1
|
Startek JB, Boonen B, Talavera K, Meseguer V. TRP Channels as Sensors of Chemically-Induced Changes in Cell Membrane Mechanical Properties. Int J Mol Sci 2019; 20:E371. [PMID: 30654572 PMCID: PMC6359677 DOI: 10.3390/ijms20020371] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 12/19/2022] Open
Abstract
Transient Receptor Potential ion channels (TRPs) have been described as polymodal sensors, being responsible for transducing a wide variety of stimuli, and being involved in sensory functions such as chemosensation, thermosensation, mechanosensation, and photosensation. Mechanical and chemical stresses exerted on the membrane can be transduced by specialized proteins into meaningful intracellular biochemical signaling, resulting in physiological changes. Of particular interest are compounds that can change the local physical properties of the membrane, thereby affecting nearby proteins, such as TRP channels, which are highly sensitive to the membrane environment. In this review, we provide an overview of the current knowledge of TRP channel activation as a result of changes in the membrane properties induced by amphipathic structural lipidic components such as cholesterol and diacylglycerol, and by exogenous amphipathic bacterial endotoxins.
Collapse
Affiliation(s)
- Justyna B Startek
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49, Campus Gasthuisberg O&N1 bus 802, 3000 Leuven, Belgium.
| | - Brett Boonen
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49, Campus Gasthuisberg O&N1 bus 802, 3000 Leuven, Belgium.
| | - Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49, Campus Gasthuisberg O&N1 bus 802, 3000 Leuven, Belgium.
| | - Victor Meseguer
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández y CSIC, E-03550 Alicante , Spain.
| |
Collapse
|
2
|
Startek JB, Talavera K, Voets T, Alpizar YA. Differential interactions of bacterial lipopolysaccharides with lipid membranes: implications for TRPA1-mediated chemosensation. Sci Rep 2018; 8:12010. [PMID: 30104600 PMCID: PMC6089920 DOI: 10.1038/s41598-018-30534-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 07/31/2018] [Indexed: 12/21/2022] Open
Abstract
Bacterial lipopolysaccharides (LPS) activate the TRPA1 cation channels in sensory neurons, leading to acute pain and inflammation in mice and to aversive behaviors in fruit flies. However, the precise mechanisms underlying this effect remain elusive. Here we assessed the hypothesis that TRPA1 is activated by mechanical perturbations induced upon LPS insertion in the plasma membrane. We asked whether the effects of different LPS on TRPA1 relate to their ability to induce mechanical alterations in artificial and cellular membranes. We found that LPS from E. coli, but not from S. minnesota, activates TRPA1. We then assessed the effects of these LPS on lipid membranes using dyes whose fluorescence properties change upon alteration of the local lipid environment. E. coli LPS was more effective than S. minnesota LPS in shifting Laurdan’s emission spectrum towards lower wavelengths, increasing the fluorescence anisotropy of diphenylhexatriene and reducing the fluorescence intensity of merocyanine 540. These data indicate that E. coli LPS induces stronger changes in the local lipid environment than S. minnesota LPS, paralleling its distinct ability to activate TRPA1. Our findings indicate that LPS activate TRPA1 by producing mechanical perturbations in the plasma membrane and suggest that TRPA1-mediated chemosensation may result from primary mechanosensory mechanisms.
Collapse
Affiliation(s)
- Justyna B Startek
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine. KU Leuven; VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine. KU Leuven; VIB Center for Brain & Disease Research, Leuven, Belgium.
| | - Thomas Voets
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine. KU Leuven; VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Yeranddy A Alpizar
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine. KU Leuven; VIB Center for Brain & Disease Research, Leuven, Belgium
| |
Collapse
|
3
|
Gao D, Li W. Structures and recognition modes of toll-like receptors. Proteins 2016; 85:3-9. [DOI: 10.1002/prot.25179] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/06/2016] [Accepted: 09/24/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Dong Gao
- Shenzhen Hornetcorn Biotechnology Co, Ltd; Shenzhen 518045 China
| | - Wang Li
- Shenzhen Hornetcorn Biotechnology Co, Ltd; Shenzhen 518045 China
| |
Collapse
|
4
|
Abstract
Regulated covalent modifications of lipid A are implicated in virulence of pathogenic Gram-negative bacteria. The Salmonella PhoP/PhoQ-activated gene pagP is required for resistance to cationic antimicrobial peptides and for biosynthesis of hepta-acylated lipid A species containing palmitate. Interestingly, pagP encodes an unusual enzyme of lipid A biosynthesis localized in the outer membrane, whereas all previously characterized lipid A enzymes are cytoplasmic or associated with the inner membrane. PagP is not unique, however, as pagL encodes another outer membrane enzyme in Salmonella that deacylates the 3 position of lipid A.S. typhimurium also synthesizes S-2-hydroxymyristate modified lipid A in a PhoP/PhoQ-dependent manner. We postulated that 2-hydroxylation might be catalyzed by a novel dioxygenase. Using well-characterized dioxygenase sequences as probes, tBLASTn searches revealed unassigned open reading frame(s) with similarity to mammalian aspartyl β-hydroxylases in bacteria known to make 2-hydroxyacylated lipid A. The S. typhimurium aspartyl β-hydroxylase homologue ( lpxO) was cloned and expressed in Escherichia coli K-12, which does not contain lpxO. Analysis of the resulting construct revealed that lpxO expression induces O2-dependent formation of 2-hydroxymyristate-modified lipid A in E. coli. LpxO may be an inner membrane enzyme that catalyzes Fe2+/ascorbate/α-ketoglutarate dependent hydroxylation of lipid A. We propose that 2-hydroxymyristate released from LPS inside infected animal cells might be converted to 2-hydroxymyristoyl coenzyme A, a potent inhibitor of protein N-myristoyl transferase.
Collapse
Affiliation(s)
- Christian R.H. Raetz
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA,
| |
Collapse
|
5
|
Kawasaki K, Ernst RK, Miller SI. Purification and characterization of deacylated and/or palmitoylated lipid A species unique to Salmonella enterica serovar Typhimurium. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519050110010101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The Salmonella enterica serovar Typhimurium virulence gene products PhoP/PhoQ sense host microenvironments to regulate the expression of a lipid A 3- O-deacylase, PagL, and a lipid A palmitoyltransferase, PagP. Therefore, deacylation and/or palmitoylation of lipid A could occur in Salmonellae adapted to host environments. The PhoP/PhoQ-regulated modification of lipid A alters host recognition and signaling, and may play an important role in host defense against Salmonellae infection. Here we report the purification and characterization of modified lipid A species. Deacylated lipid A, deacylated and palmitoylated lipid A, and palmitoylated lipid A species were generated in Escherichia coli cells heterologously expressing salmonellae PagL and/or PagP, and then purified by sequential thin-layer chromatography. The purified lipid A species showed m/z values that correspond to single lipid A species on mass spectrometry analysis. The modified lipid A species showed reduced ability to induce cellular signaling through Toll-like receptor 4, suggesting a specific function of the lipid A modifications in the pathogenesis of salmonellae infection.
Collapse
Affiliation(s)
- Kiyoshi Kawasaki
- Department of Microbiology, University of Washington, Seattle, Washington, USA,
| | - Robert K. Ernst
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Samuel I. Miller
- Department of Microbiology, University of Washington, Seattle, Washington, USA, Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
6
|
Kawasaki K, Ernst RK, Miller SI. Deacylation and palmitoylation of lipid A by Salmonellae outer membrane enzymes modulate host signaling through Toll-like receptor 4. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519040100061001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Salmonella typhimurium virulence gene products, PhoP/PhoQ sense host micro-environments to regulate the expression of a lipid A 3- O-deacylase, PagL, and a lipid A palmitoyltransferase, PagP. Therefore, deacylation and/or palmitoylation of lipid A could occur in Salmonellae adapted to host environments. The acylation state of lipid A can alter host recognition and signaling by Toll-like receptor (TLR) 4, and may play an important role in host defenses against Salmonellae infection. Deacylated lipid A, deacylated and palmitoylated lipid A, palmitoylated lipid A, and unmodified lipid A species were purified, and the activity was examined using cell lines expressing recombinant human or mouse TLR4. Compared with unmodified lipid A, the modified lipid A species are 10—100-fold less active. These results suggest that PagL and PagP modify lipid A to reduce TLR4-signaling as part of Salmonellae adaptation to the host environment.
Collapse
Affiliation(s)
- Kiyoshi Kawasaki
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Robert K. Ernst
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Samuel I. Miller
- Department of Microbiology, University of Washington, Seattle, Washington, USA, Department of Genome Sciences, University of Washington, Seattle, Washington, USA,
| |
Collapse
|
7
|
Janusch H, Brecker L, Lindner B, Alexander C, Gronow S, Heine H, Ulmer AJ, Rietschel ET, Zähringer U. Structural and biological characterization of highly purified hepta-acyl lipid A present in the lipopolysaccharide of the Salmonella enterica sv. Minnesota Re deep rough mutant strain R595. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519020080050801] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
One major component of the Salmonella enterica sv. Minnesota Re deep rough mutant (strain R595) lipopolysaccharide is hepta-acyl lipid A (LAhepta). In a recent publication [Tanamoto K-I, Azumi S. Salmonella-type heptaacylated lipid A is inactive and acts as an antagonist of lipopolysaccharide action on human line cells. J Immunol 2000; 164: 3149—3156] the corresponding synthetic hepta-acyl lipid A (compound 516) was reported to be agonistically inactive but to rather suppress pro-inflammatory activation by the endotoxichexa-acyl lipid A (LAhexa, compound 506) and S-form LPS from Escherichia coli in the human macrophage-like cell lines THP-1 and U937. These results, however, were in contrast to previous findings with human mononuclear cells (hMNC) isolated from peripheral blood, in which compound 516 was found to be an agonist, expressing low, but significant,cytokine-inducing activity as compared to LAhexa. We have investigated the structure of natural LA hepta from the S. enterica sv. Minnesota Re deep rough mutant strain (R595) by TLC immunoblot, MALDI-TOF mass spectrometry and NMR spectroscopy. Using these techniques, the structural identity between LAhepta and the synthetic compound 516 was confirmed. In corroboration of previous findings with studies employing compound 516, purified LA hepta was found to induce the production of TNF- , IL-1 and IL-6 in hMNC, thus displaying moderate agonistic activity. Furthermore, we showed that LAhepta agonistically activated nuclear translocation of NF- B in THP-1 cells, thus clearly ruling out the possibility that LAhepta is an antagonist and that its biological activity is influenced by the type of human myeloid cells used for testing endotoxicity(hMNC versus THP-1 cells).
