1
|
Xuan S, Li Y, Wu Y, Adcock IM, Zeng X, Yao X. Langerin-expressing dendritic cells in pulmonary immune-related diseases. Front Med (Lausanne) 2022; 9:909057. [PMID: 36160158 PMCID: PMC9490018 DOI: 10.3389/fmed.2022.909057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022] Open
Abstract
Dendritic cells (DCs) are “frontline” immune cells dedicated to antigen presentation. They serve as an important bridge connecting innate and adaptive immunity, and express various receptors for antigen capture. DCs are divided into various subclasses according to their differential expression of cell surface receptors and different subclasses of DCs exhibit specific immunological characteristics. Exploring the common features of each sub-category has became the focus of many studies. There are certain amounts of DCs expressing langerin in airways and peripheral lungs while the precise mechanism by which langerin+ DCs drive pulmonary disease is unclear. Langerin-expressing DCs can be further subdivided into numerous subtypes based on the co-expressed receptors, but here, we identify commonalities across these subtypes that point to the major role of langerin. Better understanding is required to clarify key disease pathways and determine potential new therapeutic approaches.
Collapse
Affiliation(s)
- Shurui Xuan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuebei Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yunhui Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ian M. Adcock
- Airway Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Xiaoning Zeng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Yao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Xin Yao
| |
Collapse
|
2
|
Doyle CM, Fewings NL, Ctercteko G, Byrne SN, Harman AN, Bertram KM. OMIP 082: A 25-color phenotyping to define human innate lymphoid cells, natural killer cells, mucosal-associated invariant T cells, and γδ T cells from freshly isolated human intestinal tissue. Cytometry A 2022; 101:196-202. [PMID: 35018731 DOI: 10.1002/cyto.a.24529] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 11/12/2022]
Abstract
We developed a 25-color flow cytometry panel to comprehensively interrogate innate lymphoid cells (ILC), mucosal-associated invariant T (MAIT) cells, natural killer (NK) cells and γδ T cells in human tissues. The ability to isolate and interrogate these cells from fresh human tissue is crucial in understanding the role these cells play at immune-privileged mucosal surfaces like the intestine in health and disease settings. However, liberating these cells from tissue is extremely challenging as many key surface identification markers are susceptible to enzymatic cleavage. Choosing the correct enzyme-antibody clone combination within a high-parameter panel is, therefore, a critical consideration. Here, we present a comprehensive, in-depth analysis of the effect different common digestive enzyme blends have on key surface markers used to identify these cell types. In addition, we compared multiple antibody clones for surface markers that are highly susceptible to enzymatic cleavage, such as CD127 and NKp44, to achieve the most consistent and superior staining patterns among donors.
Collapse
Affiliation(s)
- Chloe M Doyle
- Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, School of Medical Sciences, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Westmead Clinical School, Westmead, New South Wales, Australia
| | - Nicole L Fewings
- Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, School of Medical Sciences, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Westmead Clinical School, Westmead, New South Wales, Australia
| | - Grahame Ctercteko
- Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Westmead Clinical School, Westmead, New South Wales, Australia.,Department of Colorectal Surgery, Westmead Hospital, Westmead, New South Wales, Australia
| | - Scott N Byrne
- Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, School of Medical Sciences, Westmead, New South Wales, Australia
| | - Andrew N Harman
- Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, School of Medical Sciences, Westmead, New South Wales, Australia
| | - Kirstie M Bertram
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, School of Medical Sciences, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Westmead Clinical School, Westmead, New South Wales, Australia
| |
Collapse
|
3
|
Lewis D, Hinojosa T, Duvic M, Torres-Cabala C. CD1a-positive dendritic cell-enriched pigmented purpuric dermatosis in association with dyslipidemia. JOURNAL OF DERMATOLOGY & DERMATOLOGIC SURGERY 2022. [DOI: 10.4103/jdds.jdds_85_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
4
|
HIV transmitting mononuclear phagocytes; integrating the old and new. Mucosal Immunol 2022; 15:542-550. [PMID: 35173293 PMCID: PMC9259493 DOI: 10.1038/s41385-022-00492-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023]
Abstract
In tissue, mononuclear phagocytes (MNP) are comprised of Langerhans cells, dendritic cells, macrophages and monocyte-derived cells. They are the first immune cells to encounter HIV during transmission and transmit the virus to CD4 T cells as a consequence of their antigen presenting cell function. To understand the role these cells play in transmission, their phenotypic and functional characterisation is important. With advancements in high parameter single cell technologies, new MNPs subsets are continuously being discovered and their definition and classification is in a state of flux. This has important implications for our knowledge of HIV transmission, which requires a deeper understanding to design effective vaccines and better blocking strategies. Here we review the historical research of the role MNPs play in HIV transmission up to the present day and revaluate these studies in the context of our most recent understandings of the MNP system.
Collapse
|
5
|
Doyle CM, Vine EE, Bertram KM, Baharlou H, Rhodes JW, Dervish S, Gosselink MP, Di Re A, Collins GP, Reza F, Toh JWT, Pathma-Nathan N, Ahlenstiel G, Ctercteko G, Cunningham AL, Harman AN, Byrne SN. Optimal Isolation Protocols for Examining and Interrogating Mononuclear Phagocytes From Human Intestinal Tissue. Front Immunol 2021; 12:727952. [PMID: 34566985 PMCID: PMC8462295 DOI: 10.3389/fimmu.2021.727952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
The human intestine contains numerous mononuclear phagocytes (MNP), including subsets of conventional dendritic cells (cDC), macrophages (Mf) and monocytes, each playing their own unique role within the intestinal immune system and homeostasis. The ability to isolate and interrogate MNPs from fresh human tissue is crucial if we are to understand the role of these cells in homeostasis, disease settings and immunotherapies. However, liberating these cells from tissue is problematic as many of the key surface identification markers they express are susceptible to enzymatic cleavage and they are highly susceptible to cell death. In addition, the extraction process triggers immunological activation/maturation which alters their functional phenotype. Identifying the evolving, complex and highly heterogenous repertoire of MNPs by flow cytometry therefore requires careful selection of digestive enzyme blends that liberate viable cells and preserve recognition epitopes involving careful selection of antibody clones to enable analysis and sorting for functional assays. Here we describe a method for the anatomical separation of mucosa and submucosa as well as isolating lymphoid follicles from human jejunum, ileum and colon. We also describe in detail the optimised enzyme digestion methods needed to acquire functionally immature and biologically functional intestinal MNPs. A comprehensive list of screened antibody clones is also presented which allows for the development of high parameter flow cytometry panels to discriminate all currently identified human tissue MNP subsets including pDCs, cDC1, cDC2 (langerin+ and langerin-), newly described DC3, monocytes, Mf1, Mf2, Mf3 and Mf4. We also present a novel method to account for autofluorescent signal from tissue macrophages. Finally, we demonstrate that these methods can successfully be used to sort functional, immature intestinal DCs that can be used for functional assays such as cytokine production assays.
Collapse
Affiliation(s)
- Chloe M Doyle
- Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia.,Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Erica E Vine
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia.,Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Kirstie M Bertram
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia.,Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Heeva Baharlou
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Jake W Rhodes
- Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Suat Dervish
- Westmead Cytometry, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Martijn P Gosselink
- Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia.,Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW, Australia
| | - Angelina Di Re
- Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia.,Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW, Australia
| | - Geoffrey P Collins
- Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia.,Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW, Australia
| | - Faizur Reza
- Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia.,Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW, Australia
| | - James W T Toh
- Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia.,Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW, Australia
| | - Nimalan Pathma-Nathan
- Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia.,Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW, Australia
| | - Golo Ahlenstiel
- Storr Liver Centre, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Blacktown Clinical School, Western Sydney University, Blacktown, NSW, Australia.,Blacktown Hospital, Western Sydney Local Area Health District (WSLHD), Blacktown, NSW, Australia
| | - Grahame Ctercteko
- Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia.,Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW, Australia
| | - Anthony L Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Andrew N Harman
- Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Scott N Byrne
- Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
6
|
Targeting human langerin promotes HIV-1 specific humoral immune responses. PLoS Pathog 2021; 17:e1009749. [PMID: 34324611 PMCID: PMC8354475 DOI: 10.1371/journal.ppat.1009749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 08/10/2021] [Accepted: 06/24/2021] [Indexed: 12/01/2022] Open
Abstract
The main avenue for the development of an HIV-1 vaccine remains the induction of protective antibodies. A rationale approach is to target antigen to specific receptors on dendritic cells (DC) via fused monoclonal antibodies (mAb). In mouse and non-human primate models, targeting of skin Langerhans cells (LC) with anti-Langerin mAbs fused with HIV-1 Gag antigen drives antigen-specific humoral responses. The development of these immunization strategies in humans requires a better understanding of early immune events driven by human LC. We therefore produced anti-Langerin mAbs fused with the HIV-1 gp140z Envelope (αLC.Env). First, we show that primary skin human LC and in vitro differentiated LC induce differentiation and expansion of naïve CD4+ T cells into T follicular helper (Tfh) cells. Second, when human LC are pre-treated with αLC.Env, differentiated Tfh cells significantly promote the production of specific IgG by B cells. Strikingly, HIV-Env-specific Ig are secreted by HIV-specific memory B cells. Consistently, we found that receptors and cytokines involved in Tfh differentiation and B cell functions are upregulated by LC during their maturation and after targeting Langerin. Finally, we show that subcutaneous immunization of mice by αLC.Env induces germinal center (GC) reaction in draining lymph nodes with higher numbers of Tfh cells, Env-specific B cells, as well as specific IgG serum levels compared to mice immunized with the non-targeting Env antigen. Altogether, we provide evidence that human LC properly targeted may be licensed to efficiently induce Tfh cell and B cell responses in GC. In recent years, the place of innovative vaccines based on the induction/regulation and modulation of the immune response with the aim to elicit an integrated T- and B cell immune responses against complex antigens has emerged besides “classical” vaccine vectors. Targeting antigens to dendritic cells is a vaccine technology concept supported by more than a decade of animal models and human pre-clinical experimentation. Recent investigations in animals underscored that Langerhans cells (LC) are an important target to consider for the induction of antibody responses by DC targeting vaccine approaches. Nonetheless, the development of these immunization strategies in humans remains elusive. We therefore developed and produced an HIV vaccine candidate targeting specifically LC through the Langerin receptor. We tested the ability of our vaccine candidate of targeting LC from skin explant and of inducing in vitro the differentiation of T follicular helper (Tfh) cells. Using complementary in vitro models, we demonstrated that Tfh cells induced by human LC are functional and the targeting of LC by our vaccine candidate promotes the secretion of anti-HIV IgG by memory B cells from HIV-infected individuals. In this study human LC exhibit key cellular functions able to drive potent anti-HIV-1 humoral responses providing mechanistic evidence of the Tfh- and B cell stimulating functions of primary skin targeted LC. Finally, we demonstrated in Xcr1DTA mice the significant advantage of LC targeting for inducing Tfh and germinal center (GC)-B cells and anti-HIV-1 antibodies. Therefore, the targeting of the human Langerin receptor appears to be a promising strategy for developing efficient HIV-1 vaccine.
Collapse
|
7
|
Rhodes JW, Botting RA, Bertram KM, Vine EE, Rana H, Baharlou H, Vegh P, O'Neil TR, Ashhurst AS, Fletcher J, Parnell GP, Graham JD, Nasr N, Lim JJK, Barnouti L, Haertsch P, Gosselink MP, Di Re A, Reza F, Ctercteko G, Jenkins GJ, Brooks AJ, Patrick E, Byrne SN, Hunter E, Haniffa MA, Cunningham AL, Harman AN. Human anogenital monocyte-derived dendritic cells and langerin+cDC2 are major HIV target cells. Nat Commun 2021; 12:2147. [PMID: 33846309 PMCID: PMC8042121 DOI: 10.1038/s41467-021-22375-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
Tissue mononuclear phagocytes (MNP) are specialised in pathogen detection and antigen presentation. As such they deliver HIV to its primary target cells; CD4 T cells. Most MNP HIV transmission studies have focused on epithelial MNPs. However, as mucosal trauma and inflammation are now known to be strongly associated with HIV transmission, here we examine the role of sub-epithelial MNPs which are present in a diverse array of subsets. We show that HIV can penetrate the epithelial surface to interact with sub-epithelial resident MNPs in anogenital explants and define the full array of subsets that are present in the human anogenital and colorectal tissues that HIV may encounter during sexual transmission. In doing so we identify two subsets that preferentially take up HIV, become infected and transmit the virus to CD4 T cells; CD14+CD1c+ monocyte-derived dendritic cells and langerin-expressing conventional dendritic cells 2 (cDC2).
