1
|
Li A, Yang M, Duan W, Wu B. Dihydrotanshinone I induces necroptosis and cell cycle arrest in gastric cancer through the PTPN11/p38 pathway. Toxicol In Vitro 2024; 102:105955. [PMID: 39427814 DOI: 10.1016/j.tiv.2024.105955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
In this study, MTT assays, apoptosis detection, immunofluorescence, and functional studies were used to elucidate the mechanisms underlying the effects of dihydrotanshinone I (DHT) on gastric cancer cells. Drug target prediction and analysis were conducted to identify potential targets of DHT. MTT assay revealed significant inhibition of AGS and HGC27 cells by DHT. Morphological changes, including nuclear shrinkage and the induction of necrotic cell death, were observed in DHT-treated gastric cancer cells, along with cell cycle arrest at the G2/M phase. Further analysis revealed potential targets of DHT, including PTPN11, which is highly expressed in gastric cancer cells. DHT treatment increased necrosis-related proteins (RIPK1/RIPK3/MLKL) and downregulated cell cycle-related proteins (CDC25C and CDK1) levels in gastric cancer cells. After DHT treatment, PTPN11 protein expression decreased. Furthermore, DHT significantly increased the phosphorylated p38/JNK protein level, with the phosphorylated p38 protein notably enriched in the nucleus. These functional studies indicate that PTPN11 plays a key role in mediating the effects of DHT, including cell cycle regulation and necrosis induction. In conclusion, PTPN11 is a central target through which DHT affects gastric cancer cells, regulating downstream pathways involved in necroptosis (p38/RIPK1/RIPK3/MLKL/JNK) and cell cycle arrest (p38/CDC25C/CDK1).
Collapse
Affiliation(s)
- Aizhen Li
- Department of Gastrointestinal Surgery, the Affiliated People's Hospital of Ningbo University, Ningbo, China.
| | - Mingjin Yang
- Department of Gastrointestinal Surgery, the Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Wenbiao Duan
- Department of Gastrointestinal Surgery, the Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Bo Wu
- Department of Gastrointestinal Surgery, the Affiliated People's Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
2
|
Tucker N, Britt LH, Grover HK. Synthesis of Tanshinone IIA and Related Terpenes via a C-H Functionalization Strategy. Org Lett 2024; 26:7134-7138. [PMID: 39158460 DOI: 10.1021/acs.orglett.4c02438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The total synthesis of tanshinone IIA and related bioactive diterpenes isolated from the Chinese plant Salvia miltiorrhiza was completed from a common tetralin building block. The synthetic route highlights a 3,4-disubstituted furan synthesis and various regioselective C-H functionalization reactions, including a Pd catalyzed iodination and an Ir catalyzed borylation, along with an intramolecular stanna-Brook type reaction to construct the ortho-quninone ring of the target molecule.
Collapse
Affiliation(s)
- Nathan Tucker
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X7, Canada
| | - Liam H Britt
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X7, Canada
| | - Huck K Grover
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X7, Canada
| |
Collapse
|
3
|
Li H, Jiang X, Mashiguchi K, Yamaguchi S, Lu S. Biosynthesis and signal transduction of plant growth regulators and their effects on bioactive compound production in Salvia miltiorrhiza (Danshen). Chin Med 2024; 19:102. [PMID: 39049014 PMCID: PMC11267865 DOI: 10.1186/s13020-024-00971-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Abstract
Plant growth regulators (PGRs) are involved in multiple aspects of plant life, including plant growth, development, and response to environmental stimuli. They are also vital for the formation of secondary metabolites in various plants. Salvia miltiorrhiza is a famous herbal medicine and has been used commonly for > 2000 years in China, as well as widely used in many other countries. S. miltiorrhiza is extensively used to treat cardiovascular and cerebrovascular diseases in clinical practices and has specific merit against various diseases. Owing to its outstanding medicinal and commercial potential, S. miltiorrhiza has been extensively investigated as an ideal model system for medicinal plant biology. Tanshinones and phenolic acids are primary pharmacological constituents of S. miltiorrhiza. As the growing market for S. miltiorrhiza, the enhancement of its bioactive compounds has become a research hotspot. S. miltiorrhiza exhibits a significant response to various PGRs in the production of phenolic acids and tanshinones. Here, we briefly review the biosynthesis and signal transduction of PGRs in plants. The effects and mechanisms of PGRs on bioactive compound production in S. miltiorrhiza are systematically summarized and future research is discussed. This article provides a scientific basis for further research, cultivation, and metabolic engineering in S. miltiorrhiza.
Collapse
Affiliation(s)
- Heqin Li
- College of Agronomy, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Xuwen Jiang
- College of Agronomy, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
- Shandong Bairuijia Food Co., Ltd, No. 8008, Yi Road, Laizhou, Yantai, 261400, Shandong, People's Republic of China
| | - Kiyoshi Mashiguchi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Shinjiro Yamaguchi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
| | - Shanfa Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
4
|
Xie Y, Shen X, Xu F, Liang X. Research progress of nano-delivery systems for the active ingredients from traditional Chinese medicine. PHYTOCHEMICAL ANALYSIS : PCA 2024. [PMID: 38830775 DOI: 10.1002/pca.3381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 06/05/2024]
Abstract
INTRODUCTION Traditional Chinese medicine (TCM) has been used for thousands of years in China, characterizing with novel pharmacological mechanisms, low toxicity, and limited side effects. However, the application of TCM active ingredients is often hindered by their physical and chemical properties, including poor solubility, low bioavailability, short half-life, toxic side effects within therapeutic doses, and instability in biological environments. Consequently, an increasing number of researchers are directing their attention towards the discovery of nano-delivery systems for TCM to overcome these clinical challenges. OBJECTIVES This review aims to provide the latest knowledge and results concerning the studies on the nano-delivery systems for the active ingredients from TCM. MATERIALS AND METHODS Recent literature relating to nano-delivery systems for the active ingredients from TCM is summarized to provide a fundamental understanding of how such systems can enhance the application of phytochemicals. RESULTS The nano-delivery systems of six types of TCM monomers are summarized and categorized based on the skeletal structure of the natural compounds. These categories include terpenoids, flavonoids, alkaloids, quinones, polyphenols, and polysaccharides. The paper analyzes the characteristics, types, materials used, and the efficacy achieved by TCM-nano systems. Additionally, the advantages and disadvantages of nano-drug delivery systems for TCM are summarized in this paper. CONCLUSION Nano-delivery systems represent a promising approach to overcoming clinical obstacles stemming from the physical and chemical properties of TCM active ingredients, thereby enhancing their clinical efficacy.
Collapse
Affiliation(s)
- Yunyu Xie
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Xuelian Shen
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Funeng Xu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Xiaoxia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People's Republic of China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, People's Republic of China
| |
Collapse
|
5
|
Zhou Y, Bai YH, Han FX, Chen X, Wu FS, Liu Q, Ma WZ, Zhang YQ. Transcriptome sequencing and metabolome analysis reveal the molecular mechanism of Salvia miltiorrhiza in response to drought stress. BMC PLANT BIOLOGY 2024; 24:446. [PMID: 38778268 PMCID: PMC11112794 DOI: 10.1186/s12870-024-05006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/10/2024] [Indexed: 05/25/2024]
Abstract
Salvia miltiorrhiza is commonly used as a Chinese herbal medicine to treat different cardiovascular and cerebrovascular illnesses due to its active ingredients. Environmental conditions, especially drought stress, can affect the yield and quality of S. miltiorrhiza. However, moderate drought stress could improve the quality of S. miltiorrhiza without significantly reducing the yield, and the mechanism of this initial drought resistance is still unclear. In our study, transcriptome and metabolome analyses of S. miltiorrhiza under different drought treatment groups (CK, A, B, and C groups) were conducted to reveal the basis for its drought tolerance. We discovered that the leaves of S. miltiorrhiza under different drought treatment groups had no obvious shrinkage, and the malondialdehyde (MDA) contents as well as superoxide dismutase (SOD) and peroxidase (POD) activities dramatically increased, indicating that our drought treatment methods were moderate, and the leaves of S. miltiorrhiza began to initiate drought resistance. The morphology of root tissue had no significant change under different drought treatment groups, and the contents of four tanshinones significantly enhanced. In all, 5213, 6611, and 5241 differentially expressed genes (DEGs) were shared in the A, B, and C groups compared with the CK group, respectively. The results of KEGG and co-expression analysis showed that the DEGs involved in plant-pathogen interactions, the MAPK signaling pathway, phenylpropanoid biosynthesis, flavonoid biosynthesis, and plant hormone signal transduction responded to drought stress and were strongly correlated with tanshinone biosynthesis. Furthermore, the results of metabolism analysis indicated that 67, 72, and 92 differentially accumulated metabolites (DAMs), including fumarate, ferulic acid, xanthohumol, and phytocassanes, which were primarily involved in phenylpropanoid biosynthesis, flavonoid biosynthesis, and diterpenoid biosynthesis pathways, were detected in these groups. These discoveries provide valuable information on the molecular mechanisms by which S. miltiorrhiza responds to drought stress and will facilitate the development of drought-resistant and high-quality S. miltiorrhiza production.
Collapse
Affiliation(s)
- Ying Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan-Hong Bai
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Feng-Xia Han
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xue Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fu-Sheng Wu
- Shandong Provincial Center of Forest and Grass, Jinan, China
| | - Qian Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Jinan, China.
| | - Wen-Zhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Yong-Qing Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
6
|
Cheng S, Hu X, Sun K, Huang Z, Zhao Y, Sun Y, Zeng B, Wang J, Zhao D, Lu S, Shi Q, Wang Y, Zhang W, Liu X, Shu B. Local Application of Tanshinone IIA protects mesenchymal stem cells from apoptosis and promotes fracture healing in ovariectomized mice. J Orthop Surg Res 2024; 19:309. [PMID: 38783358 PMCID: PMC11112815 DOI: 10.1186/s13018-024-04793-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Elderly patients suffering from osteoporotic fractures are more susceptible to delayed union or nonunion, and their bodies then are in a state of low-grade chronic inflammation with decreased antioxidant capacity. Tanshinone IIA is widely used in treating cardiovascular and cerebrovascular diseases in China and has anti-inflammatory and antioxidant effects. We aimed to observe the antioxidant effects of Tanshinone IIA on mesenchymal stem cells (MSCs), which play important roles in bone repair, and the effects of local application of Tanshinone IIA using an injectable biodegradable hydrogel on osteoporotic fracture healing. METHODS MSCs were pretreated with or without different concentrations of Tanshinone IIA followed by H2O2 treatment. Ovariectomized (OVX) C57BL/6 mice received a mid-shaft transverse osteotomy fracture on the left tibia, and Tanshinone IIA was applied to the fracture site using an injectable hydrogel. RESULTS Tanshinone IIA pretreatment promoted the expression of nuclear factor erythroid 2-related factor 2 and antioxidant enzymes, and inhibited H2O2-induced reactive oxygen species accumulation in MSCs. Furthermore, Tanshinone IIA reversed H2O2-induced apoptosis and decrease in osteogenic differentiation in MSCs. After 4 weeks of treatment with Tanshinone IIA in OVX mice, the bone mineral density of the callus was significantly increased and the biomechanical properties of the healed tibias were improved. Cell apoptosis was decreased and Nrf2 expression was increased in the early stage of callus formation. CONCLUSIONS Taken together, these results indicate that Tanshinone IIA can activate antioxidant enzymes to protect MSCs from H2O2-induced cell apoptosis and osteogenic differentiation inhibition. Local application of Tanshinone IIA accelerates fracture healing in ovariectomized mice.
Collapse
Affiliation(s)
- Shao Cheng
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
- School of Orthopedics, Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Xiaohui Hu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Kanghui Sun
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Ziyu Huang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Yongjian Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Yueli Sun
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Bo Zeng
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Jing Wang
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Dongfeng Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Sheng Lu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Qi Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, 200237, China.
| | - Xinhua Liu
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Bing Shu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China.