Collapse
Affiliation(s)
- Holger Janusch
- Research Center Borstel, Center for Medicine and Biosciences, Borstel, Germany
| | - Lothar Brecker
- Research Center Borstel, Center for Medicine and Biosciences, Borstel, Germany
| | - Buko Lindner
- Research Center Borstel, Center for Medicine and Biosciences, Borstel, Germany
| | - Christian Alexander
- Research Center Borstel, Center for Medicine and Biosciences, Borstel, Germany
| | - Sabine Gronow
- Research Center Borstel, Center for Medicine and Biosciences, Borstel, Germany
| | - Holger Heine
- Research Center Borstel, Center for Medicine and Biosciences, Borstel, Germany
| | - Artur J. Ulmer
- Research Center Borstel, Center for Medicine and Biosciences, Borstel, Germany
| | - Ernst Th. Rietschel
- Research Center Borstel, Center for Medicine and Biosciences, Borstel, Germany
| | - Ulrich Zähringer
- Research Center Borstel, Center for Medicine and Biosciences, Borstel, Germany,
| |
Collapse
|
8
|
Abstract
The presence of palmitate in a minor fraction of lipid A has been known since the chemical structure of lipid A was first elucidated, but the functional importance in bacterial pathogenesis of regulated lipid A palmitoylation has become clear only recently. A palmitate chain from a phospholipid is incorporated into lipid A by an outer membrane enzyme PagP. The isolation of pagP mutants from pathogenic Gram-negative bacteria has revealed that palmitoylated lipid A can both protect the bacterium from certain host immune defenses and attenuate the ability of lipid A to activate those same defenses through the TLR4 signal transduction pathway. The mechanisms by which bacteria regulate the incorporation of palmitate into lipid A strikingly reflect the corresponding organism's pathogenic lifestyle. Variations on these themes can be illustrated with the known pagP homologs from Gram-negative bacteria, which include pathogens of humans and other mammals in addition to pathogens of insects and plants. The PagP enzyme is now lending itself both as a target for the development of anti-infective agents, and as a tool for the synthesis of lipid A-based vaccine adjuvants and endotoxin antagonists.
Collapse
Affiliation(s)
- Russell E. Bishop
- Departments of Laboratory Medicine and Pathobiology, and Biochemistry, University of Toronto, Toronto, Ontario, Canada,
| | - Sang-Hyun Kim
- Departments of Laboratory Medicine and Pathobiology, and Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Ahmed El Zoeiby
- Departments of Laboratory Medicine and Pathobiology, and Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
SenGupta S, Hittle LE, Ernst RK, Uriarte SM, Mitchell TC. A Pseudomonas aeruginosa hepta-acylated lipid A variant associated with cystic fibrosis selectively activates human neutrophils. J Leukoc Biol 2016; 100:1047-1059. [PMID: 27538572 DOI: 10.1189/jlb.4vma0316-101r] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/20/2016] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa (PA) infection in cystic fibrosis (CF) lung disease causes airway neutrophilia and hyperinflammation without effective bacterial clearance. We evaluated the immunostimulatory activities of lipid A, the membrane anchor of LPS, isolated from mutants of PA that synthesize structural variants, present in the airways of patients with CF, to determine if they correlate with disease severity and progression. In a subset of patients with a severe late stage of CF disease, a unique hepta-acylated lipid A, hepta-1855, is synthesized. In primary human cell cultures, we found that hepta-1855 functioned as a potent TLR4 agonist by priming neutrophil respiratory burst and stimulating strong IL-8 from monocytes and neutrophils. hepta-1855 also had a potent survival effect on neutrophils. However, it was less efficient in stimulating neutrophil granule exocytosis and also less potent in triggering proinflammatory TNF-α response from monocytes. In PA isolates that do not synthesize hepta-1855, a distinct CF-specific adaptation favors synthesis of a penta-1447 and hexa-1685 LPS mixture. We found that penta-1447 lacked immunostimulatory activity but interfered with inflammatory IL-8 synthesis in response to hexa-1685. Together, these observations suggest a potential contribution of hepta-1855 to maintenance of the inflammatory burden in late-stage CF by recruiting neutrophils via IL-8 and promoting their survival, an effect presumably amplified by the absence of penta-1447. Moreover, the relative inefficiency of hepta-1855 in triggering neutrophil degranulation may partly explain the persistence of PA in CF disease, despite extensive airway neutrophilia.
Collapse
Affiliation(s)
- Shuvasree SenGupta
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Lauren E Hittle
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Silvia M Uriarte
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA; .,Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA; and
| | - Thomas C Mitchell
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA;
| |
Collapse
|
10
|
Haishima Y, Hasegawa C, Todoki K, Sasaki K, Niimi S, Ozono S. A biological study establishing the endotoxin limit of biomaterials for bone regeneration in cranial and femoral implantation of rats. J Biomed Mater Res B Appl Biomater 2016; 105:1514-1524. [DOI: 10.1002/jbm.b.33692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/15/2016] [Accepted: 04/06/2016] [Indexed: 01/25/2023]
Affiliation(s)
- Yuji Haishima
- Division of Medical Devices; National Institute of Health Sciences; 1-18-1 Kamiyoga Setagaya Tokyo 158-8501 Japan
| | - Chie Hasegawa
- Division of Medical Devices; National Institute of Health Sciences; 1-18-1 Kamiyoga Setagaya Tokyo 158-8501 Japan
| | - Kazuo Todoki
- Division of Oral Science & Pharmacology, Department of Dental Hygiene, School of Nursing; Kanagawa Dental University; 82 Inaoka-cho Yokosuka Kanagawa 238-8580 Japan
| | - Kazuo Sasaki
- R&D Center, NH Foods Ltd.; 3-3 Midorigahara Tsukuba Ibaraki 300-2646 Japan
| | - Shingo Niimi
- Division of Medical Devices; National Institute of Health Sciences; 1-18-1 Kamiyoga Setagaya Tokyo 158-8501 Japan
| | - Satoru Ozono
- Division of Medical Devices; National Institute of Health Sciences; 1-18-1 Kamiyoga Setagaya Tokyo 158-8501 Japan
| |
Collapse
|
11
|
Maeshima N, Evans-Atkinson T, Hajjar AM, Fernandez RC. Bordetella pertussis Lipid A Recognition by Toll-like Receptor 4 and MD-2 Is Dependent on Distinct Charged and Uncharged Interfaces. J Biol Chem 2015; 290:13440-53. [PMID: 25837248 DOI: 10.1074/jbc.m115.653881] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Indexed: 12/22/2022] Open
Abstract
Lipid A in LPS activates innate immunity through the Toll-like receptor 4 (TLR4)-MD-2 complex on host cells. Variation in lipid A has significant consequences for TLR4 activation and thus may be a means by which Gram-negative bacteria modulate host immunity. However, although even minor changes in lipid A structure have been shown to affect downstream immune responses, the mechanism by which the TLR4-MD-2 receptor complex recognizes these changes is not well understood. We previously showed that strain BP338 of the human pathogen Bordetella pertussis, the causative agent of whooping cough, modifies its lipid A by the addition of glucosamine moieties that promote TLR4 activation in human, but not mouse, macrophages. Using site-directed mutagenesis and an NFκB reporter assay screen, we have identified several charged amino acid residues in TLR4 and MD-2 that are important for these species-specific responses; some of these are novel for responses to penta-acyl B. pertussis LPS, and their mutation does not affect the response to hexa-acylated Escherichia coli LPS or tetra-acylated lipid IVA. We additionally show evidence that suggests that recognition of penta-acylated B. pertussis lipid A is dependent on uncharged amino acids in TLR4 and MD-2 and that this is true for both human and mouse TLR4-MD-2 receptors. Taken together, we have demonstrated that the TLR4-MD-2 receptor complex recognizes variation in lipid A molecules using multiple sites for receptor-ligand interaction and propose that host-specific immunity to a particular Gram-negative bacterium is, at least in part, mediated by very subtle tuning of one of the earliest interactions at the host-pathogen interface.
Collapse
Affiliation(s)
- Nina Maeshima
- From the Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3 and
| | - Tara Evans-Atkinson
- From the Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3 and
| | - Adeline M Hajjar
- Department of Comparative Medicine, University of Washington, Seattle, Washington 98195
| | - Rachel C Fernandez
- From the Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3 and
| |
Collapse
|
12
|
The molecular mechanism of species-specific recognition of lipopolysaccharides by the MD-2/TLR4 receptor complex. Mol Immunol 2014; 63:134-42. [PMID: 25037631 DOI: 10.1016/j.molimm.2014.06.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/20/2014] [Accepted: 06/25/2014] [Indexed: 01/17/2023]
Abstract
Lipid A, a component of bacterial lipopolysaccharide, is a conserved microbe-associated molecular pattern that activates the MD-2/TLR4 receptor complex. Nevertheless, bacteria produce lipid A molecules of considerable structural diversity. The human MD-2/TLR4 receptor most efficiently recognizes hexaacylated bisphosphorylated lipid A produced by enterobacteria, but in some animal species the immune response can be elicited also by alternative lipid A varieties, such as tetraacylated lipid IVa or pentaacylated lipid A of Rhodobacter spheroides. Several crystal structures revealed that hexaacylated lipid A and tetraacylated lipid IVa activate the murine MD-2/TLR4 in a similar manner, but failed to explain the antagonistic vs. agonistic activity of lipid IVa in the human vs. equine receptor, respectively. Targeted mutagenesis studies of the receptor complex revealed intricate combination of electrostatic and hydrophobic interactions primarily within the MD-2 co-receptor, but with a contribution of TLR4 as well, that contribute to species-specific recognition of lipid A. We will review current knowledge regarding lipid A diversity and species-specific activation of the MD-2/TLR4 receptor complex in different species (e.g. human, mouse or equine) by lipid A varieties.
Collapse
|
13
|
Anwar MA, Choi S. Gram-negative marine bacteria: structural features of lipopolysaccharides and their relevance for economically important diseases. Mar Drugs 2014; 12:2485-514. [PMID: 24796306 PMCID: PMC4052302 DOI: 10.3390/md12052485] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 03/03/2014] [Accepted: 04/08/2014] [Indexed: 11/17/2022] Open
Abstract
Gram-negative marine bacteria can thrive in harsh oceanic conditions, partly because of the structural diversity of the cell wall and its components, particularly lipopolysaccharide (LPS). LPS is composed of three main parts, an O-antigen, lipid A, and a core region, all of which display immense structural variations among different bacterial species. These components not only provide cell integrity but also elicit an immune response in the host, which ranges from other marine organisms to humans. Toll-like receptor 4 and its homologs are the dedicated receptors that detect LPS and trigger the immune system to respond, often causing a wide variety of inflammatory diseases and even death. This review describes the structural organization of selected LPSes and their association with economically important diseases in marine organisms. In addition, the potential therapeutic use of LPS as an immune adjuvant in different diseases is highlighted.
Collapse
Affiliation(s)
- Muhammad Ayaz Anwar
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea.