Collapse
Affiliation(s)
- Jake W Rhodes
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Westmead Clinical School, Faculty of Medicine and Health Sydney, The University of Sydney, Westmead, NSW, Australia
| | - Rachel A Botting
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Westmead Clinical School, Faculty of Medicine and Health Sydney, The University of Sydney, Westmead, NSW, Australia.,Biosciences Institute, The University of Newcastle, Newcastle upon Tyne, UK
| | - Kirstie M Bertram
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Westmead Clinical School, Faculty of Medicine and Health Sydney, The University of Sydney, Westmead, NSW, Australia
| | - Erica E Vine
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Westmead Clinical School, Faculty of Medicine and Health Sydney, The University of Sydney, Westmead, NSW, Australia
| | - Hafsa Rana
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Westmead Clinical School, Faculty of Medicine and Health Sydney, The University of Sydney, Westmead, NSW, Australia
| | - Heeva Baharlou
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Westmead Clinical School, Faculty of Medicine and Health Sydney, The University of Sydney, Westmead, NSW, Australia
| | - Peter Vegh
- Biosciences Institute, The University of Newcastle, Newcastle upon Tyne, UK
| | - Thomas R O'Neil
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Westmead Clinical School, Faculty of Medicine and Health Sydney, The University of Sydney, Westmead, NSW, Australia
| | - Anneliese S Ashhurst
- School of Medical Sciences, Faculty of Medicine and Health Sydney, The University of Sydney, Westmead, NSW, Australia
| | - James Fletcher
- Biosciences Institute, The University of Newcastle, Newcastle upon Tyne, UK
| | - Grant P Parnell
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Westmead Clinical School, Faculty of Medicine and Health Sydney, The University of Sydney, Westmead, NSW, Australia
| | - J Dinny Graham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Westmead Clinical School, Faculty of Medicine and Health Sydney, The University of Sydney, Westmead, NSW, Australia
| | - Najla Nasr
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,School of Medical Sciences, Faculty of Medicine and Health Sydney, The University of Sydney, Westmead, NSW, Australia
| | | | | | - Peter Haertsch
- Burns Unit, Concord Repatriation General Hospital, Sydney, Australia
| | - Martijn P Gosselink
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW, Australia
| | - Angelina Di Re
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW, Australia
| | - Faizur Reza
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW, Australia
| | - Grahame Ctercteko
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW, Australia
| | - Gregory J Jenkins
- Department of Obstetrics and Gynaecology, Westmead Hospital, Westmead, NSW, Australia
| | - Andrew J Brooks
- Department of Urology, Westmead Hospital, Westmead, NSW, Australia
| | - Ellis Patrick
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,School of Maths and Statistics, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
| | - Scott N Byrne
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,School of Medical Sciences, Faculty of Medicine and Health Sydney, The University of Sydney, Westmead, NSW, Australia
| | | | - Muzlifah A Haniffa
- Biosciences Institute, The University of Newcastle, Newcastle upon Tyne, UK.,Wellcome Sanger Institute, Hinxton, UK.,Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Anthony L Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Westmead Clinical School, Faculty of Medicine and Health Sydney, The University of Sydney, Westmead, NSW, Australia
| | - Andrew N Harman
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia. .,School of Medical Sciences, Faculty of Medicine and Health Sydney, The University of Sydney, Westmead, NSW, Australia.
| |
Collapse
|
8
|
Du W, Lenz D, Köhler R, Zhang E, Cendon C, Li J, Massoud M, Wachtlin J, Bodo J, Hauser AE, Radbruch A, Dong J. Rapid Isolation of Functional ex vivo Human Skin Tissue-Resident Memory T Lymphocytes. Front Immunol 2021; 12:624013. [PMID: 33828548 PMCID: PMC8019735 DOI: 10.3389/fimmu.2021.624013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/23/2021] [Indexed: 12/21/2022] Open
Abstract
Studies in animal models have shown that skin tissue-resident memory T (TRM) cells provide enhanced and immediate effector function at the site of infection. However, analyses of skin TRM cells in humans have been hindered by the lack of an optimized isolation protocol. Here, we present a combinatorial strategy-the 6-h collagenase IV digestion and gentle tissue dissociation – for rapid and efficient isolation of skin TRM cells with skin tissue-specific immune features. In comparison with paired blood circulating memory T cells, these ex vivo isolated skin T cells express typical TRM cell markers and display higher polyfunctional properties. Moreover, these isolated cells can also be assessed for longer periods of time in ex vivo cultures. Thus, the optimized isolation protocol provides a valuable tool for further understanding of human skin TRM cells, especially for direct comparison with peripheral blood T cells at the same sample collection time.
Collapse
Affiliation(s)
- Weijie Du
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin, Institute of the Leibniz Association, Berlin, Germany
| | - Daniel Lenz
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin, Institute of the Leibniz Association, Berlin, Germany
| | - Ralf Köhler
- Central Lab for Microscopy, Deutsches Rheuma-Forschungszentrum Berlin, Institute of the Leibniz Association, Berlin, Germany
| | | | - Carla Cendon
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin, Institute of the Leibniz Association, Berlin, Germany
| | - Jinchan Li
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin, Institute of the Leibniz Association, Berlin, Germany
| | - Mona Massoud
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin, Institute of the Leibniz Association, Berlin, Germany
| | - Joachim Wachtlin
- Sankt Gertrauden Krankenhaus, Berlin, Germany.,Medizinische Hochschule Brandenburg, Neurrupin, Germany
| | - Juliane Bodo
- Plastische und Ästhetische Chirurgie, Berlin, Germany
| | - Anja E Hauser
- Central Lab for Microscopy, Deutsches Rheuma-Forschungszentrum Berlin, Institute of the Leibniz Association, Berlin, Germany.,Immune Dynamics, Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Radbruch
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin, Institute of the Leibniz Association, Berlin, Germany
| | - Jun Dong
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin, Institute of the Leibniz Association, Berlin, Germany
| |
Collapse
|
9
|
Li Y, Puebla-Clark L, Hernández J, Díaz I, Mateu E. Development of Pig Conventional Dendritic Cells From Bone Marrow Hematopoietic Cells in vitro. Front Immunol 2020; 11:553859. [PMID: 33162975 PMCID: PMC7580533 DOI: 10.3389/fimmu.2020.553859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/25/2020] [Indexed: 12/31/2022] Open
Abstract
In recent years, porcine dendritic cells (DCs) have been identified from pig tissues. However, studying the interaction of porcine DCs with pathogens is still difficult due to the scarcity of DCs in tissues. In the present work, the Flt3-ligand (Flt3L)-based in vitro derivation system was further characterized and compared with other cytokine derivation models using a combination of factors: stem cell factor (SCF), GM-CSF, and IL-4. The method using Flt3L alone or combined with SCF supported the development of pig bone marrow hematopoietic cells into in vivo equivalent conventional DCs (cDCs). The equivalent cDC1 (the minor population in the cultures) were characterized as CADM1+CD14–MHC-II+CD172a–/loCD1–CD163– DEC205+CD11R3loCD11R1+CD33+CD80/86+. They expressed high levels of FLT3, ZBTB46, XCR1, and IRF8 mRNA, were efficient in endocytosing dextran and in proliferating allogenic CD4+CD8+ T cells, but were deficient in phagocyting inactivated Staphylococcus aureus (S. aureus). Also, after poly I:C stimulation, they predominantly produced IL-12p40a and matured as indicated by the increase of MHC-I, MHC-II, and CD80/86. The equivalent cDC2 (the main population) were CADM1+CD14–MHC-II+C D172a+CD1+CD163–/loDEC205loCD11R3+CD11R1+CD33+CD80/86+; meanwhile, they overexpressed FcεR1α and IRF4 mRNA. They showed high efficiency in the endocytosis of dextran, but weak in phagocytosing bacteria. They supported allogenic CD4+CD8–/CD4+CD8+ T cell proliferation and were high producers of IL-12p40 (upon TLR7 stimulation) and IL-10 (upon TLR7 stimulation). TLR ligand stimulation also induced their maturation. In addition, a CD14+ population was identified with the phenotype CADM1+CD14+MHC-II+CD172a+ CD1+CD163+DEC205–CD11R3+CD11R1+CD33–/loCD80/86+. They shared some functional similarities with cDC2 and were distinguishable from macrophages. This CD14+ population was efficient in phagocyting S. aureus but showed less maturation upon TLR ligand stimulation than cDC1 or cDC2. The alternative methods of DC derivation including GM-CSF and/or IL-4 produced mostly CADM1– cells that did not fulfill the canonical phenotype of bona fide porcine DCs. Our study provides an exhaustive characterization of Flt3L-derived DCs with different methods that can help the in vitro study of the interaction of DCs with porcine-relevant pathogens.
Collapse
Affiliation(s)
- Yanli Li
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lucinda Puebla-Clark
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Mexico
| | - Jesús Hernández
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Mexico
| | - Ivan Díaz
- Centre de Recerca en Sanitat Animal, IRTA-UAB, Bellaterra, Spain
| | - Enric Mateu
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centre de Recerca en Sanitat Animal, IRTA-UAB, Bellaterra, Spain
| |
Collapse
|
10
|
Abrahem R, Chiang E, Haquang J, Nham A, Ting YS, Venketaraman V. The Role of Dendritic Cells in TB and HIV Infection. J Clin Med 2020; 9:jcm9082661. [PMID: 32824563 PMCID: PMC7465216 DOI: 10.3390/jcm9082661] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/14/2022] Open
Abstract
Dendritic cells are the principal antigen-presenting cells (APCs) in the host defense mechanism. An altered dendritic cell response increases the risk of susceptibility of infections, such as Mycobacterium tuberculosis (M. tb), and the survival of the human immunodeficiency virus (HIV). The altered response of dendritic cells leads to decreased activity of T-helper-1 (Th1), Th2, Regulatory T cells (Tregs), and Th17 cells in tuberculosis (TB) infections due to a diminishment of cytokine release from these APCs, while HIV infection leads to DC maturation, allowing DCs to migrate to lymph nodes and the sub-mucosa where they then transfer HIV to CD4 T cells, although there is controversy around this topic. Increases in the levels of the antioxidant glutathione (GSH) plays a critical role in maintaining dendritic cell redox homeostasis, leading to an adequate immune response with sufficient cytokine release and a subsequent robust immune response. Thus, an understanding of the intricate pathways involved in the dendritic cell response are needed to prevent co-infections and co-morbidities in individuals with TB and HIV.
Collapse
Affiliation(s)
- Rachel Abrahem
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (R.A.); (E.C.); (J.H.); (A.N.); (Y.-S.T.)
| | - Emerald Chiang
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (R.A.); (E.C.); (J.H.); (A.N.); (Y.-S.T.)
| | - Joseph Haquang
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (R.A.); (E.C.); (J.H.); (A.N.); (Y.-S.T.)
| | - Amy Nham
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (R.A.); (E.C.); (J.H.); (A.N.); (Y.-S.T.)
| | - Yu-Sam Ting
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (R.A.); (E.C.); (J.H.); (A.N.); (Y.-S.T.)
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (R.A.); (E.C.); (J.H.); (A.N.); (Y.-S.T.)