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China.
| |
Collapse
|
7
|
Xu J, Zhi X, Zhang Y, Ding R. Tanshinone IIA alleviates IL-1β-induced chondrocyte apoptosis and inflammation by regulating FBXO11 expression. Clinics (Sao Paulo) 2024; 79:100365. [PMID: 38677194 PMCID: PMC11061256 DOI: 10.1016/j.clinsp.2024.100365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/13/2024] [Accepted: 04/09/2024] [Indexed: 04/29/2024] Open
Abstract
OBJECTIVE This study explored the pharmacological mechanism of Tanshinone IIA (TAN IIA) in the treatment of Osteoarthritis (OA), which provided a certain reference for further research and clinical application of Tan IIA in OA. METHODS CHON-001 cells were stimulated with 10 μg/mL IL-1β for 48 h and treated with 10 μM TAN IIA for 48 h. Cellular viability and apoptosis were evaluated by CCK-8 assay and flow cytometry, and Cleaved caspase-3 was measured by Immunoblot assay and RT-qPCR. TNF-α, IL-6, and iNOS in CHON-001 cells were determined by RT-qPCR and ELISA. To further verify the effect of TAN IIA on OA, a rat model of OA in vivo was established by right anterior cruciate ligament transection. TAN IIA was administered at 50 mg/kg or 150 mg/kg for 7 weeks. The degree of cartilage destruction in OA rats was observed by TUNEL and HE staining. Cleaved caspase-3 and FBXO11 were measured by immunohistochemical staining, RT-qPCR, and Immunoblot. TNF-α, IL-6, and iNOS in chondrocytes of OA rats were detected by ELISA. RESULTS IL-1β stimulated CHON-001 cell apoptosis and inflammation, and TAN IIA had anti-apoptosis and anti-inflammatory effects on IL-1β-regulated CHON-001 cells. TAN IIA down-regulated FBXO11 and inhibited PI3K/AKT and NF-κB pathways, thereby alleviating apoptotic and inflammatory reactions in CHON-001 cells under IL-1β treatment. Moreover, TAN IIA treatment improved chondrocyte apoptosis and inflammations in OA rats. CONCLUSION TAN IIA inhibits PI3K/Akt and NF-κB pathways by down-regulating FBXO11 expression, alleviates chondrocyte apoptosis and inflammation, and delays the progression of OA.
Collapse
Affiliation(s)
- Jin Xu
- Department of Orthopaedics, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai City, China
| | - XiaoCheng Zhi
- Department of Orthopaedics, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai City, China
| | - YunHui Zhang
- Department of Orthopaedics, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai City, China
| | - Ren Ding
- Department of Orthopaedics, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai City, China.
| |
Collapse
|
8
|
Wang G, Li Y, Guo Z, He Q, Liu Z, Deng B. Tanshinone I Stimulates Pyroptosis of Cisplatin-Resistant Gastric Cancer Cells by Activating the NF-κB/Caspase-3(8)/GSDME Signaling Pathway. DNA Cell Biol 2024; 43:185-196. [PMID: 38466945 DOI: 10.1089/dna.2023.0293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Cisplatin (DDP) resistance frequently occurs in gastric cancer (GC) therapy. Tanshinone I is a liposoluble phenanthraquinone compound present in the roots of Salvia miltiorrhiza Bunge (Danshen). In this study, we aimed to explore the effects of tanshinone I on modulating DDP resistance of GC cells in vitro and in vivo. DDP-resistant GC cell models (BGC823/DDP and SGC7901/DDP) were established, and their viability, proliferation, migration, lactate dehydrogenase activity, reactive oxygen species (ROS) generation, and pyroptosis were assessed after DDP treatment with or without tanshinone I. In addition, a mouse model with subcutaneously transplanted GC tumors was established to confirm the effects of tanshinone I and DDP on tumor growth and cell pyroptosis. The results revealed that tanshinone I inhibited DDP-resistant GC cell proliferation and migration; increased intracellular ROS levels; and activated cell pyroptosis by enhancing the levels of cleaved caspase-8, cleaved caspase-3, GSDME-NT, phospho-IKK-α/β, and nuclear factor kappa-B (NF-κB). GSDME knockdown weakened these effects of tanshinone I on DDP-resistant GC cells. Furthermore, DDP combined with tanshinone I inhibited the growth of subcutaneously transplanted GC tumors in mice by reducing cell proliferation and inducing pyroptosis. In conclusion, tanshinone I reversed DDP resistance of GC cells by stimulating pyroptosis, by activating NF-κB/caspase-3(8)/GSDME signaling pathway.
Collapse
Affiliation(s)
- Guijun Wang
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yanrong Li
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Zhaokai Guo
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Qiang He
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Zhen Liu
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Beibei Deng
- Department of Clinical Laboratory, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
9
|
Huang X, Lowrie DB, Fan XY, Hu Z. Natural products in anti-tuberculosis host-directed therapy. Biomed Pharmacother 2024; 171:116087. [PMID: 38171242 DOI: 10.1016/j.biopha.2023.116087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/17/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
Given that the disease progression of tuberculosis (TB) is primarily related to the host's immune status, it has been gradually realized that chemotherapy that targets the bacteria may never, on its own, wholly eradicate Mycobacterium tuberculosis, the causative agent of TB. The concept of host-directed therapy (HDT) with immune adjuvants has emerged. HDT could potentially interfere with infection and colonization by the pathogens, enhance the protective immune responses of hosts, suppress the overwhelming inflammatory responses, and help to attain a state of homeostasis that favors treatment efficacy. However, the HDT drugs currently being assessed in combination with anti-TB chemotherapy still face the dilemmas arising from side effects and high costs. Natural products are well suited to compensate for these shortcomings by having gentle modulatory effects on the host immune responses with less immunopathological damage at a lower cost. In this review, we first summarize the profiles of anti-TB immunology and the characteristics of HDT. Then, we focus on the rationale and challenges of developing and implementing natural products-based HDT. A succinct report of the medications currently being evaluated in clinical trials and preclinical studies is provided. This review aims to promote target-based screening and accelerate novel TB drug discovery.
Collapse
Affiliation(s)
- Xuejiao Huang
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China
| | - Douglas B Lowrie
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China.
| | - Zhidong Hu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China.
| |
Collapse
|
10
|
Zarezadeh SM, Sharafi AM, Erabi G, Tabashiri A, Teymouri N, Mehrabi H, Golzan SA, Faridzadeh A, Abdollahifar Z, Sami N, Arabpour J, Rahimi Z, Ansari A, Abbasi MR, Azizi N, Tamimi A, Poudineh M, Deravi N. Natural STAT3 Inhibitors for Cancer Treatment: A Comprehensive Literature Review. Recent Pat Anticancer Drug Discov 2024; 19:403-502. [PMID: 37534488 DOI: 10.2174/1574892818666230803100554] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 08/04/2023]
Abstract
Cancer is one of the leading causes of mortality and morbidity worldwide, affecting millions of people physically and financially every year. Over time, many anticancer treatments have been proposed and studied, including synthetic compound consumption, surgical procedures, or grueling chemotherapy. Although these treatments have improved the daily life quality of patients and increased their survival rate and life expectancy, they have also shown significant drawbacks, including staggering costs, multiple side effects, and difficulty in compliance and adherence to treatment. Therefore, natural compounds have been considered a possible key to overcoming these problems in recent years, and thorough research has been done to assess their effectiveness. In these studies, scientists have discovered a meaningful interaction between several natural materials and signal transducer and activator of transcription 3 molecules. STAT3 is a transcriptional protein that is vital for cell growth and survival. Mechanistic studies have established that activated STAT3 can increase cancer cell proliferation and invasion while reducing anticancer immunity. Thus, inhibiting STAT3 signaling by natural compounds has become one of the favorite research topics and an attractive target for developing novel cancer treatments. In the present article, we intend to comprehensively review the latest knowledge about the effects of various organic compounds on inhibiting the STAT3 signaling pathway to cure different cancer diseases.
Collapse
Affiliation(s)
- Seyed Mahdi Zarezadeh
- Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Mohammad Sharafi
- Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gisou Erabi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Arefeh Tabashiri
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navid Teymouri
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hoda Mehrabi
- Student Research Committee, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Seyyed Amirhossein Golzan
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezoo Faridzadeh
- Department of Immunology and Allergy, Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Abdollahifar
- Student Research Committee, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Nafiseh Sami
- Student Research Committee, Tehran Medical Sciences, Islamic Azad University Medical Branch of Tehran, Tehran, Iran
| | - Javad Arabpour
- Department of Microbiology, Faculty of New Sciences, Islamic Azad University Medical Branch of Tehran, Tehran, Iran
| | - Zahra Rahimi
- School of Medicine, Zanjan University of Medical Sciences Zanjan, Iran
| | - Arina Ansari
- Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Nima Azizi
- Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Zhu G, Li D, Wang X, Guo Q, Zhao Y, Hou W, Li J, Zheng Q. Drug monomers from Salvia miltiorrhiza Bge. promoting tight junction protein expression for therapeutic effects on lung cancer. Sci Rep 2023; 13:22928. [PMID: 38129556 PMCID: PMC10739844 DOI: 10.1038/s41598-023-50163-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
Salvia miltiorrhiza Bge. is a traditional Chinese medicine (TCM) that has been used for treatment of various diseases, including cancer by activating blood circulation and removing blood stasis. Tanshinone (TanIIA) and cryptotanshinone (CPT) are major lipophilic compounds extracted from the root of Salvia miltiorrhiza Bge., which are considered to be the effective compounds affecting the efficacy of the anti-tumor therapy of Salvia miltiorrhiza Bge. We have explored the mechanism of CPT and TanIIA exerting inhibition in non-small cell lung cancer (NSCLC) to provide experimental data support for guiding the translational development and clinical application of anti-tumor components of TCM. The subcutaneous tumor model and in vitro culture model of A549 cells was constructed to evaluate CPT and TanIIA's tumour-inhibitory effect respectively. RNA sequencing (RNA-seq) and bioinformatics analysis were conducted to identify differentially expressed genes (DEGs) and signalling pathways related to CPT and TanIIA treatment. qRT-PCR and Western blot were used to explore the mechanism of CPT and TanIIA intervention on NSCLC. Both CPT and TanIIA significantly inhibited the proliferation of A549 tumor cells and tumor growth in animal models. After intervention, the migration ability decreased and the level of apoptosis increased. RNA-seq results showed that both CPT and TanIIA could cause gene differential expression, miR-21-5p as one of the most significant gene expression differences between the two groups, and could act on cell connectivity. CPT and TanIIA play a regulatory role in regulating tight junction proteins (Occludin and ZO1), and Occludin mRNA and protein levels were reduced in an in vitro miR-21-5p overexpression A549 cell model. The mechanisms may be related to the reduction of miR-21-5p expression to increase the level of promoted tight junction protein expression for the purpose of inhibiting proliferation and invasion of NSCLC.
Collapse
Affiliation(s)
- Guanghui Zhu
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Daorui Li
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xueqian Wang
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Qiujun Guo
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yuanchen Zhao
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Wei Hou
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Jie Li
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Qi Zheng
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
12
|
Ayvazyan A, Deutsch L, Zidorn C, Kircher B, Çiçek SS. Cytotoxic diterpenoids from Salvia glutinosa and comparison with the tanshinone profile of danshen ( Salvia miltiorrhiza). FRONTIERS IN PLANT SCIENCE 2023; 14:1269710. [PMID: 38116152 PMCID: PMC10729661 DOI: 10.3389/fpls.2023.1269710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023]
Abstract
The roots of Salvia miltiorrhiza are the source of the traditional Chinese medicine danshen and the class of tanshinones, particular quinoid nor-diterpenoids of the abietane type. Of these compounds, cryptotanshinone, dihydrotanshinone I, tanshinone I, and tanshinone IIA, have been extensively studied for their anticancer potential, not only but as well because of their high abundance in S. miltiorrhiza and their thus easy availability. However, also additional Salvia species are known to contain tanshinones, mainly such of the subgenus Glutinaria, of which S. glutinosa is the only species widely occurring in Europe. Using UHPLC-DAD-MS, the tanshinone profile of S. glutinosa roots collected from two different locations was compared to the profile in S. miltiorrhiza roots. In addition, tanshinone IIA and another six diterpenoids from S. glutinosa were investigated for their antiproliferative and cytotoxic potential against MDA-MB-231 and HL-60 cells. Apart from dihydrotanshinone I, which has been previously characterized due to its anticancer properties, we determined danshenol A as a highly antiproliferative and cytotoxic agent, significantly surpassing the effects of dihydrotanshinone I. With regard to the diterpenoid profile, S. miltiorrhiza showed a higher concentration for most of the tanshinones, except for (+)-danshexinkun A, which was present in comparable amounts in both species. Danshenol A, in contrast, was only present in S. glutinosa as were dehydroabietic acid and (+)-pisiferic acid. The results of our study underlines the long traditional use of danshen due to its high amount on tanshinones, but also demonstrates the potential value of investigating closely related species for the discovery of new biologically active lead compounds.