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea.
| |
Collapse
|
14
|
Thaipisuttikul I, Hittle LE, Chandra R, Zangari D, Dixon CL, Garrett TA, Rasko DA, Dasgupta N, Moskowitz SM, Malmström L, Goodlett DR, Miller SI, Bishop RE, Ernst RK. A divergent Pseudomonas aeruginosa palmitoyltransferase essential for cystic fibrosis-specific lipid A. Mol Microbiol 2013; 91:158-74. [PMID: 24283944 DOI: 10.1111/mmi.12451] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2013] [Indexed: 12/25/2022]
Abstract
Strains of Pseudomonas aeruginosa (PA) isolated from the airways of cystic fibrosis patients constitutively add palmitate to lipid A, the membrane anchor of lipopolysaccharide. The PhoPQ regulated enzyme PagP is responsible for the transfer of palmitate from outer membrane phospholipids to lipid A. This enzyme had previously been identified in many pathogenic Gram-negative bacteria, but in PA had remained elusive, despite abundant evidence that its lipid A contains palmitate. Using a combined genetic and biochemical approach, we identified PA1343 as the PA gene encoding PagP. Although PA1343 lacks obvious primary structural similarity with known PagP enzymes, the β-barrel tertiary structure with an interior hydrocarbon ruler appears to be conserved. PA PagP transfers palmitate to the 3' position of lipid A, in contrast to the 2 position seen with the enterobacterial PagP. Palmitoylated PA lipid A alters host innate immune responses, including increased resistance to some antimicrobial peptides and an elevated pro-inflammatory response, consistent with the synthesis of a hexa-acylated structure preferentially recognized by the TLR4/MD2 complex. Palmitoylation commonly confers resistance to cationic antimicrobial peptides, however, increased cytokine production resulting in inflammation is not seen with other palmitoylated lipid A, indicating a unique role for this modification in PA pathogenesis.
Collapse
Affiliation(s)
- Iyarit Thaipisuttikul
- Department of Microbial Pathogenesis, University of Maryland, School of Dentistry, University of Maryland, Baltimore, MD, 21201, USA; Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Prannok Road, Bangkoknoi, Bangkok, 10700, Thailand
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhou W, Li Y, Pan X, Gao Y, Li B, Qiu Z, Liang L, Zhou H, Yue J. Toll-like receptor 9 interaction with CpG ODN--an in silico analysis approach. Theor Biol Med Model 2013; 10:18. [PMID: 23497207 PMCID: PMC3602074 DOI: 10.1186/1742-4682-10-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/10/2013] [Indexed: 11/24/2022] Open
Abstract
Background Toll-like receptor 9 (TLR9) recognises unmethylated CpG DNA and activates a signalling cascade, leading to the production of inflammatory cytokines such as TNF-α, IL-1, IL-6 and IL-12 via the adaptor protein MyD88. However, the specific sequence and structural requirements of the CpG DNA for the recognition of and binding to TLR9 are unknown. Moreover, the 3D structures of TLR9 and the TLR9-ODN complex have not been determined. In this study, we propose a reliable model of the interaction of the TLR9 ECD with CpG ODN using bioinformatics tools. Results The three-dimensional structures of two TLR9 ECD-CpG ODN complexes were constructed using a homology modelling and docking strategy. Based on the models of these complexes, the TLR9 ECD-CpG ODN interaction patterns were calculated. The results showed that the interface between the human TLR9 and the CpG ODN molecule is geometrically complementary. The computed molecular interactions indicated that LRR11 is the main region of TLR9 that binds to CpG ODN and that five positively charged residues within LRR11 are involved in the binding of the TLR9 ECD to the CpG ODN. Observations in the close-up view of these interactions indicated that these five positively charged residues contribute differently to the binding region within the TLR9 ECD-CpG ODN complex. 337Arg and 338Lys reside in the binding sites of ODN, forming hydrogen bonds and direct contacts with the CpG ODN, whereas 347Lys, 348Arg, and 353His do not directly contact the CpG ODN. These results are in agreement with previously reported experimental data. Conclusion In this study, we present two structural models for the human and mouse TLR9 ECD in a complex with CpG ODN. Some features predicted by this model are consistent with previously reported experimental data. This complex model may lead to a better understanding of the function of TLR9 and its interaction with CpG ODN and will improve our understanding of TLR9-ligand interaction in general.
Collapse
Affiliation(s)
- Wei Zhou
- Beijing Institute of Biotechnology, Beijing 100071, China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ogura N, Muroi M, Sugiura Y, Tanamoto KI. Lipid IVa incompletely activates MyD88-independent Toll-like receptor 4 signaling in mouse macrophage cell lines. Pathog Dis 2013; 67:199-205. [DOI: 10.1111/2049-632x.12031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/29/2013] [Accepted: 01/31/2013] [Indexed: 10/27/2022] Open
Affiliation(s)
- Norihiko Ogura
- Research Institute of Pharmaceutical Sciences; Musashino University; Tokyo; Japan
| | - Masashi Muroi
- Research Institute of Pharmaceutical Sciences; Musashino University; Tokyo; Japan
| | - Yuka Sugiura
- Research Institute of Pharmaceutical Sciences; Musashino University; Tokyo; Japan
| | - Ken-ichi Tanamoto
- Research Institute of Pharmaceutical Sciences; Musashino University; Tokyo; Japan
| |
Collapse
|
17
|
Bowen WS, Gandhapudi SK, Kolb JP, Mitchell TC. Immunopharmacology of Lipid A Mimetics. ADVANCES IN PHARMACOLOGY 2013; 66:81-128. [DOI: 10.1016/b978-0-12-404717-4.00003-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Kawasaki K, Teramoto M, Tatsui R, Amamoto S. Lipid A 3'-O-deacylation by Salmonella outer membrane enzyme LpxR modulates the ability of lipid A to stimulate Toll-like receptor 4. Biochem Biophys Res Commun 2012; 428:343-7. [PMID: 23085233 DOI: 10.1016/j.bbrc.2012.10.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 10/12/2012] [Indexed: 12/20/2022]
Abstract
Modification of lipopolysaccharides, including the membrane anchor portion lipid A, is essential for bacterial adaptation to its host. We examined whether lipid A 3'-O-deacylation by Salmonella lipid A deacylase LpxR affected the ability of lipid A to stimulate the Toll-like receptor 4 (TLR4) and MD-2 complex. Unmodified lipid A and 3'-O-deacylated lipid A were purified from Escherichia coli and E. coli expressing recombinant LpxR, respectively. Inactive lipid A species, palmitoylated lipid A and a lipid A biosynthetic precursor lacking the myristate moiety were purified from E. coli expressing recombinant Salmonella lipid A palmitoyltransferase PagP and E. coli mutant defective in lipid A biosynthesis, respectively. Mass spectrometric analysis of the purified lipid A preparations showed a spectra of single lipid A species and gave a single band on thin layer chromatography. An NF-κB-dependent reporter activation assay was used to determine the bioactivity of the lipid A species in a cell line that expressed human TLR4 and MD-2 complex. Deacylated lipid A was less active than unmodified lipid A, suggesting that lipid A 3'-O-deacylation by LpxR is beneficial for bacteria to evade host immune surveillance: On the other hand, deacylated lipid A was more active than palmitoylated lipid A and the lipid A precursor. Taken together, these results indicated that lipid A 3'-O-deacylation by LpxR significantly reduces the bioactivity of lipid A.
Collapse
Affiliation(s)
- Kiyoshi Kawasaki
- Faculty of Pharmaceutical Sciences, Doshisha Women's College, Kyotanabe 610-0395, Japan.
| | | | | | | |
Collapse
|
19
|
Jones CL, Sampson TR, Nakaya HI, Pulendran B, Weiss DS. Repression of bacterial lipoprotein production by Francisella novicida facilitates evasion of innate immune recognition. Cell Microbiol 2012; 14:1531-43. [PMID: 22632124 DOI: 10.1111/j.1462-5822.2012.01816.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/04/2012] [Accepted: 05/15/2012] [Indexed: 01/04/2023]
Abstract
Innate recognition systems, including the Toll-like receptors (TLRs), play a critical role in activating host defences and proinflammatory pathways in response to infection. Pathogens have developed strategies to subvert TLRs in order to survive and replicate within the host. The model intracellular pathogen, Francisella novicida, modulates host defences to promote survival and replication in macrophages. TLR2, which recognizes bacterial lipoproteins (BLPs), is critical for activating host defences and proinflammatory cytokine production in response to Francisella infection. Here we show that the F. novicida protein FTN_0757 acts to repress BLP production, dampening TLR2 activation. The ΔFTN_0757 mutant strain induced robust TLR2-dependent cytokine production in macrophages compared with wild-type bacteria, and produced increased amounts of BLPs. The deletion of one BLP (FTN_1103) from ΔFTN_0757 decreased the total BLP concentration to near wild-type level sand correlated with a decrease in the inductionof TLR2 signalling. The overproduction of BLPs also contributed to the in vivo attenuation of the ΔFTN_0757 mutant, which was significantly rescued when FTN_1103 was deleted. Taken together, these data reveal a novel mechanism of immune evasion by the downregulation of BLP expression to subvert TLR2 activation, which is likely used by numerous other intracellular bacterial pathogens.
Collapse
Affiliation(s)
- Crystal L Jones
- Department of Microbiology and Immunology, Microbiology and Molecular Genetics Program, Emory University, Atlanta, GA, USA
| | | | | | | | | |
Collapse
|
20
|
Tsuchiya K, Siddiqui S, Risse PA, Hirota N, Martin JG. The presence of LPS in OVA inhalations affects airway inflammation and AHR but not remodeling in a rodent model of asthma. Am J Physiol Lung Cell Mol Physiol 2012; 303:L54-63. [PMID: 22523281 DOI: 10.1152/ajplung.00208.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Ovalbumin (OVA) is the most frequently used allergen in animal models of asthma. Lipopolysaccharide (LPS) contaminating commercial OVA may modulate the evoked airway inflammatory response to OVA. However, the effect of LPS in OVA on airway remodeling, especially airway smooth muscle (ASM) has not been evaluated. We hypothesized that LPS in commercial OVA may enhance allergen-induced airway inflammation and remodeling. Brown Norway rats were sensitized with OVA on day 0. PBS, OVA, or endotoxin-free OVA (Ef-OVA) was instilled intratracheally on days 14, 19, 24. Bronchoalveolar lavage (BAL) fluid, lung, and intrathoracic lymph node tissues were collected 48 h after the last challenge. Immunohistochemistry for α-smooth muscle actin, Periodic-Acid-Schiff staining, and real-time qPCR were performed. Airway hyperresponsiveness (AHR) was also measured. BAL fluid macrophages, eosinophils, neutrophils, and lymphocytes were increased in OVA-challenged animals, and macrophages and neutrophils were significantly lower in Ef-OVA-challenged animals. The ASM area in larger airways was significantly increased in both OVA and Ef-OVA compared with PBS-challenged animals. The mRNA expression of IFN-γ and IL-13 in lung tissues and IL-4 in lymph nodes was significantly increased by both OVA and Ef-OVA compared with PBS and were not significantly different between OVA and Ef-OVA. Monocyte chemoattractant protein (MCP)-1 in BAL fluid and AHR were significantly increased in OVA but not in Ef-OVA. LPS contamination in OVA contributes to the influx of macrophages and MCP-1 increase in the airways and to AHR after OVA challenges but does not affect OVA-induced Th1 and Th2 cytokine expression, goblet cell hyperplasia, and ASM remodeling.