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
- Correspondence: ; Tel.: +1-909-706-3736; Fax: +1-909-469-5698
| |
Collapse
|
11
|
Single-Cell RNA-seq Reveals Obesity-Induced Alterations in the Brca1-Mutated Mammary Gland Microenvironment. Cancers (Basel) 2020; 12:cancers12082235. [PMID: 32785175 PMCID: PMC7464292 DOI: 10.3390/cancers12082235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/29/2022] Open
Abstract
Clinical and experimental studies have shown that obesity increases the development and progression of breast cancer. The impact of obesity on the tumor microenvironment plays an important role in tumorigenesis, yet the precise mechanisms underlying obesity-mediated effects on cell-to-cell communication within the tumor microenvironment have been difficult to define. In this study, we conducted single-cell RNA sequencing (scRNA-seq) studies to investigate the impact of high-fat diet (HFD)-induced obesity on transcriptomic landscapes of stromal and immune cells in mammary glands of Brca1−/−; p53+/− mice, an animal breast cancer model. Hierarchical clustering and gene pathway enrichment analyses of scRNA-seq data showed that five different subtypes of stromal fibroblasts existed in mouse Brca1-mutated mammary glands. HFD-induced obesity led to upregulated expression of extracellular matrix (ECM) genes (Col3a1, Col6a3, Eln, and Sparc) and downregulated expression of immunoregulatory genes (Iigp1 and Cxcl10) in these stromal subtype cells. These findings, taken together, suggest that obesity alters the ECM composition and immune ecosystem through modulating the functionality of mammary stromal fibroblasts. Moreover, scRNA-seq analysis of mammary immune cells indicated that HFD-induced obesity promoted the generation and/or recruiting of pro-tumorigenic M2 macrophages in mammary glands. Our studies provide new insight into a mechanistic paradigm wherein obesity modulates the functions of stromal and immune cells to create the tumorigenic microenvironment for promoting breast tumorigenesis.
Collapse
|
12
|
Mnich ME, van Dalen R, van Sorge NM. C-Type Lectin Receptors in Host Defense Against Bacterial Pathogens. Front Cell Infect Microbiol 2020; 10:309. [PMID: 32733813 PMCID: PMC7358460 DOI: 10.3389/fcimb.2020.00309] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022] Open
Abstract
Antigen-presenting cells (APCs) are present throughout the human body—in tissues, at barrier sites and in the circulation. They are critical for processing external signals to instruct both local and systemic responses toward immune tolerance or immune defense. APCs express an extensive repertoire of pattern-recognition receptors (PRRs) to detect and transduce these signals. C-type lectin receptors (CLRs) comprise a subfamily of PRRs dedicated to sensing glycans, including those expressed by commensal and pathogenic bacteria. This review summarizes recent findings on the recognition of and responses to bacteria by membrane-expressed CLRs on different APC subsets, which are discussed according to the primary site of infection. Many CLR-bacterial interactions promote bacterial clearance, whereas other interactions are exploited by bacteria to enhance their pathogenic potential. The discrimination between protective and virulence-enhancing interactions is essential to understand which interactions to target with new prophylactic or treatment strategies. CLRs are also densely concentrated at APC dendrites that sample the environment across intact barrier sites. This suggests an–as yet–underappreciated role for CLR-mediated recognition of microbiota-produced glycans in maintaining tolerance at barrier sites. In addition to providing a concise overview of identified CLR-bacteria interactions, we discuss the main challenges and potential solutions for the identification of new CLR-bacterial interactions, including those with commensal bacteria, and for in-depth structure-function studies on CLR-bacterial glycan interactions. Finally, we highlight the necessity for more relevant tissue-specific in vitro, in vivo and ex vivo models to develop therapeutic applications in this area.
Collapse
Affiliation(s)
- Malgorzata E Mnich
- Medical Microbiology, UMC Utrecht, Utrecht University, Utrecht, Netherlands.,GSK, Siena, Italy
| | - Rob van Dalen
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Nina M van Sorge
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
13
|
Soltani S, Mahmoudi M, Farhadi E. Dendritic Cells Currently under the Spotlight; Classification and Subset Based upon New Markers. Immunol Invest 2020; 50:646-661. [PMID: 32597286 DOI: 10.1080/08820139.2020.1783289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dendritic cells (DCs) are considered as a subset of mononuclear phagocytes that composed of multiple subsets with distinct phenotypic features. DCs play crucial roles in the initiation and modulation of immune responses to both allo- and auto-antigens during pathogenic settings, encompassing infectious diseases, cancer, autoimmunity, transplantation, as well as vaccination. DCs play a role in preventing autoimmunity via inducing tolerance to self-antigens. This review focus on the most common subsets of DCs in human. Owing to the low frequencies of DC cells in blood and tissues and also the lack of specific DC markers, studies of DCs have been greatly hindered. Human DCs arise by a dedicated pathway of lympho-myeloid hematopoiesis and give rise into specialized subtypes under the influence of transcription factors that are specific for each linage. In humans, the classification of DCs has been generally separated into the blood and cutaneous subsets, mainly because these parts are more comfortable to examine in humans.
Collapse
Affiliation(s)
- Samaneh Soltani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Farhadi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Perot BP, García-Paredes V, Luka M, Ménager MM. Dendritic Cell Maturation Regulates TSPAN7 Function in HIV-1 Transfer to CD4 + T Lymphocytes. Front Cell Infect Microbiol 2020; 10:70. [PMID: 32181159 PMCID: PMC7059179 DOI: 10.3389/fcimb.2020.00070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/12/2020] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DCs) serve a key function in host defense, linking innate detection of microbes to activation of pathogen-specific adaptive immune responses. DCs express cell surface receptors for HIV-1 entry, but are relatively resistant to productive viral replication. They do, however, facilitate infection of co-cultured T-helper cells through a process referred to as trans-infection. We previously showed that tetraspanin 7 (TSPAN7), a transmembrane protein, is involved, through positive regulation of actin nucleation, in the transfer of HIV-1 from the dendrites of immature monocyte-derived DCs (iMDDCs) to activated CD4+ T lymphocytes. Various molecular mechanisms have been described regarding HIV-1 trans-infection and seem to depend on DC maturation status. We sought to investigate the crosstalk between DC maturation status, TSPAN7 expression and trans-infection. We followed trans-infection through co-culture of iMDDCs with CD4+ T lymphocytes, in the presence of CXCR4-tropic replicative-competent HIV-1 expressing GFP. T cell infection, DC maturation status and dendrite morphogenesis were assessed through time both by flow cytometry and confocal microscopy. Our previously described TSPAN7/actin nucleation-dependent mechanism of HIV-1 transfer appeared to be mostly observed during the first 20 h of co-culture experiments and to be independent of HIV replication. In the course of co-culture experiments, we observed a progressive maturation of MDDCs, correlated with a decrease in TSPAN7 expression, a drastic loss of dendrites and a change in the shape of DCs. A TSPAN7 and actin nucleation-independent mechanism of trans-infection, relying on HIV-1 replication, was then at play. We discovered that TSPAN7 expression is downregulated in response to different innate immune stimuli driving DC maturation, explaining the requirement for a TSPAN7/actin nucleation-independent mechanism of HIV transfer from mature MDDCs (mMDDCs) to T lymphocytes. As previously described, this mechanism relies on the capture of HIV-1 by the I-type lectin CD169/Siglec-1 on mMDDCs and the formation of a “big invaginated pocket” at the surface of DCs, both events being tightly regulated by DC maturation. Interestingly, in iMDDCs, although CD169/Siglec-1 can capture HIV-1, this capture does not lead to HIV-1 transfer to T lymphocytes.
Collapse
Affiliation(s)
- Brieuc P Perot
- Inflammatory Responses and Transcriptomic Networks in Diseases, Institut Imagine, Paris, France.,Inserm U1163, Paris, France
| | - Victor García-Paredes
- Inflammatory Responses and Transcriptomic Networks in Diseases, Institut Imagine, Paris, France.,Inserm U1163, Paris, France
| | - Marine Luka
- Inflammatory Responses and Transcriptomic Networks in Diseases, Institut Imagine, Paris, France.,Inserm U1163, Paris, France
| | - Mickaël M Ménager
- Inflammatory Responses and Transcriptomic Networks in Diseases, Institut Imagine, Paris, France.,Inserm U1163, Paris, France
| |
Collapse
|
15
|
Rapoport EM, Moiseeva EV, Aronov DA, Khaidukov SV, Pazynina GV, Tsygankova SV, Ryzhov IM, Belyanchikov IM, Tyrtysh TV, McCullough KC, Bovin NV. Glycan-binding profile of DC-like cells. Glycoconj J 2019; 37:129-138. [DOI: 10.1007/s10719-019-09897-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 01/11/2023]
|
16
|
Martín-Moreno A, Muñoz-Fernández MA. Dendritic Cells, the Double Agent in the War Against HIV-1. Front Immunol 2019; 10:2485. [PMID: 31708924 PMCID: PMC6820366 DOI: 10.3389/fimmu.2019.02485] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/04/2019] [Indexed: 12/19/2022] Open
Abstract
Human Immunodeficiency Virus (HIV) infects cells from the immune system and has thus developed tools to circumvent the host immunity and use it in its advance. Dendritic cells (DCs) are the first immune cells to encounter the HIV, and being the main antigen (Ag) presenting cells, they link the innate and the adaptive immune responses. While DCs work to promote an efficient immune response and halt the infection, HIV-1 has ways to take advantage of their role and uses DCs to gain faster and more efficient access to CD4+ T cells. Due to their ability to activate a specific immune response, DCs are promising candidates to achieve the functional cure of HIV-1 infection, but knowing the molecular partakers that determine the relationship between virus and cell is the key for the rational and successful design of a DC-based therapy. In this review, we summarize the current state of knowledge on how both DC subsets (myeloid and plasmacytoid DCs) act in presence of HIV-1, and focus on different pathways that the virus can take after binding to DC. First, we explore the consequences of HIV-1 recognition by each receptor on DCs, including CD4 and DC-SIGN. Second, we look at cellular mechanisms that prevent productive infection and weapons that turn cellular defense into a Trojan horse that hides the virus all the way to T cell. Finally, we discuss the possible outcomes of DC-T cell contact.
Collapse
Affiliation(s)
- Alba Martín-Moreno
- Sección de Inmunología, Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), Madrid, Spain.,Instituto Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Mª Angeles Muñoz-Fernández
- Sección de Inmunología, Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), Madrid, Spain.,Instituto Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Spanish HIV-HGM BioBank, Madrid, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER BBN), Madrid, Spain
| |
Collapse
|
17
|
Bertram KM, Tong O, Royle C, Turville SG, Nasr N, Cunningham AL, Harman AN. Manipulation of Mononuclear Phagocytes by HIV: Implications for Early Transmission Events. Front Immunol 2019; 10:2263. [PMID: 31616434 PMCID: PMC6768965 DOI: 10.3389/fimmu.2019.02263] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/09/2019] [Indexed: 12/11/2022] Open
Abstract
Mononuclear phagocytes are antigen presenting cells that play a key role in linking the innate and adaptive immune systems. In tissue, these consist of Langerhans cells, dendritic cells and macrophages, all of which express the key HIV entry receptors CD4 and CCR5 making them directly infectible with HIV. Mononuclear phagocytes are the first cells of the immune system to interact with invading pathogens such as HIV. Each cell type expresses a specific repertoire of pathogen binding receptors which triggers pathogen uptake and the release of innate immune cytokines. Langerhans cells and dendritic cells migrate to lymph nodes and present antigens to CD4 T cells, whereas macrophages remain tissue resident. Here we review how HIV-1 manipulates these cells by blocking their ability to produce innate immune cytokines and taking advantage of their antigen presenting cell function in order to gain transport to its primary target cells, CD4 T cells.