Collapse
Affiliation(s)
- Arpine Ayvazyan
- Department of Pharmaceutical Biology, Kiel University, Kiel, Germany
| | - Lenard Deutsch
- Tyrolean Cancer Research Institute, Innsbruck, Austria
- Immunobiology and Stem Cell Laboratory, Department of Internal Medicine V (Hematology and Oncology), Innsbruck Medical University, Innsbruck, Austria
| | - Christian Zidorn
- Department of Pharmaceutical Biology, Kiel University, Kiel, Germany
| | - Brigitte Kircher
- Tyrolean Cancer Research Institute, Innsbruck, Austria
- Immunobiology and Stem Cell Laboratory, Department of Internal Medicine V (Hematology and Oncology), Innsbruck Medical University, Innsbruck, Austria
| | - Serhat S. Çiçek
- Department of Pharmaceutical Biology, Kiel University, Kiel, Germany
- Department of Biotechnology, Hamburg University of Applied Sciences, Hamburg, Germany
| |
Collapse
|
13
|
Qiu C, Zhang JZ, Wu B, Xu CC, Pang HH, Tu QC, Lu YQ, Guo QY, Xia F, Wang JG. Advanced application of nanotechnology in active constituents of Traditional Chinese Medicines. J Nanobiotechnology 2023; 21:456. [PMID: 38017573 PMCID: PMC10685519 DOI: 10.1186/s12951-023-02165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/16/2023] [Indexed: 11/30/2023] Open
Abstract
Traditional Chinese Medicines (TCMs) have been used for centuries for the treatment and management of various diseases. However, their effective delivery to targeted sites may be a major challenge due to their poor water solubility, low bioavailability, and potential toxicity. Nanocarriers, such as liposomes, polymeric nanoparticles, inorganic nanoparticles and organic/inorganic nanohybrids based on active constituents from TCMs have been extensively studied as a promising strategy to improve the delivery of active constituents from TCMs to achieve a higher therapeutic effect with fewer side effects compared to conventional formulations. This review summarizes the recent advances in nanocarrier-based delivery systems for various types of active constituents of TCMs, including terpenoids, polyphenols, alkaloids, flavonoids, and quinones, from different natural sources. This review covers the design and preparation of nanocarriers, their characterization, and in vitro/vivo evaluations. Additionally, this review highlights the challenges and opportunities in the field and suggests future directions for research. Nanocarrier-based delivery systems have shown great potential in improving the therapeutic efficacy of TCMs, and this review may serve as a comprehensive resource to researchers in this field.
Collapse
Affiliation(s)
- Chong Qiu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jun Zhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bo Wu
- Department of Traditional Chinese Medical Science, Sixth Medical Center of the Chinese PLA General Hospital, Beijing, 100037, China
| | - Cheng Chao Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huan Huan Pang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qing Chao Tu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yu Qian Lu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qiu Yan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Fei Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ji Gang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
14
|
Wang Q, Li J, Chu X, Jiang X, Zhang C, Liu F, Zhang X, Li Y, Shen Q, Pang B. Potential chemoprotective effects of active ingredients in Salvia miltiorrhiza on doxorubicin-induced cardiotoxicity: a systematic review of in vitro and in vivo studies. Front Cardiovasc Med 2023; 10:1267525. [PMID: 37915739 PMCID: PMC10616797 DOI: 10.3389/fcvm.2023.1267525] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023] Open
Abstract
Background Recently, attention has been paid to the protective properties of active ingredients in Salvia miltiorrhiza (AISM) against organ toxicity induced by chemotherapy drugs. Purpose of the present systematic review is to evaluate the chemoprotective effects and mechanisms of AISM on in vitro and in vivo models of doxorubicin-induced cardiotoxicity (DIC). Methods According to the PRISMA guideline, the current systematic review was conducted in the Web of Science, PubMed, Embase, and the Cochrane Library to collect all relevant in vitro and in vivo studies on "the role of AISM on DIC" published up until May 2023. The SYRCLE's tool was used to identify potential risk of bias. Results Twenty-two eligible articles were included in this systematic review. Eleven types of active ingredients in Salvia miltiorrhiza were used for DIC, which have the following effects: improvement of physical signs and biochemical indicators, reduction of cardiac function damage caused by DIC, protection of heart tissue structure, enhancement of myocardial cell viability, prevention of cardiomyocyte apoptosis, increase of the chemosensitivity of cancer cells to Doxorubicin, etc. The cardioprotective mechanism of AISM involves inhibiting apoptosis, attenuating oxidative stress, suppressing endoplasmic reticulum (ER) stress, decreasing inflammation, improving mitochondrial structure and function, affecting cellular autophagy and calcium homeostasis. The quality scores of included studies ranged from 4 to 7 points (a total of 10 points), according to SYRCLE's risk of bias tool. Conclusion This systematic review demonstrated that AISM have chemoprotective effects on DIC in vivo and in vitro models through several main mechanisms such as anti-apoptosis, antioxidant effects, anti-ER stress, and anti-inflammatory.
Collapse
Affiliation(s)
- Qingqing Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing Association of the Integrating of Traditional and Westem Medicine, Beijing, China
| | - Jiaxian Li
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuelei Chu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochen Jiang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chuanlong Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fudong Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiyuan Zhang
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Yi Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian Shen
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo Pang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Valipour M. Therapeutic prospects of naturally occurring p38 MAPK inhibitors tanshinone IIA and pinocembrin for the treatment of SARS-CoV-2-induced CNS complications. Phytother Res 2023; 37:3724-3743. [PMID: 37282807 DOI: 10.1002/ptr.7902] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/20/2023] [Accepted: 05/15/2023] [Indexed: 06/08/2023]
Abstract
P38 mitogen-activated protein kinase (p38 MAPK) signaling pathway is closely related to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) replication and hyperinflammatory responses in coronavirus disease 2019 (COVID-19). Therefore, blood-brain barrier-penetrating p38 MAPK inhibitors have good potential for the treatment of central nervous system (CNS) complications of COVID-19. The aim of the present study is the characterization of the therapeutic potential of tanshinone IIA and pinocembrin for the treatment of CNS complications of COVID-19. Studies published in high-quality journals indexed in databases Scopus, Web of Science, PubMed, and so forth were used to review the therapeutic capabilities of selected compounds. In continuation of our previous efforts to identify agents with favorable activity/toxicity profiles for the treatment of COVID-19, tanshinone IIA and pinocembrin were identified with a high ability to penetrate the CNS. Considering the nature of the study, no specific time frame was determined for the selection of studies, but the focus was strongly on studies published after the emergence of COVID-19. By describing the association of COVID-19-induced CNS disorders with p38 MAPK pathway disruption, this study concludes that tanshinone IIA and pinocembrin have great potential for better treatment of these complications. The inclusion of these compounds in the drug regimen of COVID-19 patients requires confirmation of their effectiveness through the conduction of high-quality clinical trials.
Collapse
Affiliation(s)
- Mehdi Valipour
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Alam SSM, Samanta A, Uddin F, Ali S, Hoque M. Tanshinone IIA targeting cell signaling pathways: a plausible paradigm for cancer therapy. Pharmacol Rep 2023:10.1007/s43440-023-00507-y. [PMID: 37440106 DOI: 10.1007/s43440-023-00507-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 07/14/2023]
Abstract
Natural compounds originating from plants offer a wide range of pharmacological potential and have traditionally been used to treat a wide range of diseases including cancer. Tanshinone IIA (Tan IIA), a bioactive molecule found in the roots of the Traditional Chinese Medicine (TCM) herb Salvia miltiorrhiza, has been shown to have remarkable anticancer properties through several mechanisms, such as inhibition of tumor cell growth and proliferation, metastasis, invasion, and angiogenesis, as well as induction of apoptosis and autophagy. It has demonstrated excellent anticancer efficacy against cell lines from breast, cervical, colorectal, gastric, lung, and prostate cancer by modulating multiple signaling pathways including PI3K/Akt, JAK/STAT, IGF-1R, and Bcl-2-Caspase pathways. This review focuses on the role of Tan IIA in the treatment of various cancers, as well as the underlying molecular mechanisms.
Collapse
Affiliation(s)
| | - Arijit Samanta
- Applied Biochemistry Laboratory, Department of Biological Sciences, Aliah University, Kolkata, 700160, India
| | - Faizan Uddin
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065, India
| | - Safdar Ali
- Clinical and Applied Genomics (CAG) Laboratory, Department of Biological Sciences, Aliah University, Kolkata, 700160, India
| | - Mehboob Hoque
- Applied Biochemistry Laboratory, Department of Biological Sciences, Aliah University, Kolkata, 700160, India.
| |
Collapse
|
17
|
Li W, Gao Z, Guan QL. Tan IIA mitigates vascular smooth muscle cell proliferation and migration induced by ox-LDL through the miR-137/TRPC3 axis. Kaohsiung J Med Sci 2023. [PMID: 36912285 DOI: 10.1002/kjm2.12663] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 03/14/2023] Open
Abstract
Tanshinone IIA (Tan IIA) has an important role in treatment of cardiovascular diseases, including atherosclerosis. The vascular smooth muscle cells (VSMCs) are a major part of the atherosclerotic plaque. However, the biological functions of Tan IIA in regulating VSMCs function remain mostly unclear. This research aimed at identifying the explicit molecular mechanism that Tan IIA regulates oxidized low-density lipoprotein (ox-LDL)-mediated VSMC proliferation and migration. VSMCs challenged by ox-LDL were adopted as cellular model of atherosclerosis, and suffered from Tan IIA treatment. After that, cells proliferation, apoptosis or migration were measured. The expression levels of microRNA (miR)-137, transient receptor potential cation channel subfamily C member 3 (TRPC3) and proliferating cell nuclear antigen (PCNA) were measured. The targeting relationship between miR-137 and TRPC3 was determined. It was found that Tan IIA blunted VSMC proliferation, PCNA expression and migration mediated by ox-LDL. Tan IIA promoted miR-137 level, and miR-137 knockdown reversed the influences of Tan IIA on VSMC proliferation, PCNA expression and migration in the presence of ox-LDL. TRPC3 was verified to be targeted by miR-137. Moreover, TRPC3 silencing exacerbated the influences of Tan IIA on VSMC proliferation, apoptosis and migration, and it mitigated the inhibitive effects of miR-137 knockdown on function of Tan IIA. We confirmed for the first time that Tan IIA constrained ox-LDL-stimulated VSMC proliferation and migration via regulating the miR-137/TRPC3 axis, which provided a theoretical basis for the research and promotion of Tan IIA as a therapeutic drug.