Collapse
Affiliation(s)
- Kimitake Tsuchiya
- Meakins Christie Laboratories, 3626 St Urbain, Montreal, Québec, Canada, H2X 2P2
| | | | | | | | | |
Collapse
|
21
|
Myeloid differentiation 2 as a therapeutic target of inflammatory disorders. Pharmacol Ther 2011; 133:291-8. [PMID: 22119168 DOI: 10.1016/j.pharmthera.2011.11.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 11/04/2011] [Indexed: 02/07/2023]
Abstract
Lipopolysaccharide (LPS), an endotoxin of Gram-negative bacteria, activates the innate immunity system through a receptor complex of myeloid differentiation 2 (MD-2) and toll-like receptor 4 (TLR4). MD-2 directly recognizes the lipid A domain of LPS, which triggers MD-2/TLR4-mediated cellular response aimed at eliminating the invaded pathogen. However, excess production of inflammatory mediators is harmful to host tissue and this can cause septic death in extreme cases. MD-2 represents an attractive therapeutic target of inflammatory and immune diseases in human. In particular, eritoran is a synthetic tetraacylated lipid A that binds directly to MD-2 and antagonizes LPS binding to the same site, and it ameliorates various inflammatory conditions due to infection or sterile organ injury. In this review, we outline the recent advances in the structure biology of ligand interaction with MD-2/TLR4, and highlight the MD-2-directed LPS antagonists, which are natural and synthetic chemicals, under development to treat inflammatory diseases.
Collapse
|
22
|
Genomes and characterization of phages Bcep22 and BcepIL02, founders of a novel phage type in Burkholderia cenocepacia. J Bacteriol 2011; 193:5300-13. [PMID: 21804006 DOI: 10.1128/jb.05287-11] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Within the Burkholderia cepacia complex, B. cenocepacia is the most common species associated with aggressive infections in the lungs of cystic fibrosis patients, causing disease that is often refractive to treatment by antibiotics. Phage therapy may be a potential alternative form of treatment for these infections. Here we describe the genome of the previously described therapeutic B. cenocepacia podophage BcepIL02 and its close relative, Bcep22. Phage Bcep22 was found to contain a circularly permuted genome of 63,882 bp containing 77 genes; BcepIL02 was found to be 62,714 bp and contains 76 predicted genes. Major virion-associated proteins were identified by proteomic analysis. We propose that these phages comprise the founding members of a novel podophage lineage, the Bcep22-like phages. Among the interesting features of these phages are a series of tandemly repeated putative tail fiber genes that are similar to each other and also to one or more such genes in the other phages. Both phages also contain an extremely large (ca. 4,600-amino-acid), virion-associated, multidomain protein that accounts for over 20% of the phages' coding capacity, is widely distributed among other bacterial and phage genomes, and may be involved in facilitating DNA entry in both phage and other mobile DNA elements. The phages, which were previously presumed to be virulent, show evidence of a temperate lifestyle but are apparently unable to form stable lysogens in their hosts. This ambiguity complicates determination of a phage lifestyle, a key consideration in the selection of therapeutic phages.
Collapse
|
23
|
Kobayashi H, Kawasaki K, Takeishi K, Noda H. Symbiont of the stink bug Plautia stali synthesizes rough-type lipopolysaccharide. Microbiol Res 2011; 167:48-54. [PMID: 21470838 DOI: 10.1016/j.micres.2011.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Revised: 02/22/2011] [Accepted: 03/05/2011] [Indexed: 10/18/2022]
Abstract
The structures and biosynthesis of lipopolysaccharide (LPS), a major component of the outer membrane of Gram-negative bacteria, have been studied extensively in cultured bacteria such as Escherichia coli. In contrast, little is known about the structures and biosynthesis of the LPS of unculturable bacteria, including insect symbionts, many of which are Gram-negative bacteria. A brown-winged green bug, Plautia stali, is known to harbor a single species of gamma-proteobacterium in the posterior mid-gut caeca. To characterize the features of its LPS, we analyzed the genome sequence of the symbiont, and identified the putative genes involved in LPS synthesis. Genes involved in the synthesis of lipid A and the core oligosaccharide were found in the genome, but waaL, which encodes the O-antigen ligase, was not. Furthermore, we characterized the LPS of this symbiont using SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and Toll-like receptor 4 (TLR4) stimulation assays. Consistent with the genomic analysis, the SDS-PAGE analysis suggested that the symbiont had rough-type LPS, which lacked the O-antigen. The TLR4 stimulation assay demonstrated that LPS purified from the symbionts activated NF-κB-dependent reporter expression, indicating the existence of a bioactive lipid A portion in the LPS. These results suggest that the P. stali symbiont produces rough-type LPS.
Collapse
Affiliation(s)
- Hideaki Kobayashi
- Laboratory of Genome Pharmaceuticals School of Pharmacy, Nihon University, 7-7-1, Narashinodai, Funabashi, Chiba, Japan.
| | | | | | | |
Collapse
|
24
|
Cuesta-Seijo JA, Neale C, Khan MA, Moktar J, Tran CD, Bishop RE, Pomès R, Privé GG. PagP crystallized from SDS/cosolvent reveals the route for phospholipid access to the hydrocarbon ruler. Structure 2011; 18:1210-9. [PMID: 20826347 DOI: 10.1016/j.str.2010.06.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 05/31/2010] [Accepted: 06/07/2010] [Indexed: 12/25/2022]
Abstract
Enzymatic reactions involving bilayer lipids occur in an environment with strict physical and topological constraints. The integral membrane enzyme PagP transfers a palmitoyl group from a phospholipid to lipid A in order to assist Escherichia coli in evading host immune defenses during infection. PagP measures the palmitoyl group with an internal hydrocarbon ruler that is formed in the interior of the eight-stranded antiparallel β barrel. The access and egress of the palmitoyl group is thought to take a lateral route from the bilayer phase to the barrel interior. Molecular dynamics, mutagenesis, and a 1.4 A crystal structure of PagP in an SDS / 2-methyl-2,4-pentanediol (MPD) cosolvent system reveal that phospholipid access occurs at the crenel present between strands F and G of PagP. In this way, the phospholipid head group can remain exposed to the cell exterior while the lipid acyl chain remains in a predominantly hydrophobic environment as it translocates to the protein interior.
Collapse
Affiliation(s)
- Jose Antonio Cuesta-Seijo
- Division of Cancer Genomics and Proteomics, Ontario Cancer Institute and Campbell Family Cancer Research Institute, 101 College Street, Toronto, ON M5G 1L7, Canada
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Affiliation(s)
- Mi Sun Jin
- a Department of Chemistry, Department of Nanoscience and Technoloogy , Korea Advanced Institute of Science and Technology , Daejeon, 305–701, Korea
| | - Jie‐Oh Lee
- b Department of Chemistry, Department of Nanoscience and Technoloogy , Korea Advanced Institute of Science and Technology , Daejeon, 305–701, Korea Phone: Fax: E-mail:
| |
Collapse
|
26
|
Khan MA, Moktar J, Mott PJ, Vu M, McKie AH, Pinter T, Hof F, Bishop RE. Inscribing the perimeter of the PagP hydrocarbon ruler by site-specific chemical alkylation. Biochemistry 2010; 49:9046-57. [PMID: 20853818 DOI: 10.1021/bi1011496] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The Escherichia coli outer membrane phospholipid:lipid A palmitoyltransferase PagP selects palmitate chains using its β-barrel-interior hydrocarbon ruler and interrogates phospholipid donors by gating them laterally through an aperture known as the crenel. Lipid A palmitoylation provides antimicrobial peptide resistance and modulates inflammation signaled through the host TLR4/MD2 pathway. Gly88 substitutions can raise the PagP hydrocarbon ruler floor to correspondingly shorten the selected acyl chain. To explore the limits of hydrocarbon ruler acyl chain selectivity, we have modified the single Gly88Cys sulfhydryl group with linear alkyl units and identified C10 as the shortest acyl chain to be efficiently utilized. Gly88Cys-S-ethyl, S-n-propyl, and S-n-butyl PagP were all highly specific for C12, C11, and C10 acyl chains, respectively, and longer aliphatic or aminoalkyl substitutions could not extend acyl chain selectivity any further. The donor chain length limit of C10 coincides with the phosphatidylcholine transition from displaying bilayer to micellar properties in water, but the detergent inhibitor lauryldimethylamine N-oxide also gradually became ineffective in a micellar assay as the selected acyl chains were shortened to C10. The Gly88Cys-S-ethyl and norleucine substitutions exhibited superior C12 acyl chain specificity compared to that of Gly88Met PagP, thus revealing detection by the hydrocarbon ruler of the Met side chain tolerance for terminal methyl group gauche conformers. Although norleucine substitution was benign, selenomethionine substitution at Met72 was highly destabilizing to PagP. Within the hydrophobic and van der Waals-contacted environment of the PagP hydrocarbon ruler, side chain flexibility, combined with localized thioether-aromatic dispersion attraction, likely influences the specificity of acyl chain selection.
Collapse
Affiliation(s)
- M Adil Khan
- Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada L8N 3Z5
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Kabanov DS, Prokhorenko IR. Structural analysis of lipopolysaccharides from Gram-negative bacteria. BIOCHEMISTRY (MOSCOW) 2010; 75:383-404. [PMID: 20618127 DOI: 10.1134/s0006297910040012] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This review covers data on composition and structure of lipid A, core, and O-polysaccharide of the known lipopolysaccharides from Gram-negative bacteria. The relationship between the structure and biological activity of lipid A is discussed. The data on roles of core and O-polysaccharide in biological activities of lipopolysaccharides are presented. The structural homology of some oligosaccharide sequences of lipopolysaccharides to gangliosides of human cell membranes is considered.