Collapse
Affiliation(s)
- Kirstie Melissa Bertram
- School of Medical Sciences, University of Sydney, Sydney, NSW, Australia.,Center for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Orion Tong
- School of Medical Sciences, University of Sydney, Sydney, NSW, Australia.,Center for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Caroline Royle
- School of Medical Sciences, University of Sydney, Sydney, NSW, Australia.,Center for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Stuart Grant Turville
- HIV Biology, Kirby Institute, Kensington, NSW, Australia.,The University of New South Whales, Sydney, NSW, Australia
| | - Najla Nasr
- School of Medical Sciences, University of Sydney, Sydney, NSW, Australia.,Center for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Anthony Lawrence Cunningham
- School of Medical Sciences, University of Sydney, Sydney, NSW, Australia.,Center for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Andrew Nicholas Harman
- School of Medical Sciences, University of Sydney, Sydney, NSW, Australia.,Center for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
| |
Collapse
|
18
|
Guo J, Muse E, Christians AJ, Swanson SJ, Davila E. An Anticancer Drug Cocktail of Three Kinase Inhibitors Improved Response to a Dendritic Cell-Based Cancer Vaccine. Cancer Immunol Res 2019; 7:1523-1534. [PMID: 31266784 PMCID: PMC6726569 DOI: 10.1158/2326-6066.cir-18-0684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 03/22/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022]
Abstract
Monocyte-derived dendritic cell (moDC)-based cancer therapies intended to elicit antitumor T-cell responses have limited efficacy in most clinical trials. However, potent and sustained antitumor activity in a limited number of patients highlights the therapeutic potential of moDCs. In vitro culture conditions used to generate moDCs can be inconsistent, and moDCs generated in vitro are less effective than natural DCs. On the basis of our study highlighting the ability for certain kinase inhibitors to enhance tumor antigenicity, we therefore screened kinase inhibitors for their ability to improve DC immunogenicity. We identified AKT inhibitor MK2206, DNA-PK inhibitor NU7441, and MEK inhibitor trametinib as the compounds most effective at modulating moDC immunogenicity. The combination of these drugs, referred to as MKNUTRA, enhanced moDC activity over treatment with individual drugs while exhibiting minimal toxicity. An evaluation of 335 activation and T-cell-suppressive surface proteins on moDCs revealed that MKNUTRA treatment more effectively matured cells and reduced the expression of tolerogenic proteins as compared with control moDCs. MKNUTRA treatment imparted to ICT107, a glioblastoma (GBM) DC-based vaccine that has completed phase II trials, an increased ability to stimulate patient-derived autologous CD8+ T cells against the brain tumor antigens IL13Rα2(345-354) and TRP2(180-188) In vivo, treating ICT107 with MKNUTRA, prior to injection into mice with an established GBM tumor, reduced tumor growth kinetics. This response was associated with an increased frequency of tumor-reactive lymphocytes within tumors and in peripheral tissues. These studies broaden the application of targeted anticancer drugs and highlight their ability to increase moDC immunogenicity.
Collapse
Affiliation(s)
- Jitao Guo
- Division of Medical Oncology, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Elena Muse
- Division of Medical Oncology, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Allison J Christians
- Division of Medical Oncology, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | | | - Eduardo Davila
- Division of Medical Oncology, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado.
- Human Immunology and Immunotherapy Initiative, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
- University of Colorado Comprehensive Cancer Center, Aurora, Colorado
| |
Collapse
|
19
|
Bertram KM, Botting RA, Baharlou H, Rhodes JW, Rana H, Graham JD, Patrick E, Fletcher J, Plasto TM, Truong NR, Royle C, Doyle CM, Tong O, Nasr N, Barnouti L, Kohout MP, Brooks AJ, Wines MP, Haertsch P, Lim J, Gosselink MP, Ctercteko G, Estes JD, Churchill MJ, Cameron PU, Hunter E, Haniffa MA, Cunningham AL, Harman AN. Identification of HIV transmitting CD11c + human epidermal dendritic cells. Nat Commun 2019; 10:2759. [PMID: 31227717 PMCID: PMC6588576 DOI: 10.1038/s41467-019-10697-w] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/24/2019] [Indexed: 11/10/2022] Open
Abstract
Langerhans cells (LC) are thought to be the only mononuclear phagocyte population in the epidermis where they detect pathogens. Here, we show that CD11c+ dendritic cells (DCs) are also present. These cells are transcriptionally similar to dermal cDC2 but are more efficient antigen-presenting cells. Compared to LCs, epidermal CD11c+ DCs are enriched in anogenital tissues where they preferentially interact with HIV, express the higher levels of HIV entry receptor CCR5, support the higher levels of HIV uptake and replication and are more efficient at transmitting the virus to CD4 T cells. Importantly, these findings are observed using both a lab-adapted and transmitted/founder strain of HIV. We also describe a CD33low cell population, which is transcriptionally similar to LCs but does not appear to function as antigen-presenting cells or acts as HIV target cells. Our findings reveal that epidermal DCs in anogenital tissues potentially play a key role in sexual transmission of HIV. Composition and function of immune populations at barrier surfaces is crucial for response to infection. Here, the authors identify a population of dendritic cells in human epidermis, abundant in anogenital epithelia and distinct from Langerhans cells by surface phenotype and by high capacity for HIV infection and transmission.
Collapse
Affiliation(s)
- Kirstie M Bertram
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, New South Wales, 2145, Australia.,The University of Sydney, Sydney, 2006, New South Wales, Australia
| | - Rachel A Botting
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, New South Wales, 2145, Australia.,The University of Sydney, Sydney, 2006, New South Wales, Australia.,Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Heeva Baharlou
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, New South Wales, 2145, Australia.,The University of Sydney, Sydney, 2006, New South Wales, Australia
| | - Jake W Rhodes
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, New South Wales, 2145, Australia.,The University of Sydney, Sydney, 2006, New South Wales, Australia
| | - Hafsa Rana
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, New South Wales, 2145, Australia.,The University of Sydney, Sydney, 2006, New South Wales, Australia
| | - J Dinny Graham
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, New South Wales, 2145, Australia.,The University of Sydney, Sydney, 2006, New South Wales, Australia
| | - Ellis Patrick
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, New South Wales, 2145, Australia.,The University of Sydney, Sydney, 2006, New South Wales, Australia
| | - James Fletcher
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Toby M Plasto
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, New South Wales, 2145, Australia.,The University of Sydney, Sydney, 2006, New South Wales, Australia
| | - Naomi R Truong
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, New South Wales, 2145, Australia.,The University of Sydney, Sydney, 2006, New South Wales, Australia
| | - Caroline Royle
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, New South Wales, 2145, Australia.,The University of Sydney, Sydney, 2006, New South Wales, Australia
| | - Chloe M Doyle
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, New South Wales, 2145, Australia.,The University of Sydney, Sydney, 2006, New South Wales, Australia
| | - Orion Tong
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, New South Wales, 2145, Australia.,The University of Sydney, Sydney, 2006, New South Wales, Australia
| | - Najla Nasr
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, New South Wales, 2145, Australia.,The University of Sydney, Sydney, 2006, New South Wales, Australia
| | - Laith Barnouti
- Australia Plastic Surgery, 185-211, Broadway, Sydney, New South Wales, 2007, Australia
| | - Mark P Kohout
- Australia Plastic Surgery, 185-211, Broadway, Sydney, New South Wales, 2007, Australia
| | - Andrew J Brooks
- Westmead Hospital, Westmead, New South Wales, 2145, Australia
| | - Michael P Wines
- Royal North Shore Hospital, Reserve Rd, St Leonards, New South Wales, 2065, Australia
| | - Peter Haertsch
- Burns Unit, Concord Repatriation General Hospital, Sydney, 2139, New South Wales, Australia
| | - Jake Lim
- Dr Jake Lim PLC, Shop 12, Cnr of Aird & Marsden Street, Parramatta, New South Wales, 2150, Australia
| | - Martijn P Gosselink
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, New South Wales, 2145, Australia.,Westmead Hospital, Westmead, New South Wales, 2145, Australia
| | - Grahame Ctercteko
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, New South Wales, 2145, Australia.,Westmead Hospital, Westmead, New South Wales, 2145, Australia
| | - Jacob D Estes
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, MD, 21702, USA
| | - Melissa J Churchill
- School of Health and Biomedical Sciences, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Paul U Cameron
- The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria, 3000, Australia
| | - Eric Hunter
- Emory Vaccine Center, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Muzlifah A Haniffa
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Department of Dermatology, Royal Victoria Infirmary, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE2 4LP, UK
| | - Anthony L Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, New South Wales, 2145, Australia.,The University of Sydney, Sydney, 2006, New South Wales, Australia
| | - Andrew N Harman
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, New South Wales, 2145, Australia. .,The University of Sydney, Sydney, 2006, New South Wales, Australia.
| |
Collapse
|
20
|
Rhodes JW, Tong O, Harman AN, Turville SG. Human Dendritic Cell Subsets, Ontogeny, and Impact on HIV Infection. Front Immunol 2019; 10:1088. [PMID: 31156637 PMCID: PMC6532592 DOI: 10.3389/fimmu.2019.01088] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/29/2019] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DCs) play important roles in orchestrating host immunity against invading pathogens, representing one of the first responders to infection by mucosal invaders. From their discovery by Ralph Steinman in the 1970s followed shortly after with descriptions of their in vivo diversity and distribution by Derek Hart, we are still continuing to progressively elucidate the spectrum of DCs present in various anatomical compartments. With the power of high-dimensional approaches such as single-cell sequencing and multiparameter cytometry, recent studies have shed new light on the identities and functions of DC subtypes. Notable examples include the reclassification of plasmacytoid DCs as purely interferon-producing cells and re-evaluation of intestinal conventional DCs and macrophages as derived from monocyte precursors. Collectively, these observations have changed how we view these cells not only in steady-state immunity but also during disease and infection. In this review, we will discuss the current landscape of DCs and their ontogeny, and how this influences our understanding of their roles during HIV infection.
Collapse
Affiliation(s)
- Jake William Rhodes
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Orion Tong
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Andrew Nicholas Harman
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Discipline of Applied Medical Sciences, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Stuart Grant Turville
- University of New South Wales, Sydney, NSW, Australia.,Kirby Institute, Kensington, NSW, Australia
| |
Collapse
|
21
|
Dang AT, Teles RM, Liu PT, Choi A, Legaspi A, Sarno EN, Ochoa MT, Parvatiyar K, Cheng G, Gilliet M, Bloom BR, Modlin RL. Autophagy links antimicrobial activity with antigen presentation in Langerhans cells. JCI Insight 2019; 4:126955. [PMID: 30996142 PMCID: PMC6538337 DOI: 10.1172/jci.insight.126955] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/07/2019] [Indexed: 12/13/2022] Open
Abstract
DC, through the uptake, processing, and presentation of antigen, are responsible for activation of T cell responses to defend the host against infection, yet it is not known if they can directly kill invading bacteria. Here, we studied in human leprosy, how Langerhans cells (LC), specialized DC, contribute to host defense against bacterial infection. IFN-γ treatment of LC isolated from human epidermis and infected with Mycobacterium leprae (M. leprae) activated an antimicrobial activity, which was dependent on the upregulation of the antimicrobial peptide cathelicidin and induction of autophagy. IFN-γ induction of autophagy promoted fusion of phagosomes containing M. leprae with lysosomes and the delivery of cathelicidin to the intracellular compartment containing the pathogen. Autophagy enhanced the ability of M. leprae-infected LC to present antigen to CD1a-restricted T cells. The frequency of IFN-γ labeling and LC containing both cathelicidin and autophagic vesicles was greater in the self-healing lesions vs. progressive lesions, thus correlating with the effectiveness of host defense against the pathogen. These data indicate that autophagy links the ability of DC to kill and degrade an invading pathogen, ensuring cell survival from the infection while facilitating presentation of microbial antigens to resident T cells.
Collapse
Affiliation(s)
- Angeline Tilly Dang
- Division of Dermatology, Department of Medicine, and
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at University of California, UCLA, Los Angeles, California, USA
| | | | - Phillip T. Liu
- Division of Dermatology, Department of Medicine, and
- UCLA and Orthopaedic Hospital, Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California, USA
| | - Aaron Choi
- Division of Dermatology, Department of Medicine, and
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at University of California, UCLA, Los Angeles, California, USA
| | | | - Euzenir N. Sarno
- Leprosy Laboratory, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Maria T. Ochoa
- Department of Dermatology, University of Southern California School of Medicine, Los Angeles, California, USA
| | - Kislay Parvatiyar
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at University of California, UCLA, Los Angeles, California, USA
| | - Genhong Cheng
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at University of California, UCLA, Los Angeles, California, USA
| | - Michel Gilliet
- Department of Medicine, Dermatology Service, Lausanne University Hospital of Lausanne, Lausanne, Switzerland
| | - Barry R. Bloom
- Harvard School of Public Health, Boston, Massachusetts, USA
| | - Robert L. Modlin
- Division of Dermatology, Department of Medicine, and
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at University of California, UCLA, Los Angeles, California, USA
| |
Collapse
|
22
|
Zaal A, van Ham SM, Ten Brinke A. Differential effects of anaphylatoxin C5a on antigen presenting cells, roles for C5aR1 and C5aR2. Immunol Lett 2019; 209:45-52. [PMID: 30959077 DOI: 10.1016/j.imlet.2019.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/24/2022]
Abstract
The anaphylatoxin C5a is well-known for its role as chemoattractant and contributes to immune cell recruitment into inflamed tissue and local inflammation. C5a has recently been implicated in modulation of antigen presenting cell function, such as macrophages and dendritic cells, which are pivotal for T cell activation and final T cell effector function. The published data on the effect of C5a on APC function and subsequent adaptive immune responses are in part conflicting, as both pro and anti-inflammatory effects have been described. In this review the opposing effects of C5a on APC function in mice and human are summarized and discussed in relation to origin of the involved APC subset, being either of the monocyte-derived lineage or dendritic cell lineage. In addition, the current knowledge on the expression of C5aR1 and C5aR2 on the different APC subsets is summarized. Based on the combined data, we propose that the differential effects of C5a on APC function may be attributed to absence or presence of co-expression of C5aR2 and C5aR1 on the specific APC.