Collapse
Affiliation(s)
- Wei Li
- Department of Vascular Surgery, The Second Hospital of Yinzhou District, Ningbo, Zhejiang Province, People's Republic of China
| | - Zhi Gao
- Department of Orthopedic Surgery, The Second Hospital of Yinzhou District, Ningbo, Zhejiang Province, People's Republic of China
| | - Qing-Long Guan
- Department of Vascular Surgery, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, People's Republic of China
| |
Collapse
|
18
|
Renoprotective Effects of Tanshinone IIA: A Literature Review. Molecules 2023; 28:molecules28041990. [PMID: 36838978 PMCID: PMC9964040 DOI: 10.3390/molecules28041990] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
The kidney is an important organ in the human body, with functions such as urine production, the excretion of metabolic waste, the regulation of water, electrolyte and acid-base balance and endocrine release. The morbidity and mortality of kidney diseases are increasing year by year worldwide, and they have become a serious public health problem. In recent years, natural products derived from fungi, plants and animals have become an important alternative source of treatment for kidney diseases because of their multiple pathways, multiple targets, safety, low toxicity and few side effects. Tanshinone IIA (Tan IIA) is a lipid-soluble diterpene quinone isolated from the Chinese herb Salvia miltiorrhiza, considered as a common drug for the treatment of cardiovascular diseases. As researchers around the world continue to explore its unknown biological activities, it has also been found to have a wide range of biological effects, such as anti-cancer, anti-oxidative stress, anti-inflammatory, anti-fibrotic, and hepatoprotective effects, among others. In recent years, many studies have elaborated on its renoprotective effects in various renal diseases, including diabetic nephropathy (DN), renal fibrosis (RF), uric acid nephropathy (UAN), renal cell carcinoma (RCC) and drug-induced kidney injury caused by cisplatin, vancomycin and acetaminophen (APAP). These effects imply that Tan IIA may be a promising drug to use against renal diseases. This article provides a comprehensive review of the pharmacological mechanisms of Tan IIA in the treatment of various renal diseases, and it provides some references for further research and clinical application of Tan IIA in renal diseases.
Collapse
|
19
|
Yang Y, Shao M, Cheng W, Yao J, Ma L, Wang Y, Wang W. A Pharmacological Review of Tanshinones, Naturally Occurring Monomers from Salvia miltiorrhiza for the Treatment of Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:3801908. [PMID: 36793978 PMCID: PMC9925269 DOI: 10.1155/2023/3801908] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/23/2022] [Accepted: 11/25/2022] [Indexed: 02/09/2023]
Abstract
Cardiovascular diseases (CVDs) are a set of heart and blood vessel disorders that include coronary heart disease (CHD), rheumatic heart disease, and other conditions. Traditional Chinese Medicine (TCM) has definite effects on CVDs due to its multitarget and multicomponent properties, which are gradually gaining national attention. Tanshinones, the major active chemical compounds extracted from Salvia miltiorrhiza, exhibit beneficial improvement on multiple diseases, especially CVDs. At the level of biological activities, they play significant roles, including anti-inflammation, anti-oxidation, anti-apoptosis and anti-necroptosis, anti-hypertrophy, vasodilation, angiogenesis, combat against proliferation and migration of smooth muscle cells (SMCs), as well as anti-myocardial fibrosis and ventricular remodeling, which are all effective strategies in preventing and treating CVDs. Additionally, at the cellular level, Tanshinones produce marked effects on cardiomyocytes, macrophages, endothelia, SMCs, and fibroblasts in myocardia. In this review, we have summarized a brief overview of the chemical structures and pharmacological effects of Tanshinones as a CVD treatment to expound on different pharmacological properties in various cell types in myocardia.
Collapse
Affiliation(s)
- Ye Yang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
| | - Mingyan Shao
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenkun Cheng
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Junkai Yao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
| | - Lin Ma
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yong Wang
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Wang
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
20
|
An update on the recent advances and discovery of novel tubulin colchicine binding inhibitors. Future Med Chem 2023; 15:73-95. [PMID: 36756851 DOI: 10.4155/fmc-2022-0212] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
Microtubules, formed by α- and β-tubulin heterodimer, are considered as a major target to prevent the proliferation of tumor cells. Microtubule-targeted agents have become increasingly effective anticancer drugs. However, due to the relatively sophisticated chemical structure of taxane and vinblastine, their application has faced numerous obstacles. Conversely, the structure of colchicine binding site inhibitors (CBSIs) is much easier to be modified. Moreover, CBSIs have strong antiproliferative effect on multidrug-resistant tumor cells and have become the mainstream research orientation of microtubule-targeted agents. This review focuses mainly on the recent advances of CBSIs during 2017-2022, attempts to depict their biological activities to analyze the structure-activity relationships and offers new perspectives for designing next generation of novel CBSIs.
Collapse
|
21
|
Dong X, Nao J. Relationship between the therapeutic potential of various plant-derived bioactive compounds and their related microRNAs in neurological disorders. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154501. [PMID: 36368284 DOI: 10.1016/j.phymed.2022.154501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/26/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Neurological disorders, such as ischemic stroke, spinal cord injury, neurodegenerative diseases, and glioblastoma often lead to long-term disability and death. MicroRNAs (miRNAs) are small single-stranded non-coding RNAs of approximately 22 nucleotides, known to participate in both normal and pathological development, making them ideal therapeutic targets for clinical intervention. Several recent studies have suggested that plant-derived bioactive compounds (PDBCs) can have anti-atherosclerosis, antioxidant, and anti-inflammatory effects by regulating miRNAs. Thus, miRNAs are novel targets for the action of PDBCs. PURPOSE The aim of this review was to evaluate the current status of PDBCs targeted miRNAs by dissecting their development status through a literature review. METHODS A manual and electronic search was performed for English articles available from inception up to June 2022 reporting PDBCs and their regulating relationship with miRNAs for the therapeutic potential of neurological disorders. Information was retrieved from scientific databases including PubMed, ScienceDirect, Web of Science, Google Scholar and Chemical Abstracts Services. Keywords used for the search engines were "miRNAs" AND "Plant-derived bioactive compounds" in conjunction with "(native weeds OR alien invasive)" AND "traditional herbal medicine". RESULTS A total of 37 articles were retrieved on PDBCs and their related miRNAs in neurological disorders. These PDBCs from traditional herbal medicine may play a therapeutic role in neurological disorders in a variety of mechanisms by regulating the corresponding miRNAs. These mechanisms mainly include inhibiting oxidative stress, anti-neuroinflammation, anti-autophagy, and anti-apoptosis. PDBC are a group of chemically distinct compounds derived from medicinal plants, some of which have therapeutic effects on neurological disorders. CONCLUSION The emergence of miRNAs as pathological regulatory factors provides a new direction for the study of bioactive compounds in Traditional Chinese medicine and the elucidating of their epigenetic effects. Elucidating the regulatory relationship between bioactive compounds and miRNAs may help to identify new therapeutic targets and promoting the application of these compounds in precision medicine through their targeted molecular activity.
Collapse
Affiliation(s)
- Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China.
| |
Collapse
|
22
|
Zhu XM, Tan Y, Shi YH, Li Q, Zhu J, Liu XD, Tong QZ. TMT-based quantitative proteomics analysis of the effects of Jiawei Danshen decoction myocardial ischemia-reperfusion injury. Proteome Sci 2022; 20:17. [PMID: 36517846 PMCID: PMC9749149 DOI: 10.1186/s12953-022-00200-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Every year, approximately 17 million people worldwide die due to coronary heart disease, with China ranking second in terms of the death toll. Myocardial ischemia-reperfusion injury (MIRI) significantly influences cardiac function and prognosis in cardiac surgery patients. Jiawei Danshen Decoction (JWDSD) is a traditional Chinese herbal prescription that has been used clinically for many years in China to treat MIRI. The underlying molecular mechanisms, however, remain unknown. To investigate the proteomic changes in myocardial tissue of rats given JWDSD for MIRI therapy-based proteomics. METHODS MIRI rat model was created by ligating/releasing the left anterior descending coronary artery. For seven days, the drugs were administered twice daily. The model was created following the last drug administration. JWDSD's efficacy in improving MIRI was evaluated using biochemical markers and cardiac histology. Tandem mass tag-based quantitative proteomics (TMT) technology was also used to detect proteins in the extracted heart tissue. To analyze differentially expressed proteins (DEPs), bioinformatics analysis, including gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathways, were employed. Furthermore, western blotting confirmed the potential targets regulated by JWDSD. RESULTS The histopathologic characteristics and biochemical data showed JWDSD's protective effects on MIRI rats. A total of 4549 proteins were identified with FDR (false discovery rate) ≤1%. Twenty overlapping were identified (162 DEPs and 45 DEPs in Model/Control or JWDSD/Model group, respectively). Of these DEPs, 16 were regulated by JWDSD. GO analysis provided a summary of the deregulated protein expression in the categories of biological process (BP), cell component (CC), and molecular function (MF). KEGG enrichment analysis revealed that the signaling pathways of neutrophil extracellular trap formation, RNA polymerase, serotonergic synapse, and linoleic acid metabolism are all closely related to JWDSD effects in MIRI rats. Furthermore, T-cell lymphoma invasion and metastasis 1 (TIAM1) was validated using western blotting, and the results were consistent with proteomics data. CONCLUSIONS Our study suggests that JWDSD may exert therapeutic effects through multi-pathways regulation in MIRI treatment. This work may provide proteomics clues for continuing research on JWDSD in treating MIRI.
Collapse
Affiliation(s)
- Xiang-Mei Zhu
- grid.488482.a0000 0004 1765 5169Pharmacy of College, Hunan University of Chinese Medicine, Xueshi Road, Number 300, Changsha, Hunan 410208, People’s Republic of China ,grid.67293.39The Second Hospital of Hunan University of Chinese Medicine, Caie North Road, Number 233, Changsha, Hunan 410005, People’s Republic of China
| | - Yang Tan
- grid.488482.a0000 0004 1765 5169Pharmacy of College, Hunan University of Chinese Medicine, Xueshi Road, Number 300, Changsha, Hunan 410208, People’s Republic of China
| | - Yu-He Shi
- grid.488482.a0000 0004 1765 5169Pharmacy of College, Hunan University of Chinese Medicine, Xueshi Road, Number 300, Changsha, Hunan 410208, People’s Republic of China
| | - Qing Li
- grid.488482.a0000 0004 1765 5169Pharmacy of College, Hunan University of Chinese Medicine, Xueshi Road, Number 300, Changsha, Hunan 410208, People’s Republic of China
| | - Jue Zhu
- grid.488482.a0000 0004 1765 5169Pharmacy of College, Hunan University of Chinese Medicine, Xueshi Road, Number 300, Changsha, Hunan 410208, People’s Republic of China
| | - Xiang-Dan Liu
- grid.488482.a0000 0004 1765 5169Pharmacy of College, Hunan University of Chinese Medicine, Xueshi Road, Number 300, Changsha, Hunan 410208, People’s Republic of China ,Key Laboratory of Germplasm Resources and Standardized Planting of Bulk Authentic Medicinal Materials from Hunan, Xueshi Road, Number 300, Changsha, Hunan 410208, People’s Republic of China
| | - Qiao-Zhen Tong
- grid.488482.a0000 0004 1765 5169Pharmacy of College, Hunan University of Chinese Medicine, Xueshi Road, Number 300, Changsha, Hunan 410208, People’s Republic of China ,Key Laboratory of Germplasm Resources and Standardized Planting of Bulk Authentic Medicinal Materials from Hunan, Xueshi Road, Number 300, Changsha, Hunan 410208, People’s Republic of China
| |
Collapse
|
23
|
A highly effective turn-on tanshinone IIA-based fluorescent probe for rapid and sensitive detection of ClO− and its application in environmental analysis and bioimaging. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Hu JW, Wang Q, Liu L, Hu YM, Xie M, Zheng DK, Xie Z, Liu Y. Abietane diterpenoids from Phlegmariurus carinatus and their biological activities. PHYTOCHEMISTRY 2022; 204:113457. [PMID: 36179821 DOI: 10.1016/j.phytochem.2022.113457] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/28/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Five undescribed abietane diterpenoids, along with eight known analogs, were isolated from Phlegmariurus carinatus. Their structures were unambiguously elucidated by extensive analysis of spectroscopic data and comparison between the literature. The absolute configuration of phlecarinatone C was determined by evaluating ECD spectra. Four undescribed abietane diterpenoids and eight known analogs were tested for their neuroprotective and cytotoxic activities, separately. Teuvincenone C showed potential neuroprotective effect against Hemin-induced HT22 cell damage. Importantly, phlecarinatone C showed pronounced cytotoxic effect against U251 cells in vitro assays. The biological evaluation revealed that phlecarinatone C could inhibit proliferation, migration, and invasion in a concentration-dependent manner of U251 cells. Meanwhile, phlecarinatone C effectively reversed epithelial-to-mesenchymal transition (EMT) and promoted U251 cells apoptosis via a mitochondrial apoptotic pathway. Taken together, phlecarinatone C might be a valuable candidate for anti-metastatic agents against glioblastoma treatment.