Collapse
Affiliation(s)
- D S Kabanov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | |
Collapse
|
28
|
Khan MA, Moktar J, Mott PJ, Bishop RE. A thiolate anion buried within the hydrocarbon ruler perturbs PagP lipid acyl chain selection. Biochemistry 2010; 49:2368-79. [PMID: 20175558 DOI: 10.1021/bi901669q] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Escherichia coli outer membrane phospholipid:lipid A palmitoyltransferase PagP exhibits remarkable selectivity because its binding pocket for lipid acyl chains excludes those differing in length from palmitate by a solitary methylene unit. This narrow detergent-binding hydrophobic pocket buried within the eight-strand antiparallel beta-barrel is known as the hydrocarbon ruler. Gly88 lines the acyl chain binding pocket floor, and its substitution can raise the floor to correspondingly shorten the selected acyl chain. An aromatic exciton interaction between Tyr26 and Trp66 provides an intrinsic spectroscopic probe located immediately adjacent to Gly88. The Gly88Cys PagP enzyme was engineered to function as a dedicated myristoyltransferase, but the mutant enzyme instead selected both myristoyl and pentadecanoyl groups, was devoid of the exciton, and displayed a 21 degrees C reduction in thermal stability. We now demonstrate that the structural perturbation results from a buried thiolate anion attributed to suppression of the Cys sulfhydryl group pK(a) from 9.4 in aqueous solvent to 7.5 in the hydrocarbon ruler microenvironment. The Cys thiol is sandwiched at the interface between a nonpolar and a polar beta-barrel interior milieu, suggesting that local electrostatics near the otherwise hydrophobic hydrocarbon ruler pocket serve to perturb the thiol pK(a). Neutralization of the Cys thiolate anion by protonation restores wild-type exciton and thermal stability signatures to Gly88Cys PagP, which then functions as a dedicated myristoyltransferase at pH 7. Gly88Cys PagP assembled in bacterial membranes recapitulates lipid A myristoylation in vivo. Hydrocarbon ruler-exciton coupling in PagP thus reveals a thiol-thiolate ionization mechanism for modulating lipid acyl chain selection.
Collapse
Affiliation(s)
- M Adil Khan
- Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada L8N 3Z5
| | | | | | | |
Collapse
|
29
|
Cigana C, Curcurù L, Leone MR, Ieranò T, Lorè NI, Bianconi I, Silipo A, Cozzolino F, Lanzetta R, Molinaro A, Bernardini ML, Bragonzi A. Pseudomonas aeruginosa exploits lipid A and muropeptides modification as a strategy to lower innate immunity during cystic fibrosis lung infection. PLoS One 2009; 4:e8439. [PMID: 20037649 PMCID: PMC2793027 DOI: 10.1371/journal.pone.0008439] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 11/28/2009] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa can establish life-long airways chronic infection in patients with cystic fibrosis (CF) with pathogenic variants distinguished from initially acquired strain. Here, we analysed chemical and biological activity of P. aeruginosa Pathogen-Associated Molecular Patterns (PAMPs) in clonal strains, including mucoid and non-mucoid phenotypes, isolated during a period of up to 7.5 years from a CF patient. Chemical structure by MS spectrometry defined lipopolysaccharide (LPS) lipid A and peptidoglycan (PGN) muropeptides with specific structural modifications temporally associated with CF lung infection. Gene sequence analysis revealed novel mutation in pagL, which supported lipid A changes. Both LPS and PGN had different potencies when activating host innate immunity via binding TLR4 and Nod1. Significantly higher NF-kB activation, IL-8 expression and production were detected in HEK293hTLR4/MD2-CD14 and HEK293hNod1 after stimulation with LPS and PGN respectively, purified from early P. aeruginosa strain as compared to late strains. Similar results were obtained in macrophages-like cells THP-1, epithelial cells of CF origin IB3-1 and their isogenic cells C38, corrected by insertion of cystic fibrosis transmembrane conductance regulator (CFTR). In murine model, altered LPS structure of P. aeruginosa late strains induces lower leukocyte recruitment in bronchoalveolar lavage and MIP-2, KC and IL-1beta cytokine levels in lung homogenates when compared with early strain. Histopathological analysis of lung tissue sections confirmed differences between LPS from early and late P. aeruginosa. Finally, in this study for the first time we unveil how P. aeruginosa has evolved the capacity to evade immune system detection, thus promoting survival and establishing favourable conditions for chronic persistence. Our findings provide relevant information with respect to chronic infections in CF.
Collapse
Affiliation(s)
- Cristina Cigana
- Infection and Cystic Fibrosis Unit, San Raffaele Scientific Institute, Milano, Italy
| | - Laura Curcurù
- Dipartimento di Biologia Cellulare e dello Sviluppo, Sapienza-Università di Roma, Roma, Italy
| | - Maria Rosaria Leone
- Dipartimento di Chimica Organica e Biochimica, Università di Napoli Federico II, Napoli, Italy; CEINGE Biotecnologie Avanzate, Napoli, Italy
| | - Teresa Ieranò
- Dipartimento di Chimica Organica e Biochimica, Università di Napoli Federico II, Napoli, Italy; CEINGE Biotecnologie Avanzate, Napoli, Italy
| | - Nicola Ivan Lorè
- Infection and Cystic Fibrosis Unit, San Raffaele Scientific Institute, Milano, Italy
| | - Irene Bianconi
- Infection and Cystic Fibrosis Unit, San Raffaele Scientific Institute, Milano, Italy
| | - Alba Silipo
- Dipartimento di Chimica Organica e Biochimica, Università di Napoli Federico II, Napoli, Italy; CEINGE Biotecnologie Avanzate, Napoli, Italy
| | - Flora Cozzolino
- Dipartimento di Chimica Organica e Biochimica, Università di Napoli Federico II, Napoli, Italy; CEINGE Biotecnologie Avanzate, Napoli, Italy
| | - Rosa Lanzetta
- Dipartimento di Chimica Organica e Biochimica, Università di Napoli Federico II, Napoli, Italy; CEINGE Biotecnologie Avanzate, Napoli, Italy
| | - Antonio Molinaro
- Dipartimento di Chimica Organica e Biochimica, Università di Napoli Federico II, Napoli, Italy; CEINGE Biotecnologie Avanzate, Napoli, Italy
| | - Maria Lina Bernardini
- Dipartimento di Biologia Cellulare e dello Sviluppo, Sapienza-Università di Roma, Roma, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Roma, Italy
| | - Alessandra Bragonzi
- Infection and Cystic Fibrosis Unit, San Raffaele Scientific Institute, Milano, Italy
- * E-mail:
| |
Collapse
|
30
|
Khan MA, Bishop RE. Molecular mechanism for lateral lipid diffusion between the outer membrane external leaflet and a beta-barrel hydrocarbon ruler. Biochemistry 2009; 48:9745-56. [PMID: 19769329 DOI: 10.1021/bi9013566] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Membrane-intrinsic enzymes are embedded in lipids, yet how such enzymes interrogate lipid substrates remains a largely unexplored fundamental question. The outer membrane phospholipid:lipid A palmitoyltransferase PagP combats host immune defenses during infection and selects a palmitate chain using its beta-barrel interior hydrocarbon ruler. Both a molecular embrasure and crenel in Escherichia coli PagP display weakened transmembrane beta-strand hydrogen bonding to provide potential lateral routes for diffusion of the palmitoyl group between the hydrocarbon ruler and outer membrane external leaflet. Prolines in strands A and B lie beneath the dynamic L1 surface loop flanking the embrasure, whereas the crenel is flanked by prolines in strands F and G. Reversibly barricading the embrasure prevents lipid A palmitoylation without affecting the slower phospholipase reaction. Lys42Ala PagP is also a dedicated phospholipase, implicating this disordered L1 loop residue in lipid A recognition. The embrasure barricade additionally prevents palmitoylation of nonspecific fatty alcohols, but not miscible alcohols. Irreversibly barricading the crenel inhibits both lipid A palmitoylation and phospholipase reactions without compromising PagP structure. These findings indicate lateral palmitoyl group diffusion within the PagP hydrocarbon ruler is likely gated during phospholipid entry via the crenel and during lipid A egress via the embrasure.
Collapse
Affiliation(s)
- M Adil Khan
- Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada L8N 3Z5
| | | |
Collapse
|
31
|
Resman N, Vasl J, Oblak A, Pristovsek P, Gioannini TL, Weiss JP, Jerala R. Essential roles of hydrophobic residues in both MD-2 and toll-like receptor 4 in activation by endotoxin. J Biol Chem 2009; 284:15052-60. [PMID: 19321453 DOI: 10.1074/jbc.m901429200] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gram-negative bacterial endotoxin (i.e. lipopolysaccharide (LPS)) is one of the most potent stimulants of the innate immune system, recognized by the TLR4.MD-2 complex. Direct binding to MD-2 of LPS and LPS analogues that act as TLR4 agonists or antagonists is well established, but the role of MD-2 and TLR4 in receptor activation is much less clear. We have identified residues within the hairpin of MD-2 between strands five and six that, although not contacting acyl chains of tetraacylated lipid IVa (a TLR4 antagonist), influence activation of TLR4 by hexaacylated lipid A. We show that hydrophobic residues at positions 82, 85, and 87 of MD-2 are essential both for transfer of endotoxin from CD14 to monomeric MD-2 and for TLR4 activation. We also identified a pair of conserved hydrophobic residues (Phe-440 and Phe-463) in leucine-rich repeats 16 and 17 of the TLR4 ectodomain, which are essential for activation of TLR4 by LPS. F440A or F463A mutants of TLR4 were inactive, whereas the F440W mutant retained full activity. Charge reversal of neighboring cationic groups in the TLR4 ectodomain (Lys-388 and Lys-435), in contrast, did not affect cell activation. Our mutagenesis studies are consistent with a molecular model in which Val-82, Met-85, and Leu-87 in MD-2 and distal portions of a secondary acyl chain of hexaacylated lipid A that do not fit into the hydrophobic binding pocket of MD-2 form a hydrophobic surface that interacts with Phe-440 and Phe-463 on a neighboring TLR4.MD-2.LPS complex, driving TLR4 activation.
Collapse
Affiliation(s)
- Nusa Resman
- Department of Biotechnology, National Institute of Chemistry, Hajdrihova 19, and Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | | | | | | | | | | | | |
Collapse
|
32
|
Jin MS, Lee JO. Structures of the toll-like receptor family and its ligand complexes. Immunity 2008; 29:182-91. [PMID: 18701082 DOI: 10.1016/j.immuni.2008.07.007] [Citation(s) in RCA: 394] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Indexed: 11/30/2022]
Abstract
Toll-like receptors (TLRs) play central roles in the innate immune response by recognizing conserved structural patterns in diverse microbial molecules. Here, we discuss ligand binding and activation mechanisms of the TLR family. Hydrophobic ligands of TLR1, TLR2, and TLR4 interact with internal protein pockets. In contrast, dsRNA, a hydrophilic ligand, interacts with the solvent-exposed surface of TLR3. Binding of agonistic ligands, lipopeptides or dsRNA, induces dimerization of the ectodomains of the various TLRs, forming dimers that are strikingly similar in shape. In these "m"-shaped complexes, the C termini of the extracellular domains of the TLRs converge in the middle. This observation suggests the hypothesis that dimerization of the extracellular domains forces the intracellular TIR domains to dimerize, and this initiates signaling by recruiting intracellular adaptor proteins.