Collapse
Affiliation(s)
- Anouk Zaal
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Swammerdam Institute for Life Sciences, University of Amsterdam, the Netherlands
| | - Anja Ten Brinke
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
23
|
Talker SC, Baumann A, Barut GT, Keller I, Bruggmann R, Summerfield A. Precise Delineation and Transcriptional Characterization of Bovine Blood Dendritic-Cell and Monocyte Subsets. Front Immunol 2018; 9:2505. [PMID: 30425716 PMCID: PMC6218925 DOI: 10.3389/fimmu.2018.02505] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/10/2018] [Indexed: 12/17/2022] Open
Abstract
A clear-cut delineation of bovine bona fide dendritic cells (DC) from monocytes has proved challenging, given the high phenotypic and functional plasticity of these innate immune cells and the marked phenotypic differences between species. Here, we demonstrate that, based on expression of Flt3, CD172a, CD13, and CD4, a precise identification of bovine blood conventional DC type 1 and 2 (cDC1, cDC2), plasmacytoid DC (pDC), and monocytes is possible with cDC1 being Flt3+CD172adimCD13+CD4−, cDC2 being Flt3+CD172a+CD13−CD4−, pDC being Flt3+CD172adimCD13−CD4+, and monocytes being Flt3−CD172ahighCD13−CD4−. The phenotype of these subsets was characterized in further detail, and a subset-specific differential expression of CD2, CD5, CD11b, CD11c, CD14, CD16, CD26, CD62L, CD71, CD163, and CD205 was found. Subset identity was confirmed by transcriptomic analysis and subset-specific transcription of conserved key genes. We also sorted monocyte subsets based on their differential expression of CD14 and CD16. Classical monocytes (CD14+CD16−) clustered clearly apart from the two CD16+ monocyte subsets probably representing intermediate and non-classical monocytes described in human. The transcriptomic data also revealed differential gene transcription for molecules involved in antigen presentation, pathogen sensing, and migration, and therefore gives insights into functional differences between bovine DC and monocyte subsets. The identification of cell-type- and subset-specific gene transcription will assist in the quest for “marker molecules” that—when targeted by flow cytometry—will greatly facilitate research on bovine DC and monocytes. Overall, species comparisons will elucidate basic principles of DC and monocyte biology and will help to translate experimental findings from one species to another.
Collapse
Affiliation(s)
- Stephanie C Talker
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Arnaud Baumann
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - G Tuba Barut
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Irene Keller
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Artur Summerfield
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
24
|
Rogers KJ, Maury W. The role of mononuclear phagocytes in Ebola virus infection. J Leukoc Biol 2018; 104:717-727. [PMID: 30095866 DOI: 10.1002/jlb.4ri0518-183r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/09/2018] [Accepted: 07/12/2018] [Indexed: 12/17/2022] Open
Abstract
The filovirus, Zaire Ebolavirus (EBOV), infects tissue macrophages (Mϕs) and dendritic cells (DCs) early during infection. Viral infection of both cells types is highly productive, leading to increased viral load. However, virus infection of these two cell types results in different consequences for cellular function. Infection of Mϕs stimulates the production of proinflammatory and immunomodulatory cytokines and chemokines, leading to the production of a cytokine storm, while simultaneously increasing tissue factor production and thus facilitating disseminated intravascular coagulation. In contrast, EBOV infection of DCs blocks DC maturation and antigen presentation rendering these cells unable to communicate with adaptive immune response elements. Details of the known interactions of these cells with EBOV are reviewed here. We also identify a number of unanswered questions that remain about interactions of filoviruses with these cells.
Collapse
Affiliation(s)
- Kai J Rogers
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Wendy Maury
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
25
|
Collin M, Bigley V. Human dendritic cell subsets: an update. Immunology 2018; 154:3-20. [PMID: 29313948 PMCID: PMC5904714 DOI: 10.1111/imm.12888] [Citation(s) in RCA: 808] [Impact Index Per Article: 134.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/30/2017] [Accepted: 12/04/2017] [Indexed: 02/06/2023] Open
Abstract
Dendritic cells (DC) are a class of bone-marrow-derived cells arising from lympho-myeloid haematopoiesis that form an essential interface between the innate sensing of pathogens and the activation of adaptive immunity. This task requires a wide range of mechanisms and responses, which are divided between three major DC subsets: plasmacytoid DC (pDC), myeloid/conventional DC1 (cDC1) and myeloid/conventional DC2 (cDC2). Each DC subset develops under the control of a specific repertoire of transcription factors involving differential levels of IRF8 and IRF4 in collaboration with PU.1, ID2, E2-2, ZEB2, KLF4, IKZF1 and BATF3. DC haematopoiesis is conserved between mammalian species and is distinct from monocyte development. Although monocytes can differentiate into DC, especially during inflammation, most quiescent tissues contain significant resident populations of DC lineage cells. An extended range of surface markers facilitates the identification of specific DC subsets although it remains difficult to dissociate cDC2 from monocyte-derived DC in some settings. Recent studies based on an increasing level of resolution of phenotype and gene expression have identified pre-DC in human blood and heterogeneity among cDC2. These advances facilitate the integration of mouse and human immunology, support efforts to unravel human DC function in vivo and continue to present new translational opportunities to medicine.
Collapse
Affiliation(s)
- Matthew Collin
- Human Dendritic Cell LabInstitute of Cellular Medicine and NIHR Newcastle Biomedical Research Centre Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle UniversityNewcastle upon TyneUK
| | - Venetia Bigley
- Human Dendritic Cell LabInstitute of Cellular Medicine and NIHR Newcastle Biomedical Research Centre Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
26
|
Abstract
Psoriasis is a common skin disease that presents with well-demarcated patches of inflammation. Recurrent disease in fixed areas of the skin indicates a localized disease memory that is preserved in resolved lesions. In line with such concept, the involvement of tissue-resident immune cells in psoriasis pathology is increasingly appreciated. Langerhans cells (LCs) are perfectly placed to steer resident T cells and local tissue responses in psoriasis. Here, we present an overview of the current knowledge of LCs in human psoriasis, including findings that highlight pro-inflammatory features of LCs in psoriasis lesions. We also review the literature on conflicting data regarding LC localization and functionality in psoriasis. Our review highlights that further studies are needed to elucidate the molecular mechanisms that drive LCs functionality in inflammatory diseases.
Collapse
Affiliation(s)
- Liv Eidsmo
- Department of Medicine Solna, Karolinska Institutet, Solna, Sweden.,Department of Dermatology, Karolinska University Hospital, Stockholm, Sweden
| | - Elisa Martini
- Department of Medicine Solna, Karolinska Institutet, Solna, Sweden.,Department of Dermatology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
27
|
Glycan recognition by human blood mononuclear cells with an emphasis on dendritic cells. Glycoconj J 2018; 35:191-203. [DOI: 10.1007/s10719-017-9811-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/25/2017] [Accepted: 12/27/2017] [Indexed: 02/04/2023]
|
28
|
Clayton K, Vallejo AF, Davies J, Sirvent S, Polak ME. Langerhans Cells-Programmed by the Epidermis. Front Immunol 2017; 8:1676. [PMID: 29238347 PMCID: PMC5712534 DOI: 10.3389/fimmu.2017.01676] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/15/2017] [Indexed: 12/24/2022] Open
Abstract
Langerhans cells (LCs) reside in the epidermis as a dense network of immune system sentinels. These cells determine the appropriate adaptive immune response (inflammation or tolerance) by interpreting the microenvironmental context in which they encounter foreign substances. In a normal physiological, "non-dangerous" situation, LCs coordinate a continuous state of immune tolerance, preventing unnecessary and harmful immune activation. Conversely, when they sense a danger signal, for example during infection or when the physical integrity of skin has been compromised as a result of a trauma, they instruct T lymphocytes of the adaptive immune system to mount efficient effector responses. Recent advances investigating the molecular mechanisms underpinning the cross talk between LCs and the epidermal microenvironment reveal its importance for programming LC biology. This review summarizes the novel findings describing LC origin and function through the analysis of the transcriptomic programs and gene regulatory networks (GRNs). Review and meta-analysis of publicly available datasets clearly delineates LCs as distinct from both conventional dendritic cells (DCs) and macrophages, suggesting a primary role for the epidermal microenvironment in programming LC biology. This concept is further supported by the analysis of the effect of epidermal pro-inflammatory signals, regulating key GRNs in human and murine LCs. Applying whole transcriptome analyses and in silico analysis has advanced our understanding of how LCs receive, integrate, and process signals from the steady-state and diseased epidermis. Interestingly, in homeostasis and under immunological stress, the molecular network in LCs remains relatively stable, reflecting a key evolutionary need related to tissue localization. Importantly, to fulfill their key role in orchestrating antiviral adaptive immune responses, LC share specific transcriptomic modules with other DC types able to cross-present antigens to cytotoxic CD8+ T cells, pointing to a possible evolutionary convergence mechanism. With the development of more advanced technologies allowing delineation of the molecular networks at the level of chromatin organization, histone modifications, protein translation, and phosphorylation, future "omics" investigations will bring in-depth understanding of the complex molecular mechanisms underpinning human LC biology.
Collapse
Affiliation(s)
- Kalum Clayton
- Systems Immmunology Group, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Andres F Vallejo
- Systems Immmunology Group, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - James Davies
- Systems Immmunology Group, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Sofia Sirvent
- Systems Immmunology Group, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Marta E Polak
- Systems Immmunology Group, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
29
|
Shen Y, Hu W, Wei Y, Feng Z, Yang Q. The immune mechanism of Mycoplasma hyopneumoniae 168 vaccine strain through dendritic cells. BMC Vet Res 2017; 13:285. [PMID: 28915878 PMCID: PMC5603027 DOI: 10.1186/s12917-017-1194-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 08/11/2017] [Indexed: 12/12/2022] Open
Abstract
Background Mycoplasma hyopneumoniae (Mhp) causes porcine enzootic pneumonia, a disease that cause major economic losses in the pig industry. Dendritic cells (DCs), the most effective antigen-presenting cells, are widely distributed beneath respiratory epithelium, DCs uptake and present antigens to T cells, to initiate protective immune responses in different infections. In this study, we investigated the role of porcine DCs in vaccine Mhp-168 exposure. Results The antigen presenting ability of DCs were improved by vaccine Mhp-168 exposure. DCs could activate T-cell proliferation by up-regulating the antigen presenting molecule MHCII expression and co-stimulatory molecule CD80/86. However, the up-regulation of IL-10 and accompany with down-regulation of IFN-γ gene level may account for the limitation of attenuated Mhp-168 strain use as vaccine alone. Conclusion These findings are benefit for exploring the protection mechanisms and the possible limitations of this attenuated Mhp-168 vaccine.
