1
|
Guan Y, Gajewska J, Sobieszczuk-Nowicka E, Floryszak-Wieczorek J, Hartman S, Arasimowicz-Jelonek M. The effect of nitrosative stress on histone H3 and H4 acetylation in Phytophthora infestans life cycle. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109129. [PMID: 39288571 DOI: 10.1016/j.plaphy.2024.109129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
The oomycete Phytophthora infestans is one of the most destructive phytopathogens globally. It has a proven ability to adapt to changing environments rapidly; however, molecular mechanisms responsible for host invasion and adaptation to new environmental conditions still need to be explored. The study aims to understand the epigenetic mechanisms exploited by P. infestans in response to nitrosative stress conditions created by the (micro)environment and the host plant. To characterize reactive nitrogen species (RNS)-dependent acetylation profiles in avirulent/virulent (avr/vr) P. infestans, a transient gene expression, ChIP and immunoblot analyses, and nitric oxide (NO) emission by chemiluminescence were used in combination with the pharmacological approach. Nitrosative stress increased total H3/H4 acetylation and some histone acetylation marks, mainly in sporulating hyphae of diverse (avr/vr) isolates and during potato colonization. These results correlated with transcriptional up-regulation of acetyltransferases PifHAC3 and PifHAM1, catalyzing H3K56 and H4K16 acetylation, respectively. NO or peroxynitrite-mediated changes were also associated with H3K56 and H4K16 mark deposition on the critical pathogenicity-related gene promoters (CesA1, CesA2, CesA3, sPLD-like1, Hmp1, and Avr3a) elevating their expression. Our study highlights RNS-dependent transcriptional reprogramming via histone acetylation of essential gene expression in the sporulating and biotrophic phases of plant colonization by P. infestans as a tool promoting its evolutionary plasticity.
Collapse
Affiliation(s)
- Yufeng Guan
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Joanna Gajewska
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Ewa Sobieszczuk-Nowicka
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | | | - Sjon Hartman
- Plant Environmental Signalling and Development, Faculty of Biology, University of Freiburg, D-79104, Freiburg, Germany; CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, D-79104, Freiburg, Germany
| | - Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| |
Collapse
|
2
|
Li L, Ran T, Zhu H, Yin M, Yu W, Zou J, Li L, Ye Y, Sun H, Wang W, Guo J, Zhang F. Molecular Mechanism of Fusarium Fungus Inhibition by Phenazine-1-carboxamide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15176-15189. [PMID: 38943677 DOI: 10.1021/acs.jafc.4c03936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Fusarium head blight caused by Fusarium graminearum is a devastating disease in wheat that seriously endangers food security and human health. Previous studies have found that the secondary metabolite phenazine-1-carboxamide produced by biocontrol bacteria inhibited F. graminearum by binding to and inhibiting the activity of histone acetyltransferase Gcn5 (FgGcn5). However, the detailed mechanism of this inhibition remains unknown. Our structural and biochemical studies revealed that phenazine-1-carboxamide (PCN) binds to the histone acetyltransferase (HAT) domain of FgGcn5 at its cosubstrate acetyl-CoA binding site, thus competitively inhibiting the histone acetylation function of the enzyme. Alanine substitution of the residues in the binding site shared by PCN and acetyl-CoA not only decreased the histone acetylation level of the enzyme but also dramatically impacted the development, mycotoxin synthesis, and virulence of the strain. Taken together, our study elucidated a competitive inhibition mechanism of Fusarium fungus by PCN and provided a structural template for designing more potent phenazine-based fungicides.
Collapse
Affiliation(s)
- Lei Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Tingting Ran
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Hong Zhu
- Technical Center for Public Testing and Evaluation and Identification, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Mengyu Yin
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Wei Yu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Jingpei Zou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Linwei Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu 210014, China
| | - Yonghao Ye
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Hao Sun
- College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Weiwu Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Jingjing Guo
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China
| | - Feng Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| |
Collapse
|
3
|
Jiang H, Yuan L, Ma L, Qi K, Zhang Y, Zhang B, Ma G, Qi J. Histone H3 N-Terminal Lysine Acetylation Governs Fungal Growth, Conidiation, and Pathogenicity through Regulating Gene Expression in Fusarium pseudograminearum. J Fungi (Basel) 2024; 10:379. [PMID: 38921366 PMCID: PMC11204548 DOI: 10.3390/jof10060379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
The acetylation of histone lysine residues regulates multiple life processes, including growth, conidiation, and pathogenicity in filamentous pathogenic fungi. However, the specific function of each lysine residue at the N-terminus of histone H3 in phytopathogenic fungi remains unclear. In this study, we mutated the N-terminal lysine residues of histone H3 in Fusarium pseudograminearum, the main causal agent of Fusarium crown rot of wheat in China, which also produces deoxynivalenol (DON) toxins harmful to humans and animals. Our findings reveal that all the FpH3K9R, FpH3K14R, FpH3K18R, and FpH3K23R mutants are vital for vegetative growth and conidiation. Additionally, FpH3K14 regulates the pathogen's sensitivity to various stresses and fungicides. Despite the slowed growth of the FpH3K9R and FpH3K23R mutants, their pathogenicity towards wheat stems and heads remains unchanged. However, the FpH3K9R mutant produces more DON. Furthermore, the FpH3K14R and FpH3K18R mutants exhibit significantly reduced virulence, with the FpH3K18R mutant producing minimal DON. In the FpH3K9R, FpH3K14R, FpH3K18R, and FpH3K23R mutants, there are 1863, 1400, 1688, and 1806 downregulated genes, respectively, compared to the wild type. These downregulated genes include many that are crucial for growth, conidiation, pathogenicity, and DON production, as well as some essential genes. Gene ontology (GO) enrichment analysis indicates that genes downregulated in the FpH3K14R and FpH3K18R mutants are enriched for ribosome biogenesis, rRNA processing, and rRNA metabolic process. This suggests that the translation machinery is abnormal in the FpH3K14R and FpH3K18R mutants. Overall, our findings suggest that H3 N-terminal lysine residues are involved in regulating the expression of genes with important functions and are critical for fungal development and pathogenicity.
Collapse
Affiliation(s)
- Hang Jiang
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.J.); (L.M.); (K.Q.); (Y.Z.); (B.Z.); (G.M.)
| | - Lifang Yuan
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China;
| | - Liguo Ma
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.J.); (L.M.); (K.Q.); (Y.Z.); (B.Z.); (G.M.)
| | - Kai Qi
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.J.); (L.M.); (K.Q.); (Y.Z.); (B.Z.); (G.M.)
| | - Yueli Zhang
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.J.); (L.M.); (K.Q.); (Y.Z.); (B.Z.); (G.M.)
| | - Bo Zhang
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.J.); (L.M.); (K.Q.); (Y.Z.); (B.Z.); (G.M.)
| | - Guoping Ma
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.J.); (L.M.); (K.Q.); (Y.Z.); (B.Z.); (G.M.)
| | - Junshan Qi
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.J.); (L.M.); (K.Q.); (Y.Z.); (B.Z.); (G.M.)
| |
Collapse
|
4
|
Xia A, Wang X, Huang Y, Yang Q, Ye M, Wang Y, Jiang C, Duan K. The ING protein Fng2 associated with RPD3 HDAC complex for the regulation of fungal development and pathogenesis in wheat head blight fungus. Int J Biol Macromol 2024; 268:131938. [PMID: 38692539 DOI: 10.1016/j.ijbiomac.2024.131938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
ING proteins display a high level of evolutionary conservation across various species, and play a crucial role in modulating histone acetylation levels, thus regulating various important biological processes in yeast and humans. Filamentous fungi possess distinct biological characteristics that differentiate them from yeasts and humans, and the specific roles of ING proteins in filamentous fungi remain largely unexplored. In this study, an ING protein, Fng2, orthologous to the yeast Pho23, has been identified in the wheat head blight fungus Fusarium graminearum. The deletion of the FNG2 gene resulted in defects in vegetative growth, conidiation, sexual reproduction, plant infection, and deoxynivalenol (DON) biosynthesis. Acting as a global regulator, Fng2 exerts negative control over histone H4 acetylation and governs the expression of over 4000 genes. Moreover, almost half of the differentially expressed genes in the fng3 mutant were found to be co-regulated by Fng2, emphasizing the functional association between these two ING proteins. Notably, the fng2 fng3 double mutant exhibits significantly increased H4 acetylation and severe defects in both fungal development and pathogenesis. Furthermore, Fng2 localizes within the nucleus and associates with the FgRpd3 histone deacetylase (HDAC) to modulate gene expression. Overall, Fng2's interaction with FgRpd3, along with its functional association with Fng3, underscores its crucial involvement in governing gene expression, thereby significantly influencing fungal growth, asexual and sexual development, pathogenicity, and secondary metabolism.
Collapse
Affiliation(s)
- Aliang Xia
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuan Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yingao Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qing Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meng Ye
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yankun Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cong Jiang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Kaili Duan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
5
|
Buttar ZA, Cheng M, Wei P, Zhang Z, Lv C, Zhu C, Ali NF, Kang G, Wang D, Zhang K. Update on the Basic Understanding of Fusarium graminearum Virulence Factors in Common Wheat Research. PLANTS (BASEL, SWITZERLAND) 2024; 13:1159. [PMID: 38674569 PMCID: PMC11053692 DOI: 10.3390/plants13081159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
Wheat is one of the most important food crops, both in China and worldwide. Wheat production is facing extreme stresses posed by different diseases, including Fusarium head blight (FHB), which has recently become an increasingly serious concerns. FHB is one of the most significant and destructive diseases affecting wheat crops all over the world. Recent advancements in genomic tools provide a new avenue for the study of virulence factors in relation to the host plants. The current review focuses on recent progress in the study of different strains of Fusarium infection. The presence of genome-wide repeat-induced point (RIP) mutations causes genomic mutations, eventually leading to host plant susceptibility against Fusarium invasion. Furthermore, effector proteins disrupt the host plant resistance mechanism. In this study, we proposed systematic modification of the host genome using modern biological tools to facilitate plant resistance against foreign invasion. We also suggested a number of scientific strategies, such as gene cloning, developing more powerful functional markers, and using haplotype marker-assisted selection, to further improve FHB resistance and associated breeding methods.
Collapse
Affiliation(s)
- Zeeshan Ali Buttar
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Mengquan Cheng
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Panqin Wei
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Ziwei Zhang
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Chunlei Lv
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Chenjia Zhu
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Nida Fatima Ali
- Department of Plant Biotechnology, Atta-Ur-Rehman School of Applied Biosciences (ASAB), National University of Science and Technology, Islamabad 44000, Pakistan
| | - Guozhang Kang
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Kunpu Zhang
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| |
Collapse
|
6
|
Wang Y, Fan J, Zhou Z, Goldman GH, Lu L, Zhang Y. Histone acetyltransferase Sas3 contributes to fungal development, cell wall integrity, and virulence in Aspergillus fumigatus. Appl Environ Microbiol 2024; 90:e0188523. [PMID: 38451077 PMCID: PMC11022558 DOI: 10.1128/aem.01885-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/15/2024] [Indexed: 03/08/2024] Open
Abstract
Histone acetyltransferase (HAT)-mediated epigenetic modification is essential for diverse cellular processes in eukaryotes. However, the functions of HATs in the human pathogen Aspergillus fumigatus remain poorly understood. In this study, we characterized the functions of MOZ, Ybf2/Sas3, Sas2, and Tip60 (MYST)-family histone acetyltransferase something about silencing (Sas3) in A. fumigatus. Phenotypic analysis revealed that loss of Sas3 results in significant impairments in colony growth, conidiation, and virulence in the Galleria mellonella model. Subcellular localization and Western blot analysis demonstrated that Sas3 localizes to nuclei and is capable of acetylating lysine 9 and 14 of histone H3 in vivo. Importantly, we found that Sas3 is critical for the cell wall integrity (CWI) pathway in A. fumigatus as evidenced by hypersensitivity to cell wall-perturbing agents, altered cell wall thickness, and abnormal phosphorylation levels of CWI protein kinase MpkA. Furthermore, site-directed mutagenesis studies revealed that the conserved glycine residues G641 and G643 and glutamate residue E664 are crucial for the acetylation activity of Sas3. Unexpectedly, only triple mutations of Sas3 (G641A/G643A/E664A) displayed defective phenotypes similar to the Δsas3 mutant, while double or single mutations did not. This result implies that the role of Sas3 may extend beyond histone acetylation. Collectively, our findings demonstrate that MYST-family HAT Sas3 plays an important role in the fungal development, virulence, and cell wall integrity in A. fumigatus. IMPORTANCE Epigenetic modification governed by HATs is indispensable for various cellular processes in eukaryotes. Nonetheless, the precise functions of HATs in the human pathogen Aspergillus fumigatus remain elusive. In this study, we unveil the roles of MYST-family HAT Sas3 in colony growth, conidiation, virulence, and cell wall stress response in A. fumigatus. Particularly, our findings demonstrate that Sas3 can function through mechanisms unrelated to histone acetylation, as evidenced by site-directed mutagenesis experiments. Overall, this study broadens our understanding of the regulatory mechanism of HATs in fungal pathogens.