Collapse
Affiliation(s)
- Mi Sun Jin
- Department of Chemistry and Institute for the BioCentury, Korea Advanced Institute of Science and Technology, 373-1 Kusong-dong, Yusong-gu, Daejeon, 305-701, Korea
| | | |
Collapse
|
33
|
Nagy G, Pál T. Lipopolysaccharide: a tool and target in enterobacterial vaccine development. Biol Chem 2008; 389:513-20. [PMID: 18953717 DOI: 10.1515/bc.2008.056] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Lipopolysaccharide (LPS) is an essential component of Gram-negative bacteria. While mutants exhibiting truncated LPS molecules are usually over-attenuated, alternative approaches that affect the extent or timing of LPS expression, as well as its modification may establish the optimal balance for a live vaccine strain of sufficient attenuation and retained immunogenicity. On the other hand, a specific immune response to LPS molecules in itself is capable of conferring protective immunity to certain enterobacterial pathogens. Therefore, purified LPS derivatives could be used as parenteral vaccines. This review summarizes various LPS-based vaccination strategies, as well as approaches that utilize LPS mutants as whole-cell vaccines.
Collapse
Affiliation(s)
- Gábor Nagy
- Department of Medical Microbiology and Immunology, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary.
| | | |
Collapse
|
34
|
Extracellular loops of lipid A 3-O-deacylase PagL are involved in recognition of aminoarabinose-based membrane modifications in Salmonella enterica serovar typhimurium. J Bacteriol 2008; 190:5597-606. [PMID: 18567660 DOI: 10.1128/jb.00587-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium modifies its lipopolysaccharide (LPS), including the lipid A portion, in response to changes in its environment including host tissues. The lipid A 3-O-deacylase PagL, the expression of which is promoted under a host-mimetic environment, exhibits latency in S. enterica; deacylation of lipid A is not usually observed in vivo, despite the expression of the outer membrane protein PagL. In contrast, PagL does not exhibit latency in S. enterica pmrA and pmrE mutants, both of which are deficient in the aminoarabinose-based modification of lipid A, indicating that aminoarabinose-modified LPS species were involved in the latency. In order to analyze the machinery for PagL's repression, we generated PagL mutants in which an amino acid residue located at four extracellular loops was replaced with alanine. Apparent lipid A 3-O deacylation was observed in S. enterica expressing the recombinant mutants PagL(R43A), PagL(R44A), PagL(C85A), and PagL(R135A), but not in S. enterica expressing wild-type PagL, suggesting that the point mutations released PagL from the latency. In addition, mutations at Arg-43, Arg-44, Cys-85, and Arg-135 did not affect lipid A 3-O-deacylase activity in an S. enterica pmrA mutant or in Escherichia coli BL21(DE3). These results, taken together, indicate that specific amino acid residues located at extracellular loops of PagL are involved in the recognition of aminoarabinose-modified LPS. Furthermore, S. enterica expressing the recombinant PagL(R43A) or PagL(R135A) mutant showed apparent growth arrest at 43 degrees C compared with S. enterica expressing wild-type PagL, indicating that the latency of PagL is important for bacterial growth.
Collapse
|
35
|
Keestra AM, de Zoete MR, van Aubel RAMH, van Putten JPM. Functional characterization of chicken TLR5 reveals species-specific recognition of flagellin. Mol Immunol 2007; 45:1298-307. [PMID: 17964652 DOI: 10.1016/j.molimm.2007.09.013] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 09/12/2007] [Accepted: 09/13/2007] [Indexed: 01/06/2023]
Abstract
Mammalian Toll-like receptor 5 (TLR5) senses flagellin of several bacterial species and activates the innate immune system. The avian TLR repertoire exhibits considerable functional diversity compared to mammalian TLRs and evidence of a functional TLR5 in the avian species is lacking. In the present study we cloned and successfully expressed chicken TLR5 (chTLR5) in HeLa cells, as indicated by laser confocal microscopy. Infection of chTLR5 transfected cells with Salmonella enterica serovar Enteritidis activated NF-kappaB in a dose- and flagellin-dependent fashion. Similar NF-kappaB activation was observed with recombinant bacterial flagellin. Targeted mutagenesis of the proline residue at position 737 in the chTLR5-TIR domain was detrimental to chTLR5 function, confirming that the observed effects were conferred via chTLR5 and the MyD88 signaling pathway. Comparison of human, mouse and chicken TLR5 activation by flagellin of S. enterica serovar Typhimurium revealed that chTLR5 consistently yielded stronger responses than human but not mouse TLR5. This species-specific reactivity was not observed with flagellin of serovar Enteritidis. The species-specific TLR5 response was nullified after targeted mutagenesis of a single amino acid (Q89A) in serovar Typhimurium flagellin, while L415A and N100A substitutions had no effect. These results show that chickens express a functional TLR5 albeit with different flagellin sensing qualities compared to human TLR5. The finding that single amino acid substitutions in bacterial flagellin can alter the species-specific TLR5 response may influence the host range and susceptibility of infection.
Collapse
Affiliation(s)
- A Marijke Keestra
- Department of Infectious Diseases and Immunology, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | | | | | | |
Collapse
|
36
|
Tirsoaga A, El Hamidi A, Perry MB, Caroff M, Novikov A. A rapid, small-scale procedure for the structural characterization of lipid A applied to Citrobacter and Bordetella strains: discovery of a new structural element. J Lipid Res 2007; 48:2419-27. [PMID: 17703058 DOI: 10.1194/jlr.m700193-jlr200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Endotoxins [lipopolysaccharides (LPSs)] are part of the outer cell membrane of Gram-negative bacteria. Their biological activities are associated mainly with the lipid component (lipid A) and even more specifically with discrete aspects of their fine structure. The need for a rapid and small-scale analysis of lipid A motivated us to develop a procedure that combines direct isolation of lipids A from bacterial cells with sequential release of their ester-linked fatty acids by a mild alkali treatment followed by MALDI-MS analysis. This method avoids the multiple-step LPS extraction procedure and lipid A isolation. The whole process can be performed in a working day and applied to lyophilized bacterial samples as small as 1 mg. We illustrate the method by applying it to the analysis of lipids A of three species of Citrobacter that were found to be identical. On the other hand, when applied to two batches of Bordetella bronchiseptica strain 4650, it highlighted the presence, in one of them, of hitherto unreported hexosamine residues substituting the lipid A phosphate groups, possibly a new camouflage opportunity to escape a host defense system.
Collapse
Affiliation(s)
- Alina Tirsoaga
- Equipe Endotoxines, Unité Mixte de Recherche 8619 du Centre National de la Recherche Scientifique, Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Université de Paris-Sud, Orsay, France
| | | | | | | | | |
Collapse
|
37
|
Keestra AM, de Zoete MR, van Aubel RAMH, van Putten JPM. The Central Leucine-Rich Repeat Region of Chicken TLR16 Dictates Unique Ligand Specificity and Species-Specific Interaction with TLR2. THE JOURNAL OF IMMUNOLOGY 2007; 178:7110-9. [PMID: 17513760 DOI: 10.4049/jimmunol.178.11.7110] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The ligand specificity of human TLR (hTLR) 2 is determined through the formation of functional heterodimers with either hTLR1 or hTLR6. The chicken carries two TLR (chTLR) 2 isoforms, type 1 and type 2 (chTLR2t1 and chTLR2t2), and one putative TLR1/6/10 homologue (chTLR16) of unknown function. In this study, we report that transfection of HeLa cells with the various chicken receptors yields potent NF-kappaB activation for the receptor combination of chTLR2t2 and chTLR16 only. The sensitivity of this complex was strongly enhanced by human CD14. The functional chTLR16/chTLR2t2 complex responded toward both the hTLR2/6-specific diacylated peptide S-(2,3-bispalmitoyloxypropyl)-Cys-Gly-Asp-Pro-Lys-His-Pro-Lys-Ser-Phe (FSL-1) and the hTLR2/1 specific triacylated peptide tripalmitoyl-S-(bis(palmitoyloxy)propyl)-Cys-Ser-(Lys)(3)-Lys (Pam(3)CSK(4)), indicating that chTLR16 covers the functions of both mammalian TLR1 and TLR6. Dissection of the species specificity of TLR2 and its coreceptors showed functional chTLR16 complex formation with chTLR2t2 but not hTLR2. Conversely, chTLR2t2 did not function in combination with hTLR1 or hTLR6. The use of constructed chimeric receptors in which the defined domains of chTLR16 and hTLR1 or hTLR6 had been exchanged revealed that the transfer of leucine-rich repeats (LRR) 6-16 of chTLR16 into hTLR6 was sufficient to confer dual ligand specificity to the human receptor and to establish species-specific interaction with chTLR2t2. Collectively, our data indicate that diversification of the central LRR region of the TLR2 coreceptors during evolution has put constraints on both their ligand specificity and their ability to form functional complexes with TLR2.
Collapse
Affiliation(s)
- A Marijke Keestra
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
38
|
Muroi M, Tanamoto KI. Structural Regions of MD-2 That Determine the Agonist-Antagonist Activity of Lipid IVa. J Biol Chem 2006; 281:5484-91. [PMID: 16407172 DOI: 10.1074/jbc.m509193200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A cell surface receptor complex consisting of CD14, Toll-like receptor (TLR4), and MD-2 recognizes lipid A, the active moiety of lipopolysaccharide (LPS). Escherichia coli-type lipid A, a typical lipid A molecule, potently activates both human and mouse macrophage cells, whereas the lipid A precursor, lipid IVa, activates mouse macrophages but is inactive and acts as an LPS antagonist in human macrophages. This animal species-specific activity of lipid IVa involves the species differences in MD-2 structure. We explored the structural region of MD-2 that determines the agonistic and antagonistic activities of lipid IVa to induce nuclear factor-kappaB activation. By expressing human/mouse chimeric MD-2 together with mouse CD14 and TLR4 in human embryonic kidney 293 cells, we found that amino acid regions 57-79 and 108-135 of MD-2 determine the species-specific activity of lipid IVa. We also showed that the replacement of Thr(57), Val(61), and Glu(122) of mouse MD-2 with corresponding human MD-2 sequence or alanines impaired the agonistic activity of lipid IVa, and antagonistic activity became evident. These mutations did not affect the activation of nuclear factor-kappaB, TLR4 oligomerization, and inducible phosphorylation of IkappaBalpha in response to E. coli-type lipid A. These results indicate that amino acid residues 57, 61, and 122 of mouse MD-2 are critical to determine the agonist-antagonist activity of lipid IVa and suggest that these amino acid residues may be involved in the discrimination of lipid A structure.