Collapse
Affiliation(s)
- Yumeng Shen
- Veterinary College, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Weiwei Hu
- Veterinary College, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Yanna Wei
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, 210014, People's Republic of China
| | - Zhixin Feng
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, 210014, People's Republic of China
| | - Qian Yang
- Veterinary College, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, People's Republic of China.
| |
Collapse
|
30
|
Gardner JK, Mamotte CD, Jackaman C, Nelson DJ. Modulation of dendritic cell and T cell cross-talk during aging: The potential role of checkpoint inhibitory molecules. Ageing Res Rev 2017; 38:40-51. [PMID: 28736117 DOI: 10.1016/j.arr.2017.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/17/2017] [Accepted: 07/17/2017] [Indexed: 12/24/2022]
Abstract
Dendritic cells (DCs) undergo continuous changes throughout life, and there is evidence that elderly DCs have a reduced capacity to stimulate T cells, which may contribute to impaired anti-tumour immune responses in elderly people with cancer. Changes in checkpoint inhibitory molecules/pathways during aging may be one mechanism that impairs the ability of elderly DCs to activate T cells. However, little is currently known regarding the combined effects of aging and cancer on DC and T cell inhibitory molecules/pathways. In this review, we discuss our current understanding of the influence of aging and cancer on key DC and T cell inhibitory molecules/pathways, the potential underlying cellular and molecular mechanisms contributing to their modulation, and the possibility of therapeutically targeting inhibitory molecules in elderly cancer patients.
Collapse
|
31
|
Abstract
Purpose of review Dendritic cells are specialized antigen-presenting cells which link innate and adaptive immunity, through recognition and presentation of antigen to T cells. Although the importance of dendritic cells has been demonstrated in many animal models, their contribution to human immunity remains relatively unexplored in vivo. Given their central role in infection, autoimmunity, and malignancy, dendritic cell deficiency or dysfunction would be expected to have clinical consequences. Recent findings Human dendritic cell deficiency disorders, related to GATA binding protein 2 (GATA2) and interferon regulatory factor 8 (IRF8) mutations, have highlighted the importance of dendritic cells and monocytes in primary immunodeficiency diseases and begun to shed light on their nonredundant roles in host defense and immune regulation in vivo. The contribution of dendritic cell and monocyte dysfunction to the pathogenesis of primary immunodeficiency disease phenotypes is becoming increasingly apparent. However, dendritic cell analysis is not yet a routine part of primary immunodeficiency disease workup. Summary Widespread uptake of dendritic cell/monocyte screening in clinical practice will facilitate the discovery of novel dendritic cell and monocyte disorders as well as advancing our understanding of human dendritic cell biology in health and disease.
Collapse
|
32
|
Botting RA, Bertram KM, Baharlou H, Sandgren KJ, Fletcher J, Rhodes JW, Rana H, Plasto TM, Wang XM, Lim JJK, Barnouti L, Kohout MP, Papadopoulos T, Merten S, Olbourne N, Cunningham AL, Haniffa M, Harman AN. Phenotypic and functional consequences of different isolation protocols on skin mononuclear phagocytes. J Leukoc Biol 2017; 101:1393-1403. [PMID: 28270408 PMCID: PMC5433859 DOI: 10.1189/jlb.4a1116-496r] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/06/2017] [Accepted: 02/14/2017] [Indexed: 12/24/2022] Open
Abstract
Mononuclear phagocytes are present in skin and mucosa and represent one of the first lines of defense against invading pathogens, which they detect via an array of pathogen-binding receptors expressed on their surface. However, their extraction from tissue is difficult, and the isolation technique used has functional consequences on the cells obtained. Here, we compare mononuclear phagocytes isolated from human skin using either enzymatic digestion or spontaneous migration. Cells isolated via enzymatic digestion are in an immature state, and all subsets are easily defined. However, cells isolated by spontaneous migration are in a mature state, and CD141 cross-presenting DCs (cDC1) are more difficult to define. Different pathogen-binding receptors are susceptible to cleavage by blends of collagenase, demonstrating that great care must be taken in choosing the correct enzyme blend to digest tissue if carrying out pathogen-interaction assays. Finally, we have optimized mononuclear phagocyte culture conditions to enhance their survival after liberation from the tissue.
Collapse
Affiliation(s)
- Rachel A Botting
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | - Kirstie M Bertram
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | - Heeva Baharlou
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | - Kerrie J Sandgren
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | - James Fletcher
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jake W Rhodes
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | - Hafsa Rana
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | - Toby M Plasto
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | - Xin Maggie Wang
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | | | - Laith Barnouti
- Australia Plastic Surgery, Sydney, New South Wales, Australia
| | - Mark P Kohout
- Australia Plastic Surgery, Sydney, New South Wales, Australia
| | | | - Steve Merten
- Pure Aesthetics Plastic Surgery, Sydney, New South Wales, Australia
| | | | - Anthony L Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | - Muzlifah Haniffa
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Dermatology, Royal Victoria Infirmary, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Andrew N Harman
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia;
- The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
33
|
Baharom F, Rankin G, Blomberg A, Smed-Sörensen A. Human Lung Mononuclear Phagocytes in Health and Disease. Front Immunol 2017; 8:499. [PMID: 28507549 PMCID: PMC5410584 DOI: 10.3389/fimmu.2017.00499] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/11/2017] [Indexed: 12/17/2022] Open
Abstract
The lungs are vulnerable to attack by respiratory insults such as toxins, allergens, and pathogens, given their continuous exposure to the air we breathe. Our immune system has evolved to provide protection against an array of potential threats without causing collateral damage to the lung tissue. In order to swiftly detect invading pathogens, monocytes, macrophages, and dendritic cells (DCs)-together termed mononuclear phagocytes (MNPs)-line the respiratory tract with the key task of surveying the lung microenvironment in order to discriminate between harmless and harmful antigens and initiate immune responses when necessary. Each cell type excels at specific tasks: monocytes produce large amounts of cytokines, macrophages are highly phagocytic, whereas DCs excel at activating naïve T cells. Extensive studies in murine models have established a division of labor between the different populations of MNPs at steady state and during infection or inflammation. However, a translation of important findings in mice is only beginning to be explored in humans, given the challenge of working with rare cells in inaccessible human tissues. Important progress has been made in recent years on the phenotype and function of human lung MNPs. In addition to a substantial population of alveolar macrophages, three subsets of DCs have been identified in the human airways at steady state. More recently, monocyte-derived cells have also been described in healthy human lungs. Depending on the source of samples, such as lung tissue resections or bronchoalveolar lavage, the specific subsets of MNPs recovered may differ. This review provides an update on existing studies investigating human respiratory MNP populations during health and disease. Often, inflammatory MNPs are found to accumulate in the lungs of patients with pulmonary conditions. In respiratory infections or inflammatory diseases, this may contribute to disease severity, but in cancer patients this may improve clinical outcomes. By expanding on this knowledge, specific lung MNPs may be targeted or modulated in order to attain favorable responses that can improve preventive or treatment strategies against respiratory infections, lung cancer, or lung inflammatory diseases.
Collapse
Affiliation(s)
- Faezzah Baharom
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Gregory Rankin
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, Umeå, Sweden
| | - Anders Blomberg
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, Umeå, Sweden
| | - Anna Smed-Sörensen
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
34
|
Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, McDermott GP, Zhu J, Gregory MT, Shuga J, Montesclaros L, Underwood JG, Masquelier DA, Nishimura SY, Schnall-Levin M, Wyatt PW, Hindson CM, Bharadwaj R, Wong A, Ness KD, Beppu LW, Deeg HJ, McFarland C, Loeb KR, Valente WJ, Ericson NG, Stevens EA, Radich JP, Mikkelsen TS, Hindson BJ, Bielas JH. Massively parallel digital transcriptional profiling of single cells. Nat Commun 2017; 8:14049. [PMID: 28091601 PMCID: PMC5241818 DOI: 10.1038/ncomms14049] [Citation(s) in RCA: 3657] [Impact Index Per Article: 522.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/23/2016] [Indexed: 02/07/2023] Open
Abstract
Characterizing the transcriptome of individual cells is fundamental to understanding complex biological systems. We describe a droplet-based system that enables 3' mRNA counting of tens of thousands of single cells per sample. Cell encapsulation, of up to 8 samples at a time, takes place in ∼6 min, with ∼50% cell capture efficiency. To demonstrate the system's technical performance, we collected transcriptome data from ∼250k single cells across 29 samples. We validated the sensitivity of the system and its ability to detect rare populations using cell lines and synthetic RNAs. We profiled 68k peripheral blood mononuclear cells to demonstrate the system's ability to characterize large immune populations. Finally, we used sequence variation in the transcriptome data to determine host and donor chimerism at single-cell resolution from bone marrow mononuclear cells isolated from transplant patients.
Collapse
Affiliation(s)
| | | | | | - Paul Ryvkin
- 10x Genomics Inc., Pleasanton, California, 94566, USA
| | | | - Ryan Wilson
- 10x Genomics Inc., Pleasanton, California, 94566, USA
| | | | | | | | - Junjie Zhu
- 10x Genomics Inc., Pleasanton, California, 94566, USA
| | - Mark T Gregory
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Joe Shuga
- 10x Genomics Inc., Pleasanton, California, 94566, USA
| | | | - Jason G Underwood
- 10x Genomics Inc., Pleasanton, California, 94566, USA.,Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | - Paul W Wyatt
- 10x Genomics Inc., Pleasanton, California, 94566, USA
| | | | | | | | - Kevin D Ness
- 10x Genomics Inc., Pleasanton, California, 94566, USA
| | - Lan W Beppu
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - H Joachim Deeg
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Christopher McFarland
- Seattle Cancer Care Alliance Clinical Immunogenetics Laboratory, Seattle, Washington 98109, USA
| | - Keith R Loeb
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.,Department of Pathology, University of Washington, Seattle, Washington 98195, USA
| | - William J Valente
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.,Medical Scientist Training Program, University of Washington School of Medicine, Seattle, Washington 98195, USA.,Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington 98195, USA
| | - Nolan G Ericson
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Emily A Stevens
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Jerald P Radich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | - Jason H Bielas
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.,Department of Pathology, University of Washington, Seattle, Washington 98195, USA.,Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington 98195, USA.,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| |
Collapse
|
35
|
Botting RA, Rana H, Bertram KM, Rhodes JW, Baharlou H, Nasr N, Cunningham AL, Harman AN. Langerhans cells and sexual transmission of HIV and HSV. Rev Med Virol 2017; 27. [PMID: 28044388 DOI: 10.1002/rmv.1923] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/01/2016] [Accepted: 12/02/2016] [Indexed: 12/14/2022]
Abstract
Langerhans cells (LCs) situated in stratified squamous epithelium of the skin and mucosal tissue are amongst the first cells that sexually transmitted pathogens encounter during transmission. They are potent antigen presenting cells and play a key role in the host mounting an appropriate immune response. As such, viruses have evolved complex strategies to manipulate these cells to facilitate successful transmission. One of best studied examples is HIV, which manipulates the natural function of these cells to interact with CD4 T cells, which are the main target cell for HIV in which rapid replication occurs. However, there is controversy in the literature as to the role that LCs play in this process. Langerhans cells also play a key role in the way the body mounts an immune response to HSV, and there is also a complex interplay between the transmission of HSV and HIV that involves LCs. In this article, we review both past and present literatures with a particular focus on a few very recent studies that shed new light on the role that LCs play in the transmission and immune response to these 2 pathogens.
Collapse
Affiliation(s)
- Rachel A Botting
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Hafsa Rana
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Kirstie M Bertram
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Jake W Rhodes
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Heeva Baharlou
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Najla Nasr
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Anthony L Cunningham
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Andrew N Harman
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
36
|
Nirschl CJ, Anandasabapathy N. Duality at the gate: Skin dendritic cells as mediators of vaccine immunity and tolerance. Hum Vaccin Immunother 2016; 12:104-16. [PMID: 26836327 DOI: 10.1080/21645515.2015.1066050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Since Edward Jenner's discovery that intentional exposure to cowpox could provide lifelong protection from smallpox, vaccinations have been a major focus of medical research. However, while the protective benefits of many vaccines have been successfully translated into the clinic, the cellular and molecular mechanisms that differentiate effective vaccines from sub-optimal ones are not well understood. Dendritic cells (DCs) are the gatekeepers of the immune system, and are ultimately responsible for the generation of adaptive immunity and lifelong protective memory through interactions with T cells. In addition to lymph node and spleen resident DCs, a number of tissue resident DC populations have been identified at barrier tissues, such as the skin, which migrate to the local lymph node (migDC). These populations have unique characteristics, and play a key role in the function of cutaneous vaccinations by shuttling antigen from the vaccination site to the draining lymph node, rapidly capturing freely draining antigens in the lymph node, and providing key stimuli to T cells. However, while migDCs are responsible for the generation of immunity following exposure to certain pathogens and vaccines, recent work has identified a tolerogenic role for migDCs in the steady state as well as during protein immunization. Here, we examine the roles and functions of skin DC populations in the generation of protective immunity, as well as their role as regulators of the immune system.