Collapse
Affiliation(s)
- Yamei Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jialu Fan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhengyu Zhou
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yuanwei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
7
|
Breuer J, Ferreira DEA, Kramer M, Bollermann J, Nowrousian M. Functional analysis of chromatin-associated proteins in Sordaria macrospora reveals similar roles for RTT109 and ASF1 in development and DNA damage response. G3 (BETHESDA, MD.) 2024; 14:jkae019. [PMID: 38261383 PMCID: PMC10917505 DOI: 10.1093/g3journal/jkae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
We performed a functional analysis of two potential partners of ASF1, a highly conserved histone chaperone that plays a crucial role in the sexual development and DNA damage resistance in the ascomycete Sordaria macrospora. ASF1 is known to be involved in nucleosome assembly and disassembly, binding histones H3 and H4 during transcription, replication and DNA repair and has direct and indirect roles in histone recycling and modification as well as DNA methylation, acting as a chromatin modifier hub for a large network of chromatin-associated proteins. Here, we functionally characterized two of these proteins, RTT109 and CHK2. RTT109 is a fungal-specific histone acetyltransferase, while CHK2 is an ortholog to PRD-4, a checkpoint kinase of Neurospora crassa that performs similar cell cycle checkpoint functions as yeast RAD53. Through the generation and characterization of deletion mutants, we discovered striking similarities between RTT109 and ASF1 in terms of their contributions to sexual development, histone acetylation, and protection against DNA damage. Phenotypic observations revealed a developmental arrest at the same stage in Δrtt109 and Δasf1 strains, accompanied by a loss of H3K56 acetylation, as detected by western blot analysis. Deletion mutants of rtt109 and asf1 are sensitive to the DNA damaging agent methyl methanesulfonate, but not hydroxyurea. In contrast, chk2 mutants are fertile and resistant to methyl methanesulfonate, but not hydroxyurea. Our findings suggest a close functional association between ASF1 and RTT109 in the context of development, histone modification, and DNA damage response, while indicating a role for CHK2 in separate pathways of the DNA damage response.
Collapse
Affiliation(s)
- Jan Breuer
- Department of Molecular and Cellular Botany, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | | | - Mike Kramer
- Department of Molecular and Cellular Botany, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Jonas Bollermann
- Department of Molecular and Cellular Botany, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Minou Nowrousian
- Department of Molecular and Cellular Botany, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| |
Collapse
|
8
|
Ciesielska A, Kowalczyk A, Paneth A, Stączek P. Evaluation of the antidermatophytic activity of potassium salts of N-acylhydrazinecarbodithioates and their aminotriazole-thione derivatives. Sci Rep 2024; 14:3521. [PMID: 38347115 PMCID: PMC10861498 DOI: 10.1038/s41598-024-54025-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 02/07/2024] [Indexed: 02/15/2024] Open
Abstract
Nowadays, dermatophyte infections are relatively easy to cure, especially since the introduction of orally administered antifungals such as terbinafine and itraconazole. However, these drugs may cause side effects due to liver damage or their interactions with other therapeutics. Hence, the search for new effective chemotherapeutics showing antidermatophyte activity seems to be the urge of the moment. Potassium salts of N-acylhydrazinecarbodithioates are used commonly as precursors for the synthesis of biologically active compounds. Keeping that in mind, the activity of a series of five potassium N-acylhydrazinecarbodithioates (1a-e) and their aminotriazole-thione derivatives (2a-e) was evaluated against a set of pathogenic, keratinolytic fungi, such as Trichophyton ssp., Microsporum ssp. and Chrysosporium keratinophilum, but also against some Gram-positive and Gram-negative bacteria. All tested compounds were found non-toxic for L-929 and HeLa cells, with the IC30 and IC50 values assessed in the MTT assay above 128 mg/L. The compound 5-amino-3-(naphtalene-1-yl)-4,5-dihydro-1H-1,2,4-triazole-5-thione (2d) was found active against all fungal strains tested. Scanning Electron Microscopy (SEM) revealed inhibition of mycelium development of Trichophyton rubrum cultivated on nail fragments and treated with 2d 24 h after infection with fungal spores. Transmission Electron Microscopy (TEM) observation of mycelium treated with 2d showed ultrastructural changes in the morphology of germinated spores. Finally, the RNA-seq analysis indicated that a broad spectrum of genes responded to stress induced by the 2d compound. In conclusion, the results confirm the potential of N-acylhydrazinecarbodithioate derivatives for future use as promising leads for new antidermatophyte agents development.
Collapse
Affiliation(s)
- Anita Ciesielska
- Department of Molecular Microbiology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland.
| | - Aleksandra Kowalczyk
- Department of Molecular Microbiology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | - Agata Paneth
- Department of Organic Chemistry, Faculty of Pharmacy with Medical Analytics Division, Medical University of Lublin, Chodźki 4a, 20-093, Lublin, Poland
| | - Paweł Stączek
- Department of Molecular Microbiology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| |
Collapse
|
9
|
Perochon A, Doohan FM. Trichothecenes and Fumonisins: Key Players in Fusarium-Cereal Ecosystem Interactions. Toxins (Basel) 2024; 16:90. [PMID: 38393168 PMCID: PMC10893083 DOI: 10.3390/toxins16020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Fusarium fungi produce a diverse array of mycotoxic metabolites during the pathogenesis of cereals. Some, such as the trichothecenes and fumonisins, are phytotoxic, acting as non-proteinaceous effectors that facilitate disease development in cereals. Over the last few decades, we have gained some depth of understanding as to how trichothecenes and fumonisins interact with plant cells and how plants deploy mycotoxin detoxification and resistance strategies to defend themselves against the producer fungi. The cereal-mycotoxin interaction is part of a co-evolutionary dance between Fusarium and cereals, as evidenced by a trichothecene-responsive, taxonomically restricted, cereal gene competing with a fungal effector protein and enhancing tolerance to the trichothecene and resistance to DON-producing F. graminearum. But the binary fungal-plant interaction is part of a bigger ecosystem wherein other microbes and insects have been shown to interact with fungal mycotoxins, directly or indirectly through host plants. We are only beginning to unravel the extent to which trichothecenes, fumonisins and other mycotoxins play a role in fungal-ecosystem interactions. We now have tools to determine how, when and where mycotoxins impact and are impacted by the microbiome and microfauna. As more mycotoxins are described, research into their individual and synergistic toxicity and their interactions with the crop ecosystem will give insights into how we can holistically breed for and cultivate healthy crops.
Collapse
Affiliation(s)
| | - Fiona M. Doohan
- UCD School of Biology and Environmental Science, UCD Earth Institute and UCD Institute of Food and Health, University College Dublin, D04 V1W8 Dublin, Ireland
| |
Collapse
|
10
|
Yu H, Zhang J, Fan J, Jia W, Lv Y, Pan H, Zhang X. Infection-specific transcriptional patterns of the maize pathogen Cochliobolus heterostrophus unravel genes involved in asexual development and virulence. MOLECULAR PLANT PATHOLOGY 2024; 25:e13413. [PMID: 38279855 PMCID: PMC10775821 DOI: 10.1111/mpp.13413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/24/2023] [Accepted: 12/10/2023] [Indexed: 01/29/2024]
Abstract
Southern corn leaf blight (SCLB) caused by Cochliobolus heterostrophus is a destructive disease that threatens global maize (Zea mays) production. Despite many studies being conducted, very little is known about molecular processes employed by the pathogen during infection. There is a need to understand the fungal arms strategy and identify novel functional genes as targets for fungicide development. Transcriptome analysis based on RNA sequencing was carried out across conidia germination and host infection by C. heterostrophus. The present study revealed major changes in C. heterostrophus gene expression during host infection. Several differentially expressed genes (DEGs) induced during C. heterostrophus infection could be involved in the biosynthesis of secondary metabolites, peroxisome, energy metabolism, amino acid degradation and oxidative phosphorylation. In addition, histone acetyltransferase, secreted proteins, peroxisomal proteins, NADPH oxidase and transcription factors were selected for further functional validation. Here, we demonstrated that histone acetyltransferases (Hat2 and Rtt109), secreted proteins (Cel61A and Mep1), peroxisomal proteins (Pex11A and Pex14), NADPH oxidases (NoxA, NoxD and NoxR) and transcription factors (Crz1 and MtfA) play essential roles in C. heterostrophus conidiation, stress adaption and virulence. Taken together, our study revealed major changes in gene expression associated with C. heterostrophus infection and identified a diverse repertoire of genes critical for successful infection.
Collapse
Affiliation(s)
- Huilin Yu
- College of Plant ScienceJilin UniversityChangchunChina
| | - Jiyue Zhang
- College of Plant ScienceJilin UniversityChangchunChina
| | - Jinyu Fan
- College of Plant ScienceJilin UniversityChangchunChina
| | - Wantong Jia
- College of Plant ScienceJilin UniversityChangchunChina
| | - Yanan Lv
- College of Plant ScienceJilin UniversityChangchunChina
| | - Hongyu Pan
- College of Plant ScienceJilin UniversityChangchunChina
| | | |
Collapse
|
11
|
Kwon JY, Choi YH, Lee MW, Yu JH, Shin KS. The MYST Family Histone Acetyltransferase SasC Governs Diverse Biological Processes in Aspergillus fumigatus. Cells 2023; 12:2642. [PMID: 37998377 PMCID: PMC10670148 DOI: 10.3390/cells12222642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
The conserved MYST proteins form the largest family of histone acetyltransferases (HATs) that acetylate lysines within the N-terminal tails of histone, enabling active gene transcription. Here, we have investigated the biological and regulatory functions of the MYST family HAT SasC in the opportunistic human pathogenic fungus Aspergillus fumigatus using a series of genetic, biochemical, pathogenic, and transcriptomic analyses. The deletion (Δ) of sasC results in a drastically reduced colony growth, asexual development, spore germination, response to stresses, and the fungal virulence. Genome-wide expression analyses have revealed that the ΔsasC mutant showed 2402 significant differentially expressed genes: 1147 upregulated and 1255 downregulated. The representative upregulated gene resulting from ΔsasC is hacA, predicted to encode a bZIP transcription factor, whereas the UV-endonuclease UVE-1 was significantly downregulated by ΔsasC. Furthermore, our Western blot analyses suggest that SasC likely catalyzes the acetylation of H3K9, K3K14, and H3K29 in A. fumigatus. In conclusion, SasC is associated with diverse biological processes and can be a potential target for controlling pathogenic fungi.