Collapse
Affiliation(s)
- Masashi Muroi
- Division of Microbiology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya, Tokyo 158-8501, Japan
| | | |
Collapse
|
39
|
Bishop RE. The lipid A palmitoyltransferase PagP: molecular mechanisms and role in bacterial pathogenesis. Mol Microbiol 2005; 57:900-12. [PMID: 16091033 DOI: 10.1111/j.1365-2958.2005.04711.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Palmitoylated lipid A can both protect pathogenic bacteria from host immune defences and attenuate the activation of those same defences through the TLR4 signal transduction pathway. A palmitate chain from a phospholipid is incorporated into lipid A by an outer membrane enzyme PagP, which is an 8-stranded antiparallel beta-barrel preceded by an amino-terminal amphipathic alpha-helix. The PagP barrel axis is tilted by 25 degrees with respect to the membrane normal. An interior hydrophobic pocket in the outer leaflet-exposed half of the molecule functions as a hydrocarbon ruler that allows the enzyme to distinguish palmitate from other acyl chains found in phospholipids. Internalization of a phospholipid palmitoyl group within the barrel appears to occur by lateral diffusion from the outer leaflet through non-hydrogen-bonded regions between beta-strands. The MsbA-dependent trafficking of lipids from the inner membrane to the outer membrane outer leaflet is necessary for lipid A palmitoylation in vivo. The mechanisms by which bacteria regulate pagP gene expression strikingly reflect the corresponding pathogenic lifestyle of the bacterium. Variations on PagP structure and function can be illustrated with the known homologues from Gram-negative bacteria, which include pathogens of humans and other mammals in addition to pathogens of insects and plants. The PagP enzyme is potentially a target for the development of anti-infective agents, a probe of outer membrane lipid asymmetry, and a tool for the synthesis of lipid A-based vaccine adjuvants and endotoxin antagonists.
Collapse
Affiliation(s)
- Russell E Bishop
- Departments of Laboratory Medicine and Pathobiology, and Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
40
|
Abstract
This review discusses the role that nitric oxide (NO) and its congeners play on various stages in the pathophysiology of Escherichia coli and Salmonella infections, with special emphasis on the regulatory pathways that lead to high NO synthesis, the role of reactive nitrogen species (RNS) in host resistance, and the bacterial molecular targets and defense mechanisms that protect enteric bacteria against the nitrosative stress encountered in diverse host anatomical sites. In general, NO can react directly with prosthetic groups containing transition metal centers, with other radicals, or with sulfhydryl groups in the presence of an electron acceptor. Binding to iron complexes is probably the best characterized direct reaction of NO in biological systems. The targets of RNS are numerous. RNS can facilitate oxidative modifications including lipid peroxidation, hydroxylation, and DNA base and protein oxidation. In addition, RNS can inflict nitrosative stress through the nitrosation of amines and sulfhydryls. Numerous vital bacterial molecules can be targeted by NO. It is therefore not surprising that enteropathogenic bacteria are armed with a number of sensors to coordinate the protective response to nitrosative stress, along with an assortment of antinitrosative defenses that detoxify, repair, or avoid the deleterious effects of RNS encountered within the host. NO and NO-derived RNS play important roles in innate immunity to Salmonella and E. coli. Enzymatic NO production by NO synthases can be enhanced by microbial and other inflammatory stimuli and it exerts direct antimicrobial actions as well as immunomodulatory and vasoregulatory effects.
Collapse
|
41
|
El Hamidi A, Tirsoaga A, Novikov A, Hussein A, Caroff M. Microextraction of bacterial lipid A: easy and rapid method for mass spectrometric characterization. J Lipid Res 2005; 46:1773-8. [PMID: 15930524 DOI: 10.1194/jlr.d500014-jlr200] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Endotoxins (lipopolysaccharides) are the main components of Gram-negative bacterial outer membranes. A quick and simple way to isolate their lipid region (lipid A) directly from whole bacterial cells was devised. This method using hot ammonium-isobutyrate solvent was applied to small quantities of cells and proved to be indispensable when a rapid characterization of lipid A structure by mass spectrometry was required. Biological activities of endotoxins are directly related to the lipid A structures, which vary greatly with cell growth conditions. This method is suitable for rough- and smooth-type bacteria and very efficient for screening variations in lipid A structures. Data are acquired in a few hours and avoid the use of phenol in extraction.
Collapse
Affiliation(s)
- Asmaa El Hamidi
- Equipe Endotoxines, Unité Mixte de Recherche 8619 du Centre National de la Recherche Scientifique, Institut de Biochimie, Biophysique Moléculaire et Cellulaire, Université de Paris-Sud, 91405 Orsay, France
| | | | | | | | | |
Collapse
|
42
|
Hong CC, Shimomura-Shimizu M, Muroi M, Tanamoto KI. Effect of endocrine disrupting chemicals on lipopolysaccharide-induced tumor necrosis factor-alpha and nitric oxide production by mouse macrophages. Biol Pharm Bull 2005; 27:1136-9. [PMID: 15256756 DOI: 10.1248/bpb.27.1136] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Little is known about the development of infectious diseases during exposure to endocrine disrupting chemicals (EDCs), although several studies have reported on the effect of EDCs on the immune function of the human body. To assess the effect of EDCs on the development of infectious disease, we investigated the effect of eighteen possible EDCs on mouse macrophage production of tumor necrosis factor-alpha (TNF-alpha) and nitric oxide (NO) in response to bacterial endotoxin in vitro and ex vivo. Of chemicals we examined, simazine, nitrofen, and benzyl butyl phthalate inhibited lipopolysaccharide (LPS)-induced TNF-alpha production by mouse macrophage cell line RAW 264 in vitro. Carbaryl, alachlor, nonylphenol, octylphenol, tributyltin, and triphenyltin inhibited LPS-induced NO production in vitro, whereas 2,4-dichlorophenoxy acetic acid and bisphenol A enhanced its production. Zineb and alachlor, on the other hand, enhanced LPS-induced TNF-alpha production by mouse peritoneal macrophages ex vivo, while alachlor inhibited LPS/interferon-gamma-induced NO production ex vivo. These results indicate that some EDCs exert modulatory activity on endotoxin-induced macrophage activation either positively or negatively, suggesting that these compounds may affect the development of infectious diseases. This is the first report that systematically compared the effect of EDCs on LPS action.
Collapse
Affiliation(s)
- Chih-Chun Hong
- Division of Microbiology, National Institute of Health Sciences, Tokyo, Japan
| | | | | | | |
Collapse
|
43
|
Geurtsen J, Steeghs L, Hove JT, van der Ley P, Tommassen J. Dissemination of lipid A deacylases (pagL) among gram-negative bacteria: identification of active-site histidine and serine residues. J Biol Chem 2004; 280:8248-59. [PMID: 15611102 DOI: 10.1074/jbc.m414235200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipopolysaccharide (LPS) is one of the main constituents of the Gram-negative bacterial outer membrane. It usually consists of a highly variable O-antigen, a less variable core oligosaccharide, and a highly conserved lipid moiety, designated lipid A. Several bacteria are capable of modifying their lipid A architecture in response to external stimuli. The outer membrane-localized lipid A 3-O-deacylase, encoded by the pagL gene of Salmonella enterica serovar Typhimurium, removes the fatty acyl chain from the 3 position of lipid A. Although a similar activity was reported in some other Gram-negative bacteria, the corresponding genes could not be identified. Here, we describe the presence of pagL homologs in a variety of Gram-negative bacteria. Although the overall sequence similarity is rather low, a conserved domain could be distinguished in the C-terminal region. The activity of the Pseudomonas aeruginosa and Bordetella bronchiseptica pagL homologs was confirmed upon expression in Escherichia coli, which resulted in the removal of an R-3-hydroxymyristoyl group from lipid A. Upon deacylation by PagL, E. coli lipid A underwent another modification, which was the result of the activity of the endogenous palmitoyl transferase PagP. Furthermore, we identified a conserved histidine-serine couple as active site residues, suggesting a catalytic mechanism similar to serine hydrolases. The biological function of PagL remains unclear. However, because PagL homologs were found in both pathogenic and nonpathogenic species, PagL-mediated deacylation of lipid A probably does not have a dedicated role in pathogenicity.
Collapse
Affiliation(s)
- Jeroen Geurtsen
- Department of Molecular Microbiology, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands.
| | | | | | | | | |
Collapse
|
44
|
Jia W, El Zoeiby A, Petruzziello TN, Jayabalasingham B, Seyedirashti S, Bishop RE. Lipid trafficking controls endotoxin acylation in outer membranes of Escherichia coli. J Biol Chem 2004; 279:44966-75. [PMID: 15319435 DOI: 10.1074/jbc.m404963200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The biogenesis of biological membranes hinges on the coordinated trafficking of membrane lipids between distinct cellular compartments. The bacterial outer membrane enzyme PagP confers resistance to host immune defenses by transferring a palmitate chain from a phospholipid to the lipid A (endotoxin) component of lipopolysaccharide. PagP is an eight-stranded antiparallel beta-barrel, preceded by an N-terminal amphipathic alpha-helix. The active site is localized inside the beta-barrel and is aligned with the lipopolysaccharide-containing outer leaflet, but the phospholipid substrates are normally restricted to the inner leaflet of the asymmetric outer membrane. We examined the possibility that PagP activity in vivo depends on the aberrant migration of phospholipids into the outer leaflet. We find that brief addition to Escherichia coli cultures of millimolar EDTA, which is reported to replace a fraction of lipopolysaccharide with phospholipids, rapidly induces palmitoylation of lipid A. Although expression of the E. coli pagP gene is induced during Mg2+ limitation by the phoPQ two-component signal transduction pathway, EDTA-induced lipid A palmitoylation occurs more rapidly than pagP induction and is independent of de novo protein synthesis. EDTA-induced lipid A palmitoylation requires functional MsbA, an essential ATP-binding cassette transporter needed for lipid transport to the outer membrane. A potential role for the PagP alpha-helix in phospholipid translocation to the outer leaflet was excluded by showing that alpha-helix deletions are active in vivo. Neither EDTA nor Mg(2+)-EDTA stimulate PagP activity in vitro. These findings suggest that PagP remains dormant in outer membranes until Mg2+ limitation promotes the migration of phospholipids into the outer leaflet.