Collapse
Affiliation(s)
- Christopher J Nirschl
- a Department of Dermatology ; Harvard Skin Disease Research Center; Brigham and Women's Hospital ; Boston , MA USA
| | - Niroshana Anandasabapathy
- a Department of Dermatology ; Harvard Skin Disease Research Center; Brigham and Women's Hospital ; Boston , MA USA
| |
Collapse
|
37
|
Shen Y, Hu W, Wei Y, Feng Z, Yang Q. Effects of Mycoplasma hyopneumoniae on porcine nasal cavity dendritic cells. Vet Microbiol 2016; 198:1-8. [PMID: 28061998 DOI: 10.1016/j.vetmic.2016.11.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 12/31/2022]
Abstract
Mycoplasma hyopneumoniae (Mhp) is the primary etiological agent responsible for swine enzootic pneumonia (EP), a disease that cause tremendous economic losses all over the swine industry. Dendritic cells (DCs), the most effective antigen-presenting cells, are widely distributed beneath respiratory epithelium. DCs uptake and present antigens to T cells, to initiate protective immune responses or generate immune-mediated pathology in different infections. In this study, we investigated the changes in the different DCs subpopulations, T cells and SIgA positive cells counts in porcine nasal cavity after long time Mhp infection. We further evaluated the role of porcine DCs in Mhp exposure. Our results showed that the number of SLA-II-DR+SWC3a+DCs, SLA-II-DR+CD11b+ DCs, T cells, SIgA positive cells in nasal cavity were decreased after Mhp 28 days infection in vivo experiment. The antigen presenting ability of DCs were inhibited by Mhp exposure. DCs couldn't activate T-cell proliferation by down-regulating the antigen presenting molecule CD1a expression and promoting high level of IL-10 production. Further more, the expression levels of IL-12 and IFN-γ in DCs were decreased, suggesting that DCs favour for Th2 immune response development after Mhp exposure in vitro. Taken together, Mhp infection impairs the immune function which allows the persistence of Mhp and cause predispose pigs to secondary infections. The decline of DCs presentation ability is the reason why dysfunction and persistence in Mhp infection. These findings are benefit for exploring the pathogenic mechanisms of Mhp in pigs.
Collapse
Affiliation(s)
- Yumeng Shen
- Veterinary College, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu 210095, PR China
| | - Weiwei Hu
- Veterinary College, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu 210095, PR China
| | - Yanna Wei
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-Products, Nanjing 210014, PR China
| | - Zhixin Feng
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-Products, Nanjing 210014, PR China
| | - Qian Yang
- Veterinary College, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
38
|
Flow Cytometry, a Versatile Tool for Diagnosis and Monitoring of Primary Immunodeficiencies. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:254-71. [PMID: 26912782 DOI: 10.1128/cvi.00001-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Genetic defects of the immune system are referred to as primary immunodeficiencies (PIDs). These immunodeficiencies are clinically and immunologically heterogeneous and, therefore, pose a challenge not only for the clinician but also for the diagnostic immunologist. There are several methodological tools available for evaluation and monitoring of patients with PIDs, and of these tools, flow cytometry has gained prominence, both for phenotyping and functional assays. Flow cytometry allows real-time analysis of cellular composition, cell signaling, and other relevant immunological pathways, providing an accessible tool for rapid diagnostic and prognostic assessment. This minireview provides an overview of the use of flow cytometry in disease-specific diagnosis of PIDs, in addition to other broader applications, which include immune phenotyping and cellular functional measurements.
Collapse
|
39
|
Steuerman Y, Gat-Viks I. Exploiting Gene-Expression Deconvolution to Probe the Genetics of the Immune System. PLoS Comput Biol 2016; 12:e1004856. [PMID: 27035464 PMCID: PMC4818015 DOI: 10.1371/journal.pcbi.1004856] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 03/08/2016] [Indexed: 12/13/2022] Open
Abstract
Sequence variation can affect the physiological state of the immune system. Major experimental efforts targeted at understanding the genetic control of the abundance of immune cell subpopulations. However, these studies are typically focused on a limited number of immune cell types, mainly due to the use of relatively low throughput cell-sorting technologies. Here we present an algorithm that can reveal the genetic basis of inter-individual variation in the abundance of immune cell types using only gene expression and genotyping measurements as input. Our algorithm predicts the abundance of immune cell subpopulations based on the RNA levels of informative marker genes within a complex tissue, and then provides the genetic control on these predicted immune traits as output. A key feature of the approach is the integration of predictions from various sets of marker genes and refinement of these sets to avoid spurious signals. Our evaluation of both synthetic and real biological data shows the significant benefits of the new approach. Our method, VoCAL, is implemented in the freely available R package ComICS. Quantitative trait locus (QTL) studies have identified a plethora of genetic variants that lead to inter-individual variation in the abundance of immune cell subpopulations, both in normal and disease states. Cell sorting is an effective method of monitoring immune cell type quantities; however, owing to the large number of possible immune cell subsets, it can be difficult to apply this method to each cell type over multiple individuals. Recent QTL studies dealt with this difficulty by focusing on an a priori selection of one or a few cell subsets. Here we introduce VoCAL, a deconvolution-based method that utilizes transcriptome data to infer the quantities of immune cell types, and then uses these quantitative traits to uncover the underlying DNA loci. Our results in synthetic data and lung cohorts show that the VoCAL method outperforms other alternatives in revealing the genetic basis of immune physiology.
Collapse
Affiliation(s)
- Yael Steuerman
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Irit Gat-Viks
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
40
|
Bock S, Murgueitio MS, Wolber G, Weindl G. Acute myeloid leukaemia-derived Langerhans-like cells enhance Th1 polarization upon TLR2 engagement. Pharmacol Res 2016; 105:44-53. [PMID: 26794428 DOI: 10.1016/j.phrs.2016.01.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/23/2015] [Accepted: 01/15/2016] [Indexed: 02/07/2023]
Abstract
Langerhans cells (LCs) represent a highly specialized subset of epidermal dendritic cells (DCs), yet not fully understood in their function of balancing skin immunity. Here, we investigated in vitro generated Langerhans-like cells obtained from the human acute myeloid leukaemia cell line MUTZ-3 (MUTZ-LCs) to study TLR- and cytokine-dependent activation of epidermal DCs. MUTZ-LCs revealed high TLR2 expression and responded robustly to TLR2 engagement, confirmed by increased CD83, CD86, PD-L1 and IDO expression, upregulated IL-6, IL-12p40 and IL-23p19 mRNA levels IL-8 release. TLR2 activation reduced CCR6 and elevated CCR7 mRNA expression and induced migration of MUTZ-LCs towards CCL21. Similar results were obtained by stimulation with pro-inflammatory cytokines TNF-α and IL-1β whereas ligands of TLR3 and TLR4 failed to induce a fully mature phenotype. Despite limited cytokine gene expression and production for TLR2-activated MUTZ-LCs, co-culture with naive CD4(+) T cells led to significantly increased IFN-γ and IL-22 levels indicating Th1 differentiation independent of IL-12. TLR2-mediated effects were blocked by the putative TLR2/1 antagonist CU-CPT22, however, no selectivity for either TLR2/1 or TLR2/6 was observed. Computer-aided docking studies confirmed non-selective binding of the TLR2 antagonist. Taken together, our results indicate a critical role for TLR2 signalling in MUTZ-LCs considering the leukemic origin of the generated Langerhans-like cells.
Collapse
Affiliation(s)
- Stephanie Bock
- Institute of Pharmacy (Pharmacology and Toxicology), Freie Universität Berlin, D-14195 Berlin, Germany
| | - Manuela S Murgueitio
- Institute of Pharmacy (Pharmaceutical Chemistry), Freie Universität Berlin, D-14195 Berlin, Germany
| | - Gerhard Wolber
- Institute of Pharmacy (Pharmaceutical Chemistry), Freie Universität Berlin, D-14195 Berlin, Germany
| | - Günther Weindl
- Institute of Pharmacy (Pharmacology and Toxicology), Freie Universität Berlin, D-14195 Berlin, Germany.
| |
Collapse
|
41
|
Ohradanova-Repic A, Machacek C, Fischer MB, Stockinger H. Differentiation of human monocytes and derived subsets of macrophages and dendritic cells by the HLDA10 monoclonal antibody panel. Clin Transl Immunology 2016; 5:e55. [PMID: 26900469 PMCID: PMC4735061 DOI: 10.1038/cti.2015.39] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 12/26/2022] Open
Abstract
The mononuclear phagocyte system, consisting of monocytes, macrophages and dendritic cells (DCs), has an important role in tissue homeostasis as well as in eliciting immune responses against invading pathogens. Blood monocytes have been viewed for decades as precursors of tissue macrophages. Although the newest data show that in the steady state resident macrophages of many organs are monocyte independent, blood monocytes critically contribute to tissue macrophage and DC pools upon inflammation. To better understand the relationship between these populations and their phenotype, we isolated and differentiated human blood CD14+ monocytes in vitro into immature and mature monocyte-derived dendritic cells (MoDCs) as well as into seven different monocyte-derived macrophage subsets. We used the panel of 70 monoclonal antibodies (mAbs) submitted to the 10th Human Leukocyte Differentiation Antigen Workshop to determine the expression profiles of these 10 populations by flow cytometry. We now can compile subpanels of mAbs to differentiate the 10 monocyte/macrophage/MoDC subsets, providing the basis for novel diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Anna Ohradanova-Repic
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna , Vienna, Austria
| | - Christian Machacek
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna , Vienna, Austria
| | - Michael B Fischer
- Department of Transfusion Medicine, Medical University of Vienna, Vienna, Austria; Department for Health Sciences and Biomedicine, Center for Biomedical Technology, Danube University Krems, Krems, Austria
| | - Hannes Stockinger
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna , Vienna, Austria
| |
Collapse
|
42
|
Clark GJ, Kupresanin F, Fromm PD, Ju X, Muusers L, Silveira PA, Elgundi Z, Gasiorowski RE, Papadimitrious MS, Bryant C, Lee KML, Clarke CJ, Young JW, Chan A, Harman A, Botting R, Cabezón R, Benitez-Ribas D, Brooks AES, Dunbar PR, Hart DNJ. New insights into the phenotype of human dendritic cell populations. Clin Transl Immunology 2016; 5:e61. [PMID: 26900474 PMCID: PMC4735062 DOI: 10.1038/cti.2015.40] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 11/26/2015] [Accepted: 11/26/2015] [Indexed: 12/13/2022] Open
Abstract
HLDA10 is the Tenth Human Leukocyte Differentiation Antigen (HLDA) Workshop. The HLDA Workshops provide a mechanism to allocate cluster of differentiation (CD) nomenclature by engaging in interlaboratory studies. As the host laboratory, we invited researchers from national and international academic and commercial institutions to submit monoclonal antibodies (mAbs) to human leukocyte surface membrane molecules, particularly those that recognised molecules on human myeloid cell populations and dendritic cells (DCs). These mAbs were tested for activity and then distributed as a blinded panel to 15 international laboratories to test on different leukocyte populations. These populations included blood DCs, skin-derived DCs, tonsil leukocytes, monocyte-derived DCs, CD34-derived DCs, macrophage populations and diagnostic acute myeloid leukaemia and lymphoma samples. Each laboratory was provided with enough mAb to perform five repeat experiments. Here, we summarise the reactivity of different mAb to 68 different cell-surface molecules expressed by human myeloid and DC populations. Submitted mAbs to some of the molecules were further validated to collate data required to designate a formal CD number. This collaborative process provides the broader scientific community with an invaluable data set validating mAbs to leukocyte-surface molecules.