Collapse
Affiliation(s)
- Jia-Wei Hu
- Key Laboratory of Biomaterials and Bio-fabrication in Tissue Engineering of Jiangxi Province, Scientific Research Center, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Qiang Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Lin Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Yi-Ming Hu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Min Xie
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Dong-Kun Zheng
- National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Zhen Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Yang Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, 341000, China.
| |
Collapse
|
25
|
Nazemosadat-Arsanjani Z, Moein M, Yousuf S, Firuzi O, Choudhary MI. Reassessing the molecular structures of some previously isolated abietane diterpenoids with a naphthalene moiety and the structure-activity relationship (SAR) of quinone diterpenoids. PHYTOCHEMISTRY 2022; 204:113433. [PMID: 36115387 DOI: 10.1016/j.phytochem.2022.113433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Crystals of previously described para-naphthoquinone abietane diterpenoids 12,16-dideoxy-aegyptinone B and 12-deoxy-salvipisone were obtained from Zhumeria majdae Rech.f. & Wendelbo. However, single-crystal X-ray diffraction analysis followed by reinterpretation of their NMR data revealed that their structures require revision, and they should be revised to the two ortho-naphthoquinones, zhumerianone C and aethiopinone, respectively. Interestingly, a further search through literature revealed that there were more of such cases, in which differentiation between the ortho-/para-orientation had not been carried out correctly in the structure elucidation of naphthalene containing abietane diterpenoids. Therefore, in the current study, we pointed out some 1D and 2D NMR generalizations that would help the unambiguous deduction of the ortho-/para-orientation of naphthalene containing abietanes and revised the structure of some previously described compounds accordingly. Based on these generalizations, structures of sibiriquinones A and B, sahandinone, and sahandone were revised to the known structures 1,2-didehydromiltirone, miltirone, saprorthoquinone, and sahandone B, respectivelyand tebesinone B, arucadiol, and sahandol II were revised to three undescribed structures. It was also proposed that structures of palmitoyl arucadiol and compounds with the salvifolane skeleton need revision. Furthermore, these structure revisions shed light on the structure-activity relationship of the quinone diterpenoids, approving that the ortho-quinone is the critical structural component for cytotoxicity in these compounds.
Collapse
Affiliation(s)
- Zahra Nazemosadat-Arsanjani
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran.
| | - Mahmoodreza Moein
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran; Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 7474133858, Iran.
| | - Sammer Yousuf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz 7134853734, Iran
| | - Muhammad Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
26
|
Lu M, Lan X, Wu X, Fang X, Zhang Y, Luo H, Gao W, Wu D. Salvia miltiorrhiza in cancer: Potential role in regulating MicroRNAs and epigenetic enzymes. Front Pharmacol 2022; 13:1008222. [PMID: 36172186 PMCID: PMC9512245 DOI: 10.3389/fphar.2022.1008222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
MicroRNAs are small non-coding RNAs that play important roles in gene regulation by influencing the translation and longevity of various target mRNAs and the expression of various target genes as well as by modifying histones and DNA methylation of promoter sites. Consequently, when dysregulated, microRNAs are involved in the development and progression of a variety of diseases, including cancer, by affecting cell growth, proliferation, differentiation, migration, and apoptosis. Preparations from the dried root and rhizome of Salvia miltiorrhiza Bge (Lamiaceae), also known as red sage or danshen, are widely used for treating cardiovascular diseases. Accumulating data suggest that certain bioactive constituents of this plant, particularly tanshinones, have broad antitumor effects by interfering with microRNAs and epigenetic enzymes. This paper reviews the evidence for the antineoplastic activities of S. miltiorrhiza constituents by causing or promoting cell cycle arrest, apoptosis, autophagy, epithelial-mesenchymal transition, angiogenesis, and epigenetic changes to provide an outlook on their future roles in the treatment of cancer, both alone and in combination with other modalities.
Collapse
Affiliation(s)
- Meng Lu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xintian Lan
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xi Wu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaoxue Fang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Yegang Zhang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Haoming Luo
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Wenyi Gao
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Wenyi Gao, ; Donglu Wu,
| | - Donglu Wu
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
- School of Clinical Medical, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Wenyi Gao, ; Donglu Wu,
| |
Collapse
|
27
|
Li W, Huang T, Xu S, Che B, Yu Y, Zhang W, Tang K. Molecular Mechanism of Tanshinone against Prostate Cancer. Molecules 2022; 27:molecules27175594. [PMID: 36080361 PMCID: PMC9457553 DOI: 10.3390/molecules27175594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer (PCa) is the most common malignant tumor of the male urinary system in Europe and America. According to the data in the World Cancer Report 2020, the incidence rate of PCa ranks second in the prevalence of male malignant tumors and varies worldwide between regions and population groups. Although early PCa can achieve good therapeutic results after surgical treatment, due to advanced PCa, it can adapt and tolerate androgen castration-related drugs through a variety of mechanisms. For this reason, it is often difficult to achieve effective therapeutic results in the treatment of advanced PCa. Tanshinone is a new fat-soluble phenanthraquinone compound derived from Salvia miltiorrhiza that can play a therapeutic role in different cancers, including PCa. Several studies have shown that Tanshinone can target various molecular pathways of PCa, including the signal transducer and activator of transcription 3 (STAT3) pathway, androgen receptor (AR) pathway, phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway, and mitogen-activated protein kinase (MAPK) pathway, which will affect the release of pro-inflammatory cytokines and affect cell proliferation, apoptosis, tumor metabolism, genomic stability, and tumor drug resistance. Thus, the occurrence and development of PCa cells are inhibited. In this review, we summarized the in vivo and in vitro evidence of Tanshinone against prostate cancer and discussed the effect of Tanshinone on nuclear factor kappa-B (NF-κB), AR, and mTOR. At the same time, we conducted a network pharmacology analysis on the four main components of Tanshinone to further screen the possible targets of Tanshinone against prostate cancer and provide ideas for future research.
Collapse
|
28
|
Mao W, Ding J, Li Y, Huang R, Wang B. Inhibition of cell survival and invasion by Tanshinone IIA via FTH1: A key therapeutic target and biomarker in head and neck squamous cell carcinoma. Exp Ther Med 2022; 24:521. [PMID: 35837069 PMCID: PMC9257971 DOI: 10.3892/etm.2022.11449] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a worldwide public health problem; its incidence is increasing and it is now the sixth most common cancer type worldwide. As indicated by existing studies, ferroptosis contributes to HNSCC progression and Tanshinone IIA (TanIIA) may exert therapeutic effects via affecting ferroptosis. However, the underlying mechanisms have remained to be clarified. Therefore, the main aim of the present study was to screen and investigate the key genes in regulating ferroptosis of the human hypopharynx squamous carcinoma cell line FaDu and further elucidate the mechanism of action of TanIIA. A list of ferroptosis-related genes was obtained from the FerrDb database. RNA-sequencing expression (level 3) profiles and corresponding clinical information (cases, n=502; normal controls, n=44) were downloaded from The Cancer Genome Atlas dataset for HNSCC (https://portal.gdc.com). The limma package in R software was used to study the differentially expressed mRNAs. Adjusted P<0.05 and Log2(fold change) >1 or <-1 were defined as the threshold for the differential expression of mRNAs. The ClusterProfiler package (version 3.18.0) in R was employed to analyze the Gene Ontology functional terms associated with potential targets and perform a Kyoto Encyclopedia of Genes and Genomes pathway analysis. The R package ggplot2 was used to draw the boxplot and the pheatmap package was used to draw the heatmap. The DEG-related protein-protein interaction network was built with the Search Tool for the Retrieval of Interacting Genes and proteins database and then the visualization was performed using Cytoscape. Ferritin heavy chain 1 (FTH1), transferrin (TF) and TF receptor were screened out using a Wayne diagram, which was drawn by the Venn Diagram package in R. Kaplan-Meier survival analysis and the log-rank test were used to compare differences in survival between the groups. The receiver operating characteristic (v 0.4) (ROC) curve analysis was used to compare the predictive accuracy of mRNAs. FTH1 was screened out and the expression results were verified using The Human Protein Atlas data. Immunohistochemistry and immunofluorescence were used to localize FTH1 expression in FaDu cells. Furthermore, Cell Counting Kit-8 and Transwell assays were used to detect the cell survival and invasion ability, respectively. Furthermore, western blot analysis was performed to analyze protein expression. The results of the present study indicated that three validated ferroptosis marker genes were differentially expressed in HNSCC, among which FTH1 was significantly associated with poorer survival. TanIIA was demonstrated to significantly affect FaDu cell survival and invasiveness and markedly attenuate FTH1 expression. To conclude, the ferroptosis gene FTH1 is highly expressed in HNSCC and TanIIA significantly inhibited HNSCC, partially by suppressing FTH1.
Collapse
Affiliation(s)
- Wei Mao
- Division of Otolaryngology-Head and Neck Surgery, Shanghai General Hospital of Jiaotong University, Key Laboratory of Head and Neck, Shanghai 200080, P.R. China
| | - Jian Ding
- Division of Otolaryngology-Head and Neck Surgery, Shanghai General Hospital of Jiaotong University, Key Laboratory of Head and Neck, Shanghai 200080, P.R. China
| | - Yu Li
- Division of Otolaryngology-Head and Neck Surgery, Shanghai General Hospital of Jiaotong University, Key Laboratory of Head and Neck, Shanghai 200080, P.R. China
| | - Ruofei Huang
- Division of Otolaryngology-Head and Neck Surgery, Shanghai General Hospital of Jiaotong University, Key Laboratory of Head and Neck, Shanghai 200080, P.R. China
| | - Baoxin Wang
- Division of Otolaryngology-Head and Neck Surgery, Shanghai General Hospital of Jiaotong University, Key Laboratory of Head and Neck, Shanghai 200080, P.R. China
| |
Collapse
|
29
|
Jangra A, Verma M, Kumar D, Chandrika C, Rachamalla M, Dey A, Dua K, Jha SK, Ojha S, Alexiou A, Kumar D, Jha NK. Targeting Endoplasmic Reticulum Stress using Natural Products in Neurological Disorders. Neurosci Biobehav Rev 2022; 141:104818. [DOI: 10.1016/j.neubiorev.2022.104818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/23/2022] [Accepted: 08/03/2022] [Indexed: 10/16/2022]
|
30
|
Chemical Authentication and Speciation of Salvia Botanicals: An Investigation Utilizing GC/Q-ToF and Chemometrics. Foods 2022; 11:foods11142132. [PMID: 35885375 PMCID: PMC9322183 DOI: 10.3390/foods11142132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Members of the genus Salvia are used as culinary herbs and are prized for their purported medicinal attributes. Since physiological effects can vary widely between species of Salvia, it is of great importance to accurately identify botanical material to ensure safety for consumers. In the present study, an in-depth chemical investigation is performed utilizing GC/Q-ToF combined with chemometrics. Twenty-four authentic plant samples representing five commonly used Salvia species, viz. S. apiana, S. divinorum, S. mellifera, S. miltiorrhiza, and S. officinalis, are analyzed using a GC/Q-ToF technique. High-resolution spectral data are employed to construct a sample class prediction (SCP) model followed by principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA). This model demonstrates 100% accuracy for both prediction and recognition abilities. Additionally, the marker compounds present in each species are identified. Furthermore, to reduce the time required and increase the confidence level for compound identification and the classification of different Salvia species, a personal compound database and library (PCDL) containing marker and characteristic compounds is constructed. By combining GC/Q-ToF, chemometrics, and PCDL, the unambiguous identification of Salvia botanicals is achieved. This high-throughput method can be utilized for species specificity and to probe the overall quality of various Salvia-based products.