Collapse
Affiliation(s)
- Wenyi Jia
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
45
|
Ahn VE, Lo EI, Engel CK, Chen L, Hwang PM, Kay LE, Bishop RE, Privé GG. A hydrocarbon ruler measures palmitate in the enzymatic acylation of endotoxin. EMBO J 2004; 23:2931-41. [PMID: 15272304 PMCID: PMC514935 DOI: 10.1038/sj.emboj.7600320] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2004] [Accepted: 06/18/2004] [Indexed: 11/08/2022] Open
Abstract
The ability of enzymes to distinguish between fatty acyl groups can involve molecular measuring devices termed hydrocarbon rulers, but the molecular basis for acyl-chain recognition in any membrane-bound enzyme remains to be defined. PagP is an outer membrane acyltransferase that helps pathogenic bacteria to evade the host immune response by transferring a palmitate chain from a phospholipid to lipid A (endotoxin). PagP can distinguish lipid acyl chains that differ by a single methylene unit, indicating that the enzyme possesses a remarkably precise hydrocarbon ruler. We present the 1.9 A crystal structure of PagP, an eight-stranded beta-barrel with an unexpected interior hydrophobic pocket that is occupied by a single detergent molecule. The buried detergent is oriented normal to the presumed plane of the membrane, whereas the PagP beta-barrel axis is tilted by approximately 25 degrees. Acyl group specificity is modulated by mutation of Gly88 lining the bottom of the hydrophobic pocket, thus confirming the hydrocarbon ruler mechanism for palmitate recognition. A striking structural similarity between PagP and the lipocalins suggests an evolutionary link between these proteins.
Collapse
Affiliation(s)
- Victoria E Ahn
- Department of Medical Biophysics, University of Toronto, Canada
| | - Eileen I Lo
- Department of Biochemistry, University of Toronto, Canada
| | - Christian K Engel
- Division of Molecular and Structural Biology, Ontario Cancer Institute, Canada
| | - Lu Chen
- Division of Molecular and Structural Biology, Ontario Cancer Institute, Canada
| | - Peter M Hwang
- Department of Biochemistry, University of Toronto, Canada
| | - Lewis E Kay
- Department of Biochemistry, University of Toronto, Canada
- Department of Medical Genetics and Microbiology, University of Toronto, Canada
- Department of Chemistry, University of Toronto, Canada
| | - Russell E Bishop
- Department of Biochemistry, University of Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
- 6213 Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8. E-mail:
| | - Gilbert G Privé
- Department of Medical Biophysics, University of Toronto, Canada
- Department of Biochemistry, University of Toronto, Canada
- Division of Molecular and Structural Biology, Ontario Cancer Institute, Canada
- Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, Ontario, Canada M5G 2M9. Tel.: +1 416 946 2971; Fax: +1 416 946 6529; E-mail:
| |
Collapse
|
46
|
Fujihara M, Muroi M, Tanamoto KI, Suzuki T, Azuma H, Ikeda H. Molecular mechanisms of macrophage activation and deactivation by lipopolysaccharide: roles of the receptor complex. Pharmacol Ther 2004; 100:171-94. [PMID: 14609719 DOI: 10.1016/j.pharmthera.2003.08.003] [Citation(s) in RCA: 422] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Bacterial lipopolysaccharide (LPS), the major structural component of the outer wall of Gram-negative bacteria, is a potent activator of macrophages. Activated macrophages produce a variety of inflammatory cytokines. Excessive production of cytokines in response to LPS is regarded as the cause of septic shock. On the other hand, macrophages exposed to suboptimal doses of LPS are rendered tolerant to subsequent exposure to LPS and manifest a profoundly altered response to LPS. Increasing evidence suggests that monocytic cells from patients with sepsis and septic shock survivors have characteristics of LPS tolerance. Thus, an understanding of the molecular mechanisms underlying activation and deactivation of macrophages in response to LPS is important for the development of therapeutics for septic shock and the treatment of septic shock survivors. Over the past several years, significant progress has been made in identifying and characterizing several key molecules and signal pathways involved in the regulation of macrophage functions by LPS. In this paper, we summarize the current findings of the functions of the LPS receptor complex, which is composed of CD14, Toll-like receptor 4 (TLR4), and myeloid differentiation protein-2 (MD-2), and the signal pathways of this LPS receptor complex with regard to both activation and deactivation of macrophages by LPS. In addition, recent therapeutic approaches for septic shock targeting the LPS receptor complex are described.
Collapse
Affiliation(s)
- Mitsuhiro Fujihara
- Japanese Red Cross, Hokkaido Red Cross Blood Center, Yamanote 2-2, Nishi-ku, Sapporo 063-0002, Japan.
| | | | | | | | | | | |
Collapse
|
47
|
Kawasaki K, Ernst RK, Miller SI. 3-O-deacylation of lipid A by PagL, a PhoP/PhoQ-regulated deacylase of Salmonella typhimurium, modulates signaling through Toll-like receptor 4. J Biol Chem 2004; 279:20044-8. [PMID: 15014080 DOI: 10.1074/jbc.m401275200] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Toll-like receptor 4 (TLR4)-mediated responses, which are induced by the lipid A portion of lipopolysaccharide, are important for host defense against Salmonellae infection. A variety of different data indicate that the acylation state of lipid A can alter TLR4-mediated responses. The S. typhimurium virulence gene product PhoP/PhoQ signals the presence of host microenvironments to regulate the expression of a lipid A 3-O-deacylase, PagL, and a lipid A palmitoyltransferase, PagP. We now demonstrate that 3-O-deacylation and palmitoylation of lipid A decreases its ability to induce TLR4-mediated signaling. Deacylated lipid A, deacylated and palmitoylated lipid A, palmitoylated lipid A, and unmodified lipid A species were purified from Escherichia coli heterologously expressing PagL and/or PagP. The purified lipid A preparations showed spectra of a single lipid A species on mass spectrometry and gave a single band on thin layer chromatography. The activity of purified lipid A species was examined using human and mouse cell lines that express recombinant human TLR4. Compared with unmodified lipid A, the modified lipid A species are 30-100-fold less active in the ability to induce NF-kappaB-dependent reporter activation. These results suggest that the lipid A modifications reduce TLR4-signaling as part of Salmonellae adaptation to host environments.
Collapse
Affiliation(s)
- Kiyoshi Kawasaki
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
48
|
Nakagawa Y, Murai T, Hasegawa C, Hirata M, Tsuchiya T, Yagami T, Haishima Y. Endotoxin contamination in wound dressings made of natural biomaterials. J Biomed Mater Res B Appl Biomater 2003; 66:347-55. [PMID: 12808594 DOI: 10.1002/jbm.b.10020] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Contamination by endotoxin of nine kinds of wound dressings made of natural biomaterials (calcium alginate, collagen, chitin, and poly-L-leucine) was examined with the use of water extracts. By applying the Limulus amoebocyte lysate (LAL) test, high concentrations of endotoxin were detected in extracts from three kinds of products made of calcium alginate. These extracts evoked fever in rabbits and induced the release of a proinflammatory (pyrogenic) cytokine, interleukin-6 (IL-6), from human monocytic cells (MM6-CA8). The effects disappeared when the extracts were treated with endotoxin-removing gel column chromatography or with an endotoxin antagonist, B464, confirming that the contaminating pyrogen was endotoxin. A noteworthy finding was that one of the endotoxin-containing extracts showed very weak IL-6-inducibility in human monocytic cells in contrast to its high pyrogenicity to rabbits. The discrepancy could be explained based on differences between humans and rabbits in sensitivity to the endotoxin, because the extract showed higher proinflammatory-cytokine (TNF-alpha)-inducibility in rabbit whole-blood cells (WBCs) than human WBCs. The results suggest that the LAL test is a useful method of detecting endotoxin contamination in wound dressings and the MM6-CA8 assay is a good supplement to the LAL test for evaluating pyrogenicity in humans accurately.
Collapse
Affiliation(s)
- Y Nakagawa
- Division of Biological Evaluation, Osaka Branch, National Institute of Health Sciences, 1-1-43, Hoenzaka, Chuo-ku, Osaka 540-0006, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Muroi M, Ohnishi T, Azumi-Mayuzumi S, Tanamoto KI. Lipopolysaccharide-mimetic activities of a Toll-like receptor 2-stimulatory substance(s) in enterobacterial lipopolysaccharide preparations. Infect Immun 2003; 71:3221-6. [PMID: 12761102 PMCID: PMC155748 DOI: 10.1128/iai.71.6.3221-3226.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipopolysaccharide (LPS) preparations are known to often contain substances which activate cells through Toll-like receptor 2 (TLR2), and it is suspected that bacterial lipoproteins are responsible for this activation. We compared the mode of action of the TLR2-stimulatory substances with that of a synthetic bacterial lipopeptide (tripalmitoyl-Cys-Ser-Ser-Asn-Ala [Pam(3)CSSNA]), as well as with that of peptidoglycan. Six out of eight LPS preparations tested induced NF-kappaB-dependent reporter activity in 293 cells expressing CD14 and TLR2. Phenol extract (PEX) prepared from Escherichia coli LPS by modified phenol extraction induced reporter activity in 293 cells expressing TLR2, and this activity was enhanced by coexpression of CD14, whereas the activity of Pam(3)CSSNA was not dependent on CD14. The activity of PEX, but not that of Pam(3)CSSNA or peptidoglycan, was also enhanced by LPS binding protein or serum and blocked by polymyxin B. In addition, the activity of PEX was inhibited by a lipid A precursor (compound 406) in 293 cells expressing CD14 and TLR2. These results indicate that E. coli LPS preparations contain LPS-mimetic TLR2-stimulatory substances which differ from bacterial lipopeptides or peptidoglycan.
Collapse
Affiliation(s)
- Masashi Muroi
- Division of Microbiology, National Institute of Health Sciences, Setagaya, Tokyo 158-8501, Japan
| | | | | | | |
Collapse
|
50
|
Preston A, Maxim E, Toland E, Pishko EJ, Harvill ET, Caroff M, Maskell DJ. Bordetella bronchiseptica PagP is a Bvg-regulated lipid A palmitoyl transferase that is required for persistent colonization of the mouse respiratory tract. Mol Microbiol 2003; 48:725-36. [PMID: 12694617 DOI: 10.1046/j.1365-2958.2003.03484.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bordetella bronchiseptica lipopolysaccharide (LPS) expression varies depending on growth conditions, regulated by the Bvg system. A B. bronchiseptica pagP homologue was identified that is required for Bvg-mediated modification of the lipid A core region of LPS that occurs on switching from the Bvg- to the Bvg+ phase. Structural analysis demonstrated that the lipid A of a B. bronchiseptica pagP mutant differed from wild-type lipid A by the absence of a palmitate group in secondary acylation at the C3' position. The putative pagP promoter drove the expression of a green fluorescent protein (GFP) reporter gene in a Bvg-regulated fashion. These data suggest that B. bronchiseptica pagP encodes a Bvg-regulated lipid A palmitoyl transferase that mediates modification of the lipid A as part of the overall Bvg-mediated adaptation of this organism to changing environmental conditions. We also show that pagP is not required for the initial colonization of the mouse respiratory tract by B. bronchiseptica, but is required for persistence of the organism within this organ.
Collapse
Affiliation(s)
- Andrew Preston
- Centre for Veterinary Science, Department of Clinical Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK.
| | | | | | | | | | | | | |
Collapse
|