Collapse
Affiliation(s)
- Jae-Yoon Kwon
- Department of Microbiology, Graduate School, Daejeon University, Daejeon 34520, Republic of Korea; (J.-Y.K.); (Y.-H.C.)
| | - Young-Ho Choi
- Department of Microbiology, Graduate School, Daejeon University, Daejeon 34520, Republic of Korea; (J.-Y.K.); (Y.-H.C.)
| | - Min-Woo Lee
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Republic of Korea;
| | - Jae-Hyuk Yu
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kwang-Soo Shin
- Department of Microbiology, Graduate School, Daejeon University, Daejeon 34520, Republic of Korea; (J.-Y.K.); (Y.-H.C.)
| |
Collapse
|
12
|
Suarez-Fernandez M, Álvarez-Aragón R, Pastor-Mediavilla A, Maestre-Guillén A, del Olmo I, De Francesco A, Meile L, Sánchez-Vallet A. Sas3-mediated histone acetylation regulates effector gene activation in a fungal plant pathogen. mBio 2023; 14:e0138623. [PMID: 37642412 PMCID: PMC10653901 DOI: 10.1128/mbio.01386-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/04/2023] [Indexed: 08/31/2023] Open
Abstract
IMPORTANCE Pathogen infections require the production of effectors that enable host colonization. Effectors have diverse functions and are only expressed at certain stages of the infection cycle. Thus, effector genes are tightly regulated by several mechanisms, including chromatin remodeling. Here, we investigate the role of histone acetylation in effector gene activation in the fungal wheat pathogen Zymoseptoria tritici. We demonstrate that lysine acetyltransferases (KATs) are essential for the spatiotemporal regulation of effector genes. We show that the KAT Sas3 is involved in leaf symptom development and pycnidia formation. Importantly, our results indicate that Sas3 controls histone acetylation of effector loci and is a regulator of effector gene activation during stomatal penetration. Overall, our work demonstrates the key role of histone acetylation in regulating gene expression associated with plant infection.
Collapse
Affiliation(s)
- Marta Suarez-Fernandez
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Department of Marine Sciences and Applied Biology, University of Alicante, Alicante, Spain
| | - Rocio Álvarez-Aragón
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Ana Pastor-Mediavilla
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Alejandro Maestre-Guillén
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Ivan del Olmo
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Agustina De Francesco
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Lukas Meile
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Andrea Sánchez-Vallet
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
13
|
Kramer HM, Cook DE, Seidl MF, Thomma BP. Epigenetic regulation of nuclear processes in fungal plant pathogens. PLoS Pathog 2023; 19:e1011525. [PMID: 37535497 PMCID: PMC10399791 DOI: 10.1371/journal.ppat.1011525] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023] Open
Abstract
Through the association of protein complexes to DNA, the eukaryotic nuclear genome is broadly organized into open euchromatin that is accessible for enzymes acting on DNA and condensed heterochromatin that is inaccessible. Chemical and physical alterations to chromatin may impact its organization and functionality and are therefore important regulators of nuclear processes. Studies in various fungal plant pathogens have uncovered an association between chromatin organization and expression of in planta-induced genes that are important for pathogenicity. This review discusses chromatin-based regulation mechanisms as determined in the fungal plant pathogen Verticillium dahliae and relates the importance of epigenetic transcriptional regulation and other nuclear processes more broadly in fungal plant pathogens.
Collapse
Affiliation(s)
- H. Martin Kramer
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
| | - David E. Cook
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, United States of America
| | - Michael F. Seidl
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
- Theoretical Biology & Bioinformatics, Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - Bart P.H.J. Thomma
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
- University of Cologne, Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| |
Collapse
|
14
|
Kim S, Lee J, Park J, Choi S, Bui DC, Kim JE, Shin J, Kim H, Choi GJ, Lee YW, Chang PS, Son H. Genetic and Transcriptional Regulatory Mechanisms of Lipase Activity in the Plant Pathogenic Fungus Fusarium graminearum. Microbiol Spectr 2023; 11:e0528522. [PMID: 37093014 PMCID: PMC10269793 DOI: 10.1128/spectrum.05285-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/30/2023] [Indexed: 04/25/2023] Open
Abstract
Lipases, which catalyze the hydrolysis of long-chain triglycerides, diglycerides, and monoglycerides into free fatty acids and glycerol, participate in various biological pathways in fungi. In this study, we examined the biological functions and regulatory mechanisms of fungal lipases via two approaches. First, we performed a systemic functional characterization of 86 putative lipase-encoding genes in the plant-pathogenic fungus Fusarium graminearum. The phenotypes were assayed for vegetative growth, asexual and sexual reproduction, stress responses, pathogenicity, mycotoxin production, and lipase activity. Most mutants were normal in the assessed phenotypes, implying overlapping roles for lipases in F. graminearum. In particular, FgLip1 and Fgl1 were revealed as core extracellular lipases in F. graminearum. Second, we examined the lipase activity of previously constructed transcription factor (TF) mutants of F. graminearum and identified three TFs and one histone acetyltransferase that significantly affect lipase activity. The relative transcript levels of FgLIP1 and FGL1 were markedly reduced or enhanced in these TF mutants. Among them, Gzzc258 was identified as a key lipase regulator that is also involved in the induction of lipase activity during sexual reproduction. To our knowledge, this study is the first comprehensive functional analysis of fungal lipases and provides significant insights into the genetic and regulatory mechanisms underlying lipases in fungi. IMPORTANCE Fusarium graminearum is an economically important plant-pathogenic fungus that causes Fusarium head blight (FHB) on wheat and barley. Here, we constructed a gene knockout mutant library of 86 putative lipase-encoding genes and established a comprehensive phenotypic database of the mutants. Among them, we found that FgLip1 and Fgl1 act as core extracellular lipases in this pathogen. Moreover, several putative transcription factors (TFs) that regulate the lipase activities in F. graminearum were identified. The disruption mutants of F. graminearum-lipase regulatory TFs all showed defects in sexual reproduction, which implies a strong relationship between sexual development and lipase activity in this fungus. These findings provide valuable insights into the genetic mechanisms regulating lipase activity as well as its importance to the developmental stages of this plant-pathogenic fungus.
Collapse
Affiliation(s)
- Sieun Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Juno Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Jiyeun Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Soyoung Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Duc-Cuong Bui
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jung-Eun Kim
- Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Jeju, Republic of Korea
| | - Jiyoung Shin
- Division of Bioresources Bank, Honam National Institute of Biological Resources, Mokpo, Republic of Korea
| | - Hun Kim
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Gyung Ja Choi
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Yin-Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Pahn-Shick Chang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
- Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul, Republic of Korea
| | - Hokyoung Son
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
15
|
Navarrete B, Ibeas JI, Barrales RR. Systematic characterization of Ustilago maydis sirtuins shows Sir2 as a modulator of pathogenic gene expression. Front Microbiol 2023; 14:1157990. [PMID: 37113216 PMCID: PMC10126416 DOI: 10.3389/fmicb.2023.1157990] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/13/2023] [Indexed: 04/29/2023] Open
Abstract
Phytopathogenic fungi must adapt to the different environmental conditions found during infection and avoid the immune response of the plant. For these adaptations, fungi must tightly control gene expression, allowing sequential changes in transcriptional programs. In addition to transcription factors, chromatin modification is used by eukaryotic cells as a different layer of transcriptional control. Specifically, the acetylation of histones is one of the chromatin modifications with a strong impact on gene expression. Hyperacetylated regions usually correlate with high transcription and hypoacetylated areas with low transcription. Thus, histone deacetylases (HDACs) commonly act as repressors of transcription. One member of the family of HDACs is represented by sirtuins, which are deacetylases dependent on NAD+, and, thus, their activity is considered to be related to the physiological stage of the cells. This property makes sirtuins good regulators during environmental changes. However, only a few examples exist, and with differences in the extent of the implication of the role of sirtuins during fungal phytopathogenesis. In this work, we have performed a systematic study of sirtuins in the maize pathogen Ustilago maydis, finding Sir2 to be involved in the dimorphic switch from yeast cell to filament and pathogenic development. Specifically, the deletion of sir2 promotes filamentation, whereas its overexpression highly reduces tumor formation in the plant. Moreover, transcriptomic analysis revealed that Sir2 represses genes that are expressed during biotrophism development. Interestingly, our results suggest that this repressive effect is not through histone deacetylation, indicating a different target of Sir2 in this fungus.
Collapse
|
16
|
Functional Characterization of the GNAT Family Histone Acetyltransferase Elp3 and GcnE in Aspergillus fumigatus. Int J Mol Sci 2023; 24:ijms24032179. [PMID: 36768506 PMCID: PMC9916960 DOI: 10.3390/ijms24032179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
Post-translational modifications of chromatin structure by histone acetyltransferase (HATs) play a pivotal role in the regulation of gene expression and diverse biological processes. However, the function of GNAT family HATs, especially Elp3, in the opportunistic human pathogenic fungus Aspergillus fumigatus is largely unknown. To investigate the roles of the GNAT family HATs Elp3 and GcnE in the A. fumigatus, we have generated and characterized individual null Δelp3 and ΔgcnE mutants. The radial growth of fungal colonies was significantly decreased by the loss of elp3 or gcnE, and the number of asexual spores (conidia) in the ΔgcnE mutant was significantly reduced. Moreover, the mRNA levels of the key asexual development regulators were also significantly low in the ΔgcnE mutant compared to wild type (WT). Whereas both the Δelp3 and ΔgcnE mutants were markedly impaired in the formation of adherent biofilms, the ΔgcnE mutant showed a complete loss of surface structure and of intercellular matrix. The ΔgcnE mutant responded differently to oxidative stressors and showed significant susceptibility to triazole antifungal agents. Furthermore, Elp3 and GcnE function oppositely in the production of secondary metabolites, and the ΔgcnE mutant showed attenuated virulence. In conclusion, Elp3 and GcnE are associated with diverse biological processes and can be potential targets for controlling the pathogenic fungus.
Collapse
|
17
|
Wang W, Liang X, Li Y, Wang P, Keller NP. Genetic Regulation of Mycotoxin Biosynthesis. J Fungi (Basel) 2022; 9:jof9010021. [PMID: 36675842 PMCID: PMC9861139 DOI: 10.3390/jof9010021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Mycotoxin contamination in food poses health hazards to humans. Current methods of controlling mycotoxins still have limitations and more effective approaches are needed. During the past decades of years, variable environmental factors have been tested for their influence on mycotoxin production leading to elucidation of a complex regulatory network involved in mycotoxin biosynthesis. These regulators are putative targets for screening molecules that could inhibit mycotoxin synthesis. Here, we summarize the regulatory mechanisms of hierarchical regulators, including pathway-specific regulators, global regulators and epigenetic regulators, on the production of the most critical mycotoxins (aflatoxins, patulin, citrinin, trichothecenes and fumonisins). Future studies on regulation of mycotoxins will provide valuable knowledge for exploring novel methods to inhibit mycotoxin biosynthesis in a more efficient way.
Collapse
Affiliation(s)
- Wenjie Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
- Institute of Food Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
- Correspondence: (W.W.); (N.P.K.)
| | - Xinle Liang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
- Institute of Food Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yudong Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
- Institute of Food Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Pinmei Wang
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Correspondence: (W.W.); (N.P.K.)
| |
Collapse
|
18
|
Nowrousian M. The Role of Chromatin and Transcriptional Control in the Formation of Sexual Fruiting Bodies in Fungi. Microbiol Mol Biol Rev 2022; 86:e0010422. [PMID: 36409109 PMCID: PMC9769939 DOI: 10.1128/mmbr.00104-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Fungal fruiting bodies are complex, three-dimensional structures that arise from a less complex vegetative mycelium. Their formation requires the coordinated action of many genes and their gene products, and fruiting body formation is accompanied by major changes in the transcriptome. In recent years, numerous transcription factor genes as well as chromatin modifier genes that play a role in fruiting body morphogenesis were identified, and through research on several model organisms, the underlying regulatory networks that integrate chromatin structure, gene expression, and cell differentiation are becoming clearer. This review gives a summary of the current state of research on the role of transcriptional control and chromatin structure in fruiting body development. In the first part, insights from transcriptomics analyses are described, with a focus on comparative transcriptomics. In the second part, examples of more detailed functional characterizations of the role of chromatin modifiers and/or transcription factors in several model organisms (Neurospora crassa, Aspergillus nidulans, Sordaria macrospora, Coprinopsis cinerea, and Schizophyllum commune) that have led to a better understanding of regulatory networks at the level of chromatin structure and transcription are discussed.
