46
|
CHAIYASUT C, SIVAMARUTHI BS, MAKHAMRUEANG N, PEERAJAN S, KESIKA P. A survey of consumer’ opinion about consumption and health benefits of fermented plant beverages in Thailand. FOOD SCIENCE AND TECHNOLOGY 2017. [DOI: 10.1590/1678-457x.04917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Brodmann T, Endo A, Gueimonde M, Vinderola G, Kneifel W, de Vos WM, Salminen S, Gómez-Gallego C. Safety of Novel Microbes for Human Consumption: Practical Examples of Assessment in the European Union. Front Microbiol 2017; 8:1725. [PMID: 28955311 PMCID: PMC5601064 DOI: 10.3389/fmicb.2017.01725] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 08/24/2017] [Indexed: 12/12/2022] Open
Abstract
Novel microbes are either newly isolated genera and species from natural sources or bacterial strains derived from existing bacteria. Novel microbes are gaining increasing attention for the general aims to preserve and modify foods and to modulate gut microbiota. The use of novel microbes to improve health outcomes is of particular interest because growing evidence points to the importance of gut microbiota in human health. As well, some recently isolated microorganisms have promise for use as probiotics, although in-depth assessment of their safety is necessary. Recent examples of microorganisms calling for more detailed evaluation include Bacteroides xylanisolvens, Akkermansia muciniphila, fructophilic lactic acid bacteria (FLAB), and Faecalibacterium prausnitzii. This paper discusses each candidate's safety evaluation for novel food or novel food ingredient approval according to European Union (EU) regulations. The factors evaluated include their beneficial properties, antibiotic resistance profiling, history of safe use (if available), publication of the genomic sequence, toxicological studies in agreement with novel food regulations, and the qualified presumptions of safety. Sufficient evidences have made possible to support and authorize the use of heat-inactivated B. xylanisolvens in the European Union. In the case of A. muciniphila, the discussion focuses on earlier safety studies and the strain's suitability. FLAB are also subjected to standard safety assessments, which, along with their proximity to lactic acid bacteria generally considered to be safe, may lead to novel food authorization in the future. Further research with F. prausnitzii will increase knowledge about its safety and probiotic properties and may lead to its future use as novel food. Upcoming changes in EUU Regulation 2015/2283 on novel food will facilitate the authorization of future novel products and might increase the presence of novel microbes in the food market.
Collapse
Affiliation(s)
- Theodor Brodmann
- Department of Food Sciences and Technology, University of Natural Resources and Life Science ViennaVienna, Austria
| | - Akihito Endo
- Department of Food and Cosmetic Science, Tokyo University of AgricultureHokkaido, Japan
| | - Miguel Gueimonde
- Instituto de Productos Lácteos de Asturias, Spanish Higher Research CouncilVillaviciosa, Spain
| | - Gabriel Vinderola
- Instituto de Lactología Industrial (UNL-CONICET), National University of the LitoralSanta Fe, Argentina
| | - Wolfgang Kneifel
- Department of Food Sciences and Technology, University of Natural Resources and Life Science ViennaVienna, Austria
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University and ResearchWageningen, Netherlands
- Immunobiology Research Program, Research Programs Unit, Faculty of Medicine, University of HelsinkiHelsinki, Finland
| | - Seppo Salminen
- Functional Foods Forum, Faculty of Medicine, University of TurkuTurku, Finland
| | | |
Collapse
|
48
|
Di Stefano E, White J, Seney S, Hekmat S, McDowell T, Sumarah M, Reid G. A Novel Millet-Based Probiotic Fermented Food for the Developing World. Nutrients 2017; 9:nu9050529. [PMID: 28531168 PMCID: PMC5452258 DOI: 10.3390/nu9050529] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/03/2017] [Accepted: 05/17/2017] [Indexed: 11/24/2022] Open
Abstract
Probiotic yogurt, comprised of a Fiti sachet containing Lactobacillus rhamnosus GR-1 and Streptococcus thermophilus C106, has been used in the developing world, notably Africa, to alleviate malnutrition and disease. In sub-Saharan African countries, fermentation of cereals such as millet, is culturally significant. The aim of this study was to investigate the fermentation capability of millet when one gram of the Fiti sachet consortium was added. An increase of 1.8 and 1.4 log CFU/mL was observed for S. thermophilus C106 and L. rhamnosus GR-1 when grown in 8% millet in water. Single cultures of L. rhamnosus GR-1 showed the highest μmax when grown in the presence of dextrose, galactose and fructose. Single cultures of S. thermophilus C106 showed the highest μmax when grown in the presence of sucrose and lactose. All tested recipes reached viable counts of the probiotic bacteria, with counts greater than 106 colony-forming units (CFU)/mL. Notably, a number of organic acids were quantified, in particular phytic acid, which was shown to decrease when fermentation time increased, thereby improving the bioavailability of specific micronutrients. Millet fermented in milk proved to be the most favorable, according to a sensory evaluation. In conclusion, this study has shown that sachets being provided to African communities to produce fermented milk, can also be used to produce fermented millet. This provides an option for when milk supplies are short, or if communities wish to utilize the nutrient-rich qualities of locally-grown millet.