Collapse
Affiliation(s)
- Georgina Jane Clark
- Dendritic Cell Research, ANZAC Research Institute, Concord, Sydney, NSW, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Fiona Kupresanin
- Dendritic Cell Research, ANZAC Research Institute, Concord, Sydney, NSW, Australia
| | - Phillip Dieter Fromm
- Dendritic Cell Research, ANZAC Research Institute, Concord, Sydney, NSW, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Xinsheng Ju
- Dendritic Cell Research, ANZAC Research Institute, Concord, Sydney, NSW, Australia
| | - Leticia Muusers
- Dendritic Cell Research, ANZAC Research Institute, Concord, Sydney, NSW, Australia
| | - Pablo Alejandro Silveira
- Dendritic Cell Research, ANZAC Research Institute, Concord, Sydney, NSW, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Zehra Elgundi
- Dendritic Cell Research, ANZAC Research Institute, Concord, Sydney, NSW, Australia
| | | | - Michael Stefan Papadimitrious
- Dendritic Cell Research, ANZAC Research Institute, Concord, Sydney, NSW, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Christian Bryant
- Dendritic Cell Research, ANZAC Research Institute, Concord, Sydney, NSW, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | | | | | - James William Young
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew Chan
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew Harman
- Centre for Virus Research, Westmead Millennium Institute, Sydney, NSW, Australia
| | - Rachel Botting
- Centre for Virus Research, Westmead Millennium Institute, Sydney, NSW, Australia
| | - Raquel Cabezón
- Inflammatory Bowel Disease Department, CIBEREHD, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Daniel Benitez-Ribas
- Inflammatory Bowel Disease Department, CIBEREHD, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Anna Elizabeth Stella Brooks
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Phillip Rodney Dunbar
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Derek Nigel John Hart
- Dendritic Cell Research, ANZAC Research Institute, Concord, Sydney, NSW, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
43
|
Ng WC, Londrigan SL, Nasr N, Cunningham AL, Turville S, Brooks AG, Reading PC. The C-type Lectin Langerin Functions as a Receptor for Attachment and Infectious Entry of Influenza A Virus. J Virol 2016; 90:206-21. [PMID: 26468543 PMCID: PMC4702526 DOI: 10.1128/jvi.01447-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/04/2015] [Indexed: 01/03/2023] Open
Abstract
UNLABELLED It is well established that influenza A virus (IAV) attachment to and infection of epithelial cells is dependent on sialic acid (SIA) at the cell surface, although the specific receptors that mediate IAV entry have not been defined and multiple receptors may exist. Lec2 Chinese hamster ovary (CHO) cells are SIA deficient and resistant to IAV infection. Here we demonstrate that the expression of the C-type lectin receptor langerin in Lec2 cells (Lec2-Lg) rendered them permissive to IAV infection, as measured by replication of the viral genome, transcription of viral mRNA, and synthesis of viral proteins. Unlike SIA-dependent infection of parental CHO cells, IAV attachment and infection of Lec2-Lg cells was mediated via lectin-mediated recognition of mannose-rich glycans expressed by the viral hemagglutinin glycoprotein. Lec2 cells expressing endocytosis-defective langerin bound IAV efficiently but remained resistant to IAV infection, confirming that internalization via langerin was essential for infectious entry. Langerin-mediated infection of Lec2-Lg cells was pH and dynamin dependent, occurred via clathrin- and caveolin-mediated endocytic pathways, and utilized early (Rab5(+)) but not late (Rab7(+)) endosomes. This study is the first to demonstrate that langerin represents an authentic receptor that binds and internalizes IAV to facilitate infection. Moreover, it describes a unique experimental system to probe specific pathways and compartments involved in infectious entry following recognition of IAV by a single cell surface receptor. IMPORTANCE On the surface of host cells, sialic acid (SIA) functions as the major attachment factor for influenza A viruses (IAV). However, few studies have identified specific transmembrane receptors that bind and internalize IAV to facilitate infection. Here we identify human langerin as a transmembrane glycoprotein that can act as an attachment factor and a bone fide endocytic receptor for IAV infection. Expression of langerin by an SIA-deficient cell line resistant to IAV rendered cells permissive to infection. As langerin represented the sole receptor for IAV infection in this system, we have defined the pathways and compartments involved in infectious entry of IAV into cells following recognition by langerin.
Collapse
Affiliation(s)
- Wy Ching Ng
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sarah L Londrigan
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Najla Nasr
- Westmead Millennium Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Anthony L Cunningham
- Westmead Millennium Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Stuart Turville
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Andrew G Brooks
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Patrick C Reading
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
44
|
In situ Delivery of Tumor Antigen– and Adjuvant-Loaded Liposomes Boosts Antigen-Specific T-Cell Responses by Human Dermal Dendritic Cells. J Invest Dermatol 2015; 135:2697-2704. [DOI: 10.1038/jid.2015.226] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/21/2015] [Accepted: 06/04/2015] [Indexed: 12/11/2022]
|
45
|
Loomis KH, Kirschman JL, Bhosle S, Bellamkonda RV, Santangelo PJ. Strategies for modulating innate immune activation and protein production of in vitro transcribed mRNAs. J Mater Chem B 2015; 4:1619-1632. [PMID: 32263015 DOI: 10.1039/c5tb01753j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Synthetic mRNA has recently shown great potential as a tool for genetic introduction of proteins. Its utility as a gene carrier has been demonstrated in several studies for both the introduction of therapeutic proteins and subunit vaccines. At one point, synthetic mRNA was believed to be too immunogenic and labile for pharmaceutical purposes. However, the development of several strategies have enabled mRNA technology to overcome these challenges, including incorporation of modified nucleotides, codon optimization of the coding region, incorporation of untranslated regions into the mRNA, and the use of delivery vehicles. While these approaches have been shown to enhance performance of some mRNA constructs, gene-to-gene variation and low efficiency of mRNA protein production are still significant hurdles. Further mechanistic understanding of how these strategies affect protein production and innate immune activation is needed for the widespread adoption for both therapeutic and vaccine applications. This review highlights key studies involved in the development of strategies employed to increase protein expression and control the immunogenicity of synthetic mRNA. Areas in the literature where improved understanding is needed will also be discussed.
Collapse
Affiliation(s)
- Kristin H Loomis
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, USA.
| | | | | | | | | |
Collapse
|
46
|
Oh CW, Ivan D, Curry JL, Ellis R, Gerber H, Duvic M, Torres-Cabala C. A case of indeterminate dendritic cell tumor presenting with leonine facies. J Cutan Pathol 2015; 43:158-63. [DOI: 10.1111/cup.12611] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 07/26/2015] [Accepted: 08/11/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Chee Won Oh
- Department of Dermatology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - Doina Ivan
- Department of Dermatology; The University of Texas MD Anderson Cancer Center; Houston TX USA
- Department of Pathology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - Jonathan L. Curry
- Department of Dermatology; The University of Texas MD Anderson Cancer Center; Houston TX USA
- Department of Pathology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - Rachel Ellis
- Department of Dermatology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - Howard Gerber
- Department of Dermatology; The University of Texas; Houston TX USA
| | - Madeleine Duvic
- Department of Dermatology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - Carlos Torres-Cabala
- Department of Dermatology; The University of Texas MD Anderson Cancer Center; Houston TX USA
- Department of Pathology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| |
Collapse
|
47
|
Kumar NA, Cheong K, Powell DR, da Fonseca Pereira C, Anderson J, Evans VA, Lewin SR, Cameron PU. The role of antigen presenting cells in the induction of HIV-1 latency in resting CD4(+) T-cells. Retrovirology 2015; 12:76. [PMID: 26362311 PMCID: PMC4567795 DOI: 10.1186/s12977-015-0204-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/01/2015] [Indexed: 12/24/2022] Open
Abstract
Background Combination antiretroviral therapy (cART) is able to control HIV-1 viral replication, however long-lived latent infection in resting memory CD4+ T-cells persist. The mechanisms for establishment and maintenance of latent infection in resting memory CD4+ T-cells remain unclear. Previously we have shown that HIV-1 infection of resting CD4+ T-cells co-cultured with CD11c+ myeloid dendritic cells (mDC) produced a population of non-proliferating T-cells with latent infection. Here we asked whether different antigen presenting cells (APC), including subpopulations of DC and monocytes, were able to induce post-integration latent infection in resting CD4+ T-cells, and examined potential cell interactions that may be involved using RNA-seq. Results mDC (CD1c+), SLAN+ DC and CD14+ monocytes were most efficient in stimulating proliferation of CD4+ T-cells during syngeneic culture and in generating post-integration latent infection in non-proliferating CD4+ T-cells following HIV-1 infection of APC-T cell co-cultures. In comparison, plasmacytoid DC (pDC) and B-cells did not induce latent infection in APC-T-cell co-cultures. We compared the RNA expression profiles of APC subpopulations that could and could not induce latency in non-proliferating CD4+ T-cells. Gene expression analysis, comparing the CD1c+ mDC, SLAN+ DC and CD14+ monocyte subpopulations to pDC identified 53 upregulated genes that encode proteins expressed on the plasma membrane that could signal to CD4+ T-cells via cell–cell interactions (32 genes), immune checkpoints (IC) (5 genes), T-cell activation (9 genes), regulation of apoptosis (5 genes), antigen presentation (1 gene) and through unknown ligands (1 gene). Conclusions APC subpopulations from the myeloid lineage, specifically mDC subpopulations and CD14+ monocytes, were able to efficiently induce post-integration HIV-1 latency in non-proliferating CD4+ T-cells in vitro. Inhibition of key pathways involved in mDC-T-cell interactions and HIV-1 latency may provide novel targets to eliminate HIV-1 latency. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0204-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nitasha A Kumar
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, VIC, 3004, Australia. .,Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, 3004, Australia. .,Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, 3010, Australia.
| | - Karey Cheong
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, VIC, 3004, Australia. .,Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, 3004, Australia. .,Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, 3010, Australia.
| | - David R Powell
- Victorian Life Science Computational Initiative, Parkville, 3010, Australia. .,Monash Bioinformatics Platform, Monash University, Clayton, 3800, Australia.
| | | | - Jenny Anderson
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, VIC, 3004, Australia. .,Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, 3004, Australia. .,Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, 3010, Australia.
| | - Vanessa A Evans
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, VIC, 3004, Australia. .,Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, 3004, Australia. .,Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, 3010, Australia.
| | - Sharon R Lewin
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, VIC, 3004, Australia. .,Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, 3004, Australia. .,Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, 3010, Australia.
| | - Paul U Cameron
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, VIC, 3004, Australia. .,Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, 3004, Australia. .,Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, 3010, Australia.
| |
Collapse
|
48
|
Regulation of Dendritic Cell Function in Inflammation. J Immunol Res 2015; 2015:743169. [PMID: 26229971 PMCID: PMC4503598 DOI: 10.1155/2015/743169] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/16/2015] [Indexed: 12/16/2022] Open
Abstract
Dendritic cells (DC) are professional antigen presenting cells and link the innate and adaptive immune system. During steady state immune surveillance in skin, DC act as sentinels against commensals and invading pathogens. Under pathological skin conditions, inflammatory cytokines, secreted by surrounding keratinocytes, dermal fibroblasts, and immune cells, influence the activation and maturation of different DC populations including Langerhans cells (LC) and dermal DC. In this review we address critical differences in human DC subtypes during inflammatory settings compared to steady state. We also highlight the functional characteristics of human DC subsets in inflammatory skin environments and skin diseases including psoriasis and atopic dermatitis. Understanding the complex immunoregulatory role of distinct DC subsets in inflamed human skin will be a key element in developing novel strategies in anti-inflammatory therapy.
Collapse
|
49
|
Dermal CD14 + Dendritic Cell and Macrophage Infection by Dengue Virus Is Stimulated by Interleukin-4. J Invest Dermatol 2015; 135:1743-1751. [DOI: 10.1038/jid.2014.525] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 12/05/2014] [Accepted: 11/12/2014] [Indexed: 12/24/2022]
|
50
|
Human mononuclear phagocyte system reunited. Semin Cell Dev Biol 2015; 41:59-69. [DOI: 10.1016/j.semcdb.2015.05.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 05/11/2015] [Indexed: 12/31/2022]
|