Collapse
Affiliation(s)
- Minou Nowrousian
- Department of Molecular and Cellular Botany, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
19
|
Ferrara M, Perrone G, Gallo A. Recent advances in biosynthesis and regulatory mechanisms of principal mycotoxins. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
An D, Song L, Li Y, Shen L, Miao P, Wang Y, Liu D, Jiang L, Wang F, Yang J. Comprehensive analysis of lysine lactylation in Frankliniella occidentalis. Front Genet 2022; 13:1014225. [PMID: 36386791 PMCID: PMC9663987 DOI: 10.3389/fgene.2022.1014225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Western flower thrips (Frankliniella occidentalis) are among the most important pests globally that transmit destructive plant viruses and infest multiple commercial crops. Lysine lactylation (Klac) is a recently discovered novel post-translational modification (PTM). We used liquid chromatography-mass spectrometry to identify the global lactylated proteome of F. occidentalis, and further enriched the identified lactylated proteins using Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). In the present study, we identified 1,458 Klac sites in 469 proteins from F. occidentalis. Bioinformatics analysis showed that Klac was widely distributed in F. occidentalis proteins, and these Klac modified proteins participated in multiple biological processes. GO and KEGG enrichment analysis revealed that Klac proteins were significantly enriched in multiple cellular compartments and metabolic pathways, such as the ribosome and carbon metabolism pathways. Two Klac proteins were found to be involved in the regulation of the TSWV (Tomato spotted wilt virus) transmission in F. occidentalis. This study provides a systematic report and a rich dataset of lactylation in F. occidentalis proteome for potential studies on the Klac protein of this notorious pest.
Collapse
Affiliation(s)
- Dong An
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Liyun Song
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Ying Li
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Lili Shen
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Pu Miao
- Luoyang City Company of Henan Province Tobacco Company, Luoyang, China
| | - Yujie Wang
- Luoyang City Company of Henan Province Tobacco Company, Luoyang, China
| | - Dongyang Liu
- Liangshan State Company of Sichuan Province Tobacco Company, Mile, China
| | - Lianqiang Jiang
- Liangshan State Company of Sichuan Province Tobacco Company, Mile, China
| | - Fenglong Wang
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- *Correspondence: Fenglong Wang, ; Jinguang Yang,
| | - Jinguang Yang
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- *Correspondence: Fenglong Wang, ; Jinguang Yang,
| |
Collapse
|
21
|
Zhao F, Yuan Z, Wen W, Huang Z, Mao X, Zhou M, Hou Y. FgMet3 and FgMet14 related to cysteine and methionine biosynthesis regulate vegetative growth, sexual reproduction, pathogenicity, and sensitivity to fungicides in Fusarium graminearum. FRONTIERS IN PLANT SCIENCE 2022; 13:1011709. [PMID: 36352883 PMCID: PMC9638117 DOI: 10.3389/fpls.2022.1011709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Fusarium graminearum is a destructive filamentous fungus, which widely exists in wheat and other cereal crops. Cysteine and Methionine are unique sulfur-containing amino acids that play an essential role in protein synthesis and cell life, but their functions and regulation in F. graminearum remain largely unknown. Here we identified two proteins, FgMet3 and FgMet14 in F. graminearum, which are related to the synthesis of cysteine and methionine. We found FgMet3 and FgMet14 were localized to the cytoplasm and there was an interaction between them. FgMet3 or FgMet14 deletion mutants (ΔFgMet3 and ΔFgMet14) were deficient in vegetative growth, pigment formation, sexual development, penetrability and pathogenicity. With exogenous addition of cysteine and methionine, the vegetative growth and penetrability could be completely restored in ΔFgMet3 and ΔFgMet14, while sexual reproduction could be fully restored in ΔFgMet3 and partially restored in ΔFgMet14. ΔFgMet3 and ΔFgMet14 exhibited decreased sensitivity to Congo red stress and increased sensitivity to SDS, NaCl, KCl, Sorbitol, Menadione, and Zn ion stresses. Moreover, FgMet3 and FgMet14 nonspecifically regulate the sensitivity of F. graminearum to fungicides. In conclusion, FgMet3 and FgMet14 interacted to jointly regulate the development, pathogenicity, pigment formation, sensitivity to fungicides and stress factors in F. graminearum.
Collapse
|
22
|
Xu H, Ye M, Xia A, Jiang H, Huang P, Liu H, Hou R, Wang Q, Li D, Xu JR, Jiang C. The Fng3 ING protein regulates H3 acetylation and H4 deacetylation by interacting with two distinct histone-modifying complexes. THE NEW PHYTOLOGIST 2022; 235:2350-2364. [PMID: 35653584 DOI: 10.1111/nph.18294] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/30/2022] [Indexed: 05/26/2023]
Abstract
The steady-state level of histone acetylation is maintained by histone acetyltransferase (HAT) and histone deacetylase (HDAC) complexes. INhibitor of Growth (ING) proteins are key components of the HAT or HDAC complexes but their relationship with other components and roles in phytopathogenic fungi are not well-characterized. Here, the FNG3 ING gene was functionally characterized in the wheat head blight fungus Fusarium graminearum. Deletion of FNG3 results in defects in fungal development and pathogenesis. Unlike other ING proteins that are specifically associated with distinct complexes, Fng3 was associated with both NuA3 HAT and FgRpd3 HDAC complexes to regulate H3 acetylation and H4 deacetylation. Whereas FgNto1 mediates the FgSas3-Fng3 interaction in the NuA3 complex, Fng3 interacted with the C-terminal region of FgRpd3 that is present in Rpd3 orthologs from filamentous fungi but absent in yeast Rpd3. The intrinsically disordered regions in the C-terminal tail of FgRpd3 underwent phase separation, which was important for its interaction with Fng3. Furthermore, the ING domain of Fng3 is responsible for its specificities in protein-protein interactions and functions. Taken together, Fng3 is involved in the dynamic regulation of histone acetylation by interacting with two histone modification complexes, and is important for fungal development and pathogenicity.
Collapse
Affiliation(s)
- Huaijian Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Meng Ye
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Aliang Xia
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hang Jiang
- Institution of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250100, China
| | - Panpan Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Rui Hou
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Qinhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dongao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
23
|
Schüller A, Studt-Reinhold L, Strauss J. How to Completely Squeeze a Fungus-Advanced Genome Mining Tools for Novel Bioactive Substances. Pharmaceutics 2022; 14:1837. [PMID: 36145585 PMCID: PMC9505985 DOI: 10.3390/pharmaceutics14091837] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Fungal species have the capability of producing an overwhelming diversity of bioactive substances that can have beneficial but also detrimental effects on human health. These so-called secondary metabolites naturally serve as antimicrobial "weapon systems", signaling molecules or developmental effectors for fungi and hence are produced only under very specific environmental conditions or stages in their life cycle. However, as these complex conditions are difficult or even impossible to mimic in laboratory settings, only a small fraction of the true chemical diversity of fungi is known so far. This also implies that a large space for potentially new pharmaceuticals remains unexplored. We here present an overview on current developments in advanced methods that can be used to explore this chemical space. We focus on genetic and genomic methods, how to detect genes that harbor the blueprints for the production of these compounds (i.e., biosynthetic gene clusters, BGCs), and ways to activate these silent chromosomal regions. We provide an in-depth view of the chromatin-level regulation of BGCs and of the potential to use the CRISPR/Cas technology as an activation tool.
Collapse
Affiliation(s)
| | | | - Joseph Strauss
- Institute of Microbial Genetics, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, A-3430 Tulln/Donau, Austria
| |
Collapse
|
24
|
Histone Acetyltransferase CfGcn5-Mediated Autophagy Governs the Pathogenicity of Colletotrichum fructicola. mBio 2022; 13:e0195622. [PMID: 35975920 PMCID: PMC9600425 DOI: 10.1128/mbio.01956-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Camellia oleifera is a woody edible-oil plant in China, and anthracnose occurs wherever it is grown, causing serious losses each year. We previously identified that the histone acetyltransferase CfGcn5 orchestrates growth, development, and pathogenicity in Colletotrichum fructicola, the major causal agent of anthracnose on C. oleifera. To elucidate the underlying mechanism, we conducted a transcriptome analysis and found that CfGcn5 is mainly involved in ribosomes, catalytic and metabolic processes, primary metabolism, and autophagy. In addition, we provided evidence showing that CfGcn5 serves as an autophagy repressor to mediate the expression of many autophagy-related genes (ATG) and undergoes degradation during autophagy. Moreover, we found that the CfATG8 and CfATG9 gene-deletion mutants had defects in mitosis and autophagy, resulting in their decreased appressoria formation rates and lower turgor pressure. These combined effects caused the failure of their appressoria functions and caused defects on their pathogenicity, revealing the importance of autophagy in pathogenicity. Taken together, our study illustrates that the autophagy repressor CfGcn5 undergoes degradation in order to regulate autophagy-dependent pathogenicity in C. fructicola.
Collapse
|
25
|
Gu Q, Wang Y, Zhao X, Yuan B, Zhang M, Tan Z, Zhang X, Chen Y, Wu H, Luo Y, Keller NP, Gao X, Ma Z. Inhibition of histone acetyltransferase GCN5 by a transcription factor FgPacC controls fungal adaption to host-derived iron stress. Nucleic Acids Res 2022; 50:6190-6210. [PMID: 35687128 PMCID: PMC9226496 DOI: 10.1093/nar/gkac498] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/19/2022] [Accepted: 05/27/2022] [Indexed: 02/07/2023] Open
Abstract
Poaceae plants can locally accumulate iron to suppress pathogen infection. It remains unknown how pathogens overcome host-derived iron stress during their successful infections. Here, we report that Fusarium graminearum (Fg), a destructive fungal pathogen of cereal crops, is challenged by host-derived high-iron stress. Fg infection induces host alkalinization, and the pH-dependent transcription factor FgPacC undergoes a proteolytic cleavage into the functional isoform named FgPacC30 under alkaline host environment. Subsequently FgPacC30 binds to a GCCAR(R = A/G)G element at the promoters of the genes involved in iron uptake and inhibits their expression, leading to adaption of Fg to high-iron stress. Mechanistically, FgPacC30 binds to FgGcn5 protein, a catalytic subunit of Spt-Ada-Gcn5 Acetyltransferase (SAGA) complex, leading to deregulation of histone acetylation at H3K18 and H2BK11, and repression of iron uptake genes. Moreover, we identified a protein kinase FgHal4, which is highly induced by extracellular high-iron stress and protects FgPacC30 against 26S proteasome-dependent degradation by promoting FgPacC30 phosphorylation at Ser2. Collectively, this study uncovers a novel inhibitory mechanism of the SAGA complex by a transcription factor that enables a fungal pathogen to adapt to dynamic microenvironments during infection.
Collapse
Affiliation(s)
- Qin Gu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Yujie Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Xiaozhen Zhao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Bingqin Yuan
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Mengxuan Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Zheng Tan
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Xinyue Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Yun Chen
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Huijun Wu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Yuming Luo
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai'an, China
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Xuewen Gao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Yang K, Tian J, Keller NP. Post-translational modifications drive secondary metabolite biosynthesis in Aspergillus: a review. Environ Microbiol 2022; 24:2857-2881. [PMID: 35645150 PMCID: PMC9545273 DOI: 10.1111/1462-2920.16034] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 12/26/2022]
Abstract
Post‐translational modifications (PTMs) are important for protein function and regulate multiple cellular processes and secondary metabolites (SMs) in fungi. Aspergillus species belong to a genus renown for an abundance of bioactive secondary metabolites, many important as toxins, pharmaceuticals and in industrial production. The genes required for secondary metabolites are typically co‐localized in biosynthetic gene clusters (BGCs), which often localize in heterochromatic regions of genome and are ‘turned off’ under laboratory condition. Efforts have been made to ‘turn on’ these BGCs by genetic manipulation of histone modifications, which could convert the heterochromatic structure to euchromatin. Additionally, non‐histone PTMs also play critical roles in the regulation of secondary metabolism. In this review, we collate the known roles of epigenetic and PTMs on Aspergillus SM production. We also summarize the proteomics approaches and bioinformatics tools for PTM identification and prediction and provide future perspectives on the emerging roles of PTM on regulation of SM biosynthesis in Aspergillus and other fungi.
Collapse
Affiliation(s)
- Kunlong Yang
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China.,Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, 53705, USA
| | - Jun Tian
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, 53705, USA
| |
Collapse
|
27
|
Lai Y, Wang L, Zheng W, Wang S. Regulatory Roles of Histone Modifications in Filamentous Fungal Pathogens. J Fungi (Basel) 2022; 8:565. [PMID: 35736048 PMCID: PMC9224773 DOI: 10.3390/jof8060565] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/19/2022] Open
Abstract
Filamentous fungal pathogens have evolved diverse strategies to infect a variety of hosts including plants and insects. The dynamic infection process requires rapid and fine-tuning regulation of fungal gene expression programs in response to the changing host environment and defenses. Therefore, transcriptional reprogramming of fungal pathogens is critical for fungal development and pathogenicity. Histone post-translational modification, one of the main mechanisms of epigenetic regulation, has been shown to play an important role in the regulation of gene expressions, and is involved in, e.g., fungal development, infection-related morphogenesis, environmental stress responses, biosynthesis of secondary metabolites, and pathogenicity. This review highlights recent findings and insights into regulatory mechanisms of histone methylation and acetylation in fungal development and pathogenicity, as well as their roles in modulating pathogenic fungi-host interactions.