Collapse
|
31
|
Krzemińska M, Owczarek A, Olszewska MA, Grzegorczyk-Karolak I. In Vitro Strategy for the Enhancement of the Production of Bioactive Polyphenols in Transformed Roots of Salvia bulleyana. Int J Mol Sci 2022; 23:ijms23147771. [PMID: 35887119 PMCID: PMC9322094 DOI: 10.3390/ijms23147771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 11/21/2022] Open
Abstract
The underground parts of Salvia bulleyana, a rare Chinese plant species, have long been used in traditional Chinese medicine. The Rhizobium rhizogenes-transformed root culture obtained from this plant might be a promising novel source of valuable phenolics, including rosmarinic acid. The present study identifies for the first time, the optimal growth conditions of S. bulleyana hairy roots regarding production efficiency. The comprehensive optimization comprised cultivation in different basal media (B5, SH, MS, and WP) with full- and half-strength macro- and microelements, different vitamin contents (full, half, one-quarter part, and without) and sucrose concentrations (2, 3, 4, 5%), and under different light conditions: in dark, under blue LED (λ = 430 nm), red LED (λ = 670 nm), mixed blue and red LED (30%:70%), and white LED (390–670 nm). Hairy root growth and bioactive compound accumulation were also detailed every five days over the 50-day culture cycle. The optimal conditions were determined using a technique for order preference by similarity to the ideal solution (TOPSIS). The most efficient combination for root growth and polyphenol content was found to be ½SH liquid medium with half vitamin concentration and 3% sucrose when grown in the dark. The biomass yield during the growth cycle was 6.1 g (fresh weight—FW) and 0.92 g (dry weight—DW) on one Erlenmeyer flask: a 14.3-fold increase in FW and 16.1-fold increase in DW in relation to the inoculum. The highest mean total phenolic content was 93.6 mg/g DW including about 70 mg/g DW rosmarinic acid, reached on day 40 of culture; compared to roots of two-year-old plants grown under field conditions, the total phenolic acid content was four times higher and rosmarinic acid eight times higher. The obtained results place the investigated culture among the best hair root cultures for rosmarinic acid production.
Collapse
Affiliation(s)
- Marta Krzemińska
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| | - Aleksandra Owczarek
- Department of Pharmacognosy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; (A.O.); (M.A.O.)
| | - Monika A. Olszewska
- Department of Pharmacognosy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; (A.O.); (M.A.O.)
| | - Izabela Grzegorczyk-Karolak
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
- Correspondence:
| |
Collapse
|
32
|
Hu Z, Ren L, Bu J, Liu X, Li Q, Guo W, Ma Y, Wang J, Chen T, Wang L, Jin B, Tang J, Cui G, Guo J, Huang L. Functional Characterization of a 2OGD Involved in Abietane-Type Diterpenoids Biosynthetic Pathway in Salvia miltiorrhiza. FRONTIERS IN PLANT SCIENCE 2022; 13:947674. [PMID: 35873989 PMCID: PMC9301305 DOI: 10.3389/fpls.2022.947674] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/06/2022] [Indexed: 06/10/2023]
Abstract
Salvia miltiorrhiza is one of the most commonly used Chinese medicinal herbs. Tanshinones, the most abundant lipid-soluble bioactive constituents of S. miltiorrhiza, are a class of structural highly oxidized abietane-type diterpenoids with multiple pharmacological activities. Although several enzymes, including diterpene synthase, cytochrome P450, and Fe(II)/2-oxoglutarate-dependent dioxygenase (2OGD), have been functionally characterized in biosynthesis of abietane-type diterpenoids, the highly oxidized structure and complex secondary metabolic network of tanshinones imply that more oxidases should be characterized. Here, we identified a new 2OGD (Sm2OGD25) from S. miltiorrhiza. Molecular cloning and functional studies in vitro showed that Sm2OGD25 could catalyze the hydroxylation of sugiol at C-15 and C-16 positions to produce hypargenin B and crossogumerin C, respectively. The phylogenetic analysis of the DOXC family demonstrated that Sm2OGD25 belongs to the DOXC54 clade. Furthermore, structural modeling and site-directed mutagenesis characterization revealed the importance of the hydrogen-bonding residue Y339 and the hydrophobic residues (V122, F129, A144, A208, F303, and L344) in substrate binding and enzyme activity. This study will promote further studies on the catalytic characterization of plant 2OGDs and the secondary metabolic biosynthesis network of diterpenoids.
Collapse
Affiliation(s)
- Zhimin Hu
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Ren
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junling Bu
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiuyu Liu
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- School of Pharmaceutical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Qishuang Li
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wending Guo
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Ma
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jian Wang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tong Chen
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ling Wang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baolong Jin
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinfu Tang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guanghong Cui
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Juan Guo
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
33
|
Yadav A, Yadav SS, Singh S, Dabur R. Natural products: Potential therapeutic agents to prevent skeletal muscle atrophy. Eur J Pharmacol 2022; 925:174995. [PMID: 35523319 DOI: 10.1016/j.ejphar.2022.174995] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 12/16/2022]
Abstract
The skeletal muscle (SkM) is the largest organ, which plays a vital role in controlling musculature, locomotion, body heat regulation, physical strength, and metabolism of the body. A sedentary lifestyle, aging, cachexia, denervation, immobilization, etc. Can lead to an imbalance between protein synthesis and degradation, which is further responsible for SkM atrophy (SmA). To date, the understanding of the mechanism of SkM mass loss is limited which also restricted the number of drugs to treat SmA. Thus, there is an urgent need to develop novel approaches to regulate muscle homeostasis. Presently, some natural products attained immense attraction to regulate SkM homeostasis. The natural products, i.e., polyphenols (resveratrol, curcumin), terpenoids (ursolic acid, tanshinone IIA, celastrol), flavonoids, alkaloids (tomatidine, magnoflorine), vitamin D, etc. exhibit strong potential against SmA. Some of these natural products have been reported to have equivalent potential to standard treatments to prevent body lean mass loss. Indeed, owing to the large complexity, diversity, and slow absorption rate of bioactive compounds made their usage quite challenging. Moreover, the use of natural products is controversial due to their partially known or elusive mechanism of action. Therefore, the present review summarizes various experimental and clinical evidence of some important bioactive compounds that shall help in the development of novel strategies to counteract SmA elicited by various causes.
Collapse
Affiliation(s)
- Aarti Yadav
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Surender Singh Yadav
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Sandeep Singh
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Rajesh Dabur
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
34
|
Md S, Alhakamy NA, Karim S, Gabr GA, Iqubal MK, Murshid SSA. Signaling Pathway Inhibitors, miRNA, and Nanocarrier-Based Pharmacotherapeutics for the Treatment of Lung Cancer: A Review. Pharmaceutics 2021; 13:2120. [PMID: 34959401 PMCID: PMC8708027 DOI: 10.3390/pharmaceutics13122120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is one of the most commonly diagnosed cancers and is responsible for a large number of deaths worldwide. The pathogenic mechanism of lung cancer is complex and multifactorial in origin. Thus, various signaling pathways as targets for therapy are being examined, and many new drugs are in the pipeline. However, both conventional and target-based drugs have been reported to present significant adverse effects, and both types of drugs can affect the clinical outcome in addition to patient quality of life. Recently, miRNA has been identified as a promising target for lung cancer treatment. Therefore, miRNA mimics, oncomiRs, or miRNA suppressors have been developed and studied for possible anticancer effects. However, these miRNAs also suffer from the limitations of low stability, biodegradation, thermal instability, and other issues. Thus, nanocarrier-based drug delivery for the chemotherapeutic drug delivery in addition to miRNA-based systems have been developed so that existing limitations can be resolved, and enhanced therapeutic outcomes can be achieved. Thus, this review discusses lung cancer's molecular mechanism, currently approved drugs, and their adverse effects. We also discuss miRNA biosynthesis and pathogenetic role, highlight pre-clinical and clinical evidence for use of miRNA in cancer therapy, and discussed limitations of this therapy. Furthermore, nanocarrier-based drug delivery systems to deliver chemotherapeutic drugs and miRNAs are described in detail. In brief, the present review describes the mechanism and up-to-date possible therapeutic approaches for lung cancer treatment and emphasizes future prospects to bring these novel approaches from bench to bedside.
Collapse
Affiliation(s)
- Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shahid Karim
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Gamal A Gabr
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Satam Bin Abdulaziz University, Al-Kharj 16278, Saudi Arabia;
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
- Sentiss Research Centre, Product Development Department, Sentiss Pharma Pvt Ltd., Gurugram 122001, India
| | - Samar S. A. Murshid
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
35
|
Soriano-Castell D, Liang Z, Maher P, Currais A. Profiling the chemical nature of anti-oxytotic/ferroptotic compounds with phenotypic screening. Free Radic Biol Med 2021; 177:313-325. [PMID: 34748909 PMCID: PMC8639737 DOI: 10.1016/j.freeradbiomed.2021.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/26/2022]
Abstract
Because old age is the greatest risk factor for Alzheimer's disease (AD), it is critical to target the pathological events that link aging to AD in order to develop an efficient treatment that acts upon the primary causes of the disease. One such event might be the activation of oxytosis/ferroptosis, a unique cell death mechanism characterized by mitochondrial dysfunction and lethal lipid peroxidation. Here, a comprehensive library of >900 natural compounds was screened for protection against oxytosis/ferroptosis in nerve cells with the goal of better understanding the chemical nature of inhibitors of oxytosis/ferroptosis. Although the compounds tested spanned structurally diverse chemical classes from animal, microbial, plant and synthetic origins, a small set of very potent anti-oxytotic/ferroptotic compounds was identified that was highly enriched in plant quinones. The ability of these compounds to protect against oxytosis/ferroptosis strongly correlated with their ability to protect against in vitro ischemia and intracellular amyloid-beta toxicity in nerve cells, indicating that aspects of oxytosis/ferroptosis also underly other toxicities that are relevant to AD. Importantly, the anti-oxytotic/ferroptotic character of the quinone compounds relied on their capacity to target and directly prevent lipid peroxidation in a manner that required the reducing activity of cellular redox enzymes, such as NAD(P)H:quinone oxidoreductase 1 (NQO1) and ferroptosis suppressor protein 1 (FSP1). Because some of the compounds increased the production of total reactive oxygen species while decreasing lipid peroxidation, it appears that the pro-oxidant character of a compound can coexist with an inhibitory effect on lipid peroxidation and, consequently, still prevent oxytosis/ferroptosis. These findings have significant implications for the understanding of oxytosis/ferroptosis and open new approaches to the development of future neurotherapies.
Collapse
Affiliation(s)
- David Soriano-Castell
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd. La Jolla, CA, 92037, USA.
| | - Zhibin Liang
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd. La Jolla, CA, 92037, USA
| | - Pamela Maher
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd. La Jolla, CA, 92037, USA
| | - Antonio Currais
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd. La Jolla, CA, 92037, USA.
| |
Collapse
|
36
|
Cancer Chemopreventive Role of Dietary Terpenoids by Modulating Keap1-Nrf2-ARE Signaling System—A Comprehensive Update. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112210806] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
ROS, RNS, and carcinogenic metabolites generate excessive oxidative stress, which changes the basal cellular status and leads to epigenetic modification, genomic instability, and initiation of cancer. Epigenetic modification may inhibit tumor-suppressor genes and activate oncogenes, enabling cells to have cancer promoting properties. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that in humans is encoded by the NFE2L2 gene, and is activated in response to cellular stress. It can regulate redox homoeostasis by expressing several cytoprotective enzymes, including NADPH quinine oxidoreductase, heme oxygenase-1, UDP-glucuronosyltransferase, glutathione peroxidase, glutathione-S-transferase, etc. There is accumulating evidence supporting the idea that dietary nutraceuticals derived from commonly used fruits, vegetables, and spices have the ability to produce cancer chemopreventive activity by inducing Nrf2-mediated detoxifying enzymes. In this review, we discuss the importance of these nutraceuticals in cancer chemoprevention and summarize the role of dietary terpenoids in this respect. This approach was taken to accumulate the mechanistic function of these terpenoids to develop a comprehensive understanding of their direct and indirect roles in modulating the Keap1-Nrf2-ARE signaling system.