Collapse
Affiliation(s)
- Elisa Di Stefano
- Food Microbiology, University of Wageningen, 6708 PB Wageningen, The Netherlands.
- F3-106, Lawson Health Research Institute, 268 Grosvenor Street, London, ON N6A 4V2, Canada.
| | - Jessica White
- F3-106, Lawson Health Research Institute, 268 Grosvenor Street, London, ON N6A 4V2, Canada.
| | - Shannon Seney
- F3-106, Lawson Health Research Institute, 268 Grosvenor Street, London, ON N6A 4V2, Canada.
| | - Sharareh Hekmat
- Food and Nutritional Sciences, Brescia College, London, ON N6G 1H2, Canada.
| | - Tim McDowell
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada.
| | - Mark Sumarah
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada.
| | - Gregor Reid
- F3-106, Lawson Health Research Institute, 268 Grosvenor Street, London, ON N6A 4V2, Canada.
- Departments of Microbiology & Immunology and Surgery, Western University, London, ON N6A 3K7, Canada.
| |
Collapse
|
49
|
Metabolomics for empirical delineation of the traditional Korean fermented foods and beverages. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
50
|
Li J, Zheng Y, Xu H, Xi X, Hou Q, Feng S, Wuri L, Bian Y, Yu Z, Kwok LY, Sun Z, Sun T. Bacterial microbiota of Kazakhstan cheese revealed by single molecule real time (SMRT) sequencing and its comparison with Belgian, Kalmykian and Italian artisanal cheeses. BMC Microbiol 2017; 17:13. [PMID: 28068902 PMCID: PMC5223556 DOI: 10.1186/s12866-016-0911-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 12/10/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND In Kazakhstan, traditional artisanal cheeses have a long history and are widely consumed. The unique characteristics of local artisanal cheeses are almost completely preserved. However, their microbial communities have rarely been reported. The current study firstly generated the Single Molecule, Real-Time (SMRT) sequencing bacterial diversity profiles of 6 traditional artisanal cheese samples of Kazakhstan origin, followed by comparatively analyzed the microbiota composition between the current dataset and those from cheeses originated from Belgium, Russian Republic of Kalmykia (Kalmykia) and Italy. RESULTS Across the Kazakhstan cheese samples, a total of 238 bacterial species belonging to 14 phyla and 140 genera were identified. Lactococcus lactis (28.93%), Lactobacillus helveticus (26.43%), Streptococcus thermophilus (12.18%) and Lactobacillus delbrueckii (12.15%) were the dominant bacterial species for these samples. To further evaluate the cheese bacterial diversity of Kazakhstan cheeses in comparison with those from other geographic origins, 16S rRNA datasets of 36 artisanal cheeses from Belgium, Russian Republic of Kalmykia (Kalmykia) and Italy were retrieved from public databases. The cheese bacterial microbiota communities were largely different across sample origins. By principal coordinate analysis (PCoA) and multivariate analysis of variance (MANOVA), the structure of the Kazakhstan artisanal cheese samples was found to be different from those of the other geographic origins. Furthermore, the redundancy analysis (RDA) identified 16 bacterial OTUs as the key variables responsible for such microbiota structural difference. CONCLUSION Our results together suggest that the diversity of bacterial communities in different groups is stratified by geographic region. This study does not only provide novel information on the bacterial microbiota of traditional artisanal cheese of Kazakhstan at species level, but also interesting insights into the bacterial diversity of artisanal cheeses of various geographical origins.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| | - Yi Zheng
- Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| | - Haiyan Xu
- Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| | - Xiaoxia Xi
- Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| | - Qiangchuan Hou
- Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| | - Shuzhen Feng
- Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| | - Laga Wuri
- Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| | - Yanfei Bian
- Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| | - Zhongjie Yu
- Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| | - Tiansong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China.
| |
Collapse
|