Collapse
Affiliation(s)
- Yiling Lai
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China; (L.W.); (W.Z.)
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China; (L.W.); (W.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weilu Zheng
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China; (L.W.); (W.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sibao Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China; (L.W.); (W.Z.)
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
28
|
Etier A, Dumetz F, Chéreau S, Ponts N. Post-Translational Modifications of Histones Are Versatile Regulators of Fungal Development and Secondary Metabolism. Toxins (Basel) 2022; 14:toxins14050317. [PMID: 35622565 PMCID: PMC9145779 DOI: 10.3390/toxins14050317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/16/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Chromatin structure is a major regulator of DNA-associated processes, such as transcription, DNA repair, and replication. Histone post-translational modifications, or PTMs, play a key role on chromatin dynamics. PTMs are involved in a wide range of biological processes in eukaryotes, including fungal species. Their deposition/removal and their underlying functions have been extensively investigated in yeasts but much less in other fungi. Nonetheless, the major role of histone PTMs in regulating primary and secondary metabolisms of filamentous fungi, including human and plant pathogens, has been pinpointed. In this review, an overview of major identified PTMs and their respective functions in fungi is provided, with a focus on filamentous fungi when knowledge is available. To date, most of these studies investigated histone acetylations and methylations, but the development of new methodologies and technologies increasingly allows the wider exploration of other PTMs, such as phosphorylation, ubiquitylation, sumoylation, and acylation. Considering the increasing number of known PTMs and the full range of their possible interactions, investigations of the subsequent Histone Code, i.e., the biological consequence of the combinatorial language of all histone PTMs, from a functional point of view, are exponentially complex. Better knowledge about histone PTMs would make it possible to efficiently fight plant or human contamination, avoid the production of toxic secondary metabolites, or optimize the industrial biosynthesis of certain beneficial compounds.
Collapse
|
29
|
Wang LQ, Wu KT, Yang P, Hou F, Rajput SA, Qi DS, Wang S. Transcriptomics Reveals the Effect of Thymol on the Growth and Toxin Production of Fusarium graminearum. Toxins (Basel) 2022; 14:142. [PMID: 35202169 PMCID: PMC8877954 DOI: 10.3390/toxins14020142] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/05/2022] [Accepted: 02/11/2022] [Indexed: 12/20/2022] Open
Abstract
Fusarium graminearum is a harmful pathogen causing head blight in cereals such as wheat and barley, and thymol has been proven to inhibit the growth of many pathogens. This study aims to explore the fungistatic effect of thymol on F. graminearum and its mechanism. Different concentrations of thymol were used to treat F. graminearum. The results showed that the EC50 concentration of thymol against F. graminearum was 40 μg/mL. Compared with the control group, 40 μg/mL of thymol reduced the production of Deoxynivalenol (DON) and 3-Ac-DON by 70.1% and 78.2%, respectively. Our results indicate that thymol can effectively inhibit the growth and toxin production of F. graminearum and cause an extensive transcriptome response. Transcriptome identified 16,727 non-redundant unigenes and 1653 unigenes that COG did not annotate. The correlation coefficients between samples were all >0.941. When FC was 2.0 times, a total of 3230 differential unigenes were identified, of which 1223 were up-regulated, and 2007 were down-regulated. Through the transcriptome, we confirmed that the expression of many genes involved in F. graminearum growth and synthesis of DON and other secondary metabolites were also changed. The gluconeogenesis/glycolysis pathway may be a potential and important way for thymol to affect the growth of F. graminearum hyphae and the production of DON simultaneously.
Collapse
Affiliation(s)
- Lian-Qun Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.-Q.W.); (K.-T.W.); (P.Y.)
- Department of Animal Science, College of Animal Science and Technology, Tarim University, Aral 843300, China;
| | - Kun-Tan Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.-Q.W.); (K.-T.W.); (P.Y.)
| | - Ping Yang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.-Q.W.); (K.-T.W.); (P.Y.)
| | - Fang Hou
- Department of Animal Science, College of Animal Science and Technology, Tarim University, Aral 843300, China;
| | - Shahid Ali Rajput
- Faculty of Veterinary and Animal Science, Muhammad Nawaz Shareef University of Agriculture, Multan 60000, Punjab, Pakistan;
| | - De-Sheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.-Q.W.); (K.-T.W.); (P.Y.)
| | - Shuai Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.-Q.W.); (K.-T.W.); (P.Y.)
| |
Collapse
|
30
|
Atanasoff-Kardjalieff AK, Studt L. Secondary Metabolite Gene Regulation in Mycotoxigenic Fusarium Species: A Focus on Chromatin. Toxins (Basel) 2022; 14:96. [PMID: 35202124 PMCID: PMC8880415 DOI: 10.3390/toxins14020096] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/31/2022] Open
Abstract
Fusarium is a species-rich group of mycotoxigenic plant pathogens that ranks as one of the most economically important fungal genera in the world. During growth and infection, they are able to produce a vast spectrum of low-molecular-weight compounds, so-called secondary metabolites (SMs). SMs often comprise toxic compounds (i.e., mycotoxins) that contaminate precious food and feed sources and cause adverse health effects in humans and livestock. In this context, understanding the regulation of their biosynthesis is crucial for the development of cropping strategies that aim at minimizing mycotoxin contamination in the field. Nevertheless, currently, only a fraction of SMs have been identified, and even fewer are considered for regular monitoring by regulatory authorities. Limitations to exploit their full chemical potential arise from the fact that the genes involved in their biosynthesis are often silent under standard laboratory conditions and only induced upon specific stimuli mimicking natural conditions in which biosynthesis of the respective SM becomes advantageous for the producer. This implies a complex regulatory network. Several components of these gene networks have been studied in the past, thereby greatly advancing the understanding of SM gene regulation and mycotoxin biosynthesis in general. This review aims at summarizing the latest advances in SM research in these notorious plant pathogens with a focus on chromatin structure.
Collapse
Affiliation(s)
| | - Lena Studt
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), 3430 Tulln an der Donau, Austria;
| |
Collapse
|
31
|
Colabardini AC, Wang F, Miao Z, Pardeshi L, Valero C, de Castro PA, Akiyama DY, Tan K, Nora LC, Silva-Rocha R, Marcet-Houben M, Gabaldón T, Fill T, Wong KH, Goldman GH. Chromatin profiling reveals heterogeneity in clinical isolates of the human pathogen Aspergillus fumigatus. PLoS Genet 2022; 18:e1010001. [PMID: 35007279 PMCID: PMC8782537 DOI: 10.1371/journal.pgen.1010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 01/21/2022] [Accepted: 12/17/2021] [Indexed: 12/21/2022] Open
Abstract
Invasive Pulmonary Aspergillosis, which is caused by the filamentous fungus Aspergillus fumigatus, is a life-threatening infection for immunosuppressed patients. Chromatin structure regulation is important for genome stability maintenance and has the potential to drive genome rearrangements and affect virulence and pathogenesis of pathogens. Here, we performed the first A. fumigatus global chromatin profiling of two histone modifications, H3K4me3 and H3K9me3, focusing on the two most investigated A. fumigatus clinical isolates, Af293 and CEA17. In eukaryotes, H3K4me3 is associated with active transcription, while H3K9me3 often marks silent genes, DNA repeats, and transposons. We found that H3K4me3 deposition is similar between the two isolates, while H3K9me3 is more variable and does not always represent transcriptional silencing. Our work uncovered striking differences in the number, locations, and expression of transposable elements between Af293 and CEA17, and the differences are correlated with H3K9me3 modifications and higher genomic variations among strains of Af293 background. Moreover, we further showed that the Af293 strains from different laboratories actually differ in their genome contents and found a frequently lost region in chromosome VIII. For one such Af293 variant, we identified the chromosomal changes and demonstrated their impacts on its secondary metabolites production, growth and virulence. Overall, our findings not only emphasize the influence of genome heterogeneity on A. fumigatus fitness, but also caution about unnoticed chromosomal variations among common laboratory strains.
Collapse
Affiliation(s)
- Ana Cristina Colabardini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
- Faculty of Health Sciences, University of Macau, Macau SAR of China
| | - Fang Wang
- Faculty of Health Sciences, University of Macau, Macau SAR of China
- Intensive Care Unit, Biomedical Research Center, Shenzhen Institute of Translational Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhengqiang Miao
- Faculty of Health Sciences, University of Macau, Macau SAR of China
| | - Lakhansing Pardeshi
- Faculty of Health Sciences, University of Macau, Macau SAR of China
- Genomics, Bioinformatics and Single Cell Analysis Core, Faculty of Health Sciences, University of Macau, Macau SAR of China
| | - Clara Valero
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Daniel Yuri Akiyama
- Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Kaeling Tan
- Faculty of Health Sciences, University of Macau, Macau SAR of China
- Genomics, Bioinformatics and Single Cell Analysis Core, Faculty of Health Sciences, University of Macau, Macau SAR of China
| | - Luisa Czamanski Nora
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rafael Silva-Rocha
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marina Marcet-Houben
- Barcelona Supercomputing Centre (BSC-CNS). Jordi Girona, Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, Barcelona, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS). Jordi Girona, Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Taicia Fill
- Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Macau SAR of China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR of China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR of China
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
32
|
Ma H, Li L, Gai Y, Zhang X, Chen Y, Zhuo X, Cao Y, Jiao C, Gmitter FG, Li H. Histone Acetyltransferases and Deacetylases Are Required for Virulence, Conidiation, DNA Damage Repair, and Multiple Stresses Resistance of Alternaria alternata. Front Microbiol 2021; 12:783633. [PMID: 34880849 PMCID: PMC8645686 DOI: 10.3389/fmicb.2021.783633] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/02/2021] [Indexed: 01/16/2023] Open
Abstract
Histone acetylation, which is critical for transcriptional regulation and various biological processes in eukaryotes, is a reversible dynamic process regulated by HATs and HDACs. This study determined the function of 6 histone acetyltransferases (HATs) (Gcn5, RTT109, Elp3, Sas3, Sas2, Nat3) and 6 histone deacetylases (HDACs) (Hos2, Rpd3, Hda1, Hos3, Hst2, Sir2) in the phytopathogenic fungus Alternaria alternata by analyzing targeted gene deletion mutants. Our data provide evidence that HATs and HDACs are both required for mycelium growth, cell development and pathogenicity as many gene deletion mutants (ΔGcn5, ΔRTT109, ΔElp3, ΔSas3, ΔNat3, ΔHos2, and ΔRpd3) displayed reduced growth, conidiation or virulence at varying degrees. In addition, HATs and HDACs are involved in the resistance to multiple stresses such as oxidative stress (Sas3, Gcn5, Elp3, RTT109, Hos2), osmotic stress (Sas3, Gcn5, RTT109, Hos2), cell wall-targeting agents (Sas3, Gcn5, Hos2), and fungicide (Gcn5, Hos2). ΔGcn5, ΔSas3, and ΔHos2 displayed severe growth defects on sole carbon source medium suggesting a vital role of HATs and HDACs in carbon source utilization. More SNPs were generated in ΔGcn5 in comparison to wild-type when they were exposed to ultraviolet ray. Moreover, ΔRTT109, ΔGcn5, and ΔHos2 showed severe defects in resistance to DNA-damaging agents, indicating the critical role of HATs and HDACs in DNA damage repair. These phenotypes correlated well with the differentially expressed genes in ΔGcn5 and ΔHos2 that are essential for carbon sources metabolism, DNA damage repair, ROS detoxification, and asexual development. Furthermore, Gcn5 is required for the acetylation of H3K4. Overall, our study provides genetic evidence to define the central role of HATs and HDACs in the pathological and biological functions of A. alternata.