Collapse
|
37
|
Mahalakshmi B, Huang CY, Lee SD, Maurya N, kiefer R, Bharath Kumar V. Review of Danshen: From its metabolism to possible mechanisms of its biological activities. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
38
|
Das A, Begum K, Akhtar S, Ahmed R, Kulkarni R, Banu S. Genome-wide detection and classification of terpene synthase genes in Aquilaria agallochum. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1711-1729. [PMID: 34539112 PMCID: PMC8405786 DOI: 10.1007/s12298-021-01040-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/28/2021] [Accepted: 07/23/2021] [Indexed: 06/05/2023]
Abstract
Agarwood, one of the precious woods in the globe, is produced by Aquilaria plant species during an upshot of wounding and infection. Produced as a defence response, the dark, fragrant resin gets secreted in the plant's duramen, which is impregnated with fragrant molecules with the due course. Agarwood has gained worldwide popularity due to its high aromatic oil, fragrance, and pharmaceutical value, which makes it highly solicited by numerous industries. Predominant chemical constituents of agarwood, sesquiterpenoids, and 2-(2-phenylethyl) chromones have been scrutinized to comprehend the scientific nature of the fragrant wood and develop novel products. However, the genes involved in the biosynthesis of these aromatic compounds are still not comprehensively studied in Aquilaria. In this study, publicly available genomic and transcriptomics data of Aquilaria agallochum were integrated to identify putative functional terpene synthase genes (TPSs). The in silico study enabled us to identify ninety-six TPSs, of which thirty-nine full-length genes were systematically classified into TPS-a, TPS-b, TPS-c, TPS-e, TPS-f, and TPS-g subfamilies based on their gene structure, conserve motif, and phylogenetic comparison with TPSs from other plant species. Analysis of the cis-regulatory elements present upstream of AaTPSs revealed their association with hormone, stress and light responses. In silico expression studies detected their up-regulation in stress induced tissue. This study provides a basic understanding of terpene synthase gene repertoire in Aquilaria agallochum and unlatches opportunities for the biochemical characterization and biotechnological exploration of these genes. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01040-z.
Collapse
Affiliation(s)
- Ankur Das
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam 781014 India
| | - Khaleda Begum
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam 781014 India
| | - Suraiya Akhtar
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam 781014 India
| | - Raja Ahmed
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam 781014 India
| | - Ram Kulkarni
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune, India
| | - Sofia Banu
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam 781014 India
| |
Collapse
|
39
|
Design, synthesis and biological evaluation of tanshinone IIA-based analogues: Potent inhibitors of microtubule formation and angiogenesis. Eur J Med Chem 2021; 224:113708. [PMID: 34333396 DOI: 10.1016/j.ejmech.2021.113708] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/22/2022]
Abstract
We report the structural optimization of tanshinone IIA, a natural product which possesses anti-tumor properties but low water-solubility, weak antiproliferative activity and poor PK properties. A new series of ring A/C/D modified tanshinone analogues were synthesized and studied for their antiproliferative capacities against six human cancer cell lines. SAR study revealed that ring A cleavage of tanshinone IIA led to improved anti-cancer activity. Introduction of a methoxy group to the phenyl ring could enhance the anti-cancer activity even further. Compound 2f with methoxy group at C-8 position was selected as an early lead with IC50 values of 0.28-3.16 μM against six tested cell lines. 2f could bind to tubulin colchicine site, inhibit tubulin assembly and disrupt the normal formation of microtubule networks. Cellular mechanistic studies revealed that 2f induced apoptotic cell death of A549 cells in a dose-dependent manner. In vitro investigations showed that 2f impeded the tubule-formation of HUVECs and potently inhibited the proliferation, migration and invasion of A549 cells as well as HUVECs. Furthermore, the in vivo anti-angiogenic effect of 2f was confirmed via a zebrafish model test. The satisfactory physicochemical property and metabolic stability of 2f, as well as improved water-solubility, further suggested that 2f could serve as a promising tubulin inhibitor and anti-angiogenic agent.
Collapse
|
40
|
Prajapati R, Park SE, Seong SH, Paudel P, Fauzi FM, Jung HA, Choi JS. Monoamine Oxidase Inhibition by Major Tanshinones from Salvia miltiorrhiza and Selective Muscarinic Acetylcholine M 4 Receptor Antagonism by Tanshinone I. Biomolecules 2021; 11:1001. [PMID: 34356625 PMCID: PMC8301926 DOI: 10.3390/biom11071001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 11/23/2022] Open
Abstract
Monoamine oxidases (MAOs) and muscarinic acetylcholine receptors (mAChRs) are considered important therapeutic targets for Parkinson's disease (PD). Lipophilic tanshinones are major phytoconstituents in the dried roots of Salvia miltiorrhiza that have demonstrated neuroprotective effects against dopaminergic neurotoxins and the inhibition of MAO-A. Since MAO-B inhibition is considered an effective therapeutic strategy for PD, we tested the inhibitory activities of three abundant tanshinone congeners against recombinant human MAO (hMAO) isoenzymes through in vitro experiments. In our study, tanshinone I (1) exhibited the highest potency against hMAO-A, followed by tanshinone IIA and cryptotanshinone, with an IC50 less than 10 µM. They also suppressed hMAO-B activity, with an IC50 below 25 µM. Although tanshinones are known to inhibit hMAO-A, their enzyme inhibition mechanism and binding sites have yet to be investigated. Enzyme kinetics and molecular docking studies have revealed the mode of inhibition and interactions of tanshinones during enzyme inhibition. Proteochemometric modeling predicted mAChRs as possible pharmacological targets of 1, and in vitro functional assays confirmed the selective M4 antagonist nature of 1 (56.1% ± 2.40% inhibition of control agonist response at 100 µM). These findings indicate that 1 is a potential therapeutic molecule for managing the motor dysfunction and depression associated with PD.
Collapse
Affiliation(s)
- Ritu Prajapati
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea; (R.P.); (S.E.P.); (S.H.S.); (P.P.)
| | - Se Eun Park
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea; (R.P.); (S.E.P.); (S.H.S.); (P.P.)
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan, Seoul 05505, Korea
| | - Su Hui Seong
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea; (R.P.); (S.E.P.); (S.H.S.); (P.P.)
- Natural Product Research Division, Honam National Institute of Biological Resource, Mokpo 58762, Korea
| | - Pradeep Paudel
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea; (R.P.); (S.E.P.); (S.H.S.); (P.P.)
- National Center for Natural Products Research, Research Institute of Pharmaceutical Science, The University of Mississippi, Oxford, MS 38677, USA
| | - Fazlin Mohd Fauzi
- Department of Pharmacology and Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam 42300, Malaysia;
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Jeonbok National University, Jeonju 54896, Korea
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea; (R.P.); (S.E.P.); (S.H.S.); (P.P.)
| |
Collapse
|
41
|
Rashid MH, Babu D, Siraki AG. Interactions of the antioxidant enzymes NAD(P)H: Quinone oxidoreductase 1 (NQO1) and NRH: Quinone oxidoreductase 2 (NQO2) with pharmacological agents, endogenous biochemicals and environmental contaminants. Chem Biol Interact 2021; 345:109574. [PMID: 34228969 DOI: 10.1016/j.cbi.2021.109574] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/17/2021] [Accepted: 07/01/2021] [Indexed: 01/11/2023]
Abstract
NAD(P)H Quinone Oxidoreductase 1 (NQO1) is an antioxidant enzyme that catalyzes the two-electron reduction of several different classes of quinone-like compounds (quinones, quinone imines, nitroaromatics, and azo dyes). One-electron reduction of quinone or quinone-like metabolites is considered to generate semiquinones to initiate redox cycling that is responsible for the generation of reactive oxygen species and oxidative stress and may contribute to the initiation of adverse drug reactions and adverse health effects. On the other hand, the two-electron reduction of quinoid compounds appears important for drug activation (bioreductive activation) via chemical rearrangement or autoxidation. Two-electron reduction decreases quinone levels and opportunities for the generation of reactive species that can deplete intracellular thiol pools. Also, studies have shown that induction or depletion (knockout) of NQO1 were associated with decreased or increased susceptibilities to oxidative stress, respectively. Moreover, another member of the quinone reductase family, NRH: Quinone Oxidoreductase 2 (NQO2), has a significant functional and structural similarity with NQO1. The activity of both antioxidant enzymes, NQO1 and NQO2, becomes critically important when other detoxification pathways are exhausted. Therefore, this article summarizes the interactions of NQO1 and NQO2 with different pharmacological agents, endogenous biochemicals, and environmental contaminants that would be useful in the development of therapeutic approaches to reduce the adverse drug reactions as well as protection against quinone-induced oxidative damage. Also, future directions and areas of further study for NQO1 and NQO2 are discussed.
Collapse
Affiliation(s)
- Md Harunur Rashid
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada; Institute of Food and Radiation Biology, Bangladesh Atomic Energy Commission, Bangladesh
| | - Dinesh Babu
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Arno G Siraki
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada.
| |
Collapse
|
42
|
Molecular cloning and functional characterization of multiple ApOSCs from Andrographis paniculata. Chin J Nat Med 2021; 18:659-665. [PMID: 32928509 DOI: 10.1016/s1875-5364(20)60004-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Indexed: 11/22/2022]
Abstract
Triterpenoids have been described in Andrographis paniculata. Oleanolic acid exhibits high biological activity and is widely used in the clinic, and β-sitosterol not only has good biological activity but also plays an important physiological role in plants. However, analysis of the biosynthetic pathway of triterpenoids in Andrographis paniculata has not been reported. Here, we provide the first report of the isolation and identification of nine 2, 3-oxidosqualene cyclases (ApOSC3 to ApOSC11) from A. paniculata. The results showed that ApOSC4 represented a monofunctional synthase that could convert 2, 3-oxidosqualene to β-amyrin. ApOSC5 as a bifunctional 2, 3-oxidosqualene cyclases, could transfer 2, 3-oxidosqualene to β-amyrin and α-amyrin. ApOSC6 to ApOSC8 composed the multifunctional 2, 3-oxidosqualene cyclases that could convert 2, 3-oxidosqualene to β-amyrin, α-amyrin and one or two undetermined triterpenoids. This study provides a better understanding of the biosynthetic pathway of triterpenoids in A. paniculata, and the discovery of multifunctional 2, 3-oxidosqualene cyclases ApOSC5 to ApOSC8 of the facilitates knowledge of the compounds diversity in A. paniculata.
Collapse
|
43
|
Sodium Tanshinone IIA Sulfonate Ameliorates Injury-Induced Oxidative Stress and Intervertebral Disc Degeneration in Rats by Inhibiting p38 MAPK Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5556122. [PMID: 34122723 PMCID: PMC8172320 DOI: 10.1155/2021/5556122] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/29/2021] [Indexed: 01/08/2023]
Abstract
Objective Sodium tanshinone IIA sulfonate (STS) is a water-soluble derivative of tanshinone IIA, a representative traditional Chinese medicine. The aim of the study was to investigate the capability of STS to reverse injury-induced intervertebral disc degeneration (IDD) and explore the potential mechanisms. Methods Forty adult rats were randomly allocated into groups (control, IDD, STS10, and STS20). An IDD model was established by puncturing the Co8-9 disc using a needle. Rats in the STS groups were administered STS by daily intraperitoneal injection (10 or 20 mg/kg body weight) while rats in the control and IDD groups received the same quantity of normal saline. After four weeks, the entire spine from each rat was scanned for X-ray and MRI analysis. Each Co8-9 IVD underwent histological analysis (H&E, Safranin-O Fast green, and alcian blue staining). A tissue was analyzed by immunohistochemical (IHC) staining to determine the expression levels of collagen II (COL2), aggrecan, matrix metalloproteinase-3/13 (MMP-3/13), interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α). Levels of oxidative stress were measured using an ELISA while activity of the p38 MAPK pathway was assessed using Western blot analysis. Results Compared with the control group, needle puncture significantly decreased IVD volume and T-2 weighted MR signal intensity, confirming disc degeneration. These alterations were significantly attenuated by treatment with 10 or 20 mg/kg STS. Lower COL2 and aggrecan and higher MMP-3/13, IL-1β, IL-6, and TNF-α levels in the IDD group were substantially reversed by STS. In addition, treatment with STS increased antioxidative enzyme activity and decreased levels of oxidative stress induced by needle puncture. Furthermore, STS inhibited the p38 MAPK pathway in the rat model of IDD. Conclusions STS ameliorated injury-induced intervertebral disc degeneration and displayed anti-inflammatory and antioxidative properties in a rat model of IDD, possibly via inhibition of the p38 MAPK signaling pathway.