Collapse
Affiliation(s)
- Haijie Ma
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China.,Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou, China.,Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Lei Li
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yunpeng Gai
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiaoyan Zhang
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yanan Chen
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiaokang Zhuo
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Yingzi Cao
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Chen Jiao
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Fred G Gmitter
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Hongye Li
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
33
|
Chen X, Wu L, Lan H, Sun R, Wen M, Ruan D, Zhang M, Wang S. Histone acetyltransferases MystA and MystB contribute to morphogenesis and aflatoxin biosynthesis by regulating acetylation in fungus Aspergillus flavus. Environ Microbiol 2021; 24:1340-1361. [PMID: 34863014 DOI: 10.1111/1462-2920.15856] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/19/2021] [Indexed: 11/28/2022]
Abstract
Myst family is highly conserved histone acetyltransferases in eukaryotic cells and is known to play crucial roles in various cellular processes; however, acetylation catalysed by acetyltransferases is unclear in filamentous fungi. Here, we identified two classical nonessential Myst enzymes and analysed their functions in Aspergillus flavus, which generates aflatoxin B1, one of the most carcinogenic secondary metabolites. MystA and MystB located in nuclei and cytoplasm, and mystA could acetylate H4K16ac, while mystB acetylates H3K14ac, H3K18ac and H3K23ac. Deletion mystA resulted in decreased conidiation, increased sclerotia formation and aflatoxin production. Deletion of mystB leads to significant defects in conidiation, sclerotia formation and aflatoxin production. Additionally, double-knockout mutant (ΔmystA/mystB) display a stronger and similar defect to ΔmystB mutant, indicating that mystB plays a major role in regulating development and aflatoxin production. Both mystA and mystB play important role in crop colonization. Moreover, catalytic domain MOZ and the catalytic site E199/E243 were important for the acetyltransferase function of Myst. Notably, chromatin immunoprecipitation results indicated that mystB participated in oxidative detoxification by regulating the acetylation level of H3K14, and further regulated nsdD to affect sclerotia formation and aflatoxin production. This study provides new evidences to discover the biological functions of histone acetyltransferase in A. flavus.
Collapse
Affiliation(s)
- Xuan Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lianghuan Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huahui Lan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ruilin Sun
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Meifang Wen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Danrui Ruan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mengjuan Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shihua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
34
|
Ma T, Zhang L, Wang M, Li Y, Jian Y, Wu L, Kistler HC, Ma Z, Yin Y. Plant defense compound triggers mycotoxin synthesis by regulating H2B ub1 and H3K4 me2/3 deposition. THE NEW PHYTOLOGIST 2021; 232:2106-2123. [PMID: 34480757 PMCID: PMC9293436 DOI: 10.1111/nph.17718] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/30/2021] [Indexed: 05/05/2023]
Abstract
Fusarium graminearum produces the mycotoxin deoxynivalenol (DON) which promotes its expansion during infection on its plant host wheat. Conditional expression of DON production during infection is poorly characterized. Wheat produces the defense compound putrescine, which induces hypertranscription of DON biosynthetic genes (FgTRIs) and subsequently leads to DON accumulation during infection. Further, the regulatory mechanisms of FgTRIs hypertranscription upon putrescine treatment were investigated. The transcription factor FgAreA regulates putrescine-mediated transcription of FgTRIs by facilitating the enrichment of histone H2B monoubiquitination (H2B ub1) and histone 3 lysine 4 di- and trimethylations (H3K4 me2/3) on FgTRIs. Importantly, a DNA-binding domain (bZIP) specifically within the Fusarium H2B ub1 E3 ligase Bre1 othologs is identified, and the binding of this bZIP domain to FgTRIs depends on FgAreA-mediated chromatin rearrangement. Interestingly, H2B ub1 regulates H3K4 me2/3 via the methyltransferase complex COMPASS component FgBre2, which is different from Saccharomyces cerevisiae. Taken together, our findings reveal the molecular mechanisms by which host-generated putrescine induces DON production during F. graminearum infection. Our results also provide a novel insight into the role of putrescine during phytopathogen-host interactions and broaden our knowledge of H2B ub1 biogenesis and crosstalk between H2B ub1 and H3K4 me2/3 in eukaryotes.
Collapse
Affiliation(s)
- Tianling Ma
- State Key Laboratory of Rice BiologyInstitute of BiotechnologyZhejiang University866 Yuhangtang RoadHangzhou310058China
| | - Lixin Zhang
- State Key Laboratory of Rice BiologyInstitute of BiotechnologyZhejiang University866 Yuhangtang RoadHangzhou310058China
| | - Minhui Wang
- State Key Laboratory of Rice BiologyInstitute of BiotechnologyZhejiang University866 Yuhangtang RoadHangzhou310058China
| | - Yiqing Li
- State Key Laboratory of Rice BiologyInstitute of BiotechnologyZhejiang University866 Yuhangtang RoadHangzhou310058China
| | - Yunqing Jian
- State Key Laboratory of Rice BiologyInstitute of BiotechnologyZhejiang University866 Yuhangtang RoadHangzhou310058China
| | - Liang Wu
- Institute of Crop ScienceZhejiang University866 Yuhangtang RoadHangzhou310058China
| | - Harold Corby Kistler
- United States Department of AgricultureAgricultural Research Service1551 Lindig StreetSt PaulMN55108USA
| | - Zhonghua Ma
- State Key Laboratory of Rice BiologyInstitute of BiotechnologyZhejiang University866 Yuhangtang RoadHangzhou310058China
| | - Yanni Yin
- State Key Laboratory of Rice BiologyInstitute of BiotechnologyZhejiang University866 Yuhangtang RoadHangzhou310058China
| |
Collapse
|
35
|
Liu J, An B, Luo H, He C, Wang Q. The histone acetyltransferase FocGCN5 regulates growth, conidiation, and pathogenicity of the banana wilt disease causal agent Fusarium oxysporum f.sp. cubense tropical race 4. Res Microbiol 2021; 173:103902. [PMID: 34838989 DOI: 10.1016/j.resmic.2021.103902] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/05/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
Chromatin structure modifications by histone acetyltransferase are involved in multiple biological processes in eukaryotes. In the present study, the GCN5 homologue FocGCN5 was identified in Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4). The coding gene was then knocked out to investigate the roles of FocGNC5. The mutant ΔFocGCN5 was found significantly reduced in growth rate and conidiation, and almost completely lost pathogenicity to banana plantlets. The RNA-seq analysis provide an insight into the underlying mechanism. Firstly, transcription of the genes involved in carbohydrate metabolism and fungal cell wall synthesis was reduced in ΔFocGCN5, leading to the impairment of apical deposition of cell-wall material. Secondly, FocabaA, one of the pivotal regulators of conidiation, was significantly reduced in expression in ΔFocGCN5, which might be the main cause of the conidiation reduction. Thirdly, the pathogenicity-associated factors, including effectors and plant cell wall degrading enzymes, were almost all down-regulated in ΔFocGCN5, which accounts for the decrease of pathogenicity. In addition, the stress tolerance to salt, heat, and cell wall inhibitors was slightly increased in ΔFocGCN5. Taken together, our studies clarify the roles of FocGCN5 in growth, conidiation, and pathogenicity of Foc TR4, and explore the possible mechanism behind its biological functions.
Collapse
Affiliation(s)
- Jingjing Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou 570228, Hainan, People's Republic of China
| | - Bang An
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou 570228, Hainan, People's Republic of China
| | - Hongli Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou 570228, Hainan, People's Republic of China
| | - Chaozu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou 570228, Hainan, People's Republic of China
| | - Qiannan Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou 570228, Hainan, People's Republic of China.
| |
Collapse
|
36
|
Zhang J, Gao J, Li M, Shao Y, Chen F. MrGcn5 is required for the mycotoxin production, sexual and asexual development in Monascus ruber. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
Xu M, Zhang X, Yu J, Guo Z, Li Y, Song X, He K, Li G, Chi Y. Proteome-Wide Analysis of Lysine 2-Hydroxyisobutyrylation in Aspergillus niger in Peanuts. Front Microbiol 2021; 12:719337. [PMID: 34489910 PMCID: PMC8418202 DOI: 10.3389/fmicb.2021.719337] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/30/2021] [Indexed: 01/10/2023] Open
Abstract
Aspergillus niger is a very destructive pathogen causing severe peanut root rot, especially in the seeding stage of peanuts (Arachis hypogaea), and often leading to the death of the plant. Protein lysine 2-hydroxyisobutyrylation (Khib) is a newly detected post-translational modification identified in several species. In this study, we identified 5041 Khib sites on 1,453 modified proteins in A. niger. Compared with five other species, A. niger has conserved and novel proteins. Bioinformatics analysis showed that Khib proteins are widely distributed in A. niger and are involved in many biological processes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that Khib proteins were significantly enriched in many cellular compartments and pathways, such as ribosomes and proteasome subunits. A total of 223 Khib proteins were part of the PPI network, thus, suggesting that Khib proteins are associated with a large range of protein interactions and diverse pathways in the life processes of A. niger. Several identified proteins are involved in pathogenesis regulation. Our research provides the first comprehensive report of Khib and an extensive database for potential functional studies on Khib proteins in this economically important fungus.
Collapse
Affiliation(s)
- Manlin Xu
- Shandong Peanut Research Institute, Qingdao, China
| | - Xia Zhang
- Shandong Peanut Research Institute, Qingdao, China
| | - Jing Yu
- Shandong Peanut Research Institute, Qingdao, China
| | - Zhiqing Guo
- Shandong Peanut Research Institute, Qingdao, China
| | - Ying Li
- Shandong Peanut Research Institute, Qingdao, China
| | - Xinying Song
- Shandong Peanut Research Institute, Qingdao, China
| | - Kang He
- Shandong Peanut Research Institute, Qingdao, China
| | - Guowei Li
- Institute of Crop Germplasm Resources, SAAS, Jinan, China
| | - Yucheng Chi
- Shandong Peanut Research Institute, Qingdao, China
| |
Collapse
|
38
|
Liu W, Triplett L, Chen XL. Emerging Roles of Posttranslational Modifications in Plant-Pathogenic Fungi and Bacteria. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:99-124. [PMID: 33909479 DOI: 10.1146/annurev-phyto-021320-010948] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Posttranslational modifications (PTMs) play crucial roles in regulating protein function and thereby control many cellular processes and biological phenotypes in both eukaryotes and prokaryotes. Several recent studies illustrate how plant fungal and bacterial pathogens use these PTMs to facilitate development, stress response, and host infection. In this review, we discuss PTMs that have key roles in the biological and infection processes of plant-pathogenic fungi and bacteria. The emerging roles of PTMs during pathogen-plant interactions are highlighted. We also summarize traditional tools and emerging proteomics approaches for PTM research. These discoveries open new avenues for investigating the fundamental infection mechanisms of plant pathogens and the discovery of novel strategies for plant disease control.
Collapse
Affiliation(s)
- Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Lindsay Triplett
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, USA;
| | - Xiao-Lin Chen
- State Key Laboratory of Agricultural Microbiology and Provincial Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| |
Collapse
|
39
|
Bian C, Duan Y, Xiu Q, Wang J, Tao X, Zhou M. Mechanism of validamycin A inhibiting DON biosynthesis and synergizing with DMI fungicides against Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2021; 22:769-785. [PMID: 33934484 PMCID: PMC8232029 DOI: 10.1111/mpp.13060] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 04/14/2023]
Abstract
Deoxynivalenol (DON) is a vital virulence factor of Fusarium graminearum, which causes Fusarium head blight (FHB). We recently found that validamycin A (VMA), an aminoglycoside antibiotic, can be used to control FHB and inhibit DON contamination, but its molecular mechanism is still unclear. In this study, we found that both neutral and acid trehalase (FgNTH and FgATH) are the targets of VMA in F. graminearum, and the deficiency of FgNTH and FgATH reduces the sensitivity to VMA by 2.12- and 1.79-fold, respectively, indicating that FgNTH is the main target of VMA. We found FgNTH is responsible for vegetative growth, FgATH is critical to sexual reproduction, and both of them play an important role in conidiation and virulence in F. graminearum. We found that FgNTH resided in the cytoplasm, affected the localization of FgATH, and positively regulated DON biosynthesis; however, FgATH resided in vacuole and negatively regulated DON biosynthesis. FgNTH interacted with FgPK (pyruvate kinase), a key enzyme in glycolysis, and the interaction was reduced by VMA; the deficiency of FgNTH affected the localization of FgPK under DON induction condition. Strains with a deficiency of FgNTH were more sensitive to demethylation inhibitor (DMI) fungicides. FgNTH regulated the expression level of FgCYP51A and FgCYP51B by interacting with FgCYP51B. Taken together, VMA inhibits DON biosynthesis by targeting FgNTH and reducing the interaction between FgNTH and FgPK, and synergizes with DMI fungicides against F. graminearum by decreasing FgCYP51A and FgCYP51B expression.
Collapse
Affiliation(s)
- Chuanhong Bian
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Yabing Duan
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Qian Xiu
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Jueyu Wang
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Xian Tao
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Mingguo Zhou
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
40
|
Zhang S, Guo Y, Chen S, Li H. The Histone Acetyltransferase CfGcn5 Regulates Growth, Development, and Pathogenicity in the Anthracnose Fungus Colletotrichum fructicola on the Tea-Oil Tree. Front Microbiol 2021; 12:680415. [PMID: 34248895 PMCID: PMC8260702 DOI: 10.3389/fmicb.2021.680415] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/26/2021] [Indexed: 01/28/2023] Open
Abstract
The tea-oil tree (Camellia oleifera Abel.) is a commercial edible-oil tree in China, and anthracnose commonly occurs in its plantations, causing great losses annually. We have previously revealed that CfSnf1 is essential for pathogenicity in Colletotrichum fructicola, the major pathogen of anthracnose on the tea-oil tree. Here, we identified CfGcn5 as the homolog of yeast histone acetyltransferase ScGcn5, which cooperates with ScSnf1 to modify histone H3 in Saccharomyces cerevisiae. Targeted gene deletion revealed that CfGcn5 is important in fungi growth, conidiation, and responses to environmental stresses. Pathogenicity assays indicated that CfGcn5 is essential for C. fructicola virulence both in unwounded and wounded tea-oil tree leaves. Further, we found that CfGcn5 is localized to the nucleus and this specific localization is dependent on both NLS region and HAT domain. Moreover, we provided evidence showing that the nuclear localization is essential but not sufficient for the full function of CfGcn5, and the NLS, HAT, and Bromo domains were proven to be important for normal CfGcn5 functions. Taken together, our studies not only illustrate the key functions of CfGcn5 in growth, development, and pathogenicity but also highlight the relationship between its locations with functions in C. fructicola.
Collapse
Affiliation(s)
- Shengpei Zhang
- College of Forestry, Central South University of Forestry and Technology, Changsha, China.,Key Laboratory of National Forestry, Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Changsha, China.,Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Changsha, China.,Key Laboratory for Non-wood Forest Cultivation and Conservation of Ministry of Education, Changsha, China
| | - Yuan Guo
- College of Forestry, Central South University of Forestry and Technology, Changsha, China.,Key Laboratory of National Forestry, Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Changsha, China.,Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Changsha, China.,Key Laboratory for Non-wood Forest Cultivation and Conservation of Ministry of Education, Changsha, China
| | - Siqi Chen
- College of Forestry, Central South University of Forestry and Technology, Changsha, China.,Key Laboratory of National Forestry, Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Changsha, China.,Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Changsha, China.,Key Laboratory for Non-wood Forest Cultivation and Conservation of Ministry of Education, Changsha, China
| | - He Li
- College of Forestry, Central South University of Forestry and Technology, Changsha, China.,Key Laboratory of National Forestry, Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Changsha, China.,Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Changsha, China.,Key Laboratory for Non-wood Forest Cultivation and Conservation of Ministry of Education, Changsha, China
| |
Collapse
|
41
|
Yu J, Kim KH. A Phenome-Wide Association Study of the Effects of Fusarium graminearum Transcription Factors on Fusarium Graminearum Virus 1 Infection. Front Microbiol 2021; 12:622261. [PMID: 33643250 PMCID: PMC7904688 DOI: 10.3389/fmicb.2021.622261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/07/2021] [Indexed: 11/13/2022] Open
Abstract
The Fusarium graminearum virus 1 (FgV1) causes noticeable phenotypic changes such as reduced mycelial growth, increase pigmentation, and reduced pathogenicity in its host fungi, Fusarium graminearum. Previous study showed that the numerous F. graminearum genes including regulatory factors were differentially expressed upon FgV1 infection, however, we have limited knowledge on the effect(s) of specific transcription factor (TF) during FgV1 infection in host fungus. Using gene-deletion mutant library of 657 putative TFs in F. graminearum, we transferred FgV1 by hyphal anastomosis to screen transcription factors that might be associated with viral replication or symptom induction. FgV1-infected TF deletion mutants were divided into three groups according to the mycelial growth phenotype compare to the FgV1-infected wild-type strain (WT-VI). The FgV1-infected TF deletion mutants in Group 1 exhibited slow or weak mycelial growth compare to that of WT-VI on complete medium at 5 dpi. In contrast, Group 3 consists of virus-infected TF deletion mutants showing faster mycelial growth and mild symptom compared to that of WT-VI. The hyphal growth of FgV1-infected TF deletion mutants in Group 2 was not significantly different from that of WT-VI. We speculated that differences of mycelial growth among the FgV1-infected TF deletion mutant groups might be related with the level of FgV1 RNA accumulations in infected host fungi. By conducting real-time quantitative reverse transcription polymerase chain reaction, we observed close association between FgV1 RNA accumulation and phenotypic differences of FgV1-infected TF deletion mutants in each group, i.e., increased and decreased dsRNA accumulation in Group 1 and Group 3, respectively. Taken together, our analysis provides an opportunity to identify host's regulator(s) of FgV1-triggered signaling and antiviral responses and helps to understand complex regulatory networks between FgV1 and F. graminearum interaction.
Collapse
Affiliation(s)
- Jisuk Yu
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Kook-Hyung Kim
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea.,Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul, South Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
42
|
Zhang Y, Fan J, Ye J, Lu L. The fungal-specific histone acetyltransferase Rtt109 regulates development, DNA damage response, and virulence in Aspergillus fumigatus. Mol Microbiol 2020; 115:1191-1206. [PMID: 33300219 DOI: 10.1111/mmi.14665] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 12/16/2022]
Abstract
In eukaryotes, histone acetylation catalyzed by histone acetyltransferase (HAT) has been demonstrated to be critical for various physiological processes. However, the biological functions of HAT and the underlying mechanism by which HAT-regulated processes are involved in fungal development and virulence in the human opportunistic pathogen Aspergillus fumigatus remain largely unexplored. Here, we functionally characterized the roles of Rtt109 in A. fumigatus, an ortholog of Saccharomyces cerevisiae histone acetyltransferase Rtt109. In vivo and in vitro HAT assays revealed that AfRtt109 functions as a canonical histone acetyltransferase, acetylating lysines 9 and 56 of histone H3. Deletion of Afrtt109 leads to severe defects in vegetative growth, conidiation, and causes reduced virulence in the Galleria mellonella model, as well as hypersensitivity to genotoxic agents. Moreover, site-directed mutagenesis revealed that the conserved arginine residues R265 and R306 of Rtt109 are required for the H3K9 and H3K56 acetylation and virulence of A. fumigatus. Unexpectedly, R265E and R306E mutants did not exhibit any detectable phenotypic defects, implying that A. fumigatus Rtt109 regulates fungal development via histone acetylation-independent mechanisms. Together, our results revealed the critical role of fungal-specific HAT Rtt109 in regulating fungal development and virulence, and suggested that it may serve as a unique target for antifungal therapies.
Collapse
Affiliation(s)
- Yuanwei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology; College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jialu Fan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology; College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jing Ye
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology; College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology; College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
43
|
Opposing functions of Fng1 and the Rpd3 HDAC complex in H4 acetylation in Fusarium graminearum. PLoS Genet 2020; 16:e1009185. [PMID: 33137093 PMCID: PMC7660929 DOI: 10.1371/journal.pgen.1009185] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 11/12/2020] [Accepted: 10/07/2020] [Indexed: 12/18/2022] Open
Abstract
Histone acetylation, balanced by histone acetyltransferase (HAT) and histone deacetylase (HDAC) complexes, affects dynamic transitions of chromatin structure to regulate transcriptional accessibility. However, little is known about the interplay between HAT and HDAC complexes in Fusarium graminearum, a causal agent of Fusarium Head Blight (FHB) that uniquely contains chromosomal regions enriched for house-keeping or infection-related genes. In this study, we identified the ortholog of the human inhibitor of growth (ING1) gene in F. graminearum (FNG1) and found that it specifically interacts with the FgEsa1 HAT of the NuA4 complex. Deletion of FNG1 led to severe growth defects and blocked conidiation, sexual reproduction, DON production, and plant infection. The fng1 mutant was normal in H3 acetylation but significantly reduced in H4 acetylation. A total of 34 spontaneous suppressors of fng1 with faster growth rate were isolated. Most of them were still defective in sexual reproduction and plant infection. Thirty two of them had mutations in orthologs of yeast RPD3, SIN3, and SDS3, three key components of the yeast Rpd3L HDAC complex. Four mutations in these three genes were verified to suppress the defects of fng1 mutant in growth and H4 acetylation. The rest two suppressor strains had a frameshift or nonsense mutation in a glutamine-rich hypothetical protein that may be a novel component of the FgRpd3 HDAC complex in filamentous fungi. FgRpd3, like Fng1, localized in euchromatin. Deletion of FgRPD3 resulted in severe growth defects and elevated H4 acetylation. In contract, the Fgsds3 deletion mutant had only a minor reduction in growth rate but FgSIN3 appeared to be an essential gene. RNA-seq analysis revealed that 48.1% and 54.2% of the genes with altered expression levels in the fng1 mutant were recovered to normal expression levels in two suppressor strains with mutations in FgRPD3 and FgSDS3, respectively. Taken together, our data showed that Fng1 is important for H4 acetylation as a component of the NuA4 complex and functionally related to the FgRpd3 HDAC complex for transcriptional regulation of genes important for growth, conidiation, sexual reproduction, and plant infection in F. graminearum. Fusarium graminearum is the major causal agent of Fusarium Head Blight, a devastating disease of wheat and barley worldwide. Epigenetic regulation related to histone acetylation is involved in fungal development and invasive growth. Here, we functionally characterized the ortholog of the human inhibitor of growth (ING1) gene in F. graminearum (FNG1) and revealed its role in histone acetylation. By interacting with the FgEsa1 HAT of the NuA4 complex, Fng1 mediated H4 acetylation and was important for growth, conidiation, sexual development and pathogenicity. The fng1 mutant was unstable and a total of 34 spontaneous suppressors were isolated. Suppressor mutations were identified in four genes. While three of them, FgRPD3, FgSIN3, and FgSDS3, are key components of the Rpd3 HDAC complex, the other one encodes a glutamine-rich protein appeared to be a novel component of the Rpd3 HDAC complex in filamentous ascomycetes. Nevertheless, none of the mutation occurred in components of other HDAC complexes. Most of spontaneous suppressors were still defective in sexual reproduction and plant infection, indicating a stage-specific relationship between Fng1 and the Rpd3 HDAC complex. FgRpd3 and FgSds3 likely co-localized with Fng1 in euchromatin and played a critical role in vegetative growth. Approximately half of the genes with altered expression levels in the fng1 mutant were recovered to normal expression levels in two suppressor strains with mutations in FgRPD3 and FgSDS3. Most of these genes had no homologs in yeast, suggesting Fng1 and Rpd3 HDAC complex likely regulates genes unique to F. graminearum and filamentous fungi and with high genetic variations. Taken together, our data showed the functional relationship between Fng1 and the Rpd3 HDAC complex in H4 acetylation and hyphal growth, which has not been reported in other fungi.