Collapse
|
44
|
The Treatment with Complementary and Alternative Traditional Chinese Medicine for Menstrual Disorders with Polycystic Ovary Syndrome. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6678398. [PMID: 34055020 PMCID: PMC8149243 DOI: 10.1155/2021/6678398] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/02/2021] [Accepted: 04/13/2021] [Indexed: 12/17/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a frequent gynecological female endocrinopathy, characterized by chronic anovulation, hyperandrogenism, and insulin resistance (IR). Menstrual disorders are one of the main clinical manifestations of PCOS. Other symptoms include hirsutism and/acne. At present, the treatment of PCOS with irregular menstruation is mainly based on oral contraceptives, but there are some side effects and adverse reactions. In recent years, more and more attention has been paid to the complementary and alternative medicine (CAM), which has been widely used in clinical practice. Modern Western medicine is called "conventional medicine" or "orthodox medicine," and the complementary and alternative medicine is called "unconventional medicine" or "unorthodox medicine." CAM includes traditional medicine and folk therapy around the world. Around 65-80% of world health management business is classified into traditional medicine by the World Health Organization, which is used as alternative medicine in Western countries. In our country, Chinese medicine, acupuncture, and other therapies are commonly used due to their significant efficacy and higher safety. Therefore, this review aims to summarize and evaluate the mechanisms and the effect of current complementary replacement therapy in the treatment of menstrual disorders caused by PCOS, so as to provide guidance for the following basic and clinical research.
Collapse
|
45
|
Subedi L, Gaire BP. Tanshinone IIA: A phytochemical as a promising drug candidate for neurodegenerative diseases. Pharmacol Res 2021; 169:105661. [PMID: 33971269 DOI: 10.1016/j.phrs.2021.105661] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/02/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023]
Abstract
Tanshinones, lipophilic diterpenes isolated from the rhizome of Salvia miltiorrhiza, have diverse pharmacological activities against human ailments including neurological diseases. In fact, tanshinones have been used to treat heart diseases, stroke, and vascular diseases in traditional Chinese medicine. During the last decade, tanshinones have been the most widely studied phytochemicals for their neuroprotective effects against experimental models of cerebral ischemia and Alzheimer's diseases. Importantly, tanshinone IIA, mostly studied tanshinone for biological activities, is recently reported to attenuate blood-brain barrier permeability among stroke patients, suggesting tanshinone IIA as an appealing therapeutic candidate for neurological diseases. Tanshinone I and IIA are also effective in experimental models of Parkinson's disease, Multiple sclerosis, and other neuroinflammatory diseases. In addition, several experimental studies suggested the pleiotropic neuroprotective effects of tanshinones such as anti-inflammatory, antioxidant, anti-apoptotic, and BBB protectant further value aiding to tanshinone as an appealing therapeutic strategy in neurological diseases. Therefore, in this review, we aimed to compile the recent updates and cellular and molecular mechanisms of neuroprotection of tanshinone IIA in diverse neurological diseases.
Collapse
Affiliation(s)
- Lalita Subedi
- Department of Anesthesiology and Neurology, Shock Trauma and Anesthesiology Research Center, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Bhakta Prasad Gaire
- Department of Anesthesiology and Neurology, Shock Trauma and Anesthesiology Research Center, University of Maryland, School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
46
|
The Skeletal Effects of Tanshinones: A Review. Molecules 2021; 26:molecules26082319. [PMID: 33923673 PMCID: PMC8073409 DOI: 10.3390/molecules26082319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/30/2021] [Accepted: 04/14/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Osteoporosis results from excessive bone resorption and reduced bone formation, triggered by sex hormone deficiency, oxidative stress and inflammation. Tanshinones are a class of lipophilic phenanthrene compounds found in the roots of Salvia miltiorrhiza with antioxidant and anti-inflammatory activities, which contribute to its anti-osteoporosis effects. This systematic review aims to provide an overview of the skeletal beneficial effects of tanshinones. Methods: A systematic literature search was conducted in January 2021 using Pubmed, Scopus and Web of Science from the inception of these databases. Original studies reporting the effects of tanshinones on bone through cell cultures, animal models and human clinical trials were considered. Results: The literature search found 158 unique articles on this topic, but only 20 articles met the inclusion criteria and were included in this review. The available evidence showed that tanshinones promoted osteoblastogenesis and bone formation while reducing osteoclastogenesis and bone resorption. Conclusions: Tanshinones modulates bone remodelling by inhibiting osteoclastogenesis and osteoblast apoptosis and stimulating osteoblastogenesis. Therefore, it might complement existing strategies to prevent bone loss.
Collapse
|
47
|
Qiao L, Han M, Gao S, Shao X, Wang X, Sun L, Fu X, Wei Q. Research progress on nanotechnology for delivery of active ingredients from traditional Chinese medicines. J Mater Chem B 2021; 8:6333-6351. [PMID: 32633311 DOI: 10.1039/d0tb01260b] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There is growing acceptance of traditional Chinese medicines (TCMs) as potential sources of clinical agents based on the demonstrated efficacies of numerous bioactive compounds first identified in TCM extracts, such as paclitaxel, camptothecin, and artemisinin. However, there are several challenges to achieving the full clinical potential of many TCMs, particularly the generally high hydrophobicity and low bioavailability. Recently, however, numerous studies have attempted to circumvent the limited in vivo activity and systemic toxicity of TCM ingredients by incorporation into nanoparticle-based delivery systems. Many of these formulations demonstrate improved bioavailability, enhanced tissue targeting, and greater in vivo stability compared to the native compound. This review summarizes nanoformulations of the most promising and extensively studied TCM compounds to provide a reference for further research. Combining these natural compounds with nanotechnology-based delivery systems may further improve the clinical utility of these agents, in turn leading to more intensive research on traditional medicinal compounds.
Collapse
Affiliation(s)
- Li Qiao
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Maosen Han
- College of Phamaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Shijie Gao
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Xinxin Shao
- Laboratory of Traditional Chinese Medicine Network Pharmacology, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China.
| | - Xiaoming Wang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Linlin Sun
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Xianjun Fu
- Laboratory of Traditional Chinese Medicine Network Pharmacology, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China.
| | - Qingcong Wei
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China.
| |
Collapse
|
48
|
Plasma Membrane H +-ATPase SmPHA4 Negatively Regulates the Biosynthesis of Tanshinones in Salvia miltiorrhiza. Int J Mol Sci 2021; 22:ijms22073353. [PMID: 33805926 PMCID: PMC8037235 DOI: 10.3390/ijms22073353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 11/17/2022] Open
Abstract
Salvia miltiorrhiza Bunge has been widely used in the treatment of cardiovascular and cerebrovascular diseases, due to the pharmacological action of its active components such as the tanshinones. Plasma membrane (PM) H+-ATPase plays key roles in numerous physiological processes in plants. However, little is known about the PM H+-ATPase gene family in S. miltiorrhiza (Sm). Here, nine PM H+-ATPase isoforms were identified and named SmPHA1-SmPHA9. Phylogenetic tree analysis showed that the genetic distance of SmPHAs was relatively far in the S. miltiorrhiza PM H+-ATPase family. Moreover, the transmembrane structures were rich in SmPHA protein. In addition, SmPHA4 was found to be highly expressed in roots and flowers. HPLC revealed that accumulation of dihydrotanshinone (DT), cryptotanshinone (CT), and tanshinone I (TI) was significantly reduced in the SmPHA4-OE lines but was increased in the SmPHA4-RNAi lines, ranging from 2.54 to 3.52, 3.77 to 6.33, and 0.35 to 0.74 mg/g, respectively, suggesting that SmPHA4 is a candidate regulator of tanshinone metabolites. Moreover, qRT-PCR confirmed that the expression of tanshinone biosynthetic-related key enzymes was also upregulated in the SmPHA4-RNAi lines. In summary, this study highlighted PM H+-ATPase function and provided new insights into regulatory candidate genes for modulating secondary metabolism biosynthesis in S. miltiorrhiza.
Collapse
|
49
|
Wen T, Song L, Hua S. Perspectives and controversies regarding the use of natural products for the treatment of lung cancer. Cancer Med 2021; 10:2396-2422. [PMID: 33650320 PMCID: PMC7982634 DOI: 10.1002/cam4.3660] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Lung cancer is the leading cause of cancer‐related mortality both in men and women and accounts for 18.4% of all cancer‐related deaths. Although advanced therapy methods have been developed, the prognosis of lung cancer patients remains extremely poor. Over the past few decades, clinicians and researchers have found that chemical compounds extracted from natural products may be useful for treating lung cancer. Drug formulations derived from natural compounds, such as paclitaxel, doxorubicin, and camptothecin, have been successfully used as chemotherapeutics for lung cancer. In recent years, hundreds of new natural compounds that can be used to treat lung cancer have been found through basic and sub‐clinical research. However, there has not been a corresponding increase in the number of drugs that have been used in a clinical setting. The probable reasons may include low solubility, limited absorption, unfavorable metabolism, and severe side effects. In this review, we present a summary of the natural compounds that have been proven to be effective for the treatment of lung cancer, as well as an understanding of the mechanisms underlying their pharmacological effects. We have also highlighted current controversies and have attempted to provide solutions for the clinical translation of these compounds.
Collapse
Affiliation(s)
- Tingting Wen
- Department of Respiratory Medicine, Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Lei Song
- Department of Respiratory Medicine, Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Shucheng Hua
- Department of Respiratory Medicine, Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| |
Collapse
|
50
|
Dihydrotanshinone I Is Effective against Drug-Resistant Helicobacter pylori In Vitro and In Vivo. Antimicrob Agents Chemother 2021; 65:AAC.01921-20. [PMID: 33318002 DOI: 10.1128/aac.01921-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/05/2020] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori is a major global pathogen and has been implicated in gastritis, peptic ulcer, and gastric carcinoma. The efficacy of the extensive therapy of H. pylori infection with antibiotics is compromised by the development of drug resistance and toxicity toward human gut microbiota, which urgently demands novel and selective antibacterial strategies. The present study was mainly performed to assess the in vitro and in vivo effects of a natural herbal compound, dihydrotanshinone I (DHT), against standard and clinical H. pylori strains. DHT demonstrated effective antibacterial activity against H. pylori in vitro (MIC50/90, 0.25/0.5 μg/ml), with no development of resistance during continuous serial passaging. Time-kill curves showed strong time-dependent bactericidal activity for DHT. Also, DHT eliminated preformed biofilms and killed biofilm-encased H. pylori cells more efficiently than the conventional antibiotic metronidazole. In mouse models of multidrug-resistant H. pylori infection, dual therapy with DHT and omeprazole showed in vivo killing efficacy superior to that of the standard triple-therapy approach. Moreover, DHT treatment induces negligible toxicity against normal tissues and exhibits a relatively good safety index. These results suggest that DHT could be suitable for use as an anti-H. pylori agent in combination with a proton pump inhibitor to eradicate multidrug-resistant H. pylori.
Collapse
|