Collapse
|
44
|
Chen J, Liu Q, Zeng L, Huang X. Protein Acetylation/Deacetylation: A Potential Strategy for Fungal Infection Control. Front Microbiol 2020; 11:574736. [PMID: 33133044 PMCID: PMC7579399 DOI: 10.3389/fmicb.2020.574736] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Protein acetylation is a universal post-translational modification that fine-tunes the major cellular processes of many life forms. Although the mechanisms regulating protein acetylation have not been fully elucidated, this modification is finely tuned by both enzymatic and non-enzymatic mechanisms. Protein deacetylation is the reverse process of acetylation and is mediated by deacetylases. Together, protein acetylation and deacetylation constitute a reversible regulatory protein acetylation network. The recent application of mass spectrometry-based proteomics has led to accumulating evidence indicating that reversible protein acetylation may be related to fungal virulence because a substantial amount of virulence factors are acetylated. Additionally, the relationship between protein acetylation/deacetylation and fungal drug resistance has also been proven and the potential of deacetylase inhibitors as an anti-infective treatment has attracted attention. This review aimed to summarize the research progress in understanding fungal protein acetylation/deacetylation and discuss the mechanism of its mediation in fungal virulence, providing novel targets for the treatment of fungal infection.
Collapse
Affiliation(s)
- Junzhu Chen
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Qiong Liu
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Lingbing Zeng
- The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaotian Huang
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
45
|
The Influence of the Dilution Rate on the Aggressiveness of Inocula and the Expression of Resistance against Fusarium Head Blight in Wheat. PLANTS 2020; 9:plants9080943. [PMID: 32722377 PMCID: PMC7465623 DOI: 10.3390/plants9080943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/12/2020] [Accepted: 07/22/2020] [Indexed: 01/28/2023]
Abstract
In previous research, conidium concentrations varying between 10,000 and 1,000,000/mL have not been related to any aggressiveness test. Therefore, two Fusarium graminearum and two Fusarium culmorum isolates were tested in the field on seven genotypes highly differing in resistance at no dilution, and 1:1, 1:2, 1:4, 1:8, and 1:16 dilutions in two years (2013 and 2014). The isolates showed different aggressiveness, which changed significantly at different dilution rates for disease index (DI), Fusarium-damaged kernels (FDK), and deoxynivalenol (DON). The traits also had diverging responses to the infection. The effect of the dilution could not be forecasted. The genotype ranks also varied. Dilution seldomly increased aggressiveness, but often lower aggressiveness occurred at high variation. The maximum and minimum values varied between 15% and 40% for traits and dilutions. The reductions between the non-diluted and diluted values (total means) for DI ranged from 6% and 33%, for FDK 8.3–37.7%, and for DON 5.8–44.8%. The most sensitive and most important trait was DON. The introduction of the aggressiveness test provides improved regulation compared to the uncontrolled manipulation of the conidium concentration. The use of more isolates significantly increases the credibility of phenotyping in genetic and cultivar registration studies.
Collapse
|
46
|
Dynamic network inference and association computation discover gene modules regulating virulence, mycotoxin and sexual reproduction in Fusarium graminearum. BMC Genomics 2020; 21:179. [PMID: 32093656 PMCID: PMC7041293 DOI: 10.1186/s12864-020-6596-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/19/2020] [Indexed: 11/21/2022] Open
Abstract
Background The filamentous fungus Fusarium graminearum causes devastating crop diseases and produces harmful mycotoxins worldwide. Understanding the complex F. graminearum transcriptional regulatory networks (TRNs) is vital for effective disease management. Reconstructing F. graminearum dynamic TRNs, an NP (non-deterministic polynomial) -hard problem, remains unsolved using commonly adopted reductionist or co-expression based approaches. Multi-omic data such as fungal genomic, transcriptomic data and phenomic data are vital to but so far have been largely isolated and untapped for unraveling phenotype-specific TRNs. Results Here for the first time, we harnessed these resources to infer global TRNs for F. graminearum using a Bayesian network based algorithm called “Module Networks”. The inferred TRNs contain 49 regulatory modules that show condition-specific gene regulation. Through a thorough validation based on prior biological knowledge including functional annotations and TF binding site enrichment, our network prediction displayed high accuracy and concordance with existing knowledge. One regulatory module was partially validated using network perturbations caused by Tri6 and Tri10 gene disruptions, as well as using Tri6 Chip-seq data. We then developed a novel computational method to calculate the associations between modules and phenotypes, and identified major module groups regulating different phenotypes. As a result, we identified TRN subnetworks responsible for F. graminearum virulence, sexual reproduction and mycotoxin production, pinpointing phenotype-associated modules and key regulators. Finally, we found a clear compartmentalization of TRN modules in core and lineage-specific genomic regions in F. graminearum, reflecting the evolution of the TRNs in fungal speciation. Conclusions This system-level reconstruction of filamentous fungal TRNs provides novel insights into the intricate networks of gene regulation that underlie key processes in F. graminearum pathobiology and offers promise for the development of improved disease control strategies.
Collapse
|
47
|
Qin J, Wu M, Zhou S. FgEaf6 regulates virulence, asexual/sexual development and conidial septation in Fusarium graminearum. Curr Genet 2019; 66:517-529. [PMID: 31728616 DOI: 10.1007/s00294-019-01043-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/29/2019] [Accepted: 11/02/2019] [Indexed: 11/24/2022]
Abstract
Fusarium graminearum is a destructive fungal pathogen and a major cause of Fusarium head blight (FHB) which results in severe grain yield losses and quality reduction. Additionally, the pathogen produces mycotoxins during plant infection, which are harmful to the health of humans and livestock. As it is well known that lysine acetyltransferase complexes play important roles in pathogenesis, the roles of the Eaf6 homolog-containing complex have not been reported in fungal pathogen. In this study, a Eaf6 homolog FgEaf6 was identified in F. graminearum. To investigate the functions of FgEaf6, the gene was deleted using the split-marker method. ΔFgEaf6 mutant exhibited manifold defects in hyphal growth, conidial septation, asexual and sexual reproduction. Moreover, the virulence of the ΔFgEaf6 mutant was drastically reduced in both wheat heads and wheat coleoptiles. However, the FgEaf6 gene deletion did not impact DON production. An FgEaf6-gfp fusion localized to the nucleus and a conserved coiled-coil (C-C) domain was predicted in the sequence. Mutants with deletions in the C-C domain displayed similar defects during development and virulence as observed in the ΔFgEaf6 mutant. Moreover, the truncated gene was cytoplasm localized. In conclusion, the FgEaf6 encodes a nuclear protein, which plays key regulatory roles in hyphal growth, conidial septation, asexual/sexual reproduction, and the virulence of F. graminearum. The C-C is an indispensable domain in the gene. This is the first report on Eaf6 homolog functioning in virulence of fungal pathogen.
Collapse
Affiliation(s)
- Jiaxing Qin
- College of Plant Health and Medicine, The Key Lab of Integrated Crop Pests Management of Shandong Province, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang, Qingdao, 266109, Shandong, China
| | - Mengchun Wu
- State Key Laboratory of Crop Stress Biology for Arid Aeras, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shanyue Zhou
- College of Plant Health and Medicine, The Key Lab of Integrated Crop Pests Management of Shandong Province, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang, Qingdao, 266109, Shandong, China.
| |
Collapse
|
48
|
Comparative acetylome analysis reveals the potential roles of lysine acetylation for DON biosynthesis in Fusarium graminearum. BMC Genomics 2019; 20:841. [PMID: 31718553 PMCID: PMC6852988 DOI: 10.1186/s12864-019-6227-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 10/25/2019] [Indexed: 01/07/2023] Open
Abstract
Background Fusarium graminearum is a destructive fungal pathogen of wheat, barley and other small grain cereals. During plant infection, the pathogen produces trichothecene mycotoxin deoxynivalenol (DON), which is harmful to human and livestock. FgGCN5 encodes a GCN5 acetyltransferase. The gene deletion mutant Fggcn5 failed to produce DON. We assumed that lysine acetylation might play a key regulatory role in DON biosynthesis in the fungus. Results In this study, the acetylome comparison between Fggcn5 mutant and wild-type strain PH-1 was performed by using affinity enrichment and high resolution LC-MS/MS analysis. Totally, 1875 acetylated proteins were identified in Fggcn5 mutant and PH-1. Among them, 224 and 267 acetylated proteins were identified exclusively in Fggcn5 mutant and PH-1, respectively. Moreover, 95 differentially acetylated proteins were detected at a significantly different level in the gene deletion mutant:43 were up-regulated and 52 were down-regulated. GO enrichment and KEGG-pathways enrichment analyses revealed that acetylation plays a key role in metabolism process in F. graminearum. Conclusions Seeing that the gens playing critical roles in DON biosynthesis either in Fggcn5 mutant or PH-1. Therefore, we can draw the conclusion that the regulatory roles of lysine acetylation in DON biosynthesis in F. graminearum results from the positive and negative regulation of the related genes. The study would be a foundation to insight into the regulatory mechanism of lysine acetylation on DON biosynthesis.
Collapse
|
49
|
Kong X, Zhang H, Wang X, van der Lee T, Waalwijk C, van Diepeningen A, Brankovics B, Xu J, Xu J, Chen W, Feng J. FgPex3, a Peroxisome Biogenesis Factor, Is Involved in Regulating Vegetative Growth, Conidiation, Sexual Development, and Virulence in Fusarium graminearum. Front Microbiol 2019; 10:2088. [PMID: 31616386 PMCID: PMC6764106 DOI: 10.3389/fmicb.2019.02088] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/23/2019] [Indexed: 12/28/2022] Open
Abstract
Peroxisomes are involved in a wide range of important cellular functions. Here, the role of the peroxisomal membrane protein PEX3 in the plant-pathogen and mycotoxin producer Fusarium graminearum was studied using knock-out and complemented strains. To fluorescently label peroxisomes’ punctate structures, GFP and RFP fusions with the PTS1 and PTS2 localization signal were transformed into the wild type PH-1 and ΔFgPex3 knock-out strains. The GFP and RFP transformants in the ΔFgPex3 background showed a diffuse fluorescence pattern across the cytoplasm suggesting the absence of mature peroxisomes. The ΔFgPex3 strain showed a minor, non-significant reduction in growth on various sugar carbon sources. In contrast, deletion of FgPex3 affected fatty acid β-oxidation in F. graminearum and significantly reduced the utilization of fatty acids. Furthermore, the ΔFgPex3 mutant was sensitive to osmotic stressors as well as to cell wall-damaging agents. Reactive oxygen species (ROS) levels in the mutant had increased significantly, which may be linked to the reduced longevity of cultured strains. The mutant also showed reduced production of conidiospores, while sexual reproduction was completely impaired. The pathogenicity of ΔFgPex3, especially during the process of systemic infection, was strongly reduced on both tomato and on wheat, while to production of deoxynivalenol (DON), an important factor for virulence, appeared to be unaffected.
Collapse
Affiliation(s)
- Xiangjiu Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Hao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Xiaoliang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Theo van der Lee
- Biointeractions and Plant Health, Wageningen Plant Research, Wageningen, Netherlands
| | - Cees Waalwijk
- Biointeractions and Plant Health, Wageningen Plant Research, Wageningen, Netherlands
| | - Anne van Diepeningen
- Biointeractions and Plant Health, Wageningen Plant Research, Wageningen, Netherlands
| | - Balazs Brankovics
- Biointeractions and Plant Health, Wageningen Plant Research, Wageningen, Netherlands
| | - Jin Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Jingsheng Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Wanquan Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Jie Feng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agriculture Sciences, Beijing, China
| |
Collapse
|
50
|
Chen Y, Kistler HC, Ma Z. Fusarium graminearum Trichothecene Mycotoxins: Biosynthesis, Regulation, and Management. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:15-39. [PMID: 30893009 DOI: 10.1146/annurev-phyto-082718-100318] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Fusarium head blight (FHB) of small grain cereals caused by Fusarium graminearum and other Fusarium species is an economically important plant disease worldwide. Fusarium infections not only result in severe yield losses but also contaminate grain with various mycotoxins, especially deoxynivalenol (DON). With the complete genome sequencing of F. graminearum, tremendous progress has been made during the past two decades toward understanding the basis for DON biosynthesis and its regulation. Here, we summarize the current understanding of DON biosynthesis and the effect of regulators, signal transduction pathways, and epigenetic modifications on DON production and the expression of biosynthetic TRI genes. In addition, strategies for controlling FHB and DON contamination are reviewed. Further studies on these biosynthetic and regulatory systems will provide useful knowledge for developing novel management strategies to prevent FHB incidence and mycotoxin accumulation in cereals.
Collapse
Affiliation(s)
- Yun Chen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - H Corby Kistler
- Cereal Disease Laboratory, Agricultural Research Service, United States Department of Agriculture, Saint Paul, Minnesota 55108, USA
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|